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Abstract

Demand for data visualization has exploded in recent years with the increasing avail-
ability and use of data across domains. Traditional visualization techniques require
users to manually specify visual encodings of data through code or clicks. While man-
ual specification is necessary to create bespoke visualizations, it renders visualization
inaccessible to those without technical backgrounds. As a result, visualization recom-
mender systems, which automatically generate results for users to search and select,
have gained popularity. Here, I present systems, methods, and data repositories to
contextualize and improve visualization recommender systems.

The first contribution is DIVE, a publicly available and open source system that
combines rule-based recommender systems with manual specification. DIVE inte-
grates state-of-the-art data model inference, visualization, statistical analysis, and
storytelling capabilities into a unified workflow. In a controlled experiment, we show
that DIVE significantly improves task performance among a group of 67 professional
data scientists. Over 15K users have uploaded 7.5K datasets to DIVE since its release.

In response to the limitations of rule-based recommender systems, VizML is a ma-
chine learning-based method for visualization recommendation. VizML uses neural
networks trained on a large corpus of datasetvisualization pairs to predict visualiza-
tion design choices, such as visualization type and axis encoding, with an accuracy
of over 85%, exceeding that of base rates and baseline models. Benchmarking with
a crowdsourced test set, we show that our model achieves human-level performance
when predicting consensus visualization type.

To support learned visualization systems, VizNet is a large-scale visualization learn-
ing and benchmarking repository consisting of over 31M real-world datasets. To
demonstrate VizNet's utility as a platform for conducting crowdsourced experiments
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with ecologically valid data, we replicate a prior perceptual effectiveness study, and
demonstrate how a metric of visualization effectiveness can be learned from experi-
mental results. Our results suggest a promising method for efficiently crowdsourcing

the annotationsnecessary to train and evaluate machine learning-based visualization
recommendation at scale.

Enabled by the availability of real-world data, Sherlock is a deep learning approach
to semantic type detection. We train Sherlock on 686K data columns retrieved from
the VizNet corpus by matching 78 semantic types from DBpedia to column headers.
We characterize each matched column with 1, 588 features describing the statistical
properties, character distributions, word embeddings, and paragraph vectors of col-
umn values. A multi-input neural network achieves a support-weighted F1 score of
0.89, exceeding that of a decision tree baseline, dictionary and regular expression
benchmarks, and the consensus of crowdsourced annotations.

I conclude by discussing three opportunities for future research. The first describes
design considerations for mixed-initiative interactions in AI-infused visualization sys-
tems such as DIVE. The second reviews recent work on statistical validity of insights
derived from visualization recommenders, which is an especially important consider-
ation with learned systems such as VizML. Lastly, I assess the benefits of learning
visualization design from non-experts then present experimental evidence towards
measuring the gaps between expert and non-expert judgment.

Thesis Supervisor: C6sar Hidalgo
Title: Associate Professor of Media Arts and Sciences, MIT Media Lab
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Chapter 1

Introduction

The ability to take data - to be able to understand it, to process it, to

extract value from it, to visualize it, to communicate it - that's going to

be a hugely important skill in the next decades...because now we really do

have essentially free and ubiquitous data. So the complementary scarce

factor is the ability to understand that data and extract value from it.

The McKinsey Quarterly

HAL VARIAN, 2009

Data is increasingly abundant and complex. As of 2012, 2.5 million terabytes of data

were generated daily [112]. By 2020, an estimated 1.7 megabytes of data will be

generated per person every second [37]. This exponential growth in data is driven

by the decreasing cost of data acquisition and storage across industries. Healthcare

providers such as Kaiser Permanente generate electronic health records about millions

of patient outcomes. Users of social media platforms such as Twitter share over half

a billion tweets per day. Commercial enterprises such as Walmart collect petabytes

of customer behavior data every hour [77,85,112].

The growing supply of data is matched with a commensurate demand for deriving

value from data. Across scales - from individuals to organizations to the public sphere

- data is increasingly used to improve understanding of systems and the communica-

tion of information, in the service of making timely and effective decisions. Embracing

data pays off: manufacturing firms that adopt data-driven decision making are sta-

tistically more productive, and adoption of data analytics has a positive interaction

effect on market performance [17,38].

Matching the supply of data with the demand for insights requires employing prac-
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tices for deriving value from data, such as natural language processing, information

retrieval, or machine learning. Data visualization, which leverages the human visual

system by encoding information with the visual properties of graphical marks, is one

such practice [11,30,191]. Researchers have demonstrated the utility of visualization

for supporting exploratory data analysis tasks such as detecting patterns and finding

outliers [181] and communicative tasks such as authoring narratives [158]. Across in-

dustries, from journalism to healthcareto the enterprise, interpreting and authoring

visualizations is becoming an essential skill [169].

1.1 Problem

Technical users can draw on an abundance of tools for authoring visualizations. Visu-

alization toolkits [46,59] provide a variety of mechanisms for creating visualizations,

such as subclassing a hierarchy of visualization widgets. Visualization grammars,

such as D3 and Vega, allow visualization creation through the composition of primi-

tives [15,154]. Both toolkits and grammars permit the creation of highly customized

visualizations and have seen widespread adoption, but they require programming ex-

perience. Vector drawing tools like Adobe Illustrator are popular for creating static

visualizations, but often have steep learning curves.

Users without programming expertise resort to using tools that have limited flexibility.

Visualization tools that are tailored to a specific dataset are increasingly common,

but do not let users visualize their own data [148,165,205] . Chart typologies [195]

such as ManyEyes and charts -within Excel let users quickly create visualizations,

but restrict users to a small set of chart types [114,188]. Interactive visualization

design tools such as Tableau and Plotly provide drag-and-drop interactions for custom

visualization design [130,173]. However, manually specifying visualizations can be

ihttps://nytimes.com/elections/2012/results/president/scenarios.html
2https://projects.fivethirtyeight. com/world-cup-comparisons
3https: //ourworldindata. org/grapher/gini- index-around-2015-1990-2015- countries-

vs-gini-index-around-1990-1990-2015-countries
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tedious and requires design and analysis expertise, which is not feasible when one is

working with a limited amount of time.

As data visualization has begun to be adopted by new communities, the practice

has reached users without the technical background, time, or resources to use exist-

ing technologies [14,86]. These users, who are often domain experts like journalists,

healthcare practitioners, and business decision-makers, require visualization author-

ing tools that can be used without the programming expertise or time needed for

manual specification. The absence of tools addressing this need leads to users relying

on others with technical background, creating "hacky" solutions in existing tools, or

not working with data at all.

1.2 Approach

The gap between need and capability motivates the guiding question of this thesis:

how do we make data visualization systems more accessible to a broader audience,

without compromising power? Note that manual specification of visualizations is

repetitive because many design decisions are already dictated by visualization best

practices and the constraints of the tool being used. As a result, visualization may

lend itself to automation. In particular, this thesis focuses on automating components

of the visualization workflow through visualization recommendation, which automat-

ically identifies and interactively recommends visualizations that are relevant to a

specific task and dataset.

Data visualization communicates information by representing data with visual ele-

ments. These representations are specified using encodings that map from data to

the retinal properties (e.g., position, length, or color) of graphical marks (e.g., points,

lines, or rectangles) [11, 20]. For example, to create a scatterplot showing the rela-

tionship between fuel efficiency (MPG) and horsepower (Hp) in an automobile dataset,

an analyst would encode each pair of data points with the position of a circle on a
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2D plane, while also specifying other retinal properties such as size and color:

chevrolet chevelle 18 8 307 130 3504 12 70 US
buick skylark 320 8 350 3693 11.5 70 US

chevy s-10 31 4 119 82 2720 19.4 82 US
50°

40-

Mark Circle

Y' Position (x) 112.5px 0
Position (y) 127.2px 20
Size (diameter) 2px

c6 Stroke Color Orange
Q.Fill Color White

- O o 10 1so 200

Figure 1-1: Example speci-
fication for a 2D scatterplot
visualizing two columns
of the classic automobile
dataset [142].

This simple scatterplot is specified with the Vega-lite [153] grammar by selecting a

mark type and fields to be encoded along the x- and y-axes, and in Tableau [173]

by placing the two columns onto the respective column and row shelves, as shown

in Figure 1-2. But as the complexity of a visualization increases, manually specifying

encodings can quickly become prohibitively expensive in terms of time and energy.

Vega-Lite
.mark": "point-•
.encoding: {

-x": {
field": "Hp,
"type: quantitative-

y": (
"field": *MPG".
"type": "quantitative"

}

Tableau
M Mur
* Hpo

* ;G\,,drag

"I ekm

Rw=}

Figure 1-2: Creating a visu-
alization in Vega-Lite and
Tableau.

Visualization recommendation aims to reduce the cost of creating visualizations by

automatically suggesting the choices that maximize the effectiveness of a given visual-

ization. The effectiveness of a visualization can be defined by informational measures

such as efficiency, accuracy, and memorability [13,208], or emotive measures such

as engagement [47,75]. Prior research also shows that effectiveness is informed by

low-level perceptual principles [30,60,99,144] and dataset properties [78,151], in ad-

dition to contextual factors such as the task [6,78,150], aesthetics [24], domain [71],

audience [163], and medium [116,156].
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Research progress on visualization recommenders demands developments on three

complementary but separate fronts of data, methods, and systems. Understanding

the relationship between user data, context, task, and visualization effectiveness re-

quires experimental and observational data. Modeling the relationship between data

and visualization demands work on the methods for conceptualizing and develop-

ing recommender systems. Finally, presenting recommended results to users requires

research on designing the systems around recommendations.

1.3 Outline and Contributions

This thesis consists of seven chapters, as depicted in Figure 1-3. CHAPTER 2 describes

prior work on data visualization systems (§2.1), visualization recommendation (§2.2),

data from and for visualization research (§2.3), and semantic type detection (§2.4).

This survey of the literature provides context for the four main contributions of the

thesis, along with the systems, methods, and data fronts, as described in CHAPTERS 3

through 6.

The challenges of manual specification motivated the creation of DIVE, a web-based

system that integrates state-of-the-art data exploration features into a single tool.

DIVE contributes a mixed-initiative interaction scheme that combines recommenda-

tion with point-and-click manual specification, and a consistent visual language that

unifies different stages of the data exploration workflow. CHAPTER 3 describes the

usage (§3.1), design considerations (§3.2), system design (§3.3), and implementation

(§3.4) of DIVE. We evaluated DIVE by conducting a controlled experiment with 67

professional data scientists from two large U.S. consulting firms (§3.5). Our results

show that, without prior training, DIVE users were significantly faster than experi-

enced Excel users at completing predefined data visualization and analysis tasks, and

were also more likely to correct false prior beliefs. Over 15K users have uploaded

7.5K datasets to DIVE since its release in June 2019. Despite the modest adoption
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Figure 1-3: Graphical Outline of the Thesis

of DIVE, it was limited by its underlying rule-based recommendation scheme, which

did not provide meaningful recommendations for unseen datasets, instead producing

an overwhelming quantity of recommendations for multiple selected fields.

The limitations of rule-based recommender systems led to VizML, a machine learning-

based approach to visualization recommendation using data from a popular online

platform. In CHAPTER 4, we first formulate the visualization recommendation prob-

lem (§4.1). Then, we identify five key design choices made by analysts while creating

visualizations, such as selecting a visualization type and choosing to encode a column

along the x- or y-axis. We train models to predict these design choices (§5.2) using

one million dataset-visualization pairs collected from a popular online visualization

platform (§5.1). Neural networks predict these design choices with a high accuracy

when compared with baseline models (§4.4). We report and interpret the importances
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of features extracted from one of these baseline models. To evaluate the generalizabil-

ity and uncertainty of our approach, we benchmark with a crowdsourced test set, and

show that the performance of our model is comparable to human performance when

predicting consensus visualization type, and exceeds that of other visualization rec-

ommender systems (§4.5). While the performance of VizML is promising, the quality

of learned models ultimately depends on the quality and quantity of the underlying

training data. The data used in current ML-based recommender systems fall short in

one of these two dimensions.

The lack of high-quality training data in sufficient quantities motivated the creation

of VizNet, a large-scale corpus of over 31 million datasets compiled from open data

repositories and online visualization galleries. On average, these datasets comprise 17

records over 3 dimensions and across the corpus, and we find 51% of the dimensions

record categorical data, 44% quantitative, and only 5% temporal (§5.1). VizNet

provides the necessary common baseline for comparing visualization design techniques

and developing benchmark models and algorithms for automating visual analysis.

To demonstrate VizNet's utility as a platform for conducting online crowdsourced

experiments at scale, we replicate a prior study assessing the influence of user task

and data distribution on visual encoding effectiveness, and extend it by considering an

additional task: outlier detection (§§5.2, 5.3). To contend with running such studies

at scale, we demonstrate how a metric of perceptual effectiveness can be learned from

the experimental results and show its predictive power across test datasets (§5.3). By

facilitating research with ecologically valid data, VizNet can be useful not only for

visualization research, but also for data systems research broadly.

Correctly detecting the semantic type of data columns is crucial for data science

tasks such as automated data cleaning, schema matching, and data discovery. The

importance of correct semantic types coupled with the data made available through

VizNet enabled Sherlock, a deep learning approach to semantic type detection. We
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train Sherlock on 686,765 data columns retrieved from the VizNet corpus by match-

ing 78 semantic types from DBpedia to the column headers. We characterize each

matched column with 1, 588 features describing the statistical properties, character

distributions, word embeddings, and paragraph vectors of the column values (§6.2).

These features are used to train a multi-input neural network (§6.3). The neural net-

work achieves a support-weighted F 1 score of 0.89, exceeding that of a decision tree

baseline, dictionary and regular expression benchmarks, and the consensus of crowd-

sourced annotations (§6.4). The high performance of our approach, coupled with its

apparent robustness to dirty data, encourages future research in using real-world data

to train learned data science systems components.

To close, CHAPTER 7 summarizes the contributions of this thesis (§7.1). We discuss

limitations of these contributions and recent research developments, before highlight-

ing four promising directions for future research related to visualization recommen-

dation (§7.2). Systems like DIVE require a balance between agency and automation,

leading to questions regarding the design of mixed-initiative interfaces, deskilling

users, and the interpretability of recommender systems (§7.2.1). As learned systems

are adopted in more and more real-world contexts, it is increasingly important to

ensure the statistical validity of visual analysis with recommender systems (§7.2.2).

The scalability of learned systems like VizML and repositories like VizNet depend on

harvesting training data from non-experts, raising open questions about the validity

of non-expert judgment compared with expert judgment (§7.2.3).

1.4 Prior Publications and Collaboration

This majority of this thesis consists of peer-reviewed work of which I am the primary

or co-primary author. But each contribution was the result of a larger effort from

many collaborators, especially my advisor Professor Cesar Hidalgo, who supported

each project with resources and guidance. DIVE was published at ACM SIGMOD 2018
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Workshop on Human-in-the-Loop Data Analytics [66], VizML was published at

ACM CHI 2019 [64], VizNet was published at ACM CHI 2019 [65], and Sherlock was

published at ACM KDD 2019 [67]. All projects were the result of an large and diverse

group of collaborators. To reflect the collective contribution of all contributors, this

thesis uses the plural pronoun "we."
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Chapter 2

Related Work

This thesis is grounded in four bodies of related work:

1. Visualization Systems (§2.1) describes prior systems for visualization creation,

authoring, and exploration through manipulation of a graphical interface. Such

systems motivate and inform the current thesis in general, and the development

of DIVE (CHAPTER 3) in particular.

2. Visualization Recommenders (§2.2) surveys rule-based and machine learning-

based methods for visualization recommendation. The former rule-based ap-

proaches inform the recommendation system underlying DIVE, while both ap-

proaches motivate VizML (CHAPTER 4).

3. Data Collection From and For Visualization Research (§2.3) reflects on the state

of data collected from graphical perception studies. The utility and scarcity of

this data prompt the creation of data repositories intended for visualization

research, such as VizNet (CHAPTER 5).

4. Semantic Type Detection (§2.4) surveys rule-based and data-driven approaches

for detecting semantic types. Building on the strengths of prior approaches,

Sherlock (CHAPTER 6) is then evaluated against benchmarks exemplifying these

approaches.

The goal of this section is to contextualize each thesis contribution by characterizing

each body of prior work, identifying gaps in knowledge, and describing the movements

in the field.
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2.1 Visualization Systems

To enable visualization creation, researchers have developed two bodies of prior work.

The first consists of programming toolkits and libraries that enable custom visual-

ization design. While programming toolkits and libraries for visualization have seen

widespread adoption, this thesis is informed primarily by systems that allow visual-

ization creation through manipulation of a graphical interface.

These systems can be categorized according to dataset specificity and by task. The

first category of dataset-specific systems 1) investigate new visualization and interac-

tion techniques and 2) enable exploratory analysis. The second category of dataset-

agnostic systems allow 1) authoring, 2) exploratory analysis, and 3) broadly accessible

visualization creation.

2.1.1 Dataset-Specific Systems

Data can be used to measure and describe extremely diverse phenomena, from film

reviews to baby name trends. Developing systems to visualize these types of hetero-

geneous inputs is challenging. One way to tackle this heterogeneity is to introduce

constraints: dataset-specific systems are tailored to specific datasets and, as a result,

specific domains. Focusing on specific datasets grants a fixed data model: the space

of the objects, attributes, and relationships is fully specified. As a result, dataset-

specific systems provide controlled environments for investigating new visualization

and interaction techniques as well as for enabling rich exploratory analysis within a

chosen domain.
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Task: Investigating New Visualization and Interaction Techniques

Seminal data visualization research systems from the mid 1990s such as FilmFinder [5],

Table Lens [143], and Seesoft [45] focus on specific data models: film review, tabu-

lar baseball statistics, and lines of code data, respectively. By constraining the data

model, these "classic" research systems demonstrated the utility of novel visualiza-

tion and interaction techniques such as tightly coupled query components, direct

manipulation, and the integration of context with details. Many of these principles

and techniques are now ubiquitous in visualization systems intended to accomplish

different tasks for a wider variety of data models.

Task: Exploratory Analysis

Driven by the concurrent rise of personal computing, Internet access, and in-browser

visualization libraries, web-based visualizations [59] emerged in the mid 2000s. Name

Voyager [192] visualizes the trends of baby names over the past century and through-

out all 50 U.S. states. Sense.us [62] enabled collaborative visual analysis of census

data. Journalistic outlets such as the New York Times graphics department published

U.S. election results1 , Box Office Receipts 2, and the American Time Use Survey.

As barriers to creating interactive visualizations have decreased, web-based visualiza-

tions have become the dominant paradigm for creating, sharing, and consuming in-

teractive visualizations. Data tools are centered around specific datasets and themes,

such as the Observatory of Economic Complexity [165] for international trade and

DataUSA 4 for US census data. Our World in Data aggregates visualizations and

lhttps://www.nytimes. com/elections/2008/results/president/votes.html
2https://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUEGRAPHIC.

html
3https://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-

graphic.html
4https://datausa.io
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narratives relating to global development time series data. Similarly, Gapminder [50]
provides interactive bubble charts to explore development data. Personally, I con-

tributed to Pantheon [205] and the Global Language Network [148], two bespoke

visualization systems enabling the exploration of datasets related to historical cul-

tural production and the connections between language groups.

