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Millimetric droplets may be levitated on the surface of a vibrating fluid bath. Eddi et al. [Europhys.
Lett. 82, 44001 (2008)] demonstrated that when a pair of levitating drops of unequal size are placed
nearby, they interact through their common wavefield in such a way as to self-propel through a ratch-
eting mechanism. We present the results of an integrated experimental and theoretical investigation
of such ratcheting pairs. Particular attention is given to characterizing the dependence of the ratchet-
ing behavior on the droplet sizes and vibrational acceleration. Our experiments demonstrate that the
quantized inter-drop distances of a ratcheting pair depend on the vibrational acceleration, and that
as this acceleration is increased progressively, the direction of the ratcheting motion may reverse up
to four times. Our simulations highlight the critical role of both the vertical bouncing dynamics of
the individual drops and the traveling wave fronts generated during impact on the ratcheting motion,
allowing us to rationalize the majority of our experimental findings. Published by AIP Publishing.
https://doi.org/10.1063/1.5032116

We consider droplet pairs of unequal size bouncing on
the surface of a vibrating bath. As originally reported by
Eddi et al.,1 when the pair is sufficiently close, the asym-
metry in the wavefield along their line of centers causes
them to propagate through a ratcheting mechanism. We
report the results of a combined experimental and theoret-
ical investigation of ratcheting pairs of bouncing droplets.
Particular attention is given to rationalizing the rever-
sals in directions observed as the vibrational forcing is
increased progressively. Our study highlights the short-
comings of the stroboscopic models of bouncing droplets in
situations where the vertical bouncing dynamics are vari-
able and droplets interact through the propagating wave
fronts generated during impact.

I. INTRODUCTION

Coalescence of a millimetric droplet with an underly-
ing bath of the same fluid can be avoided by vibrating the
bath vertically2 with acceleration γ sin ωt, provided the vibra-
tional frequency, ω, is comparable to the natural oscillation
frequency of the drop, ωd ∼

√
σ/ρR3, where σ , ρ, and R

denote, respectively, the surface tension, density, and radius
of the drop. As the droplet bounces on the free surface, it
interacts with waves triggered by its previous impacts. For
a drop of a given size, there is a critical vibrational acceler-
ation γB, the bouncing threshold, below which it coalesces
and above which it bounces. The bouncing mode depends
on γ , and is characterized by the ordered pair (m, n): in the
(m, n) mode, the drop bounces n times in m periods of the
bath oscillation. For γ just above γB, the drop bounces in
place with the same frequency as the driving in the (1, 1)

mode. As γ is further increased, the bouncing mode changes

a)C.A.Galeano.Rios@bath.ac.uk
b)couchman@mit.edu
c)bush@math.mit.edu

according to a sequence that depends on drop size, which may
include (2, 2), (4, 4), or (4, 3) modes.3–6 Eventually, once the
drop’s bouncing amplitude is sufficiently large, it bounces at
twice the period of the driving, in the (2,1) mode. The drop
then achieves resonance with the most unstable wave mode
of the bath, namely, the subharmonic Faraday waves excited
by its impact. Consequently, this period-doubling transition
is accompanied by a dramatic increase in the amplitude of the
droplet’s wavefield.2 Further increasing γ beyond the walking
threshold, γW , may serve to destabilize the resonant bouncer
into a dynamic state, the so-called walker, in which the droplet
self-propels by virtue of a resonant interaction with its own
wavefield.7 Increasing γ beyond the Faraday threshold, γF ,
prompts the emergence of a standing field of subharmonic
Faraday waves throughout the bath. The Faraday wavelength,
λF , is calculated by Kumar8 for a viscous fluid, and for a
weakly viscous fluid is well approximated by the standard
water-wave dispersion relation.

Eddi et al.1 demonstrated that bouncing droplet pairs of
unequal size may self-propel through a ratcheting motion.
Notably, this ratcheting motion arises below the walking
threshold of the individual droplets, and so is due exclusively
to the wave-mediated droplet interaction. They demonstrated
that as γ is increased progressively, the direction of motion
of the ratcheting pairs along their line of centers may reverse
twice, and argued that these reversals in direction were due
to changes in the vertical bouncing modes of the individual
drops. Specifically, at the lowest memory at which ratcheting
occurs, they found that both drops are in the (1,1) mode, and
the large drop follows the smaller drop. As γ was increased
beyond the threshold at which the small drop period-doubles
into a (2,2) mode, they found that the smaller drop then fol-
lows the larger one. Finally, upon further increasing γ , so that
the larger drop also enters the (2,2) mode, they found that the
large drop once again follows the small, but at a separation
distance larger than that arising for (1,1) bouncers. By explor-
ing a broader parameter regime, we demonstrate here that up
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to four reversals of direction may arise for a given droplet
pair as γ is increased. Furthermore, we show that the major-
ity of these reversals in direction are not caused by changes
in the bouncing mode, but rather by changes in the impact
phase within a given mode, which can alter both the magni-
tude and direction of the net wave force exerted on the pair by
the waves during impact.

