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Abstract

This dissertation explores, in real time, key institutional factors contributing to the diffusion and impact of a

breakthrough technology from its very first days. The studies combine rigorous quantitative empirical

methods with a deep understanding of the institutions of a novel setting that allows for a nuanced picture of

the actors, institutions, technologies, and rules necessary to make recommendations on policies and strategies

for the diffusion of emerging innovations.

The first chapter examines whether the introduction of a breakthrough technology, the CRISPR DNA-editing

system, affects the trajectory of a scientific field through project selection and new entry. Using proprietary

data from the primary distributor of CRISPR to academic scientists, Addgene, the study shows that the

relative proportion of scientists focusing on editing mammalian cells after the introduction of CRISPR

increased over their counterparts working in bacteria and other eukaryotes. The shift towards mammalian

research may result mostly from entry of new authors.

The second chapter (with Neil Thompson), explores whether characteristics of individual scientists who

experiment with CRISPR differ from those who incorporate that experimentation into a new project. Using

Addgene data we separately observe both groups by matching CRISPR orders to scientists' publication

histories. We find that some characteristics (e.g., proximity to the discoverers) do not impact experimentation

but do influence the ability to publish, empirically showing that access to a complex new tool does not

automatically translate into the ability to use the tool.

The third chapter builds on the previous two by noting that many new tools require specialized complementary

know-how to be applied effectively and delving into how teams form to acquire that know-how. Teams in any

research domain face the tradeoff of either acquiring this know-how themselves or working with scarce external

tool specialists who also have a choice over domain teams. CRISPR enables identification of external tool

specialists on research teams by exploiting natural difficulties of applying the tool across disease domains.

External tool specialists appear more often in teams for difficult diseases, especially in subsequent innovations,
suggesting that external tool specialists may be more attracted to complex but influential problems.

Thesis Supervisor: Scott Stern

Title: David Sarnoff Professor of Management of Technology

Professor, Technological Innovation, Entrepreneurship, and Strategic Management
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Exploring Institutions of Emerging Technologies

For technological progress, innovators not only need knowledge in a field of study, but also

require tools (e.g., Rosenberg 1982, 1994, 2009; Nelson 1981, 2003; David 1990; Bresnahan and

Trajtenberg 1995; Rosenberg and Trajtenberg 2004). The interplay between field knowledge and

new tools leads to an ever-expanding base from which innovation emerges (Cohen and Levinthal

1989; Mokyr 2002; Wuchty et al. 2007). Part of the reason tools are important for innovation is

that tools often embed much of the know-how necessary to use them. Thus, access to a tool can

lower research costs as well as entry barriers to innovators (e.g., Furman and Stern 2011; Williams

2013; Murray et al. 2016; Teodoridis 2018). However, to use research tools, adopters must have

both access and the ability to apply the tool in a field (Teece 1986; Scotchmer 1991; Weitzman

1996; Fleming 2001). The ability to apply a research tool is more difficult to develop when the tool

is first introduced, however. Little is known about how an emerging technology impacts the rate

and direction of innovation in its earliest days. This gap in understanding may reflect the fact that

the data necessary for robust causal analysis, a hallmark of the research tools and innovation

literature, is difficult to obtain.

One alternative method that allows the researcher to gain important insights in areas that

have data limitations is institutional analysis. As a method of inquiry, institutional analysis appears

in a number of disciplines but often takes on different meanings. For example, institutional analysis

can refer to the study of social norms, rules, and constraints that shape interactions and decision

making (e.g., North 1990, von Schmoller 1904, Ostrom 1990) or it can be broadened to include the

study of formal institutions like agencies, boards, or other rule-making bodies (e.g., Komesar 2001,
Coase 1984, Hughes 1939, Scott 2008). As noted by Cole (2013), the word "'institution' seems to

have nearly as many definitions as definers" in the various literatures. Although definitions vary,
institutional analysis commonly provides a way to begin answering the question "How do fallible

humans come together, create communities and organizations, and make decisions and rules in order

to sustain a resource or achieve a desired outcome?" (Ostrom and Hess 2011). Such institutional

analyses can be applied to many different situations at various levels of decision-making, making

the method adaptable to not only questions of policies, but to managerial strategies as well.

In order to derive effective implications for changes in rules and strategies, studies of

institutions delve deeply into the details of the actors, institutions, technologies, and rules of a

particular setting. This allows policymakers and knowledge managers to make systematic

comparisons among strategies to encourage certain outcomes, including increased innovation, rather

than relying on naive ideas about appropriate rules to apply. Gaining a nuanced picture of

underlying institutions also provides a way to develop meaningful questions and answers that might

otherwise be hidden from the researcher's view.
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This dissertation contributes to the research tools and innovation literature mentioned

above, but is also influenced heavily by Elinor Ostrom's institutional analysis frameworks(Ostrom

1990, Ostrom and Hess 2011, Ostrom 2011). Ostrom highlights the importance of understanding

the details behind an ongoing industry or an emerging one before recommending new institutions or

strategies. As such, the essays presented here combine rigorous quantitative empirical methods

common to the research tools and innovation literature with a deep understanding of the institutions

of a new setting as suggested by Ostrom. They represent the beginning of a larger study, in real

time, of key underlying factors contributing to the diffusion and impact of a breakthrough

technology from its very first days. Not only will the information derived from these studies provide

a solid base from which to make recommendations on policies and strategies for the diffusion of

innovations, but it will also provide an in-depth understanding of variations in a new setting that

can be applied to a number of important questions in innovation management and economics.

CRISPR is one of the most important breakthroughs in modern genetics and its speed of

diffusion makes it an ideal setting to study the role of emerging tools on the rate and direction of

innovation in affected fields. Starting in June 2012, separate research teams at UC-Berkeley (Jinek,
et al. 2012), MIT (Cong et al. 2013), and Harvard (Mali et al. 2013) introduced CRISPR, a system

that could edit the DNA of almost any organism more easily, accurately, quickly, and cheaply than

previously available gene editing methods. Its discovery was unexpected, making CRISPR a shock

to scientists engaged in gene editing. The tool quickly reduced the cost of research and introduced

new gene editing applications not previously possible. For example, CRISPR has been used to

modify crops for blight resistance (Wang et al. 2014), to create "malaria-proof" mosquitoes that are

genetically unable to transmit malaria (Gantz et al. 2015), cure HIV in a mouse, introduce promising

treatments for genetic diseases like muscular dystrophy, and to edit genes in human embryos (Ma

et al. 2017) among other breakthroughs (Stockton 2017). CRISPR has already proven to be one of

the most important medical discoveries this century, winning the prestigious Kavli Prize in

Neuroscience and often speculated as a future Nobel Prize winning discovery.

Interest in the tool exploded because of its accuracy, flexibility, and relative ease of use

(Pennisi, 2013; Regalado, 2014). From June 2012 through March 2019, almost 13,000 CRISPR-

related articles were published worldwide. Further, due in part to the successful CRISPR

experiments described, there have also been many commercial activities surrounding CRISPR. Over

5,000 United States Patent and Trademark Office (USPTO) patent applications and grants have

been published by March 2019. Further, funding for venture backed firms licensed to use CRISPR

technology has soared (Ledford 2015). The top biotech firms founded on CRISPR technology,
Caribou Biosciences (Berkeley, CA), Editas Medicine (Cambridge, MA), CRISPR Therapeutics

(Basel, Switzerland), and Intellia Therapeutics (Cambridge, MA) collectively raised initial funding

of more than $150 million. The last three all had IPOs in 2016, each currently with market

capitalizations of over $1 billion.
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The three chapters in this dissertation are the first to systematically explore the adoption

and diffusion of this breakthrough technology. They provide broader insights on how innovative

teams adopt important research tools in the very beginning by focusing on the communities and

individuals experimenting with the CRISPR tool as well as those able to overcome adoption barriers

to innovate with CRISPR.

The first chapter, "Technological Breakthroughs, Entry, and the Direction of Scientific

Progress: Evidence from CRISPR/Cas9," examines how the introduction of a breakthrough

technology like CRISPR affects the trajectory of a scientific field through project selection and new

entry. The main hypothesis is that the new technology's impact on the direction of gene editing

research depends on its relative value across different organisms. Using proprietary data from the

primary distributor of the CRISPR tool to academic scientists worldwide, Addgene, the paper shows

that the relative proportion of scientists focusing on editing mammalian cells after the introduction

of CRISPR increased over their counterparts working in bacteria and other eukaryotes in the first

three years. Interviews with academic scientists who use gene editing techniques support this

finding, noting that CRISPR represented a greater improvement over alternative tools for

mammalian gene editing. In contrast, bacterial cells have natural editing functions scientists have

effectively learned to manipulate, making CRISPR more of a curiosity than a necessity for bacterial

labs. The data further suggest that the shift towards mammalian gene editing research may result

mostly from new entry, but not from incumbent productivity.

The second chapter, co-authored with Neil Thompson, "Who Tries (and Who Succeeds) in

Staying at the Forefront of Science: Evidence from the DNA-editing technology, CRISPR," delves

into a question raised in the first chapter: why doesn't CRISPR seem to increase research

productivity for incumbent mammalian researchers? To do that, the article explores the

characteristics of scientists who experiment with CRISPR (order CRISPR from Addgene) and who

successfully incorporate that experimentation with CRISPR into a project (publish a paper on

CRISPR conditional on ordering CRISPR). Generally, it is difficult to empirically separate

individuals who experiment with and those who successfully adopt a tool because failures are difficult

to observe. Using Addgene data it is possible to separately observe both groups by matching

CRISPR orders to publication histories for individual scientists in Web of Science. We developed

a new algorithm to match 57,000 CRISPR orders to 1.3 million papers in Web of Science from 2012

- 2015 by scientist. The study suggests that there are important differences between those who

experiment and those who are able to produce new research with the tool. For example, some

characteristics traditionally associated with adoption (e.g. proximity to the discoverers) have

negligible impacts on experimentation but do influence an author's ability to turn experimentation

into a paper after controlling for other factors, empirically showing that access to a new complex

tool does not automatically translate into the ability to successfully use the tool.
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The third chapter, "Running with (CRISPR) Scissors: Tool Adoption and Team Assembly,"

builds on the first two chapters by recognizing that access to a new tool does not automatically

translate into the ability to use it in an innovation in all research domains. Research tools are

essential inputs to technological progress. Yet many new tools require specialized complementary

know-how to be applied effectively. Teams in any research domain face the tradeoff of either

acquiring this know-how themselves or working with external tool specialists, individuals with tool

know-how independent of a domain. These specialists are scarce early on and can choose domain

teams to create many applications for the tool or to focus on complicated problems. Ex ante it is

unclear where the match between domain teams and external tool specialists dominates. The

introduction of the DNA-editing tool CRISPR enables identification of external tool specialists on

research teams by exploiting natural difficulties of applying CRISPR across disease domains. Teams

have a higher share of external tool specialists in difficult diseases, especially for subsequent

innovations. This suggests that external tool specialists and domain teams match more often to

solve complex but influential problems. As more tools like Artificial Intelligence emerge, research

teams will have to also weigh the importance of their possible solutions when considering how best

to attract and collaborate with external tool specialists.

Looking forward, the analysis of CRISPR will be expanded to include topics in intellectual

property (IP) and innovation, academic entrepreneurship, and regulation and product development,

among others. For example, the next paper in the series will explore rules governing cumulative

innovations in this setting by asking what is the effect of fragmented versus consolidated IP rights

on innovation under uncertainty? Innovations cumulatively build on older ideas (Scotchmer 1991)

but IP on early stage inventions has mixed innovation outcomes. Patents on inventions controlled

by a dominant owner can have a chilling effect on the amount and breadth of follow-on innovation

(e.g., Murray and Stern 2007; Williams 2013; Murray et al. 2016). However, fragmented IP

ownership has also been shown to encourage more patenting so as to mitigate possible hold-up

concerns (Ziedonis 2004). Therefore, IP strategies and the amount of follow-on innovation can

depend on how fragmented the core IP ownership rights are. Cumulative innovation is also affected

by disputes over IP. When there are early disputes over core IP, it is unclear whether the associated

uncertainty has a chilling effect on follow-on innovation and firm formation (e.g., Bessen 2014;

Tucker 2014; Cohen et al. 2018) or whether innovation moves forward regardless (e.g., Sampat and

Williams 2019). As such, follow-on innovation and IP strategies may change entirely under

uncertain but fragmented IP ownership.
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Chapter 1

Technological Breakthroughs, Entry, and the Direction of

Scientific Progress: Evidence from CRISPR/Cas9

1 Introduction

In June 2012, Professors Jennifer Doudna and Emmamuelle Charpentier at the University

of California, Berkeley published a paper demonstrating a technique for efficiently, accurately, and

simply editing DNA in bacteria (Jinek, et al. 2012). At the time the paper received only a little

notice despite the fact that the technique, CRISPR/Cas9, would become one of the most important

discoveries in genetic engineering to date. In a recent Nature article, a geneticist from Cornell with

30 years' experience in the field, John Schimenti noted, "I've seen two huge developments since I've

been in science: CRISPR and PCR... CRISPR is impacting the life sciences in so many ways"

(Ledford 2015). However, it was not until Professor Feng Zhang at MIT proved six months later

(Cong, et al. 2013) that CRISPR/Cas9 could be used to edit mammalian DNA that interest in the

technique exploded. CRISPR/Cas9 has already been used to create blight resistant crops (Wang

et al. 2014) and "malaria proof" mosquitoes (Gantz et al. 2015).

Although CRISPR/Cas9 has been shown to work in almost any organism, anecdotally much

of the excitement surrounding the technique seems to be in mammalian organisms. For example,

members of Feng Zhang's lab have created a "Cas9 mouse" (Platt et al. 2014) that can be modified

to model lung cancer, something that was incredibly difficult to do prior to CRISPR/Cas9. Also,
less than three years after CRISPR/Cas9's introduction, the tool was used to edit a human embryo

for the first time (Liang et al. 2015). As such experiments continue, genetic engineers believe

CRISPR/Cas9 has the potential to advance gene therapies to someday eliminate certain genetic

diseases.

Based on the qualitative evidence, it is reasonable to hypothesize that CRISPR/Cas9 caused

a disproportionate increase in mammalian genetic engineering research. Further support for this

hypothesis is that, unlike in bacteria, the previous genome editing techniques for mammalian cells

were inadequate, so CRISPR/Cas9 represents a substantial advance for mammalian researchers.

Although, this was not obvious ex ante as CRISPR/Cas9 is part of the bacterial immune system

and originally was discovered as a system to edit bacterial DNA. Therefore,.it is possible that the

breakthrough innovation, CRISPR/Cas9, caused a shift the direction of genetic engineering research

towards the sub-field with the highest relative value for the tool due to researchers' responses to the

new innovation.
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Historical research focusing on how science progresses and changes paths generally finds that

the process is not straightforward, requiring the interplay between scientific discoveries and

implementable tools (Rosenberg 1990; Nelson and Rosenberg 1993; Brooks 1994; Mokyr 2002). More

recent empirical studies have shown that access to new innovations, including scientific research

tools, likely has a large positive impact on the rate of scientific progress (e.g. Griliches 1957, 1958;

David 1990; Bresnahan and Trajtenberg 1995; Rosenberg and Trajtenberg 2004; Azoulay, et al.

2009; Murray et al 2016; Furman and Stern 2011; Williams 2013; Teodoridis 2018). Likewise,
empirical work has highlighted varying effects of access to innovations on the direction of scientific

progress (e.g., Moser 2005; Azoulay, et al. 2009; Budish, Roin, and Williams 2015).

This paper contributes to the current literature on influences to the direction of scientific

progress by studying how researchers respond to an innovative technological breakthrough and by

uncovering mechanisms that lead to rapid changes due to the discovery in an important new setting.

Using genetic engineering as a novel setting, and by exploiting an exogenous technological shock

that may have lowered the barriers to entry disproportionately in mammalian research, it may be

possible to better understand whether scientists are more influenced by technology shocks that lower

barriers to entry or by past behaviors. The paper also introduces two novel datasets: one that

provides measures of academic researcher experimentation from the biological resource center,
Addgene, and another that assesses researcher productivity through author publication histories.

Using the data from Addgene, first I find that the technology shock of the CRISPR/Cas9

genome editing system to the field of genetic engineering caused a shift in the direction of

experimentation towards mammalian organisms. As the introduction of CRISPR/Cas9 lowered the

costs of working with mammalian cells, it is reasonable to expect an increase in experimentation in

that sub-field over bacterial or other eukaryotic (e.g. plants and fruit flies) experimentation.

Next, to delve more deeply into underlying mechanisms that may have driven the shift

towards mammalian research in genetic engineering due to CRISPR/Cas9, I use publication histories

from authors that eventually adopt CRISPR/Cas9 to test for a few mechanisms. First,
CRISPR/Cas9 could be making incumbent mammalian researchers more productive and cause an

increase in the rate of paper production. Second, it could be the case that researchers previously in

the bacterial sub-field shift their focus to the mammalian sub-field as it becomes easier to work with

mammalian organisms. Finally, as new researchers enter the field of genetic engineering, they could

be entering the mammalian sub-field in greater proportions after the introduction of CRISPR/Cas9.

After testing these three mechanisms, it appears that the increase in mammalian research

may be due to the type of researchers entering the field after the introduction of CRISPR/Cas9.

Given CRISPR/Cas9's rapid rise in popularity, and the particular emphasis on mammalian research,
new researchers may be entering genetic engineering with a focus on mammalian research in higher

proportion after the introduction of CRISPR/Cas9.
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There is not support for increased productivity or switching between sub-field as possible

mechanisms, however. Given that there is strong qualitative evidence that CRISPR/Cas9 increased

mammalian researcher productivity, the lack of empirical support for is surprising. However, it

could be possible that learning to use a new tool could cause a temporary delay in productivity as

incumbent researchers move up the learning curve. Some labs abandoned work in old editing

techniques due to the power of this new method (Pennisi 2013; Ledford 2015) and might have to

take a temporary step backwards before reaping productivity benefits. At least initially, there may

also be an opportunity cost to adopting CRISPR/Cas9 if authors are substituting CRISPR/Cas9

projects for others.

The lack of evidence for immediate author sub-field switching is less surprising. Researchers

may face additional switching costs that outweigh the cost savings from using the new technology

or they may have a strong preference for their initial organism. Barriers that could discourage

scientists from shifting sub-fields include high costs to adoption (e.g., Mokyr, 2002; Murray and

Stern, 2007; Furman and Stern, 2011; Williams, 2013) and entrenchment in previous work behaviors

(e.g., Siggelkow, 2001; Henderson and Clark, 1990). Therefore, a technological change can lower

costs to working with mammalian organisms, but whether scientists shift direction depends on

whether they can see a direct value in the new idea and how set they are in past working practices.

Because CRISPR/Cas9 is only three years old, more data is necessary before it is possible to see

whether the effects are due to a delay or to entrenched working practices.

Although there are important limitations to the current analyses, the paper provides a

foundation for an exciting set of new research on how innovations are used in scientific communities

and their influence on future directions of science. For example, Addgene has recently provided the

data to match researcher experimentation with publication outputs, which will allow for studies on

the translation between scientific experimentation and academic publication.

The remainder of this paper is organized as follows: Section 2 discusses the historical and

empirical literature on how access to innovations influences the rate and direction of scientific

progress as well as proposes empirical questions that add to the literature. Section 3 provides

background on the field of genetic engineering, explains the science of CRISPR/Cas9, and discusses

the popular reaction to the discovery. Section 4 describes the data sources used in this paper.

Section 5 discusses the analysis and findings. Section 6 concludes and provides a path for future

research.
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2 Influences on Rate and Direction of Technological Progress

Historically, science (and human knowledge in general) has been thought to progress through

a combination of knowledge that answers the question "what" and knowledge that answers the

question "how." Mokyr (2002) calls this "propositional" and "prescriptive" knowledge respectively.

An early view proposed progress as a linear process moving from propositional to prescriptive

knowledge (Bush 1945). However, this "linear model" has been challenged by the idea that science,

technology, and utilization develop along different but parallel paths (Allen 1984) and that the

interconnections are complex and vary by industry (Rosenberg 1990; Nelson and Rosenberg 1993;

Brooks 1994).

More recent research recognizes that it is possible for propositional knowledge to affect

prescriptive knowledge but that the reverse is possible as well (Allen 1984; Mokyr 1990 and 2002;

Brooks 1994; Stokes 1997). As an example of propositional knowledge contributing to prescriptive

knowledge, Brooks (1994) lays out a number of contributions of science to technology including:

new technological ideas, tools, techniques, instrumentation, human skills, technology assessment,

and development strategies. But technological advances can influence the direction of science as

well. Mokyr (2002) explained that before 1800 most technological progress was in inventions where

people knew that something worked, but not why. Mokyr uses chemistry as an example of an area

where practitioners knew that compounds had certain properties but had little idea of the underlying

chemical structures. However, because of this prescriptive knowledge it was possible to use the

working compounds as a basis for asking "why?" The resulting propositional knowledge then lead

to a fundamental understanding of chemistry and contributed to the development of previously

undiscovered compounds. Allen (1984) provides another example from electronics where electron

tube technology faced an upper limit of useable frequencies, which forced a return to the underlying

physics to be able to expand the number of channels for the increasing demand for radio

communications. Therefore, propositional and prescriptive knowledge are mutually reinforcing and

together shape the rate and direction of innovation.

Stokes (1997) takes this a step further and explained that ideas come in several different

forms depending on the inspiration for the research. He calls ideas that come from a quest for

fundamental understanding with no considerations of use "pure basic research" and ideas that come

from a desire to use them, but no fundamental quest for understanding "pure applied research."

His primary contribution is to then identify ideas that represent both a fundamental quest for

understanding and a desire for use, calling them "use-inspired basic research" or "Pasteur's

Quadrant" named after the research of Louis Pasteur that both expanded scientific understanding

and provided useful applications. The ideas in Pasteur's Quadrant could be scientific research tools

that embody new propositional knowledge and provide prescriptive knowledge to generate future

scientific advances.
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2.1 Empirical Studies on Innovations and the Rate and Direction of

Technological Progress

The existing empirical literature builds on this historical base to show how access to

innovations causes changes to the rate and direction of technological and scientific progress. In

general these studies find that providing access to previously unavailable innovations encourages an

increase in the rate of follow-on innovation. Although there are fewer studies that focus on the role

of innovations on the direction of future ideas, a number of factors have been shown to influence

the direction of technological progress.

2.1.1 Access to Innovations and the Rate of Follow-on Research

Some of the earliest empirical literature on how new inventions affect the rate of

technological progress focuses on General Purpose Technologies (GPTs). GPTs are considered

"enabling technologies," that encourage economic growth in a large range of downstream sectors

(e.g., semiconductors or hybrid corn) (Bresnahan and Trajtenberg 1995; Griliches 1957, 1958;

Rosenberg and Trajtenberg 2004; David 1990). For example, Rosenberg and Trajtenberg (2004)

looked at the dynamics of GPTs through the history of the Corliss steam engine and found that it

had a positive long-term impact on growth through productivity gains.

A second set of empirical research shows how providing access to research tools increases

the rate of scientific progress. In Furman and Stern (2011), the authors use difference-in-differences

models that look at treatment and control groups and timing differences to understand the effect of

a deposit of a biological material into a biological resource center (BRC) on future citations to the

related paper. They find a post-deposit citation increase of about 57-135 percent depending on the

specification due to the increased access to the material through the BRC. Murray et al. (2016)

also shows positive effects to the follow-on use of research mice (the Oncomouse, a key research

tool) after restrictions to access were lifted. Finally, Teodoridis (2018) focused on a tool that reduced

the cost of conducting motion-sensing research (Microsoft Kinect) and provided greater access to

knowledge in that field. In general her findings suggest that the tool increased research in motion-

sensing, which is in line with much of the other literature.

Another set of papers focuses on the reverse - what happens to the rate of future innovation

when access to scientific tools is hindered by a form of intellectual property? Much of this literature

finds that early stage intellectual property rights (IPRs) on cumulative basic research does seem to

hinder the rate of follow-on innovation. Murray and Stern (2007) and Williams (2013) are some of

the key papers that causally prove this point. Both papers show that property rights on early stage

innovations reduce follow-on research by 20-40 percent. Murray and Stern (2007) use "patent-paper

pairs" to show through a differences-in-differences identification strategy how new forward citations

to scientific papers decrease after the invention described received a patent. Williams (2013) used
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the differential timing on the sequencing of the human genome by private firm Celera and the public

Human Genome project to disentangle the effects of intellectual property on future research on the

human genome and subsequent commercial product development

The empirical results on the effects of restrictions have been mixed, however. For example,

Azoulay, Ding, and Stuart (2009) find that individual inventors are more likely to produce more

research of the same quality after getting a patent. This may seem like a difference between the

aggregate result of patenting and the individual result of patenting, but updated studies by Williams

and Murray and Stern have now found either no effects or even positive effects on follow-on research

due to intellectual property (Sampat and Williams 2019; Fehder, Murray, and Stern 2014).

Finally, the market for ideas literature also suggests a positive role for IPRs in the rate of

scientific progress. By design, patents create "fences" around the innovative area claimed in the

grant. As with all fences, the delineation of property lines can help to exclude competitors from the

space, but they also serve to define the space. By having a clearer idea of the property rights,
owners can not only choose who to include, but those interested in being included also know where

the boundaries of the rights are. This makes transacting over the property right much easier since

both parties know approximately what rights are covered. This factor makes the "market for ideas"

possible (Arora, Fosfuri, and Gambardella 2001; Gans and Stern 2003; Gans, Hsu, and Stern 2002).

As has been shown by Gans and Stern with Hsu (2002, 2003, and 2008), the market for ideas can

actually promote cooperation between innovating and established firms. The cooperation through

patent licensing can expand the amount of innovation in the market rather than old ideas being

subject to the gale of creative destruction described by Schumpeter (1942). Part of the reason such

a market for ideas works is because incumbents have complementary assets such as sales forces that

smaller, more innovative firms do not. These complementary assets could cause the innovative firm

to lose its first mover advantage (Teece 1986) and so they may be better off licensing or forming an

alliance with the firm with the complementary assets (Aghion and Tirole 1994; Lerner and Merges

1998; Lerner and Malmendier 2010). The market for ideas could help to diffuse the innovations

much faster rather than just create competition between ideas.

2.1.2 Influences on the Direction of Technological Progress

A number of papers in Section 2.1.1 also discuss possible influences on the direction of

technological progress. For example, Murray et al. (2016) found that the new access to the

Oncomouse in comparison to non-restricted mice lead to a very diverse set of research paths that

seem to encourage more horizontal exploration. So that access to tools lead to both more and

diverse research streams.

Teodoridis (2018) focuses on the organization of knowledge that springs from Microsoft

Kinect's ability to lower the cost of doing research in the area. She finds that such tools bring into
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the field an array of different researchers she calls generalists and specialists. She concludes that it

is the generalists that have the largest influence on follow-on knowledge creation since they are able

to connect specialists to new research opportunities opened by the new technology.

Finally, some papers have explored the different directions of innovation that IPRs

incentivize. For example Azoulay et al. (2009) find that individuals that get patents are more likely

to shift their research towards commercialization and Budish, Roin, and Williams (2015) find that

functional differences in patent lengths shift research in diagnostics for cancer towards solutions

that take less time to develop. However, the absence of a patent system may also affect the direction

of scientific research. The best evidence comes from Moser (2005) who studied innovations from

the World Fair. She finds that there is not less innovation for countries without the patent system

but those innovations tended to be best suited to trade secrecy. This suggests that without a patent,

system innovators publicly disclose inventions that cannot easily be reverse engineered or for which

they have some other comparative advantage. This could indeed limit the types of innovations that

would otherwise become available under a patent system such as pharmaceuticals that can be easily

reversed engineered.

2.1.3 Empirical Questions

In many of the empirical settings mentioned above, the innovations are incremental with

gradual adoption. Although as Mokyr (1990) points out, technological change is a punctuated

process so that changes can happen in short abrupt leaps rather than gradual process that

consistently builds on itself like evolutionary biology. Considering this, the current paper adds to

the empirical literature on the rate and direction of scientific research by studying how science

progresses when confronted with an abrupt leap embodied in a breakthrough innovation that is

rapidly adopted throughout a scientific field. Specifically, it seeks to answer two related questions:

1. Can an innovative technological breakthrough influence the direction of research in an

emerging field?

2. If so, how do researchers initially respond to the innovation in order to generate rapid

change?

In order to address these questions, novel datasets that provide measures of researcher

experimentation and productivity are used. Further, genetic engineering is introduced as an

important new setting to study the impact of a breakthrough innovation, the genome editing system

CRISPR/Cas9. The innovation is firmly in Pasteur's Quadrant (Stokes 1997) and has been called

the "biggest game changer to hit biology since PCR" (Ledford 2015). It has the potential to make

possible everything from blight resistant crops to targeted genetic drug therapies.

- 25-



3 Empirical Context

This section describes the innovative environment in genetic engineering and provides a

primer on the CRISPR/Cas9 genome editing system. The second part of the section discusses the

scientific and popular reaction to the CRISPR/Cas9 discovery.

3.1 Scientific Primer in Genetic Engineering Innovations

Genetic engineering lends itself to answering the empirical questions posed in Section 2.

Through genetic engineering, researchers can modify an organism's genome to produce or remove

traits that otherwise occur naturally. Two characteristics of genetic engineering research make it a

relevant object of analysis: the field naturally divides into research sub-fields and the field faces

rapid innovative changes.

Genetic engineering sub-fields emerge as the result of the type of organism scientists use in

their research. Labs often specialize in organisms such as bacteria (e.g., E. coli), mammals (e.g.,
mice or humans), or other eukaryotes (e.g., yeast or plants). This specialization occurs for a number

of reasons since organisms have different genetic properties. First, the costs of bringing together

and maintaining a lab of research scientists with appropriate skill sets can be high, so focusing on

organisms that require similar knowhow across the members of a research team makes the research

process more cost effective. Second, different organisms require different biosafety levels as regulated

by the Centers for Disease Control (CDC). Each biosafety level requires the lab to have

progressively more safety equipment for the researchers and more safety features built into the lab

space (CDC 2015). Thus it will cost labs more to switch from working with low biosafety level

organisms like non-infectious E. coli to higher biosafety level ones like humans and other mammals,
so each has an incentive to specialize in organisms at its biosafety level. Third, research scientists

tend to continue research they did as graduate and post-doctoral students and tend to work with

the same organisms due to preference, comfort level, or fit with the type of research conducted.

Finally, not all tools and biological materials in genetic engineering can be used across different

organisms. Thus E. coli labs might be expected to focus mainly on innovations specific to E. coli.

Although there are many organisms that fit within each broad category, the biological

properties of organisms within each group are more similar than between groups. The remainder of

the paper divides genetic engineering into the sub-fields of bacteria, mammals, and other eukaryotes.

Genetic engineering is also a useful setting for analyzing the empirical questions of this paper

because it has seen a number of innovations that rapidly changed the field. The rate and nature of

these recent changes makes it relatively easier to observe researchers responses to new innovations

than in slower moving fields. As an example, one set of innovations increased the productivity and
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decreased the price of DNA sequencing and synthesis (referred to as "Carlson Curves" by The

Economist), see Figures la and 1b.

[Figures la and lb here]

Over time, the drop in sequencing (reading DNA) and synthesis (writing DNA) costs made

it generally possible for labs to access many different genetic parts that they could not previously

afford. The decrease in the cost of sequencing DNA base pairs (bp) has been faster than Moore's

Law, going from $1.11/bp in 2004 to $0.00005/bp in 2014, although there has been evidence of a

slow-down in cost decreases over the last few years. In synthesis, GenScript, one of the largest and

earliest entrants to the gene synthesis market, dropped the cost of synthesizing a DNA sequence

1000 base pairs (bp) in length from $2.35/bp in 2004 to $0.23/bp in 2014.2 Generally these cost

shocks applied to all sub-fields.

A second set of innovations made it increasingly easier to cut DNA fragments in very specific

locations, allowing for precise editing of genomes in organisms that were historically difficult to

manipulate. Generally, these DNA editing technologies all have a mechanism for targeting a specific

DNA sequence and making cuts. However, earlier technologies (Zinc Finger Nucleases and

TALENs) were rather limited in their applications, whereas the most recent technology,

CRISPR/Cas9, is a universal cutting technology. For example, in the early 2000s, most genome

editing was accomplished through a technique known as Zinc Finger Nucleases (ZFNs). The ZFNs

technique required the researcher to create a unique enzyme that could recognize and cut each

individual DNA sequence of interest. However, the original ZFNs could only recognize naturally

occurring DNA sequences, which was a limitation for genetic engineers wishing to study modified

DNA sequences that became possible with ever cheaper synthesis. The specificity of ZFNs may

have encouraged labs to focus on specific kinds of cells in their experiments rather than amassing

the materials and knowhow necessary to use the broad array of individual ZFNs available. Starting

in late 2009, many labs began editing genomes using Transcription Activator-Like Effector Nucleases

(TALENs) (Moscou and Bogdanove, 2009; Boch, et al., 2009). TALENs are similar to ZFNs in that

they can be used to recognize and cut out specific DNA sequences and require a new enzyme to be

created to recognize and cut each unique DNA sequence. However, desired new TALENs are much

easier to engineer than ZFNs because researchers have solved the code for how TALENs recognize

different DNA sequences. An individual TALEN can be used in multiple cell types if the desired

DNA sequence exists in each, but the specificity of the method likely limited most labs to specific

types of organisms. Although the limiting set is larger than the limiting set for the original ZFNs.

Source: NHI National Human Genome Research Institute, available at: http://www.genome.gov/sequencingcosts/.

2Source: GenScript, available at: http://www.genscript.com /gene synthesis.html?src=pullmenu. Historical prices were obtained

using the April snapshots captured by the WayBack Machine Internet Archive (web.archive.org).
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TALENs were chosen as "Method of the Year" in 2011 by Nature Methods (Method, 2012) but in

a true shock to the field, a new method appeared only months later.

In June 2012, CRISPR/Cas9 was discovered to be a highly efficient cutting tool for genome

editing. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are distinctive

sequences of DNA that were first noticed in bacteria as early as 1987. The CRISPRs, which consist

of a repeated DNA sequence appearing between unique DNA sequences, were largely a curiosity

until 2007. That year, CRISPRs' role in the bacterial immune system became well understood

(Barrangou et al, 2007). Researchers discovered that bacteria had a system that could recognize

and cut out viruses it had previously fended off. When the virus attacks again, the CRISPR

recognizes it and brings along an enzyme (usually called Cas9) to cut the viral DNA, rendering the

virus harmless. Breakthroughs in 2012 and 2013 when researchers discovered the CRISPR/Cas9

system could be used to find and cut more than viral DNA sequences through the use of guide RNA

(gRNA) (Jinek et al. 2012, Cong et al. 2013, Mali et al. 2013).

Part of CRISPR/Cas9's attractiveness is that unlike ZFNs and TALENs, the CRISPR/Cas9

system does not require the researcher to find individual CRISPR enzymes to cut each DNA

sequence. Instead the gRNA acts as a genetic GPS device that can find the programmed DNA

sequence in an organism and the Cas9 enzyme can cut the targeted DNA in almost any organism.

Because the gRNA can recognize longer sequences of DNA than ZFNs or TALENs, the

CRISPR/Cas9 system is also more accurate in finding the correct target DNA. For example, it is

the difference between telling a word processor to find "absolutely" rather than "abs" which will

find the word "absolutely," but also "absolute," and "abstract." The system can also be programmed

to carry with it a set of replacement DNA, so that genetic engineers can use CRISPR/Cas9 as a

genetic version of a word processor's find and replace function to cut out a certain segment of DNA

and replace it with the DNA sequence they want to study. In addition, a researcher can use

CRISPR/Cas9 to make multiple cuts at the same time in the same cell, something that was not

possible with the previous editing techniques.

The shock of CRISPR/Cas9 drastically reduced the costs of using organisms that had been

historically difficult to work with in experiments since gRNAs are very simple and cheap to order

and easily enter a variety of organisms. The response to this new technology was almost immediate

given its accuracy, flexibility, and relative ease of use (Pennisi, 2013; Regalado, 2014).

3.2 Tracking the Adoption of CRISPR/Cas9

CRISPR/Cas9 was first introduced as a proof of concept for easy genome editing in bacteria

by Professors Jennifer Doudna and Emmanuelle Charpentier at the University of California,
Berkeley in June 2012 (Jinek, et al., 2012). Less than six months later, in January 2013, MIT

Professor Feng Zhang and his collaborators published a breakthrough paper describing the use of
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CRISPR/Cas9 as a viable easy-to-use general-purpose genome editing system for mammalian cells,

including human cell lines (Cong et al., 2013).' The work of Zhang and his co-authors at MIT and

the Broad Institute (and the related work of George Church and his colleagues at Harvard Medical

School) lead to significant interest in the role that CRISPR/Cas9 can play in life sciences innovation.

