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In many physical processes, including cloud electrification, electrospray, and demulsification, droplets
and bubbles are exposed to electric fields and may either remain whole or burst in response to electrical
stresses. Determining the stability limit of a droplet exposed to an external electric field has been a long-
standing mathematical challenge, and the only analytical treatment to date is an approximate calculation for
the particular case of a free-floating droplet. Here we demonstrate, experimentally and theoretically, that the
stability limit of a conducting droplet or bubble exposed to an external electric field is described by a power
law with broad generality that, in practice, applies to the cases in which the droplet or bubble is pinned or
sliding on a conducting surface or free floating. This power law can facilitate the design of devices for
liquid manipulation via a simple formula that captures the parameter range of bubbles and droplets that can
be supported on electrified surfaces.
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A liquid droplet will typically deform when subject to an
electric field, owing to the generation of electrical stresses
at its surface. For sufficiently strong electric fields, the
droplet may become mechanically unstable and emit
charged microscopic liquid jets [1,2]. A laboratory curi-
osity a century ago [3,4], the electrical stability limit of
droplets was first recognized to be of meteorological
importance, for example, in determining the size of water
droplets in thunderstorms and creating preferred conduc-
tion paths for lightning strikes [5,6]. The stability limit of a
conductive free-floating droplet in a uniform electric field
was first determined by Taylor by a combination of
experiment and dimensional analysis [Fig. 2(b)(i)] [7]
and later by an approximate calculation wherein the
deformed shape of the droplet was assumed spheroidal [1].
Further investigations of the stability of electrified

droplets and the dynamic process of jet emission [1,2,8]
provided the conceptual basis for several important tech-
nologies. These include electrospraying, wherein a liquid
confined at the orifice of a nozzle is electrified above its
stability limit in order to controllably produce fine liquid
droplets or ionized mists [9]. This technique underlies
methods of high-resolution printing [10], mass spectrom-
etry [11], ion beam generation [12], air purification [13],
and space propulsion [14]. Similarly, electrospinning
involves ejecting fine liquid filaments from electrified
droplets [15] for the manufacture of fibers for filters
[16], composite materials [17], nanogenerators [18], tissue
scaffolds [19], and drug delivery devices [20]. The careful
application of an electric field below the droplet stability
limit is also used to control mixing and coalescence of
emulsion droplets [21,22].

Despite long-standing scientific and practical interest, an
analytical representation for the stability limit of electrified
droplets has not been derived for the simplest general case,
namely, that of a conducting drop on a conducting surface
exposed to a uniform external field in a dielectric medium
(Fig. 1). The particular case where the droplet’s surface
intersects the conducting surface at a right angle corre-
sponds to half of a free-floating droplet in a uniform
electric field. In the absence of an analytical treatment,
numerical computations have been performed [23–26], and
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FIG. 1. Experimental setup for determining the stability limit of
soapy water droplets on a conducting surface subject to a uniform
electric field E0 in a dielectric medium ε. The droplet has surface
tension γ and is pinned to the outer radius R of a metal needle tip
coincident with the surface of a metal plate. Liquid is slowly
dispensed into the droplet until it becomes unstable. The camera
frame capturing the critically stable droplet shape (as shown here)
is image processed to calculate its volume V, height H, and
contact angle θ.
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engineering development often involves semiempirical
formulas and trial and error [11–14,16,17,19,22].
The difficulty in modeling the droplet’s stability arises

from the fact that the droplet’s critically stable shape, i.e.,
the limiting static shape just prior to bursting through the
rapid formation of a jet (Fig. S1 [27]), does not appear to be
elementary, and the family of critically stable shapes found
by varying parameters exhibits no apparent similarity
[Fig. 2(a)]. These shapes are also quite different from
the spherical shape the droplet would assume in the absence
of the electric field. Moreover, the configuration of the
electric field, the shape of the droplet, and the liquid
pressure inside the droplet are coupled, which requires all
to be solved for simultaneously, unlike solving for the
shape of a droplet in a gravitational [28] or centrifugal