Systems for exploring specific datasets have become indispensable. However, creating

such systems requires knowledge of software engineering, a specific data domain, and

visualization best practices. As a result, users who wish to visualize their own datasets

frequently rely on dataset-agnostic systems that allow users to upload their own data.

2.1.2 Dataset-Agnostic Systems

By relaxing the constraint on datasets, data-agnostic systems do not make such strict

data model assumptions because they accommodate user-uploaded data. Instead,

data-agnostic systems are typically constrained to tidy [194] tabular data in which the

rows represent observations across the attributes represented by columns. Proceeding

from this assumption about semantics - the correspondences between data values and

real-world concepts - three categories of data-agnostic systems have emerged.

Task: Accessible Visualization Creation

Chart typologies let users select from pre-defined visualization types, such as scat-

terplots and bar charts, and map data values to the encoding channels of these vi-

sualizations. A ubiquitous example is the chart template functionality in Microsoft

Excel [114]. Similar functionality is present in popular web-based tools such as Web

IBM ManyEyes [188], Raw Graphs [111], and Plot.ly Chart Studio [130]. Although

chart typologies permit rapid visualizations, they typically support a limited number
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of visualization types and customizable parameters.

Instead of constraining users to selecting chart templates, systems based on shelf

configuration let users specify encodings through drag-and-drop interactions. Three

popular shelf configuration tools include the business intelligence tools tool Tableau

(formerly known as Polaris [173]), Spotfire [4], and Qlik Sense [137]. Drag-and-drop

interactions are easy to use but do not permit fine-grained specification of a mark

style and are still limited in configurability.

Task: Authoring

In response, interactive visual design tools such as Lyra [152], Charticulator [146], and

Data Illustrator [100] provide fine-grained control of the visual properties of graphical

marks. Built upon data binding models, defined conceptual frameworks such as the

Vega specification [154], and constraint-based layout algorithms, these state-of-the-art

systems provide the expressiveness needed to create complex visualizations without

having to program. Advances in interactive visual design tools address the use case of

authoring customized visualizations, while recommender systems facilitate exploring

simple visualizations.

Task: Exploratory Analysis

The complete manual specification of visual encodings may be necessary to create

customized visualizations. However, for many common use cases, such as prelimi-

nary data visualization and creating basic visualizations, the speed and breadth of

exploration are more important than customizability. In these cases, visualization rec-

ommender systems propose to automatically suggest visualizations for users to search

and select, leading to the development of mixed-initiative systems that balance user
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interactions with automated recommendation [63].

Prior mixed-initiative systems present a gallery of visualizations with varied under-

lying data and visual encodings. For example, VizDeck [128] presents users with a

ranked list of 1D and 2D visualizations that a user can vote up or down. VizDeck

incorporates user votes to update visualization ranks. Small Multiples, Large Sin-

gles [183] presents a main visualization and a grid of small multiples that are variants

of the main visualization. Users explore recommendations by specifying data queries

or visual encodings. Keshif [203] lets users interact with web-based dashboards com-

posed of linked visualizations.

Extending these gallery approaches, recent work utilizes increased computational re-

sources to recommend related views that include unselected fields. Voyager [199]

and Voyager 2 [200], along with the underlying Compass recommender engine [198],
recommend visualizations involving user-selected fields and one non-selected field.

Explore in Google Sheets [52] provides similar recommendations that "look ahead"

one field. DIVE is inspired by Voyager 2, and aims to extend its mixed-initiative

visualization approach to other parts of the data exploration pipeline. That said,

DIVE also extends this line of work by including more non-selected fields in recom-

mendations, incorporating semantic types into recommendations, and introducing a

distinction between exact, subset, and expanded recommendations.

2.2 Visualization Recommenders

Underlying mixed-initiative visualization systems are visualization recommenders that

either suggest data queries (selecting what data to visualize) or visual encodings (how

to visualize the selected data) in response to uploaded data [198]. Recommenders are

also categorized into rule-based approaches that encode the best practices through

hand-crafted rule sets and machine learning-based approaches that learn recommen-

dations directly from data.
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2.2.1 Data Query Recommenders

Data query recommenders vary widely in their approach. Rank-by-feature frame-

work [159] and Scagnostics [196] present predefined sets of visualizations, such as 2D

scatter plots of column pairs, that are ranked by the statistical properties of underly-

ing data. Pre-defined visualizations provide effective overviews of data but can omit

meaningful relationships or visualizations. To address this problem of false negatives,

Zenvisage [162] and VizDeck [128] enumerate "all possible" visualizations. For ex-

ample, VizDeck creates 2D scatterplots between all column pairs, which is tractable

for small datasets but grows exponentially with the number of columns. In response,

recent systems such as SeeDB [107], MuVE [43], and Data Polygamy [27] optimize

statistical "utility" functions that serve as proxies for "interestingness" or "relevance."

Though specifying data queries is crucial to visualization, it is a distinct task from

visual encoding recommendation, which is the focus of VizML. Orthogonal to the

distinction between data query and visual encoding recommenders is the dimension

of rule-based versus machine learning-based systems. Rule-based systems encode

visualization best practices as hard-coded if-then statements and weights. In contrast,

ML-based systems learn the relationship between input data and output visualization.

2.2.2 Rule-based Recommenders

Most visual encoding recommenders implement guidelines that are informed by the

seminal work of Bertin [11] and Cleveland and McGill [30]. This approach is exem-

plified by Mackinlay's APT [105] - the ur-recommender system - which enumerates,

filters, and scores visualizations using expressiveness and perceptual effectiveness cri-

teria. The closely related SAGE [149], BOZ [21], and Show Me [106] support more

data, encoding, and task types. Recently, hybrid systems such as Voyager [198-200],
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Explore in Google Sheets [52,187], and VizDeck [128] have combined visual encoding

rules with the recommendation of visualizations that include non-selected columns.

Though effective for many use cases, these systems suffer from three major limita-

tions. First, visualization is a complex process that may require modelling non-linear

relationships that are difficult to capture with simple rules. Second, crafting rule

sets is a costly process that relies on expert judgment, especially as visualization best

practices continue to evolve with research advances. Lastly, as the dimension of input

data increases, the combinatorial nature of the rules result in an explosion of possible

recommendations.

2.2.3 Machine Learning-based Recommenders

The guidelines encoded by rule-based systems are often derived from experimental

findings and expert experience. Therefore, through an indirect manner, heuristics

distill the best practices learned from another analyst's experience of creating and

consuming visualizations. Instead of aggregating the best practices learned from data

and representing them in a system with rules, ML-based systems propose training

models that learn directly from data and can be embedded into systems as is.

Developed to map JSON-encoded data directly to Vega-Lite visualization specifica-

tions, Data2Vis [36] uses a neural machine translation approach to create a sequence-

to-sequence model. The model is trained using 4,300 automatically generated Vega-

Lite examples, consisting of 1-3 variables that are generated from 11 distinct datasets.

Model predictions are qualitatively validated by examining the visualizations gener-

ated from 24 common datasets.

Taking a hybrid approach, DeepEye [103] combines rule-based visualization gener-

ation with models trained to classify a visualization as "good" or "bad" and rank
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lists of these visualizations. The DeepEye corpus consists of 33,412 bivariate visu-

alizations of columns drawn from 42 public datasets. Here, 100 students annotated

these visualizations as good/bad, and compared 285,236 pairs. These annotations,

combined with 14 features for each column pair, train a decision tree for classification

and a ranking neural network [18] for the "learning to rank" task.

Conceptualizing data visualization as a constraint solving problem, Draco-Learn [119]

learns trade-offs between the constraints in Draco, a formal model that represents vi-

sualizations as logical facts and design guidelines as hard and soft constraints. Con-

straint weights are learned using a ranking support vector machine trained on ranked

pairs of visualizations that are harvested from graphical perception studies [78,150].

Draco then recommends visualizations that satisfy these constraints by solving a

combinatorial optimization problem.

VizML differs from these systems in three major respects. A tabular comparison

of the ML-based visualization recommendation systems is shown in Table 2.1. In

terms of the learning task, DeepEye learns how to classify and rank visualizations,

Data2Vis learns an end-to-end generation model, and Draco-Learn learns the weights

of soft constraints. By learning to predict design choices, VizML models are easier

to quantitatively validate, provide interpretable measures of feature importance, and

can be more easily integrated into visualization systems.

In terms of data quantity, the VizML training corpus is orders of magnitude larger

than that of DeepEye and Data2Vis. The size of our corpus permits the use of 1)

large feature sets that capture many aspects of a dataset and 2) high-capacity models

such as deep neural networks.

The third major difference is one of data quality. In contrast to the few datasets used

to train the three existing systems, the datasets used to train VizML models are ex-

tremely diverse in shape, structure, and distribution. Furthermore, the visualizations
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System Source Ndata Generation Learning Task Training Data Features Model

VizML Public 10i Human Design Choice Dataset- Single + Pairwise + Neural Network
(Plotly) Recommendation Visualization Pairs Aggregated

DeepEve Crowd 1) 33.4K Rules-* 1) Good-Bad Classif. 1) Good-Bad Labels ColumnPair 1) Decision Tree
2) 285K Annotation 2) Ranking 2) Pairwise Comparisons 2) RankNet

Data2Vis Tool 4300 Rules - End-to-End Dataset Subset- Raw Seq2Seq NN
(Voyager) Validation Viz. Generation Visualization Pairs

Draco-Learn Crowd 1,100+ Rules -+ Soft Constraint Pairwise Comparisons Soft Constraint RankSVM
10 Annotation Weights Violation Counts

Table 2.1: Comparison of machine learning-based visualization recommendation sys-
tems. The major differences are that of learning task definition, and the quantity
(Ndata) and quality (generation and training data) of the training data.

used by other ML-based recommender systems are generated by rule-based systems

and evaluated under controlled settings. The corpus used by VizML is the result of

real visual analysis by analysts on their own datasets.

However, VizML faces two major limitations. First, these three ML-based systems

recommend both data queries and visual encodings, while VizML only recommends

the latter. Second, in this paper, we do not create an application that employs our

visualization model. Design considerations for user-facing systems that productively

and properly employ ML-based visualization recommendations are important, but

beyond the scope of this paper.

2.3 Data Collection From and For Visualization Research

Rule-based visualization recommender systems encode visualization best practices

that are informed by the results of graphical perception studies. The data harvested

from these studies are increasingly used to train and benchmark learned visualization

systems. However, these studies are typically conducted on single datasets with small

size and variety, making them difficult to generalize. Data repositories for visualiza-

tion research address the need for centralized data to scale and generalize research,

which machine learning corpora have facilitated in other domains.
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2.3.1 Graphical Perception

The visual encoding of data is central to information visualization. Earlier stud-

ies have analyzed how different choices of visual encodings such as position, size,

color, and shape influence graphical perception [30], the decoding of data presented

in graphs. Through human subjects experiments, researchers have investigated the

effects of visual encoding on the ability to read and make judgments about the data

represented in visualizations [30,58,82,92,164,167,168,179]. Consequently, prior re-

search has provided rankings of visual variables by user performance for nominal,

ordinal, and numerical data [30,92, 104,105,161]. Researchers have also studied how

design parameters beyond visual encoding variables, such as aspect ratio [28,57,176],

size [29,60,88], chart variation [84,178], and axis labeling [177], impact the effective-

ness of visualizations. Previous studies have evaluated how user task, data types,

and distributions influence the effectiveness of charts [150] and visual encoding vari-

ables [78].

In current practice, graphical perception experiments are typically conducted on single

datasets that are of a small size and variety, lacking the characteristics of real-world

data. Studies based on ad hoc datasets may provide useful results but are inherently

partial and difficult to generalize, reproduce, and compare against. VizNet provides

a corpus of real-world tables from diverse domains to make it easier for researchers to

run visualization design evaluation studies at scale. VizNet is sufficiently rich both

in size and variety to satisfy the data needs of a substantial number of experimental

designs, facilitating the comparison of and reasoning about the results from different

experiments on a common baseline.
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2.3.2 Data Collection for Visualization Research

Although researchers recognize the need for data collection and generation to facilitate

evaluation across a broad range of real datasets [155,157], little effort has been made

to create centralized corpora for data visualization research. Beagle [10] has been

used to scrape over 41, 000 visualizations from the web. Similarly, the MassVis [13]

database was compiled by scraping over 5,000 visualizations from the web and par-

tially annotating them. Lee et al. [160] recently extracted and classified 4.8 million

figures from articles on PubMed Central. However, these datasets do not include the

raw data represented by the visualizations, limiting their utility for generalized and

reproducible visualization research.

2.3.3 Machine Learning Corpora

Recent developments of large-scale data repositories have been instrumental in foster-

ing machine learning research. Access to rich, voluminous data is crucial for develop-

ing successful machine learning models and for comparing different approaches using

a common baseline. To this end, researchers have created centralized data repositories

for training, testing, and benchmarking models across many tasks. Publicly available

repositories such as ImageNet [35], SUN [202], COCO [96], and so forth, are one of

the main drivers behind the rapid advances in deep learning. VizNet is informed and

inspired by the digital experimentation capabilities of large-scale data repositories in

machine learning research.

2.4 Semantic Type Detection

Compared with basic atomic types (e.g., strings and numbers), semantic types (e.g.,

date-time and e-mail address) provide richer and finer-grained descriptions of the
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content of a column. Both commercial and research systems have utilized matching-

based and data-driven approaches for semantic type detection.

2.4.1 Matching-based

Semantic type detection enhances the functionality of commercial data preparation

and analysis systems such as Microsoft Power BI [115], Trifacta [180], and Google

Data Studio [53]. To the best of our knowledge, these commercial tools rely on

matching-based approaches such as manually defined regular expression patterns dic-

tionary lookups of column headers and values to detect a limited set of semantic types.

For instance, Trifacta detects around 10 types (e.g., gender and zip code), and

Power BI only supports time-related semantic types (e.g., date/time and duration).

Open source libraries such as messytables [87], datalib [185], and csvkit [54] similarly

use heuristics to detect a limited set of types. Benchmarking directly against these

systems was unfeasible because of the small number of supported types and lack of

extensibility. However, we compare against learned regular expression and dictionary-

based benchmarks that are representative of the approaches taken by these systems.

Prior research work with roots in the semantic web and schema-matching literature

provides alternative approaches to matching-based type detection. One body of work

leverages the existing data on the web, such as WebTables [19], and ontologies (i.e.,

knowledge bases) such as DBPedia [7], Wikitology [175], and Freebase [12]. Venetis

et al. [186] construct a database of value-type mappings and then assign types using

a maximum likelihood estimator based on the column values. Syed et al. [175] use

column headers and values to build a Wikitology query, the result of which maps

columns to types. Informed by these ontology-based approaches, we looked towards

existing ontologies to derive the 275 semantic types considered in Sherlock.

Recently Yan and He [204] developed a system that, given a search keyword and
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set of positive examples, synthesizes type detection logic from open source GitHub

repositories. This system provides a novel approach for leveraging domain-specific

heuristics for parsing, validating, and transforming semantic data types. Although

both approaches are exciting, the code underlying these systems was not available for

benchmarking.

2.4.2 Data-driven

Data-driven approaches characterize and compare the statistical properties of data

to detect ontology-agnostic semantic types. Ramnandan et al. [141] use heuristics

to first separate numerical and textual types and then describe those types using

the Kolmogorov-Smirnov (K-S) test and term frequency-inverse document frequency

(TF-IDF), respectively. Pham et al. [129] use slightly more features, including the

Mann-Whitney test for numerical data and Jaccard similarity for textual data, to

train logistic regression and random forest models. We extend these feature-based

approaches using a significantly larger set of features that includes character-level

distributions, word embeddings, and paragraph vectors. Orders of magnitude more

features and training samples motivates our use of high-capacity machine learning

models such as neural networks. Although the code for benchmarking these models

was not available, we include a decision tree model to represent "simpler" machine

learning models.

The last category of prior work employs a probabilistic approach. Goel et al. [51] use

conditional random fields to predict the semantic type of each value within a column,

then combine these predictions into a prediction for the whole column. Limaye et

al. [94] use probabilistic graphical models to annotate values with entities, columns

with types, and column pairs with relationships. These predictions simultaneously

maximize a potential function using a message passing algorithm. Probabilistic ap-
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proaches are complementary to our machine learning-based approach in that they

provide a means for combining column-specific predictions. However, as with prior

feature-based models, the code for retraining these models was not made available

for benchmarking.

2.5 Summary

Visualization systems can be understood in terms of the datasets and tasks they sup-

port. As an increasing number of people wish to visualize their own datasets, there

has been movement in the field towards accessible systems across a range of expres-

siveness. Specifically, we describe three visualization tasks: simple chart creation,

exploration, and bespoke authoring. This trend towards generalizability has culmi-

nated in state-of-the-art interactive visual design systems that provide fine-grained

control of encodings and mixed-initiative systems that balance direct manipulation

with automation. CHAPTER 3 presents DIVE, one such mixed-initiative system

that is based on rule-based visualization recommendation. Recent work mirrors the

industry-wide trend towards learned systems by extending rule-based recommenders

with machine learning approaches such as VizML (CHAPTER 4). The performance

of learned systems are fundamentally constrained by the availability of training data.

Although data from graphical perception studies provide a useful starting point, ded-

icated data repositories such as VizNet (CHAPTER 5) centralize real world datasets

for learning and benchmarking. These repositories promote generalizable and scal-

able visualization research, akin to the effect of machine learning corpora on other

domains. But centralized real-world data is useful for data-related research broadly,

and has enabled Sherlock (CHAPTER 6), a deep learning approach to semantic type

detection.
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Chapter 3

DIVE

A Mixed-Initiative System Supporting Integrated Data Exploration Workflows

Figure 3-1: Four stages of a data exploration workflow in DIVE: (A) Datasets, (B)
Visualize, (C) Analysis, and (D) Stories.

Knowledge workers across domains - from business to journalism to scientific re-

search - increasingly use data visualization to generate insights, communicate find-

ings, and make decisions [17,74,158]. However, many visualization systems, such as

those surveyed in CHAPTER 2, rely on manual specification through code [15,193] or

clicks [4,173].

While required to create bespoke visualizations, manual specification is unnecessary

for many common use cases such as preliminary data exploration and the creation

of basic visualizations. To support these use cases in which the speed and breadth

of exploration are more important than customizability [181], systems can leverage

the finding that the properties of a dataset influence how it can and should be visu-

alized. For example, prior research has shown that the accuracy with which visual

channels (e.g., position and color) encode data depends on the type [11,30,191] and

distribution [78] of the data values.

To overcome these limitations, visualization recommender systems [107,128,199] are

now being developed to lower the learning curve of working with data and to facilitate

the broad exploration of the result space. Existing recommender systems, however,

43



do not provide fine-grained control over the results, which impedes the ability to

create specific visualizations. This limitation has given rise to hybrid systems [200]

with mixed-initiative interfaces [63] that support both broad and focused exploration

by combining recommender systems with manual specification.

Yet these mixed-initiative approaches only address isolated parts of an analyst's data

exploration workflow. Ideal workflows involve the multiple stages of identifying the

aspects of a dataset that are relevant to questions of interest, bringing a diverse

suite of analytical techniques to answer those questions and communicating the re-

sults to an audience [181]. In practice, data exploration is a non-linear and iterative

process [61] that is often fragmented between multiple tools, even among advanced

analysts [74]. Fragmented workflows incur tool and context-switching costs, in addi-

tion to the learning costs of each individual tool.