The stroboscopic model of Oza et al.11 has proven to be
sufficient for predicting the stability of a variety of single-
walker states, including the bouncing and walking states, as
well as circular orbits in a rotating frame4,11 and in the pres-
ence of a simple harmonic potential.12,13 However, the stro-
boscopic model cannot be expected to capture the behavior
of ratcheting pairs for several reasons. First, the stroboscopic
model does not account for variations in a drop’s vertical
dynamics and so would be unable to capture the range of
bouncing modes, including (1, 1), (2, 2), and (2, 1) modes,
seen in our experiments. Second, the stroboscopic model is
unable to capture modulations in the bouncing phase, an
effect shown to be important when modeling droplet-droplet
interactions in orbiting14 and promenading15 pairs. Third, the
stroboscopic model assumes implicitly that a standing field of
Faraday waves is generated at each impact and that the impact
between the drop and bath is instantaneous. Experimental
measurements by Damiano et al.16 have shown that a droplet’s
wavefield actually has radially propagating wavefronts. In the
parameter regime examined in our experiments, the contact
time between the drop and the bath is sufficiently long that the
horizontal dynamics of the drops is significantly influenced by
the traveling wave fronts generated during impact.

To characterize the dynamics of ratcheting pairs theo-
retically, we adopt the model of Milewski et al.,5 which
uses weakly viscous quasi-potential theory to more accurately
capture the wavefield generated by a droplet. Notably, the
wavefield predicted by this model was shown to be in good
agreement with the experimental wavefield measurements of
Damiano et al.16 Specifically, it captures the radially prop-
agating wavefronts generated at each drop impact. Further,
the model of Milewski et al.5 is able to capture the variety
of bouncing modes observed in the experiment, by explic-
itly modeling the drop’s vertical dynamics and the drop’s
interaction with the bath surface during contact.

In Sec. II, we detail our experimental protocol and present
the results of our experimental characterization of ratchet-
ing pairs. In Sec. III, we briefly recap the model being used
in our accompanying theoretical study, highlight the mech-
anism responsible for the ratcheting motion, and compare
the results of our experiments and simulations. The criti-
cal insights provided by our simulations are discussed in
Sec. IV.

II. EXPERIMENTS

Experiments were performed using the set-up shown
in Fig. 1. An electrodynamic shaker9 is used to vertically
vibrate a bath of silicon oil (density ρ = 949 kg m−3, sur-
face tension σ = 20.6 × 10−3 N/m, and kinematic viscosity
ν = 20 cSt) with an acceleration of γ sin ωt. For this fluid,
the sub-harmonic Faraday waves have a wavelength of λF ≈
4.75 mm and the Faraday threshold is γF ≈ 4.3 g, where g
denotes gravitational acceleration. Droplets of a desired size,
composed of the same fluid, are created using a piezoelectric
droplet generator.17 A ratcheting pair is formed by generating
two unequal drops, of radii R1 and R2, and by manually push-
ing them together until they settle into a stable bound state
with an inter-drop distance d . As reported by Eddi et al.,18

there are a discrete set of stable separation distances. Fol-
lowing the convention of Eddi et al.,18 we use the binding
numbers n = 1, 1.5, 2, 2.5, . . . to denote the quantized stable
binding lengths. Integer and half-integer values of n denote
that the drops in a pair will bounce in- or out-of-phase,
respectively, after they have undergone the period-doubling
transition from a (1, 1) to a (2, 2) mode.

An overhead camera is used to record the horizontal
trajectory of the droplets and a transparent lid is used to iso-
late the bath from ambient air currents.19 Three submerged
acrylic launchers are spaced evenly around the bath’s edge
and serve to direct ratcheting pairs toward the bath’s center.
This geometric adaptation makes data collection more effi-
cient, allowing the experiment to run relatively continuously
by eliminating the need to remove the lid in order to reposi-
tion the drops after they reach the bath’s edge. Following Eddi
et al.,1 we define the ratcheting speed, vR, to be the speed of
the pair’s center of mass along the radial direction between the

(a) (b) (c)

(d)

FIG. 1. (a) A schematic diagram of the experimental set-up. A detailed description of the shaker can be found in Harris and Bush.9 (b) A schematic illus-
tration showing a view of the bath as seen by the overhead camera. Submerged launchers are used to direct ratcheting pairs towards the center of the bath.
(c) A ratcheting pair consists of two unequally sized drops of radii R1 and R2 interacting at a distance d through their common wavefield. This image was
captured using the visualization technique developed by Harris et al.10 (d) An overhead view of the wavefield generated by a ratcheting pair.
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drops, and use the convention that vR > 0 when the smaller
drop follows the larger drop.