Between June 2012 and November 2015, there have been almost 2,000 individual publications

mentioning CRISPR based on a search of the Web of Science, which is an average rate of

approximately 48 papers a month since Doudna's first article.

As emphasized by Jennifer Doudna in a February 2015 JAMA editorial, "This discovery has

triggered a veritable revolution as laboratories worldwide have begun to introduce or correct

mutations in cells and organisms with a level of ease and efficiency not previously possible."

(Doudna, 2015). For example, CRISPR/Cas9 has already been used to modify crops to be blight

resistant (Wang et al. 2014) and to create "malaria-proof" mosquitoes that are genetically unable

to be affected by or transmit malaria (Gantz et al. 2015). The introduction of CRISPR/Cas9 will

be especially useful in medical applications since it will more easily allow researchers to build new

mouse and human cell disease models with very specific sets of mutations on which to test new

drugs. As a recent example, members of Feng Zhang's lab have created a "Cas9 mouse" (Platt et

al. 2014) that can be modified to model lung cancer. Before CRISPR/Cas9 creating such a mouse

model for lung cancer would have taken many people and a decade of time. Creating this model

took one person four months (Specter 2015). As further evidence of the potential and speed of

CRISPR/Cas9, start-ups based on CRISPR/Cas9 technology have raised more than $80 million in

financing (Regalado 2014; Ledford 2015) and scientists attempted to edit the genome of human

embryos using CRISPR/Cas9 for the first time in April 2015 (Liang et al. 2015).

Interviews with several experts in genetic engineering indicate that the impact of

CRISPR/Cas9 did make working with mammals and other eukaryotes much easier than in the past.

Although the original Doudna lab paper showing CRISPR/Cas9 as a proof of concept for bacteria

was published in June 2012, it was not until the Zhang lab paper on the usefulness of CRISPR/Cas9

for mammalian cells was published that interest seemed to increase. A Google Trends analysis of

the term "CRISPR" provides some evidence that searches for the term increased after the

publication of the Zhang article (Figure 2).

[Figure 2 here]

Part of the reason for this interest from mammalian researchers is the biological differences

in bacteria versus eukaryotes that make editing bacteria genes far simpler. Unlike mammals and

An earlier paper (Jinck et al., 2012) describes the use of CRISPR/Cas9 for non-mammalian cells and a simultaneous paper
(Mali et al, 2013) independently confirms results found by Zhang and his collaborators and tests CRISPR/Cas9 efficiency against

previous genome editing techniques.
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other eukaryotes, bacteria cells have no nucleus that contains the DNA. Therefore, the process of

editing bacterial DNA can be as simple as inserting modified bacterial DNA through the cell

membrane. This can be done by simply applying an electric shock to the bacteria cells, which opens

holes in the cell membrane through which new DNA can be introduced in a process called

electrophoresis. Because of the relatively simple process that exists for engineering bacterial cells,
techniques like CRISPR/Cas9 are not usually necessary to perform experiments. Eukaryotic cells

are far more complicated and cannot be edited using the same electrophoresis technique. Instead,
more complicated techniques such as ZFNs, TALENs, or CRISPR/Cas9 are required to edit

eukaryotic cells. Therefore, researchers in mammalian organisms had a greater incentive to

experiment with CRISPR/Cas9.

This qualitative evidence suggests that the technology shock of CRISPR/Cas9 should have

had a differential effect on genetic engineering sub-fields. Specifically, it should provide a natural

experiment that enables a test of the hypothesis that CRISPR/Cas9 caused an increase in

mammalian experimentation as compared to the other eukaryote and bacteria sub-fields. Multiple

underlying mechanisms could lead to such an increase. CRISPR/Cas9 could affect the both the

rate and direction of research in genetic engineering by making current researchers more productive,
inducing new researchers to enter the field, or by encouraging researchers in bacteria to shift their

research focus. Alternatively, the technology shock could have little to no effect on the rate and

direction of new research due to entrenchment of specific standards within labs or strong barriers

to entry in certain sub-fields. Either outcome is interesting and would help enrich our understanding

of the role of scientific tools in encouraging research in a specific sub-field.

4 Data Construction

To explore the reaction of researchers to the introduction of CRISPR/Cas9, this paper relies

on two different data sources. The first is a novel dataset provided by Addgene, one of the most

popular biological materials repositories in genetic engineering (Kahl and Endy 2013). Addgene

facilitates the donation and transfer of biological materials between academic researchers for new

experiments. The second is a dataset of the publication histories of every last author that published

a paper referencing one of the original three papers on CRISPR/Cas9 as a technique for genome

editing from Doudna, Zhang, or Church. The first dataset is a proxy for the level of experimentation

in genetic engineering. The second dataset represents the actual productivity of researchers using

CRISPR/Cas9.
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4.1 Addgene Plasmid Database

Addgene, a non-profit company, was founded in 2004, by Melina Fan, Kenneth Fan, and

Benjie Chen for scientists to easily store, search for, and share plasmids for use in biological research

(Fan et al., 2005). Plasmids are small molecules of DNA that are used in genetic cloning to introduce

new genes into a host cell. Each plasmid has a variety of defining characteristics, including the type

of host cell it is best suited for in experiments. The organization is a repository that helps facilitate

the exchange of genetic material between laboratories by storing plasmids and their associated

cloning data donated from academic labs all over the world. Addgene performs quality control on

all donated plasmids and can ship validated materials to academic laboratories all over the world

for use in scientific research. Although their plasmid donation repository is publicly available on

their website (http://www.addgene.org), Addgene's plasmid order history has never before been

released outside the company.

For this project, Addgene provided the full, daily order history from September 2004 through

October 2014. Included in the history are the plasmids in each order; an ID for each requesting lab;

and categorizations for whether the plasmid is for use in bacterial, mammalian, or other eukaryotic

organisms.4 Since CRISPR/Cas9 can be physically manifested in a set of plasmids, each designed

for use within a certain type of cell, the Addgene data also identifies whether the plasmid is for use

in CRISPR/Cas9 experiments.' Unfortunately, due to confidentiality concerns, Addgene was not

able to divulge the actual identities of the ordering labs. This poses some limitations on the ability

to control for lab characteristics until the plasmid data can be matched to actual papers. Addgene

has recently granted access to the identification data, so future articles will be able to overcome this

limitation.

Plasmids are relatively inexpensive to purchase from Addgene at $65 per plasmid, so

Addgene provides a low barrier to experimentation in genetic engineering. Although labs can make

their own plasmids or attempt to get them directly from the originating lab, it is often easier to

order directly from Addgene. Therefore, labs order from Addgene when they want to experiment

with existing plasmids. The Addgene order data thus provides a proxy for the amount of

experimental behavior from genetic engineering labs and a leading indicator for shifting interests in

the field.

' Plasmids ordered from Addgene can be used to indicate the type of research ordering labs focus on by looking at whether the
plasmid is categorized for bacteria, mammal, or other eukaryotic expression. It is important to note that the ordered plasmid
expression is a proxy for the type of cell it will be used in. It is not necessarily the case that the lab eventually used the ordered
plasmid. However, plasmid cell expression is a reasonable proxy for the type of research done in the ordering lab since it is
generally not useful for a lab to order a plasmid it cannot work with.
' The original authors of the CRISPR/Cas9 papers donated all of their CRISPR plasmids to Addgene at the time of the papers'
publications.
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The initial database contains 435,926 individual plasmids ordered in 171,352 orders by 48,857

unique labs in 82 countries over the ten-year period. The orders represent 20,780 unique plasmids.

The growth rate of Addgene orders has been increasing over time as shown in Figure 3. The drop

in 2014 is solely from the fact that it is not a full year of data (the dashed bar shows the estimated

total for 2014).

[Figure 3 here]

The increases in orders have ranged from 16 to almost 30 percent since 2008 except for the

37 percent increase from 2012 to 2013. At least half of that increase was due to new orders of

plasmids embodying the CRISPR/Cas9 system (Figure 4). Therefore, CRISPR/Cas9 likely

contributed to an increased experimentation rate in genetic engineering as measured by orders to

Addgene.

[Figure 4 here]

Given that CRISPR/Cas9 has a low cost of adoption and in general was seen to lower the

barriers to entry into genetic engineering, it is not surprising that there was an increase in

experimental activity after CRISPR/Cas9 was introduced. Ex ante, though, the effect on different

sub-fields of genetic engineering was not obvious. It is possible that CRISPR/Cas9 had an equal

effect on all sub-fields, bacterial research could have had an increase in experimentation since this

was the area where CRISPR/Cas9 first emerged as a proof of concept, or mammalian research could

have seen the increase since this was the area that biologically benefited most from the

CRISPR/Cas9 tool. Given that CRISPR/Cas9 made it easier to work in mammalian cells more

than any other, it could be reasonably hypothesized that CRISPR/Cas9 caused a greater increase

in mammalian experimentation than in any other sub-field. The summary statistics for the overall

Addgene order database are presented in Table 1.

[Table 1 here]

4.2 Publication History Database for CRISPR/Cas9 Authors

To the extent that CRISPR/Cas9 has a differential effect on mammalian research in genetic

engineering, this effect could be due to a number of underlying behaviors of the researchers.

Understanding the mechanisms behind a change in the direction of research can help better explain

the effect of a new technology shock on a rapidly changing area of research. Unfortunately, the
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Addgene data does not currently provide identifying characteristics of the ordering labs,' but it is

possible to understand which researchers contributed to the increase in mammalian research after

CRISPR/Cas9 was introduced using the publication histories of the authors that eventually write

an article that cites to one of the three original CRISPR/Cas9 papers. The implicit assumption here

is that the labs that order CRISPR/Cas9 from Addgene are similar to those that eventually publish

papers in CRISPR/Cas9. Although the groups that experiment and those that eventually publish

are likely not identical, it is reasonable to assume that there is overlap. Data on the author

publication histories is available from Scopus.

Scopus, owned by Elsevier, is an abstract and citation database for peer-reviewed articles

that covers more than 21,800 journals in science, technology, medicine, economics, other social

sciences, and the humanities (Scopus 2014). Data from Scopus was collected by first identifying

every paper that cited to one of the three original CRISPR/Cas9 papers from June 2012 through

June 2015. The last listed author on each paper' was then searched by Scopus' Author Identifier

to obtain the author's entire publication history. The Author Identifier is a unique ID number

Scopus assigns to authors to disambiguate common names and combine different formats of the

same name. Author papers are grouped by an algorithm that matches on author affiliation, subject

area, co-author names, and dates of publication citations (Scopus 2015). Scopus was chosen over

other citation databases such as PubMed for this analysis because it was necessary to be able to

search abstracts and keywords into 2015 to obtain as much data as possible after the introduction

of CRISPR/Cas9 given its very recent discovery.

There has been an incredible amount of research done using CRISPR/Cas9 since its

introduction in June 2012. There are 1,475 unique articles that cite to at least one of the original

papers between June 2012 and June 2015. These papers were written by 1,085 unique last authors.

The initial dataset of author-paper pairs contains almost 108,000 papers published from 1959

through June 2015. Each record contains the disambiguated author name, his or her co-authors,
the paper title, the paper journal, the year published, author affiliations, the abstract, and Scopus-

assigned keywords identifying the topics of the articles.

Unlike the Addgene plasmids, papers can have more than one research focus. Therefore, it

was necessary to devise a set of measures to determine which organisms a particular lab may work

on over time. First, lists of keywords indicative of research in bacterial, mammalian, or other

eukaryotic organisms were developed in conjunction with an expert in genetic engineering (see

Appendix A for the list of keywords). Then the proportion of sub-field specific keywords was used

to determine the relative focus of the paper. For example, a paper with five keywords in either the

Scopus keywords or paper abstract: "mouse" "mammal" "human" "coli" "eukaryot" would be

` This is true for the dataset used in this paper. Addgene has since granted access to the identification data that will allow labs'

ordering histories to be linked to their publication histories. Future research will not have this limitation.

' In scientific papers, the last author is usually the person responsible for the article and the lab.
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classified as 60 percent mammalian, 20 percent bacterial, and 20 percent other eukaryotic focused.

It is important to note that the keywords are a proxy for the type of organisms a lab uses. Although,

if such keywords are used in the abstract and Scopus keywords, then there is a high likelihood that

the lab conducts experiments pertaining to these sub-fields.

Because some authors historically publish more than one paper a year, the data was

aggregated to an author-year panel. For each sub-field, the proportions were averaged to obtain

the percent mammalian, bacterial, and other eukaryotic focus respectively that a given author had

in his or her papers that year. In addition to the yearly measures of focus, it was possible to classify

each author as initially a mammalian, bacterial, or other eukaryotic researcher. Due to abstract

limitations in the database prior to 2000, the initial author focus was determined by taking the

average of the sub-field percent focus from 2000-2006 and then assigning the author to the sub-field

where the average percent was greater than 60 percent. For example, if an author had an average

percent focus of 60 percent mammalian, 20 percent bacteria, and 20 percent other eukaryote from

2000-2006, then the author was classified as initially mammalian focused. The year 2006 was chosen

as the end point since 2007 was the first year where the biology of CRISPRs garnered attention

from genetic engineers. Since 2000-2006 is used to determine the initial focus of the lab, all

regressions in the paper use the remaining panel from 2007 through June 2015 unless otherwise

noted. The summary statistics for the entire dataset from 2007-June 2015 are displayed in Table

2.

[Table 2 here]

5 Empirical Results

In general, when a new tool is introduced that makes working in a field easier, previous

research has shown that the overall rate of productivity increases. If this is true for productivity in

terms of forward citations, it should also be true in experimentation. As shown in Section 4.1, this

appears to be the case when CRISPR/Cas9 was introduced as a tool for genetic engineering. Perhaps

less obvious is whether CRISPR/Cas9 had an influence in shifting the direction of experimentation

in the field. If there is a larger increase in experimentation within a specific sub-field then it will be

useful to the understanding of such a rapidly changing industry to explore the underlying

mechanisms that lead to this increase. Section 5.1 explores the hypothesis that mammalian

experimentation benefits more from the introduction of a new tool than other genetic engineering

sub-fields. Section 5.2 delves deeper into the underlying mechanisms that may lead to such an

increase.
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5.1 CRISPR/Cas9's Effect on the Direction of Genetic Engineering Research

Since CRISPR/Cas9 could be used to make experiments on all types of organisms more

efficient, it may be the case that all sub-fields benefited similarly from the new tool. Alternatively,

some sub-fields could have benefited more from the technological shock. For example, since

mammalian research biologically did not have easy tools to work with but bacterial research had. a

set of standard effective techniques, it is reasonable to hypothesize that experimentation in

mammalian research should increase more after the introduction of CRISPR/Cas9 than bacterial or

other eukaryotic experimentation.

To determine whether CRISPR/Cas9 differentially affected experimentation in genetic

engineering sub-fields, all plasmids ordered were categorized by expression type (i.e., mammalian,
bacterial, and other eukaryotic) and aggregated by quarter. If CRISPR/Cas9 had a differential

effect on the bacterial, mammalian, or other eukaryotic sub-fields, a change in the popularity of

plasmids in that sub-field should be observable. Given that CRISPR/Cas9 may be relatively more

useful in working with more complex mammalian cells, it would be reasonable to expect to see an

increase in the use of mammalian plasmids over bacterial or other eukaryotic plasmids after the

introduction of CRISPR/Cas9. A graph of these trends shows that although orders of mammalian

plasmids consistently grew faster than bacterial or other eukaryotic plasmids over time, the growth

of mammalian plasmid orders was even faster after the introduction of CRISPR/Cas9 (Figure 5).

This difference is statistically significant, as can be shown by a decomposition of trends analysis.

[Figure 5 here]

The basic specification to test whether CRISPR/Cas9 affected plasmid orders for

mammalian experimentation more than in the other sub-fields is an aggregate decomposition of

trends analysis where fs is the incremental effect of CRISPR/Cas9 on mammalian plasmid orders:

PlasmidOrderst = f0 + f 1t + f2tpost * Post + ft 3 Mammal + f 4Mammal * t + #,;Mammal * tPos * Post

+ p6 Other + f 7Other t + fpOther * tPost * Post + Et

PlasmidOrders the number of plasmids ordered in quarter t

t Count of quarters starting in 2004 Q3

t081 = Count of quarters after CRISPR/Cas9, starting in 2012 Q3
Post 1 if the quarter is after the CRISPR/Cas9 shock

Mammal 1if the plasmid is for use in mammalian experiments

Other 1 if the plasmid is for use in other eukaryotic experiments
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In this model, #lO,3, &represent the regression constant for bacterial, mammalian, and other

eukaryotic plasmid orders respectively. ThenI#1,#4,l7 represent the slopes of the overall ordering

trends for bacterial, mammalian, and other eukaryotic plasmids respectively. The remaining

coefficients, 82,65,&s are then the incremental increase per quarter in the ordering trends for

bacterial, mammalian, and other eukaryotic plasmids respectively after the introduction of

CRISPR/Cas9. If mammalian experimentation increased more due to CRISPR/Cas9, then the

mammalian post-CRISPR/Cas9 incremental trend should be highly significant and larger than those

post-CRISPR/Cas9 trends for the other sub-fields.

Table 3 shows that after controlling for the ordering trends in bacterial and other eukaryotic

plasmids, mammalian plasmid orders increase by 338 orders per quarter after CRISPR/Cas9. The

result is significant at the 0.001 level and has a larger magnitude than the other sub-fields. The 338

orders represents a 95 percent increase over the total mammalian trend. This result provides

evidence that CRISPR/Cas9 had a larger effect on mammalian experimentation than on the other

sub-fields.

[Table 3 here]

Another way to evaluate whether CRISPR/Cas9 had a differential effect on mammalian

experimentation is to look at the incremental contribution plasmids that are both for mammalian

and CRISPR/Cas9 experimentation make to total plasmid orders as compared to the other sub-

fields. To do this, it is possible to exploit the panel nature of the data to look at the effect of a

plasmid being mammalian and CRISPR/Cas9 on total plasmid orders while controlling for sub-field

characteristics as well as year and plasmid cohort effects. The basic OLS panel model specification

for this test can be written:

PlasmidOrdersit
= ao + a1 Mammali * CRISPRI + a2Mammali + a3CRISPR1 + a40ther * CRISPR
+ as Otheri + aXit + 6t + 8-entry + Eit

PlasmidOrderst = the number of plasmid i ordered in quarter t

Mammal= 1 if the plasmid i is for use in mammalian experiments

Otheri = 1 if the plasmid i is for use in other eukaryotic experiments

CRISPR= 1 if the plasmid i is for use in CRISPR/Cas9 experiments

Mammali*CRISPRi 1 if the plasmid i is for use in mammalian and CRISPR/Cas9 experiments

Other1 *CRISPR = 1 if the plasmid i is for use in other eukaryotic and CRISPR/Cas9

experiments

Xit= 1 if the plasmid i was ordered by a lab new to Addgene in quarter t

St, 6 t-entry, Eit year effects, age effects, and error term respectively
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In this specification, if CRISPR/Cas9 had a larger effect on mammalian experimentation, it

would be reasonable to expect that plasmids characterized as for both mammalian and

CRISPR/Cas9 experiments would have a positive and significant effect on total plasmid orders after

controlling for the other sub-fields as well as year and plasmid age effects.' As shown in Table 4,
being a mammalian CRISPR/Cas9 plasmid has a significant positive effect on total plasmid orders

in the full panel dataset.

[Table 4 here]

In Table 4, Model 1, the OLS specification suggests that being a mammalian CRISPR/Cas9

plasmid contributes an additional 19 orders per quarter over bacterial plasmids controlling for the

factors mentioned above. However, because the plasmid order data is skewed to the right and

contains a large number of zeros, Table 4 Model 2 shows the results of a zero-inflated Poisson model

using the same controls. Here, the result is less significant, but still positive at the 5 percent level.

The incident rate ratio suggests that being a mammalian and CRISPR/Cas9 plasmid increases the

rate of orders by 1.6 times over bacterial plasmids. Again, this result suggests that CRISPR/Cas9

encouraged more experimentation in mammalian organisms than in other sub-fields.

Finally, as a robustness check, the results found in Tables 3 and 4 could be due to an

imbalance of the number of CRISPR/Cas9 plasmids available for each sub-field. Although it is true

that more unique mammalian CRISPR/Cas9 plasmids are available than bacterial or other

eukaryotic CRISPR/Cas9 plasmids, the number of orders per unique plasmid is higher for those

that are for mammalian and CRISPR./Cas9 experimentation (Table 5). Since labs do not have to

order a plasmid more than once, this helps support the evidence that there is more experimentation

with mammalian CRISPR/Cas9 plasmids than with other sub-fields.

[Table 5 here]

The novel plasmid order data provided by Addgene does suggest that the introduction of

CRISPR/Cas9 had a larger differential effect on the mammalian sub-field of genetic engineering.

Given that the change occurred immediately, it will be informative to better understand how the

sub-field reacted to such a major shock.

' It is not possible to include plasmid fixed effects in these models since the variables of interest do not vary over time and would

drop out in such a specification.
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5.2 Underlying Mechanisms for the Shift to Mammalian Research

CRISPR/Cas9 could be influencing mammalian genetic engineering research over bacterial

genetic engineering research in a few ways. The first is that CRISPR/Cas9 could be making

previously existing mammalian researchers more productive and cause an increase in the rate of

paper production. Second, as new researchers enter the field of genetic engineering, they could be

entering the mammalian sub-field in greater numbers after the introduction of CRISPR/Cas9.

Finally, it could be the case that researchers previously in the bacterial sub-field could be shifting

their focus to the mammalian sub-field as it becomes easier to work with mammalian organisms.

As mentioned in Section 4.2, it is not possible to assess the different mechanisms described

above using the Addgene data, so the following analyses will rely on the author history dataset

collected from Scopus. First, to shift datasets, it is important to show a similar increase in

mammalian research among the researchers that adopt CRISPR/Cas9. As with the trends in the

Addgene data, the increase in CRISPR/Cas9 research comes not from the sub-field that first

developed the technique, but from the mammalian sub-field that benefited most from the more

valuable tool.

Figure 6 shows the number of CRISPR/Cas9 papers that contain mammalian keywords over

time as compared to the number of papers that contain bacterial or other eukaryotic keywords. In

general, there is a swift increase in papers with mammalian keywords after the introduction of

CRISPR/Cas9 for mammals that is not replicated for those with bacterial keywords.

[Figure 6 here]

Although it is not possible to prove here that the labs experimenting in CRISPR/Cas9 on

Addgene are the same that eventually publish using the tool, the similarity of mammalian and

bacterial research trends between the two provide some comfort in using publishing data to explore

the underlying mechanisms behind the increase in mammalian research. The remainder of this

section evaluates each possible mechanism in turn.

5.2.1 Incumbent Researcher Productivity

Some of the qualitative evidence suggests that CRISPR/Cas9 was thought to reduce the

amount of time research takes, especially with mammalian organisms. For example, consider the

creation of the "Cas9 mouse" which allows one person to create an animal model in a few months

rather than a decade (Specter 2015). If the technology shock made the mammalian sub-field of

genetic engineering more productive than the bacterial sub-field, one would expect to see a

significant increase in the percent change of papers for mammalian researchers after CRISPR/Cas9
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was introduced.' To test for this effect, it is possible to exploit the panel nature of the author

history database to control for sub-field, year effects, author effects, and author experience effects.

The basic OLS panel model specification for this test can be written:

PctChangePapersjt

= yo + y1 MammalIt * PostCRISPR + y2Mammal1 t + y3 Othert * PostCRISPR + y4Otherjt
+ 6; + 6

t + t-entry + Eit

PctChangePapers,= the percent change in papers for author j in year t

Mammaljt= 1 if the author j is initially classified as having a mammalian focus OR the

percent mammalian focus of author j in year t

Other 1if the author j is initially classified as having an other eukaryotic focus

OR the percent other eukaryotic focus of author j in year t

PostCRISPR, 1if year t is after the introduction of CRISPR/Cas9 (here, after 2012)

6i, t, 6 t-entry, Eft author effects, year effects, author experience effects, and error term

As described in Section 4.2, the regression uses yearly data from 2007 - 2014 to calculate

the percent change in papers by author. For regressions that use the author's initial focus, that

measure was determined using data from 2000 - 2006. All included authors published before and

after the introduction of CRISPR/Cas9. The coefficient of interest in this model is y1which is the

increase in the percent change of papers due to focusing on mammalian research after CRISPR/Cas9

as compared to bacteria holding all else constant.

Table 6 shows the results of regressing each author's percent change in papers by year on

whether the papers were published after CRISPR/Cas9 and if they focused on mammalian research.

In general across all models, the results are insignificant and small, which does not allow us to reject

the null hypothesis of no increase in productivity for mammalian focused authors. Models 1 and 2

in Table 6 show OLS results without author fixed effects and using the author's initial focus. Adding

author fixed effects (as in Model 3) brings the coefficient of interest practically to zero. If instead

of strictly assigning an author an initial sub-field from a pre-period, the author's sub-field focus was

allowed to vary over time, the result is still insignificant, but at least positive for authors with higher

mammalian after CRISPR/Cas9 (Table 6, Model 4).

[Table 6 here]

Given the results of Table 6, there is not clear evidence that CRISPR/Cas9 increased the

productivity of any author in the mammalian sub-field over those in the bacterial sub-field. The

' Percent change in year over year papers was used as the productivity measure to account for differences in the levels of papers

from mammalian and bacterial authors.
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lack of an increased productivity finding is somewhat surprising given the qualitative evidence.

However, there could be a few explanations for mammalian authors who adopt CRISPR/Cas9 not

becoming relatively more productive that are not accounted for in the above regression. First,
incumbent authors often used older techniques like ZFNs and TALENs, so learning to use a new

tool could cause a temporary delay in productivity as they move up the learning curve. This would

be especially true if there is some tacit knowledge necessary for implementing CRISPR/Cas9 (von

Hippel 1994, Ledford 2015). Second, authors in this space may be constrained by the number of

papers it is possible to write in a given year, and so may be switching from non-CRISPR/Cas9

projects to CRISPR/Cas9 projects. This would keep the average growth in papers the same and

might suggest that at least initially there is an opportunity cost to adopting CRISPR/Cas9.

5.2.2 Incumbent Researcher Focus Shifts

Second, the increase in mammalian research after CRISPR/Cas9 could be due to incumbent

authors in the bacterial sub-field switching to the mammalian sub-field. As mentioned previously,
improvements in genome editing methods like CRISPR/Cas9, have made it relatively easier to work

with mammalian organisms. According to interviews with genetic engineers and experts at Addgene,
authors most likely to be influenced to shift research focus by CRISPR/Cas9 are those that began

by conducting research with organisms for which the technique was not biologically necessary (i.e.,
bacteria). One of the reasons a bacteria focused author may switch their focus to mammalian

organisms after CRISPR/Cas9 becomes available is that the research they do is applicable to higher

order organisms. However, they may have initially chosen to work in bacteria because it had readily

available genome editing techniques. The discovery of CRISPR/Cas9 would make it easier for such

authors to switch to a higher order organism that more closely matches their research interests.

Mammalian researchers can (and do) switch focus to bacteria, but since there were already working

editing techniques for bacteria the discovery of CRISPR/Cas9 gave them no additional incentive to

switch.

Specifically, the effect of the exogenous CRISPR/Cas9 shock on focus switching should be

greatest for authors that would have the most difficult time adopting a new type of organism absent

the new tool. The treatment group for this is authors that started with research in bacteria. A

concern in this setting is trying to construct an appropriate control group when the entire field is

growing so quickly. The initial control group used in this study is authors that started with research

in mammalian organisms prior to the discovery of CRISPR/Cas9. The outcome of interest is

whether the author chose to focus on a different sub-field from his or her initial research focus.

From the Scopus publication data, it is possible to ask Does the adoption of an exogenous

technology shock such as CRISPR/Cas9 induce authors that worked in easier to edit organisms to

shift their research focus more than authors that worked in historically difficult to edit organisms?
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The simplest difference-in-difference estimator, 01, for an increased change in focus by traditionally

bacterial researchers due to the CRISPR/Cas9 shock would be:°

ShiftFocusjt = 00 + 1 Bacteria; * PostCRISPRt+02Bacteria;+03 PostCRISPR + S + 8t + Ejt

ShiftFocusft = 1 if author j in year t (t = 2007 - 2015) focused mainly on a different

topic than the author initially had. The initial focus of the author is

determined based on the sub-field with 60 percent or more focus on

average from 2000 - 2006.

Bacteriaj = 1 if the author j was initially defined as bacteria focused. The Control

group is all authors defined as initially mammalian focused. All authors

published before and after the shock.

PostCRISPR, = 1 if the year t is 2013 or after (after the CRISPR/Cas9 shock).

6t;6j; Ejt = year fixed effects, author fixed effects, and an error term.

Therefore, this analysis will look at whether an author's adoption of CRISPR/Cas9 increased

the likelihood of a bacteria lab shifting focus to mammalian research more so than a mammalian

lab shifting focus to bacteria research. All else equal, CRISPR/Cas9 should increase the likelihood

of bacteria labs shifting focus to mammalian research since it lowered the barriers to entry for

mammalian research but less so for bacterial research. In other words, if this is true, the treatment

effect, 01, should be positive and significant.

A more flexible form of the above model allows for an interaction effect for each year to

better understand the year over year trend:

ShiftFocus1 t = 00 + G=20 0 Bacteria; * PostCRISPRt + 02Bacteria; + 03 PostCRISPRt + 6j + 8 + Ejt

Figure 7 plots the year over year treatment effects in Table 7, Model 4. The graph shows

that there is no real pre-trend, but that bacterial authors are no more likely to switch focus than

mammalian authors after the introduction of CRISPR/Cas9 either. In general, this analysis suggests

that the increase in mammalian research after CRISPR/Cas9 is likely not due to bacterial authors

shifting their research focus to mammalian organisms. A possible reason for this result may be

other costs not accounted for by the change in technology making the cost of adoption still too high

(e.g., Mokyr 2002; Murray and Stern 2007; Furman and Stern 2011; Williams 2013). For example,

" The coefficients on Bacteria and PostCRISPR would be subsumed in models containing author and year fixed effects.
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bacterial laboratories may need to be upgraded to comply with higher biosafety levels before working

with mammalian organisms. Alternatively, authors may prefer the type of organism they initially

chose and are entrenched in previous work behaviors (e.g., Siggelkow 2001; Henderson and Clark

1990). Unfortunately, distinguishing between these mechanisms is not yet possible given the short

length of time since the discovery of CRISPR/Cas9. This analysis may have a different result when

more years of data are available.

[Figure 7 and Table 7 here]

5.2.3 Research Focus of New Entrants

A final avenue for mammalian research to increase after CRISPR/Cas9 could be the

introduction of brand-new researchers to genetic engineering that choose to enter the mammalian

sub-field in greater proportion after the introduction of CRISPR/Cas9. Authors in the publication

history dataset could make a first appearance in any year from 1959 to 2015. As the data for

analyses is restricted to the years 2007 forward, Figure 8 charts the number of authors that first

appeared in the dataset between 2007 and 2015 (estimated) by year. The figure shows that 52

percent of new authors in that period entered after CRISPR/Cas9 was introduced. This suggests

that CRISPR/Cas9 may have influenced new entry into genetic engineering.

[Figure 8 here]

To test whether a higher proportion of new entrants came into the mammalian sub-field

after CRISPR/Cas9, it is possible to measure the effect of entering after CRISPR/Cas9 on the types

of papers entrants write in their first year. The basic OLS model specification for this test can be

written:

Focusjt = yo + y1 PostCRISPRt + Ejt

Focus = 1if the percent focus for entrant j in year t is 60% or more (for mammal,
bacteria, or other eukaryote)

OR the percent focus for entrant j in year t (for mammal, bacteria, or other

eukaryote)

PostCRISPR, = 1 if year t is after the introduction of CRISPR/Cas9 (here, after 2012)

This analysis only considers new entrants in the year that they enter and limits the years to 2011 -

2015. 2011 was chosen as the starting date for the model since that range likely does not contain

new entrants due to ZFNs or TALENs. If new entrants were more likely to focus on mammalian
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research after CRISPR/Cas9, then the coefficient on PostCRISPR should be significant, positive,

and higher when the dependent variable is measuring mammalian focus.

Table 8 shows the results from regressing the type author focus on the post CRISPR/Cas9

introduction from 2011 through 2015. Models 1-3 use the more flexible percentage focus measure

and Models 4-6 use the binary focus measure. As expected, regardless of the focus measure used,

post-CRISPR/Cas9 entry has a larger positive effect on mammalian focus than on the other sub-

fields. The results are significant, but only at the 5 percent level due to the small number of entrants

in this conditional set. From Table 8, there is reasonable evidence to suggest that CRISPR/Cas9

encouraged new entrants to come into genetic engineering through the mammalian sub-field more

so than before.

[Table 8 here]

6 Concluding Remarks and Future Research

This paper serves to provide new data on factors that affect the direction of research by

basic scientists by observing researchers' responses to a breakthrough technology and rapid

innovation in an emerging field. It contributes to the current literature by showing how a scientific

breakthrough can shift research towards where the innovation's relative value at the margin is

highest. It also introduces an important new setting and novel datasets that provide measures of

researcher experimentation and productivity.

Based on the analyses presented, the exogenous shock of the CRISPR/Cas9 genome editing

system to the field of genetic engineering caused a shift in the direction of experimentation towards

mammalian organisms. This result was not obvious ex-ante as the system was originally discovered

in bacteria and was only later proven to be applicable to experiments in mammalian organisms.

The relative increase in mammalian experimentation over other sub-fields like bacteria and other

eukaryotes can be explained by the fact that, biologically, CRISPR/Cas9 was far more beneficial to

mammalian researchers than bacterial researchers. By their nature, it is relatively easy to insert

new DNA into bacteria since they do not have a nucleus. Mammalian cells are far more complex

and, previous to CRISPR/Cas9, the genome editing tools available all had limitations. The

introduction of CRISPR/Cas9 lowered the costs of working with mammalian cells, and so it would

be reasonable to expect an increase in experimentation in that sub-field over others.

To delve more deeply into underlying mechanisms that may drive the shift towards

mammalian research in genetic engineering due to CRISPR/Cas9, the paper uses publication

histories for authors that eventually publish a paper citing to one of the original three CRISPR/Cas9

articles by Doudna (Berkeley), Zhang (MIT), and Church (Harvard). A relative increase in

mammalian research could occur through a few mechanisms. First, CRISPR/Cas9 could be making
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incumbent mammalian researchers more productive and cause an increase in the rate of paper

production. Second, as new researchers enter the field of genetic engineering, they could be entering

the mammalian sub-field in greater proportions after the introduction of CRISPR/Cas9. Finally, it

could be the case that researchers previously in the bacterial sub-field could be shifting their focus

to the mammalian sub-field as it becomes easier to work with mammalian organisms.

After testing these three mechanisms, it appears that the increase may be due to the type

of researchers entering the field after the introduction of CRISPR/Cas9. There is no evidence to

support increased productivity or switching as possible mechanisms, however. Given that there is

strong qualitative evidence that CRISPR/Cas9 increased mammalian researcher productivity, the

lack of evidence for increased researcher productivity is surprising. However, it could be possible

that learning to use a new tool could cause a temporary delay in productivity as incumbent

researchers move up the learning curve. Alternatively, at least initially, there may be an opportunity

cost to adopting CRISPR/Cas9 if authors are substituting CRISPR/Cas9 projects for others. The

lack of evidence for immediate author sub-field switching is less surprising. Authors may face

additional switching costs that outweigh the cost savings from the new technology or they may have

a strong preference for the organism they began with. Since CRISPR/Cas9 is only three years old,

more data may be necessary before it is possible to see delayed effects.

The largest limitation in this paper is the necessary assumption that researchers

experimenting in CRISPR/Cas9 are also the ones publishing. Although it is a reasonable assumption

that there is overlap between the two communities, there may be researchers that experiment with

materials from different sub-fields but never publish there. It is also possible that a number of

authors experiment in CRISPR/Cas9 but ultimately never publish. Given the data available at the

time of this analysis, it is not possible to directly link authors who order from Addgene to their

publication histories. However, Addgene has recently provided access to the identifying information

for the ordering authors, which will make it possible to match experimental inputs to eventual

research outputs and rectify the major limitation of this paper. As such, the analyses presented

here lay the groundwork for subsequent studies on new innovations' effects on the rate and direction

of scientific research in this rapidly changing setting.