In this chapter, we introduce DIVE, a mixed-initiative system combining recom-

mender systems with point-and-click manual specification to support state-of-the-art

data model inference, visualization, statistical analysis, and storytelling capabilities.

We contribute the design of a system that integrates the multiple stages of the data

exploration pipeline, and the description of a system that extends the use of mixed-

initiative approaches to data model inference and statistical analysis.

We evaluate DIVE in a controlled user study in which we compared the task perfor-

mance of analysts using DIVE versus Excel, which supports both data visualization

and analysis without requiring prior training. The study involved 67 professionals

with significant experience using Excel, but no previous exposure to DIVE. All partic-

ipants were given the same dataset describing the faculty salaries from a hypothetical

university. Then, they reported their prior beliefs (i.e., the expectation) about de-

partments and wages. Next, each participant was randomly assigned to either DIVE

or Excel. Finally, after performing six visualization and analysis tasks with the as-

signed tool, the participants were asked to revise their prior beliefs. Compared with
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Figure 3-2: The DIVE user interface. The left navigation bar labeled (A) is used
to navigate between modes and modify project properties. The top navigation bar
labeled (B) marks the current user state (project, dataset, and mode) and lets users
switch projects or datasets. The main pane labeled (C) displays the main results of
the mode. The right selection menu (D) lets users change mode-specific parameters
(D1) or selecting fields (D2). All other modes in DIVE follow this hierarchical four-
section layout, though some modes do not include a selection menu (D).

the Excel users, DIVE users were able to complete more tasks in a shorter amount of

time and corrected their false prior beliefs after exploring the data with the tool.

3.1 Usage Scenario

We start by describing the example use case of an analyst using DIVE to inves-

tigate the factors influencing faculty salary in a hypothetical university. The an-

alyst is provided with an 8 column dataset containing demographic information

(name, gender, department, position, and years of experience), measures of

performance (number of publications and number of citations), and income

(salary) of 1000 faculty members.
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She begins by creating a project, after which she is navigated to the Upload task

associated with her project. Upon successful upload, the Inspect task presents her

with the inferred data model describing her dataset. This data model consists of

dataset properties, like dimensions of the dataset, and field properties, such as the

types and distributions of the fields in her dataset. For example, name is correctly

detected as a string acting as a unique identifier. Here, she can also manipulate the

data model by either changing the types of fields, or marking a fields as IDs.

When the analyst is satisfied with her data model, she starts visualizing and analyzing

her dataset. Upon clicking the Visualize button on the left navigation bar shown

in Figure 3-2-B, she is presented with a set of summary visualizations describing

the distribution of individual fields. Because she is primarily interested in faculty

salaries, she selects the salary field on the right hand menu, as seen in Figure 3-

2-D. DIVE presents her with visualizations associated with the salary field, such

as a scatter plot showing a positive relationship between years of experience and

salary, and a box plot showing that full prof essors have a higher median salary

than assistant professors.

The analyst can go beyond visualizations by using the Analysis functionality, which

supports four types of statistical analysis: construction of Aggregation tables, cal-

culation of Correlation matrices, Comparison of groups through ANOVA, and

multivariate Regression. First, she enters the Correlation task, which automatically

generates a correlation matrix indicating a positive relationship between salary and

number of citations and number of publications. She proceeds to the Regres-

sion task, selects salary as her dependent variable, and clicks "Recommend Model."

DIVE recommends a set of models indicating not only the contribution of measures

of accomplishment to salary, but also the contribution of demographic factors like

gender.

Finally, the analyst would like to share her results. On the right hand panel of the
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Upload inaesion+ Inspect Explore eiony Visualization

Aggregation Conelation Comparison Regression

Cornose_ Export Story

Figure 3-3: Map of the four user stages (rows) and associated tasks (cells) in DIVE.
Tasks are connected by an arrow if they are connected by an action. A complete,
linear use case of DIVE would begin on the top-left [1. Datasets > Upload] task and
progress downwards through modes, towards the bottom-center [4. Stories > Story]
task.

Compose task, she is able to view thumbnails of the visualizations and analyses she

previously saved. By clicking on the thumbnails, she is able to add results to her

linear narrative. She can publicly distribute this narrative by sharing an interactive

web page tied to the current state of her dataset.

3.2 Design Considerations

In this section, we propose a set of four design considerations to guide the design of

mixed-initiative systems and multi-stage data exploration workflows.

3.2.1 Discretize Workflow into Tasks Grouped by Ordered Modes

Idealized data exploration workflows consist of a sequential progression of stages

flowing from data upload to presentation of results. In practice, analyst workflows
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are non-linear and iterative [74]. Furthermore, each stage may consist of multiple

discrete but related tasks. By grouping tasks into ordered stages, we can support non-

linear workflows while encouraging a natural progression from data to presentation.

DIVE is organized into four modes, which can be thought of as self-contained, but

linked, applications. For example, the Datasets mode contains all functionality for

uploading, inspecting, and transforming datasets. Each mode contains multiple tasks,

such as building aggregation tables. The current scheme of modes and tasks is shown

in Figure 3-3. Some modes are linked, like the transition from Upload to Inspect

after successful ingestion of an uploaded dataset.

3.2.2 Hierarchically Distinguish Between Navigation, Configuration, and

Results

User interface elements either enable users to navigate between tasks and stages,

configure inputs to tasks, or view results of a task. Note that these three groupings of

elements are dependent, such that tasks determine valid inputs, which then determine

results. Hierarchical visual layouts minimize visual overload while using a uniform

visual language across tasks .

The DIVE interface is organized into four sections, as shown in Figure 3-2. The left

navigation bar, shown in every project, (Figure 3-2-A) provides controls for users to

navigate between tasks. The top state bar (Figure 3-2-B) shows the user's current

project, dataset, and task, and lets users switch between projects and datasets. The

task-specific selection menu (Figure 3-2-D) aggregates selectors used to specify or

modify inputs to that mode. Results are shown in the main center pane (Figure 3-

2-C). The results shown in the center pane are uniquely specified by the state of the

selection menu.
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3.2.3 Organize Input Components into Tightly-Coupled Hierarchies

Within a given task, users work with their data by specifying task configuration

as input. Because task configuration types are inter-dependent, associated interface

elements should be hierarchically organized and tightly-coupled [5].

In DIVE, task input is specified by five types of configuration. Users can specify

which model to use, the parameters of a given model, the data used by the model,

how to display results, and filter down results based on conditional selectors.

3.2.4 Combine Populated Defaults with Incremental Selection

When a user navigates to a new task without pre-specified configuration, they should

be presented results by default, which can then be incrementally modified. Populated

defaults encourage users to engage with their datasets by bypassing the cold-start

problem. For example, on the Explore page, users are shown descriptive visualiza-

tions for each field in their selected dataset. On the Regression page, users are

shown a set of simple linear regressions involving a random dependent variable and

independent variables selected through the LASSO method.

This default result set is modified using the selection menu (Figure 3-2-D), which lets

users change the parameters relevant to that specific mode (Figure 3-2-D1) or the

field selection (Figure 3-2-D2). As users incrementally select fields, the main view

updates to reflect the current state, as shown in Figure 3-4.

3.2.5 Distinguish Recommendation Types

As shown in Figure 3-4-B, there is a visual separation between different kinds of

results: exact, subset, individual, and expanded. This allows users to both understand
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Figure 3-4: Recommended visualizations in the Explore mode, as fields incrementally
selected. (A) shows the default view when a user first navigates to Explore, while
(B), show recommended visualizations if three fields (position, year, salary) are
selected. The sections marked (B1), (B2), (B3), and (B4) contain exact, subset,
individual, and expanded matches, respectively.
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how a recommendation is created and groups results to avoid overwhelming users

with recommendations. Additionally, this separation lets users adjust the number of

returned results by toggling certain types of recommendations.

3.3 System Description

Then, we describe the system features of DIVE, and relate our design choices to the

previous design considerations.

3.3.1 Datasets: Upload and Inspect

Meaningful data exploration requires an accurate and relevant data model. For each

dataset, DIVE assigned a data model that is comprised of three components: field

properties such as ID, contiguity, name, semantic type, scale type, statistical proper-

ties, and unique values; inter-field relationships, including hierarchical relationships

between fields; and inter-object relationships, like the existence and cardinality of one-

to-one, one-to-many, and many-to-many relations. We assume that uploaded data is

tabular and tidy [194], such that each dataset represents an object, with columns

representing attributes of that object and rows representing instances of that object.

Field Types Definitions. Following the example of Stevens [172], we distinguish

between three general scale types, nominal, ordinal, and continuous, each of which

permit specific mathematical transformations and operations. However, similar to

Google Data Studio [53], we also distinguish between three general semantic types,

categorical, temporal, and quantitative, which inform the families of valid analyses.

Each general data type is divided into more specific types, forming a taxonomy of

scale and data types.

Field Type Detection. DIVE employs a heuristic-based approach for detecting
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Figure 3-5: Inspect mode table view showing the following inferred field properties:
(A) name, (B) ID or univariate descriptive visualization, (C) statistical properties,
(D) field color and selectors for changing the color or field type, and (E) data sample.

semantic types, considering both the name of the field and its values. Regular ex-

pression matches of names involve comparing the field name against a list of matches

and their associated scores. Some semantic types, like datetime, involve matching

against a set of regular expressions. Others, like country, are tested by comparing

field values against a list of fixed set of instances. Each field is assigned a score that is

normalized by the maximum score for that field across all types. This rank-ordering

of types is used to assign confidence scores and suggest field type updates.

Field Property Detection. With this detected field type, we can determine the

statistical properties of the field. For categorical fields, we determine the number of

unique values, and the frequency of each value. For ordinal and continuous fields,

we calculate summary statistics. For all data types, we calculate the number of null

values, uniqueness, and guess whether a field is an identifier.
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Figure 3-6: Three-stage
visualization recommenda-
tion system. Given a
user data model and user
field selection, the sys-
tem first enumerate visual-
ization specifications, then
materializes the specifica-
tions and filters based on ef-
fectiveness and expressive-
ness criteria, and finally
scores the visualizations.

3.3.2 Visualize: Explore and Drill-down

Visualization recommendation in DIVE is a two-stage process starting with enumer-

ation of visualization specifications, then scoring of visualizations.

Given a user data model D, user selection S= {s}, and un-selected fieldsU= {uj}= D \ S,

our recommendation system iteratively constructs different sets of considered fields,

denoted as C. By default, if the user does not select any fields, that is = {}, DIVE

returns univariate descriptive visualizations of each field.

Enumeration of Visualization Specifications. We define a visualization specifi-
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cation as a statement defining an exact and unique mapping from data to a visual-

ization. Our enumeration approach begins with functions mapping from input fields

to specifications, following an approach similar to that of Bertin [11].

Exact matches (S = C) involve all user selected fields. Subset matches (S D C)

consider a subset of user selected fields, as shown in Figure 3-4-D2. A special case of

subset matches is individual matches, which consider only single user selected fields

in S. Figure 3-4-D3 shows univariate descriptive visualizations of the three selected

fields. Expanded matches (S c C) involve at least one user selected field si and at

least one un-selected field u, following the approach of [199] and [52].

Visualization Scoring. For each visualization, we first compute the relevance score

R = |S n CI/IC1, marking the number of user-selected fields included in the visual-

izations. We also compute statistical properties of the visualizations [159], such as

entropy, normality, in addition to standard descriptive statistics (min, max, mode,

average). For 1-D visualizations. For 2-D visualizations, we compute the correlation

and the coefficients of a linear fit. For all visualizations, we attach the number of

visual elements and null values.

3.3.3 Analysis: Aggregation, Correlation, Comparison, and Regression

DIVE supports four common statistical analysis tasks. By default, analysis tasks

are conducted using previously selected user fields. Otherwise, each task has its own

procedure for selecting default fields.

The Aggregation task encompasses functions for investigating the distribution of

groups. This includes creating ID and 2D contingency tables showing the count of

elements in a group, or aggregation tables showing the mean of sum of a value per

group. If no fields were selected before, then DIVE selects two fields at random.
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The second task, Correlation, lets users create correlation matrices containing corre-

lation scatterplots between pairs of quantitative fields. By default, users are presented

a 2D contingency table between previously selected fields. If no fields were selected

before, then DIVE selects all quantitative fields.

The third task, Comparison, lets users compare means of groups using one-way or

two-way ANOVA. By default, users are presented a one-way ANOVA with a randomly

selected categorical and quantitative field.

The last Regression task lets users conduct simple linear or logistic regressions.

The results of a model are shown alongside similar models that either leave out single

variables or include only one variable. Users can also introduce interaction terms or

transform independent variables by taking the log or square. By default, independent

variables are chosen by a forward selection algorithm.

3.3.4 Stories: Compose and Share

The Stories stage lets users assemble saved visualizations, statistical analysis results,

and text entries into a linear story. Each result can also be annotated with a title or

description. These interactive stories can then be shared with a public URL.

3.4 Architecture and Implementation

The architecture of DIVE is diagrammed in Figure 3-7. DIVE is implemented as

a web application with front end and back end separation. The front-end uses the

React web framework with Redux to manage application state, Google Charts as a

visualization library, and Palantir Blueprint as a user interface framework.

The back end consists of a RESTful API using Flask as a web server, a PostgreSQL

database for persistence, and Celery on RabbitMQ as an asynchronous task queue.
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Data manipulation and statistical analysis are performed using the standard Python

scientific computing libraries: pandas, NumPy, SciPy, and StatsModels libraries. The

server-worker separation enables both asynchronous processing of tasks and scaling

through additional worker instances.

3.5 Evaluation: DIVE Versus Excel

We conducted a user study in which we asked users to create visualizations and con-

duct analyses either with DIVE or with Excel, and then compared task performance

between these two groups. While Excel is not the state-of-the-art it terms of its

functionality, it is still a relevant benchmark for three reasons. First, Excel is one of

the most commonly used general tool. This is especially true for "application users,"

who rely mostly on spreadsheets or dedicated analysis applications such as SAS and

SPSS. [74] Second, because we are interested in all steps of the data analysis workflow,

we wanted to compare DIVE with a tool supporting both visualization and statistical

analysis. At the time of testing, data exploration tools like Tableau, Many Eyes, and

Voyager 2 did not support the statistical analyses we tested. Lastly, any other tools

would most likely require previous training. In our study, we used a cold-start setting,

meaning that participants were not trained in DIVE prior to the experiment.
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3.5.1 Participant Description

We recruited 75 data analysts from two large consulting firms in the US (19 from

company A and 56 from company B) to participate in the experiment. 8 participants

were eliminated from the analyses because they did not finish the experiment. Of the

remaining 67 participants, 34 participants belonged to the treatment group (DIVE)

and 33 to the control group (Excel).

All participants had previous exposure to Excel, averaging 11 years of experience using

Excel. None of the participants used DIVE before. Most of the participants (55) use

PowerPoint to present their data to their colleagues. The group had a strong technical

background, having had taken, on average, 3.94 courses in statistics and 3.49 courses

in computer science. 34 participants considered themselves fluent English speakers,

5 proficient, and 28 native. 14 participants had the Bachelor's as the highest degree

obtained, 41 had a masters degree and 12 a doctoral degree. Participants reported

diverse, but mostly quantitative, undergraduate majors, with the top three majors

being Engineering (18), Physics (7), and Economics (7). The average age of our

sample was 33.57 years old (a 2 = 7.30 years). There were 12 women in the sample.

3.5.2 Experimental Procedure

Participants were given a dataset of faculty salaries from a hypothetical university,

which was structurally identical to the dataset described in the Usage Scenario sec-

tion. Each of the 1000 rows corresponds to one faculty member, and the 8 columns

correspond to the following fields: name, gender, department, position, years of

experience, number of publications, number of citations, and salary. How-

ever, the dataset was constructed to go against general expectations and intuitions.

The largest department was the Physical Sciences, with 270 faculty members. Genders
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were well distributed across departments, and with women having a higher average

salary (p = $159,636) than men (p = $149,729).

Before receiving the dataset, using a Qualtrics survey, participants reported demo-

graphic information (age, gender and native language), education, and software and

analytic experience. Next, participants were randomly assigned to the DIVE or the

Excel conditions, and were presented with a short description of the dataset. Before

asked to complete any tasks, participants were questioned about their expectations

regarding the data.

Participants were told that the faculty members in the fictional university belonged to

nine different departments, and were asked the following five questions in the Prior

Reporting Section:

" [Prior 1] Department size: "Which department do you think has the most profes-

sors?" [DEPARTMENT]

" [Prior 2] Fraction of women in department: "Which department you expect to

have the highest fraction of women faculty?" [DEPARTMENT]

" [Prior 3] Average salary by department: "Which department you expect pays the

highest average wage?"

* [Prior 4] Gender wage gap: "Do you expect there to be a gender wage gap?"

[YES | NO]. If they chose YES, they were instructed to indicate whether MEN or

WOMEN received higher salaries.

" [Prior 5] Effect of controls on gender wage gap: "Do you expect the gender wage

gap to [INCREASE | DECREASE] when controlling for factors such as years of expe-

rience, number of publications, or citations?"

Next, participants were given the salaries dataset, which they uploaded to their as-

signed tool. Then, they were asked to complete two sections of tasks. In the Vi-

58



sualization Section, they were asked to create simple visualizations and paste in

Qualtrics the screenshots of the obtained graphs:

" [Visualization 1] Scatter plot: "Create a scatter plot of salaries versus number of

publications"

" [Visualization 2] Bar chart of counts: "Create a bar chart of the number of

people by department"

" [Visualization 3] Bar chart of means: "Create a bar chart of the average wage

by gender"

In Analysis Section, participants were asked to answer questions concerning inferen-

tial statistics and to paste the screenshots of the evidence that led to their conclusion:

" [Analysis 1] Difference in means: "Is the difference between the average wage of

males and females statistically significant?" [YES I NO]

" [Analysis 2] Effect of introducing controls: "Is the difference between the average

wage of males and females statistically significant after controlling for number of

citations, publications, department, and years of experience?" [YES | NO]

" [Analysis 3] Direction of effect after introducing controls: "Is the difference be-

tween the average wage of males and females increased or decreased after control-

ling for number of citations, publications, department, and years of experience?"

[INCREASE | DECREASE].

The final Prior Updating Section asked participants to confirm or reject their prior

beliefs in light of their obtained results. The main goal of this section was to examine

whether users apply the knowledge acquired through the previously performed anal-

yses. In other words, we examined whether they make use of the insight gained to

revises their initial expectation about the data.
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" [Prior Update 1] Department size: "Before looking at the data you answered that

you expected [selected DEPARTMENT] to have the largest number of faculty. Does

the data confirm or reject your hypothesis?" [CONFIRMS | REJECTS]. [If REJECTS]

-+ "If it rejects, which department has more faculty?"

* [Prior Update 2] Fraction of women in department: "Before looking at the data

you answered that you expected [selected DEPARTMENT] to have the largest frac-

tion of women in the faculty. Does the data confirm or reject your hypothesis?"

[CONFIRMS I REJECTS]. [If REJECTS] -+ "If it rejects, which department has the

largest fraction of women faculty?"