We considered droplet pairs with five different size dif-
ferentials, denoted A through E in Table I. For each pair, we
characterized the dependence of the inter-drop distance, d ,
and the ratcheting speed, vR, on the driving acceleration of
the bath, γ , and the pair’s binding number, n. For a given
pair size, the driving acceleration of the bath was first set
to γ = 1.2 g, slightly above the bouncing threshold, γB, and
an initial separation distance corresponding to binding num-
ber n = 1, 1.5, 2 or 2.5 was chosen. Note that at γ = 1.2 g,
all drops bounce in phase in a (1, 1) mode: the possibility of
the drops being out of phase only arises when both drops are
above the period-doubling transition. No ratcheting motion
was observed for pairs with binding numbers n > 2.5: the
wave force imparted during impact at such large separation
distances is evidently too weak to generate horizontal motion
and the droplets bounce in place. For a given pair size and
binding number, n, γ is then slowly increased in increments
of 0.1 g − 0.2 g. As γ is increased progressively, the pair first
transitions from a static to a ratcheting state, and then the
ratcheting state eventually destabilizes into an orbiting state.
At each increment of γ , an overhead video of the pair is
recorded at a frame rate of 5 fps, allowing us to track the hor-
izontal motion of each drop. We note that for pair A, which
has the largest size differential, ratcheting motion with bind-
ing number n = 1 was observed all the way down to the value
of γ at which the larger drop coalesced with the bath. A video
showing several examples of the ratcheting motion of pair A
with binding number n = 1 is included in the supplementary
material.

Figure 2 shows the dependence of the inter-drop dis-
tance, d , on the dimensionless driving acceleration, γ /γF ,
for ratcheting pairs A through E for each accessible binding
number n. We note that pair E, which has the smallest size
differential, exhibited no ratcheting motion beyond a bind-
ing number of n = 1.5, and pair A, which has the largest size
differential, was the only pair to exhibit ratcheting motion at
n = 2.5. Figure 2 suggests that the shift in d with increasing
γ may be attributed to the shift in the wavelength of a drop’s
wavefield as the drop transitions through various bouncing
modes to reach the (2, 1) mode. We observe that this shift is
most pronounced for pairs with binding number n = 1. Note
that below the period-doubling transition, all drops bounce in
phase, while above it, the drops bounce either in phase or out
of phase according to their separation distance.

Figure 3 shows the dependence of the ratcheting speed,
vR, on γ /γF for pairs A through E for each accessible bind-
ing number n. The largest ratcheting speeds are seen to occur

TABLE I. The radius of the larger drop, R1, and the smaller drop, R2, for the
five ratcheting pairs considered in our experiments. The pairs are labeled in
order of the largest (pair A) to the smallest (pair E) difference in drop size.
All drop radii have an experimental uncertainty of approximately ±0.01 mm.

Pair A B C D E

R1 (mm) 0.444 0.406 0.400 0.383 0.406
R2 (mm) 0.353 0.354 0.361 0.365 0.393

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

FIG. 2. The dependence of the dimensionless inter-drop distance, d/λF , on
the dimensionless driving acceleration of the bath, γ /γF , for ratcheting pairs
of size A through E and binding numbers n = 1 to n = 2.5. In each dataset,
the bottommost point corresponds to the value of γ /γF at which the pair
first starts ratcheting (or below which coalescence occurs for pair A, n = 1)
and the topmost point indicates when the ratcheting pair destabilizes into an
orbiting pair. The experimental uncertainty on d is approximately ±0.1 mm,
as determined by the resolution of the overhead camera. Smooth curves have
been drawn through the data for the sake of clarity, and the corresponding
ratcheting speeds are shown in Fig. 3. The relative vertical bouncing phase
of the drops for each pair (in or out of phase) at the beginning and end
of the ratcheting regime is indicated. For the sake of comparison, Bessel
functions J0

[
k(1,1)d

]
and J0

[
k(2,1)d

]
are shown, which are the wave fields

produced, respectively, by (1, 1) and (2, 1) bouncers, located at d = 0; as pre-
dicted by the stroboscopic model.11 Note that k(1,1) = 2.20 mm−1 and k(2,1) =
1.32 mm−1 are the wavenumbers obtained from the water-wave dispersion
relation using forcing frequencies of 80 Hz and 40 Hz, respectively.

when the drops are closest together and when the size differ-
ence between the drops is the largest. Multiple reversals in
direction are apparent as γ is increased. The number of rever-
sals and the values of γ /γF at which they occur are weakly
dependent on the pair’s size and strongly dependent on the
binding number n.

III. MODELING

We simulate the behavior of ratcheting pairs using the
theoretical model developed by Milewski et al.5 This model
relies on a linear quasi-potential approximation of the free
surface flow,20 in which the effects of impacting droplets
are included by means of a time-dependent moving pressure
field. The free surface elevation, η, and the velocity potential,
φ(x, y, z, t), of the fluid bath are governed by the equations

0 = 
φ, (1)

φt = −g[1 + γ sin(ωt)]η + σ

ρ

Hη + 2ν∗
Hφ − P

ρ
, (2)

ηt = 2ν∗
Hη + φz, (3)

where 
 = ∂xx + ∂yy + ∂zz, 
H = ∂xx + ∂yy, and P = P(x, y, t)
is the forcing term that models the effect of the impacting
droplets, and the constants σ , ρ, and g denote, respectively,
the surface tension, liquid density, and gravitational accel-
eration. Equation (1) is valid in the semi-space z < 0, and
Eqs. (2) and (3) in the xy-plane.