As a short-term application, the new identification data provided by Addgene will allow for

studies on the transition from scientific experimentation to academic publication. Since Addgene

plasmid orders can be a proxy for inputs to experimentation in basic science, the order database can

be matched to author publications and characteristics to determine how often and how quickly

different experimental inputs translate to published outputs. These are historically difficult

measures to obtain in basic research since the level of experimentation is often not observable. In

general, the studies would attempt to predict the expected amount of research in genetic engineering

given the amount of experimentation:
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E[publications] = amtExperimentation * Prob(successIexperimentation)

It would also be possible to expand the analysis to study the translation of experimentation to

publications by different sub-groups in the researcher population:

E [publications] = amtExperimentationi * Prob(success I experimentation)i

where i could be the type of researcher (e.g., initially mammalian or initially bacterial) or a

network measure (e.g., number of degrees removed from an initial inventor).

In the longer term, the data will also support studies that determine how experimental

tools spread since it will be possible to track when an author would have access to the tool. Such

studies would use network analysis to determine the relative importance of geography and co-

location, personal relationships as through co-author networks, and third-party institutions that

act as distributors of the tools. Although there are limitations to the current paper, the

foundation described here and the additional data from Addgene provides the potential for an

exciting set of new research on how innovations are used in scientific communities and their

influence on future directions of science.
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8 Figures and Tables

Figures la and lb. Increasing Productivity and Decreasing Price of DNA

Sequencing and Synthesis
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Source: Rob Carlson "Time for New DNA Synthesis and Sequencing Cost Curves (corrected pub date)"

February 12, 2014, available at: http://www.svnthesis.cc/2014/02/time-for-new-cost-curves-2014.html.

Figure 2. Relative Searches for the Term "CRISPR" Normalized from Most Popular

Month (June 2010 - June 2015)
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Source: Google Trends (www.google.com/trends).

Notes: Graph shows the relative number of searches on Google for the term "CRJSPR" between June 2010

and June 2015. The number of searches per month is indexed against the month with the highest number

of searches over the time period and does not represent the total number of searches (May 2015 = 100)
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Figure 3.

Total Plasmids Ordered by Year
(Sept. 2004 - Oct. 2014)
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Source: Addgene Plasmid Database

Notes: This figure shows the increase in the total num ber of plasmids ordered from Addgene between its

inception in September 2004 and October 10, 2014. Each bar represents the number of plasmids ordered

by all researchers by year so that a unique plasmid can be ordered many times by different researchers.

The dashed bar in 2014 represents estimated orders for the remainder of October, November, and December

based on the average monthly orders from January 2014 through October 10, 2014. See the text for more

details and variable descriptions.
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Figure 4.

Increase in Plasmids Ordered by Year by Technology Type
(2009 - est. 2014)
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Notes: This figure shows several descriptive statistics regarding ordering patterns for CRISPR and non-

CRISPR plasmids at Addgene. The height of each bar shows the percent increase in the total number of

plasmids ordered from Addgene by year from 2009 through 2014 (estimated). The blue bars are the percent

increase in orders for plasmids that do not embody the CRISPR/Cas9 system. The red bars are the percent

increase in orders for plasmids that contain the CRISPR/Cas9 system. The proportion of CRISPR to non-

CRISPR plasmid orders for all of 2014 was estimated to be the same as from January 2014 through October

10, 2014. See the text for more details and variable descriptions.
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Figure 5.

Counts of Plasmids Ordered by Expression Type
With and Without CRISPR Plasmids

(Q3 2004 - Q3 2014)
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Source: Addgene Plasmid Database

Notes: This figure plots the effect of CRISPR on the plasmid ordering trends at Addgene by the category

of organism for which the plasmids were designed (called Expression Type). Unique plasmids may be

ordered more than once by different researchers, categories are mutually exclusive, and plasmids with no

category are removed. Aggregate orders by category are calculated by quarter from Q3 2004 through Q3

2014. The solid blue line is the total number of plasmids ordered in each quarter designed for use with

mammalian organisms that do not contain the CRISPR/Cas9 system. The dashed blue line adds plasmids

ordered that are both designed for use with mammalian organisms and contain the CRISPR/Cas9 system.

The red solid and dashed lines contain the same information but for plasmids designed for use with bacterial

organisms. The green solid and dashed lines again contain the same information but for plasmids designed

for use with other eukaryotic organisms. The vertical line marks the time before and after CRISPR plasmids

became available in Q3 2012. See the text for more details and variable descriptions.
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Figure 6.

Number of Forward Citing Papers by Focus
(Papers May Focus on More Than One Category)
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Source: Web of Science Core Collection

Notes: This figure plots the trends in focus of the articles that cited at least one of the three original CRISPR

articles by Doudna, Zhang, or Church. Data is aggregated by quarter from Q3 2012 through Q2 2015. The

blue bars are the number of forward citing articles that had at least one keyword in the abstract or Web of

Science keywords that indicated a mamnialian focus The red bars are the number of forward citing articles

that had at least one keyword in the abstract or Web of Science keywords that indicated a bacterial focus.

The green bars are the number of forward citing articles that had at least one keyword in the abstract or

Web of Science keywords that indicated an other eukaryotic focus. The categories are not mutually exclusive

and a paper may be counted more than once. See the text and Appendix A for more details and variable

descriptions.
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Figure 7.

Likelihood of Bacteria Labs Switching to Mammalian Focus by Year
(Year 0 =2012)
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Notes: This figure plots the impact of CRISPR/Cas9 on the likelihood of researchers switching their research

focus to mammalian organisms given they began in bacterial organism research. The control group is

researchers beginning in mammalian organisms and their likelihood of switching to bacterial organism

research. Outcome variable: binary for if an author switched the focus of his or her research in year t from

the initial research focus. An author's field of initial focus is determined by which category had an average

proportional focus over all the author's publications from 2000-2006 greater than 60 percent. A paper's

proportional focus for bacterial or mammalian categories is calculated as the number of keywords in

Appendix A appearing in the paper abstract or Scopus keywords for that category over all keywords in

Appendix A appearing in the paper abstract or Scopus keywords. An author was considered to switch focus

in year t if 60 percent of the proportional focus in that year's papers was in a different category from that

author's initial category. On the x-axis is the number of years from a relative year 0, here 2012 when

CRISPR/Cas9 was introduced. This specification is based on an author-year level and the coefficients are

estimates from OLS model with year and author fixed effects. The sample includes all years 2007-2015 and

all authors that are initially classified as bacterial or mammalian that published both before and after 2012.

Standard errors are block bootstrapped, clustered at the author level. Full regression results are in Table

7. See the text and Appendix A for more details and variable descriptions.
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Figure 8.

Number of New Entrants per Year
(2007 - est 2015)
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Source: Scopus Publication History Database

Notes: This figure plots the number of authors appearing for the first time in the Scopus Publication History

Database in years 2007-est. 2015 (estimated from June 2015). The trend shows a large number of new

authors appearing for the first time after the introduction of CRISPR/Cas9 in 2012. See the text and

Appendix A for more details and variable descriptions.
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Table 1. Summary Statistics for Addgene Plasmid Order Database

Variable N Mean Std. Dev. Min Max
Addgene Plasmid Order Database

(Plasmid-Quarter, 2004Q3 - 2014Q3)
PlasmidOrderTotal 276,792 1.4747 4.7412 0 488

PlasmidAge (quarters) 276,792 10.3765 8.0103 0 40
MammalExpression 276,792 0.6592 0.4740 0 1
BacterialExpression 276,792 0.2375 0.4255 0 1

AllOtherEukaryotesExpression 276,792 0.1433 0.3504 0 1
CRISPR 276,792 0.0031 0.0554 0 1

MammalExpression*CRISPR 276,792 0.0018 0.0428 0 1
BacterialExpression*CRISPR 276,792 0.0006 0.0235 0 1

AllOtherEukaryotesExpression*CRISPR 276,792 0.0007 0.0271 0 1
RequestorFirstQuarter 276,792 0.1537 0.3606 0 1

Source: Addgene Plasmid Database

Notes: This data is aggregated to the plasmid-quarter level for Quarter 3 2004 (the first quarter of Addgene's

existence) and Quarter 3 2014 (the most recent data available). It is a balanced panel so that quarters

where a plasmid has zero orders still appears. PlasmidOrderTotal is the number of orders a unique

plasmid received each quarter. Plasmid Age is the age of the plasmid in quarters from its date of

availability on the Addgene website. The Expression variables are binary indicators for whether the plasmid

is for use in mammalian, bacterial, or other eukaryotic research as indicated by Addgene and are not time

dependent. The categories are not mutually exclusive. The CRISPR variable is a binary indicator for

whether the plasmid contains the CRISPR/Cas9 system. These are not time dependent, but are only

available after June 2012. The Expression*CRISPR variables are interactions to indicate whether a plasmid

contains CRISPR and is for use in mammalian, bacterial, or other eukaryotic research.

RequestorFirstQuarter is a binary variable for whether a new requestor first ordered the unique plasmid

in the quarter. See the text for more details and variable descriptions.
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Table 2. Summary Statistics for Publication Histories

Variable N Mean Std. Dev. Min Max
All Authors (Author-Year Panel)

Total Papers 8,442 7.0142 8.6003 1 180
Percent Change in Papers 7,779 0.2839 1.1359 -0.9565217 28.33333

Year 8,442 2011.0890 2.5681 2007 2015
Age 8,442 17.9147 9.7901 0 56

PostCRISPR 8,442 0.3492 0.4767 0 1
Mammalian Lab 8,442 0.5936 0.4912 0 1

Other Eukaryote Lab 8,442 0.1902 0.3925 0 1
BacterialLab 8,442 0.1391 0.3460 0 1

Mammalian Lab*PostCRISPR 8,442 0.2113 0.4083 0 1
Other Eukaryote Lab*PostCRISPR 8,442 0.0755 0.2641 0 1

Bacterial Lab*PostCRISPR 8,442 0.0586 0.2350 0 1
%Mammalian Focus 8,175 0.6154 0.3464 0 1

%Other Eukaryote Focus 8,175 0.2566 0.2850 0 1
%Bacterial Focus 8,175 0.1280 0.2517 0 1

%Mammalian Focus*PostCRISPR 8,175 0.2096 0.3547 0 1
%Other Eukaryote Focus*PostCRISPR 8,175 0.0911 0.2133 0 1

%Bacterial Focus*PostCRISPR 8,175 0.0470 0.1659 0 1

Source: Scopus Publication History Database

Notes: This data is aggregated to the author-year level for 2007-June 2015. Authors included in this

database are the set of last listed authors that wrote at least one paper citing to one of the original three

CRISPR articles by Doudna, Zhang, or Church. These authors' publication histories were then extracted

from Scopus and aggregated by author-year for analysis. Total Papers is the number of papers an author

published each year. Percent Change in Papers is the percent increase or decrease in papers for the author

from the previous year (no changes are calculated from years where there are no publications). Age is the

number of years since the author's first publication listed in Scopus (this can be before 2007). PostCRISPR

is a binary variable for the years 2012 and later. The %Focus variables are the average proportional focus

on mammalian, bacterial, or other eukaryotic research for an author's papers each year. A paper's

proportional focus by category is calculated as the number of keywords in Appendix A appearing in the

paper abstract or Scopus keywords for that category over all keywords in Appendix A appearing in the

paper abstract or Scopus keywords. The Lab variables are binary indicators for the author's initial field of

focus. An author's field of initial focus is determined by which category had an average proportional focus

over all the author's publications from 2000-2006 greater than 60 percent. The %Focus*PostCRISPR and

Lab*PostCRISPR variables are interaction variables for the different measures of author focus in years 2012

and after. See the text and Appendix A for more details and variable descriptions.
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Table 3. Decomposition of Addgene Plasmid Ordering Trends

Model OLS, Aggregated by Year

Dependent Variable PlasmidOrderTotal

Coefficient Standard Error 95% Cl Low 95% Cl High

Mammal Trend After CRSPR 338.487*** 63.153 213.381 463.594

Mammal Trend 405.524*** 12.795 380.177 430.870

Mammal -1734.849*** 254.216 -2,238.449 -1,231.250

All Other Eukaryote Trend After CRISPR -48.817 63.153 -173.923 76.290

All Other Eukaryote Trend -37.682** 12.795 -63.028 -12.335

All Other Eukaryote 205.209 254.216 -298.391 708.808

Bacteria Trend After CRISPR 96.512* 44.656 8.049 184.976

Bacteria Trend 71.964*** 9.047 54.041 89.886

Bacteria (regression constant) -379.629* 179.758 -735.727 -23.530

Observations 123
R squared 0.991

p < 0.05, p < 0.01, p < 0.001

Source: Addgene Plasmid Database

Notes: The data in the table shows the decomposition of the trends in Figure 5. It provides the statistical

significance of the additional effect of CRJSPR on the mammalian plasmid ordering trends at Addgene over

the other categories (bacterial and other eukaryotic). The analysis controls for the ordering trends of each

category as well as the non-CRISPR trend by quarter. The trends after the introduction of CRISPR/Cas9

are the variables of interest and represent the effect of CRSPR/Cas9 on plasmid order totals for mammalian

research as compared to the other categories. Unique plasmids may be ordered more than once by different

researchers, categories are mutually exclusive, and plasmids with no category are removed. Aggregate orders

by category are calculated by quarter from Q3 2004 through Q3 2014. See the text for more details and

variable descriptions.
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Table 4. Effect of Mammalian CRISPR Plasmids on Total Orders

(1) (2)
Model OLS Zero-Inflated Poisson

Dependent Variable PlasmidOrderTotal PlasmidOrderTotal

Mammal*CRISPR 19.300*** 1.555*
0.442

(6.055) (0.250)

Mammal 0.971*** 1.804***
0.590

(0.043) (0.044)

CRISPR 10.781*** 9.477***
2.249

(2.257) (0.183)

AllOtherEukaryotes -0.233*** 0.888**
-0.119

(0.035) (0.057)

AllOtherEukaryotes*CRISPR 0.836 1.388
0.328

(4.118) (0.305)

RequestorFirst_ Year 1.774*** 1.186***
0.171

(0.065) (0.016)

constant 0.078 0.626***
-0.469

(0.188) (0.098)
Fixed Effects Quarter, Age Quarter, Age
Standard Errors Robust, Clustered Robust, Clustered

Observations 276,792 276,792
Plasmids 19,147 19,147
Log pseudolikelihood - -527,024.7

(pseudo) R squared 0.119
Robust standard errors in parentheses, clustered by plasmid in all specifications. OLS
specification reports coefficients in bold. Poisson specification reports IRRs in bold.

p<0.10, p<0.05, p < 0.01

Source: Addgene Plasmid Database

Notes: This table demonstrates the additional effect being a CRISPR and a mammalian plasmid has on total plasmid orders. The

data is aggregated to the plasmid-quarter level for Quarter 3 2004 (the first quarter of Addgene's existence) and Quarter 3 2014 (the

most recent data available). It is a balanced panel so that quarters where a plasmid has zero orders still appears. The dependent

variable in all specifications is Plasmid_OrderTotal, the number of orders a unique plasmid received each quarter. The Expression

variables are binary indicators for whether the plasmid is for use in mammalian or other eukaryotic research as indicated by Addgene

and are not time dependent (bacterial is the omitted category). The CRISPR variable is a binary indicator for whether the plasmid

contains the CRISPR/Cas9 system. These are not time dependent, but are only available after June 2012. The Expression*CRISPR

variables are interactions to indicate whether a plasmid contains CRISPR. and is for use in mammalian or other eukaryotic research.

Requestor First Quarter isa binaryvariableforwhetheranew requestor first ordered the unique plasmid in the quarter. Model(1)

is OLS with FEs for Quarter and Plasmid Age to account for time and plasmid cohort effects (FEs for unique plasmid could not be

included since the variables of interest do not vary over time). Model(2) is a Zero-inflated Poisson specification to account for the

large number of zero orders in the dataset. See the text for more details and variable descriptions.
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Table 5. Number of Orders per Unique CRISPR Plasmid by Sub-field

Mammal Bacteria Other Eukaryote No Expression Total
CRISPR CRISPR CRISPR CRISPR CRISPR

Total Orders 16,103 1,596 2,497 7,543 27,739

Number of Plasmids 130 23 40 74 267

Orders per Plasmid 124 69 62 102 104

Source: Addgene Plasmid Database

Notes: The table demonstrates that the additional orders for plasmids that are for Mammalian CRISPR

research are not due solely to the fact that there are more unique Mammalian CRISPR plasmids. Total

orders is the number of times unique plasmids in each CRISPR-Expression category were ordered from

Quarter 3 2012 through Quarter 3 2014. The Number of Plasmids are the number of unique plasmids in

each CRISPR-Expression category available for order. Orders per Plasmid are the average number of orders

each unique plasmid received by CRISPR-Expression category. See the text for more details and variable

descriptions.
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Table 6. The Effect of CRISPR/Cas9 on Sub-Field Productivity

(1) (2) (3) (4)
Model OLS OLS OLS, FE OLS, FE

Dependent Variable Percent Change in Percent Change in Percent Change in Percent Change in
Papers Papers Papers Papers

Mammalian Lab*PostCRISPR 0.097 0.090 -0.005
(0.072) (0.071) (0.055)

Other Eukaryote Lab*PostCRISPR 0.298* 0.285* 0.075
(0.117) (0.116) (0.088)

%Mammolian Focus*PostCRISPR 0.050
(0.117)

%Other Eukaryote Focus*PostCRISPR 0.199
(0.155)

Mammalian Lab -0.002 -0.016
(0.035) (0.036)

Other Eukaryote Lab 0.077 0.010
(0.050) (0.053)

%Mammalian Focus 0.000
(0.137)

%Other Eukaryote Focus -0.099
(0.135)

constant 0.351*** 0.311*** 0.737*** 0.745***
(0.043) (0.094) (0.126) (0.158)

Fixed Effects Year YearAge Year, Age, Author Year, Age, Author

Controls No No No
Standard Errors Robust, Clustered Robust, Clustered Robust, Clustered Robust, Clustered
Observations 6,897 6,897 6,897 6,736
R squared 0.005 0.013 0.003 0.003
Robust standard errors in parentheses, clustered by author in all specifications.

p <0.05, p <O0.01, p <0.001

Source: Scopus Publication History Database

Notes: The table shows that there is no relative increase in productivity for mammalian researchers after CRISPR. This data is

aggregated to the author-year level for 2007-2014. Authors included in this database are the set of last listed authors that wrote at

least one paper citing to one of the original three CRISPR articles by Doudna, Zhang, or Church. These authors' publication histories

were then extracted from Scopus and aggregated by author-year for analysis. The dependent variable in all specifications is Percent

Change in Papers, the percent increase or decrease in papers for the author from the previous year (no changes are calculated from

years where there are no publications). Age is the number of years since the author's first publication listed in Scopus (this can be

before 2007). PostCRISPR is a binary variable for the years 2012 and later. The %Focus variables are the average proportional focus

on mammalian, bacterial, or other eukaryotic research for an author's papers each year. A paper's proportional focus by category is

calculated as the number of keywords in Appendix A appearing in the paper abstract or Scopus keywords for that category over all

keywords in Appendix A appearing in the paper abstract or Scopus keywords. The Lab variables are binary indicators for the author's

initial field of focus. An author's field of initial focus is determined by which category had an average proportional focus over all the

author's publications from 2000-2006 greater than 60 percent. The %Focus*PostCRISPR and Lab*PostCRISPR variables are

interaction variables for the different measures of author focus in years 2012 and after. Fixed effects for Year are included in all

specifications. Fixed Effects for Age of Author's Career are added in Models(2)-(4) and FEs for Author are added in Models(3)-(4).

See the text and Appendix A for more details and variable descriptions.
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Table 7. Treatment Effect of CRISPR on the Likelihood of Switching

to an Alternative Focus

(1) (2) (3) (4)
Model OLS OLS, FE OLS, FE OLS, FE

Variable Shift in Paper Shift in Paper Shift in Paper Shift in Paper
Dependent Focus Focus Focus Focus

Bacteria*PostCRISPR 0.010 -0.001 -0.001
(0.031) (0.024) (0.023)

Bacteria 0.115***
(0.019)

PostCRISPR 0.006 0.006
(0.006) (0.005)

Bacteria*2007 -0.069
(0.049)

Bacteria*2008 -0.038
(0.050)

Bacteria*2009 -0.002
(0.037)

Bacteria*2010 -0.031
(0.046)

Bacteria*2011 0.033
(0.054)

Bacteria*2013 -0.023
(0.030)

Bacteria*2014 -0.020
(0.028)

Bacteria*2015 -0.010
(0.043)

constant 0.0200* 0.0348** 0.0363* 0.0364*
(0.003) (0.005) (0.009) (0.008)

Fixed Effects Author YearAuthor Year,Author
Standard Errors Block Bootstrap Block Bootstrap Block Bootstrap Block Bootstrap

Observations 4,962 4,962 4,962 4,962
R Squared 0.043 0.000 0.004 0.009
Block Bootstrap standard errors in parentheses, clustered by author in all specifications.

*p < 0.05, "p < 0.01, p < 0.001

Source: Scopus Publication History Database

Notes: This table shows the lack of impact of CRISPR/Cas9 on the likelihood of researchers switching their research focus to

mammalian organisms given they began in bacterial organism research through differences-in-differences specifications. The control

group is researchers beginning in mammalian organisms and their subsequent likelihood of switching to bacterial organism research.

Dependent variable: binary for if an author switched the focus of his or her research in year t from the initial research focus. An

author's field of initial focus is determined by which category had an average proportional focus over all the author's publications from

2000-2006 greater than 60 percent. A paper's proportional focus for bacterial or mammalian categories is calculated as the number of

keywords in Appendix A appearing in the paper abstract or Scopus keywords for that category over all keywords in Appendix A

appearing in the paper abstract or Scopus keywords. An author was considered to switch focus in year t if 60 percent of the proportional

focus in that year's papers was in a different category from that author's initial category. The sample includes all years 2007-2015 and

all authors that are initially classified as bacterial or mammalian that published both before and after 2012. Standard errors are block

bootstrapped. clustered at the author level in all specifications. FEs for Author are in Models(2)-(4) and FEs for Year are added in

Models(3)-(4). Model(4) provides the coefficients plotted in Figure 7. See the text and Appendix A for more details and variable

descriptions.
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Table 8. Change in New Entrant Focus after CRISPR/Cas9

(1) (2) (3) (4) (5) (6)
Model OLS OLS OLS OLS OLS OLS

%Mammalian %Bacterial %Other Dummy Dummy Dummy Other
Dependent Variable Focus Focus Eukaryote Mammalian Bacterial Eukaryote

Focus Focus Focus Focus

PostCRISPR 0.296* 0.136' -0.431" 0.321' 0.152** -0.447'
(0.119) (0.062) (0.137) (0.160) (0.054) (0.175)

constant 0.315** 0.063 0.622*** 0.222 0.000* 0.556*
(0.104) (0.035) (0.131) (0.141) (0.000) (0.169)

Standard Errors Robust Robust Robust Robust Robust Robust

Observations 55 55 55 55 55 55
R squared 0.081 0.025 0.230 0.057 0.029 0.184
Robust standard errors in parentheses. Data is restricted to new entering authors each year from 2011forward.

p < 0.05, p < 0.01, p < 0.001

Source: Scopus Publication History Database

Notes: The table shows that new authors first appearing in the publication history database after the

introduction of CRISPR/Cas9 may have more of a mammalian research focus. Authors included in this

database are the set of last listed authors that wrote at least one paper citing to one of the original three

CRISPR articles by Doudna, Zhang, or Church for only their first year in the database. The sample is new

entering authors from 2011-2015. The dependent variable in Models(1)-(3) is %Focus for each category,

the average proportional focus on mammalian, bacterial, or other eukaryotic research for an author's papers

in their first year. A paper's proportional focus by category is calculated as the number of keywords in

Appendix A appearing in the paper abstract or Scopus keywords for that category over all keywords in

Appendix A appearing in the paper abstract or Scopus keywords. The dependent variable in Models(4)-(6)

is Dummy Focus for each category, a binary indication for if %Focus is greater than 60 percent.

PostCRISPR is a binary variable for the years 2012 and later. All standard errors are robust in all

specifications. See the text and Appendix A for more details and variable descriptions.
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9 Appendix A
Author Focus Keywords

[1ji~~iyord §I
archaea
bacillus
bacter
clostridium
coccus
coli
haemophilus
listeria
prokaryot
pseudomonas
ralstonia
streptomyces
xanthomonas
aav
adeno
animal
bovine
cattle
chimpanzee
human
macaque
mammal
mice
monkey
mouse
pigs
porcine
primate
rats
rodent
anopheles
arabidopsis
candida
cerevisiae
ctenopharyngodon
cucumber
drosophila
elegans
eukaryot
fish
flea
flounder
frog
fungal
fungi
insect
lepidoptera
mosquito
newt
nicotiana
orchid
paralichthys
plant
pristionchus
saccharomyces
urchin
silkworm
tobacco
tomato
vanilla
wheat
worm
xenopus
yeast
zebrafish
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Chapter 2

Who tries (and who succeeds)

in staying at the forefront of Science:

Evidence from the DNA-editing technology, CRISPR
(with Neil Thompson)

1 Introduction

When promising new scientific tools appear, a researcher faces difficult considerations around

adoption: should she invest time and resources into experimenting with the new tool? If she does

experiment, is she likely to be able to convert that experimentation into a useful output? Since

the probability of someone adopting is the probability that she experiments multiplied by the

probability that she can successfully convert that experimentation into a new idea,' both of these

aspects will matter for her decision. Thus, innovation scholars, policy makers, and firms interested

in the rate of scientific technology adoption must consider both. If a technology is adopted quickly,
is it driven by an abundance of experimentation or an ease in converting experimentation into a

useful outcome? Or conversely, if adoption is slow, is it because of a lack of experimentation or

difficulties in conversion? The answers to these questions matter because they reflect differences in

how a technology diffuses and what policies or interventions would be conducive to promoting

adoption.

The pattern of adoption for new innovations has been well documented. For example,
Rogers (1962) provides a thorough explanation of the general S-shaped pattern of innovation

adoption and provides sets of factors that describe different categories of adopters. Although Rogers'

work was focused on adoption in the general population, many of the factors apply directly to

academic researchers considering whether to try to become Early Adopters of a new scientific tool.

Most other research on adoption curves relies only on successful adoption to characterize diffusion,

as the attempts to adopt (i.e. experimentation) are historically difficult to observe. But in measuring

only successful adoption, the role of experimentation (whether or not successful) is lost. This despite

the well-known importance of experimentation to the innovative process and adoption (e.g., March

1991, Lazear 2005, Azoulay et al. 2011, Manso 2011, von Hippel et al. 2011, von Hippel et al. 2012).

The inability to distinguish between those who experiment and those who adopt can create

ambiguities that make policy formulation and product strategy more difficult, and thus make

interventions less effective. For example, consider the classic technology adoption scenario: the

Mathematically: p(adoption) = p(experiment) * p(success[experiment)
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usage of new crop varieties. A failure to adopt might be because farmers were unaware of a new

varietal, because they did not see the benefit of adopting, or because they tried to adopt but were

unable to make the new plants prosper. Without disaggregating adoption into its components, a

policy-maker or manager would not be able to distinguish where the failure to adopt occurred and

thus would not know whether to invest in awareness programs, cost-sharing plans, or agricultural

outreach programs.

Historically, a technology adoption setting that allows for the measurement of both

experimentation and conversion, particularly an important one, has been difficult to find. But, the

adoption of the CRISPR 2 gene editing system provides such a setting. A discovery of similar

importance to the seminal discovery of PCR (Polymerase Chain Reaction), CRISPR allows for the

first time the cheap and easy cutting-and-pasting of DNA from one organism into another. For

scientists working on mammalian biology the effect of CRISPR has been particularly transformative.

For society, this promises not only better academic science, but more efficacious medical treatments.

We are able to track attempts to experiment with CRISPR by academic scientists because

it is instantiated as a biological part that was distributed to them almost exclusively by a single

non-profit repository, Addgene. We can also track journal publications that used CRISPR, which

we use to identify which academics were able to convert their experimental efforts into research

output. 3

We find that different factors characterize scientists who experiment with CRISPR from

those who are able to successfully convert that experimentation into a CRISPR paper. Holding all

else constant, academics with prior influential papers across multiple research areas are more likely

to both experiment and convert. Having more research funding is associated with more

experimentation, but interestingly not with higher conversion rates. Experience has the opposite

effect, where scientists with more experience experiment less but are better at converting when they

do.

Commensurate with many adoption studies, we find that early adoption rates are highest

among those with the most to gain. In the case of CRISPR, these are researchers working with

mammalian cells, where CRISPR represents the largest improvements over the previous techniques.

This increased adoption, however, is entirely accounted for by higher experimentation by those

scientists as compared to those working in bacteria. If anything, these mammalian scientists are

less able to convert their experimentation into adoption, although this effect is mitigated if the

experimenting scientist is in close proximity to the original discovery (for the case of mammalian

cell CRISPR, in Cambridge, MA).

2 Short for Clustered Regularly Interspaced Short Palindromic Repeats.
3 We do not attempt to look at industrial scientists using CRISPR because both the experimentation and conversion pieces are

substantially harder to track. Addgene generally does not distribute to for-profit organizations.
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2 Technology Adoption

Technology adoption is a key factor for economic growth. The Solow (1956) model shows

that an economy's growth does not occur solely due to the accumulation of capital or labor. Instead,

a residual, denoted "A," overcomes diminishing returns to labor and capital and allows for growth.

This "A" is a factor that enhances the quality of physical or human capital and is usually thought

of as the advancement of ideas or technology. Others such as Romer (1990) and Aghion and Howitt

(1992) enhanced this model by explicitly introducing idea creation and showing that it is endogenous

to growth. Economies rely on the introduction and adoption of new ideas to grow. In such models,

either explicitly or implicitly, the technological advancements from new ideas must be adopted for

the economy to benefit. A number of studies show the importance of technology adoption for

economic growth and technological progress empirically. For example, adoption effects on growth

has been shown in semiconductors (Bresnahan and Trajtenberg 1995), in hybrid corn (Griliches

1957, 1958) and for the steam engine (Rosenberg and Trajtenberg 2004). New technologies can also

affect the direction of technological progress (e.g. Hanlon 2015).

In scientific research specifically, adoption of new technologies can have profound effects on

scientific progress. Access and adoption of new tools has been shown to lead to more paper citations

(Furman and Stern 2011), more follow-on research (Murray et al. 2016), and increased research in

the field that received a new tool (Teodoridis 2018, Thompson et al. 2017a). New tools may also

encourage new directions of research inquiry. Murray et al. (2016) found that restrictions on access

to the Oncomouse led to a very diverse set of research paths that seem to encourage more horizontal

exploration. Teodoridis (2018) found that new technologies bring into the field scientists who either

specialize or are generalists. The generalists connect specialists to new research opportunities opened

by the new technology and create novel research avenues. Thompson et al. (2017a) found that the

adoption of new tools for writing DNA sequences generated more impactful work and led to more

follow-on research.

The importance of technology adoption on innovation can also be seen in the actions of

scientists who are denied it. For example, Murray (2010) documents the contentious history of the

Oncomouse, where researchers were denied the ability to adopt an animal model for cancer unless

they agreed to onerous legal terms. Scientists were furious and influential organizations like MIT

and Johns Hopkins refused to agree to the terms. Ultimately, the backlash was sufficiently strong

that DuPont, the IP owner, reversed its stance.

The literature on the adoption of tools discussed above focuses mostly on productivity

outputs, but does not cover the types of people likely to experiment with and be early adopters of

new tools. That is its own separate literature on the adoption curve. In 1962, Everett Rogers

published Diffusion of Innovations and first categorized adopters, starting with the Innovators and

Early Adopters (the first people to adopt a new technology) to the Laggards (the last people to
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adopt). Rogers noted that Early Adopters in an innovation's lifecycle can be characterized broadly

by Socioeconomics (e.g., people with higher social status and more wealth), Personality (e.g., people

that are more rational and have a favorable attitude towards change), and Communication Behavior

(e.g., people seen as opinion leaders and those who are highly interconnected with others from

diverse locations). Although Rogers was writing about Early Adopters in general, many of the

factors he highlights apply directly to technology adoption by scientists.

By necessity, to successfully adopt a new tool or idea a scientist must try it (experiment

with it). The economic literature in experimentation often focuses on the benefits of experimentation

more generally, but a few authors focus specifically on the types of individuals who are likely to

engage in experimentation. Not surprisingly, certain types of people are more likely to be attracted

to experimentation than others. For example, Azoulay et al. (2011) compare scientists appointed

to be HHMI investigators to those who are similar but did not become HHMI investigators to study

the incentives that encourage exploratory rather than exploitative behavior from scientists. The

authors measure explorative behavior through the novelty of keywords, the breadth of the scientists'

research before and after the appointment to HHMI, and the number of times a scientist has a top

cited paper by publication cohort. They find that HHMI investigators fare better in these measures

after their appointment.

The characteristics of individuals that experiment is also explored in another branch of the

literature, the work by von Hippel and co-authors on user innovators (e.g. von Hippel et al. 2011

and von Hippel et al. 2012). User innovators are people who develop or modify products for their

own use on their own time. Such users experiment with designs to suit their needs and sometimes

their product designs will later be used by large manufacturers. Surveys conducted by von Hippel

and co-authors find that user innovators are willing to spend personal resources on their products,

are highly educated, usually have a technical degree relevant to the product domain, and are often

male.

Finally, a third type of literature focuses on the characteristics of a different type of

experimenter - the entrepreneur. Lazear (2005) provides some evidence that students that go on

to start businesses are "jacks of all trade," having a wider variety of roles at work prior to starting

their own company or studied more than one subject in school. The implication is that people with

more balanced backgrounds are more willing to take on the risk of starting their own business.

These literatures on experimentation touch on many of the same traits Rogers identified for

Early Adopters, suggesting that individuals who experiment and adopt early in the technology's

lifecycle have similar characteristics. Given that one is a necessary precursor to the other, this isn't

surprising. Based on the findings from these literatures, we focus our analyses of individual

experimentation and conversion on the following characteristics of the scientists:
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• Location

• Availability of Resources

• Ability to Apply the New Technological Knowledge
• Opinion Leadership

• Social Participation

• Novelty

• Breadth of Research

We discuss appropriate measures for these factors and their mapping to our data in Section 4.

3 Gene editing with CRISPR

For most industries, it is difficult to observe experimentation and successful adoption

separately. Rarely shown is the testing process where technologies are either incorporated into the

science or discarded. We study an instance where this experimentation is visible, the introduction

of the new gene-editing tool CRISPR into genetic engineering. This is a particularly fertile setting

because CRISPR is an important research breakthrough, because its use has been growing rapidly,

and because the primary means of academic experimentation starts with a request for the CRISPR

biological parts from a central biological resource center, Addgene. As such, it is a setting where

adoption is important and interest in experimentation is widespread and can be observed. To

understand the factors that influence the experimentation with CRISPR and its conversion into

successful ideas, it is helpful to understand its biological function.

3.1 DNA and gene editing

DNA is the parts list and blueprint for life; it determines the proteins that make up the

human body and the regulatory processes that manages them. In the early 1970s, Herbert Boyer

and Stanley Cohen first demonstrated that DNA could be transferred between organisms by cutting

the DNA of one organism and inserting a part from another. This launched the field known today

as genetic engineering.

Follow-on research demonstrated the benefits of editing DNA. These included the creation

of model organisms that help researchers understand and fight human diseases, and the adding or

deleting of functionality for existing organisms, for example by making crops resistant to pesticides.

Editing DNA before CRISPR was technically challenging. For bacteria or other prokaryotes (that

have cells without nucleuses) there are some standard and effective alternative editing methods.

For higher order species, like mammals, even very-recent alternatives' are challenging as these

I Called Zinc Finger Nucleases (ZFN) and Transcription Activator-Like Effector Nucleases (TALENs) (Moscou and Bogdanove,
2009; Boch, et al., 2009)
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techniques were more difficult and time-consuming to work with. It is a testament to the importance

of gene editing in mammals and the prior paucity of good tools that one of these was nevertheless

chosen as "Method of the Year" in 2011 by Nature Methods (Method, 2012). But, in a true shock

to the field, CRISPR appeared only months later. This new technology, CRISPR, is a universal

cutting technology that works across organisms and is a much more flexible option for editing than

any other, especially for organisms like mammals.

3.2 CRISPR

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) were discovered in

bacteria as early as 1987, but their exact purpose and function were not well understood until 2007

when it was discovered they are an adaptive part of the bacterial immune system (Barrangou et al,
2007). Bacteria use CRISPR to recognize the DNA sequences of viruses and then use the Cas9

protein to cut up the virus' DNA, rendering it harmless to the bacteria. Over five years, researchers

were able to repurpose this natural system of matching and cutting virus DNA.

In June 2012, Professors Jennifer Doudna and Emmanuelle Charpentier at the University of

California, Berkeley first introduced the CRISPR system for genome editing (Jinek, et al., 2012).