field [29]. Mathematically, this problem poses a set of
coupled nonlinear partial differential equations where the
solution must satisfy the balance of electrostatic, surface
tension, and internal liquid pressures normal to the drop-
let’s equipotential surface [24]. These pressures are all
conservative, so an equivalent formulation is to find the free
energy minimum from an integrated form of the coupled
nonlinear differential equations [30]. In neither case does a
known closed-form solution exist. Here we show that,
provided the effect of gravity is negligible, the stability
limit for a conducting droplet on a conducting surface
follows a power law, simply derivable by the variational
principle, that is in excellent agreement with our experi-
ments [Fig. 2(b)]. The power law captures the cases for
which droplets or bubbles are either pinned or sliding on
the conducting surface or free floating.
Our experiment apparatus comprises a metal plate with a

circular hole machined through the center, within which
resides a metal needle with its tip coincident with the plate’s
surface (Fig. 1). For each experiment, the plate and needle
are electrically grounded, and a second parallel plate is
situated above and held at a different constant electrical
potential. The dimensions and separation distance between
the plates are such that a uniform far field E0 is established
[31]. Soapy water (surface tension γ ¼ 0.029 N=m) is
slowly dispensed through the needle by a motorized
syringe, which establishes and feeds a droplet confined
to the outer radius R of the needle tip by a small air gap of
negligible dimension between the needle and plate. A high-
speed camera records the droplet as it quasistatically
increases in volume and then becomes unstable (Fig. S1
[27]). The droplet behaves as a conductor, because the
timescale for cancellation of the electric field inside
the droplet is much smaller than the timescale for filling
the droplet over the course of the experiments. Specifically,
the timescale for filling the droplet is ∼101 sec, and the
timescale for electrical relaxation is τE ¼ εl=σl ≲ 1.3 ×
10−4 sec [32], where εl ≈ 80ε0 and σl ≫ 5.6 × 10−6 S=m
are the permittivity and conductivity of the soapy water,
respectively, and ε0 ¼ 8.85 × 10−12 F=m is the vacuum
permittivity. Note that ambient air surrounds the droplets,
so ε ≈ ε0. At these fill rates, the dynamic fluid pressures
inside the droplet are negligible [27]. The video frame
containing the critically stable droplet shape is image
processed to calculate relevant quantities, specifically the
droplet’s volume V, apex height H, and contact angle
θ (Fig. 1).
The full range of experimental data was acquired by

systematically changing E0 for two needle radii R ¼
½0.46; 0.74� mm in order to work within two experimental
constraints: (i) avoiding electrical breakdown of the air
which limits E0 and (ii) requiring the effect of gravity to be
negligible, i.e., the Bond number ρgV2=3=γ ≲ 0.1, where
the soapy water density ρ ≈ 103 kg=m3 and the gravita-
tional acceleration g ¼ 9.8 m=s2. Practically, this meant
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FIG. 2. Experiment results for the critically stable droplets.
(a) The critically stable droplet shapes constitute a continuous
family where each is nonelementary and nonsimilar to any other.
(b) A power law relating the dimensionless groups characterizes
the stability limit of the droplets. The black line is Eq. (1). The
square data points and corresponding inset pictures are for
critically stable soap bubbles on a metal plate exposed to a
uniform field from experiments performed in (i) 1925 [7] and
repeated in (ii) 1990 [24]. (c) A droplet constrained to slide on a
surface with constant contact angle θ progresses through the
following sequence for a slowly increasing electric field E0: (i)
for E0 ¼ 0, the droplet shape is a spherical cap; (ii) as E0

increases, the droplet deforms and contracts its contact radius R;
(iii) at the limit of stability, the critically stable droplet parameters
are again captured by Eq. (1). (d) For each critically stable droplet
shape, there is a unique corresponding contact angle θ.
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that R could not exceed ∼1 mm; otherwise, gravity would
become significant [33]. The range of the experimental
results was ultimately limited by the electrified droplets
depinning from the edge of the needle before becoming
unstable at θ ≈ 0 and θ ≈ π=2.
For each experiment, the stability limit is fully specified by