" [Prior Update 3] Average salary by department: "Before looking at the data you

answered that you expected [selected DEPARTMENT] to have the highest average

salary. Does the data confirm or reject your hypothesis?" [CONFIRMS I REJECTS].

[If REJECTS]- "If it rejects, which department has the highest average salary?"

" [Prior Update 4] Gender wage gap: "Before looking at the data you answered

that you expected the data to [SHOW I NOT SHOW] a gender wage gap [If SHOW]-+

favoring [MEN | WOMEN]?"

• [Prior Update 5] Effect of controls on gender wage gap: "You also answered that

you expected this gender wage gap to [INCREASE | DECREASE] when controlling for

factors such as years of experience, number of publications, or citations? Does the

data reject or confirm your hypothesis?"

Before leaving the experimental session, DIVE users were asked for feedback regarding

their experience in learning how to use DIVE and whether they would use DIVE in the

future. Finally, all participants were thanked for their collaboration and debriefed.
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3.5.3 Experiment Results

Self-assessed familiarity with statistical concepts (from 0, meaning "no experience at

all," to 100, meaning "a lot of experience") was comparable in the two groups, t(65) =

1.0 7 ,p = .287 (DIVE: p = 64.68, a2 = 32.37 - Excel: p = 55.89, a2 = 33.90), so any

difference in performance cannot not be attributed to differential statistical knowledge

in the two groups.

Prior Reporting Section. Participants expected the Business and Management

department to have the most professors and the highest wages. Liberal Arts and

Humanities are expected to be the department with most women faculty. Participants

expect to see less women in STEM (Science, Technology, Engineering and Math)

departments and more in Social Sciences, Visual Arts and Humanities, and Education.

In response to the wage gap questions, 9 people in this sample responded that they

expect no wage gap and 58 responded that they do expect. For the 58 that expect

a wage gap, 56 expect men to have a higher wage, whereas only 2 expect women to

have higher wage. These results show that most of the participants expect to observe

a wage gap between men and women, favoring men. When asked about the wage gap

after controlling for other fields, among the participants that said there would be no

wage gap, 7 said that any difference between men and women would decrease and 2

indicated that it would increase. From the participants that expected a wage gap,

35 said that the wage gap would decrease after this control, while 23 said it would

increase.

Visualization Section Results: Participants using DIVE were significantly more

successful in creating the visualizations (proportion of YES responses to the question

on whether they were able to create the graph): p = .89, a 2 = .18) than the Excel

users (p= .77,a 2 = .29), t(65) = 2.10,p = .04.
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Tool Confirm Don't know Reject Marginal Totals

DIVE 6 3 18 27
Excel 8 6 15 29
Marginal Totals 14 9 33

Table 3.1: Count of participants that corrected their false prior beliefs about the
gender wage gap.

Tool Correct Incorrect Marginal Row Totals

DIVE 12 22 34
Excel 4 29 33
Marginal Column Totals 16 51

Table 3.2: Count of participants that corrected their false prior beliefs about the
department with the largest fraction of women.

Next, we looked at the time participants took to upload the graphs for the questions

they were able to solve. Participants using DIVE were much faster (P = 123.50s,

a = 35.53s) than those using Excel (p = 168.74s, o2 = 63.59s) at completing the

same tasks t(64) = 3.60,p = .001.

Analysis Section Results. For task [Analysis 1 regarding the gender wage gap,

of the 34 DIVE users, 13 answered NO, 16 answered YES and only 5 did not answer

or selected the I cannot answer this question option. Of the 33 Excel users, 4

answered NO, 17 answered YES and 10 did not answer or selected the I cannot answer

this question option.

For task [Analysis 21 regarding the existence of the wage gap after controlling for

number of citations, publications, department, and years of experience, 20 DIVE

users answered YES, 13 answered NO, and 9 did not answer. Of the Excel group, 16

selected the YES option, 0 selected the NO, and 17 did not answer.

When asked in [Analysis 3] whether the wage gap would increase or decrease af-

ter controlling for these factors, 21 DIVE users were able to respond (DECREASE: 6,
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INCREASE: 15) while 13 were not able to answer. From the Excel control group, 13

were able to respond (DECREASE: 3, INCREASE: 10) and 20 did not respond. This

results suggest that DIVE users reached an answered more often that Excel users.

The section does not allow us to verify the accuracy of the answers, which is assessed

in the next section.

Prior Updating Results. All DIVE users corrected their answer to the question

regarding the largest department (32 out of 34 participants, the other two where

correct from the beginning and did not change their answer). 28 Excel user corrected

their response to the same question (28 out of 33), whereas 3 did not correct and two

were correct from the beginning. Thus, the two groups do not differ in the amount

of correction for this question (Fisher's exact test = .26,p > .05).

For the question regarding the department with most women both DIVE users and

Excel users had stereotypical prior beliefs, in the sense that they did not expect STEM

department to have many women. None of DIVE users selected STEM department,

and only one Excel user selected Engineering. The correct department in this dataset

is Physical Science, that has a total of 122 women. After completing the visualization

tasks, more participants corrected their prior when using DIVE than when using Ex-

cel. This result suggests that the type of tool used significantly affects the correction

of false prior beliefs (Fisher's exact test = .04,p < .05).

Of the participants that expected a wage gap favoring men, 18 DIVE users rejected

their priors (18 out of 27; 6 confirmed and 3 said I do not know). 15 Excel users (15

out of 29; 8 confirmed and 6 said I do not know) rejected their prior expectations

for this same questions. The amount of rejection is not significantly different in the

two groups (Fisher's exact test = .29,p > .05).
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3.5.4 Qualitative Participant Feedback

At the end of the hour-long session, participants assigned to the DIVE group had a

chance to give free-form text feedback in response to the question "What features

of DIVE did you like most?" Many participants commented on the ease with

which they could create visualizations using DIVE and the ease to get started:

"Very quick to produce visualizations, fairly instinctive in use [sic]" "How easy

it was to visualize information across different charts" "Easy to get started" "In-

tuitive to learn with some stats and data analysis background"

Some participants commented specifically on the visualization recommendation:

"Proactive graph proposal" "Automation [sic] creation of the basic data visual-

izations" "Automatic analysis when choosing variables"

Others appreciated the integration of visualization and statistical analysis:

"integrated place for many tasks" "The ubiquity of visualization as part of the

analysis."

3.5.5 Experimental Results Summary

The performance of data analysts using DIVE and using Excel was compared under

controlled conditions. The choice of comparing DIVE with Excel was motivated by the

popularity of Excel for all stages of data exploration. In our sample, all participants

had previously used Excel and none of them had previous experience using DIVE. The

experimental results suggest that participants using DIVE were more successful and

faster than those using Excel in completing the same data exploration tasks. DIVE

users also corrected false prior beliefs more often than Excel users. These results
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suggest that that DIVE supports learning from data by facilitating the completion of

visualization and analysis tasks.

3.6 Summary and Future Work

We introduce DIVE, a mixed-initiative data exploration tool originally developed

to lower the learning curve to working with data. We described the heuristic-based

approaches for data model inference and visualization recommendation system that is

central to the construction of DIVE. We also described the considerations taken into

account in the interface, interaction, and system design of workflows that integrate

the multiple stages of data exploration.

While DIVE is intentionally a domain-agnostic system, it is an open question whether

developing domain-specific approaches would be more tractable and powerful. For

example, data tools for survey data could prioritize clustering by demographic, while

tools for financial data could build in forecasting and candlestick charts.

We also plan to address problems of scalability by permitting synchronous batch

processing ahead of time, such that visualizations and analyses are pre-computed.

This would be most relevant for a frequently used dataset, especially by a team. This

approach would be required for a model describing which recommendations should

be calculated and presented first. It would also require global measures for scoring

and ranking results.

There remains significant future work that must be done to improve the components of

data exploration systems. Data model inference in existing tools is largely ad hoc and

built from scratch. There is significant space for the contribution of principled systems

for data model inference, on top of which others can build tools. Improvements

to state-of-the-art systems could train a machine learning algorithm on a corpus

of annotated datasets, and interaction-driven approaches could be semi-automated,
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with users incrementally updating the inferred types. There is also an opportunity

to improve upon existing rule-based systems for visualization recommendation. Our

current system does not support the transformation of fields or combining fields,

which would significantly increase the size of recommended visualizations. Analogous

systems could also be developed to recommend statistical analyses.
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Chapter 4

VizML

A Machine Learning Approach to Visualization Recommendation

1. Data Source 2. Raw Corpus 3a. Features 3b. Design Choices 4. Models 5. Recommended
Pairwise-Column Encoding-Level Choices

Dataset- Visualization Pairs 287K x 18K

APIEndpoints W 4is on X- orY-Axis + NN/Baselines +{XY}

uwAggregaion
- Ag ai Visualization-level
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Figure 4-1: A diagram of the data processing and analysis flow in VizML, start-
ing from (1) the original Plotly Community Feed API endpoints, proceeding to (2)
the deduplicated dataset-visualization pairs, (3a) features describing each individ-
ual column, pair of columns, and dataset, (3b) the design choices extracted from
visualizations, (4) task-specific models trained on these features, and (5) potential
recommended design choices.

Many visualization recommender systems, including DIVE, encode visualization guide-

lines as a collection of "if-then" statements, or rules [55], to automatically generate

visualizations for analysts to search and select from, rather than manually spec-

ify [184]. For example, APT [105], BOZ [21], and SAGE [149] generate and rank

visualizations using rules informed by perceptual principles. Recent systems such

as Voyager [199,200], Show Me [106], and DIVE [66] extend these approaches with

support for column selection. While effective for certain use cases [199], these rule-

based approaches face limitations such as costly rule creation and the combinatorial

explosion of possible results [2].

In contrast, machine learning (ML)-based systems directly learn the relationship be-

tween data and visualizations by training models using analyst interaction. While

recent systems such as DeepEye [103], Data2Vis [36], and Draco-Learn [119] are ex-

citing, they do not learn how to make visualization design choices as an analyst would,
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which impacts the interpretability and ease of integration into existing systems. Fur-

thermore, because these systems are trained with annotations on rule-generated vi-

sualizations in controlled settings, they are limited by the quantity and quality of

data.

In this chapter we introduce VizML, a ML-based approach to visualization recom-

mendation using a large corpus of datasets and associated visualizations. To begin,

we describe visualization as a process of making the design choices that maximize

effectiveness, which depends on the dataset, task, and context. Then, we formulate

visualization recommendation as a problem of developing models that learn how to

make design choices.

We train and test machine learning models using one million unique datasetvisu-

alization pairs from the Plotly Community Feed [132]. We describe our process of

collecting and cleaning this corpus, extracting features from each dataset, and ex-

tracting five key design choices from the corresponding visualizations. Our learning

task is to optimize models that use the features of datasets to predict these choices.

Neural networks trained on 60% of the corpus achieve - 70 -95% accuracy at predict-

ing design choices in a separate 20% test set. This performance exceeds that of four

simpler baseline models, which themselves out-perform random chance. We report

feature importances from one of these baseline models, interpret the contribution of

features to a given task, and relate them to existing research.

We evaluate the generalizability and uncertainty of our model by benchmarking it

against a crowdsourced test set. We construct this test set by randomly selecting

datasets from Plotly, visualizing each as a bar, line, and scatter plot, and then mea-

suring the consensus of Mechanical Turk workers. Using a scoring metric that adjusts

for the degree of consensus, we find that VizML performs comparably to Plotly users

and Mechanical Turkers, and outperforms two rule-based and two ML-based visual-
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Figure 4-2: Example speci-
fication for a 2D scatterplot
visualizing two columns of
the Cars dataset.

ization recommendation systems.

To conclude, we discuss interpretations, applications, and limitations of our initial

machine learning approach to visualization recommendation. We also suggest di-

rections for future research, such as aggregating public training and benchmarking

corpora, integrating separate recommender models into an end-to-end system, and

refining the definitions of visualization effectiveness.

4.1 Problem Formulation

Data visualization communicates information by representing data with visual ele-

ments. These representations are specified using encodings that map from data to

the retinal properties (e.g. position, length, or color) of graphical marks (e.g. points,

lines, or rectangles) [11, 20].

Concretely, consider a dataset that describes 406 automobiles (rows) with eight at-

tributes (columns) such as miles per gallon (MPG), horsepower (Hp), and weight in

pounds (Wgt) [142]. To create a scatterplot showing the relationship between MPG

and Hp, an analyst encodes each pair of data points with the position of a circle on a

2D plane, while also specifying other retinal properties such as size and color.

To create bespoke visualizations, analysts may need to exhaustively specify encodings

69



Design Choice Possibility Space Set of Real Design Choices
C1 x ... x Cici C

Invalid Design
.Choices...--

Valid Design.--

Visualo -.. Crec Canalysti
Exploration '--

C ..
argmax

VisalzatonC Aesthetics, Task,
s In EM(C | d, T Context Aedium, Domain,

Dataset

Figure 4-3: Creating visual-
izations is a process of mak-
ing design choices, which
can be recommended by a
system or specified by an
analyst.

in detail using expressive tools. But a scatterplot is specified with the Vega-lite [153]

grammar by selecting a mark type and fields to be encoded along the x- and y-axes,

and in Tableau [173] by placing the two columns onto the respective column and row

shelves.

That is, to create basic visualizations in many grammars or tools, an analyst spec-

ifies higher-level design choices, which we define as statements that compactly and

uniquely specify one or more lower-level encodings. Equivalently, each grammar or

tool affords a design space of visualizations, which a user constrains by making choices.

We formulate basic visualization of a dataset d as a set of interrelated design choices

C = {c}, each of which is selected from a possibility space c - C. However, not all

design choices result in valid visualizations - some choices are incompatible with each

other. For instance, encoding a categorical column with the Y position of a line mark

is invalid. Therefore, the set of choices that result in valid visualizations is a subset

of the space of all possible choices C 1 x C2 x ... x Cici.

The effectiveness of a visualization can be defined by informational measures such

as efficiency, accuracy, and memorability [13,208], or emotive measures like engage-

ment [47, 75]. Prior research also shows that effectiveness is informed by low-level
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perceptual principles [30,60,99,144] and dataset properties [78,151], in addition to

contextual factors such as task [6,78,150], aesthetics [24], domain [71], audience [163],

and medium [116,156]. In other words, an analyst makes design choices Cna that

maximize visualization effectiveness Eff given a dataset d and contextual factors T:

Cmax = arg max Eff(C | d, T) (4.1)
C

But making design choices can be expensive. A goal of visualization recommendation

is to reduce the cost of creating visualizations by automatically suggesting a subset

of design choices C.c c C that maximize effectiveness. Trained with a corpus of

datasets {d} and corresponding design choices {C}, ML-based recommender systems

treat recommendation as an optimization problem, such that predicted Ccc Cmax.

4.1.1 Modeling Design Choice Recommendation

Consider a single design choice c E C. Let C' = C \ {c} denote the set of all other

design choices excluding c. Given C', a dataset d, and context T, there is an ideal

design choice recommendation function Fc that outputs the design choice Cma. E Cmax

from Eqn. 4.1 that maximizes visualization effectiveness:

Fe(d | C', T) = Cmax (4.2)

Our goal is to approximate Fc with a function Gc ~ Fc. Assume now a corpus of

datasets D = {d} and corresponding visualizations V = {Vd}, each of which can be

described by design choices Cd = {cd}. Machine learning-based recommender systems

consider Gc as a model with a set of parameters Oc that can be trained on this corpus

by a learning algorithm that maximizes an objective function Obj:
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8fit = arg max Obj(c, Gc (d | ec, C', T)) (4.3)
81 dED

Without loss of generality, say the objective function maximizes the likelihood of

observing the training output {C}. Even if an analyst makes sub-optimal design

choices, collectively optimizing the likelihood of all observed design choices can still be

optimal [121]. This is precisely the case with our observed design choices Cd = Fe(d |

C', T)+noise+bias. Therefore, given an unseen dataset d*, maximizing this objective

function can plausibly lead to a recommendation that maximizes effectiveness of a

visualization.

Ge (d* | 85it IC' T) ~ Fe (d* C',)= Cmax (4.4)

In this paper, our model Gc is a neural network and Ec are connection weights.

We simplify the recommendation problem by optimizing each Gc independently, and

without contextual factors: Ge(d 10) = Gc(d I E, C', T). We note that independent

recommendations may not be compatible, nor do they necessarily maximize over-

all effectiveness. Generating a complete visualization output will require modeling

dependencies between Gc for each c.

Datasets Influences Ideal Choice Function Figure 4-4: Basic setup of
{d} Fe(d I C', T) learning models to recom-

_--------''mend design choices with a

Design Choices Learning Recommender Function corpus of datasets and cor-
{Cd} - Algorithm Gc(d | Ofit, C', T) responding design choices.

4.2 Data

We describe our process for extracting features and design choices from the processed

Plotly data. These are steps 1, 2 and 3 in Figure 4-1. We describe our process for
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collecting and cleaning the corpus of 2.3 million dataset-visualization pairs from the

Plotly Community Feed [130,132] and provide a description of the data. This paper

is the first time the Plotly corpus, generated by 143,007 unique users, is used to train

visualization recommender systems. The corpus along with analysis scripts is publicly

available at https: //vizml. media.mit . edu.

4.2.1 Collection and Cleaning

Plotly [130] is a software company that creates tools and software libraries for data

visualization and analysis. For example, Plotly Chart Studio [131] is a web application

that lets users upload datasets and manually create interactive D3.js and WebGL

visualizations of over 20 visualization types. Users familiar with Python can use the

Plotly Python library [133] to create those same visualizations with code.

Visualizations in Plotly are specified with a declarative schema. In this schema,

each visualization is specified with two data structures. The first is a list of traces

that specify how a collection of data is visualized. The second is a dictionary that

specifies aesthetic aspects of a visualization untied from the data, such as axis labels

and annotations. For example, the scatterplot from Section 4.1 is specified with a

single "scatter" trace with Hp as the x parameter and MPG as the y parameter:

Plotly ChartBuilder Plotly Schema
'data': I Traces

rl~r. ypW -type-: -~scatter-,
?, karP 0 X*: IP,

Y.: M. Figure 4-5: Creating a
"marker-:{

symol-: -circle-. scatterplot in the Plotly
schema using the Plotly

P otly Python Library .-. Chart Builder and the
Import pltety.plotiy as py

••yot• p Layout Plotly Python Library.
-aou' Layouttraceago.Scatter( ''t ": p

a acl.-fn,
mmY a rers. "title': 'Hp vs. MPG".

aot Imarkers'

yv-1let( trace 1)
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Figure 4-6: Screenshot of the Plotly Community Feed [132.

The Plotly schema is similar to that of MATLAB and of the matplotlib Python

library. The popular Vega [154] and Vega-lite [153] schemas are more opinionated,

which "allows for complicated chart display with a concise JSON description, but

leaves less control to the user" [135]. Despite these differences, it is straightforward

to convert Plotly schemas into other schemas, and vice versa.