The constant ν∗ is the corrected value of the kinematic
viscosity, ν, required to match the Faraday threshold, γF ,
observed in experiments.5 For the experimental parameters
used here, the effective viscosity ν∗ = 0.8025ν. The equa-
tions of the model are formulated in the frame of reference of

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-010898
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FIG. 3. The dependence of the ratch-
eting speed, vR, on the dimensionless
driving acceleration of the bath, γ /γF ,
for ratcheting pairs of size A through
E and binding numbers (a) n = 1, (b)
n = 1.5, (c) n = 2, and (d) n = 2.5. We
use the convention that vR is positive
when the smaller drop follows the larger
drop. Each reported vR is obtained by
averaging the ratcheting speeds mea-
sured in two separate trials and the
associated experimental uncertainty is
approximately ±10%. For each curve,
the leftmost point corresponds to the
value of γ /γF at which the pair first
starts ratcheting (or below which coales-
cence occurs for pair A, n = 1) and the
rightmost point indicates when the ratch-
eting pair destabilizes into an orbiting
pair. Smooth curves are drawn through
the data for the sake of clarity.

the shaker, which requires the use of a time dependent grav-
ity field, G(t) = g (1 + γ sin ωt). A thorough derivation of
these equations is presented in Galeano-Rioset et al.6 Periodic
boundary conditions are imposed in x and y, allowing the use
of spectral methods. Spectral decomposition also diagonal-
izes the Dirichlet-to-Neumann map, defined as φ(x, y, 0, t) �→
φz(x, y, 0, t), which is necessary to reduce Eqs. (2) and (3) to a
two-dimensional problem in the plane z = 0.

In flight, a droplet’s motion is described by

d2zi

dt2
= −G(t), (4)

mi
d2xi

dt2
= −6πRiμair

dxi

dt
, (5)

where xi = (xi, yi), (xi, yi, zi) are the coordinates of the low-
ermost point (“south pole”) of the i-th droplet and Ri, mi,
and μair denote, respectively, the radius and mass of the
i-th droplet and the dynamic viscosity of air. While air drag
is significant in the drop’s horizontal motion, it is negligible
in its vertical motion.21

A droplet’s impact is defined as the period of time during
which the south pole of the droplet is predicted to be below the
level of the free surface, the latter being calculated without the
forcing due to the ongoing impact pressure. During impact,
the vertical motion of a droplet is calculated using the non-
linear spring model of Moláček and Bush,3 namely,

⎛

⎝1 + c3

ln2
∣∣∣ c1Ri

zi−η̄i

∣∣∣

⎞

⎠ mi
d2zi

dt2
+ 4πνρRic2

3ln2
∣∣∣ c1Ri

zi−η̄i

∣∣∣

d

dt
(zi − η̄i)

+ 2πσ

ln
∣∣∣ c1Ri

zi−η̄i

∣∣∣
(zi − η̄i) = −miG(t), (6)

where the values of the constants c1, c2, and c3 are as given in
Milewski et al.5 The variable η̄i is the estimate of the free sur-
face elevation at xi, as would arise in the absence of the drop
impact in question. It is calculated from a separate solution of
the free surface flow, which is not subject to the forcing of the
current impact of the i-th droplet. The variable η̄i is required if
a spring model is used to account for the interaction between
the droplet and the bath, as (zi − η̄i) prescribes the intru-
sion depth of the impacting droplet. Since we here have two
droplets to consider, at times we need to calculate up to three
free surfaces; namely, that resulting from the impact of both
droplets and those arising from the individual impacts. The
vertical force that the bath exerts on the i-th droplet is given
by Fi(t) = max

[
0, mi(d2zi/dt2) + miG(t)

]
. We note that suc-

tion forces, as may be significant during droplet rebound,21

are not considered. The forces Fi(t) are used to calculate the
pressure field

P(x, y, t) =
∑

i

Pi(x, y, t) (7)

in Eq. (2), where

Pi = Fi(t)

πr2
i (t)

χ{[(x, y), |(x, y) − (xi, yi)| < ri(t)]} , (8)

with ri(t) = min(
√

2|zi − η̄i|Ri, Ri/3), and χ is the character-
istic function of the pressed area. These modeling choices are
made following those of Milewski et al.5

The horizontal motion of the droplet during impact is
determined by

mi
d2xi

dt2
+ D (t)

dxi

dt
= −Fi (t) ∇ η̄i|xi

, (9)

D(t) = c4

√
ρRi

σ
F(t) + 6πRiμair, (10)
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0.08 FIG. 4. Examples of the simulated vertical
motion of droplets in ratcheting pair A with bind-
ing number n = 1. The solid blue and red lines
denote the heights of the south poles of the larger
and smaller drops, respectively. The dashed blue
and red lines show the heights of the free surface
beneath each drop. Panel (a) shows the initial tran-
sient at the start of the simulation as the droplets
settle into (1, 1) bouncing modes at γ /γF = 0.2.
Panel (b) shows both droplets bouncing in a (2, 2)

mode at γ /γF = 0.62.

as was developed by Moláček and Bush.3 We use a value of
c4 = 0.13 for the horizontal drag coefficient.5 We note that
Eq. (5), used during flight, is simply Eq. (10) for the case
F(t) = 0.