Doudna and Charpendier proved in test tubes that the CRISPR system could be used to find and

edit any sequence (not just viral) through the use of guide sequences, which direct the cutting

enzyme to the right place on the DNA. Doudna and Charpentier's work did the necessary first steps

to allow the CRISPR system to be used to edit the DNA of organisms like bacteria. In January

2013, MIT Professor Feng Zhang and his collaborators showed that the CRISPR system could be

used to also edit mammalian cells, including human cell lines (Cong et al., 2013). This work and

the related work of George Church and his colleagues at Harvard Medical School (Mali et al. 2013)

demonstrated the flexibility and ease of use of the new CRISPR tool. This was particularly

welcomed in the mammalian research community,' including those working on human cells, because

of the enormous improvement over previous methods.

The power of the CRISPR system to find and cut the correct target DNA, and its contrast

with the previous methods, can be understood by an analogy to cutting-and-pasting text in

documents. For example, say that in a Word document we are looking to replace the word
"absolutely" with "completely" (the analogy being the change of one section of DNA to another).

With the previous editing technologies, it was only possible to search for a short string, such as
"abs." This will find "absolutely," but also "absolute," and "abstract," with the consequence that

our new document might not be sensible (corresponding to a non-functional DNA sequence). With

"This actually applied to all eukaryotes (organisms with nucleuses in their cells), but we refer to these in the text as mammalian
cells to keep the technical jargon at a minimum and because this was probably the most important use case in the biomedical
community.
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CRISPR, it is possible to search for the string "absolutely" and have only that string identified. In

addition, a researcher can use CRISPR to make multiple cuts at the same time in the same cell,
something that was not possible with the previous editing techniques.

The enthusiasm from the genetic engineering community to the release of the CRISPR tools

was almost immediate because of its accuracy, flexibility, and relative ease of use (Pennisi, 2013;

Regalado, 2014). Between June 2012 and June 2016, almost 4,000 CRISPR-related articles were

published worldwide, an average of -100 articles a month since Doudna and Charpendier's first.

Patent applications mentioning CRISPR and funding for venture backed firms licensed to

use CRISPR technology have also soared (Ledford 2015). In 2014, over 150 patent applications

involving CRISPR were published. Funding also flowed to CRISPR commercialization efforts. The

top biotech firms founded on CRISPR technology, Caribou Biosciences (Berkeley, CA), Editas

Medicine (Cambridge, MA), CRISPR Therapeutics (Basel, Switzerland), and Intellia Therapeutics

(Cambridge, MA) collectively raised initial funding of more than $150 million. The last three all

had IPOs in 2016, each currently valued at over $500 million.

CRISPR's effect on biological research has been profound as geneticist John Schimenti at

Cornell University noted in a recent article, "I've seen two huge developments since I've been in

science: CRISPR and PCR... CRISPR is impacting the life sciences in so many ways" (Ledford

2015). One of the original inventors, Jennifer Doudna, stated in a February 2015 JAMA editorial,

"This discovery has triggered a veritable revolution as laboratories worldwide have begun to

introduce or correct mutations in cells and organisms with a level of ease and efficiency not

previously possible." (Doudna, 2015). For example, CRISPR has already been used to modify crops

to be blight resistant (Wang et al. 2014) and to create "malaria-proof" mosquitoes that are

genetically unable to be affected by or transmit malaria (Gantz et al. 2015). The introduction of

CRISPR is likely to be especially useful in medical applications since it may ultimately allow us to

actively correct genetic errors.' In the interim it is allowing researchers to easily build mouse and

human cell disease models with specific mutations that are useful for testing drugs. For example,
Feng Zhang's lab has created a "Cas9 mouse" (Platt et al. 2014) that can be modified to model lung

cancer. Before CRISPR, creating such a mouse model took huge teams of people and a decade of

time, but this model was designed by one person in four months (Specter 2015).

Even researchers who believed that CRISPR would be beneficial for their research might

delay adopting because the tool was still developing. Rather than being an early adopter today,
such researchers could wait until CRISPR development matured, potentially making adoption easier

and perhaps yielding a more-powerful tool.7 Further, some research areas (e.g., neurodegenerative

diseases like Huntington's) have only recently been able to use CRISPR effectively. Because of the

6 This is already being done in human embryos that are not implanted (Ma et al. 2017).

' For example, almost immediately research began on new and better cutting enzymes that could replace Cas9.
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large benefits of CRISPR, but also its continued development and shortcomings, researchers have

reasons both for and against becoming an Early Adopter.

3.3 Access to CRISPR

Traditionally, obtaining biological materials in order to experiment with them has been

challenging for technical, social, and legal reasons. As with most genetic tools, the DNA

representation of the CRISPR tool is usually encoded in a plasmid, a circular DNA construct that

preserves the tool and facilitates getting the new DNA into host cells. Labs create plasmids in the

course of an experiment and keep them for use in future studies. Labs sometimes share their

plasmids with other academics who want to replicate or build on their research, but they will

sometimes refrain from sharing to deter competition (Thompson et al., 2017b), or impose legal terms

that are unattractive or delaying (Walsh et al. 2003 and 2007). Even when requests do not face

these hurdles, they can be delayed by logistics when a lab with a popular plasmid (like CRISPR) is

inundated with more requests than they can handle.

To circumvent the difficulties associated with lab-to-lab material transfers, many research

communities set up biological repositories, such as the American Type Culture Collection, that

centralize the distribution process (Furman and Stern 2011). The focal repository for CRISPR is

Addgene, a non-profit organization where researchers deposit their plasmids and which maintains

and distributes them to researchers on request. Addgene is the key distributor of CRISPR plasmids

for academic scientists, especially in the years we study.

3.4 Addgene

In 2004 Melina Fan, Kenneth Fan, and Benjie Chen founded Addgene as a not-for-profit

biological resource center for scientists to easily share plasmids for use in biological research (Fan

et al., 2005). Addgene not only stores plasmids donated by academic researchers all over the world,
but also validates the materials and facilitates their distribution to other academics in 85 different

countries.

When the CRISPR tool was first introduced in 2012 and 2013, Doudna, Charpendier, and

Zhang created plasmids for CRISPR and donated them to Addgene at the time the original papers

were published. As Zhang mentioned in a talk at MIT in 2015, he gave the plasmids to Addgene for

distribution because his lab wouldn't have time to do science if they responded to all the requests

from other researchers. As new CRISPR plasmids were developed, they also were donated to

Addgene. Scientists still actively refer requests for plasmids to Addgene. From 2004 to Q1 2016,

the growth rate of Addgene orders has been increasing over time, as shown in Figure 1. Even during
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this fast overall growth, CRISPR plasmid orders outpaced others, rising from 0.1% of all Addgene

orders in 2012 to over 20% by Q1 2016.

[Figure 1 here]

Addgene has a price of $65 per plasmid which has not changed since it began in 2004,
meaning that researchers have consistently had easy access to experimentation with the genetic

parts that Addgene distributes. This low cost and quality control process encourages labs to order

directly from Addgene rather than make their own or attempt to get it from the original lab. This

alleviates the burden on the individual research labs and eases the access to the tools.

4 Data and Measures

This paper's outcomes of interest are experimentation with and conversion of CRISPR. We

define experimentation in this context to be when a researcher becomes sufficiently interested in the

technology to order a CRISPR plasmid, so that they can use it for experiments in their lab. For

example, this might occur because the researcher is working on an existing project that includes

gene editing, and decides to try CRISPR rather than older tools. It might also occur if a lab sees

the potential to launch a new project that is only possible because of CRISPR.

Conversion in this context occurs when a researcher that has been experimenting with

CRISPR is able to successfully use it to produce a new research result, as measured by the

appearance of an academic publication that uses CRISPR. We ascertain that the paper uses

CRISPR by looking for telltale keywords in the abstract or paper meta-data (described in more

detail in Section 4.5).

This section describes how we gather measures on experimentation and conversion, how we

merge them, and how we build our sample. We also discuss the secondary data sources used to

construct the researcher-level covariates described in Section 2.

4.1 CRISPR Experimentation Data

To get an indicator of scientists experimenting with CRISPR, we work with Addgene to

analyze their internal data on plasmid orders.' Addgene has a set of unique identifiers for each

order, including the name and location of the scientist, the date of orders, the plasmids ordered, the

' The CRISPR. Experimentation Dataset was used to imake geographic and publication associations but the resulting data has

been coded so no specific requestors or authors will be revealed in this study.
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cell type each plasmid is used with, and whether the plasmid is a CRISPR plasmid. This becomes

our CRISPR Experimentation Dataset.

Our 'at-risk' set for those ordering CRISPR are all other authors who publish in the same

genetic engineering journals. To construct this set of authors, we use Web of Science (WOS). WOS

(owned by Clarivate Analytics), is a citation database that provides bibliographic information on

academic publications including data on authors, author location, journal of publication, and date

of publication. In particular, we chose all authors who publish papers in genetic engineering journals

from Q1 2000 - Q2 2016. We include journals in this set if they fall into any of five broad WOS

categories: Genetics& Heredity, Cell Biology, Biotechnology& Applied Microbiology, Biochemistry

& Molecular Biology, and Biochemical Research Methods. We also add the specific interdisciplinary

journals: Nature, Science, PLOS One, and PNAS to capture the very-high prestige publications in

these fields. We choose these journals because, collectively, they host the vast majority of CRISPR

papers published after June 2012. We use WOS to collect information on the authors, including

their names, geographic locations, organizational affiliations, and unique WOS IDs.

4.2 CRISPR Conversion Data

We determine that a scientist has successfully converted when we observe that author

publishing a paper in an academic journal that uses CRISPR. To measure this, we again use the

Web of Science data, but focus on the publications themselves. Our initial WOS subset includes

over 1.3 million papers and almost 4.4 million authors. For each paper we collect data on the title,
abstract, journal, keywords, date of publication, grants acknowledged, number of citations received,
and the WOS Research Category.

To determine whether a publication involved the CRISPR tool, we searched for the terms

"CRISPR" and "Cas9" in the abstract or keywords, restricting ourselves to publications after June

2012 (to exclude those who could only be talking about the bacterial immune system and not the

gene-editing tool).

4.3 Disambiguating and Matching Authors

In order to construct our full dataset, we must both consolidate researchers within the

CRISPR Experimentation Dataset and then link them to publication authors from the Web of

Science data. This section describes the algorithm that we use to match authors in each of these

stages. A full discussion of the matching process is included in Appendix C, but we describe the

basic steps here.
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4.3.1 Consolidating the CRISPR Experimentation Dataset

We consolidate researchers in the CRISPR Experimentation Dataset because information

entered with slight differences can show up as different people. For example, Jane A. Scientist, Dr.

Jane A. Scientist, and Scientist Jane all at "Research U" would appear as three people. But, given

the distinct last name and identical location, these indicate the same person. For the consolidation

algorithm, we use three pieces of information: full name, location, and (unconsolidated) ID number.

We use these in an iterative process that tests whether a name is a match for any of the other 67,466

names in the CRISPR Experimentation Dataset.

In the first stage of the algorithm we accept as a match any two individuals with the same

ID number.

In the second stage, we accept as a match any two individuals with identical names and the

same location, but with different ID numbers.

In the third stage, we calculate twelve different measures of name closeness, each of which

could indicate a higher likelihood that the two names are for the same person and use an ensemble

approach from machine learning to determine whether the two names are a likely match.

The twelve measures that we employ are text based. For example, we calculate the 'string

distance" between each individual's full name and those other 67,466 names. If these exceeds a

certain threshold, it is deemed to have passed that indicator. Since first names are often missing or

replaced by only a first initial, our measures also include comparisons of only last names, but requires

a tighter threshold than whole name matching and which varies based on the frequency of the last

name.0 We deem two names to be a match if 75% of our name measures are passed and their

locations are the same.

Having established a high quality set of primary matches from the algorithm above, we

search for secondary matches via a graph closure algorithm. The intuition here is a simple one that

will be familiar to economists from transitivity: if we find a match between A and B, and one from

B to C, then we should infer a match between A and C, even if a one-to-one comparison between

A and C would be inconclusive.

We test the effectiveness of our algorithm by hand coding the matches of 50 randomly

selected names against all the 67,466 other names (without knowing the algorithm's prediction for

them). We find that 100% of the algorithm matches are true matches. We also test whether the

algorithm is conservative, not matching some true matches. We find that, of 86 'true' matches (i.e.

SSee, for example, van der Loo (2014) for a discussion of these measures.

" For the distance measures, all name strings are scrubbed of punctuation, accents, spaces, numbers, and uppercase letters. We

also remove titles like Dr. and Professor from the strings.

- 77-



hand-coded ones), the algorithm successfully captures 83. That is, our algorithm is 96.5% effective

at identifying the hand-coded 'true' matches.

Our algorithm reduces the number of distinct individuals from 67,466 to 54,133.

4.3.2 Matching Researchers between the CRISPR Experimentation Dataset and Web

of Science

Matching the 54,133 consolidated researchers in the CRISPR Experimentation Dataset to

the 4.4 million authors in our WOS subset is done using the same consolidation algorithm described

above, but with a pre-processing step for computational tractability and with a manual matching

of institution names. In our pre-processing step, we limit pairwise comparisons to instances with

the same last name and first initial, which greatly reduces the number of distance calculations that

we need to perform. This restriction excludes 1.8% of the CRISPR Experimentation Dataset

names because they have no first name information (in any of their orders). Once this matching is

complete, we again do graph closure to obtain our final author data set.

Through these two sets of name matching we are able to associate authors with both their

publications (before and after CRISPR's discovery) and their CRISPR orders.

4.4 Sample Construction

Because of CRISPR's recent introduction, we focus our analysis on Early Adopters, which

we define as those who tried experimenting with CRISPR between its invention in June 2012 and

the end of 2014." We choose this end date because it gives us sufficient time afterwards to observe

researchers turning their experimentation into a journal article (i.e., conversion). If we had instead

chosen a later end date, there would be substantial truncation bias from later experimenters who

would not have enough time to get their work published. For robustness, we also consider ending

our sample earlier, at the end of 2013, and find very little difference in our results apart from those

that arise from having a smaller dataset (e.g., less statistical power).

To look at heterogeneous adoption behavior by researchers we construct a series of

covariates. To avoid endogeneity concerns, we use only pre-June 2012 factors to construct these

covariates. However, this introduces the additional requirement that authors publish prior to June

2012 for us to be able to gather this data. Our sample consists of authors who have at least one

publication pre-2012 (for covariate construction) and one publication post-2012 (for outcomes). This

" Because of this definition, authors who first order CRISPR in 2015 or early 2016 are included in the control group. Another

possible choice would have been to exclude them altogether, but this would have required conditioning on an ex-post variable,
which could have introduced selection effects. In any case, the inclusion or exclusion of these authors makes no difference to our

results.
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excludes new Ph.D. students and focuses on the behavior of incumbent academic scientists. We

also restrict our data to US authors, where we are able to obtain richer covariate information.

After incorporating our data requirements, our final sample contains 164,993 authors, including

2,982 (1.8%) individuals who order CRISPR from 2012-2014. Of these 2,982 that experiment with

CRISPR, 337 (11.3%) manage to publish a paper in CRISPR by Q2 2016. This puts in stark

contrast the differences between those that try to be Early Adopters (experiment) and those that

are successfully able to do so (conversion) by Q2 2016. Indeed, there are 8.85 experimenters for

each successful Early Adopter. The experimentation and conversion curves for these 2,982 authors

by quarter are shown in Figure 2.

[Figure 2 here]

Figure 3 and Figure 4 show the geographic spread of U.S. academic scientists experimenting

and converting CRISPR. Figure 3 is split into three groups of states, with each color representing

one-third of the experimenters with CRISPR. So, for example, California, Massachusetts, Maryland,

and New York collectively house one-third of all CRISPR experimenters. Figure 4 parallels Figure

3, but shows conversion with CRISPR, rather than experimentation. Not surprisingly, the

geographic concentrations are similar.

[Figure 3 and Figure 4 here]

There are a few limitations to the dataset as constructed. First, the matching algorithm is

designed to be conservative, so there may be names that should be included in a group, but are not.

This could affect the ultimate count of how many people ordered CRISPR. Second, we are only

concerned with direct orders of CRISPR in the CRISPR Experimentation Dataset for purposes of

this analysis and make no assumptions as to whether co-authors receive the plasmid too.

4.5 Measures

We construct the following measures for the outcomes and covariates of interest, with

outcome variables measured only on data after June 2012 and covariates only on data before June

2012. We discuss the details of the calculation of each variable in Appendix B, but provide a

summary here:
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Category Measure Sources

Outcomes Experimentation CRISPR Orders
(Ordered CRISPR in 2012-2014)

Conversion WOS abstracts and keywords where
Outcomes

(Publication I Experimentation) 'CR.ISPR' and/or 'Cas9" appears

Outcomes Adoption (Published a CRISPR WOS abstracts and keywords where

Paper by Q2 2016) "CRISPR' and/or "Cas9" appears

Central Location:

Location Author is in Cambridge, MA or WOS author locations

Berkeley, CA in 2011 or 2012

Availability of Resources US Rank US News & World Report, 2012

University R&D
Availability of Resources NSF HERD Survey, 2011

Expenditures per PI

Availability of Resources AverageNumberofGranting WOSgrant information
Agencies per Paper

AbilitytoApplyNewTechnical 
Proportion of papers where the

Knowledge Research Focus - % abstract contains terms indicating a

particular organism type

As for Research Focus, but indicating
Ability to Apply New Technical Dominant Research Focus -

that 60%+ of the research is focused
Knowledge (Indicator Variable) on that organism type

Ability to Apply New Technical Total Number of Papers WOSpublications

Knowledge (2009-2012)

Years since the earliest WOS
Ability to Apply New Technical
Knolede tExperience in Years publication in our dataset (note: right

censored at 12)

Average5YearImpactFactor Weighted average of Impact Factor

Opinion Leadership across publications based on InCites

Journal Citation Reports, 2011

Average Number of Co-Authors
Social Participation WOS authors and publications

(2009-2012)

Number of Highly Cited Articles
WOS publication date and forward

Novelty by Publication Cohort
citations

(2009-2012)

Breadth of Research Field WOS Research Categories
Categories
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Table 1 presents the pairwise correlations of the covariates of this analysis. It shows that

there is significant correlation between some variables, for example a 35% correlation between the

number of papers that an author published in the 3 years prior to CRISPR and the number of

papers they have in the top 1% of the citation distribution. There are also significant negative

correlations, for example a -45% correlation between authors that have a mammalian focus and

those that have a bacterial focus."

[Table 1 here]

4.6 Summary Statistics

Table 2 shows the summary statistics for the full experimentation 'at-risk' set, which is the

set we use to understand the drivers of experimentation. Table 3 shows the summary statistics for

those that have experimented (i.e., ordered CRISPR) and are 'at-risk' of conversion.

[Table 2 and Table 3 here]

On average, the authors at risk for experimenting are an accomplished group, averaging

more than one paper published per year and listing an average of 1.7 granting agencies per paper.

4.1% of the authors are located in Berkeley, CA or Cambridge, MA at the time that CRISPR was

discovered in these places. 63.3% of the authors work primarily in mammals. The papers they

write are impactful, although some authors have far more impact than others, as would be expected.

Most authors do not have a paper in the top 1% of citations in 2009-2012 (0.11 papers on average),

but some are part of large influential labs and have as many as 25 papers in the top 1% of citations

during those years.

Authors who experimented and are at risk of conversion are a little more likely to be in

Berkeley or Cambridge, are more likely to be mammalian focused, and are even more accomplished.

In this much smaller set of authors, 6.3% are located in Berkeley or Cambridge and 70.5% are

mammalian focused. Their papers published in the three years before CRISPR have an average 5-

year impact factor of 10.9, but with a standard deviation of 6.8. They are also more likely to have

a paper in the top 1% of citations in 2009-2012, with an average of 0.55 papers.

12 This is by construction since authors are categorized exclusively by their dominant focus (mammal, bacteria, other eukaryote)
or by a no dominant focus category.
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5 Methodology

5.1 Identification Strategy

This paper aims to understand the characteristics of researchers that do early

experimentation and conversion with new technologies, particularly CRISPR. An ideal experiment

to test this would have a large exogenous technology shock that is available to all scientists where

experimentation and conversion rates would be visible. The effect of the technology shock could

then be estimated by looking at the heterogeneous treatment effects across the variation present in

the underlying population before the shock.

For many technologies, such an identification strategy would be challenging because

adoption happens slowly. This long adoption period would create identification concerns, because

'pre-treatment' variables could substantially pre-date real decision-making. For example, the

institutional affiliation for a scientist may not be predictive of technology adoption if 'pre-treatment'

is 10 years earlier, and many scientists have switched affiliations in the interim. This would bias

estimates towards zero because of measurement error.

Measurement for many technologies can also be difficult for the pragmatic reason that

tracking outcomes, particularly experimentation with the technology, can be hard to monitor. This

can introduce selection issues that also introduce bias in estimates.

The invention of CRISPR provides an apt technological setting to study early

experimentation and conversion because:

i. The discovery of CRISPR was a surprise.

ii. CRISPR provided a substantial (indeed likely Nobel-worthy) improvement on the previous

technology.

iii. The development of CRISPR as a gene-editing technology happened very rapidly once the

potential of the technology was understood.

iv. There was near-simultaneous discovery of CRISPR's functionality for editing genes like those

of mammals." The Zhang and Church labs published on CRISPR within 6 months of the

Doudna lab. This competition between discoverers suggests that there was little room for

any of them to endogenously affect the timing of the discovery.

v. Overwhelmingly the transfer of the CRISPR materials to other scientists happened via the

Addgene platform, which allows us to track experimentation.

13For technical reasons, the biggest impact is on most eukaryotic organisms, e.g. mammals, fish, plants, insects, but was less so

on prokaryotes.
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vi. The key output of successful adoption for many of these scientists are academic publications,

which we can observe and in which they are obliged to recognize the usage of CRISPR,
which they often do by citing the Addgene part directly.

To summarize, this paper treats the discovery of CRISPR as a shock that exogenously pushes

out the frontier of knowledge by making gene editing substantially easier. Because the size of this

innovation is so large, and the development of the tool so rapid, the period of experimentation and

conversion begins very quickly. As such, 'pre-treatment' variables are quite recent in time, and thus

variation in these is likely to be informative of scientist characteristics. We can track both

experimentation with the technology (via the CRISPR orders)) and conversion of CRISPR by its

usage in an academic paper.

5.2 Specifications

To study the components of adoption, we split it into experimentation (attempted adoption)

and conversion (success at adopting given experimentation):

p(adoption) = p(experiment) * p(successIexperiment) (1)

We analyze experimentation and conversion separately to understand the factors that

contribute to each.

5.2.1 Univariate regressions

We begin with univariate analyses of the effect of each covariate. Econometrically this is

problematic because the correlations shown in Table 1 could lead to substantial risk of omitted

variable bias. Thus, we do not present them as valid estimates of causal effects, but as the types

of data that are often presented to policy makers or managers. For example, "technology adoption

is X times more likely if someone is in close proximity to the original discovery than if they are

not".

We estimate the univariate effects with a linear probability model that analyzes each of the

co-variates in Section 4:

Experimentationi,post20 12 = ao + Factoripre2 012 + Ei (2)

Here Experimentation = 1 if an author i ordered CRISPR after June 2012 and 0 otherwise.

Factor represents one of the measures listed in Table 1 that is hypothesized to influence adoption.

To guard against reverse causation, all these factors are calculated prior to June 2012, when

experimentation can begin.
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For each model described in equation (2), we also run a similar model for conversion (3)

where the independent variables are identical, but the dependent variable is

PublicationlExperimentationi, whether author i published a paper on CRISPR after -ordering it:

Publication IExperimentationi,post2 012= ao + yFactoriprezo12 + Ei   (3)

Together, equations (2) and (3) allow us to separately estimate both stages in the successful

adoption of CRISPR."

We calibrate the coefficients that result from our univariate analyses by comparing them

against the baseline rates of (a) scientists in genetic engineering experimenting with CRISPR, and

(b) the average success rate in converting the experiments into research outcomes (successful

adoption). In all cases, we present these as ratios of the for Effect Sizetarget group, that is as
Effect Sizeoverall

multipliers of the baseline probabilities. Because the effect of experimentation and success

experimentation on adoption are multiplicative, as shown in equation (1), such normalization also

clarifies the effect of each factor on overall adoption. For example, if the effect size for a factor on

experimentation is 2x the baseline, it implies a 2x change on overall adoption.

5.2.2 Multivariate Analyses

While our analyses in 5.2.1 provide a useful overview of the heterogeneous treatment effects,

it fails to disambiguate among correlated factors, for example, because authors with top cited papers

are more likely to be at highly ranked schools. To address this, we control for further sets of

variables, also using a linear probability model. With this adjustment, our estimator for

Experimentation becomes:

Experimentationi,post2o12= (4)

fo + fLocLocationi,prezo12 + fResResourcesi,re2012 + TKTechKnowledgeipre2 12

+ o LOpinionLeaderi,pre2012 + fSocSociali,pre2012

+ N Noveltyi,pre2012 + fBreadthBreadthi,prezo12 + Ei

• Location is the measure for Location.

• Resources is the set of measures for Availability of Resources.

• TechKnowledge is the set of measures for Ability to Apply New Technological Knowledge.

• OpinionLeader is the measure for Opinion Leadership.

• Social is the measure for Social Participation.

Notice, we are not doing a Heckman selection model here. Doing so would allow us (if we had the right selection model) to

estimate the conversion estimates for the general population of potential technology adopters (i.e., all the at-risk group for

experimentation). This is not the group whose effects interest us. We are interested in the conditional estimates - how are

these variables affecting the selected group - and hence we do not try to adjust for the selection into experimentation.
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* Novelty is the measure for Novelty.

• Breadth is the measure for Breadth of Research Focus.

We similarly model the effect on publication, conditional on experimentation, yielding our

linear probability estimator:

PublicationIExperimentationi,posto12= (5)

Io + +Loc Locationi,pre2012 + fResResourcesi,prezo12 + fTKTechKnowledgei,pre 2 o12

+ JOLOpinionLeaderi,pre 2012 + fsocSociali,pre2012

+f N Noveltyiprezo1 2 + fBreadthBreadthiprezo12 + Ei

where the factor descriptions are the same as in equation (4).

In some cases, we also consider versions of these specifications with only a subset of the

covariates to illustrate the iterative effect of conditioning.

5.3 Challenges to our Identification Strategy

The largest threat to our identification would come from the transfer of materials without

our being able to observe them. As noted earlier, the traditional model of material transfer was

bilateral, with one scientist directly sending materials to another. In the case of CRISPR, statements

to the contrary by Feng Zhang and the scale of the distribution by Addgene make it unlikely that

substantial quantities of materials were transferred from the Zhang Lab to scientists directly.

Nevertheless, once materials have been transferred to a lab by Addgene, there could well be sharing

within that lab across projects. This could indicate that more scientists than we realize are

experimenting with CRISPR, and thus our estimates for the baseline effect would be overestimates

because the size of the at-risk set in the denominator would be too small. To test for this, we

examine instances where publications about CRISPR do not correspond to orders in the CRISPR

Experimentation Dataset (either to the focal author or a co-author). If there is significant

experimentation outside our data, we would also expect there to see significant numbers of academic

publications that result from it. In practice we find that while there are papers that publish on

CRISPR without any order of the source materials, these are overwhelmingly papers that are about

CRISPR, rather than papers that use it. For example, review articles summarizing the impact of

CRISPR, rather than those using it as a gene-editing tool. Since these are articles are precisely the

ones that do not require the materials, they do not provide evidence of bias and thus we conclude

that unobservable material transfer is not substantially affecting our results.

' The effect on the estimates of contributing factors would be ambiguous.
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5.4 Generalizability and Estimate Interpretation

This paper is a case study of the adoption of a particularly important technology that is

transforming biology. Because of the importance of CRISPR, this question is interesting in its own

right. But how generalizable are these lessons to other contexts? We hypothesize that many of

these lessons will be more broadly applicable, even to technology improvements that are less

transformative. This hypothesis rests on the observations by researchers of similar dynamics across

areas with different gains from technology adoption. For example, in Griliches 1957, he documents

that while some areas (e.g. Iowa) adoption hybrid corn very rapidly, others with less to gain (e.g.

Alabama) adopt more slowly. Nevertheless, he argues that such differences can be understood as

variants on a larger underlying process. We would argue that CRISPR's high value to scientists

makes it more like the value of hybrid corn in Iowa, generating rapid adoption, and that less-

transformative discoveries would be more like hybrid corn in Alabama, generating slower adoption.

Thus, we would argue that while the pace of CRISPR adoption is likely to be much rapider than

other technologies, many of the underlying dynamics are likely to be shared.

Because CRISPR was a surprise discovery, many (but not all) of our coefficients will have

potential causal interpretations as estimates of how scientists adopt large technological discoveries

like CRISPR. Of particular interest among these causal estimates will be the heterogeneous effects

- some groups will experiment or convert more than others. It will be tempting to interpret these

causally, for example claiming that if we observe that researchers that have more of some

characteristic (e.g., grants or top papers) are more likely to experiment with a technology, then a

policy initiative to increase the prevalence of that characteristic among scientists will increase

experimentation. Because we do not have random assignment (or an equivalent) of researchers for

such characteristics, such claims would be overreaching. We caution against such direct causal

interpretations, instead viewing our findings as informative of potential interventions that would

themselves need to be tested.

6 Results

Overall, we find that of the 164,993 US authors in our data who publish in genetic

engineering, 1.81% experiment with CRISPR (ordered CRISPR in 2012-2014) with an average

success rate of 11.30% (published a CRISPR paper after ordering). Only 0.20% of the authors in

our at-risk set are successful Early Adopters of CRISPR?

16By the definition of Rogers (1962) this would actually imply that we were looking at "Innovators" rather than "Early
Adopters". But we believe that this narrow definition of the term "Innovators" would be confusing to the reader because of its
generally accepted broader meaning, and thus we continue to use the term Early Adopter.
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Our ability to interpret our results as causal is nuanced and worth discussion. Many of our

results should be interpreted causally insomuch as they reflect the heterogeneous responses of

scientists with differing characteristics to a new technology adoption shock. Notable exceptions to

this would include location and social network effects, since it is not as-good-as-random that

particular researchers in Berkeley, CA and Cambridge, MA were the ones to discover CRISPR.

There are also areas, particularly around policy interventions, where we can only make

correlational claims because the variation we observe is not exogenous. For example, since our

variation in grants per researcher is not random, we can only report the associations between aspects

of CRISPR adoption and grant funding. We cannot make a causal claim that a change in grant

funding would change adoption behaviour.

6.1 The importance of separating experimentation and successful adoption

This paper contends that the separation between experimentation and conversion success is

important for policy makers and managers, since factors may influence each component

differentially. The importance of such analysis is illustrated in Table 4 which considers the effect

that a scientist's organism focus has on their adoption of CRISPR. The intuition is that there will

be more adoption of CRISPR by scientists studying mammals because (i) the CRISPR tool is a

bigger improvement upon previous editing techniques in this area, and (ii) the evolutionary

proximity of other mammals to humans makes them excellent models for the development of

impactful (and lucrative) disease treatment in humans. Model 1 (Adoption) provides evidence that

this is indeed the case, with mammalian scientists adopting 0.13 percentage points*** more often

than bacteria scientists (recall: this is against an average across all authors of 0.20%). However,

Model 2 (Experimentation) and Model 3 (Conversion) reveal that the result in Model I comes

exclusively from experimentation, not conversion. Mammalian scientists are more likely to

experiment with CRISPR, but if anything they are less likely to be successful in their conversion to

publication.

[Table 4 here]

There are many potential reasons why mammalian scientists might adopt with these

patterns. Perhaps they are overall less familiar with gene-editing since it has been so much more

difficult historically? We return to this question later, but regardless of the reason, this distinction

is important for policy-makers and managers, since it implies that different types of interventions

might be valuable to promote adoption. For example, it might be more valuable to have a workshop

on how to use CRISPR, rather than funding general awareness-raising.
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As this illustration shows, there are meaningful differences in how different factors affect

experimentation and successful adoption given experimentation. That nuance is lost if analysis only

focuses on overall adoption.

6.2 Univariate Results

We begin by considering univariate analyses to assess overall statistical associations and,

more importantly, to indicate the kinds of data that policy makers and managers are likely to be

presented with (e.g., "the center for technology A should be located here because technology A was

discovered here and those scientists are more likely to adopt it").

Many of our variables of interest are correlated. For example, successful scientists are likely

to publish more papers, receive more grant funding, and be published in journals with higher impact

factors. This means that analyzing them individually may to produce biased estimates. Indeed,

the divergence between the univariate results and the multivariate ones will be a theme we return

to, because it has important policy implications.

Table 5 shows the differences in means for each factor, both within the group at risk of

experimenting and those at risk of converting. Many of these variables affect both experimentation

and conversion in the same direction, for example scientists who publish in higher impact factor

journals are both more likely to experiment and to convert. Of more interest, are the variables

where the effects move in opposite directions, including the amount of experience an author has in

years or having a mammalian research focus. More experienced authors are less likely to experiment

with CRISPR, but if they do, they are more likely to convert. Conversely, mammalian focused

authors are more likely to experiment, but are less likely to convert. There are also many more

variables positively associated with experimentation than conversion. For example, getting grants

prior to June 2012 is significant at the 0.01% level for experimentation, but is not at all significant

for conversion.

[Table 5 here]

We summarize the relative importance of each factor to experimentation and conversion by

plotting all the coefficients from the univariate regressions, as described in Section 5, on the same

graph (Figure 5). To make these comparable, we present them as incremental multiples of the

baseline effect (e.g., a 50% estimate indicates that the factor's marginal effect is equivalent to

increasing the base-rate 50%).

[Figure 5 here]
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The scatter plot suggests there is a positive correlation between the factors that promote

experimentation and conversion. It also suggests that the most impactful variables are being located

centrally (near one of the discoverers of CRISPR), the number of papers an author has that are in

the top 1% of papers receiving citations, and the type of research focus (e.g., mammalian). Thirdly,
most factors seem to be associated with larger effects on experimentation than conversion.

The initial finding of the importance of being in a CRISPR founding city location is

particularly interesting as it is consistent with many observations about the clustering of scientists

and the importance of implicit knowledge in technology adoption. However, our later analysis will

show that there is more to this story than the univariate analysis would suggest.

6.3 Multivariate Results

6.3.1 Importance of Being Centrally Located

Our univariate regressions indicate that a scientist located in Cambridge, MA or Berkeley,
CA is much more likely to experiment with CRISPR and to then go on to publish a paper. This is

consistent with tacit information theories that suggest new adoption is easier if there is access to

someone who uses the tool and can show the new adopter how the it works. In the case of CRISPR,
the people who had a strong working knowledge of the CRISPR system early on were the original

inventors and those closest to them in Cambridge and Berkeley. But these locations are also areas

where high quality scientists reside and where there is abundant research funding. Thus, estimating

the effect of a scientists being co-located with a CRISPR inventor requires controlling for these

other correlates.

Table 6 shows how the estimates for the effect of being centrally located on experimentation

changes when controls are added. Model (1) replicates the univariate analysis, showing that being

centrally located is important for experimentation. Adding in the average impact factor of the

journals for an author (Model 2) reduces the effect of being centrally located. The central location

effect is eliminated completely if we instead include the number of papers that are in the top 1% of

citations (Model 3) or include both the impact factor and top citations (Model 4). These suggest

that being centrally located does not promote experimentation, but rather that there are just many

high quality scientists in Cambridge or Berkeley. Thus, our data provides no evidence that meeting

around the water cooler promotes experimentation with CRISPR.

[Table 6 here]

If being at a central location does not improve the likelihood that a scientist experiments,
might it still have an impact on conversion (the ability to turn that experimentation into a
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publication on CRISPR)? Table 7 repeats the analysis from Table 6, but on conversion rather than

experimentation. It shows that the large effect of central location is diminished once you condition

on publication quality measures, but that nevertheless a significant impact remains.

Experimentation may occur regardless of location for excellent scientists, but it still seems helpful

to be near the original inventors when trying to successfully use CRISPR.

[Table 7 here]

6.3.2 Specific Tacit Information

As Table 6 and Table 7 show, the effects of being co-located with discoverers is much smaller

than a naive univariate analysis would suggest, and indeed are only at all impactful on conversion.

But might there be subtler effects underlying this? In particular, if we separate out the work being

done on bacteria and mammals, do those researchers benefit from being in either Berkeley and

Cambridge? (Recall that evidence for CRISPR use in bacteria was first provided in Berkeley and

CRISPR use in mammalian cells was first demonstrated in Cambridge). Since it is much more

difficult to work with mammalian cells, we might reasonably hypothesize that tacit information

would be most useful to mammalian researchers in Cambridge. Table 8 and Table 9 provide support

for just that.