Plotly also supports sharing and collaboration. Starting in 2015, users could publish

charts to the Plotly Community Feed [132], which provides an interface for searching,

sorting, and filtering millions of visualizations, as shown in Figure 4-6. The underlying

/plots endpoint from the Plotly REST API [134] associates each visualization with

three objects: data contains the source data, specification contains the traces,

and layout defines display configuration.
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4.2.2 Data Description

Using the Plotly API, we collected approximately 2.5 years of public visualizations

from the feed, starting from 2015-07-17 and ending at 2018-01-06. We gathered

2,359,175 visualizations in total, 2,102,121 of which contained all three configuration

objects, and 1,989,068 of which were parsed without error. To avoid confusion between

user-uploaded datasets and our dataset of datasets, we refer to this collection of

dataset-visualization pairs as the Plotly corpus.

The Plotly corpus contains visualizations created by 143,007 unique users, who vary

widely in their usage. The distribution of visualizations per user is shown in Figure 4-

7. Excluding the top 0.1% of users with the most visualizations, many of whom are

bots that programmatically generate visualizations, users created a mean of 6.86 and

a median of 2 visualizations each.

Datasets also vary widely in number of columns and rows. Though some datasets

contain upwards of 100 columns, 94.97% contain less than or equal to 25 columns.

Excluding datasets with more than 25 columns, the average dataset has 4.75 columns,

and the median dataset has 3 columns. The distribution of columns per visualization

is shown in Figure 4-8a. The distribution of rows per dataset is shown in Figure 4-8b,
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Figure 4-8: Distribution of dataset dimensions in the Plotly corpus.

and has a mean of 3105.97, median of 30, and maximum of 10 x 106. These heavy-

tailed distributions are consistent with those of IBM ManyEyes and Tableau Public

as reported by [120].

Though Plotly lets users generate visualizations using multiple datasets, 98.32% of

visualizations used only one source dataset. Therefore, we are only concerned with

visualizations using a single dataset. Furthermore, over 90% of visualizations used

all columns in the source dataset, so we are not able to address data query selection.

Lastly, out of 13, 321, 598 traces, only 0.16% of have transformations or aggregations.

Given this extreme class imbalance, we are not able to address column transformation
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Model
chevrolet chevelle
buick skylark 320
plymouth satellite
amc rebel sst
ford torno

AW Cy Dip __ Wgt Ace Year Origin
18 8 307 130 3504 12 70 US
15 8 350 165 3693 11.5 70 US
18 8 318 150 3436 11 70 US
16 8 304 150 3433 12 70 US
17 8 302 140 3449 10.5 70 US

chevys-10 31 4 119 82 2720 19.4 82 US

Extract

ra Pairwise-Column (30) Single-Column (81) , Dataset (841)
i Name Edit Dist.: 4 type: decimal -o has decimal: true
c K-S Statistic: 1.0 median: 93.5 - # columns: 8
U- Correlation: -0.805 kurtosis: 0.672 max cojr: 0.951

Figure 4-9: Extracting fea-
tures from the Automobile
MPG dataset. [142]

Encoding-level C

Types: Scatter
ared Axis: False
X Axis: False
Y Axis: True

hoices (3) Visualization-level

Figure 4-10: Extracting de-
sign choices from a dual-
axis scatterplot visualizing
three columns of the MPG
dataset.

1Wg~t Choices 11
Scatter Scatter -Visualization Type: Scatter
True False -,Has Shared Axis: True
True False
False True

or aggregation as learning tasks.

4.2.3 Feature Extraction

We map each dataset to 841 features, mapped from 81 single-column features and

30 pairwise-column features using 16 aggregation functions. Detail on each of the

features is found in Tables 4.1 and 4.2.

Each column is described by 81 single-column features across four categories.

The Dimensions (D) feature is the number of rows in a column. Types (T)

features capture whether a column is categorical, temporal, or quantitative. Values
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(V) features describe the statistical and structural properties of the values within a

column. Names (N) features describe the column name. We distinguish between

these feature categories for three reasons. First, these categories let us organize how

we create and interpret features. Second, we can observe the contribution of different

types of features. Third, some categories of features may be less generalizable than

others. We order these categories (D -+ T -+ V - N) by how biased we expect

those features to be towards the Plotly corpus.

We describe each pair of columns with 30 pairwise-column features. These fea-

tures fall into two categories: Values and Names. Note that many pairwise-column

features depend on the individual column types determined through single-column

feature extraction. For instance, the Pearson correlation coefficient requires two nu-

meric columns, and the "number of shared values" feature requires two categorical

columns.

We create 841 dataset-level features by aggregating these single- and pairwise-

column features using the 16 aggregation functions shown in Table 4.2. These ag-

gregation functions convert single-column features (across all columns) and pairwise-

column features (across all pairs of columns) into scalar values. For example, given a

dataset, we can count the number of columns, describe the percent of columns that

are categorical, and compute the mean correlation between all pairs of quantitative

columns. Two other approaches to incorporating single-column features are to train

separate models per number of columns, or to include column features with padding.

Neither approach yielded a significant improvement over the results reported in Sec-

tion 4.4.

Details on the 81 single-column features, 30 pairwise-column features and 16 aggre-

gation functions can be found in Tables 4.1. Single-column features fall into four

categories: Dimensions (D) (number of rows in a column), Types (T) (categori-

cal, temporal, or quantitative), Values (V) (the statistical and structural properties)
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and Names (N) (related to column name). Pairwise-column features fall into two

categories" Values and Names. Finally, 841 dataset-level features are created by

aggregating these features using the 16 aggregation functions shown in Table 4.2.

4.2.4 Design Choice Extraction

Each visualization in Plotly consists of traces that associate collections of data with

visual elements. Therefore, we extract an analyst's design choices by parsing these

traces. Examples of encoding-level design choices include mark type, such as

scatter, line, bar; and X or Y column encoding, which specifies which column is

represented on which axis; and whether or not an X or Y column is the single column

represented along that axis. For example, the visualization in Figure 4-10 consists of

two scatter traces, both of which have the same column encoded on the X axis (Hp),

and two distinct columns encoded on the Y axis (MPG and Wgt).

By aggregating these encoding-level design choices, we can characterize visualization-

level design choices of a chart. Within our corpus, over 90% of the visualizations

consist of homogeneous mark types. Therefore, we use visualization type to describe

the type shared among all traces, and also determined whether the visualization has a

shared axis. The example in Figure 4-10 has a scatter visualization type and a single

shared axis (X).

4.3 Methods

We describe our feature processing pipeline, the machine learning models we use, how

we train those models, and how we evaluate performance. These are steps 4 and 5 of

the workflow in Figure 4-1.
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(a) 81 single-column features describing the dimensions, types, values, and names of
individual columns.

Dimensions (1)
Length (1) Number of values

Types (8)
General (3) Categorical (C), quantitative (Q), temporal (T)
Specific (5) String, boolean, integer, decimal, datetime

Values (58)
Statistical [Q, T] Mean, median, range x (Raw/normalized by max), variance, standard
(16) deviation, coefficient of variance, minimum, maximum, (25th/75th)

percentile, median absolute deviation, average absolute deviation,
quantitative coefficient of dispersion

Distribution [Q] Entropy, Gini, skewness, kurtosis, moments
(14) (5-10), normality (statistic, p-value),

is normal at (p < 0.05, p < 0.01).
Outliers (8) (Has/%) outliers at (1.5 x IQR, 3 x IQR, 99%ile, 3-)
Statistical [C] (7) Entropy, (mean/median) value length, (min, std,

max) length of values, % of mode
Sequence (7) Is sorted, is monotonic, sortedness, (linear/log)

space sequence coefficient, is (linear/space) space
Unique (3) (Is/#/%) unique
Missing (3) (Has/#/%) missing values

Names (14)
Properties (4) Name length, # words, # uppercase characters,

starts with uppercase letter
Value (10) ("x", "y", "id", "time", digit, whitespace, "$",

"€", "£", "V") in name

(b) 30 pairwise-column features describing the relationship between values and names
of pairs of columns.

Values (25)
[Q-Q] (8) Correlation (value, p, p < 0.05),

Kolmogorov-Smirnov (value, p, p < 0.05),
(has, %) overlapping range

[C-C] (6) x 2 (value, p, p < 0.05),
nestedness (value, = 1, > 0.95%)

[C-Q] (3) One-Way ANOVA (value, p, p < 0.05)
Shared values (8) is identical, (has/#/%) shared values, unique values are identical,

(has/#/%) shared unique values

Names (5)
Character (2) Edit distance (raw/normalized)
Word (3) (Has, #, %) shared words

Table 4.1: Single-column and pairwise-column features used to describe datasets in
VizML.
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Categorical (5) Number (#), percent (%), has, only one (#=1), all
Quantitative (10) Mean, variance, standard deviation, coefficient of variance (CV),

min, max, range, normalized range (NR), average absolute
deviation (AAD), median absolute deviation (MAD)

Special (1) Entropy of data types

Table 4.2: 16 Aggregation functions used to aggregate single- and pairwise-column
features into 841 dataset-level features.

4.3.1 Feature Processing

We converted raw features into a form suitable for modeling using a five-stage pipeline.

First, we apply one-hot encoding to categorical features. Second, we set numeric

values above the 99th percentile or below the 1st percentile to those respective cut-

offs. Third, we imputed missing categorical values using the mode of non-missing

values, and missing numeric values with the mean of non-missing values. Fourth, we

removed the mean of numeric fields and scaled to unit variance.

Lastly, we randomly removed datasets that were exact deduplicates of each other, re-

sulting in unique 1, 066, 443 datasets and 2, 884, 437 columns. However, many datasets

are slight modifications of each other, uploaded by the same user. Therefore, we

removed all but one randomly selected dataset per user, which also removed bias

towards more prolific Plotly users. This aggressive deduplication resulted in a fi-

nal corpus of 119,815 datasets and 287,416 columns. Results from only exact

deduplication result in significantly higher within-corpus test accuracies, while a soft

threshold-based deduplication results in similar test accuracies.

4.3.2 Prediction Tasks

Our task is to train models that use the features described in Section 4.2.3 to predict

the design choices also described in Section 4.2.4. Two visualization-level predic-
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tion tasks use dataset-level features to predict visualization-level design choices:

1. Visualization Type [VT]: 2-, 3-, and 6-class

Given all traces are the same type, what type is it?

Scatter Line Bar Box Histogram Pie

44829 26209 16002 4981 4091 3144

2. Has Shared Axis [HSA]: 2-class

Do the traces all share one axis (either X or Y)?

False True

95723 24092

The three encoding-level prediction tasks use features about individual columns

to predict how they are visually encoded. These prediction tasks consider each column

independently, instead of alongside other columns in the same dataset, which accounts

for the effect of column order.

1. Mark Type [MT]: 2-, 3-, and 6-class

What mark type is used to represent this column?

Scatter Line Bar Box Histo Heatmap

68931 64726 30023 13125 5163 1032

2. Is Shared X-axis or Y-axis [ISA]: 2-class

Is this column the only column encoded on its axis?

False True

275886 11530

3. Is on X-axis or Y-axis [XY]: 2-class

Is this column encoded on the X-axis or the Y-axis?
False True

144364 142814
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For the Visualization Type and Mark Type tasks, the 2-class task predicts line

vs. bar, and the 3-class predicts scatter vs. line vs. bar. Though Plotly supports over

twenty mark types, we limited prediction outcomes to the few types that comprise

the majority of visualizations within our corpus. This heterogeneity of visualization

types is consistent with the findings of [10,120].

4.3.3 Neural Network and Baseline Models

Our primary model is a fully-connected feedforward neural network (NN) with 3

hidden layers, each consisting of 1,000 neurons with ReLU activation functions and

implemented using PyTorch [124]. For comparison, we chose four simpler baseline

models, all implemented using scikit-learn [125] with default parameters: naive Bayes

(NB), K-nearest neighbors (KNN), logistic regression (LR) and random forest (RF).

Randomized parameter search for each model did not result in a significant perfor-

mance increase over the reported results.

For all models, we split the data into 60/20/20 train/validation/test sets and train and

test each model five times using 5-fold cross-validation. The reported results are thus

test results averaged across the five test sets. We oversample the train, validation,

and test sets to the size of the majority class while ensuring no overlap between the

three sets. We oversample because of the heterogeneous outcomes, naive classifiers

guessing the base rates would have high accuracies. Balanced classes also allow us to

report standard accuracies (fraction of correct predictions), ideal for interpretability

and generalizing results to multi-class cases C > 2, in contrast to measures such as

the F1 score.

The neural network was trained with the Adam optimizer and a mini-batch size

of 200. The learning rate was initialized at 5 x 10-, and followed a learning rate

schedule that reduces the learning rate by a factor of 10 upon encountering a plateau,
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defined as 10 epochs during which validation accuracy does not increase beyond a

threshold of 10-. Training ended after the third decrease in the learning rate, or

at 100 epochs. Weight decay, dropout and batch normalization did not significantly

improve performances.

In terms of features, we constructed four different feature sets by incrementally adding

the Dimensions (D), Types (T), Values (V), and Names (N) categories of fea-

tures, in that order. We refer to these feature sets as D, D+T, D+T+V, and

D+T+V+N=All. The neural network was trained and tested using all four fea-

ture sets independently. The four baseline models only used the full feature set

(D+T+V+N=All).

4.4 Evaluating Performance

We report performance of each model on the five prediction tasks in the barplot

in Figure 4-11 and in Table 4.3. The neural network consistently outperforms the

baseline models and model performance generally progressed as NB < KNN < LR ~

RF < NN. That said, the performance of both RF and LR is not significantly lower

than that of the NN in some cases. Simpler classifiers may be desirable, depending

on the need for optimized accuracy, and the trade-off with other factors such as

interpretability and training cost.

Because the four feature sets are a sequence of supersets (D c D+T c D+T+V c

D+T+V+N), we consider the accuracy of each feature set above and beyond the

previous. For instance, the increase in accuracy of a model trained on D+T+V

over a model trained on D+T is a measure of the contribution of value-based (V)

features. These marginal accuracies are visualized alongside baseline model accuracies

in Figure 4-11.

We note that the value-based feature set (e.g. the statistical properties of a column)
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Figure 4-11: Marginal contribution to neural network accuracy by feature set, for
each task. Baseline accuracies are shown as solid and dashed lines for naive Bayes
(NB), K-nearest neighbors (KNN), logistic regression (LR), and random forest (RF).
HSA = Has Shared Axis, ISA = Is Shared X-axis or Y-Axis and XY = Is on X-axis
or Y-axis.
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(a) Prediction accuracies for two visualization-level tasks.

Visualization Type HSA

Model Features d C=2 C=3 C=6 C=2

NN D 15 66.3 50.4 51.3 84.1
D+T 52 75.7 59.6 60.8 86.7
D+T+V 717 84.5 77.2 87.7 95.4
All 841 86.0 79.4 89.4 97.3

NB All 841 63.4 49.5 46.2 72.9
KNN All 841 76.5 59.9 53.8 81.5
LR All 841 81.8 64.9 69.0 90.2
RF All 841 81.2 65.1 66.6 90.4

Nraw (in 1000s) 42.2 87.0 99.3 119

(b) Prediction accuracies for three encoding-level tasks.

Mark Type ISA XY

Model Features d C=2 C=3 C=6 C=2 C=2

NN D 1 65.2 44.3 30.5 52.1 49.9
D+T 9 68.5 46.8 35.0 70.3 57.3
D+T+V 66 79.4 59.4 76.0 95.5 67.4
All 81 84.9 67.8 82.9 98.3 83.1

NB All 81 57.6 41.1 27.4 81.2 70.0
KNN All 81 72.4 51.9 37.8 72.0 65.6
LR All 81 73.6 52.6 43.7 84.8 79.1
RF All 81 78.3 60.1 46.7 74.2 83.4

Nraw (in 1000s) 94.7 163 183 287 287

Table 4.3: Design choice prediction
cross-validation. The standard error
are reported for the neural network

accuracies for five models, averaged over 5-fold
of the mean was < 0.1% for all results. Results

(NN) and four baseline models: naive Bayes
(NB), K-nearest neighbors (KNN), logistic regression (LR), and random forest (RF).
Features are separated into four categories: dimensions (D), types (T), values (V),
and names (N). Nraw is the size of the training set before resampling, d is the number
of features, and C is the number of outcome classes. HSA = Has Shared Axis, ISA
= Is Shared X-axis or Y-Axis, and XY = Is on X-axis or Y-axis.
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contribute more to performance than the type-based feature set (e.g. whether a

column is categorical), potentially because there are many more value-based features

than type-based features. Or, because many value-based features are dependent on

column type, there may be overlapping information between value- and type-based

features.

4.4.1 Interpreting Feature Importances

Feature importances help relate our results to prior literature and inform design

guidelines for rule-based systems. Here, we determine feature importances for our top

performing random forest models using the standard mean decrease impurity (MDI)

measure [16, 102]. We choose this method for its interpretability and its stability

across runs. The top ten features for five different tasks are shown in Table 4.4a.

We first note the importance of dimensionality (m), like the length of columns

(i.e. the number of rows) or the number of columns. For example, the length of a

column is the second most important feature for predicting whether that column is

visualized as a line or bar trace. The dependence of mark type on number of visual

elements is consistent with heuristics like "keep the total number of bars under 12" for

showing individual differences in a bar chart [166], and not creating pie charts with

more "more than five to seven" slices [83]. The dependence on number of columns is

related to the heuristics described by Bertin [11] and encoded in Show Me [106].

Features related to column type (m) are consistently important for each prediction

task. For example, whether a dataset contains a string type column is the fifth most

important feature for determining two-class visualization type. The dependence of

visualization type choice on column data type is consistent with the type-dependency

of the perceptual properties of visual encodings described by Mackinlay [105] and

Cleveland and McGill [30].
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(a) Feature importances for two visualization-level tasks.

# Visualization Type (C=2) Has Shared Axis (C=2)

1 % Values are Mode std Number of Cols
2 Min Value Length max Is Monotonic %
3 Entropy var Field Name Length AAD
4 Entropy std # Words In Name NR
5 String Type has X In Name #
6 Median Length max # Words In Name range
7 Mean Value Length AAD Edit Distance mean
8 Entropy mean Edit Distance max
9 Entropy max Length std
10 Min Value Length AAD Edit Distance NR

(b) Feature importances for three encoding-level tasks.

# Mark Type (C=2) Is Shared Axis (C=2) Is X or Y Axis (C=2)

1 Entropy # Words In Name Y In Name
2 Length Unique Percent X In Name
3 Sortedness Field Name Length Field Name Length
4 % Outliers (1.5IQR) Is Sorted Sortedness
5 Field Name Length Sortedness Length
6 Lin Space Seq Coeff X In Name Entropy
7 % Outliers (3IQR) Y In Name Lin Space Seq Coeff
8 Norm. Mean Lin Space Seq Coeff Kurtosis
9 Skewness Min # Uppercase Chars
10 Norm. Range Length Skewness

Table 4.4: Top-10 feature importances determined by mean decrease impurity for the
top performing random forest models. The second column in the visualization-level
importances table describes how each feature was aggregated, using the abbreviations
in Table 4.2. Colors represent different feature groupings: dimensions (m), type ( ),
statistical [Q] (m), statistical [C] (m), sequence (m), scale of variation (m), outlier
(m), unique (m), name (m), and pairwise-relationship (0).