A. Simulations

We chose to focus our simulations on pairs A and B with
binding numbers n = 1, 1.5, and 2, as these pairs exhibited the
richest behavior in our experiments. Each simulation is initial-
ized by releasing a pair of droplets, separated by a distance d ,
from a height of 1 mm onto an undisturbed fluid surface at
time t = 0, with γ /γF = 0.2. The initial inter-drop distance,
d , is varied to obtain pairs of different binding numbers, n.
After an initial transient, the droplets quickly settle into the
(1, 1) bouncing mode and bounce with similar impact phases
[Fig. 4(a)]. As shown in Fig. 4, our simulations allow us to
track the vertical trajectory of the south pole of each drop,
zi(t), and the positions of the fluid interface below each drop,
ηi(t). We note that with our model, there can be a slight mis-
match between zi and ηi when the drop is in contact with the
bath, owing to our method for approximating the waveform.5

After the initial transient, the droplets begin to move
horizontally as a ratcheting pair, with the smaller droplet fol-
lowing the larger one [Fig. 5(a)]. We define the x-coordinate
to be along the ratcheting direction, oriented to point from
the smaller drop to the larger drop. Each simulation is run
at a fixed driving acceleration, γ , until the horizontal speed
of both droplets, averaged over a bouncing period of the
pair, converges to a steady value, at which point the ratch-
eting speed, vR, is recorded. We then progressively increase

γ in increments of 0.1g, as was done in the experiments.
After each increment, the pair is allowed to settle into its new
equilibrium state. With each increase in γ , we observe a cor-
responding change in the impact phase of the droplets, which
affects both the accompanying wavefields generated at impact
and the ratcheting speed, vR. Figure 5 gives examples of vR

changing with specific increments of γ . Eventually, a value of
γ is reached at which the drops begin to execute long-period
oscillations along their line of centers, and the simulation is
stopped. In certain cases, an overall motion along the line of
the centers persists accompanied by a periodic oscillation of
the separation distance. This behavior was not apparent in the
experiments.

Figure 6 shows the dependence of the inter-drop separa-
tion distance, d , on the driving acceleration, γ , for the pairs
considered in our simulations, compared directly to the exper-
imental data. Our simulations are able to capture adequately
the experimentally observed shifts in d as γ is increased,
including the sharp jump observed at binding number n = 1.
For pair B, this sharp jump in d is due to a droplet in the
pair changing bouncing mode: the larger drop undergoes a
(4, 3) → (2, 1) transition. For pair A, the cause is more subtle
as the jump in d occurs due to a change in the vertical dynam-
ics of both drops within the (4, 3) mode. Specifically, the jump
occurs when the drops change from taking one long bounce
(of duration 2TF) and two short bounces (each of duration TF)
in synchrony to the large/small drop taking the long bounce
while the small/large drop takes two short bounces.

As seen in Fig. 6, for binding numbers n = 1.5 and n = 2,
the model consistently yields a slight overprediction for the
inter-drop distance, d , likely due to small errors introduced by

0 100 200 300
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0.6

2000 2200 2400 2600
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FIG. 5. Examples of the simulated horizon-
tal motion of droplets in ratcheting pair A
with binding number n = 1. The blue and
red lines indicate the horizontal positions of
the larger and smaller droplets, respectively.
The dashed vertical lines indicate the times at
which the driving acceleration was increased
by γ = 0.1 g. Panel (a) shows the initial tran-
sient at the start of a simulation as the pair
settles into the stable binding length corre-
sponding to n = 1. In this panel, we can also
see the first reversal takes place at γ /γF =
0.22, beyond which the droplets start to move
at an extremely slow speed in the opposite
direction. Panel (b) shows examples of how
the ratcheting speed changes with successive
increments in γ .
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FIG. 6. A comparison of the experimental (circles) and theoretical (solid curves) dependence of the dimensionless separation distance, d/λF , on the dimen-
sionless driving acceleration of the bath, γ /γF , for ratcheting pairs A and B in modes n = 1, n = 1.5, and n = 2. Vertical dashed lines indicate the changes in
bouncing modes apparent in the simulations. The bouncing modes of the larger and smaller drops in the simulation are indicated in blue and red, respectively.

our modeling of the waves. Specifically, the decay rate of the
waves is prescribed by the effective viscosity, ν∗, as was cho-
sen to match the Faraday threshold. The model is thus unlikely
to predict correctly the decay rate for driving accelerations
far from the Faraday threshold. We expect the resulting error
to increase with n, as the wave fronts produced by the drops
take longer to arrive at their companions, so the effects of the
anomalous decay rate will be more pronounced. Both trends
are apparent in Fig. 6.

Figure 7 shows the predicted dependence of the ratchet-
ing speed, vR, on the driving acceleration γ , compared directly
to our experimental data. The net horizontal wave force act-
ing on the pair, averaged over a period of the pair’s vertical
motion, determines the direction of the ratcheting motion and
is shown in green for reference. We note that the sharp jumps

in separation distances observed in Figs. 6(a) and 6(d) cor-
respond to sharp corners in the velocity curve in Fig. 7. The
corner evident at γ /γF ≈ 0.66 in Fig. 7(b) is also due to a rear-
rangement of the two (4, 3) modes of the two droplets. While
similar to that described for pair A at n = 1, in this case it is
for a pair that is out of phase.