As in the previous findings, the effect of central location on experimentation disappears once

we control for researcher quality. Table 8, Models 1 and 2 are restricted to only authors with a

mammalian research focus. For those authors, being in Cambridge is only significant for

experimentation when we do not control for quality. The same holds for authors with a bacteria

focus in Models 3 and 4. Interestingly, being in Berkeley does not seem to be significant for CRISPR

experimentation, regardless of the research focus considered. Model 5 combines authors from

research focuses, but controls explicitly for author quality, each location, research focus, and

interactions for being a mammalian author in Cambridge and a bacterial author in Berkeley. Again,

we find that evidence that controls for researcher quality make any location effects small and

statistically insignificant. Thus, being an excellent researcher is more important than location for

the likelihood of experimenting with CRISPR even if you are a mammalian researcher in Cambridge.

[Table 8 here]

In contrast to the lack of location effects for experimentation, we find that, for conversion,

being a mammalian researcher in Cambridge has a large effect. In Table 9, Models 1 and 2 show

that for mammalian researchers, being in Cambridge remains important for conversion even after

controlling for quality. For bacteria focused authors, being in Cambridge makes them less likely to

convert, although being in Berkeley may still be helpful as Models 3 and 4 suggest (the effect on
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Berkeley is not significant but is large after controlling for author quality). Model 5 shows that the

effect of the interaction term for mammal authors in Cambridge is large and significant. So it may

be the case that having tacit information is important for converting a new tool into a successful

new idea, but there must also be a relevant match in the type of research conducted to reap the

largest benefits. For example, because CRISPR is highly in demand for mammalian use but more

difficult to implement, mammalian researchers in close proximity to the original inventors of

mammalian CRISPR are more likely to benefit from such tacit information than a bacterial

researcher in Cambridge. The same effect may be true for bacterial researchers in Berkeley, but it

is difficult to provide clear evidence as there are fewer who try CRISPR in the first place. Likely

this is because the biological properties of bacteria make the use of CRISPR less critical.

[Table 9 here]

6.3.3 Additional Importance of Resources, Experience, and Research Breadth

Thus far, our analyses have highlighted the role of location, journal impact factor, highly-

cited papers, and research focus. But the literature suggests a number of other factors that could

be important: available resources, author's years of experience, and research breadth. Table 10

explores these factors for their effects on experimentation, and Table 11 explores them for

conversion.

For experimentation, Table 10 Model 1 is the base regression showing the importance of

author quality and research focus that overtake the value in being centrally located. The Models

2-8 separately add a new variable to the base model to observe each effect of US university rank,
years of experience, the number of Web of Science subjects the author publishes in (a measure of

breadth), average R&D expenditures per PI for the researcher's university, the average number of

granting agencies an author receives money from, the total number of papers, and the average

number of co-authors a focal author has. Model 9 combines all factors into one specification.

We find that, after controlling for the base specification variables, there is little or no effect

from the average number of co-authors that a researcher has on their papers or from the host

university rank, or the average number of granting agencies listed per paper. We find positive and

statistically significant effects for publishing in more subjects, the average R&D expenditures per

PI, and the number of papers published by the academic in the previous years. We find a negative

effect on experimentation if a researcher has more years of experience.

[Table 10 here]
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Table 11 is designed similarly to Table 10 except that the dependent variable is conversion.

Here again, the base model coefficients are stable across models. As can be seen in the full

specification in Model 9, many fewer of the factors have statistically significant associations with

conversion, which is itself interesting. It suggests that policy makers or managers may have fewer

potential levers for influencing this component of adoption.

Effects that do have a positive and statistically significant effect on conversion after

controlling for the base specification include university rank, the number of subjects that the author

publishes in and the number of papers they published in the previous 3 years. There is also a

negative and statistically significant effect from having more co-authors per paper on average.

[Table 11 here]

Table 12 compares the multivariate models for adoption (Model 1), experimentation (Model

2), and conversion (Model 3) that include all variables. One of the most striking facts from Table

12 is that different sets of variables describe experimentation and conversion. Not only are fewer

factors significant for conversion, but some switch in the direction of effect. For example, R&D

expenditures per PI by university is correlated with more CRISPR experimentation by scientists,
but has either no correlation or a negative one with producing a new paper (at least in this earliest

stage). Additionally, authors with more experience tend to experiment less, but might have no or

a slightly positive effect on getting a publication from that experimentation. And, as in our first

example, the research focus matters for experimentation and conversion. Mammalian authors

experiment more, but likely have a harder time converting, possibly due to the relative difficulty of

using CRISPR.

Table 12 also shows how only looking at adoption may not reflect all the levers policy makers

or managers have at their disposal or may not provide a clear picture of which types of early adopters

will be influenced. For example, raising the amount of available resources to an author by $1

million, holding all else constant, is only associated with an increase in the likelihood of adoption

by 0.15%, mostly through the likelihood of experimentation. Thus, affecting adoption through this

method might also require outreach targeting the people naturally drawn to experimenting to help

them convert.

Figure 6 uses the coefficients from Table 12 to highlight the relative importance of each for

adoption, experimentation, and conversion. By column, the highest significant variable is the

darkest green, the lowest is the darkest red, and insignificant or small significant variables are white.

[Table 12 and Figure 6 here]
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Figure 7 plots the adjusted coefficients for the full multivariate models as a comparison to

the original univariate plot (Figure 5). Here it is the case that experimentation is the dimension

with more variation and that central location is now only important for conversion. Top citations

continues to be important for both experimentation and conversion.

[Figure 7 here]

6.4 Standardized Multivariate Results

The previous analyses presented results in their original units, which helps with intuition

since it is easy to visualize writing one more paper or adding another million dollars in R&D funding.

However, in the original units it is difficult to compare the effect of one more paper on

experimentation to the effect of an extra million dollars in research funding. To make the effect

sizes of the factors more directly comparable, we convert each variable into Z-scores, so that the

coefficients in the regressions represent the number of standard deviations from each mean. Using

the standardized values, the direction and significance levels of the regressions do not change, but

the relative effect of each factor does. This can be easily seen in the standardized scatterplots.

Figure 8 shows the standardized coefficients from the multivariate regressions for

experimentation and conversion. The total number of papers an author writes in the previous three

years before CRISPR is now one of the most important factors for both experimentation and

conversion, but some variables, like the research focus of authors is relatively less important as

compared to the natural unit multivariate scatterplot in Figure 7.

[Figure 8 here]

We can observe the relative effect of the standardized coefficients in Table 13, which is

comparable to Table 12. Converting to standardized coefficients does not change the overarching

result that scientists who experiment and those who convert can be characterized by different sets

of factors. Table 13 shows explicitly the factors that are relatively more important for

experimentation (Model 2) and conversion (Model 3) with standardized coefficients. We also note

that if we only had information on adoption, our conclusions as to which factors matter most would

be different from either experimentation or conversion (Model 1). To highlight the relative

importance of the standardized factors, Figure 9 provides the corresponding heat map to the one

presented in Figure 6.

[Table 13 and Figure 9 here]
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6.5 Robustness

One concern stemming from our preferred specifications is that our results are being

influenced by the fact that scientists ordering in 2014 would not have had enough time to publish

in our dataset. Publications in biology occur on a more rapid schedule than other fields like the

social sciences, but experiments do take time. To address this concern, we re-ran all of our models

defining experimentation as scientists who order CRISPR in 2012 or 2013 only. The full set of

regressions are on file with the authors, but in general this restriction does not impact our overall

results. The direction and magnitudes remain similar, although we do lose some significance due to

our smaller sample size, and hence larger standard errors, in conversion models. Appendix Table

Al provides comparisons for the full experimentation and conversion models. Here, Models 1 and

2 compare our preferred experimentation specification for the full multivariate model to one that

defines the dependent variable as CRISPR orders from 2012 and 2013 only. Direction and

magnitudes are very similar. Likewise, Models 3 and 4 compare the full multivariate models for

conversion where Model 3 is our preferred specification and Model 4 only includes scientists

experimenting with CRISPR in 2012 and 2013.

Many of our authors do not have data for every variable we use in the specifications with

all controls. To maintain statistical power, we try to keep as many authors in each regression as

possible. However, if we restrict our models to only include authors that have data for all variables,

the reported results are of the same direction and magnitude. Only the significance level changes

due to the reduction in power.

7 Discussion

The slow adoption of socially beneficial technologies occurs frequently enough that the

promotion of technological adoption by policy-makers is common. Marketing campaigns are

mounted to raise awareness, outreach programs are created to help potential adopters work through

technical challenges, and incentives are introduced throughout the system. For example, one of the

earliest US programs was the Agricultural Conservation Program (ACP) of the 1930s that

reimbursed farmers for adopting technologies that mitigated soil erosion from the Dust Bowl. This

was coupled with a federal effort to develop new soil conservation techniques and to spread

awareness to local farmers (History of NRCS 2017). More recently, the California Solar Initiative

(CSI) was designed to incentivize the adoption of solar energy by businesses and residents in

California by providing rebates for installing and using solar power. The program ran from 2007

through 2016 with a total budget of $2.17 billion and a goal of installing 1,940 MW of new solar

17 The most noticeable change is in the bacteria focus models in Table 9 where being from Berkeley becomes significant and

negative. Because that model has very few observations, we suspect this is just a spurious correlation.
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capacity (California Solar Initiative 2017). The U.S. Department of Energy also launched the

SunShot Initiative in 2011, that works with local public and private partners to encourage solar

adoption and to lower the cost of solar energy. SunShot funds projects within communities that

focus on outreach, training programs, and R&D (SunShot Solar Projects Map 2017). Since 2011,

SunShot has funded almost 300 projects across the U.S. (SunShot Initiative 2017). Likewise, firms

roll out specific strategies to encourage customers to test out and continue to use their products.

For example, IBM originally relied on a large salesforce to not only sell mainframe computers to

skeptical customers but to provide personalized service and maintenance to keep customers using

their computers (e.g., Bresnahan et al. 2012).

Such programs affect adoption on multiple levels, but it is not always clear that the

intervention chosen is the one that will incentivize the necessary people. As our paper has

demonstrated, overall adoption by individuals can be influenced through two important channels:

(1) awareness and willingness to experiment with the new technology and (2) ability to convert the

experimentation into successful use of the technology. The results of our study provide evidence

that the types of individuals successful at each stage of early adoption are generally different.

Because of this, policy-makers and managers should assess where in the process adoption is stalling

- in experimentation or conversion as targeting the wrong people could lead to wasted funds and

under-adoption. For example, in our CRISPR context, targeting generally successful individuals

who are primed to adopt and have the demonstrated skill to convert may be an inefficient use of

resources since they are correlated with successful adoption.

As noted in Section 5.4, our ability to make causal claims for interventions is limited because

our exogenous variation comes from CRISPR itself, not from variation in the underlying

characteristics of the scientists. Nevertheless, we can observe trends in the heterogeneous effects

that correlate with experimentation and conversion. These could be valuable to policy makers or

managers for generating hypotheses about which interventions to try and how much variation in

response to expect. For example, we observe much more variation in experimentation than in

conversion rates, suggesting that this dimension of adoption may be more easily influenced by

external factors or, potentially, by policy makers.
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8 Conclusion

This paper has argued that it is important for innovation scholars, policy makers, and firms

to separate their analysis of early stage technology adoption into two components: a willingness to

experiment with the technology, and the likelihood of converting that experimentation into a

successful research output. This distinction is important because it informs how a technology

diffuses and what policies or interventions might best guide its adoption. To highlight the

importance of decomposing the adoption curve, we construct a unique dataset for the breakthrough

gene-editing technology, CRISPR, that allows us to observe both experimentation and conversion.

Historically it has been difficult to observe experimentation and conversion separately, but because

the CRISPR tool was originally distributed by one main source, Addgene, the authors experimenting

and publishing in CRISPR can be reliably tracked.

Our findings confirm the importance of splitting adoption into these two components.

Different factors are associated with scientists who experiment with CRISPR in the first three years

and those who can go on to publish a successful CRISPR paper. Holding all else constant, academics

with many influential papers in multiple research areas prior to the introduction of CRISPR are

more likely to both experiment and convert. However, having more resources available is associated

with more experimentation but not more conversion. In the reverse direction, experience is correlated

with less experimentation but those who experiment may be more likely to publish a paper.

How useful CRISPR is to the research focus of the scientist is also important. The more

useful a tool is to a researcher, the more incentive she has to experiment. This hypothesis is borne

out in the data and from anecdotal evidence supplied by CRISPR scientists. Mammalian researchers

are more likely to experiment with CRISPR than bacteria researchers, but may ultimately have a

lower probability of converting. Although this paper does not explore fully the underlying

mechanisms of the main model, we find that it could be the case that mammalian researchers have

a harder time converting on average due to a lack of specific tacit information in close proximity.

For example, if a mammalian author is in Cambridge, MA (where CRISPR for mammalian use was

first discovered) she has a much better chance of converting her experimentation into a paper.

Finally, we find that there is much more variation triggered in experimentation than in

conversion rates, suggesting that this dimension of adoption may be more easily influenced by

external factors or, potentially, by policy makers. Thus, any technology adoption policies should

try to identify where bottlenecks are occurring and tailor programs to that part of the adoption

process.
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10 Figures and Tables

Figure 1. Addgene Plasmid and Kit Orders by Year

Number of Plasmids and Kit Orders from Addgene
2004 - Q1 2016

(N= 590,077)
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Notes. This graph shows the number of individual plasmids and sets of plasmids (kits) that

Addgene sold per year from its start in 2004 through 2015. The blue bars are orders for non-

CRISPR plasmids and the red bars are orders for CRISPR plasmids.

- 100-



Figure 2. Experimentation and Conversion in CRISPR over Time

Cumulative US Authors Ordering CRISPR in Q1 2012 - Q4 2014

and Publishing in CRISPR by Q2 2016 (log scale)
N 2,982
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Notes. This graph is built from data in the CRISPR Experimentation Dataset and in Web of

Science. The top red line represents the cumulative number of researchers who experimented with

CRISPR (ordered CRISPR in the CRISPR Experimentation Dataset) from Q3 2012 - Q4 2014.

The bottom orange line represents the cumulative number of researchers who converted

(experimented and then went on to publish a paper in CRISPR) from Q3 2012 - Q2 2016.
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Figure 3. Locations of Scientists Experimenting with CRISPR

Location of Scientists Experimenting with CRISPR by Tercile

Canada

/

Mexico

Experimenting Scientist Locations by Tercile
*Top 3rd
*Middle3rd
*Bottom 3rd

Notes. This figure uses the CRISPR Experimentation Dataset to map the states of CRISPR

orderers. The coloring partitions these states by the cumulative number of orderers represented

by those states.
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Figure 4. Locations of Scientists Converting CRISPR

Location of Scientists Converting CRISPR by Tercile

U,
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Converting Scientist Locations by Tercile
*Top 3rd

Middle 3rd

*Bottom 3rd

Notes. This figure uses the Web of Science Dataset to map the states of researchers converting

CRISPR (those who experimented and then went on to publish a paper in CRISPR). The

coloring partitions these states by the cumulative number of converters represented by those

states.
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Figure 5. Scatter Plot Illustrating the Most Important Univariate Variables for

Experimentation and Conversion

Relative Importance of Univariate Controls to Direct CRISPR Orders
and Conditional CRISPR Papers Regressions (US Authors)
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Notes. This graph represents the relative importance of each researcher characteristic, considered

on its own, to experimentation and conversion. Each point is built by two underlying linear

probability models where the characteristic (e.g., Experience) is the independent variable and

the dependent variables are Experimentation (ordered CRISPR in the CRISPR Experimentation

Dataset) and Conversion (experimented and then went on to publish a paper in CRISPR)

respectively. To make the coefficients comparable, they are presented as incremental multiples

of the baseline effect (e.g., a 50% estimate indicates that the factor's marginal effect is equivalent

to increasing the base-rate 50%). Each characteristic's effect on Experimentation is measured

on the horizontal access and its effect on Conversion is measured on the vertical axis.
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Figure 6. Heatmap of Significant Coefficients for Adoption, Experimentation, and

Conversion

Adoption Experimentation Conversion

(Publishedin CRISPR) (Ordered CRISPR) (Published ,Order)

Central Location 0.0011 -0.0041 0.0396

Average Impact Factor (3 years) 0.0001 0.0010 H 007
Total Papers in Top 1% of Citations in US (3 years) 0.0041 0.0286

Mamnnal Lab -0.0012 0.0024 -0.0753

Other Eukaryote Lab 0.00i 0.0061Um

Bacteria Lab -0.0056 -0.0573

US Rank 0.0000 -0.002

Experience (Years) 0.0047

Number of Published Subjects 0.0004 0.0055

R&D Expenditures per PI (Millions) -0.0151

Average Number of Granting Agencies per Paper 0.0000 0.0026 -0.0011

Total Number of Papers (3 years) 0.0032

Average Number of Co-Authors (3 years) -0.0002 -0.0011 -0.0048

Notes. This graph highlights the differences in significant researcher characteristics for the

multivariate linear probability models on Adoption (published a paper in CRISPR),

Experimentation (ordered CRISPR in the CRISPR Experimentation Dataset) and Conversion

(experimented and then went on to publish a paper in CRISPR) in Table 12. By column, the

darkest green is the largest positive significant researcher characteristic and the darkest red is

the largest negative significant researcher characteristic. Other colored characteristics are

significant at the 10% level. White characteristics are insignificant.
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Figure 7. Scatter Plot Illustrating the Most Important Multivariate Variables for

Experimentation and Conversion

Relative Importance of Multivariate Controls to Direct CRISPR Orders
and Conditional CRJISPR Papers Regressions (US Authors)
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0
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Notes. This graph represents the relative importance of each researcher characteristic, considered

together, to experimentation and conversion. Each point represents the coefficient of the

characteristic in two underlying multivariate linear probability models where the dependent

variables are Experimentation (ordered CRISPR in the CRISPR Experimentation Dataset) and

Conversion (experimented and then went on to publish a paper in CRISPR) respectively (both

in Table 12). To make the coefficients comparable, they are presented as incremental multiples

of the baseline effect (e.g., a 50% estimate indicates that the factor's marginal effect is equivalent

to increasing the base-rate 50%). Each characteristic's effect on Experimentation is measured

on the horizontal access and its effect on Conversion is measured on the vertical axis.
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Figure 8. Scatter Plot Illustrating the Most Important Multivariate Variables for

Experimentation and Conversion with Standard Units

Relative Importance of Multivariate Controls to Direct CRISPR Orders
and Conditional CRISPR Papers Regressions (US Authors)
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Notes. This graph represents the relative importance of each researcher characteristic, considered

together and standardized, to experimentation and conversion. Each point represents the

coefficient of the characteristic after being converted to Z-scores, in two underlying multivariate

linear probability models where the dependent variables are Experimentation (ordered CRISPR

in the CRISPR Experimentation Dataset) and Conversion (experimented and then went on to

publish a paper in CRISPR) respectively (both in Table 13). To make the coefficients

comparable, they are presented as incremental multiples of the baseline effect (e.g., a 50%

estimate indicates that the factor's marginal effect is equivalent to increasing the base-rate 50%).

Each characteristic's effect on Experimentation is measured on the horizontal access and its

effect on Conversion is measured on the vertical axis.
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Figure 9. Heatmap of Significant Coefficients for Adoption, Experimentation, and

Conversion (Standard Units)

Adoption Experimentation Conversion

(Published in CRISPR) (Ordered CRISPR) (Published I Order)

Central Location 0.0046 -0.0061 0.0304

Average Impact Factor (3 years) 0.0168 0.0156

Total Papers in Top 1% of Citations in US (3 years) - 52 0.0173 0.1354

Mammal Lab -0.0125 0.0088 -0.1084

Other Eukaryote Lab 0.0042 0.0136 -0.0229

Bacteria Lab -0.0127 -0.0131 -0.0406

US Rank -0.0094 -0.0033

Experience (Years) 0.0246

Number of Published Subjects 0.0131 0.0573

R&D Expenditures per PI (Millions) 0.0112 0.0276 -0.0174

Average Number of Granting Agencies per Paper -U iU30 0.0663 -H007

Total Number of Papers (3 years) 0,1502 . 02039 0.1287

Average Number of Co-Authors (3 years) -0.0479 -0.0762 -0.0619

Notes. This graph highlights the differences in significant researcher characteristics for the

multivariate linear probability models on Adoption (published a paper in CRISPR),

Experimentation (ordered CRISPR in the CRISPR Experimentation Dataset) and Conversion

(experimented and then went on to publish a paper in CRISPR) in Table 13. All characteristics

in these models were converted to Z-scores. By column, the darkest green is the largest positive

significant researcher characteristic and the darkest red is the largest negative significant

researcher characteristic. Other colored characteristics are significant at the 10% level. White

characteristics are insignificant.
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Table 1. Pairwise Correlations Between Control Factors

a

5

Central Location

US Rank

Experience (Years)

Mammal Lab

Bacteria Lab

Other Eukaryote Lab

No Dominant Lab

Number of Published Subjects

Total Papers in Top 1% of Citations in US (3 years)

Average Impact Factor (3 years)

R&D Expenditures per PI ($ millions)

Average Number of Granting Agencies per Paper

Total Number of Papers (3 years)

Average Number of Co-Authors (3 years)

0.0021 -0.0232

-0.0325 -0.0022 -0.0296

0.0286 -0.0023 -0.0226 -0.4649

0.0024 -0.0021 -0.0382 -04307 -0.1162

0.0164 0.0066 0.0895 0.5699 -0.1537 -0 424

0.0536 0.t463; 0.5135 0.0331 -0.i907 -0 0.080
403 0.0467 -0.0 1,;1 -0.0216 -O.0081 .19 0

-0.0098 054 0.0048 -0.0075 1537 3373

0.0061 ; 0661 -0.0395 -0.0015 0.0563 0.0631 0.1541

00407 0.0521 -0.0296 -0.0065 -0.0380 -0.1434 0.2372 02547 0OIS

0581 0.0225 0.0412 0.0181 -0.0123 0.0409 990 0,347.5 0.0818 0.013(

0631 0.0045 -0.0211 -0.04 .1248 0.3363 0.47 ),7



Table 2. Summary Statistics for Authors in the At-risk Set

Variable N Mean Std. Dev. Min Max

Outcomes

Experimentation (Ordered CRISPR)

Conversion (Published I Order)

164,993

164,993

Location

Central Location 164,993 0.041 0.198 0.000 1.000

Availability of Resources

US Rank 137,566 -80.363

Average Number of Granting Agencies per Paper 164,993 1.723

R&D Expenditures per PI ($ millions) 125,929 0.586

Ability to Apply Technological Knowledge

Mammal Lab 127,022 0.633

Bacteria Lab 127,022 0.111

Other Eukaryote Lab 127,022 0.097

No Dominant Lab 127,022 0.159

Total Number of Papers (3 years) 103,004 4.237

Experience (Years) 164,993 5.673

Opinion Leadership

Average Impact Factor (3 years) 100,245

Social Participation

Average Number of Co-Authors (3 years) 103,004

7.416

4.505

Novelty

Total Papers in Top 1% of Citations in US (3 years) 103,004 0.114

Breadth of Research Field

Number of Published Subjects 164,993 2.581

7.543 0.000 44.026

9.199 0.000 283.000

0.557 0.000 25.000

1.379 1.000 6.000
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0.018

0.002

0.133

0.049

0.000

0.000

1.000

1.000

75.157

3.389

0.328

0.482

0.315

0.296

0.365

5.310

4.038

-200.00

0.000

0.010

0.000

0.000

0.000
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0.000

0.000
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Table 3. Summary Statistics for Authors that Ordered CRISPR (Experimenters)

Variable N Mean Std. Dev. Mi Max

Outcomes

Conversion (Published I Order) 2,982 0.113

Location

Central Location 2,982 0.063

Availability of Resources

US Rank 2,365 -69.328

Average Number of Granting Agencies per Paper 2,982 2.407

R&D Expenditures per PI ($ millions) 2,273 0.649

Ability to Apply Technological Knowledge

Mammal Lab 2,742 0.705

Bacteria Lab 2,742 0.053

Other Eukaryote Lab 2,742 0.093

No Dominant Lab 2,742 0.148

Total Number of Papers (3 years) 1,997 12.259

Experience (Years) 2,982 3.745

Opinion Leadership

Average Impact Factor (3 years) 1,986 10.883

Social Participation

Average Number of Co-Authors (3 years) 1,997 4.431

Novelty

Total Papers in Top 1% of Citations in US (3 years) 1,997 0.548

Breadth of Research Field

Number of Published Subjects 2,982 3.487

0.317 0.000 1.000

0.243 0.000 1.000

75.533

2.153

0.366

0.456

0.225

0.290

0.356

12.882

1.675

-200.000

0.000

0.031

0.000

0.000

0.000

0.000

0.000

0.000

-1.000

36.667

1.959

1.000

1.000

1.000

1.000

141.000

12.000

6.800 0.000 38.159

4.059 0.000 53.286

1.500 0.000 25.000

1.432 1.000 6.000
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Table 4. An Example of Obscured Information When Only Observing Successful Adoption

Author's Lab Type (Bacteria, Mammal, Other Eukaryote) for Adoption, Experimentation, and Conversion

(1) (2) (3)
Adoption Experimentation Conversion

(Published in CRISPR) (Ordered CRISPR) (Published I Order)
Mammal Lab 0.0013*** 0.0137*** -0.0130

(0.0003) (0.0010) (0.0275)

Other Eukaryote Lab 0.0015** 0.0103*** 0.0130
(0.0005) (0.0015) (0.0339)

No Dominant Lab Category 0.0022*** 0.0099*** 0.0531
(0.0005) (0.0013) (0.0324)

Constant 0.0012*** 0.0103*** 0.1164***
(0.0003) (0.0008) (0.0266)

Observations 127,022 127,022 2,742
Adjusted R2 0.0001 0.0008 0.0043

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014; Dropped is Bacteria Lab
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

-I-- - I I I . I - 1-- -, I .- - . VAW ---- -1-1-11.1-



Table 5. Tests of Differences of Means (Unequal Variances) for Authors Who Experiment and Do Not
and for Authors Who Convert and Do Not

Central Location

US Rank

Experience (Years)

Mammal Lab

Bacteria Lab

Other Eukaryote Lab

No Dominant Lab

Number of Published Subjects

Total Papers in Top 1% of Citations in US (3 years)

Average Impact Factor (3 years)

R&D Expenditures per PI ($ millions)

Average Number of Granting Agencies per Paper

Total Number of Papers (3 years)

Average Number of Co-Authors (3 years)

Mean Don't Mean Diff.

Experiment Experiment Experiment

0.04

-80.56

5.71

0.63

0.11

0.10

0.16

2.56

0.11

7.35

0.59

1.71

4.08

4.51

0.06

-69.33

3.75

0.71

0.05

0.09

0.15

3.49

0.55

10.88

0.65

2.41

12.26

4.43

0.02

11.23

-1.96 **

0.08 **

-0.06*

-0.01

-0.01

0.93*

0.44*

3.53***

0.06*

0.70*

8.18 **

-0.08

P-Value I
0.00

0.00

0.00

0.00

0.00

0.45

0.13

0.00

0.00

0.00

0.00

0.00

0.00

0.43

Mean Don't Mean. Diff.

Convert Convert Convert

0.05

-68.69

3.70

0.72

0.05

0.09

0.14

3.41

0.45

10.70

0.65

2.39

11.31

4.41
.1

0.13

-74.35

4.08

0.63

0.05

0.10

0.22

4.07

1.19

12.10

0.65

2.53

18.63

4.58

0.08 *.**

-5.66

0.38*

-0.09*

0.00

0.01

0.08*

0.66

0.74

1.40*

0.00

0.14

7.32 ***

0.17

0.00

0.27

0.00

0.00

1.00

0.51

0.00

0.00

0.00

0.00

0.65

0.32

0.00

0.47

+p < 0.10. * p < 0.05. ** p < 0.01, *** p < 0.001

-i



Table 6. The Effects of Location and Author Quality on Experimentation

Author Location and Quality Effects on Experimentation

(1) (2) (3) (4)
Experimentation Experimentation Experimentation Experimentation

(Ordered CRISPR) (Ordered CRISPR) (Ordered CRISPR) (Ordered CRISPR)
Central Location 0.0103*** 0.0075** 0.0021 -0.0002

(0.0020) (0.0028) (0.0026) (0.0027)

Average Impact Factor (3 years) 0.0012*** 0.0006***
(0.0001) (0.0001)

Total Papers in Top 1% of Citations in US 0.0270*** 0.0244***
(3 years) (0.0020) (0.0021)

Constant 0.0177*** 0.0108*** 0.0162*** 0.0124***
(0.0003) (0.0005) (0.0004) (0.0005)

Observations 164,993 100,245 103,004 100,245
Adjusted R2 0.0002 0.0044 0.0120 0.0130

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 7. The Effects of Location and Author Quality on Conversion

Author Location and Quality Effects on Conversion

(1) (2) (3) (4)

Conversion Conversion Conversion Conversion

(Published I Order) (Published I Order) (Published I Order) (Published I Order)

Central Location 0.1349*** 0.1164** 0.0745* 0.0744*

(0.0317) (0.0360) (0.0348) (0.0347)

Average Impact Factor (3 years) 0.0026* 0.0000
(0.0011) (0.0011)

Total Papers in Top 1% of Citations in US 0.0335*** 0.0334***

(3 years) (0.0065) (0.0069)

Constant 0.1045*** 0.0921*** 0.1054*** 0.1051***

(0.0058) (0.0137) (0.0078) (0.0136)

Observations 2,982 1,986 1,997 1,986

Adjusted R2 0.0104 0.0117 0.0296 0.0291

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001



Table 8. The Importance of Being a Mammalian Researcher in Cambridge for Experimentation

Specific Tacit Information Effects on Experimentation

(1) (2) (3) (4) (5)
Mammal Focus Mammal Focus Bacteria Focus Bacteria Focus All Authors

Experimentation Experimentation Experimentation Experimentation Experimentation
(Ordered CRISPR) (Ordered CRISPR) (Ordered CRISPR) (Ordered CRISPR) (Ordered CBISPR)

Cambridge 0.0193*** -0.0038 0.0214* 0.0064 0.0074
(0.0043) (0.0051) (0.0085) (0.0082) (0.0060)

Berkeley -0.0001

(0.0056)

Average Impact Factor (3 years)

Total Papers in Top 1% of Citations

in US (3 years)

Mammal Lab

Bacteria Lab

Other Eukaryote Lab

Cambridge*Mammal Lab

Berkeley*Bacteria Lab

Constant 0.0235***

(0.0005)
Observations

Adiusted R2
80,386
0.0004

-0.0016

(0.0074)

0.0008***

(0.0001)

0.0253***

(0.0025)

0.0147***

(0.0007)

55,486
0.0163

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014; Dropped is No Dominant Lab in Model 5
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

0.0010

(0.0082)

0.0006**

(0.0002)

0.0252**

(0.0097)

0.0116

(0.0072)

0.0093***

(0.0008)

14,155
0.0015

-0.0005

(0.0051)

0.0008***

(0.0001)

0.0238***

(0.0021)

0.0046***

(0.0013)

-0.0075***

(0.0015)

0.0015

(0.0019)

-0.0098

(0.0078)

0.0013

(0.0097)

0.0104***

(0.0011)

0.0040***

(0.0011)

9,433

0.0087
88,588
001450.0015 00145



Table 9. The Importance of Being a Mammalian Researcher in Cambridge for Conversion

Specific Tacit Information Effects on Conversion

(1) (2) (3) (4) (5)

Mammal Focus Mammal Focus Bacteria Focus Bacteria Focus All Authors

Conversion Conversion Conversion Conversion Conversion

(Published | Order) (Published I Order) (Published I Order) (Published I Order) (Published | Order)

Cambridge 0.2531*** 0.1566** 0.0490 -0.1435* -0.1043*

(0.0490) (0.0541) (0.1049) (0.0688) (0.0511)

Berkeley 0.0205
(0.0744)

Average Impact Factor (3 years)

Total Papers in Top 1% of Citations

in US (3 years)

Mammal Lab

Bacteria Lab

Other Eukaryote Lab

Cambridge*Mammal Lab

Berkeley*Bacteria Lab

Constant

Observations

0.0907**
(00067)

1,934
00316l

0.0135
(().0801)

-0.0007
(0.0012)

0.0314***

(0.0074)

0.0979**
(0.0154)

1,374
0041)

0.1174

(0.1428)

0.1048***

(0.0278)
146 .00154
1468

0.2273
(0.1913)

-0.0079*
(0.0036)

0.0655
(0.0543)

0.0203
(0.0648)

-0.0004

(0.0012)

0.0318***
(0.0070)

-0.0790**

(0.0240)

-0.0607
(0.0409)

-0.0178

(0.0362)

0.2576***
(0.0738)

0.2389
(0.2152)

0.1731***

(0.0252)
0.1787**

(0.0608)

0.0385
87

0.0349

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014,; Dropped is No Dominant Lab in Model 5

+ p < 0.10, * p < 0.05. ** p < 0.01, *** p < 0.001

-4

Adjustsed R2/ .04.



Table 10. The Effects of Resources, Experience, and Breadth on Experimentation

Resource, Experience, and Breadth Effects on Experimentation

Central Location

(1)
Experimentation

(Ordered CRISPR)

0.0010

(0.0030)

(2)

Experimentation

(Ordered CRISPR)

-0.0005

(0.0032)

(3)
Experimentation

(Ordered CRISPR)

-0.0005

(0.0030)

(4)
Experimentation

(Ordered CRISPR)

-0.0003

(0.0030)

Average Impact Factor

(3 years)

Total Papers in Top 1% of

Citations in US (3 years)

Mammal Lab

Other Eukaryote Lab

Bacteria Lab

US Rank

Experience (Years)

Number of Published

Subjects

Constant

Observations

Adjusted R2

0.0008***

(0.0001)

0.0237***
(0.0021)

0.0044***

(0.0013)

0.0014

(0.0019)

-0.0075***

(0.0015)

0.0008***

(0.0001)

0.0193***

(0.0022)

0.0026+

(0.0014)

0.0003

(0.0020)

-0.0073***

(0.0016)

0.0000***

(0.0000)

0.0008***

(0.0001)

0.0237***

(0.0021)

0.0008

(0.0012)

-0.0035+

(0.0019)

-0.0106***

(0.0015)

-0.0088***

(0.0002)

0.0066***

(0.0004)

0.0105***

(0.0011)

88,588

0.0145

0.0139*** 0.0870*** -0.0113***

(0.0014) (0.0023) (0.0017)

73,391 88,588 88,588

0.0108 0.0478 0.0179

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014; Dropped is No Dominant Lab

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.00
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0.0007***

(0.0001)

0.0214***

(0.0021)

0.0053***

(0.0013)

0.0040*

(0.0019)

-0.0042**

(0.0015)



Resource. Experience. and Breadth Effects on Experimentation (cont.)