Statistical features (quantitative: m, categorical: m) such as Gini, entropy, skew-

ness and kurtosis are important across the board. The presence of these higher order

moments is striking because lower-order moments such as mean and variance are low

in importance. The importance of these moments highlight the potential importance

of capturing high-level characteristics of distributional shape. These observations sup-
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port the use of statistical properties in visualization recommendation, like in [159,197],

but also the use of higher-order properties such as skewness, kurtosis, and entropy in

systems such as Foresight [34], VizDeck [128], and Draco [119].

Measures of orderedness (m), specifically sortedness and monotonicity, are im-

portant for many tasks. Sortedness is defined as the element-wise correlation between

the sorted and unsorted values of a column, that is |COrr(Xraw, Xsorted)|, which lies in

the range [0, 1]. Monotonicity is determined by strictly increasing or decreasing values

in X,. The importance of these features could be due to pre-sorting of a dataset

by an analyst, which may reveal which column is considered to be the independent or

explanatory column, which is typically visualized along the X-axis. While intuitive,

we have not seen orderedness factor into existing systems.

We also note the importance of the linear or logarithmic space sequence coefficients,

which are heuristic-based features that roughly capture the scale of variation (m).

Specifically, the linear space sequence coefficient is determined by std(Y)/mean(Y),

where Y = {X, - X_ 1 } with i = (1+1)..N for the linear space sequence coefficient,

and Y = {X/X} with i = (1 + 1)..N for the logarithmic space sequence coeffi-

cient. A column "is" linear or logarithmic if its coefficient < 10-. Both coefficients

are important in all four selected encoding-level prediction tasks. We have not seen

similar measures of scale used in prior systems.

In sum, the diversity of the features in Table 4.4a suggest that rule-based recom-

mender systems should include more features than the current type based features

most systems rely on (e.g. [106,200]). Furthermore, the task-specific ranking of fea-

tures, as well as the non-linear dependencies in the models, make it even harder

for rule-based systems to perform well across tasks and domains and thus further

emphasize the need for ML-based recommender systems
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4.5 Benchmarking with Crowdsourced Effectiveness

We expand our definition of effectiveness from a binary to a continuous function

that can be determined through crowdsourced consensus. Then, we describe our

experimental procedure for gathering visualization type evaluations from Mechanical

Turk workers. We compare different models at predicting these evaluations using a

consensus-based effectiveness score.

4.5.1 Modeling and Measuring Effectiveness

As discussed in Section 4.1, we model data visualization as a process of making a set

of design choices C = {c} that maximize an effectiveness criteria Eff that depends

on dataset d, task, and context. In Section 4.4, we predict these design choices by

training a machine learning model on a corpus of dataset-design choice pairs [(d, Cd)].

But because each dataset was visualized only once by each user, we consider the user

choices Cd to be effective, and each other choice as ineffective. That is, we consider

effectiveness to be binary.

But prior research suggests that effectiveness is continuous. For example, Saket et al.

use time and accuracy preference to measure task performance [150], Borkin et al. use

a normalized memorability score [13], and Cleveland and McGill use absolute error

rates to measure performance on elementary perceptual tasks [30]. Discussions by

visualization experts [72,81] also suggest that multiple visualizations can be equally

effective at displaying the same data.

Our effectiveness metric should be continuous and reflect the ambiguous nature of

data visualization, which leads to multiple choices receiving a non-zero or even maxi-

mal score for the same dataset. This is in agreement with measures of performance for

other machine learning tasks such as the BLEU score in language translation [123]
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and the ROUGE metric in text summarization [95], where multiple results can be

(partly) correct.

To estimate this effectiveness function, we need to observe a dataset d visualized by

multiple potential users. Assume that a design choice c can take on multiple discrete

values {v}. For instance, we consider c the choice of Visualization Type, which

can take on the values {bar, line, scatter}. Using n, to denote the number of times

v was chosen, we compute the probability of making choice v as Pc(v) = nv/N, and

use {P} to denote the collection of probabilities across all v. We normalize the

probability of choice v by the maximum probability to define an effectiveness score

Effe (v)= P(v) / max({P}).

Effe (v) = Pc (v) / max ({Pc}) (4.5)

Now, if all N users make the same choice v, only c v will get the maximimum score

while every other choice c f v will receive a zero score. However, if two choices are

chosen with an equal probability and are thus both equally effective, the normalization

will ensure that both receive a maximum score.

Developing this crowdsourced score that reflects the ambiguous nature of making data

visualization choices serves three main purposes. First, it lets us establish uncertainty

around our models - in this case, by bootstrap. Second, it lets us test whether models

trained on the Plotly corpus can generalize and if Plotly users are actually making

optimal choices. Lastly, it lets us benchmark against performance of the Plotly users

as well as other predictors.

To generate the crowdsourced evaluation data, we recruited and successfully pre-

screened 300 participants through Amazon Mechanical Turk. The data preparation
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and crowdsourced evaluation procedures is described in more detail in the next two

sections.

4.5.2 Data Preparation

To select the datasets in our benchmarking test set, we first randomly surfaced a set

of candidate datasets that were visualized as either a bar, line, or scatter chart. Then,

we removed obviously incomplete visualizations (e.g. blank visualizations). Finally,

we removed datasets that could not be visually encoded in all three visualization

types without losing information. From the remaining set of candidates, we randomly

selected 33 bar charts, 33 line charts, and 33 scatter charts.

As we cleaned the data, we adhered to four principles: modify the user's selections

as little as possible, apply changes consistently to every dataset, rely on Plotly de-

faults, and don't make any change that is not obvious. For each of these datasets, we

modified the raw column names to remove Plotly-specific biases (e.g. removing ",x"

or ", y" that was automatically append to column names). We also wanted to make

the user evaluation experience as close to the original chart creation experience as

possible. Therefore, we changed column names from machine-generated types if they

are obvious from the user visualization axis labels or legend (e.g. the first column is

unlabeled but visualized as Sepal Width on the X-axis). Because of these modifica-

tions, both the Plotly users and the Mechanical Turkers accessed more information

than our model.

We visualized each of these 99 datasets as a bar, line, and scatter chart. We created

these visualizations by forking the original Plotly visualization then modifying Mark

Types using Plotly Chart Studio. We ensured that color choices and axis ranges were

consistent between all visualization types. The rest of the layout was held constant

to the user's original specification, or the defaults provided by Plotly.
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4.6 Crowdsourced Evaluation Procedure

For the crowdsourced evaluation, we recruited participants through Amazon Me-

chanical Turk. To participate in the experiment, workers had to hold a U.S. bachelor

degree and be at least 18 years of age, and be completing the survey on a phone.

Workers also had to successfully answer three prescreen questions: 1) Have you ever

seen a data visualization? [Yes or No], 2) Does the x-axis of a two-dimensional plot

run horizontally or vertically? [Horizontally, Vertically, Both, Neither], 3) Which

of the following visualizations is a bar chart? [Picture of Bar Chart, Picture of

Line Chart, Picture of Scatter]. 150 workers successfully completed the two-class

experiment, while 150 separate workers completed the three-class experiment.

After successfully completing the pre-screen, workers evaluated the visualization type

of 30 randomly selected datasets from our test set. Each evaluation had two stages.

First, the user was presented the first 10 rows of the dataset, and told to "Please take

a moment to examine the following dataset. (Showing first 10 out of X rows)." Then,

after five seconds, the "next" button appeared. At the next stage, the user was asked

"Which visualization best represents this dataset? (Showing first 10 out of X rows)."

On this stage, the user was shown both the dataset and the corresponding bar, line,

and scatter charts representing that dataset. A user could submit this question after

a minimum of ten seconds. The evaluations were split into two groups of 15 by an

attention check question. Therefore, each of the 66 datasets were evaluated 68.18

times on average, while each of the 99 ground truth datasets was evaluated 30 times

on average.

Users also answered the question "How confident are you in your answer?", with a

five-point scale ranging from "Not at all confident" to "Completely confident."

At the end of the survey, participants were asked "How easy were the previous ques-

tions?", "How prepared did you feel to answer the previous questions?" and "Do you
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feel you had enough knowledge to answer the previous questions?" Users could answer

these questions on a six-point scale. Finally, users reported demographic information,

educational attainment, occupation, technical background, and experience with data

analysis or programming languages.

4.6.1 Benchmarking Procedure

We use four types of predictors in our benchmark: human, rule-based model, ML-

based model, and baseline. The two human predictors are the Plotly predictor,

which is the visualization type of the original plot created by the Plotly user, and

the MTurk predictor is the choice of a single random Mechanical Turk participant.

When evaluating the performance of individual Mechanical Turkers, that individual's

vote was excluded from the set of votes used in the mode estimation.

The two rule-based predictors include one commercial system and another research

system. The first, Tableau's Show Me feature [106], is based on the expressiveness

and effectiveness criteria of Mackinlay's APT [105]. The second, the CompassQL

recommender engine [71], powers the Voyager and Voyager 2 systems [199,200].

The two learning-based predictors are DeepEye and Data2Vis. In all cases, we tried

to make choices that maximize prediction performance, within reason. We uploaded

datasets to Show Me, DeepEye, and CompassQL as comma-separated values (CSV)

files, and to Data2Vis as JSON objects. Unlike VizML and Data2Vis, DeepEye

supports pie, bar, and scatter visualization types. We marked both pie and bar

recommendations were both bar predictions, and scatter recommendations as line

predictions in the two-type case.

For all tools, we modified the data within reason to maximize the number of valid

results. For the remaining errors (4 for Data2Vis, 14 for DeepEye), and cases without
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returned results (12 for DeepEye and 33 for CompassQL) we assigned a random chart

prediction.

Predictor performance is evaluated as the total sum of normalized effectiveness scores.

This Consensus-Adjusted Recommendation Score (CARS) of a predictor is defined as:

CARSpredictor -- Pc ( 6 edic"''d) x 100 (4.6)
|D| dED max ({ P)

where ID is the number of datasets (66 for two-class and 99 for three-class), Predictr,d

is the predicted visualization type for dataset d, and Pc returns the fraction of Mechan-

ical Turker votes for a given visualization type. Note that the minimum CARS > 0%.

We establish 95% confidence intervals around these scores by comparing against 105

bootstrap samples of the votes, which can be thought of as synthetic votes drawn

from the observed probability distribution.

4.6.2 Benchmarking Results

We first measure the degree of consensus using the Gini coefficient, the distribution of

which is shown in Figure 4-13. If a strong consensus was reached for all visualizations,

then the Gini distributions would be strongly skewed towards the maximum, which is

1/2 for the two-class case, and 2/3 for the three-class case. Conversely, a lower Gini

implies a weaker consensus, indicating an ambiguous ideal visualization type. The

Gini distributions are not skewed towards either extreme, which supports the use of

a soft scoring metric such as CARS over a hard measure like accuracy.

The Consensus-Adjusted Recommendation Scores for each model and task are visual-

ized as a bar chart in Figure 4-14. We first compare the CARS of VizML (88.96t1.66)

against that of Mechanical Turkers (86.66 t 5.38) and Plotly users (90.35 ±1.85) for
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Figure 4-13: Distribution of
Gini coefficients for the vi-
sualization type prediction
tasks. Higher Gini indi-
cates stronger consensus.

the two-class case, as shown in Figure 4-14a. It is surprising that VizML performs

comparably to the original Plotly users, who possess domain knowledge and invested

time into visualizing their own data. VizML significantly out-performs Data2Vis

(75.61±2.44) and DeepEye (79.12±4.33). Show Me achieves a CARS of (81.702.05),

which is similar to that of CompassQL (80.98 ±4.32). While the other recommenders

were not trained to perform visualization type prediction, all perform slightly better

than the random classifier (74.30 i 7.09). For this task, the absolute minimum score

was (48.61 ± 2.95).

The same results hold for the three-class case shown in Figure 4-14b, in which the

CARS of VizML (81.18 ± 2.39) is slightly higher, but within error bars, than that

of Mechanical Turkers (79.28 t 4.66), and Plotly users (79.58 ±2.44). Data2Vis

(64.75 ± 3.13) and DeepEye (68.09 ± 4.11) outperform the Random (60.37±6.98) with

a larger margin, but still within error. CompassQL (68.95 + 4.48) slightly surpasses

Show Me (65.37 ±2.98), also within error. The minimum score was (26.93 ± 3.46).
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4.7 Discussion

In this chapter, we introduce VizML, a machine learning approach to visualization

recommendation that uses a large corpus of datasets and corresponding visualizations.

We identify five key prediction tasks and show that, relative to both random guessing

and simpler classifiers, neural network classifiers attain high test accuracies on these

tasks. We also benchmark with a test set established through crowdsourced consensus,

and show that the performance of neural networks is comparable with the performance

of individual humans.

Visualization system developers have multiple paths when it comes to incorporating

ML-based recommenders such as VizML into authoring workflows. Partial spec-

ification recommenders on top of existing manual specification tools, such as the

Show Me [106] feature in Tableau [173], rely on design choice suggestions that could

be provided by a learned model. Code-based authoring environments such as the

Draco [119] and Vega-Lite [153] editors could use partial specification recommenders

to power visualization "autocomplete" features that would then suggest, in real time,

design choices in response to user interaction. Mixed-initiative systems such as Voy-

ager [200] and DIVE [66] could leverage Top-N recommendations to present a gallery

of visualizations for users to search and drill-down. Indeed, designing interactions

with ML-based recommenders is an important area of future work.

To develop ML-based recommenders for their own systems, developers could begin by

identifying user design choices and extracting simple features from the data. Given

sufficient volume, those features and design choices can be used to train models, as

we have demonstrated in here. Alternatively, developers can overcome the cold-start

problem by using pre-trained models such as VizML. With models in hand, developers

can progress further by collecting the usage analytics (e.g., measures of engagement

such as clicks and shares) to establish customized measures of visualization effective-
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ness.

4.8 Future Work

We acknowledge the limitations of the Plotly corpus and our approach. First, despite

aggressive deduplication, our model is certainly biased towards the Plotly dataset.

As a web-based platform, Plotly could draw a certain cohort of analysts, encourage

certain types of plots by interface design or defaults, or be more appropriate for

specific types and sizes of data. Second, neither the Plotly user nor the Mechanical

Turker is an expert in data visualization. Third, we acknowledge that VizML was only

focused on a subset of the tasks usually considered in a visualization recommendation

pipeline.

Promising avenues for future work lie in both data collection and modelling directions.

On the data side, there is a need for more diverse training data from other tools (e.g.,

Many Eyes and Tableau) and for those pertaining to adjacent data science tasks such

as feature selection and data transformation. Richer training data allows researchers

to investigate the previous bias concerns, optimize visualization recommenders with

a task-based (or, more generally, multi-objective) effectiveness metric, recommend

multiple views of a dataset, study complementary approaches to feature engineering,

and integrate distinct design choice recommendations using a probabilistic graphical

model.

Despite the increasing prevalence of recommendation features within visualization

tools, research progress in visualization recommendation has been impeded because

of the lack of a standard benchmark. Without a benchmark, it is difficult to compare

different approaches to this problem. Furthermore, it is difficult to bootstrap a rec-

ommender system without access to the results from a tool. Just as large repositories

like ImageNet [35] and CIFAR-10 have played a significant role in shaping computer

vision research, and serve as a useful benchmarking tool, the same should exist for
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visualization recommendation.
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Chapter 5

VizNet

A Large-Scale Visualization Learning and Benchmarking Repository
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Figure 5-1: VizNet enables data scientists and visualization researchers to aggregate
data, enumerate visual encodings, and crowdsource effectiveness evaluations.

A primary concern in visualization is how to effectively encode data values as visual

variables. Beginning with Cleveland and McGill's seminal work [30], researchers have

studied this question of graphical perception by conducting experiments with human

subjects. And increasingly, researchers are seeking to operationalize the guidelines

these studies produce by using handcrafted rule-based systems [119,198] or learned

models [36,64,103], such as VizML, which was presented in CHAPTER 4.

To increase the scale and diversity of the subject pool, modern studies have eschewed

traditional laboratory set-ups in favor of crowdsourcing platforms [58]. But a con-

straining factor for true ecological validity remains. Collecting, curating, and cleaning

data is a laborious and expensive process and, thus, researchers have relied on running

studies with ad hoc datasets. These datasets, sometimes synthetically generated, do

not display the same characteristics as data found in the wild. Moreover, as one-

off exemplars, their use makes it difficult to compare approaches against a common

baseline.

Large-scale databases (such as WordNet [117] and ImageNet [35]) have proven to be

instrumental in pushing the state-of-the-art forward because they provide the data
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needed to train and test machine learning models, as well as a common baseline for

evaluation, experimentation, and benchmarking. Their success has led researchers to

call for a similar approach to advance data visualization [9,44]. However, insufficient

attention has been paid to design and engineer a centralized and large-scale repository

for evaluating the effectiveness of visual designs.

In response, we introduce VizNet: a corpus of over 31 million datasets (657 GB

of data) compiled from the web, open data repositories, and online visualization

platforms. In characterizing these datasets, we find that they typically consist of 17

records describing 3 dimensions of data. 51% of the dimensions in the corpus record

categorical data, 44% quantitative, and only 5% measure temporal information. Such

high-level properties, and additional measures such as best statistical fit and entropy,

contribute a taxonomy of real-world datasets that can inform assessments of ecological

validity of prior studies.

This chapter demonstrates VizNet's viability as a platform for conducting online

crowdsourced experiments at scale by replicating the Kim and Heer (2018) study,

which assessed the effect of task and data distribution on the effectiveness of visual

encodings [78]. We extend this previous study by adding in an additional task: outlier

detection. While largely in line with the original findings, our results do exhibit

several statistically significant differences as a result of our more diverse backing

datasets. These differences inform our discussion on how crowdsourced graphical

perception studies must adapt to and account for the variation found in organic

datasets. VizNet, along with data collection and analysis scripts, is publicly available

at https://viznet.media.mit. edu.

Data visualization is an inherently combinatorial design problem: a single dataset

can be visualized in a multitude of ways, and a single visualization can be suitable

for a range of analytic tasks. As the VizNet corpus grows, assessing the effective-

ness of these (data, visualization, task) triplets, even when using crowdsourcing, will
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quickly become time- and cost-prohibitive. To contend with this scale, we conclude

by formulating effectiveness prediction as a machine learning task over these triplets.

We demonstrate a proof-of-concept model that predicts the effectiveness of unseen

triplets with non-random performance. Our results suggest that machine learning

offers a promising method for efficiently annotating VizNet content. VizNet provides

an important opportunity to advance our understanding of graphical perception.

5.1 Data

VizNet incorporates four large-scale corpora, assembled from the web, online visual-

ization tools, and open data portals.

5.1.1 Corpora

The first category of corpora includes data tables harvested from the web. In partic-

ular, we use horizontal relational tables from the WebTables 2015 corpus [19], which

extracts structured tables from the Common Crawl. In these tables, entities are

represented in rows and attributes in columns.

The second type of corpus includes tabular data uploaded by users of two popular

online data visualization and analysis systems. Plotly [130] is a software company

that develops visualization tools and libraries. Once created, Plotly charts can be

posted to the Plotly Community Feed [132]. Using the Plotly API, we collected

approximately 2.5 years of public visualizations from the feed, starting from 2015-

07-17 and ending at 2018-01-06. The second system, ManyEyes [188] allowed users

to create and publish visualizations through a web interface. It was available from

2007-2015, and was used by tens of thousands of users [120].