In the majority of cases, our simulations were able to cap-
ture all of the observed reversals in the ratcheting direction
and the qualitative agreement between the experimental and
theoretical ratcheting speeds is satisfactory. However, there
are some notable discrepancies apparent for pair B at large
values of γ /γF , where the simulations predict a reversal in
the ratcheting direction that was not observed in the experi-
ments. We shall attempt to rationalize these discrepancies in
what follows.
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FIG. 7. A comparison of the exper-
imental (circles) and theoretical (solid
curves) dependence of the dimension-
less ratcheting speed, vR/CP, on the
dimensionless driving acceleration of
the bath, γ /γF , for ratcheting pairs
A and B in modes n = 1, n = 1.5,
and n = 2. CP is the phase speed
of a wave with the Faraday wave-
length, defined as CP = λFfF , where
λF and fF are the Faraday wavelength
and frequency, respectively. Specifically,
CP = 190 mm/s in our experiments and
CP = 188 mm/s in our simulations. Ver-
tical dashed lines indicate the changes
in bouncing modes apparent in the sim-
ulations. The bouncing modes of the
larger and smaller drops in the sim-
ulation are indicated in blue and red,
respectively. The dashed green curves
indicate the dimensionless, net horizon-
tal wave force acting on the pair aver-
aged over one bouncing period,

〈
F̄P

W

〉 =〈
FW ,1/m1g + FW ,2/m2g

〉
/2, as calculated

from our simulations.

B. Details of the ratcheting mechanism

Eddi et al.1 attributed the two reversals in the ratcheting
direction apparent in their experiments to the successive tran-
sition of the small and large drops from a (1, 1) to a (2, 2)

bouncing mode. However, in our simulations, this period-
doubling transition always occurs simultaneously for both
droplets and is not associated with any reversal in the ratch-
eting direction. We also note that if the drops were both
emitting standing waves, one would expect the ratcheting
pairs to align themselves in the extrema of the Bessel wave-
forms generated by their partner. Figure 2 makes clear that
while such is a fair approximation, it is not precisely correct.
In order to better understand what determines the inter-drop
spacing, speed, and direction of a ratcheting pair, we pro-
ceed by examining the coupling of each droplet with the
bath.

Figure 8(a) shows the time-dependence of the horizon-
tal component of the wave-force, FW = −Fi (t) ∇ η̄i|xi

, acting
on each droplet in pair A with binding number n = 1 at
γ /γF = 0.2, over a bouncing period. Figure 8(a) shows that
the wave force acting on each drop is approximately sinu-
soidal, and reverses sign approximately halfway through the

time of impact of the drop. The origin of this reversal in
the wave force is shown in Figs. 8(b)–8(f). Upon impact, the
wavefield produced by the previous impacts causes both drops
to be attracted to each other. During impact, each droplet trig-
gers a traveling front that propagates outward. As this front
approaches the partner drop, it reverses the surface gradient,
thus repelling the partner drop. If the net wave force on
the pair averaged over a bouncing period,

〈
FP

W

〉
, is non-zero,

then the pair will ratchet. The ratcheting speed is determined
by the balance between the averaged net wave force and
the drag force, and is equal to the speeds of the individ-
ual droplets averaged over a bouncing period. The ratcheting
speed, ∼1 mm/s, is much slower than the typical walking
speed of an individual drop, ∼ 10 mm/s, due to the small net
wave force resulting from the reversal in surface gradient dur-
ing contact. We note that although in our experiments the
droplets look to move at a steady speed with a fixed inter-
drop distance, our simulations have highlighted that the speed
of each droplet is actually fluctuating over the timescale of
contact with the bath [Fig. 8(a)].

The reversal of the horizontal wave force on each droplet
was observed for all of the ratcheting pairs considered in our
simulations, some examples of which are shown in Fig. 9.
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FIG. 8. (a) Time dependence of the horizontal wave force, FW , acting on each drop (solid lines) and the speed, v, of each drop (dashed lines) in ratcheting pair
A with a binding number of n = 1 at γ /γF = 0.2. (b)–(f) Snapshots of the wave field at the times marked in panel (a). The larger drop and its corresponding
average surface deflection η̄1 are shown in blue and the corresponding curves for the smaller droplet in red. In panel (b), the impact of the larger droplet triggers
the traveling front that moves toward the smaller droplet. In (c), the impacts of the smaller droplet triggers the second moving front. In (d), the horizontal force
is still inward for both droplets as the fronts have not yet moved enough to reverse the surface gradient. In (e), the surface gradient is reversed by the traveling
fronts. In (f), the fronts continue to move past the droplets, reversing the forces until the end of contact.