(5) (6) (7) (8) (9)
Experimentation Experimentation Experimentation Experimentation Experimentation

(Ordered (Ordered (Ordered (Ordered (Ordered

CRISPR) CRISPR) CRISPR) CRISPR) CRISPR)

CentralLocation -0.0005 0.0005 0.0004 0.0002 -0.0041

(0.0033) (0.0030) (0.0029) (0.0030) (0.0031)

Average Impact Factor

(3 years)

Total Papers in Top 1% of

Citations in US (3 years)

Mammal Lab

Other Eukaryote Lab

Bacteria Lab

US Rank

Experience (Years)

Number of Published

Subjects

R&D Expenditures per PI

(Millions)

Average Number of

Granting Agencies per

Paper

Total Number of Papers

(3 years)

Average Number of

Co-Authors (3 years)

0.0008***

(0.0001)

0.0211** *

(0.0023)

0.0035*

(0.0015)

0.0011

(0.0022)

-0.0068***

(0.0018)

0.0004***

(0.0001)

0.0197***

(0.0021)

0.0034**

(0.0013)

0.0018

(0.0019)

-0.0073***

(0.0015)

0.0010***

(0.0001)

0.0055**

(0.0021)

0.0071***

(0.0013)

0.0103***

(0.0019)

-0.0046**

(0.0015)

0.00)11***

(0.0001)

0.0274***

(0.0023)

0.0046***

(0.0013)

0.0010

(0.0019)

-0.0082***

(0.0015)

0.0091***

(0.0020)

0.0106***

(0.0007)

0.0054***

(0.0002)

-0.0010***

(0.0001)

0.0010***

(0.0001)

0.0041+

(0.0023)

0.0024+

(0.0014)

0.0061**

(0.0021)

-0.0056**

(0.0017)

-0.0000

(0.0000)

-0.0091***

(0.0003)

0.0055***

(0.0005)

0.0112***

(0.0021)

0.0026***

(0.0007)

0.0051***

(0.0002)

-0.0011***

(0.0001)

Constant 0.0063***

(0.0017)

Observations 66,975

Adjusted R2 0.0130

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014: Dropped

+ p < 0.10, * p < 0.05, ** p < 0.01. *** p < 0.001

0.0019 -0.0163*** 0.0124*** 0.0408***

(0.0012) (0.0014) (0.0011) (0.0029)

88,588 88.588 88.588 64.709

0.0227 0.0513 0.0175 0.0894

is No Dominant Lab
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Table 11. The Effects of Resources, Experience, and Breadth on Conversion

Resource, Experience, and Breadth Effects on Conversion

(1) (2) (3) (4)
Conversion Conversion Conversion Conversion

(Published I Order) (Published I Order) (Published I Order) (Published I Order)

Central Location 0.0698* 0.0647+ 0.0685+ 0.0623+

(0.0355) (0.0373) (0.0356) (0.0351)

Average Impact Factor

(3 years)

Total Papers in Top

1% of Citations in US

(3 years)

Mammal Lab

Other Eukaryote Lab

Bacteria Lab

US Rank

Experience (Years)

Number of Published

Subjects

-0.0003

(0.0012)

0.0353***

(0.0070)

-0.0649**

(0.0236)

-0.0150

(0.0361)

-0.0504

(0.0416)

-0.0001

(0.0013)

0.0393***

(0.0078)

-0.0843**

(0.0265)

-0.0504

(0.0383)

-0.0638

(0.0447)

-0.0003*

(0.0001)

-0.0002

(0.0012)

0.0348***

(0.0070)

-0.0650**

(0.0236)

-0.0142

(0.0361)

-0.0509

(0.0415)

-0.0007

(0.0012)

0.0288***

(0.0070)

-0.0635**

(0.0234)

-0.0054

(0.0359)

-0.0447

(0.0418)

0.0053

(0.0066)

0.0351***

(0.0067)

Constant 0.1596*** 0.1581***

(0.0249) (0.0299)

Observations 1,923 1,523
Adjusted R2 0.0329 0.0351

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014; Dropped is No Dominant Lab
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

0.1352*** 0.0256

(0.0382) (0.0338)

1,923 1,923

0.0328 0.0480
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Resource, Experience, and Breadth Effects on Conversion (cont.)

(5) (6) (7) (8) (9)

Conversion Conversion Conversion Conversion Conversion

(PublishedJ (Published| (Publishedj (Publishedj (Published

Order) Order) Order) Order) Order)

Central Location 0.0520 0.0702* 0.0562 0.0686+ 0.0396

(0.0361) (0.0355) (0.0351) (0.0354) (0.0375)

Average Impact

Factor (3 years)

Total Papers in Top

1% of Citations in US

(3 years)

Mammal Lab

Other Eukaryote Lab

Bacteria Lab

US Rank

Experience (Years)

Number of Published

Subjects

R&D Expenditures per

PI (Millions)

Average Number of

Granting Agencies per

Paper

-0.0002

(0.0013)

0.0424***

(0.0076)

-0.0868**

(0.0274)

-0.0447

(0.0404)

-0.0664

(0.0457)

0.0000

(0.0012)

0.0361***

(0.0069)

-0.0643**

(0.0236)

-0.0146

(0.0361)

-0.0516

(0.0417)

0.0007

(0.0012)

0.0215**

(0.0076)

-0.0573*

(0.0232)

0.0068

(0.0359)

-0.0358

(0.0411)

0.0005

(0.0012)

0.0401***

(0.0069)

-0.0612**

(0.0236)

-0.0161

(0.0360)

-0.0538

(0.0418)

-0.0126

(0.0218)

-0.0053

(0.0043)

Total Number of

Papers (3 years)

Average Number of

Co-Authors

(3 years)

Constant 0.1836*** 0.1676***

(0.0310) (0.0259)

Observations 1.475 1,923

Adjusted R2 0.0383 0.0331

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014: Dropped is No Dominant Lab

+ p < 0.10, * p < 0.05, ** p < 0.01. *** p < 0.001

0.0038***

(0.0008)

0.1017***

(0.0260)

1.923

0.0495

-0.0054***

(0.0016)

0.1712***

(0.0251)

1.923

0.0358

0.0007

(0.0014)

0.0286***

(0.0182)

-0.0753**

(0.0277)

-0.0250

(0.0405)

-0.0573

(0.0465)

-0.0002+

(0.0001)

0.0047

(0.0085)

0.0242*

(0.0094)

-0.0151

(0.0220)

-0.0011

(0.0049)

0.0032**

(0.0010)

-0.0048*

(0.0019)

0.0261

(0.0559)

1,357

0.0658
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Table 12. Comparison of the Experimentation and Conversion Models, All Factors

Comparison of Experimentation and Conversion Models

(1)

Central Location

Adoption

(Published in CRISPR)

0.0011

(0.0014)

(2)

Experimentation

(Ordered CRISPR)

-0.0041

(0.0031)

(3)
Conversion

(Published | Order)

0.0396

(0.0375)

Average Impact Factor (3 years)

Total Papers in Top 1% of

Citations in US (3 years)

Mammal Lab

Other Eukaryote Lab

Bacteria Lab

US Rank

Experience (Years)

Number of Published Subjects

R&D Expenditures per PI

(Millions)

Average Number of Granting

Agencies per Paper

Total Number of Papers

(3 years)

Average Number of Co-Authors

(3 years)

Constant

Observations

Adjusted R2

0.0001**

(0.0000)

0.0043*

(0.0018)

-0.0012+

(0.0006)

0.0006

(0.0009)

-0.0018*

(0.0007)

-0.0000+

(0.0000)

-0.0012***

(0.0001)

0.0004

(0.0003)

0.0015*

(0.0006)

-0.0000

(0.0002)

0.0013***

(0.0002)

-0.0002***

(0.0000)

0.0050***

(0.0011)

64,709

0.0293

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014; Dropped is No Dominant Lab

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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0.0010***

(0.0001)

0.0041+

(0.0023)

0.0024+

(0.0014)

0.0061**

(0.0021)

-0.0056**

(0.0017)

-0.0000

(0.0000)

-0.0091***

(0.0003)

0.0055***

(0.0005)

0.0112***

(0.0021)

0.0026***

(0.0007)

0.0051***

(0.0002)

-0.0011***

(0.0001)

0.0408***

(0.0029)

64.709

0.0894

0.0007

(0.0014)

0.0286***

(0.0082)

-0.0753**

(0.0277)

-0.0250

(0.0405)

-0.0573

(0.0465)

-0.0002+

(0.0001)

0.0047

(0.0085)

0.0242*

(0.0094)

-0.0151

(0.0220)

-0.0011

(0.0049)

0.0032**

(0.0010)

-0.0048*

(0.0019)

0.0261

(0.0559)

1,357

0.0658



Table 13. Comparison of the Experimentation and Conversion Models, All Factors

(Standard Units)

Comparison of Experimentation and Conversion Models

(1)
Adoption

(Published in CRISPR)

Central Location (std) 0.0046

(0.0059)

Average Impact Factor

(3 years) (std)

Total Papers in Top 1% of

Citations in US (3 years) (std)

Mammal Lab (std)

Other Eukaryote Lab (std)

Bacteria Lab (std)

US Rank (std)

Experience (Years) (std)

Number of Published Subjects

(std)

R&D Expenditures per PI

(Millions) (std)

Average Number of Granting

Agencies per Paper (std)

Total Number of Papers (3

years) (std)

Average Number of

Co-Authors (3 years) (std)

Constant

0.0168**

(0.0057)

0.0526*

(0.0223)

-0.0125+

(0.0067)

0.0042

(0.0058)

-0.0127*

(0.0050)

-0.0094+

(0.0052)

-0.1099***

(0.0094)

0.0131

(0.(086)

0.0112*

(0.0047)

-0.0036

(0.0183)

0.1502***

(0.0220)

-0.0479***

(0.0082)

0.0694***

(0.0087)

Observations 64,709

Adjusted R2 0.0293

Robust standard errors in parentheses

Orders can occur from Q3 2012 - Q4 2014; Dropped is No Dominant Lab

+ p < 0.10, * p < 0.05. ** p < 0.01. *** p < 0.001

(2) (3)

Experimentation Conversion

(Ordered CRISPR) (Published I Order)

-0.0061 0.0304

(0.0046) (0.0288)

0.0556***

(0.0048)

0.0173+

(0.0097)

0.0088+

(0.0051)

0.0136**

(0.0047)

-0.0131**

(0.0041)

-0.0033

(0.0047)

-0.2773***
(0.0081)

0.0573***

(0.0052)

0.0276***

(0.0051)

0.0663***

(0.0172)

0.2030***

(0.0096)

-0.0762***

(0.0058)

0.0156

(0.0304)

0.1354***

(0.0390)

-0.1084**

(0.0399)

-0.0229

(0.0371)

-0.0406

(0.0330)

-0.0535+

(0.0312)

0.0246

(0.0449)

0.1095*

(0.0426)

-0.0174

(0.0254)

-0.0076

(0.0331)

0.1287**

(0.0415)

-0.0619*

(0.0240)

0.1679*** 0.0096

(0.0079) (0.0350)

64.709 1,357

0.0894 0.0658
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11 Appendix A: Robustness

Table Al. Comparing CRISPR Orders from 2012-2014 to Orders from 2012-2013

Robustness Checks: Comparison of Experimentation Models

(1) (2) (3) (4)

Experimentation Experimentation Conversion Conversion

(Ordered CRISPR) (Ordered CRISPR) (Published I Order) (Published I Order)
2012-2014 2012-2013 2012-2014 2012-2013

Central Location -0.0041 -0.0014 0.0396 0.0868
(0.0031) (0.0024) (0.0375) (0.0589)

Average Impact Factor (3 years)

Total Papers in Top 1% of

Citations in US (3 years)

Mammal Lab

Other Eukaryote Lab

Bacteria Lab

US Rank

Experience (Years)

Number of Published Subjects

R&D Expenditures per PI

(Millions)

Average Number of Granting

Agencies per Paper

Total Number of Papers (3 years)

Average Number of Co-Authors

(3 years)

0.0010***

(0.0001)

0.0041+

(0.0023)

0.0024+

(0.0014)

0.0061**

(0.0021)

-0.0056**

(0.0017)

-0.0000

(0.0000)

-0.0091***

(0.0003)

0.0055***

(0.0005)

0.0112***

(0.0021)

0.0026***

(0.0007)

0.0051***

(0.0002)

-0.0011***

(0.0001)

0.0005***

(0.0001)

0.0049*

(0.0019)

0.0005

(0.0010)

0.0047**

(0.0016)

-0.0024+

(0.0012)

-0.0000

(0.0000)

-0.0044***

(0.0002)

0.0031***

(0.0004)

0.0085***

(0.0015)

0.0007+

(0.0004)

0.0029***

(0.0002)

-0.0006***

(0.0001)

0.0007

(0.0014)

0.0286***

(0.0082)

-0.0753**

(0.0277)

-0.0250

(0.0405)

-0.0573

(0.0465)

-0.0002+

(0.0001)

0.0047

(0.0085)

0.0242*

(0.0094)

-0.0151

(0.0220)

-0.0011

(0.0049)

0.0032**

(0.0010)

-0.0048*

(0.0019)

0.0036

(0.0026)

0.0200

(0.0138)

-0.0940*

(0.0444)

-0.0428

(0.0623)

-0.1514*

(0.0729)

-0.0005*

(0.0002)

0.0069

(0.0133)

0.0412**

(0.0159)

-0.0456

(0.0367)

-0.0273*

(0.0121)

0.0030*

(0.0013)

-0.0061+

(0.0034)

Constant

Observations

Adjusted R2

Robust standard errors in parentheses

0.0408*** 0.0148*** 0.0261 0.0491

(0.0029) (0.0019) (0.0559) (0.0950)

64.709 64,709 1,357 648

0.0894 0.0544 0.0658 0.0741
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12 Appendix B: Measures of Scientist Characteristics

Although we identify seven broad factors for experimentation and adoption in the literature,

we need to adapt these measures to fit with our sample of academic scientists.

12.1 Experimentation (Ordered CRISPR)

We use orders from the CRISPR Experimentation Data as an indicator of scientists

experimenting with the tool. If a unique identifier set is associated with a CRISPR order2s in 2012,

2013, or 2014, then we consider that author to be experimenting with CRISPR. It would also be

possible for an author to receive a CRISPR plasmid indirectly through a co-author, or someone else

who transfers it to them, but we see little evidence of this.

12.2 Adoption (Published in CRISPR)

We consider an academic author to have successfully 'adopted' if they publish a paper using

CRISPR any time through Q2 2016. We identify a CRISPR paper as any in our WOS subset that

mention "CRISPR" or "CRISPR/Cas9" in the WoS Keywords or in the abstract.

This definition may pick up papers that reference CRISPR but do not use the tool in an

experiment. To address this, we limit to cases where the author experimented with CRISPR first

and then published a CRISPR paper. Manual checking confirms that this restriction accomplishes

the goal we intend it to.

It is also possible that this definition misses papers where authors use CRISPR as a tool,

but do not mention it in the abstract or keywords. This is often a concern once a tool becomes

established, but in this very early segment of the CRISPR lifecycle, almost everyone wanted to

mention that they were using CRISPR. It was often a joke that including "CRISPR" in the abstract

of a paper submission would almost guarantee a publication in the earliest years.

Due to the early stage of CRISPR development (only five years since the first publication),

our definition of conversion will not capture papers where there are delays in publication. We

mitigate this by restricting orders to no later than 2014, but this is nevertheless a key part of our

definition of being an Early Adopter of CRISPR.

2M This characterization of the plasmid as being CRISPR is identified in the plasmid description, as a distinct tag.
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12.3 Conversion (Published in CRISPR having ordered it)

Conversion is defined by experimentation and adoption. We deem an author has converted

their experimentation if we see them adopt after having experimented with CRISPR, as described

above.

12.4 Location

Our dataset of authors is restricted to any author who has a US affiliation in WOS at the

time CRISPR's introduction (in either 2011 or 2012). Since being located near the original discovery

of a tool is expected to increase the likelihood of adoption, we go further to define an author as

being centrally located to the discovery of the CRISPR tool if they have a correspondence address

in WOS in Berkeley, CA or Cambridge, MA in 2011 or 2012.

12.5 Availability of Resources

The literature also suggests that authors with more resources are more likely to experiment

and adopt new tools possibly because they have less to lose from failure. Due to the large number

of authors in our dataset, it was not possible to get information on the amount of money available

to each individual. However, we developed proxy measures based on individual's university

affiliations and grants associated with their publication histories.

The first proxy we use is the rank of the US university that the author is associated with in

WOS. Universities with higher ranks usually have more funds available through grants and

endowments. Although there are many other factors that tie into university rankings. If an author

is associated with more than one US university in our dataset, we take the best rank (the rank

closest to 1). Ranks come from the 2012 US News & World Report on the best colleges in the US

(US News & World Report 2012). US university names between WOS and US News & World Report

were hand matched. In some cases WOS reported school names at a higher level than US News &

World Report, for example for some papers WOS would report "University of California System"

and US News & World Report would report "UC - Berkeley" and "UCLA" separately. In those

cases, only exact matches on the campuses were used. Any US universities remaining without a

rank after the hand match were given a rank of 200, lower than the lowest reported rank in US

News & World Report, 2012. Robustness tests show that this assumption does not influence the

results we observe.

In order to have the intuitive direction of the coefficients in our tables, i.e. a positive estimate

indicates that better ranks are more likely to explore / convert, we multiply ranks by negative one,
so that a higher rank is indeed better.
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We create a university-level variable for funding per principal investigator (PI) using the

National Science Foundation Higher Education Research and Development (HERD) Survey from

FY 2011. The FY 2011 HERD survey covers 954 US universities that granted a bachelor's degree

or higher and had at least $150,000 in R&D in FY 2011 (NSF 2012b). It reports expenditures on

research and development by university with headcounts. For our calculations, we use total R&D

expenditures by university for FY 2011 (Table 13) normalized by the total number of PIs (Table

42) (NSF 2012a). Again, university names were hand matched between WOS and HERD. If authors

were affiliated with more than one US university, the average expenditures per PI were used for

that individual.

Even within a university, scientists have different levels of available resources. We use grant

information available for each paper in the WOS to construct an individual-level resource variable.

Most papers in our dataset include a list of the number of grants and granting agencies that funded

the research (although dollar amounts are not included). We hypothesize that authors who are able

to receive money from more granting agencies on average have more available resources. To control

for authors with more years of experience, we calculate this variable as the average number of

granting agencies per paper for the 3.5 years prior to CRISPR (January 2009 - June 2012). To be

included, authors must have their first paper in our dataset prior to 2009 (i.e., we do not include

new entrants to the dataset in 2009-2012).

12.6 Ability to Apply New Technical Knowledge

The ability to apply the new technical knowledge is important for experimentation and

conversion because the more experience an individual has with a field and the more useful the tool

for that field, the more likely that person is to experiment in that field with the new tool. In the

CRISPR setting, scientists tend to work in three broad sub-communities based on biological cell

type: bacteria, mammals, and other eukaryotes (including yeast, plants, and insects). From

conversations with scientists who use CRISPR and the staff at Addgene, CRISPR can be used in

all cell types, but it is most useful for mammalian cells since there are very few alternatives available

for DNA editing there. It is easiest to use in bacteria since their biology is more amenable to DNA

editing.

To determine the primary focus of each lab we worked with an expert in synthetic biology

and genetic engineering, Aditya Kunjapur, a PhD student at MIT to create a dictionary of terms

that would most likely indicate whether a paper focused on bacteria, mammals, or other eukaryotes.

The terms are in the following table:
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A

To construct the percent focus of each author, we created dummy variables for each term

and assigned a 1 if the term was in a paper abstract and a 0 otherwise. This was done for all papers

from 2000 - June 2012. Then by author, we summed the number of terms associated with bacteria,

mammal, and other eukaryotes and divided each by the total number of terms in all papers for that

author. This results in the proportion of terms that focus on bacteria, mammal, or other eukaryote

an author uses prior to the introduction of CRISPR.

The continuous percent focus variables can be difficult to interpret, so we use binary

variables that put each author into four mutually exclusive categories based on their publication

history prior to June 2012. An author is considered having a dominant mammalian focus if her
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Other
Words from Abstracts Bacteria Mammal

Eukaryotes

bacillus 1

bacter 1

bacteria 1

coccus 1

coll 1

prokaryot 1

streptomyces 1

xanthomonas 1

AAV 1

adeno 1

animal 1

human 1

macaque 1

mammal 1

mice 1

mouse 1

rodent 1

arabidopsis 1

Drosphilia 1

elegans 1

eukaryot 1

fish 1

frog 1

fungi 1

insect 1

plant 1

Xenopus 1

zebrafish 1



mammalian percent focus is greater than 60%, she has a dominant bacteria focus if her bacteria

percent focus is greater than 60%, or she has an other eukaryote focus if her other eukaryote percent

focus is greater than 60%. If an author is not in one of these categories because their prior research

covers a mixture of mammal, bacteria, or other eukaryotic organisms, they are placed in a No

Dominant Lab category.

Another useful measure for author experience is the total number of papers an author has

been able to publish, indicating success in shepherding a new idea to fruition in the past. Again, to

control for authors with more experience, we calculate this variable as the total number of papers

in WOS for the 3.5 years prior to CRISPR (January 2009 - June 2012). To be included, authors

must have their first paper in our dataset prior to 2009 (i.e., we do not include new entrants to the

dataset in 2009-2012).

Our final measure of experience is the total number of years an author has in our dataset.

This is calculated as 2012 (the year CRISPR was introduced) minus the first year an author's paper

appears in our WOS dataset. So if an author's first paper is observed in 2000, they are considered

having 12 years in our dataset. Because our dataset begins in 2000, there is some early truncation,

but the majority of first papers come after 2005.

12.7 Opinion Leadership

Individuals who are early adopters of a technology often have influential opinions that

persuade others to adopt in the future. In the academic sciences, one way to measure influence of

an author is to observe the types of journals in which he or'she publishes. Journals with high impact

factors are highly cited and positively influence future research. To obtain the journal impact factor

for each paper we match the journal title in WOS to the journal title in the InCites Journal Citation

Reports published by Thompson Reuters (now Clarivate Analytics) for 2012. The report provides

the impact factor for 2012 and the average impact factor for the previous 5 years.

Although impact factors remain relatively consistent year to year, we choose to use the

average 5-year impact. By author, we take the average 5-year impact over her papers to measure

influence. Again, to control for authors with more experience, we use the number of papers in WOS

for the 3.5 years prior to CRISPR (January 2009 - June 2012). To be included, authors must have

their first paper in our dataset prior to 2009 (i.e., we do not include new entrants to the dataset in

2009-2012).

12.8 Social Participation

Early adopters tend to be well connected in their field and socially. For academic scientists,
one way to measure the relative number of connections they have in their field is to calculate the
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average number of co-authors a focal scientist has per paper. To calculate this we count the number

of co-authors per paper and then take the average by focal author. This is the simple average of

co-authors, so repeat co-authors of a focal author will be counted every time they appear. We

control for authors with more experience by using the number of papers in WOS for the 3.5 years

prior to CRISPR (January 2009 - June 2012). To be included, authors must have their first paper

in our dataset prior to 2009 (i.e., we do not include new entrants to the dataset in 2009-2012).

12.9 Novelty

Azoulay et al. (2011), showed that one way to measure creativity and novelty is to count

the number of top citations an author has adjusted for the publication cohort year. WOS provides

the number of citations a paper has received as of Q2 2016, so we calculate the number of papers

in the top 1% of citations by author. To be included, authors must have their first paper in our

dataset prior to 2009 (i.e., we do not include new entrants to the dataset in 2009-2012). We first

rank the papers in our WOS dataset for these authors by the number of citations they have received

by Q2 2016 and by year of publication. We adjust by year since papers published in 2009 have

more years to accumulate citations than papers published in 2012. If the paper ranks in the top 1%

of citations for the included papers each year, it receives a 1 and a zero otherwise. We then sum

the papers in the top 1% by author.

12.10 Breadth of Research Field

Previous research has also suggested that experimenters and entrepreneurs are able to

connect with a broader number of fields rather than focusing on one unique specialty. To measure

breadth in the CRISPR setting, we count the number of WOS categories an author's work appears

in from 2000 - June 2012. The categories are restricted to those six used to create our subset:

Genetics & Heredity, Cell Biology, Biotechnology & Applied Microbiology, Biochemistry &

Molecular Biology, Biochemical Research Methods, and Multidisciplinary Studies for the journals

Nature, Science, PLOS One, and PNAS.

- 130-



13 Appendix C: Name Disambiguation and Publication
Matching

13.1 Overview

For every plasmid order in the CRISPR Experimentation Dataset we have unique identifiers,

including the full name of the principal investigator (PI), the organization they were affiliated with,

the country, and the state if in the US. The initial PI database has 67,466 PI-organization pairs

since PIs can be associated with more than one organization. The system initially treats every

variation in a PI name as a separate researcher, so it was necessary to first consolidate the list of

PIs before matching to publications in Web of Science (WOS). For example, Jane A. Scientist, Dr.

Jane A. Scientist, and Scientist Jane all at "Research U" would appear as three people. But, given

the distinct last name and identical location, these indicate the same person.

The principal steps in our consolidation algorithm are:

(1) Clean the name strings for easier comparison,

(2) Calculate 'string distance' measures between a focal name and the other 67,466 names and

define potential matches using reasonable thresholds that change based on frequency of last

name,

(3) Run a set of tests that determine whether the two names are a likely match, and

(4) Use transitive connections to complete the formation of groups.

We create a validation set of 50 random records and find that the algorithm has a 96.5% accuracy

rate in that set. We provide additional details on the algorithm steps below.

13.1.1 Name String Cleaning and New Variable Creation

To create the consolidation algorithm, we begin by cleaning the PI names including removing

punctuation, eliminating numerical digits and non-ASCII characters, and removing any trailing or

leading titles including variations on Dr. and Professor. We convert the name strings to lowercase

to avoid differences due to capitalization choices. Before removing all spaces, we separate out the

last string after the last space and assume that is the PI's last name.

We make some manual changes to the cleaned full and last names based on the number of

spaces appearing in the original (pre-cleaned) PI name, assuming there should be at least one space

in a name and no more than three. We made the following manual changes on top of the cleaned

full and last names:

• In all cases we removed additional suffixes and titles that were not found by our initial

cleaning of the data due to lack of a space.

• Changed the order of names if entered as "last,first."
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• Did a web search for common names and locations to determine which may be different

people.

• Removed extraneous notes in name fields.

• Used the first PI if a list of PIs was given.

The remainder of the algorithm uses the full and last names that incorporate both the coded and

manual cleaning for the best results. Based on the last name column, we calculated the frequency

of the last name in the dataset for use in the matching algorithm.

13.1.2 Determining Potential Matches

Because the names in the CRISPR Experimentation Dataset are sometimes missing,
misspelled, or otherwise idiosyncratic (even for the same author), the algorithm uses fuzzy matching

to determine whether any two names are potential matches. We first create a list of the 67,466

names and set a loop to compare one focal name to every other name in the list, so name 1 is

compared to names 1-67,466, then name 2 is compared to names 1-67,466, and so on until name

67,466 is compared to names 1-67,466. We use a number of different tests of 'string distance' in the

comparisons so that closeness is not determined by only one measure. Thresholds for each of the

tests are determined based on how common the last name is in the full dataset.

For each last name, the loop first determines how common it is (below the median, in the

top 25% of names, or between the median and top 25% of names). Then, each pair of full names is

compared using cosine distance (based on letters), Levenshtein distance, and longest common

substring distance (van der Loo 2014). For each distance measure an exact match between two

names is zero so we set broad and narrow thresholds greater than zero for being "close." The narrow

thresholds require the names to be near exact. The broad thresholds allow for more flexibility in

differences between the names. For example, the Levenshtein distance counts the number of

deletions, insertions, and substitutions needed to turn string A into string B. For the least common

names in our database, the narrow threshold allows three letters to be different and the broad allows

six letters to be different. This process is repeated for last names only. This results in 12 tests per

pair of names with the thresholds determined by how frequently the last name appears in the

dataset.

Since each of these tests has some power, but is not decisive, we evaluate whether two names

are a potential match using an ensemble method from machine learning: if 75% of the tests return

positively, we consider the pair to be a potential match. The thresholds used for each test by last

name frequency are in the table below.
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Narrow Threshold Broad Threshold

Longest Longest

Cosine Levenshtein Common Levenslitein Common
Cosine Distance

String Tested: Distance Distance Substring Threshold Distance Substring

Threshold Threshold Distance Threshold Distance

Threshold Threshold

Last Name in Top 25% of Last Names

Full Name 0.01 1 1 0.05 2 2

Last Name 0.02 2 2 0.07 3 3

Last Name Between Top 20% and 50% of Last Names

Full Name 0.05 3 3 0.1 6 6

Last Name 0.05 3 3 ().1 6 6

Last Name in Bottom 50% of Last Names

Full Name 0.05 3 3 0.1 6 6

Last Name 0.05 3 3 0.1 6 6

13.1.3 Tests for Paired Name Matches

Once the algorithm determines that a pair of names is a potential match, it will consider

the pair a true match if at least one the following conditions are met. For names in the top 25% of

the distribution and between the top 25% and 50%, a pair of names are a match if (1) the P1 IDs

are the same, (2) if the full names are an exact match and the locations are the same, or (3) the full

names are a close match and the locations are the same. For names in the lower half of the

distribution a pair is a match if any of the same criteria hold or (4) the last names are an exact

match and the locations are the same.

13.1.4 Including All Paired Names in One Group

Because the algorithm tests each name separately against all others, it is possible that name

A will be considered a match for name B and name B is a match for name C, but that names A

and C will not be a match. For example, consider the following records:

1 1 janescientist scientist 1

2 1 janescientist scientist 2

3 2 scientistjane jane 1

Here, the algorithm would consider rows 1 and 2 a match because they have the same ID. Rows I

and 3 would also be a match because the names are close and the location is the same. Rows 2 and

3 are not a match however, because although the names are close, the ID and location are different.
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These are clearly the same person, though and should be considered one group. To solve this

problem, we find the transitive closure 18 of each group using the iGraph package in R. This results

in a matrix that has identical rows for each group of names. For each group of identical rows, we

assign the group the minimum PI ID number to maintain consistency with the original CRISPR

Experimentation Dataset. This process results in 54,133 consolidated IDs.

13.1.5 Algorithm Validation

To test the accuracy of the algorithm, we randomly selected 50 rows and hand-coded whether

each name was a match to the 67,466 names. We then ran the algorithm on the same 50 rows and

compared the resulting matches. We find that 100% of the algorithm matches are true matches.

We test whether the algorithm is conservative, perhaps not matching some true matches. We find

that of 86 'true' matches (i.e. hand-coded ones), the algorithm successfully captured 83 of these.

Thus, even with our conservative approach, we correctly identify 96.5% of the true matches (83/86)

in our test set.

13.2 CRISPR Experimentation Dataset to WOS Matching

We use a nearly identical process to the consolidation algorithm described above to then

match the 54,133 CRISPR Experimentation Dataset names to authors in Web of Science, but with

a little pre-processing. In particular, because there are 4.4 million authors in the WOS data, it

would be computationally intractable to computer our approach for a 54K by 4.4 million matrix.

To address this, we preprocess to exclude WOS names that would never be a match for CRISPR

Experimentation Dataset name. We assign each CRISPR Experimentation Dataset name and each

WOS name a "group name" that consisted of the first initial and last name. We then created a list

of group names that were common to the CRISPR Experimentation Dataset and WOS. For each

of those common group names, we created separate CSV files for the CRISPR Experimentation

Dataset and WOS. The matching algorithm then loops through each group name, selects the

appropriate CSV files to be compared, and runs the same consolidation algorithm on each name

within the group files. The matches are recorded in a separate file and duplicate records are removed

at the end. The final author IDs, by construction, are still the minimum PI ID.

The only additional modification is that CRISPR Experimentation Dataset and WOS

locations are not identical. The CRISPR Experimentation Dataset and WOS locations were hand

matched and assigned a location ID so that the algorithm could be used in the same way as above.

18In Graph Theory this is also called graph closure. It simply means that if A is matched to B, and B to C, then A should be
matched to C, even if they wouldn't independently be matched.
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Chapter 3

Running with (CRISPR) Scissors:

Tool Adoption and Team Assembly

1 Introduction

Some of history's greatest technological advances can be attributed to research tools.

Research tools include physical inputs into the process of discovery and can be inventions of a

method of invention with large economic impacts across a range of domains (e.g., Griliches 1957;

Walsh, Arora, and Cohen 2003; Cockburn, Henderson, and Stern 2017). For example magnification

provided by microscopes allowed Antony Van Leeuwenhoek to first observe bacteria, critical to

today's understanding of biology and medicine (Wills 2018). The introduction of Polymerase Chain

Reaction (PCR) by Kary Mullis allowed scientists to make copies of DNA which improved the speed

of diagnostic tests and revolutionized the way scientists manipulated genetic material (Rabinow

2011). The statistical software package STATA improved researcher productivity in many domains,

including economics, finance, epidemiology, political science, and sociology (Pinzon 2015).

Technological progress requires domain knowledge as well as tools (e.g., Rosenberg 1982,

1994, 2009; Nelson 1981, 2003; David 1990; Bresnahan and Trajtenberg 1995; Rosenberg and

Trajtenberg 2004). For example, advances in microscopes and molecular pathway knowledge lead

to medical breakthroughs. Over time, the combination of new tool and domain knowledge leads to

an ever-larger knowledge base from which innovation emerges (Cohen and Levinthal 1989;

Weitzman 1998; Fleming 2001; Mokyr 2002; Wuchty et al. 2007; Schilling and Green 2011).

Research tools require adopters to both have access and the ability to apply the tool in a

domain (Teece 1986; Scotchmer 1991; Weitzman 1996; Fleming 2001). Tools often embed sufficient

know-how so that primarily access to the tool lowers research costs to innovators in the domain and

lowers entry barriers to external innovators (e.g., Furman and Stern 2011; Williams 2013; Murray

et al. 2016). But not all new tools embed their necessary know-how. In order to effectively apply

such tools, early adopters must acquire complementary tool-specific know-how. This additional

input to knowledge production is distinct from human capital in the domain and physical capital in

the tool. Since the complementary know-how is crucial for the adoption of a new tool that can

advance technological progress this paper explores the question: How do early teams acquire the

tool-specific know-how necessary to innovate with a new research tool?

The amount of complementary specialized tool know-how is not binary, but rather varies

along a continuum. Ex ante, newly introduced tools can require more complementary know-how in
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some domains than others. Over a set of these domains on the continuum, the complementary

know-how can come from teams internal to a domain or external specialists in the tool not associated

with the domain. Over the range of domains where there is a choice of where to acquire

complementary know-how, internal domain teams face a form of the "make or buy" problem over

whether to learn the complementary know-how or collaborate with external specialists (e.g., Coase

1937; Williamson 1975, 1985). For example, consider a research team's decision to use advanced

Artificial Intelligence (Al). If the team does not have employees trained in the technology, it must

either provide incentives for employees to learn Al themselves or it must find and pay for external

specialists, either through training or hiring.

When tools are new, external tool specialists are scarce, giving them a separate choice of

which domain teams to join, introducing a two-sided market matching problem (e.g., Gale and

Shapley 1962; Roth 1984). External tool specialists can either choose to join teams in easier domains

where they can apply the tool quickly and broadly or they can choose to join teams in difficult

domains where the problems are complex and solutions are potentially more influential. The decision

of where and how to work with scarce external tool specialists to acquire complementary tool know-

how is one firms, mangers, and individual innovators face repeatedly as they innovate.

Given the costs and benefits of collaboration and a scarce supply of external tool specialists,
it is not immediately clear which domains are likely to attract external tool specialists into effective

collaborations more often. However, it is reasonable to hypothesize that team assembly to acquire

complementary tool know-how varies by the difficulty of using the tool in the domain and that the

ex ante complexity of the domain determines where external tool specialists match with domain

teams most often.

One concern with empirically studying knowledge recombination using research tools is that

external tool specialists can contribute to the innovation process by providing access and by sharing

complementary information about how to use the new technology (Polanyi 1962; Zucker and Darby

2001; Murray 2002). However, access does not necessarily lead to the ability to use a tool (e.g.,
Cohen and Levinthal 1990; Ahuja & Katila 2001; Zahra and George 2002; Thompson and Zyontz

2017). External specialists' contributions to the application of a new technology apart from access

are difficult to identify empirically because access is commonly conflated with the ability to use the

tool or tool and domain knowledge develop concurrently (e.g., Furman and Stern 2011; Murray et

al. 2016; Teodoridis 2018).

To identify whether and where external tool specialists provide specialized complementary

tool know-how to create early innovations, an ideal setting would separately identify external tool

specialists. The setting would also allow access to be tracked separately from the ability to use the

tool. Finally, the ex ante difficulty of applying the tool should vary across domains, and the tool
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should enter different domains randomly. Such an environment does not occur naturally, but the

recent introduction of the DNA-editing tool, CRISPR, provides a novel and approximate setting.

CRISPR is a naturally occurring immune response in bacteria that proved to be a powerful

editing tool for DNA modification in almost any organism. The CRISPR tool was first introduced

between June 2012 and January 2013 when researchers from Berkeley, MIT, and Harvard

demonstrated that CRISPR could be used to edit DNA in both bacteria and mammals. CRISPR

is a substantial improvement over existing DNA editing tools especially for researchers working in

mammalian cells (Zyontz 2016). For mammalian researchers, it represented a long-term reduction

in research costs and an unanticipated increase in new opportunities across a wide range of domains.

CRISPR has incredible promise in human disease domains caused by genetic mutations,

such as infections, viruses, and inherited genetic diseases. However, not every such disease received

access to CRISPR at the same time, as much as researchers wanted to adopt the tool. Although

CRISPR works similarly once delivered into a cell affected by a disease, certain cells are biologically

more difficult to edit than others. This imposes natural delays on when CRISPR can be applied to

a particular disease, since researchers must first overcome this delivery problem. The unanticipated

timing of the CRISPR tool introduction to different human disease domains mitigates some of the

endogeneity inherent in adoption and helps to identify the knowledge bases of the innovators

responsible for the articles that use CRISPR in a disease.

Specifically, the CRISPR tool was not originally developed for any specific domain

application because it was a shock to gene editing. It took almost another year for a human disease

application to appear. This established a set of separate CRISPR tool specialists not associated

with a disease but whose know-how would be useful in any disease domain. In the earliest years

(2012 - 2016), the primary adopters of CRISPR were academic scientists so it is possible to use

historical publications from PubMed to separately identify external tool specialists from domain

specialists in CRISPR.