γ, εE2
0, and two geometric parameters that define the droplet

shape; specifically,we choose the droplet volumeV and radius
R. This set of parameters comprises two dimensionless groups
which are functionally related according to theBuckinghamPi
theorem [34]: εE2

0 R=γ, a ratio of characteristic electrostatic
and capillary pressures (i.e., the electrical Bond number), and
R3=V, a shape parameter. The absolute length scale of the
experiment enters only through the dimensionless group
εE2

0 R=γ through R; thus, it is natural to choose R as the unit
scale of the coordinate axes for displaying the family of
critically stable droplet shapes [Fig. 2(a)].
We proceed by demonstrating that these two dimension-

less groups must be proportional to one another. The
quasistatic droplet shapes observed during experiments all
correspond to minima of the free energy F, i.e., dF ¼ 0, and
the critically stable droplet shapes are the limiting case at
which dF ¼ 0. Let an arbitrary variation about some
particular critically stable droplet shape be parametrized
by the dimensionless parameter ξ, where the critically stable
shape is ξ ¼ ξ0. Only variations at a constant volume are
physical, and the experiment is performed at a constant
ambient temperature. Therefore, there are only two nonzero
terms comprising dF, specifically, the differential changes in
surface energy dUγðξÞ and electrostatic energy dUEðξÞ due
to the variation. Hence, dF ¼ ½U0

γðξ0Þ þ U0
Eðξ0Þ�dξ ¼ 0, or,

equivalently,U0
γðξ0Þ þ U0

Eðξ0Þ ¼ 0, because thevariationdξ
is arbitrary; the prime superscript denotes a partial derivative
with respect to ξ.
The surface energy of the droplet may be written as

UγðξÞ ¼ γR2aðξÞ, where R2aðξÞ is the droplet’s surface
area and aðξÞ is a dimensionless shape function. The
energy of the electrostatic field due to the presence of
the droplet may be written as UEðξÞ ¼ εE2

0VυðξÞ, where
similarly υðξÞ is a dimensionless shape function. The
scaling intuition for UEðξÞ is that the uniform far field
E0 sets the scale of the energy density everywhere to be
εE2

0, and the relevant cubic length scale is V. However, it is
important to bear in mind that the electrostatic field at the
surface of the droplet has a complicated relationship to E0

due to the coupling between the droplet shape and electric
field configuration [27]. More precisely, UEðξÞ is the
difference between the electrostatic energy of the field
surrounding the droplet and that of the spatially homo-
geneous field E0 that would exist in the droplet’s absence
(i.e., for V ≡ 0). The same expression for UEðξÞ is also
found by considering the polarization energy of the free-
floating shape in the uniform electric field E0 defined by
the equipotential surface comprised of the critically stable

droplet’s surface and the surface of the metal plate [27]. An
explicit expression for υðξÞ generally involves an infinite
series of Legendre functions found by solving an eigen-
value problem constructed for the critically stable shape
ξ ¼ ξ0 [35,36]. The coefficients multiplying each term in
the infinite series must conspire such that V simply
multiplies υðξÞ, and it is assumed that UEðξÞ includes
the energy spent transferring charge to the surface of the
droplet and metal plate so that the electrical potential
remains constant.
The variation about dF ¼ 0 therefore becomes

εE2
0Vυ

0ðξ0Þ þ γR2a0ðξ0Þ ¼ 0, or, equivalently,
ðεE2

0R=γÞ−1ðR3=VÞ¼−υ0ðξ0Þ=a0ðξ0Þ. Again, because the
variation is arbitrary, we may infer that −υ0ðξ0Þ=a0ðξ0Þ¼c,
where c is a positive dimensionless constant. Substituting
and rearranging yields the power law for the critically
stable droplet shapes R3=V ¼ c εE2