These reversals in wave force are expected when the time
between successive wave crests at a given point is compa-
rable to a droplet’s contact time. Whether the wave force
averages to a positive or negative value is highly sensitive
to the phase of impact of each droplet with the bath and
explains why many reversals in direction occurred within
a given bouncing mode. For example, Fig. 9(a) shows the
wave force acting on pair A in the (1, 1) bouncing mode
with a binding number of n = 1 at γ /γF = 0.2. In this case,
the wave forces on each drop average to a positive value
and the small drop follows the large. However, as shown in
Fig. 9(b), if the driving acceleration is increased to γ /γF =
0.25, although the drops remain in a (1, 1) bouncing mode,
the phase of impact has changed sufficiently that the net

wave forces imparted to each drop assume negative values,
so the large drop follows the small. We note that changes
in the bouncing mode that result in sharp differences in the
bouncing phase [e.g., the (4, 3) → (2, 1)1 transition] cause
sudden variations in the ratcheting velocity. All instances in
which the velocity curves in Fig. 7 have a discontinuity in
slope arise in the vicinity of discrete changes in the bouncing
mode.

The reversal of the wave force during impact also allows
us to rationalize why ratcheting pairs have a discrete set of
inter-drop distances. As shown in Fig. 10, a series of mov-
ing wave fronts travel away from the location of each droplet
impact. In order to be horizontally stable, the drops in a pair
must be separated by a distance such that, during the impact
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FIG. 9. The time dependence of the horizontal wave force, FW , acting on each drop (solid lines) and the speed, v, of each drop (dashed lines) for pair A with bind-
ing number n and driving acceleration γ /γF as follows: (a) n = 1, γ /γF = 0.2, (b) n = 1, γ /γF = 0.25, (c) n = 1, γ /γF = 0.44, and (d) n = 1.5, γ /γF = 0.51.
In panels (a) and (b) both drops are in (1, 1) bouncing modes. In panels (c) and (d) both drops are in (2, 2) bouncing modes.

FIG. 10. The positions of droplet impact in relation to the moving extrema of the wavefield for ratcheting pair A at γ /γF = 0.2. Maxima and minima of the
wavefield are indicated in black and gray, respectively, and the impact positions of the smaller and larger droplets are denoted by red and blue, respectively.
Panels (a) and (b) show the extrema of η̄1 and η̄2, respectively, for n = 1 and panels (c) and (d) show the extrema of η̄1 and η̄2, respectively, for n = 2.
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of each drop, a minimum in the traveling wave front emit-
ted by its partner sweeps beneath it, causing a reversal in the
wave force. For example, Figs. 10(a) and 10(c) show that for
binding numbers n = 1 and n = 2, the larger (blue) droplet in
pair A always impacts at a position such that a minimum pro-
duced by the smaller (red) droplet sweeps beneath it during
contact. Similarly, Figs. 10(b) and 10(d) show that the mini-
mum produced by the larger (blue) droplet sweeps beneath the
smaller (red) droplet during impact. Figure 10 also highlights
that an accurate picture of the wave field must include travel-
ing fronts, consideration of which are necessary to rationalize
the changes in surface slope that take place during impact.

In order to understand why the quantized inter-drop dis-
tances are stable, consider the standing Bessel wavefields
shown in Fig. 2, which represent a snapshot, at the time of
impact, of the moving fronts. Due to the finite contact time of
each drop with the bath, each drop must first impact slightly
to the right of a minimum produced by the partner drop, so
that the inter-drop distance initially starts to decrease. The
minimum then sweeps outward beneath the drop, causing
the surface gradient to reverse and the inter-drop distance
to increase again, resulting in a net change in the inter-drop
distance of zero. This is a stable position because if the inter-
drop distance d is slightly larger than the stable position, the
traveling fronts take longer to arrive and so they reverse the
surface gradient at a later stage of the contact, leading to a
net attraction. Similarly, if d is decreased, the traveling fronts
arrive earlier, causing a net repulsion. One may thus rational-
ize why the standing wave-model (see Fig. 2) always slightly
underestimates the stable separation distances; specifically, it
neglects the interaction of the drops with the traveling wave
fronts during their finite contact time.

Finally, we address the discrepancies previously men-
tioned between our experimental and theoretical results. In
Fig. 7, the simulated velocity curves sometimes have kinks
that are not present in the experimental data [such as between
γ /γF ≈ 0.6–0.7 in Fig. 7(b)]. For pair B, with binding num-
bers of n = 1.5 and n = 2 [Figs. 7(e) and 7(f), respectively],
the simulations also predict an additional reversal in direction
that was not observed in our experiments. The most likely
cause for these discrepancies is differences in the simulated
and experimental bouncing modes. Although the wave-model
of Milewski et al.5 has been verified against experimental
data,16 coupling it to the logarithmic spring model can result
in spurious bouncing modes not seen in the experiment.5

As the ratcheting motion is highly sensitive to the bounc-
ing phase of the droplets, if the model predicts a different
bouncing mode than that seen in the experiment, we should
expect spurious results. For example, in Fig. 7(b), if pair A
in the n = 1.5 mode smoothly transitioned from a (2, 2) to a
(2, 1) mode instead of passing through the (8, 7) and (4, 3)

modes deduced from the simulations, the erroneous abrupt
changes in the ratcheting speed not seen in experiments might
have been averted. We note that the shortcomings of the cur-
rent simulations might be eliminated through the application
of the most recent model of Galeano-Rios, Milewski, and
Vanden-Broeck,6 which more accurately models the droplet-
bath interaction and has been shown to predict bouncing
modes more accurately.