Because biological materials are often transferred between labs, science settings can conflate

the different access and complementary know-how contributions of an external tool specialist.

Material Transfer Agreements (MTAs) can delay access or require co-authorships for the receipt of

the materials (Walsh, Cohen, and Cho 2007; Strandberg 2010). The CRISPR setting circumvents

these concerns by having a biological resource center that breaks the link between contracting for

access to the tool and acquiring complementary know-how from external specialists. From 2012-

2016, Addgene was the primary distributor of CRISPR to academic researchers and as a third-party,
eliminated the need for scientists to sign MTAs directly with other academics. Thus any external

tool specialists observed entering a new domain in this setting primarily represent value added know-

how rather than the price of access.
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The results show that the share of external tool specialists on new CRISPR papers in a

disease is significantly larger in more difficult disease domains, suggesting that the match between

external tool specialists and domain teams occurs more often in domains that focus on solving

influential problems rather than the breadth of implementation. The share of external tool

specialists also increases for subsequent CRISPR papers in difficult disease domains, so the effect

does not attenuate immediately. The paper is the first to introduce CRISPR as a setting to

empirically study how teams form to effectively overcome tool adoption barriers in know-how. It

also uniquely shows that effective team composition is driven by the specific nature of the problem

and the nature of tools available for innovation, not just features of management, organizational

structure, or industry. As more tools emerge that require the acquisition of complementary tool

know-how, like Al, research teams looking to be early adopters of such tools will have to weigh the

complexity and importance of their possible solutions in considering how best to attract and

collaborate with external tool specialists.

Section 2 discusses the relevant literature on knowledge inputs to innovation production and

the choices faced by internal domain teams and external tool specialists. Section 3 provides details

on the CRISPR setting. Section 4 outlines the identification and empirical specifications used for

the analysis. Sections 5 and 6 describes the measures constructed and results. Section 7 provides

a discussion of the results and concludes.

2 Tools as Inputs to Innovation Production

The recent emergence of Al can be used to innovate in a range of applications including

natural language processing, image recognition, enhanced data security, and smart products like

cars (Marr 2016). Using Al tools as inputs to innovation in these areas requires more than just

accessing an off-the-shelf product. Al also requires adopters to acquire specialized knowledge and

skills including coding, training models, building computing infrastructure, and scaling for firm-wide

implementation. The amount of complementary knowledge needed varies by application area. From

a firm's perspective, it can either have their employees learn the complementary Al know-how

internally or can bring in external AI specialists. External specialist know-how can be useful across

Al applications, but when external specialists are scarce they also get to choose the application areas

in which to collaborate. For example, the initial team at Google working on the self-driving car

consisted of Google-X employees with engineering and Al experience. The team could have

eventually learned the complex complementary Al know-how internally, but instead Google-X

collaborated with a specialist previously running the Stanford Artificial Intelligence Laboratory at

Stanford University, Sebastian Thrun (Dallon 2017). However, Dr. Thrun's also had the viable

choice to join the team or work on different applications since his skillset was rare.

138-



The Al anecdote illustrates how recombining external specialized know-how with internal

domain knowledge can help research teams move from access to ability to use a new tool. It also

suggests that complexities in a domain may influence the match between internal domain teams

and external know-how. External tool specialists may be attracted to teams doing more complex

and influential work when their skillsets are in demand and scarce.

2.1 Research Tool Adoption and Innovation

Research tools are types of inputs to innovation distinct from human capital in a domain.

Tools are integral to technological progress in an application domain because they often embed their

own know-how, allowing users to apply the tool without understanding why it works (Mokyr 2002).

Access to these tools helps to lower the costs of research to innovators in the domain and invites

those outside of the domain to make new contributions (e.g., Furman and Stern 2011; Williams

2013; Murray et al. 2016; Teodoridis 2018; Furman and Teodoridis 2018).

Much of the traditional adoption literature focuses on the diffusion of products throughout

their lifecycles and their role in economic growth or social returns. Related literature discusses the

types of individuals who adopt these products, but neither focuses directly on the role of research

tools in creating innovations. Some of the earliest work on product adoption looked at the social

rate of return to hybrid corn research (Griliches 1957, 1958) and showed that although there is a

high return to investment, it takes time for products to diffuse due to both availability and

acceptance. Locations most in need of the new product will likely adopt it sooner, but even within

an area diffusion occurs in an "S-shaped" pattern as some individuals wait to adopt. Complementary

work on adopter types showed that the earliest product adopters at the beginning of the S-curve

are influential in their fields, have resources to adopt, and have the ability to incorporate the new

products (Rogers 1962).

The literature on general purpose technologies (GPTs) also focuses on the role of

technological progress to economic growth. GPTs can be technologies such as semiconductors (e.g.,
Bresnahan and Trajtenberg 1995), steam engines (Rosenberg and Trajtenberg 2004), or information

and communication technologies (e.g., David 1990). GPTs generally are considered enabling

technologies that encourage economic growth in a large range of downstream sectors through a

positive feedback loop between a GPT producer and downstream markets as each makes

complementary improvements to the GPT (Bresnahan and Trajtenberg 1995). Different sectors

may delay adopting the GPT depending on when it is most valuable.

Innovation as an outcome for research tool adoption is more common in empirical work that

focuses on access. Access to research tools has been shown to lead to an increase in the rate and

changes to the direction of innovation in a number of settings (e.g., Moser 2005; Azoulay et al 2009;

Furman and Stern 2011; Sampat and Williams 2019; Murray et al. 2016; Teodoridis 2018). However,
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these papers tend to focus on access to tools that reduce the cost of research quickly with little tool-

specific know-how needed. Further, it is assumed that the new and broader work is due to

innovators using the tool they can now access. That mechanism is not assured though since the

tool is rarely tied directly to the new papers or products.

Furman and Teodoridis (2018) have one example of tool know-how interacting with different

domains, but even in the case of Kinect, the tool is assumed to reduce the cost of research at the

time of access with little variation. Therefore it is not possible to use the difficulty of applying the

tool to understand how tool specific know-how is incorporated. Further the authors, by necessity,
assume that the internal and external researchers they study are using the Kinect tool. Nagle and

Teodoridis (2017) take a more direct look at the role of researchers who use Kinect and show that

it is generalists who tend to bring the new tool into teams. Once again, because the costs of Kinect

do not vary by domain, they cannot address how their outcomes might change as the tool is more

difficult to use and the problems become more complex or influential.

This paper adds to the literature on research tool adoption and innovation by introducing a

way to empirically observe innovations directly due to a tool that not only requires complementary

know-how to use but the amount necessary varies by application domain. It also uniquely shows

both the nature of the problem and the nature of tools available for innovation affect successful

team composition, not just features of management, organizational structure, or industry.

2.2 Research Tools and Complementary Know-How

Many tools that have been historically important for technological advancement are those

that eventually embed the necessary know-how in the physical product including hammers, scissors,
microscopes, steam engines, automobiles, or telephones. For these, the decision to adopt is mostly

rooted in access to the tool.' However, some tools when first introduced do not embed necessary

know-how and require the user to learn complementary know-how even after obtaining access. For

example, tools like early wind tunnels, the first computers, or early software packages like STATA

all embedded some of the underlying knowledge of physics, computing algorithms, or statistics.

However, users required additional knowledge of the tool in order to apply it to different problems.

For example, the earliest versions of STATA could run multiple regression analysis directly, but

time-series analysis and other more advanced statistical models still needed to be programmed by

the user (Pinzon 2015).

The above might suggest that tools should be classified dichotomously - those that need no

additional know-how and immediately lower learning costs versus those that need a host of

complementary know-how to bring learning costs down. However, this is an oversimplification.

1 Although, at introduction, many tool embed less of their own know-how than they do after they become more routinized.
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Instead, it is possible to think of tools appearing on a continuum based on the amount of

complementary know-how needed to employ the tool in a domain at a particular time. Some tools

like hammers are introduced with all necessary embedded know-how so their positions on the

continuum generally do not change over time. Other tools embed a greater amount of knowledge

over time. Continued use of these tools bring about improvements in performance and modifications

that embedded more knowledge in the tool itself. For example, as users created code for more

advanced statistical models, later versions of STATA included those updates so that non-

statisticians could apply the models just as easily. Thus later versions of the tool can appear in

different locations on the continuum than the original. Finally, the same tool can appear in different

locations on the continuum based on the application domain at a given point in time.

If tools lie on a continuum of least to most necessary complementary know-how, then there

is a range of tools that require the user to learn complementary know-how as an additional input to

innovation. One option for adoption of tools within this range is to delay until the tool is improved

and embeds enough needed know-how, which is an aspect of adoption discussed in the adoption

literature (e.g., Griliches 1957, 1958). However, our understanding of how early users adopt tools

when this complementary know-how is still needed is incomplete. Understanding how early teams

form to effectively adopt tools that require complementary know-how and use them in innovations

provides a better idea of the choices that shape early adoption and the innovative paths that are

formed from these early decisions by successful teams.

For teams already in an application domain that want to be early adopters, they can choose

to learn the necessary know-how internally or they can collaborate with external tool specialists,

those that acquired the tool know-how independent of a domain. However, external tool specialists

are scarce in this early stage and can choose in which domains to work. Effective collaborations

will only occur in domains where there are sufficient incentives for both sides.

2.3 Domain Team Choices

Over a range of domains where a newly introduced tool requires the user to learn

complementary know-how, teams that want to be early adopters face a form of the "make or buy"

problem (e.g., Coase 1937; Williamson 1971, 1975, 1985; Grossman and Hart 1986). Teams can

invest time learning the tool know-how internally (through the team leader or another team

member). Alternatively, they can choose to acquire the know-how from external tool specialists

who developed human capital in the tool independent of the domain (e.g., Cassiman and Veugelers

2006 and Grigoriou and Rothaermel 2017). However, in order to successfully use external knowledge,

an organization must not only have access to the new knowledge but must also have the resources

and ability to incorporate it (Cohen and Levinthal 1990).
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The choice to internally learn the complementary know-how or acquire it from external tool

specialists involves weighing the costs and benefits of each option. For example, learning internally

has the benefit of providing the internal domain team control over its work, making it more self-

sufficient for future innovations. The drawback is that learning a new tool can take time, possibly

causing the team to give up a first mover advantage (Jones 2009). Collaborating instead with

external specialists can reduce the time it takes to apply the tool since the specialists bring the

complementary know-how with them (e.g., Arora and Gambardella 1994; Wuchty et al. 2007; Uzzi

et al. 2013). However, collaborations have inherent frictions that need to be overcome before the

tool can be applied so there is a risk that the collaboration could fail (Cummings and Kiesler 2007;

Bikard et al. 2015). Internal domain teams will seek external tool specialists if the difference

between the costs and benefits of collaborating is greater than the difference between the costs and

benefits of learning internally.

2.4 External Tool Specialists Choices

Although innovation often emerges from a recombination of previous ideas (e.g., Scotchmer

1991; Fleming 2001; Kaplan and Vakili 2015), researchers need both access to a tool and the ability

to incorporate specialized tool know-how (Teece 1986; Scotchmer 1991; Weitzman 1996; Fleming

2001) to successfully innovate. However, access does not necessarily lead to the ability to use a tool

(e.g., Ahuja & Katila 2001; Zahra and George 2002; Thompson and Zyontz 2017). External tool

specialists can contribute to the innovation process by sharing information about how to use the

new technology (Polanyi 1962; Zucker and Darby 2001; Murray 2002).

When a research tool is introduced, the stock of external tool specialists is initially small. If

there is a rush to use the new tool, scarce external tool specialists can choose the teams and domains

where they wish to share their complementary tool know-how. If external tool specialists choose to

collaborate with a team, it may be because collaborations are increasingly common and they have

been shown to result in higher productivity and higher quality ideas (Adams et al. 2005; Stephan

2012; Gans and Murray 2014). By collaborating with teams in easier domains where the tool needs

less complementary know-how, external tool specialists can be more productive and broadly apply

the tool to more domains quickly. On the other hand, by collaborating with teams in difficult

domains where the tool needs more complementary know-how, external tool specialists can work on

more challenging and complex problems where the possible solutions are highly influential. The

external tool specialists' choice creates a two-sided matching market for the scarce human capital

in the complementary tool know-how. Internal domain teams and external tool specialists will only

collaborate in domains where there is a match on both sides.

Given the costs and benefits of collaboration to internal domain teams and external tool

specialists, it is not ex ante obvious which kinds of domains are likely to attract external tool
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specialists into collaborations more often. However, it should be the case that the ex ante difficulty

of an application domain will determine where the successful matches occur. To test how early

teams acquire specialized complementary tool know-how to produce innovations, the recent

introduction of the DNA-editing tool, CRISPR, provides a novel setting where the knowledge bases

of the earliest innovators can be separately identified using natural variation in CRISPR's entry

into different domains. The next section describes CRISPR and useful factors of the setting.

3 Gene Editing with CRISPR

CRISPR provides a unique setting for exploring how innovative teams acquire specialized

complementary tool know-how. First, CRISPR was an unexpected shock to gene editing researchers

and the DNA-editing tool's use has exploded since its introduction. Second, access to the tool is

widely available through the biological resource center Addgene, alleviating the need for material

transfer agreements between labs. Third, CRISPR can be applied to many different disease domains

but was not developed for a particular application. The difficulty of applying CRISPR to different

diseases varies based on natural properties of the cells to be edited.2

3.1 Gene Editing Before CRISPR

DNA editing has led to many advances including the creation of model organisms and the

modification of existing organisms since its introduction in the early 1970s. These advances allowed

researchers to better understand human disease and to create useful products like pesticide resistant

crops. For bacteria or other prokaryotes that have cells without nuclei, relatively easy editing

techniques existed prior to CRISPR. However, for higher-order species, like mammals, even recent

editing alternatives like Zinc Finger Nucleases (ZFN) and Transcription Activator-Like Effector

Nucleases (TALENs) (Moscou and Bogdanove 2009; Boch, et al. 2009) are difficult and time-

consuming to use. Despite this, TALENs was chosen as "Method of the Year" in 2011 (Method

2012) because of the advancements it represented. Only a few months later, CRISPR came as a

surprise to researchers working in gene editing. The new CRISPR tool acts like a pair of universal

DNA scissors that work across organisms and is a much more flexible option for DNA editing than

any other tool, especially for complex organisms like mammals.

2 Further details on CRISPR. and its introduction to gene editing beyond those provided in this section can be found in Zyontz

(2016) and Thompson and Zyontz (2017).
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3.2 CRISPR

The exact purpose and function of CRISPRs, short for Clustered Regularly Interspaced

Short Palindromic Repeats, were not well understood until 2007 when it was discovered that the

unique DNA sequences are an adaptive part of the bacterial immune system (Barrangou et al. 2007).

Bacteria use CRISPR sequences to recognize viral DNA and then use a related enzyme (often the

Cas9 protein) to cut up invading viral DNA and destroy the virus.

In June 2012, Professors Jennifer Doudna and Emmanuelle Charpentier at the University of

California, Berkeley first introduced a modifiable CRISPR system for DNA editing (Jinek et al.

2012). Doudna and Charpendier proved in test tubes that the CRISPR system could find and edit

any DNA sequence (not just viral) using programmed guide sequences to direct the cutting enzyme

to the right place in the DNA. Doudna and Charpentier's work provided proof of concept that the

CRISPR system could edit organisms like bacteria. In January 2013, MIT Professor Feng Zhang

and his collaborators showed that the CRISPR system could also edit mammalian cells, including

human cell lines (Cong et al. 2013). This work and the related work of George Church and his

colleagues at Harvard Medical School (Mali et al. 2013) demonstrated the flexibility and ease of use

of the new CRISPR tool. This was particularly welcomed in the mammalian research community,

including those working on human cells, because of the enormous improvement in terms of accuracy

and difficulty over previous methods.

To understand how CRISPR works, consider the find-and-replace function in a word

processing program. To replace the word "absolutely" with "certainly," the user only need to put

in the two strings and the program will find all instances of the string "absolutely," cut it out of the

document, and replace it with the second string. CRISPR works the same way: program a DNA

sequence to find the same string in the DNA of an organism, use an enzyme to cut out that string,
and then use a second programmed string as a replacement in the organism's DNA. One of the

main benefits to CRISPR is that it can look for the equivalent of the full word "absolutely."

Previous editing technologies could only search for a short string, like the equivalent of "abs." In

the find-and-replace analogy, this short string would find "absolutely" but also "abstract," making

the edited document (and edited DNA) unreadable.

The enthusiasm from researchers conducting gene editing to the release of the CRISPR tools

was almost immediate because of its accuracy, flexibility, and relative ease of use (Pennisi 2013;

Regalado 2014). Since Doudna and Charpendier's first paper in June 2012 through December 2016,
over 4,500 CRISPR-related articles were published according to the medical publication database

PubMed. Patent applications mentioning CRISPR and funding for venture backed firms licensed

to use CRISPR technology have also soared (Ledford 2015). By December 2016, over 3,000 patent

applications published worldwide mentioned CRISPR. Funding also flowed to CRISPR

commercialization efforts. The original biotech firms founded on CRISPR technology, Caribou
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Biosciences (Berkeley, CA), Editas Medicine (EDIT; Cambridge, MA), CRISPR Therapeutics

(CRSP; Basel, Switzerland), and Intellia Therapeutics (NTLA; Cambridge, MA) collectively raised

initial funding of more than $150 million. The last three all had IPOs in 2016, each currently with

market capitalizations of over $1 billion.

CRISPR's effect on biological research has been profound, as geneticist John Schimenti at

Cornell University noted: "I've seen two huge developments since I've been in science: CRISPR and

PCR... CRISPR is impacting the life sciences in so many ways" (Ledford 2015). One of the original

inventors, Jennifer Doudna, stated in a February 2015 JAMA editorial, "This discovery has triggered

a veritable revolution as laboratories worldwide have begun to introduce or correct mutations in

cells and organisms with a level of ease and efficiency not previously possible." (Doudna 2015).

CRISPR has already been used to create blight resistant crops (Wang et al. 2014) and "malaria-

proof" mosquitoes that are genetically unable to transmit malaria (Gantz et al. 2015). The

introduction of CRISPR is likely to be especially useful in medical applications since it may

ultimately allow for the correction of genetic errors.' Currently, it is allowing researchers to build

mouse and human cell disease models more easily with specific mutations that are useful for testing

drugs. For example, Feng Zhang's lab has created a "Cas9 mouse" (Platt et al. 2014) that can be

modified to model lung cancer. Before CRISPR, creating such a mouse model took large teams of

people and a decade to complete, but this model was designed by one person with CRISPR in four

months (Specter 2015).

3.3 Access to CRISPR with Addgene

Laboratories often use material transfer agreements to transfer tools from one institution to

another, often delaying adoption of the tool (e.g., Mowery and Ziedonis 2007; Walsh, Cohen, and

Cho 2007; Strandberg 2010). To circumvent the difficulties associated with lab-to-lab material

transfers, biological resource centers, such as the American Type Culture Collection, are created to

centralize the distribution process (Furman and Stern 2011). The dominant central repository for

CRISPR, from the first day, is Addgene. In 2004 Melina Fan, Kenneth Fan, and Benjie Chen

founded Addgene as a non-profit biological resource center for scientists to easily share tools' for

use in biological research (Fan et al., 2005). Addgene not only stores biological tools donated by

academic researchers all over the world, but also validates the materials and facilitates their

distribution to other academic institutions in more than 85 different countries and counting.

When the CRISPR tool was first introduced in 2012 and 2013, Doudna, Charpendier, and

Zhang donated their versions to Addgene at the time the original papers were published. As Zhang

: This has already been done in non-viable human embryos (Ma et al. 2017) and may have been done in viable embryos resulting
in gene edited babies as recently as November 2018 (Cyranoski 2018).
4 The tools donated to Addgene, including CRISPR, are usually distributed as plasmids. A plasmid is a form of circular DNA
that is commonly used to replicate or expand upon gene editing experiments. See hattm:j/wwwiddgeneorg for available tools.
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said in a talk at MIT in 2015, he gave CRISPR to Addgene for distribution because his lab "wouldn't

have time to do science" if they responded to all the requests from other researchers. Indeed, to

date, Addgene has sent more than 42,000 CRISPR tools from Zhang's lab to over 2,000 institutions

(Zhang 2018). As new CRISPR tools have been developed, they have also been donated to Addgene.

CRISPR orders quickly rose from 0.1% of all Addgene orders in 2012 to about 18% in 2015 (Figure

1). To date, CRISPR is one Addgene's most popular tools, making up over 20% of total orders.

[Figure 1 here]

Addgene has a price of $65 per plasmid which has remained constant since 2004. This stable

low cost and consistent quality control process encourages labs to order directly from Addgene

rather than make their own or attempt to get it from the original lab. Addgene alleviates the

burden on the individual research labs and separates access to the tool from the original inventor.

3.4 Variation in Availability of CRISPR by Disease Domain

When the CRISPR tool was first introduced in 2012, it came as such a surprise that it was

not designed with a specific application in mind. However, some of the greatest strides forward

have come from mammalian gene editing particularly in human diseases (Zyontz 2016). The co-

founders of CRISPR argue that the tool could be useful for the study and eventual treatment (or

even cure) of most human diseases caused by to genetic mutations (Doudna and Sternberg 2017;

Whitaker 2018), making CRISPR a valuable tool for research in all of these domains. Despite

CRISPR's generality, natural barriers in gene editing prevent CRISPR from being available for all

disease domains at the same time. Availability variation is due in part to the type of cell primarily

targeted by the disease, which affects how CRISPR must be delivered to the nucleus of the cell

(e.g., Regalado 2016, Stockton 2017, Kaiser 2016, Wang et al. 2016, LaFountaine et al. 2015). One

of the co-founders of CRISPR, Jennifer Doudna, notes in her book, "That's not to say that it'll be

easy to get CRISPR inside the cells themselves. This delivery problem is one of the greatest

challenges" (Doudna and Sternberg 2017). The more complicated the disease and cell type, the more

difficult it is to deliver and use CRISPR, which provides natural delays that vary by disease as

researchers overcome the delivery barrier.

Some of the easiest diseases to edit with CRISPR involve cells that quickly self-replicate and

can be edited ex vivo.5 For example, blood cells can be easily removed from an organism, edited

with CRISPR in a dish, and then the modified cells are put back in the organism (Regalado 2016).

Because blood cells replicate easily, the new ones will replicate with the edit and eventually overtake

' In ex vivo (exterior) gene editing, target cells are first modified outside a living organism. The edited cells are then returned to

the organism as an effective treatment for the disease.
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the old damaged cells. T-cells associated with immune deficiencies can also be successfully edited ex

vivo. Recently CRISPR was used to edit infected T-cells and eliminate HIV in mice (Stockton

2017).

More complicated diseases to edit with CRISPR involve cells that can self-replicate but may

not be prime targets for ex vivo editing. For example, using CRISPR to study diseases in muscle

tissue is more difficult than blood cells (Regalado 2016). Studies are underway to treat Duchenne

muscular dystrophy (DMD) (LaFountaine et al. 2015), but edits must be made to all damaged cells,

which cannot be done effectively ex vivo. Treating DMD requires a delivery mechanism that targets

the affected cells, is large enough to deliver the CRISPR system in the organism, and does not make

the individual sicker.

Some of the most difficult diseases to study and treat with CRISPR are those involving cells

that do not replicate and cannot be edited ex vivo, such as diseases in the brain or nervous system

(Regalado 2016, Kaiser 2016, LaFountaine et al. 2015). Brain cells and nerve cells are generally

difficult to manipulate in a lab setting and because their interconnections matter, studies generally

are conducted in vivo.6 Again, this results in a delivery problem, where the engineered CRISPR

tools are too large for standard delivery mechanisms. Work is being conducted to shrink the size of

the cutting enzymes and to find alternative delivery mechanisms (Wang 2016), but the additional

limitations have delayed research in these areas. For example, CRISPR has only appeared in

Huntington's Disease publications since 2017.

There are already a number of reported possible therapeutic applications of CRISPR

(LaFountaine et al. 2015) including cystic fibrosis (2013), HIV-1 (2013), sickle cell anemia (2014),

Hepatitis B (2014), Duchenne muscular dystrophy (2014), HPV (2014), and a range of cancers. This

suggests that applications where CRISPR is easier to use generally gain access to CRISPR sooner.

Although no clinical trials with CRISPR were approved in the U.S. until 2018.

4 Methodology

4.1 Using the CRISPR Setting

As discussed in Section 2, external tool specialists can add value to the innovation process

by sharing information about how to use the new technology across a range of domains. The match

between internal domain teams and external tool specialists to create new innovations with the tool

could occur more frequently in easier domains, where less complementary tool know-how is needed,
in order to apply the tool more broadly or in more difficult domains, where more complementary

tool know-how is needed, where the problems are more complex but influential. However,

6 In in vivo (interior) gene editing, target cells are modified while still inside the living organism .
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empirically identifying where external tool experts contributed most often to the application of a

new tool, beyond just access, is a complex task as tool and domain knowledge often develop

concurrently or access is conflated with the ability to use the tool (e.g., Furman and Stern 2011;

Murray et al. 2016; Teodoridis 2018).

In order to identify where external tool specialists appear more often to create early

innovations with a tool, an ideal setting would need to have several main features. First, it must

be possible to separately track external tool specialists and domain specialists within teams that

generate early innovations. Second, the sharing of know-how by external tool specialists must be

separable from any access to the tool they may provide in order to identify their value-added

contributions. Finally, when the new tool is introduced, the difficulty of using the tool must vary

across domains and the tool should randomly enter different domains to mitigate selection based on

the value of the tool to the domain. Such an environment does not occur naturally, but the recent

introduction of CRISPR provides a unique and approximate setting for this ideal.

As discussed in Section 3, CRISPR was an unexpected, powerful tool that had the potential

to lower the costs of research and create new possibilities in gene editing. Because of its unexpected

nature, gene editing scientists did not anticipate its arrival or the future advances the tool would

eventually allow. CRISPR can be used in a wide range of organisms including bacteria, yeasts,
plants, insects, and mammals. However, previous research has shown that scientists who conduct

gene editing on organisms from different branches on the biological tree of life (e.g., bacteria versus

mammal) have different uses for the tool and value CRISPR differently (Zyontz 2016). This argues

for focusing on researchers most at risk for using CRISPR, namely scientists conducting research on

mammalian cells. During the earliest period of CRISPR adoption (2012-2016), these scientists are

mostly academic scientists publishing in academic journals.

To ensure that different domains do not adopt CRISPR only when it is most valuable, it is

necessary to find areas of mammalian research where scientists want to use CRISPR immediately,
but cannot for some biological reason. Fortunately, research in almost every DNA-altering human

disease would benefit from CRISPR due to its improvements over the previous tools. CRISPR co-

inventor Feng Zhang supported this claim in a recent interview saying, "There are about 6,000 or

more diseases that are caused by faulty genes. The hope is that we will be able to address most if

not all of them" (Whitaker 2018). However, not every disease received CRISPR at the same time.

The timing of CRISPR's introduction to each disease was not anticipated due to natural delays

caused by the biology of the cells affected by the disease, as highlighted in Section 37

By restricting attention to human diseases caused by mutated genes, including infections,
viruses, and inheritable diseases, the setting provides a way to separately identify external tool

7 Certain diseases attract more attention and funding which could mitigate delays in receiving CRISPR. However, the exact
timing of CRISPR's arrival in these diseases still could not be anticipated ex ante.
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specialists and domain specialists. CRISPR was introduced first as a tool in June 2012 with no

specific human disease application. Since the first human disease application occurred in 2013, there

was time for scientists to gain CRISPR-specific tool knowledge outside of any particular disease

domain. Applying this initial delay and the unanticipated timing of CRISPR appearing in different

human diseases, it is possible to identify which authors were specialists in CRISPR prior to

publishing in the disease. Figure 2 provides an example of the natural delays in CRISPR entry for

selected diseases from first introduction of the tool.

[Figure 2 here]

Finally, science settings are not always ideal for identifying the contributions of external

specialists beyond providing access to the tool. Biological materials are often transferred from one

lab to another using Material Transfer Agreements (MTAs) that can delay access or have been

known to require co-authorships for the receipt of the materials (Walsh, Cohen, and Cho 2007;

Strandberg 2010). This can confound the value added by external tool specialists in innovation.

The CRISPR setting circumvents these concerns by having a biological resource center that breaks

the link between contracting for access and needing to work with external specialists to use the tool.

Addgene is the primary third-party distributor of CRISPR to academic researchers that eliminates

the need for scientists to sign MTAs directly with other academics. Thus any external specialists

observed entering a new domain in this setting primarily represent value added knowledge rather

than the price of access to CRISPR.

4.2 Empirical Specifications

To explore how early teams acquire complementary know-how to use new tools for

innovation, the empirical specifications in this paper test the relationship between the share of

external CRISPR tool specialists authoring CRISPR papers in a set of disease domains and the

difficulty of editing the cell targeted by the disease. The focal population consists of all successfully

published CRISPR articles in a set of human diseases and their authors. The level of analysis is at

the disease-quarter from Q1 2013, the first quarter a CRISPR disease application appeared to Q4
2016. The vast majority of the disease quarters only contain one CRISPR-disease paper, so the

share of external CRISPR specialists can be interpreted as the relative participation of external

CRISPR specialists on the team for one paper (or innovation). The specifications also consider the

unanticipated timing of CRISPR's entry by disease.

The main specification tests the overall impact of target cell editing difficulty on the share

of external CRISPR specialists who are authors on CRISPR publications in a disease. The model

controls for the quarter of publication and the amount of time since the first CRISPR paper in the

disease to account for factors specific to the quarter or the trend of additional papers. The model
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also controls for the total number of publications in a disease quarter as a proxy for the attention

and funding a disease may receive.

Share of External CRISPR Specialistsit
= 0 + fi 1 Edit Difficultyi + Total Disease Pubsit +,6t + +age + Eit

Share of External CRISPR Specialistsat = The number of CRISPR paper authors that are external
CRISPR specialists divided by the total number of CRISPR
paper authors by disease domain (i) and quarter (t).

Edit Difficulty = 1 if the target cells of the disease (i) cannot be edited ex
vivo (No Ex Vivo) or do not self-replicate (No Cell
Replication); 0 otherwise. Two separate variables.

Total Disease Pubst = The total number of papers in disease domain (i) and
quarter (t).

,6t = Fixed effects for the quarter (t) of publication.

age = Fixed effects for the difference between the focal quarter of
publication (t) and the quarter of the first CRISPR
publication in a disease domain (i).

Eit Error term.

In this model, the coefficient of interest is fi, which is the relationship between disease cell

editing difficulty and the share of external CRISPR specialists in teams that publish CRISPR papers

in a disease. A negative coefficient would support the idea that internal domain teams and external

tool specialists match more often in easier domains that can help increase productivity and

encourage broader use of the tool. A positive coefficient would support the idea that internal domain

teams and external tool specialists match more often in difficult domains to effectively address more

complex but influential problems.

The second specification tests whether the share of external CRISPR specialists increases or

decreases for subsequent innovations after the first in difficult diseases. It is similar to the first

specification above, but adds an interaction term and disease (i) fixed effects.

Share of External CRISPR Specialistsit

= Yo+ YageEdit Difficultyi * Qtr from First Pubage
+age

+ y 2 Total Disease Pubsit +6i + 5 t+ 6 ag,+ it
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Qtr from First Pub is the difference between the focal quarter of the publication (t) in a disease (i)

and the first CRISPR publication quarter in the disease. The coefficients of interest in this model

are Yage which are the changes in the share of external CRISPR specialists authoring subsequent

CRISPR papers in a disease for difficult to edit target cells. Positive coefficients indicate that a

higher share of external CRISPR specialists participate in additional innovations in domains where

CRISPR is more difficult to use, even after controlling for time effects, age effects, disease effects,
and the attractiveness of the disease.

All specifications are run initially as OLS models since the outcomes have a continuous

response between 0 and 1. However, because the outcome is fractional and has some weight on 0

and 1 values, simple linear models lead to predictions outside the possible range. To mitigate this

concern, all specifications are also run as Generalized Linear Models (GLM) with binomial family

and logit link. The latter specification is as outlined by Papke and Wooldridge (1996) who showed

that quasi-maximum likelihood estimation (QMLE) for pooled fractional response models results in

robust estimators. The direction and significance of the results are similar regardless of model used,
although the coefficients have different interpretations.

5 Data and Measures

5.1 Database Construction

Because CRISPR can be traced to a handful of initial papers and because of the explosion

of interest in the tool, it is possible to find the entire population of academic scientists using CRISPR

in human diseases, and not just a sample. The database starts with all articles and authors in the

U.S. National Library of Medicine's (NLM) PubMed database from 2007-2016, providing

approximately five years before CRISPR and five years after. PubMed includes the NLM's

MEDLINE journal citation database and contains 28 million citations for biomedical literature

including the fields of biomedicine and health, making it a definitive source for original research in

human diseases.

In order to identify the relevant disease domains used in this study the keywords assigned

by the NLM to each paper were used. These keywords are the Medical Subject Headings (MeSH

Terms), a controlled vocabulary that consistently classifies each document in PubMed. First, a list

of terms was collected from Category C (Diseases) in the 2017 MeSH Tree. Only keywords

describing human diseases caused by DNA mutations were used to define the domains at risk of

using CRISPR, including terms for cancers, infections (such as HIV), and inheritable monogenic
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diseases.' Next, all papers in PubMed from 2007-2016 containing the MeSH Terms for the at-risk

diseases were identified. Papers were restricted to original scientific articles and do not include

documents like reviews, news, or other non-experimental articles. From there, the database was

further restricted to papers (and associated authors) that contained both a disease MeSH term and

a CRISPR MeSH term.' The final database contains the CRISPR papers in 228 disease domains

published between Q1 2013 - Q4 2016.1 Because of the different CRISPR entry dates, some disease

domains appear earlier than others for N = 442 disease-quarters in the database.

Within the 228 disease domains, there are 611 papers containing both disease and CRISPR

MeSH Terms. For each author on the 611 joint papers, his or her publication history in a disease

domain and CRISPR was constructed using the following procedure." First for each disease domain,
a sub-database at the author-paper level was constructed containing every person in PubMed that

authored a paper in the focal disease or CRISPR (as defined by the MeSH Terms) from 2007 - 2016.

Second, within that sub-database, author names across papers were matched using full first

names, last names, and middle initials. In order to mitigate false matches across papers, authors

with last names in the top 5% of all author names had to have exact matches for the last name,
first name, and middle initial in order to be considered the same person. Authors with last names

in the lower 50% of all author names (very uncommon names) only had to have their last name and

first initial match to be considered the same person. All others required an exact match of the full

first name and last name to be considered the same person.

Third, scientists were classified as CRISPR-disease paper authors if they authored one of

the 611 papers that contained both disease and CRISPR MeSH Terms. Records from all other

authors were dropped, leaving only the publication histories of the CRISPR-disease paper authors.

Fourth, using MeSH Terms, these remaining papers were classified as CRISPR Only (if the

paper only had CRISPR MeSH Terms), Disease Only (if the paper only had Disease MeSH Terms),
or CRISPR-disease (if the paper had CRISPR and Disease MeSH Terms). A CRISPR-disease

author was classified as an external CRISPR specialist if he or she published a CRISPR Only paper

first before any CRISPR-disease papers or Disease Only papers.?

Finally, authors with no identifiable publication history in CRISPR or the disease, usually

graduate students or non-key contributors, were dropped from the sub-database. All non CRISPR-

8 Monogenic diseases, although rare, affect a wide range of cell types and are identified by a well-known inherited single

mutation in a gene, for example sickle cell anemia. These are prime targets for CRISPR since there is only one gene to edit and
both the mutation and the correct sequence are known.

9 Because CRISPR was unexpected, the MeSH Terms for the tool did not appear immediately. They were added to papers in
2013, however. A check for CRISPR in the abstracts did not reveal any earlier disease domains or papers.

1 The list of disease domains and associated MeSH terms are on file with the author.

" Papers are generally exclusive to one disease category.
12 The code for the grouping algorithm is on file with the author.
13 The majority of authors in a sub-database only have one CRISPR paper in a disease domain.
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disease papers were dropped as well to focus only on the published innovations with CRISPR in

each disease domain.

This process was repeated for each disease domain for a total of 228 sub-databases. These

were joined into one large author-paper-disease level database with 3,019 authors, 611 joint papers,
and 228 disease domains. The final database used for the analyses collapses the data to the disease-

quarter level by calculating the number of total authors, external CRISPR specialists, and papers

present in each quarter for each disease domain from Q1 2013 - Q4 2016 in 442 observations. The

majority of disease-quarters only contain one paper, so the final database is similar to one

constructed at the paper level. More than half the disease domains only have one CRISPR-disease

paper over the entire time period.