The third type of corpus includes public data from the Open Data Portal Watch [118,
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122], which catalogs and monitors 262 open data portals such as data.noaa. gov from

CKAN, finances.worldbank.org from Socrata, and opendata.brussels.be from

OpenDataSoft. The majority of these portals are hosted by governments, and collect

civic and social data.

VizNet aggregates these corpora into a centralized repository. However, the majority

of datasets are from WebTables. Therefore, in the following sections, we describe each

corpus individually with 250K randomly sampled datasets, to avoid oversampling the

WebTable corpus. We combine these datasets into a balanced sample of one million

datasets, which we refer to as the VizNet 1M corpus.

5.1.2 Characterization

Summary statistics and underlying distributions of each of the five corpora are shown

in Figure 5-2. The data type of a column is classified as either categorical, quantita-

tive, or temporal, which we abbreviate as C, Q and T, respectively. This data type is

detected using a heuristic-based approach that incorporates column name and value

information. For quantitative columns, we use the Kolmogorov-Smirnov test [110] to

examine the goodness-of-fit of six distributions: the normal, log-normal, exponential,

power law, uniform and chi-squared distributions. We reject the null hypothesis of a

distribution fit if the p-value of the associated test is lower than the level a= 0.05.

If all distributions are rejected at a, we consider the distribution to be undefined. If

multiple distributions are not rejected, we consider the "best" fit to be that with the

highest p-value. We also report the skewness and percent of outliers, defined as data

points that fall more than 1.5 x IQR below the first quartile or above the third quar-

tile, where IQR is the interquartile range. The statistical distribution of categorical

columns within each corpus is characterized using the normalized entropy.
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Size Dimensins 7)pes Stafistical

Corpus Source * Dat Gb Colb Rowe C (%) Q (%) T (S) Distribuon Entropy
WebTables 2015 Web 90.26M 137 4 5 57.58 35.56 6.86 norm, log-norm, power 0.94
Plotly Tool iM 140 3 50 17.29 75.47 7.24 log-norm, non, power 0.68
Many Eyes Tool 311K 14 2 19 51.58 46.04 2.43 nom, log-non, exp 0.81
ODPW Repository 269K 366 2 70 76.55 21.20 2.24 norm, log-norm, power 0.50
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Figure 5-2: Summary statistics (top) and distributions (bottom) of the four source
corpora and the VizNet 1M corpus. In the top table, we report the median number
of rows and columns. The Distribution column includes the top three most frequent
column distributions. Distributions are abbreviated as Norm = normal, L-N = log-
normal, Pow = power law, Exp = exponential, Unif = uniform, and Und = undefined.
The bottom part of the figure contains distributions describing columns, datasets, and
the entire corpus. The bars outlined in red represent three column datasets and the
subset which contain one categorical and two quantitative fields. The clustering of
three column (C=1, Q=2) datasets is shown in more detail in Figure 5-5.
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5.2 Experiment Design

To evaluate the utility of VizNet as a resource for data scientists and visualization

researchers, we conducted an experiment where we first replicated the Kim and Heer

(2018) prior study [78] using real-world datasets from the VizNet corpus to assess the

influence of user task and data distribution on visual encoding effectiveness. These

datasets were sampled to match constraints from the prior study and ensure that

participants only saw valid data. We then extended this experiment by including an

additional task on outlier detection. Finally, we trained a machine learning model

that learns the perceptual effectiveness of different visual designs and evaluated its

predictive power across test datasets.
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5.2.1 Replication of Kim and Heer (2018)

Kim and Heer (2018), "Assessing Effects of Task and Data Distribution on the Ef-

fectiveness of Visual Encodings," conducted a crowdsourced experiment measuring

subject performance (i.e. error rate and response time) across data distributions

(D), visualization designs (V), and task types (T). The 24 data distributions char-

acterize trivariate data involving one categorical and two quantitative fields (C=1,

Q=2) sampled from 2016 daily weather measurements [113] according to univariate

entropies of the quantitative fields, cardinalities, and number of records per category.

The authors employed a mixed design using a within-subjects treatment for visual

encodings and between-subjects treatments for tasks and data characteristics. They

analyzed responses from 1,920 participants on Amazon's Mechanical Turk (MTurk),

who individually completed 96 questions and 12 engagement checks, and calculated

the absolute and ranked performance of different (D x V x T) conditions, as well

as the interaction effects between different data characteristics, visual channels, and

task types. These results extended existing models of encoding effectiveness, such as

APT [105], and provided valuable insights for automatic visualization design systems.

5.2.2 Datasets

For this experiment, we sampled VizNet datasets according to a procedure that

matched constraints from Kim and Heer (2018) and ensured that participants only

saw valid data without missing values. This procedure was developed after an initial

pilot study with a subset of the corpus in which all datasets were manually verified.

To begin, we identified all datasets with more than one categorical field and two quan-

titative fields (C>1 and Q>2). Then, we sampled all possible three column subsets

with exactly one categorical and two quantitative fields (C=1, Q=2). Following this
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sampling, we filtered out datasets using a number of constraints. First, we rejected

datasets containing any null values. Second, we required that the column names of

all datasets must contain between 1 and 50 ASCII-encoded characters. Third, we

limited the cardinality (e.g. the number of unique groups) of the categorical columns

between 3 and 30. Fourth, we restricted the group names between 3 and 30 char-

acters, at least one of which is alphanumeric. Lastly, we required that each of the

groups must contain 3 to 30 values. We chose these values to be consistent with the

upper and lower constraints of Kim and Heer (2018).

Our sampling procedure resulted in 2,941 valid datasets from the Open Data Cor-

pus (100,626 possible combinations), 6,090 valid datasets from Many Eyes (354,206

combinations), 1,368 from Plotly (347,387 combinations), and 82,150 from a subset

of the Webtables corpus (1,512,966 combinations). From this set of candidates, we

randomly selected 200 candidates per visualization specification x task condition.

We use V to denote the number of visualization specifications and T to denote the

number of tasks, which leads to 60 such conditions (V x T = 12 x 5 = 60). The

200 number of datasets sampled from the VizNet corpus is consistent with the 192

datasets sampled in Kim and Heer (2018). As a result, this sampling resulted in

200 x 12 = 2, 400 datasets per task, 2, 400 datasets per corpus, and 9, 600 = 2, 400 x 4

total datasets.

5.2.3 Visual Encodings

We selected the twelve visual encoding specifications chosen in Kim and Heer (2018).

These encodings are specified using the Vega-Lite grammar [153], which specifies plots

using a geometric mark type (e.g. bar, line, point) and a mapping from data fields

to visual encoding channels (e.g. x, y, color, shape, and size). In particular, Kim and

Heer (2018) used twelve visualization designs, all of which are scatterplots (a point
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mark) with different mappings between data and encoding channels.

We used the Tableau-10 scheme for color encoding categorical fields with cardinality

less than 10, and Tableau-20 for categorical fields with cardinality greater than or

equal to 20. For positional encodings, in contrast to Kim and Heer (2018), we used a

heuristic to determine whether an axis should start at zero. If the range of a variable

Q is less than 10% of maximum value 0.1 x Ima(Q)|, then we default to Vega-lite

axis ranges. Based on a pilot study, we found that this heuristic was necessary to

ensure that no questions were prohibitively difficult.

5.2.4 Tasks

Following Kim and Heer (2018), we considered 4 visualization tasks informed by the

Amar et al. (2005) [6] taxonomy of low-level analytic activities. Two of those tasks

were value tasks: Read Value and Compare Values asked users to read and compare

individual values. The other two tasks were summary tasks: Find Maximum and

Compare Averages required the identification or comparison of aggregate properties.

Each of these tasks was formulated as a binary question (two-alternative forced choice

questions). We generated the two alternatives using the procedure described in the

prior study.

5.2.5 Procedure

Identical to Kim and Heer (2018), we also employed a mixed design incorporating a

within-subjects treatment for visual encodings and a between-subjects treatment for

tasks. Each participant answered 9 questions (1 attention check and 8 real) for each of

the 12 visual encodings, presented in a random order. Every participant was assigned

to a specific task. Unlike Kim and Heer (2018), we did not incorporate dataset
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conditions. Each dataset was selected randomly from the pool of 200 datasets per V

x T condition. In order to ensure reliable human judgment, we followed the process

from Kim and Heer (2018) and incorporated 12 evenly distributed gold standard

tasks. The gold standard tasks presented a user with a real dataset encoded in the

present visual encoding condition, and asked what information is presented in the

visual channel that encodes the first quantitative column (Q1).

5.2.6 Participants

Crowdsourcing platforms such as MTurk are widely used to recruit participants and

conduct online experiments at scale [79,109]. We recruited in total 1,342 MTurk

workers who were located in the U.S. and had > 95% HIT approval rating.

During the analysis, we included the following criteria to ensure the quality of human

judgment: we selected subjects who accurately answered 100% of the gold standard

questions, had an experimental error rate of less than 60%, and can effectively distin-

guish colors. We had set the gold standard response exclusion threshold to 100% (i.e.,

discarding responses if even 1 out of these 12 questions was answered incorrectly).

We have verified that a more lenient 80% exclusion threshold does not significantly

change the results. Kim and Heer (2018) does not report a dropout rate, making it

difficult to assess whether and by how much our dropout rate differs. We included

two Ishihara color blindness plate tests [69] along with two pre-screen questions to

ensure the participants can effectively distinguish colors. A total of 96.47% reported

no vision deficiency and were allowed to participate in the experiment. This resulted

in a total of 624 participants' data for in the analysis.

Of the 624 participants, 43.75% were male, 55.44% female, and 0.48% non-binary.

6.38% of the participants had no degree, whereas others had bachelor's (43.10%),

master's (14.90%), Ph.D. (3.04%), associate (14.58%) degrees as well as a high school
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diploma (17.46%). Each participant received 1.00 USD in compensation, which we

calculated using the average times of a pilot study and the same hourly wage of Kim

and Heer (2018).

5.3 Results

In this section, we describe the results of our experiment, compare them with the

results of Kim and Heer (2018) [78], and demonstrate a machine learning-based ap-

proach to predicting effectiveness from (data, visualization, task) triplets.

5.3.1 Comparing Subject Performance

We first compared subject performance with the quantitative results of Kim and

Heer (2018) by considering aggregate error rates and log response times per visu-

alization specification and task condition (V x T = 12 x 4). Following this, we

calculated mean error rates with 95% bootstrapped confidence intervals, performed

by sampling participants with replacement. To analyze the difference of mean error

rates and response times we conducted permutation tests with 10' permutations. We

test significance at a significance level of a = 0.05 with Bonferroni correction for our

m = 48 hypotheses. The results for the error rate and log response times are shown

in Figure 5-4.

The absolute error rates of our replication tend to agree with those of Kim and Heer

(2018) for the Read Value task, and to a lesser extent for the Compare Values task.

The rankings of different visual encodings are also similar. However, for the the

summary tasks (Find Maximum and Compare Averages), our observed error rates

depart from those of Kim and Heer (2018). Though more data points are needed to

draw meaningful conclusions, these results suggest that real-world data affects error

rates for more complex tasks.
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In contrast, the absolute response times in our study seem to be systematically longer

for all tasks except the Compare Values task. However, the relative rankings of

different encoding are consistent with those of Kim and Heer (2018).

5.3.2 Extending with an Outlier Detection Task

As suggested by Kim and Heer (2018), investigating additional task types is a promis-

ing direction of future research. In particular, tasks with more subjective definitions,

such as Cluster and Find Anomalies were not included in Kim and Heer (2018).

Nevertheless, as outlier detection is one of the most important data analysis tasks in

practice, it warrants further empirical study. We extended the prior work by consid-

ering this latter task of identifying "which data cases in a set S of data cases have

unexpected/exceptional values."

We generated 2,400 datasets using the sampling methodology described in the pre-

vious section. First, we presented users with a definition of outliers as "observations

that lie outside the overall pattern of distribution." Then, using the same experi-

ment design, we assessed answers to the question "Are there outliers in Qi?" "Yes"

and "No" are provided as response options. Outliers were determined using the me-

dian absolute deviation (MAD)-based approach described in [93], which is robust to

varying sample sizes, compared to other simple approaches.

We found that the error rates for the outlier detection task are higher compared to

the other tasks (see Figure 5-4). This may be due to an inadequate measure of ground

truth, inconsistent definitions, or lack of prior training. It is important to note that

the specification rankings resemble that of the Read Value task: color and size trail

behind other encodings channels. Conversely, the log response times are significantly

shorter than for other tasks, for all except the faceted charts with row encodings.
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5.3.3 Learning a Model to Predict Effectiveness

To characterize a dataset, we extracted 167 features: 60 per quantitative field Q,
11 for the categorical field C, 15 for the Q-Q pair, 6 for the two C-Q pairs, and

9 which consider all three fields. These features characterized summary statistics

(e.g. coefficient of variance and kurtosis), statistical distributions (e.g. entropy and

statistical fits), pairwise relationships (e.g. correlations and one-way ANOVA p-

values), clusteredness and spatial autocorrelation.

We first decoded diversity within our space of datasets using these features. Using

principal components analysis, we computed 32 principal components which collec-

tively explain over 85% of the variance within our dataset. Then, we generated a

two-dimensional t-SNE projection of these principal components, as shown in Fig-

ure 5-5. It is important to note that the datasets used in Kim and Heer (2018) [78]

are highly clustered and separate from the datasets used within our replication. This

observation is robust for different numbers of principal components and values of

perplexity (5-200).

To predict log completion time we use gradient boosted regression trees, a model with

strong "off-the-shelf" performance. Training on 80% sample of the data, we were able

to predict log completion times in a 20% hold-out test set with a 5-fold cross-validated

R2 of 0.47, which strongly outperforms baseline models such as K-nearest neighbors

and simple linear regression. A scatter plot of observed vs. predicted values for the

top performing model is shown in Figure 5-6. Learning curves in Figure 5-7 indicate

that, despite the large number of features, our model does not overfit on the training

set, and that there are still gains from increasing the number of training samples.

Kim and Heer (2018) reports the trade-off between response time and error rate.

To capture this trade-off, we created a combined metric from the log response times
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and error rate metrics by partitioning the log response times into 20% quantiles,

and the error rates into five bins of equal width, for a total of 25 pairs. Then, we

characterized each (d, v, t) triplet with the associated (response time + error rate)

pair, and resampled minority classes using the Synthetic Minority Over-sampling

Technique (SMOTE) [25]. Training a gradient boosted classification tree on the

balanced training set resulted in a Top-3 prediction accuracy of 52.48%.

5.3.4 Limitations

Although we have successfully demonstrated the effectiveness of VizNet, it is im-

portant to acknowledge limitations. Replication and reproducibility are essential to

advance research [126]. In the experiment, we attempted to replicate Kim and Heer

(2018) as closely as possible. However, due to practical constraints, we introduced

clarifying modifications to the question text and interface design. Due to variance
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between crowd workers, we were not able to recruit the same participants; nor do

we control for question difficulty, which is calibrated in Kim and Heer (2018). Most

of all, we did not exactly replicate the original conditions of the synthetic datasets,

which would have limited the amount of real-world VizNet datasets available for sam-

pling. Notwithstanding these limitations, our work provides an important direction

to understand the opportunities and challenges faced in replicating prior work in

human-computer interaction and visualization research.

With respect to extending the experiment to include an additional task, we note

that outlier detection, unlike the other tasks, does not have a defined ground truth.

Though we used a robust outlier detection method, there may be a limitation to

any purely quantitative method that does not rely on human consensus. The lack

of an objective notion of outliers and absence of a clear definition thereof in the

questions, reinforces the inconsistency between ground truth and crowdsourced labels

presumably partially explaining the consistently high error rate. In the context of the
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machine learning model, while human judgments can play an important role in help

predicting perceptual effectiveness, crowdsourced training data can be noisy. The

current experiment was unable to analyze lower bound requirements of quality data,

but VizNet's diverse dataset offers such opportunity for future research.

1.0

0.8

0.6

0.4

-- Training score,
.- CV score

Figure 5-7: Training R2

and 5-fold cross-validation
2 as the number of train-

ing examples increases.
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5.4 Discussion

There are several important areas where VizNet makes important contributions.

VizNet provides a noteworthy contribution to advance our knowledge of effective

graphical perception by enabling scientific community access to rich datasets for vi-

sualization learning, experimentation, replication, and benchmarking. VizNet of-

fers both the full corpus and the sampled corpus of one million datasets (VizNet

1M). It further described the dimensions, types, and statistical properties of these

datasets. The voluminous collection of VizNet complements synthetically generated

data. Moreover, the properties of the VizNet corpus can inform assessments of the

ecological validity of other corpora from domains beyond VizNet.

Implications of enabling the VizNet interface for the scientific community.

We envision that in the long run, adoption of a common corpus and benchmarks by

the visualization community will facilitate the sharing and comparing of results at

scale. We have made VizNet publicly available at https: //viznet. media. mit. edu.

A taxonomy in VizNet is formed by splitting our corpus first on the number of columns
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of a datasets, and then on the composition of column types. Therefore, we should

design interactions to help users query, filter, sample datasets within this taxonomy

(e.g. give me all datasets with one categorical, two quantitative, and one temporal

field). Moreover, this informs the need for supporting keyword search to allow filtering

by domain, in addition to filtering on other dataset properties (e.g. give me highly

correlated datasets with exactly two quantitative fields).

Implications of VizNet for replication and experimentation. We replicate

Kim and Heer (2018) to demonstrate the utility of using VizNet. Our results with

real-world data are largely consistent with their findings. As a result of our more

diverse backing datasets, however, there are statistically significant differences in

error rates for the complex tasks. We also note that task completion times with real

data are consistently longer for all but one task. These discrepancies suggest that

graphical perception studies must account for the variation found in real datasets.

Kim and Heer (2018) acknowledge this direction of future work by describing the

need for investigating "all [data] distributions of potential interest." The process

of harvesting these diverse distributions would be facilitated by using VizNet. We

further extend the original experiment by considering an additional "detect outliers"

task, an important but subjective visual analysis task that is difficult to assess using

synthetic data.

Implications of VizNet for learning a metric of perceptual effectiveness.

While Kim and Heer (2018) employed a mixed effects model to analyze their results,

we proposed to conceive the harvested data as a collection of (data, visualization,

task) triplets, each of which is associated with effectiveness measures. Using machine

learning models, we predicted the completion time with an R2 value of 0.47. Ac-

knowledging the trade-off between completion time and error rate, we constructed a

combined metric and achieved a top-3 prediction accuracy of 52.48%. Despite the

noise and skew of crowdsourced labels, and a relatively small sample size, these results
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out-perform both random chance and baseline classifiers. In doing so, they illustrate

the potential for learning a metric of perceptual effectiveness from experimental re-

sults.

5.5 Summary and Future Work

Large-scale data collection efforts for facilitating research are common across sciences

and engineering, from genomics to machine learning. Their success in accelerating the

impact of research in their respective fields is a testament to the importance of easy

access to large-scale realistic data, as well as benchmarking and performing research

on shared databases. As the field of data visualization research grows from its infancy,

we expect the need for and utility of large-scale data and visualization repositories to

significantly grow as well. VizNet is a step forward in addressing this need.

We plan to extend VizNet along three major directions: (1) incorporate and char-

acterize more datasets, (2) harness the wisdom of the crowd, and (3) develop active

learning algorithms for optimal experiment design. These extensions aim to increase

the utility of VizNet not for visualization research but for data-related research more

broadly.