IV. DISCUSSION

We have reported the results of an experimental study of
ratcheting pairs. Five distinct pairs were considered, in up to
four binding lengths, and their behavior characterized as γ

was increased progressively. Eddi et al.1 observed that the
inter-drop distance was quantized, owing to dynamic con-
straints imposed on the droplets by their shared wavefield,
and observed up to two reversals in the ratcheting direction.
We extended the work of Eddi et al.1 to characterize how the
stable inter-drop distances shift with increasing γ and demon-
strated that up to four reversals in the direction could occur
for pairs with a sufficiently large drop size differential and
a binding number of n = 1. The majority of these reversals
were not correlated with a bouncing mode transition of a
single droplet,4,21,22 as suggested by Eddi et al.,1 prompting
a detailed theoretical investigation of the mechanism through
which the droplets interact.

To understand the complex, wave-mediated coupling
between the two droplets in a ratcheting pair, we adopted
the theoretical model of Milewski et al.,5 wherein both the
droplet’s vertical dynamics and the traveling wave fronts
produced by a droplet impact are modeled explicitly. Our sim-
ulations were able to closely reproduce the shift in the stable
inter-drop distances with increasing γ , and provided ade-
quate agreement with the experimentally observed ratcheting
speeds. Importantly, the simulations provided critical insight
into the mechanism governing the ratcheting dynamics. At
every impact, each droplet produces a Bessel shaped wave-
field whose extrema travel radially outwards. The partner drop
then interacts with one of these traveling fronts during impact.
In order to remain in a stable position, the droplet must bounce
in a position such that as a traveling front sweeps past dur-
ing impact, the gradient of the wavefield beneath the drop
reverses direction so that the net wave force on the droplet
during contact is zero. This explains why all of the experi-
mentally observed inter-drop distances lie slightly to the right
of an extremum anticipated on the basis of a standing wave
model (Fig. 2). The drop must first land slightly to the right of
an extremum in the wavefield produced by the partner drop so
that it first encounters an attractive wave force. Then, as the
extremum sweeps by the drop during contact, the wave force
becomes repulsive, resulting in a net wave force of zero.

If the droplet lands slightly earlier or later than the criti-
cal impact time that results in a zero net force, it will cause the
ratcheting motion. The ratcheting speed is much slower than
that of an individual walker because the reversal in the wave
force during the contact time leads to a small net force. Our
study also rationalizes how a reversal in direction can occur
within a given bouncing mode. For example, Fig. 8(a) shows
the time evolution of the wave force during contact on pair A
with a binding number n = 1 at γ /γF = 0.2. In this case, the
net wave force on both drops is positive and the small drop
follows the larger. As γ is increased, however, the bouncing
phase of the droplets slowly changes, the net force changes
from positive to negative, and the ratcheting pair reverses
direction.

We note that while the stroboscopic model11 accurately
captures the shape of the wavefield at an instant in time,16
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it does not capture the outward radial expansion of the
fronts. Therefore, the stroboscopic model should be used
with caution when the contact time between the drop and
the bath is sufficiently large that the wave force during con-
tact changes appreciably, as is the case in our study. One
can now better understand the shortcomings of the strobo-
scopic models3,11,23 in rationalizing the observed behavior of
orbiting14 and promenading15 pairs. For example, the inclu-
sion of traveling wave fronts could account for the stability
of orbiting pairs with binding number n = 0.5, which have
been shown to be stable in the experiment, but cannot be
captured with the stroboscopic model.14 The neglect of the
traveling fronts in the stroboscopic models also suggests their
limitations in rationalizing the relative stability of various
dynamical states through consideration of the system’s global
energetics. For example, in order for the binding energy of
promenading pairs15,24 to be a meaningful system diagnostic,
it must capture the influence of the moving wave fronts.

SUPPLEMENTARY MATERIAL

See supplementary material for a video that shows four
examples of the ratcheting motion of pair A with binding
number n = 1.
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pairs of walking droplets: Dynamics and stability,” Phys. Rev. Fluids 2,
053601 (2017).

15J. Arbelaiz, A. U. Oza, and J. W. Bush, “Promenading pairs of walk-
ing droplets: Dynamics and stability,” Phys. Rev. Fluids 3, 013604
(2018).

16A. P. Damiano, P.-T. Brun, D. M. Harris, C. A. Galeano-Rios, and
J. W. M. Bush, “Surface topography measurements of the bouncing droplet
experiment,” Exp. Fluids 57, 163 (2016).

17D. M. Harris, T. Liu, and J. W. M. Bush, “A low-cost, precise piezoelectric
droplet-on-demand generator,” Exp. Fluids 56 (2015).

18A. Eddi, A. Decelle, E. Fort, and Y. Couder, “Archimedean lattices in
the bound states of wave interacting particles,” Europhys. Lett. 87, 56002
(2009).

19G. Pucci, D. M. Harris, L. M. Faria, and J. W. Bush, “Walking droplets
interacting with single and double slits,” J. Fluid Mech. 835, 1136–1156
(2018).

20F. Dias, A. I. Dyachenko, and V. E. Zakharov, “Theory of weakly damped
free-surface flows: A new formulation based on potential flow solutions,”
Phys. Lett. A 372, 1297–1302 (2008).
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