5.2 Measures

The main dependent variable is a measure of external tool specialist know-how that is used

to generate innovations with the tool in a domain. Share of External CRISPR Specialists is

calculated as the number of external CRISPR specialist authors on CRISPR-disease papers divided

by the total number of authors on CRISPR-disease papers. External CRISPR specialists are those

that published in CRISPR first before publishing in the disease or a CRISPR-disease paper. This

is measured quarterly by disease domain but due to the small number of CRISPR-disease papers,

almost all disease-quarters only contain one paper. Therefore, this measure is the relative

participation of external CRISPR specialists on teams that create new papers (or innovations) with

CRISPR in a disease.

The main independent Edit Difficulty measures are binary and are different indicators of

how difficult affected cells are to edit in each disease domain. The difficulty of cell editing can be

measured by biological factors of the cells primarily targeted by each disease. Two key factors are

(1) whether the cell can be edited ex vivo (edited outside a living organism and placed back in) and

(2) whether the cell can self-replicate. If the cell a disease targets cannot be edited ex vivo or if the

cell does not self-replicate, then it will be far more difficult to use CRISPR in that disease (see

Section 3). The variable, No Ex Vivo is equal to 1 if the target cells cannot be edited ex vivo and

0 otherwise. The variable No Cell Replication is equal to 1 if the target cells do not replicate easily

on their own and 0 otherwise.

To code these two variables, for each disease domain the primary target cell category was

determined using information from a number of sources including the Online Mendelian Inheritance

in Man database (OMIM), the Genetic and Rare Disease Information Center (GARD), and a set of

gene editing review articles (LaFountaine et al. 2015; Barrangou and Doudna 2015; Cox et al. 2015;

Kelton et al. 2016; Riordan et al. 2016; Scott and DeFrancesco 2016; Wang et al. 2016; Xiong et al.

2016; Bachtarzi 2017; Pandey et al. 2017; Singh et al. 2017; Song et al. 2017; Bakhrebah et al.
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2018)." Then for each target cell category No Ex Vivo (National Academies of Science 2018; Cox

et al. 2015) and No Cell Replication (Weizmann Institute of Science 2018) were coded. For example,

diseases that target blood or T-cells have No Ex Vivo and No Cell Replication both equal to 0 since

they are easiest to edit. Diseases that target muscle tissues have No Ex Vivo equal to 1 and No

Cell Replication equal to 0 since effective editing is done within the organism. Diseases that target

neurons have No Ex Vivo and No Cell Replication both equal to 1 since they are hardest to edit.

The independent variable Quarters from First Pub is the difference in quarters from the

publication of the first CRISPR paper in a disease domain to the publication quarter of the focal

CRISPR paper in the disease. The publications quarters for CRISPR-disease papers range from Q1
2013 - Q4 2016 since there are no human disease applications for CRISPR prior to 2013.

Finally, the independent variable Total Disease Pubs is a proxy for the attractiveness of the

disease domain in terms of attention and possible funding. It is calculated as the total number of

academic articles by disease domain (not including reviews, news, and other similar documents)

published from Q1 2013 through Q4 2016. Articles are considered part of a disease domain if they

contain MeSH Terms for those diseases.

5.3 Summary Statistics

The summary statistics for the CRISPR-disease papers and authors in the 228 disease

domains by quarter is in Table 1. Table 1 presents the statistics for all diseases and further breaks

down the results by Easy Diseases and Difficult Diseases as defined by whether the target cell can

be edited ex vivo or not. On average by quarter, about 25% of the authors are external CRISPR

specialists reinforcing the idea that domain-specific knowledge is important to the production of

innovation in the domain but indicating that external CRISPR know-how plays a meaningful role

across domains. The share of external CRISPR specialists is higher for teams writing CRISPR

papers in difficult diseases at 33% versus 22% for easier diseases.

The average team size on all CRISPR-disease papers is just under 7 people. Yet the make-

up of the team depends on the edit difficulty of the disease. For example, CRISPR papers in more

difficult diseases have more CRISPR tool specialists but also have fewer people overall, making the

individual contributions of external CRISPR specialists larger.

Further, a minority of diseases by quarter are those where CRISPR is more difficult to use.

For example, 31% of diseases in a quarter have target cells. that cannot be edited ex vivo and 17%

have target cells that do not self-replicate. On average, CRISPR-disease papers are published in

Q4 2015, supporting the fact that a number of diseases did not receive CRISPR until 2016, especially

"4 The associated cell category for each disease domain and the coding for No Ex Vivo and No Cell Replication are on file with
the author.
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difficult diseases. Also, additional papers generally occur more than six months after the first

CRISPR-disease paper.

[Table 1 here]

Table 2 provides the raw counts of authors and papers by the difficulty of cell editing (No Ex Vivo)

and year of CRISPR-disease paper publication. The results suggest that there was a delay in

attracting authors and publications in the more difficult diseases as compared to their easier

counterparts. However, the share of external CRISPR specialists on teams publishing in difficult

diseases quickly outpaced the share in easier diseases.

[Table 2 here]

This shift in more difficult diseases for authors and publications is due in part to the delayed

entry of CRISPR into difficult to edit diseases. Figure 3a plots the number of diseases by the year

CRISPR entered and by whether the target cell can be edited ex vivo. Figure 3b plots the number

of diseases by the year CRISPR entered and by whether the target cell can self-replicate. For

diseases where the target cells are more difficult to edit, CRISPR took additional time to enter as

compared to the easier to edit diseases. Although, diseases that cannot be edited ex vivo overtook

easier to edit diseases in 2016.

[Figures 3a and 3b here]

6 Results

6.1 Disease Edit Difficulty and Share of External CRISPR Specialists

As a way to explore where the match occurs between internal domain teams and external

tool specialists for the earliest innovations, it is possible to test the relationship between disease edit

difficulty and share of external tool specialists. If domain teams and external tool specialists match

most often to solve simpler problems where the tool can be applied more quickly to a larger range

of domains, then the share of external CRISPR specialists on CRISPR paper teams should decrease

for hard to edit diseases on average. If internal domain teams and external tool specialists match

most often instead to solve complex and influential problems, the share of external CRISPR

specialists on CRISPR paper teams should increase for hard to edit diseases on average.

First, to establish that external tool specialists are used across domains, Figure 4 plots the

distribution of the dependent variable, Share of External CRISPR Specialists, for publishing teams
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by disease edit difficulty (here where the affected cell can be edited ex vivo). External tool specialists

are part of teams in domains that are both easier and difficult to edit, but the distribution is shifted

towards a higher share of external CRISPR specialists for more difficult to edit domains.

[Figure 4 here]

Second, it is important to note that there are an increasing number of difficult to edit

diseases with CRISPR availability and more available external authors with CRISPR know-how

over time. Due to these facts, it should be expected that the share of external CRISPR specialists

should increase over time for all diseases as the stock of CRISPR specialists increases each quarter.

Figure 5a shows the increase in the number of authors over time for both easier to edit and difficult

to edit diseases. Figure 5b shows similar trends for the number of external tool specialists on the

research teams over time.

[Figures 5a and 5b here]

Figure 1A shows the relationship between the timing of publications and the share of

external CRISPR specialists. Between Q4 2014 and Q4 2016 the share of external CRISPR

specialists increases each year with some cyclicality over quarters.

Using the above facts, Table 3, Models 1-3 show fixed effect OLS regressions at the disease-

quarter level to look at the effect of disease edit difficulty on the share of external CRISPR specialists

contributing to new CRISPR-disease papers. From Table 3, Model 1, diseases with target cells that

cannot be edited ex vivo have an increased share of external CRISPR specialists. The direction is

different for diseases with target cells that cannot self-replicate, although the estimate is much lower

and is not significant (Table 3, Model 2). Taken together the different types of edit difficulty do

play different roles in affecting the percentage of external CRISPR authors (Table 3, Model 3).

Here, the effect of being a No Ex Vivo disease is enhanced by controlling for being a No Cell

Replication disease.

The first three models in Table 3 run OLS specifications and control for the stock of external

CRISPR specialists through the quarter of publication, the number of quarters the publication is

from the first CRISPR paper in a disease, and the attractiveness of the disease domain. Table 3,
Models 4 - 6 have the same covariates and dependent variables but use a GLM with binomial family

and logit link to account for the fractional outcome as discussed in Section 4. Although the

coefficients have a different interpretation, as expected, their direction and significance are largely

the same. The marginal effects of these coefficients are very similar to those of the standard linear

models.
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[Table 3 here]

Overall, the results support the idea that the successful match between internal domain

teams and external tool specialists to create new innovations occurs in the difficult diseases where

the problems are complex but solutions are highly influential. These are the diseases that had no

prior viable gene therapy alternatives.

6.2 Share of External CRISPR Specialists in Subsequent Innovations

If the increase in the share of external CRISPR specialists was a simple transfer of tacit

information, it might be expected that the effect would attenuate for CRISPR-disease papers after

the first. Once the know-how is in the domain, it should not be necessary to have external CRISPR

specialists on the team. However, contrary to this expectation, the share of external CRISPR

specialists increases for subsequent innovations in more difficult diseases.

Figure 6 shows the differences in means for the share of external CRISPR specialists on

CRISPR-disease papers for diseases that are more difficult to edit and those that are easier (by ex

vivo editing), over specific periods of time. For example, the first pair of bars illustrates the

difference in the average percentage of external CRISPR specialists between diseases where target

cells can be edited ex vivo and not for the very first paper. CRISPR papers in difficult diseases (no

ex vivo editing) have a higher share of external CRISPR specialists when only considering the first

CRISPR paper published in a disease. The next pairs show the difference in means for additional

CRISPR papers in a disease after the first one (i.e., excluding the first) in the first year, in the next

year after, and in the remaining years. More difficult diseases have higher average shares of external

CRISPR specialists, increasing over each time period. Table Al provides the underlying data for

Figure 6.

[Figure 6 here]

Because Figure 6 highlights the results from simple T-tests, Table 4a considers the

interaction between subsequent innovations after the first and the edit difficulty of the disease while

controlling for disease attractiveness as well as quarter, age, and disease fixed effects. The results

in Table 4a echo the trends found in Figure 6. Table 4a, Model 1 includes an interaction term

between the time distance of an additional innovation in a disease and disease edit difficulty (using

the No Ex Vivo measure). The results suggest that for diseases that are more difficult to edit and

as additional innovation is more time-distant from the original joint paper, the share of authors

with external CRISPR specialization increases.
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Table 4a, Model 2 breaks these interactions down further by the length of time the

innovation appeared after the first. As more time passes after the first paper, the share of external

CRISPR specialists continues to increase during this very early stage. Whether this pattern will

continue as the tool matures is the subject of a future study as more time is allowed to pass. Table

4a, Models 3-4 show results in the same direction and significance levels for the analogous GLMs.

Figure 7 plots the coefficients in Table 4a, Model 2 to illustrate the increasing trend in the share of

external CRISPR specialists for subsequent innovations.

[Table 4a and Figure 7 here]

Because some diseases only have one CRISPR paper, it might be a concern that these

diseases are different and influencing the results in Table 4a. In order to account for that, Table

4b performs an identical analysis but only for the 93 diseases that have more than one CRISPR

paper in the dataset. The results are very similar, so including the entire dataset is not influencing

the core findings for the OLS or GLM specifications.

[Table 4b here]

6.3 Future Research

The results in Sections 6.1 and 6.2 are the first steps towards empirically understanding how

the earliest teams acquire complementary tool know-how across domains with different levels of ex

ante difficulty. However, the analysis presented suggests several other areas of inquiry that can

help to further this understanding. For example, are there characteristics of external CRISPR

specialists that attract some to difficult problems and others to easier ones? As more data becomes

available, it will be possible to exploit heterogeneity in adopters that does not currently exist in the

data to test whether the tenure status of external CRISPR specialists plays a role in their attraction

to more complex and influential problems. It could be the case that tenured external CRISPR

specialists have more incentives to aim for the Nobel Prize while non-tenured external CRISPR

specialists just need to publish. This could cause tenured external CRISPR specialists to seek out

and match in more difficult domains.

Other analyses are aimed at assessing the benefits to building versus acquiring the

complementary tool know-how. Specifically, the analyses address the questions do teams that use

external CRISPR specialists get to publication faster? Does this change given domain difficulty?

For this, team members on CRISPR-disease papers are being matched to their CRISPR order

histories at Addgene to determine the earliest date the team received CRISPR and the length of

time between the first order and the eventual publication.
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7 Discussion and Conclusion

When a new tool is introduced that requires some investment in tool-specific know-how, how

to combine that know-how with domain-specific knowledge is a decision firms, mangers, and

individual innovators face as they innovate. In general, innovators in a domain can either learn to

use the tool themselves or can acquire the complementary tool know-how from an external source.

For example, firms face this choice when deciding how to use AI and individual academics may

make similar decisions when deciding how to use STATA or Python in their work. However, when

external tool specialists are scarce, they also have a choice over which teams to join. They could

collaborate with teams in easy domains to expand the use of the tool as far as possible or in difficult

domains where the problems are more complex but the solutions are highly influential.

Previous research has shown that access to research tools increases innovation but often

access is conflated with the ability to use the tool, limiting investigations into how innovators use

tools to generate innovations, especially if they are trying to be first. One mechanism this paper

highlights is the role of external tool specialists in generating early innovation by providing

complementary know-how needed to use the tool.

Using the introduction of the new breakthrough DNA-editing tool, CRISPR, and applying

the unanticipated timing of CRISPR entry in different human disease domains, it is possible to

separately identify the knowledge bases of the academic scientists responsible for the new articles

that use CRISPR in a disease. Because the analysis focuses on the first days of CRISPR (2012-

2016), these papers represent the earliest innovations in each domain with the tool. It is also possible

to create measures for the difficulty of applying CRISPR in the different disease domains. Human

diseases primarily target certain cell categories and each category is easier or harder to edit based

on biological factors specific to the cells. For example, CRISPR is more difficult to apply in target

cells that cannot be edited ex vivo or cannot self-replicate.

The variation in the difficulty of applying CRISPR provides a novel lever to presents a

direct mechanism for how new tools are adopted and incorporated into early innovations. First, a

higher share of external CRISPR tool specialists participate in early innovations with the tool in

difficult disease domains. This suggests the match between internal domain teams and external tool

specialists occurs more often in domains with complex and influential problems. To understand this

result, consider the different experiences of CRISPR adoption in HIV and muscular dystrophy. The

human immunodeficiency virus (HIV) had one of the earliest introductions of CRISPR in part due

to the targeted T cells being easy to edit and the large amount of previous research conducted on

gene editing alternatives. The first study using CRISPR to make new advances in HIV was

published in 2013 by Yoshio Koyanagi, the PI of a Viral Pathogenesis lab at Kyoto University in

Japan (Ebina et al. 2013). He and his three co-authors, all part of the lab, had previous experience

in HIV, but none specifically in CRISPR. Although external CRISPR know-how would be useful
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in this case, the internal team ordered CRISPR from Addgene and modified it for their application

but did not collaborate on the paper with an external CRISPR tool specialist outside of the domain.

In contrast, muscular dystrophy targets muscle cells that are more challenging to edit and success

would represent an enormous advance in medicine. For the first paper that successfully used

CRISPR inside a mouse to treat Duchenne muscular dystrophy, Charles Gersbach, a leading

muscular dystrophy researcher at Duke University and his lab were having problems delivering

CRISPR to the nucleus of the target cells. To overcome this problem, the team incorporated the

knowledge of Feng Zhang, a CRISPR co-founder, to create a new delivery solution. The resulting

paper lists both professors as contributing authors (Nelson et al. 2016; Duke Today Staff 2015).

The example suggests that authors in internal teams working on difficult and influential diseases

are more likely to look for and attract external CRISPR specialists to collaborate.

Second, there is evidence that the higher share of external CRISPR specialists persists for

subsequent innovations in more difficult disease domains. This result is not immediately intuitive.

If research in the domain using CRISPR became easier after the tool was first introduced, then

complementary know-how about the tool should be less valuable and external tool specialists less

necessary. However, in this setting, the ultimate goal is to use CRISPR to create commercial

therapies and drugs for human use. In order to do this, additional research in each disease will try

to use the tool in increasingly complex organisms. Even within mammals, as the organism gets

closer to humans, editing becomes more difficult and the solutions more notable, attracting a higher

share of external CRISPR specialists. As an example, one of the first CRISPR experiments in

muscular dystrophy was to deliver CRISPR inside a living mouse (Nelson et al. 2016). The next

step was to deliver CRISPR inside living dogs (Amoasil et al. 2018). Note that the author teams

for each organism are different. This pattern of research is repeated in other diseases with more

difficult to edit target cells.

Although the current study was conducted in the context of CRISPR, the overarching

findings have implications for firms and individuals thinking about when and how to adopt new

tools for innovation. Variations in the ex ante domain difficulty and solution novelty is not unique

to CRISPR and research teams looking to be early adopters in tools like Al will have to weigh the

complexity and influence of their goals when considering how best to attract and collaborate with

external tool specialists. In order to be first to innovate with a new tool, external specialists are

not always necessary to acquire complementary tool know-how. However, external tool specialists

may be more likely to find successful matches with internal domain teams that focus on more

complex problems with highly influential solutions.

The findings contribute to the literature on innovative teams and team structure by

uniquely showing that not just features of management, organizational structure, or industry are

important for effective team design. Team composition is also driven by the specific nature of the

problem to be solved and the nature of tools available for innovation. This paper is one of the
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first in a series that uses CRISPR to answer key questions in innovation, management, and

economics. For example, future papers can build on the results established here to study the effect

of breakthrough technologies on academic entrepreneurship, the impact of policies regarding

genetically modified organisms on agricultural product development, the effect of unresolved

intellectual property disputes on scientific innovation, and how to incentivize ethical innovation

without stifling important technological advances.
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9 Figures and Tables

Figure 1. Addgene Plasmid and Kit Orders by Year

Number of Plasmids and Kit Orders from Addgene

2004- 2015
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Notes. This graph shows the number of individual plasmids and sets of plasmids (kits) that Addgene sold

per year from its start in 2004 through 2015. The blue bars are orders for non-CRISPR plasmids and the

red bars are orders for CRISPR plasmids. Source: Addgene internal records, 2004 - 2015.
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Figure 2. Example Timeline of CRISPR Introduction and Applications
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Figures 3a and b. CRISPR Entry by Year and Disease Cell Edit Difficulty

Number of Diseases Using CRISPR
by Year of Entry and Edit Difficulty (Ex Vivo Editing)
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Notes. Figure 3a shows the number of diseases that first receive CRISPR each year by whether the target cell can be edited ex vivo or not. If the
cell a disease targets cannot be edited ex vivo, then it will be harder and costlier (in resources) to edit. The light blue bars are the number of diseases
that receive CRISPR if their affected cells can be edited ex vivo. The dark blue bars are the number of diseases that receive CRJSPR if their affected
cells cannot be edited ex vivo. Figure 3b shows the number of diseases that first receive CRISPR each year by whether the cell can self-replicate or
not. If the cell a disease targets does not self-replicate, then it will be harder and costlier (in resources) to edit. The light purple bars are the number
of diseases that receive CRISPR if their target cells do self-replicate. The dark purple bars are the number of diseases that receive CRISPR if their
target cells cannot self-replicate. For both measures, CRISPR entry is delayed in the difficult to edit diseases. Source: PubMed publications and
MeSH Terms, 2013 - 2016.
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Figure 4. Distribution of the Share of External CRISPR Specialists

by Disease-Quarter and Disease Cell Edit Difficulty (Ex Vivo Editing)

Histogram:
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Notes. This figure shows the distributions of the share of external CRISPR specialists on teams that publish

CRISPR papers in easy and difficult diseases by disease and quarter. The light blue bars represent the

distribution pattern for easy diseases and the dark blue bars represent the distribution pattern for difficult

diseases. The distribution of the dark blue bars shifts to the right suggesting that teams publishing in

difficult diseases have a higher share of external CRISPR specialists. The difficulty of the disease is measured

by whether the targeted cell can be edited ex vivo. If the cell a disease targets cannot be edited ex vivo,

then it will be harder and costlier (in resources) to edit. CRISPR-Disease papers are defined as articles

containing MeSH Terms for both the disease domain and CRISPR. An author of a CRISPR paper in a

disease is considered an external CRISPR specialist if he or she published in CRISPR first (and not in the

disease). Source: PubMed publications and MeSH Terms, Q1 2013 - Q4 2016.
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Figures 5a and b. Number of Authors on CRISPR-Disease

Disease Affected Cell Edit Difficulty (Ex

Total Authors of All CRISPR-Disease Papers
by Edit Difficulty and Quarter

N = 3,019
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Notes. Figure 4a shows the increase in the total number of authors on CRISPR-disease papers by disease difficulty and quarter. Figure 5b shows the
increase in only external CRISPR specialist authors on CRISPR-disease papers by disease difficulty and quarter. In both figures, the light blue line
represents the trend for easy diseases and the dark blue line represents the trend for difficult diseases. The difficulty of the disease is measured by
whether the targeted cell can be edited ex vivo. If the cell a disease targets cannot be edited ex vivo, then it will be harder and costlier (in resources)
to edit. CRISPR-Disease papers are defined as articles containing MeSH Terms for both the disease domain and CRISPR. An author of a CRISPR
paper in a disease is considered an external CRISPR specialist if he or she published in CRISPR first (and not in the disease). Source: PubMed
publications and MeSH Terms, Q1 2013 - Q4 2016.
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Figure 6. Mean Differences in the Share of External CRISPR Specialists by Disease

Cell Edit Difficulty (Ex Vivo Editing) for First and Subsequent Innovations

Differences in the Share of External CRISPR Specialists by Edit

Difficulty for First and Subsequent Innovations
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Notes. This figure shows the difference in means between the share of external CRISPR specialists for

CRISPR papers in easy diseases versus difficult diseases based on whether the paper was the first or

subsequent CRISPR paper in the disease. The light blue bars represent the means for easy diseases and

the dark blue bars represent the means for difficult diseases. The share of external CRISPR specialists is
higher on average for teams publishing CRISPR papers in difficult diseases for both the first and subsequent

papers. The difficulty of the disease is measured by whether the targeted cell can be edited ex vivo. If the
cell a disease targets cannot be edited ex vivo, then it wil be harder and costlier (in resources) to edit.

CRISPR-Disease papers are defined as articles containing MeSH Terms for both the disease domain and

CRISPR. An author of a CRISPR paper in a disease is considered an external CRISPR specialist if he or

she published in CRISPR first (and not in the disease). Source: PubMed publications and MeSH Terms,

Q1 2013 - Q4 2016.
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Figure 7. Additional Change in the Share of External CRISPR Specialists for

Subsequent Innovations in Difficult to Edit Diseases (Ex Vivo Editing)
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Notes. This figure shows the change in the share of external CRISPR specialists on teams publishing

subsequent CRISPR-disease papers in difficult diseases an corresponds to the coefficients estimated in Table

4a, Model 2. As later subsequent CRISPR papers are published in difficult diseases as compared to easy

diseases, the share of external CRISPR specialists authors increases. The difficulty of the disease is measured

by whether the targeted cell can be edited ex vivo. If the cell a disease targets cannot be edited ex vivo,
then it will be harder and costlier (in resources) to edit. CRISPR-Disease papers are defined as articles

containing MeSH Terms for both the disease domain and CRISPR. An author of a CRISPR paper in a

disease is considered an external CRISPR specialist if he or she published in CRISPR first (and not in the

disease). Source: PubMed publications and MeSH Terms, Q1 2013 - Q4 2016.
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Table 1. Summary Statistics

All Diseases Easy Diseases (No Ex Vivo = 0) Difficult Diseases (No Ex Vivo 1)
Variable i Description Std. Std. Std.N Mean Min Max N Mean Min Max N Mean Min MaxDev. Dev. Dev.

Share of External Share of authors with a CRISPR

publication before a Disease or 442 0.251 0.342 0 1 303 0.215 0.307 0 1 139 0.328 0.398 0 1CRISPR Specialists CRISPR-Disease publication

Total External Total authors with a CRISPR

publication before a Disease or 442 1.665 2.920 0 22 303 1.640 3.062 0 22 139 1.719 2.593 0 12CRISPR Specialists CRISPR-Disease publication

Total authors on a CRISPR-
Total Authors Disease publication 442 6.830 7.186 1 60 303 7.541 7.900 1 60 139 5.281 4.993 1 41

Edit Difficulty 1 if diase affects cells that

cannot be edited ex vivo: = 0 442 0.314 0.465 0 1 303 0.000 0.000 0 0 139 1.000 0.000 1 1(No Ex Vivo) otherwise

Edit Difficulty = 1 if disease affects cells that do

(No Cell Rep) not self replicate; = 0 otherwise 442 0.172 0.378 0 1 303 0.000 0.000 0 0 139 0.547 0.500 0 1

Quarter QuarteroffocalCRISPR-Disease 442 2015q4 3.187 2013ql 2016q4 303 2015q4 3.277 2013q1 2016q4 139 2016q1 2.809 2013q1 2016q4paper

Quarters from First Difference in quarters from the

focal to the first CRISPR-Disease 442 2.394 3.345 0 15 303 2.779 3.439 0 15 139 1.554 2.971 0 14
paper in a Disease

Max Quarters from Difference in quarters from the

most recent to the first CRISPR- 442 4.541 4.272 0 15 303 5.304 4.231 0 15 139 2.878 3.885 0 14First Pub Disease paper in a Disease

Total Disease Pubs Numberof paper 442 506.380 662.740 2 2967 303 573.574 705.242 6 2967 139 359.907 532.585 2 2346published

Total CRISPR- Number of CRISPR-Disease

Disease Papers papers published 442 1.382 0.981 1 8 303 1.426 1.023 1 7 139 1.288 0.878 1 8

Notes. Summary statistics by Disease-Quarter for CRISPR publications and authors in 228 Disease categories. CRISPR-Disease papers are the
underlying population of the dataset and are defined as articles containing MeSH Terms for both the disase domain and CRISPR. Source: PubMed
publications and MeSH Terms, Q1 2013 - Q4 2016.
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Table 2. Counts of Authors and Papers by

Disease Cell Edit Difficulty (Ex Vivo Editing) and Year

Total Number of CRISPR-Disease Authors by Edit Difficulty (No Ex Vivo)

2013 2014 2015 2016 Total

EasyDiseases 27 232 730 1296 2285

DifficultDiseases 10 22 141 561 734

Total 37 254 871 1857 3019

Total Number and % of External CRISPR Specialists by Edit Difficulty (No Ex Vivo)

2013 2014 2015 2016 Total

Easy Diseases 2 35 124 336 497

DifficultDiseases 0 6 47 186 239

Total 2 41 171 522 736

2013 2014 2015 2016 Total

Easy Diseases 7.4% 15.1% 17.0% 25.9% 21.8%

Difficult Diseases 0.0% 27.3% 33.3% 33.2% 32.6%

Total Number of CRISPR-Disease Papers by Edit Difficulty (No Ex Vivo)

2013 2014 2015 2016 Total

Easy Diseases 7 49 136 240 432

Difficult Diseases 4 7 30 138 179

Total 11 56 166 378 611

Notes. A CRISPR-Disease paper is defined as an article containing MeSH Terms for both the disease domain

and CRISPR. CRISPR-Disease authors are the authors on these publications. External CRISPR Specialists

are authors of CRISPR-Disease papers that published in CRISPR first. Year is when a CRISPR-Disease

paper was published. Easy Diseases are those where the affected cell can be effectively edited ex vivo.

Difficult Diseases are those where ex vivo editing is not available. Source: PubMed publications and MeSH

Terms, 2013 - 2016.
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Table 3. Disease Cell Edit Difficulty and Share of External CRISPR Specialists

(1) (2) (3) (4) (5) (6)

OLS OLS OLS GLM, Logit GLM, Logit GLM, Logit

DV Share Ext. Share Ext. Share Ext. Share Ext. Share Ext. Share Ext.
CRISPR Spec. CRISPR Spec. CRISPR Spec. CRISPR Spec. CRISPR Spec. CRISPR Spec.

Edit Difficulty 0.0754* 0.1538*** 0.3891* 0.7943***

(No Ex Vivo) (0.0400) (0.0483) (0.2015) (0.2198)

Edit Difficulty -0.0291 -0.1459** -0.1662 -0.7483**

(No Cell Rep) (0.0506) (0.0640) (0.2532) (0.3010)

Tot Disease -0.0001*** -0.0001*** -0.0001*** -0.0007*** -0.0007*** -0.0007***

Pubs (0.0000) (0.0000) (0.0000) (0.0002) (0.0002) (0.0002)

Constant 0.0613 0.0931 0.0416 -15.2530*** -15.0626*** -15.4207***

(0.0715) (0.0624) (0.0910) (0.6577) (0.7006) (0.6997)

FE Quarter, Age Quarter, Age Quarter, Age Quarter, Age Quarter, Age Quarter, Age

Observations 442 442 442 442 442 442

Diseases 228 228 228 228 228 228

R2 0.0853 0.0775 0.0991
Log Likelihood -132.9693 -134.8536 -129.6273 -204.7815 -205.7884 -202.8224

Standard errors in parentheses

Based on authors of all CRISPR-Disease papers, errors clustered by disease

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes. This table shows the difference in the share of external CRISPR specialists on CRISPR-disease

papers by the difficulty of disease target cell editing using both OLS and GLM with Logit Link models. In

diseases with cells that cannot be edited ex vivo, the share of external CRISPR specialist authors increases

controlling for quarter, age, and disease attractiveness. The effect is stronger when also controlling for the

target cell's ability to self-replicate. The difficulty of cell editing by disease can be measured by biological

factors of the cells each disease primarily targets. Two key factors are (1) whether the cell can be edited

ex vivo and (2) whether the cell can self-replicate. If the cell a disease targets cannot be edited ex vivo or

if the cell does not self-replicate, then it will be harder and costlier (in resources) to edit. A CRISPR-disease

paper is defined as an article containing MeSH Terms for both the disease domain and CRISPR. An author

of a CRISPR-disease paper has an external CRISPR background if he or she published in CRISPR first

(and not in the disease). Source: PubMed publications and MeSH Terms, Q1 2013 - Q4 2016.
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Table 4a. Share of External CRISPR Specialists in Subsequent Innovations by Disease

Cell Edit Difficulty (Ex Vivo Editing) (Complete Dataset)

(1) (2) (3) (4)
OLS, FE OLS, FE GLM, Logit GLM, Logit

DV= Share Ext. Share Ext. Share Ext. Share Ext.
CRISPR Spec. CRISPR Spec. CRISPR Spec. CRISPR Spec.

Edit Difficulty* 0.0442*** 0.3331***
Qtr. from First Pub (0.0151) (0.1292)

Edit Difficulty* 0.0294 0.0898
First Year (no first paper) (0.1152) (0.8116)

Edit Difficulty* 0.1508 1.0440
Second Year (0.1708) (0.9814)

Edit Difficulty* 0.4737*** 4.1928***
Remaining Years (0.1562) (1.3324)

Tot Disease Pubs -0.0000 0.0000 -0.0009 -0.0003

(0.0001) (0.0001) (0.0008) (0.0009)

Constant 0.2345 0.1490 -18.4380*** -17.9954***

(0.1780) (0.1546) (1.0464) (1.0471)

FE Quarter, Age, Quarter, Age, Age, Disease Age, Disease
Disease Disease

Observations 442 442 442 442
Diseases 228 228 228 228
R 0.1015 0.0966

Log Likelihood 104.1781 102.9659 -115.3090 -115.2413

Standard errors in parentheses;

Based on authors of all CRISPR-Disease papers, errors clustered by disease

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes. This table shows the difference in the share of external CRISPR specialists for subsequent CRISPR-

disease papers by disease difficulty using both OLS and GLM with Logit Link models. As later subsequent

CRISPR papers are published in difficult diseases as compared to easy diseases, the share of external

CRISPR. specialists authors increases controlling for disease, quarter, age, and disease attractiveness. The

difficulty of the disease is measured by whether the targeted cell can be edited ex vivo. If the cell a disease

targets cannot be edited ex vivo, then it will be harder and costlier (in resources) to edit. CRISPR-Disease

papers are defined as articles containing MeSH Terms for both the disease domain and CRISPR. An author

of a CRISPR paper in a disease is considered an external CRISPR specialist if he or she published in

CRISPR first (and not in the disease). Source: PubMed publications and MeSH Terms, Q1 2013 - Q4 2016.

- 179-



Table 4b. Share of External CRISPR Specialists in Subsequent Innovations by
Disease Cell Edit Difficulty (Ex Vivo Editing) (Diseases w/Many Papers)

(1) (2) (3) (4)
OLS, FE OLS, FE GLM, Logit GLM, Logit

DV= Share Ext. Share Ext. Share Ext. Share Ext.
CRISPR Spec. CRISPR Spec. CRISPR Spec. CRISPR Spec.

Edit Difficulty* 0.0442*** 0.3858**
Qtr from First Pub (0.0153) (0.1763)

Edit Difficulty* 0.0294 0.3494
First Year (no first paper) (0.1169) (0.8458)

Edit Difficulty* 0.1508 1.3501
Second Year (0.1732) (1.1542)

Edit Difficulty* 0.4737*** 4.0363***
Remaining Years (0.1585) (1.4842)

Tot Disease Pubs -0.0000 0.0000 -0.0001 -0.0000
(0.0001) (0.0001) (0.0012) (0.0012)

Constant 0.1680 0.0895 -16.3330*** -17.4666***
(0.1893) (0.1658) (2.8533) (2.9530)

FE Quarter, Age, Quarter, Age, Quarter, Age, Quarter, Age,
Disease Disease Disease Disease

Observations 307 307 307 307
Diseases 93 93 93 93
R2 0.1015 0.0966
Log Likelihood 16.4140 15.5721 -94.0049 -94.4182

Standard errors in parentheses, errors clustered by disease;

Based on authors of all CRISPR-Disease papers for diseases with more than one paper;
* p < 0.10, ** p < 0.05, *** p < 0.01

Notes. This table shows the difference in the share of external CRISPR specialists for subsequent CRISPR-
disease papers by disease difficulty using both OLS and GLM with Logit Link models but run only for
diseases with multiple papers. As later subsequent CRISPR papers are published in difficult diseases as
compared to easy diseases, the share of external CRISPR specialists authors increases controlling for disease,
quarter, age, and disease attractiveness. The difficulty of the disease is measured by whether the targeted
cell can be edited ex vivo. CRISPR-Disease papers are defined as articles containing MeSH Terms for both
the disease domain and CRSPR. An author of a CRISPR paper in a disease is considered an external
CRISPR specialist if he or she published in CRISPR first (and not in the disease). Source: PubMed
publications and MeSH Terms, Q1 2013 - Q4 2016.
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10 Appendix

Figure Al. Quarter of Publication and Share of External CRISPR Specialists

Change in the Share of External CRISPR Specialists by Publication Quarter
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Notes. This figure shows the change i the share of external CRISPR specialists by quarter of publication.

Each point is the estimated coefficient and standard errors from an OLS model that regresses each quarter

of publication from Q1 2014 - Q4 2016 on the share of external CRISPR specialists publishing CRISPR-

disease papers. A CRISPR-disease paper is defined as an article containing MeSH Terms for both the

disease domain and CRISPR. An author of a CRISPR-disease paper has an external CRISPR background

if he or she published in CRISPR first (and not in the disease). Source: PubMed publications and MeSH

Terms, Q1 2014 - Q4 2016.
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Table Al. Mean Differences in the Share of External CRISPR Specialists by Disease

Cell Edit Difficulty (Ex Vivo Editing) for First and Subsequent Innovations

Difference in Means by Time Period and the Availability of Ex Vivo Editing

N N
Share of External Ex No

(Ex (No Diff P-val

VivoV) Ex Vivo)

First Paper Only 138 90 0.23 0.33 0.10 0.05

In First Year - No First Paper 50 23 0.24 0.32 0.08 0.36

In Second Year - No First Paper 36 5 0.22 0.39 0.17 0.43

Remaining Years - No First Paper 13 6 0.21 0.47 0.26 0.24

Notes. This table shows the difference in means between the share of external CRISPR specialists for

CRISPR papers in easy diseases versus difficult diseases based on whether the paper was the first or

subsequent CRISPR paper in the disease and is the raw data for Figure 6. The share of external CRISPR

specialists is higher on average for teams publishing CRISPR papers in difficult diseases for both the first

and subsequent papers. The difficulty of the disease is measured by whether the targeted cell can be edited

ex vivo. If the cell a disease targets cannot be edited ex vivo, then it will be harder and costlier (in resources)

to edit. CRISPR-Disease papers are defined as articles containing MeSH Terms for both the disease domain

and CRISPR. An author of a CRISPR paper in a disease is considered an external CRISPR specialist if he

or she published in CRISPR first (and not in the disease). Source: PubMed publications and MeSH Terms,

Q1 2013 - Q4 2016.
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