0 R=γ. Fitting to the
experiments yields the proportionality constant c ≈ π=2
[Fig. 2(b)] and, therefore,

R3

V
¼ π

2

εE2
0

γ=R
: ð1Þ

The geometric parameters V and R are special choices,
because they are the only two geometric parameters that are
constant with respect to the variation. The power law results
from the substitution υ0ðξ0Þ ¼ −ca0ðξ0Þ above, which
removes the complicated details of the critically stable
droplet shapes that reside in aðξ0Þ and υðξ0Þ. For this
reason, we expect Eq. (1) to remain valid for the critically
stable droplet shapes with θ ≳ π=2, which were beyond our
experimental capabilities. From a dimensional analysis
point of view, V and R are not unique choices and may
be exchanged for any two geometric parameters that define
the droplet shape. Historically, the choices have beenH and
R [1,7,8,23,24], which yield the dimensionless groups
εE2

0 R=γ and R=H. However,H is not constant with respect
to the variation, and, therefore, the above derivation cannot
be repeated to arrive at an analogous power law. Essentially,
the complicated details of the critically stable droplet
shapes reside within H, which precludes a power law
between these dimensionless groups (Fig. S2 [27]). This
discussion illustrates the importance of our choice of the
governing parameter set ½γ; εE2

0; V; R�.
Strictly speaking, our analysis applies to the case of a

droplet pinned to the substrate at a fixed contact radius R.
Practically however, Eq. (1) also captures the stability limit
of droplets constrained by a constant contact angle θwith the
substrate. Provided there exists any miniscule amount of
contact angle hysteresis for the droplet on the surface, as is
typically the case in practice [37], the appropriate types of
variations about the critically stable droplet shape are those
at constant R, because θ may vary infinitesimally within the
finite window of contact angles provided by the hysteresis.
In this case, Eq. (1) is exact. For example, a droplet subject to
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an electric field of slowly increasing strength E0 will
progress through a continuum of quasistatic shapes with
changing R in order to satisfy the constraint on θ, which in
this example is the receding contact angle [Fig. 2(c) [37]].
This may be viewed as changing the absolute scale in
accordance with R until reaching the limit of stability, at
which R is constant for variations about the critically stable
droplet shape. The relationship between θ and εE2

0 R=γ is
given in Fig. 2(d); these quantities are, in fact, the two
dimensionless groups that may be constructed from the
governing parameter set ½γ; εE2

0; θ; R�.
The critically stable droplet shape for θ ¼ π=2 is a

special case, because the surface of the droplet together
with the surface of the metal plate defines an equipotential
surface corresponding to half of a free-floating droplet in
the uniform field E0. Previous experiments performed for
this special case used centimetric soap bubbles placed
between parallel plate electrodes and were performed by
slowly increasing E0 until the stability limit was reached as
described in Fig. 2(c); the results coincide with Eq. (1)
[Fig. 2(b)(i),(ii)] [7,24]. Taylor’s calculation [1], which
reexpressed in our parameters yields εE2

0 R=γ ¼ 0.170 and
R3=V ¼ 0.251, coincides with the square indicated by (i) in
Fig. 2(b).
In summary, we find that a single power law [Eq. (1)]

captures the electrical stability limit for any finite conduc-
tivity droplet (e.g., any aqueous or ionic solution) on time-
scales greater than its electrical relaxation time. The radius of
the droplet may range from ∼1 mm, above which gravita-
tional forces become significant, to ∼100 nm or smaller,
below which charge screening lengths and van der Waals
forces are significant [38]. The power law can aid in
understanding natural and engineered systems and provides
a practical design criterion for application development. For
instance, the performance of industrial-scale electrospinning
[39], electrostatic filtration [13], demulsification [40], and
condensation-driven thermal systems [41] often relies on the
design of surfaces that carefully manage the supply and
electrostatic stability of droplet arrays or liquid films.
Data points are tabulated in Supplemental Material [27].
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