Incorporate and characterize more datasets. VizNet currently centralizes four

corpora of data from the web, open data portals, and online visualization galleries.

We plan to expand the VizNet corpus with the 410,554 Microsoft Excel workbook

files (1,181,530 sheets) [26] that were extracted from the ClueWeb09 web crawl1 .

Furthermore, Morton et al. [120] report that 73, 000 Tableau workbooks and 107,500

datasets from Tableau Public, all of which could be integrated into VizNet. Lastly,

we plan to incorporate 10, 663 datasets from Kaggle 2 , of which 1, 161 datasets are

included alongside the R statistical environment 3, and to leverage the Google Dataset

1http://lemurproject. org/clueweb09.php
2https://www.kaggle.com/datasets
3https://github.com/vincentarelbundock/Rdatasets
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Search 4 to source more open datasets.

In the future work, we plan to characterize the semantic content within column and

group names by using natural language processing techniques such as language de-

tection, named entity recognition, and word embeddings. Moreover, as we describe

the features of the datasets within the VizNet corpus, we can characterize the bias

between corpora in terms of dimensions, type composition, and statistical properties

of columns. This will enable us to systematically study the extent to which these

corpora differ. The existence of such bias between corpora can be seen in Section 4.2.

A clearer understanding of between-corpus bias could inform future techniques for

sampling from the VizNet corpus.

Harness the wisdom of the crowd. Domain-specific crowdsourcing platforms such

as FoldIt, EteRNA, GalaxyZoo, and Game with Purpose, have incentivized citizen

scientists to discover new forms of proteins [32], RNAs [91], galaxies [97], and artificial

intelligence algorithms [189]. We envision VizNet will enable citizen scientists and vi-

sualization researchers to execute graphical perception experiments at scale. In recent

years, crowdsourcing has been pivotal in the creation of large-scale machine learning

corpora. Daemo [48], a self-governed crowdsourcing marketplace, was instrumental

in the creation of the Stanford Question Answering Dataset (SQuAD) [139], whereas

MTurk was used to curate the ImageNet dataset [35].

The effectiveness of crowdsourcing has also been exemplified in our experiment as we

collected human judgments for the evaluation of visual designs. It is interesting to

note that some of the crowd workers enjoyed the intellectual aspect of the experiment,

as illustrated by their post-experiment responses: (1) 'Ifound this survey entertain-

ing, it makes you think and use your head' (2) 'It is a very interesting survey to carry

out since it promotes the capacity of analysis I congratulate you for that'. A natural

progression to harness crowdsourcing mechanisms for VizNet includes an extension
4https://toolbox.google.com/datasetsearch
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of the literature on task design [80], crowd work quality improvements [41,89], and

incentive design [49,189].

Develop active learning for optimal experiment design. Although gathering

human-judgment labels for each triplet is costly, it is possible to learn the effectiveness

from these labeled triplets to label unseen ones (see Section §4.4). To further illustrate

this strategy, we conducted a small experiment on the same data as in Section §4.4,

where the completion times are categorized into low, medium, and high. To propagate

labels, we employed self-learnin [3], so we added the model predictions that have a

high certainty to the labeled set. The predictions with a low certainty were replaced

with crowdsourced labels following the uncertainty algorithm [31]. Figure 5-8 shows

how this strategy improves the accuracy on a test set after a number of iterations

against the baseline of training on all of the labeled samples (supervised learning). In

the future, we plan to harness active learning to assess the quality of human judgment.

0.615

0.610 -

c 0.605 Figure 5-8: Performance
curves obtained by semi-

<0.600
supervised active learning

Z and supervised learning
0.590 - - over 10 iterations.

- Semi-Supervised Active Sampling
0.585 -- Supervised Learning

-1 2 3 4 5 6 7 8 9 10
Iteration

Demonstrate utility for data systems research. The creation of VizNet was mo-

tivated by the need for ecologically valid benchmarks within visualization research.

However, a repository of real-world tabular datasets is potentially valuable for the

broader community of data systems researchers. The data science workflow spans

many tasks, ranging from data collection, to preparation, to exploration, to presen-

tation. Each task could benefit from a an ecologically valid benchmark and, with a

proper training signal, automation through machine learning.
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Chapter 6

Sherlock

A Machine Learning Approach to Semantic Type Detection

1. Source Corpus 2. Sampled Dataset and Features 3. Training and Testing Set 4. Semantic Type Detection

CoumHadrExact Feature Categories Features Tes en
ColumnHeader Matching r Dat

Nieria MBuhari 182018 Word Embeddings Ne tw r Model
S Germany A Merkel 6-14-2615..

iZI~ZI~I~I~67 ParagraphVectors .. .. PredictionCanada J Trudeau - ation
Canad Featur I e GobSttistiCs Location 0.9 Predicted

Countle Extraction Nane:0. 7 Types and
Column_ VleStticYear: 0.8 Confidences

Figure 6-1: Data processing and analysis flow starting from (1) a corpus of real-
world datasets, proceeding to (2) feature extraction, (3) mapping from the features
to ground truth semantic types from column headers, and then moving to (4) model
training and prediction.

Data preparation and analysis systems rely on correctly detecting the types of data

columns to enable and constrain functionality. For example, visualization recom-

mender systems such as DIVE and VizML rely on type-dependent rules. For example,

automated data cleaning facilitates the generation of clean data through validation

and transformation rules that depend on the data type [73,140]. Schema matching

identifies the correspondences between data objects, and frequently uses data types

to constrain the search space of correspondences [138,206]. Data discovery surfaces

data relevant to a given query, often relying on semantic similarities across tables and

columns [22,23].

While most systems reliably detect atomic types such as string, integer, and

boolean, semantic types are disproportionally more powerful, and in many cases,

essential. Semantic types provide finer-grained descriptions of the data by estab-

lishing correspondences between the columns and real-world concepts and, as such,

they can help with schema matching to determine which columns refer to the same

real-world concepts, or with data cleaning by determining the conceptual domain of
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Type Sampled values

location TBA- Chicago, Ill.- Detroit, Mich. - Nashville, Tenn.

location UNIVERSITY SUITES U.S. 27; NA NORSE HALL
location Away Away - Home Away Away
date 27 Dec 1811- 1852- 1855 - - - 1848 1871 1877
date - -, 1922 --- - -, 1902 - - -,1913 -- -, 1919
date December 06- August 23 None
name Svenack Svendd - Sveneldritch - Sveng6ran
name HOUSE, BRIAN - HSIAO, AMY HSU, ASTRID
name D. Korb - K. Moring -- J. Albanese - 1. dunn

Table 6.1: Data values sampled from real-world datasets.

a column. In some cases, the detection of a semantic types can be easy. For example,

an ISBN or credit card number are generated according to strict validation rules,

lending themselves to straightforward type detection with just a few rules. But most

types, including location, birth date, and name, do not adhere to such a structure,

as shown in Table 6.1.

Existing open source and commercial systems take matching-based approaches to

semantic type detection. For example, regular expression matching captures the pat-

terns of data values by using predefined character sequences. Dictionary approaches

use matches between data headers and values with internal look-up tables. While

sufficient for detecting simple types, these matching-based approaches are often not

robust to malformed or dirty data, support only a limited number of types, and

under-perform for types without strict validations. For example, Figure 6-2 shows

that Tableau detects a column labeled "Continent Name" as string. After remov-

ing the column headers, no semantic types are detected. Note that missing headers

or incomprehensible headers are not uncommon. For example, SAP's system table

T005 contains country information and column NMFMT is the standard name field,

whereas INTCA refers to the ISO code or XPLZS to zip-code.

Machine learning models, coupled with large-scale training and benchmarking cor-
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Detected Types With Column Headers

Country/Region String Latitude Longitude Country/Region String

Abc 0 Abc

country-capitals.csv country-capitals.csv country-capit... country-capital... country-capitals.csv country-capitals.csv

Country Name Capital Name Latitude Longitude Country Code Continent Name

Aruba Oranjestad 12.517 -70.033 AW North Am rica

Australia Canberra -35.267 149.133 AU Australia

Austria Vienna 48.200 16.367 AT Europe

Detected Types Without Column Headers Remove Headers

String String Decimal Decimal String String

Abc Abc # # Abc Abc

country-capitals-edite... country-capitals-edi... country-capit... country-capital. country-capitals-edite... country-cap Is-edited

F1 F2 F3 F4 F5 F6

Figure 6-2: Data types detected by Tableau Desktop 2018.3 for a dataset of country
capitals, with and without headers.

pora, have proven effective at predictive tasks across domains. Examples include the

AlexNet neural network trained on ImageNet for visual recognition and the Google

Neural Machine Translation system pre-trained on WMT parallel corpora for language

translation. Inspired by these advances, we introduce Sherlock, a deep learning ap-

proach to semantic type detection trained on a large corpus of real-world columns.

To begin, we consider 78 semantic types described by T2Dv2 Gold Standard,' which

matches the properties from the DBpedia ontology with column headers from the

WebTables corpus. Then, we use exact matching between the semantic types and

column headers to extract 686,765 data columns from the VizNet corpus presented

in CHAPTER 5, a large-scale repository of real-world datasets collected from the web,

popular visualization systems, and open data portals.

We consider each column as a mapping from the column values to a column header.

lhttp://webdatacommons.org/webtables/goldstandardV2.html
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We then extract 1, 588 features from each column, describing the distribution of

characters, semantic content of the words and columns, and global statistics such as

cardinality and uniqueness. Treating the column headers as ground truth labels of

the semantic type, we formulate semantic type detection as a multiclass classification

problem.

A multi-input neural network architecture achieves a support-weighted F-score of

0.89, exceeding that of a decision tree baseline model, two matching-based approaches,

and the consensus of the crowdsourced annotations. We then examine the types for

which the neural network demonstrates high and low performance, investigate the

contribution of each feature category to model performance, extract feature impor-

tances from the decision tree baseline, and present an error-reject curve that indicates

the potential of combining learned models with human annotations.

To conclude, we discuss promising avenues for future research in semantic type de-

tection, such as assessing training data quality at scale, enriching feature extraction

processes, and establishing shared benchmarks. To support benchmarks for future

research, we open source our data, code, and trained model.2 For developers wishing

to integrate Sherlock into existing systems, we distribute a pretrained model as a

Python library.3

6.1 Related Work

Sherlock is informed by existing commercial and open source systems for data prepa-

ration and analysis, as well as prior research work on ontology-based, feature-based,

probabilitic, and synthesized approaches to semantic type detection.
2 Code and data: https://sherlock.media.mit.edu/data
3Python library: https://sherlock.media.mit. edu/library
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Commercial and open source Semantic type detection enhances the function-

ality of commercial data preparation and analysis systems such as Microsoft Power

BI [115], Trifacta [180], and Google Data Studio [53). To the best of our knowl-

edge, these commercial tools rely on manually defined regular expression patterns

dictionary lookups of column headers and values to detect a limited set of semantic

types. For instance, Trifacta detects around 10 types (e.g., gender and zip code) and

Power BI only supports time-related semantic types (e.g., date/time and duration).

Open source libraries such as messytables [87], datalib [185], and csvkit [54] similarly

use heuristics to detect a limited set of types. Benchmarking directly against these

systems was unfeasible due to the small number of supported types and lack of exten-

sibility. However, we compare against learned regular expression and dictionary-based

benchmarks representative of the approaches taken by these systems.

Ontology-based Prior research work, with roots in the semantic web and schema

matching literature, provide alternative approaches to semantic type detection. One

body of work leverages existing data on the web, such as WebTables [19], and ontolo-

gies (or, knowledge bases) such as DBPedia [7], Wikitology [175], and Freebase [12].

Venetis et al. [186] construct a database of value-type mappings, then assign types

using a maximum likelihood estimator based on column values. Syed et al. [175] use

column headers and values to build a Wikitology query, the result of which maps

columns to types. Informed by these approaches, we looked towards existing ontolo-

gies to derive the 275 semantic types considered in this paper.

Feature-based Several approaches capture and compare properties of data in a

way that is ontology-agnostic. Ramnandan et al. [141] use heuristics to first separate

numerical and textual types, then describe those types using the Kolmogorov-Smirnov

(K-S) test and Term Frequency-Inverse Document Frequency (TF-IDF), respectively.

Pham et al. [129] use slightly more features, including the Mann-Whitney test for
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numerical data and Jaccard similarity for textual data, to train logistic regression and

random forest models. We extend these feature-based approaches with a significantly

larger set of features that includes character-level distributions, word embeddings,

and paragraph vectors. Orders of magnitude more features and training samples

motivates our use of high-capacity machine learning models such as neural networks.

While code for benchmarking these models was not available, we include a decision

tree model to represent "simpler" machine learning models.

Probabilistic The third category of prior work employs a probabilistic approach.

Goel et al. [51] use conditional random fields to predict the semantic type of each

value within a column, then combine these predictions into a prediction for the whole

column. Limaye et al. [94] use probabilistic graphical models to annotate values with

entities, columns with types, and column pairs with relationships. These predictions

simultaneously maximize a potential function using a message passing algorithm.

Probabilistic approaches are complementary to our machine learning-based approach

by providing a means for combining column-specific predictions. However, as with

prior feature-based models, code for retraining these models was not made available

for benchmarking.

Synthesized Puranik [136] proposes a "specialist approach" combining the predic-

tions of regular expressions, dictionaries, and machine learning models. More recently,

Yan and He [204] developed a system that, given a search keyword and set of posi-

tive examples, synthesizes type detection logic from open source GitHub repositories.

This system provides a novel approach to leveraging domain-specific heuristics for

parsing, validating, and transforming semantic data types. While both approaches

are exciting, the code underlying these systems was not available for benchmarking.
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6.2 Data

We describe the semantic types we consider, how we extracted data columns from a

large repository of real-world datasets, and our feature extraction procedure.

6.2.1 Data Collection

Ontologies such as WordNet [182] and DBpedia [7] describe semantic concepts, prop-

erties of such concepts, and relationships between them. To constrain the number of

types we consider, we adopt the types described by the T2Dv2 Gold Standard, 1 the

result of a study matching DBpedia properties [147] with columns from the Web

Tables web crawl corpus [19]. These 275 DBpedia properties, such as country,

language, and industry, represent semantic types commonly found in datasets scat-

tered throughout the web.

To expedite the collection of real-world data from diverse sources, we use the VizNet

repository [65], which aggregates and characterizes data from two popular online

visualization platforms and open data portals, in addition to the Web Tables corpus.

For feasibility, we restricted ourselves to the first 10M Web Tables datasets, but

considered the remainder of the repository. We then match data columns from VizNet

that have headers corresponding to our 275 types. To accomodate variation in casing

and formatting, single word types matched case-altered modifications (e.g., name =

Name = NAME) and multi-word types included concatenations of constituent words

(e.g., release date = releaseDate).

The matching process resulted in 6,146,940 columns matching the 275 considered

types. Manual verification indicated that the majority of columns were plausibly

described by the corresponding semantic type, as shown in Table 6.1. In other words,

matching column headers as ground truth labels of the semantic type yielded high
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quality training data.

6.2.2 Feature Extraction

To create fixed-length representations of variable-length columns, aid interpretation

of results, and provide "hints" to our neural network, we extract features from each

column. To capture different properties of columns, we extract four categories of

features: global statistics (27), aggregated character distributions (960), pretrained

word embeddings (200), and self-trained paragraph vectors (400).

Global statistics The first category of features describes high-level statistical char-

acteristics of columns. For example, the "column entropy" feature describes how uni-

formly values are distributed. Such a feature helps differentiate between types that

contain more repeated values, such as gender, from types that contain many unique

values, such as name. Other types, like weight and sales, may consist of many

numerical characters, which is captured by the "mean of the number of numerical

characters in values." A complete list of these 27 features can be found in Table 6.2.

Character-level distributions Preliminary analysis indicated that simple statis-

tical features such as the "fraction of values with numerical characters" provide sur-

prising predictive power. Motivated by these results and the prevalence of character-

based matching approaches such as regular expressions, we extract features describing

the distribution of characters in a column. Specifically, we compute the count of all 96

ASCII-printable characters (i.e., digits, letters, and punctuation characters, but not

whitespace) within each value of a column. We then aggregate these counts with 10

statistical functions (i.e., any, all, mean, variance, min, max, median, sum, kurtosis,

skewness), resulting in 960 features. Example features include "whether all values
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Feature description
Number of values.
Column entropy.
Fraction of values with unique content.*
Fraction of values with numerical characters.*

Fraction of values with alphabetical characters.
Mean and std. of the number of numerical characters in values.*
Mean and std. of the number of alphabetical characters in values.*
Mean and std. of the number special characters in values.*

Mean and std. of the number of words in values.*
{Percentage, count, only/has-Boolean} of the None values.
{Stats, sum, min, max, median, mode, kurtosis, skewness,
any/all-Boolean} of length of values.

Table 6.2: Description of the 27 global statistical features. Asterisks (*)denote
features included in Venetis et al. [186].

contain a '-' character" and the "mean number of '/' characters."

Word embeddings For certain semantic types, columns frequently contain com-

monly occurring words. For example, the city type contains values such as New

York City, Paris, and London. To characterize the semantic content of these values,

we used word embeddings that map words to high-dimensional fixed-length numeric

vectors. In particular, we used a pre-trained GloVe dictionary [127] containing 50-

dimensional representations of 400K English words aggregated from 6B tokens, used

for tasks such as text similarity [76]. For each value in a column, if the value is a

single word, we look up the word embedding from the GloVe dictionary. We omit the

a term if it did not appear in the GloVe dictionary. For values containing multiple

words, we looked up each distinct word and represented the value with the mean of

the distinct word vectors. Then, we computed the mean, mode, median and variance

of word vectors across all values in a column.
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Paragraph vectors To represent entire columns with numerical vectors, we imple-

mented the Distributed Bag of Words version of Paragraph Vectors (DBoW-PV) [90].

Paragraph vectors were originally developed to learn representations for pieces of

texts, but have proven effective for more general tasks, such as document similar-

ity [33]. In our implementation, each column is a "paragraph" while values within a

column are "words": both the entire column and constituent values are represented

by one-hot encoded vectors. We then randomly select a value vector, concatenate the

remaining column and value vectors, and train a model to predict the former from the

latter. Using the Gensim library [145] and a holdout set, we trained this model for 20

iterations. We used this model to map columns to 400-dimensional paragraph vectors,

which provided a balance between predictive power and computational tractability.

6.2.3 Filtering and Preprocessing

Certain types occur more frequently in the VizNet corpus than others. For example,

description and city are more common than collection and continent. To

address this heterogeneity, we limited the number of columns to at most 15K per

class and excluded the 10% types containing less than 1K columns.

Other semantic types, especially those describing numerical concepts, are unlikely

to be represented by word embeddings. To contend with this issue, we filtered out

the types for which at least 15% of the columns did not contain a single word that

is present in the GloVe dictionary. This filter resulted in a final total of 686,765

columns corresponding to 78 semantic types, of which a list is included in Ta-

ble 6.3. The distribution of number of columns per semantic type is shown in Fig-

ure 6-3.

Before modeling, we preprocess our features by creating an additional binary feature

indicating whether word embeddings were successfully extracted for a given column.
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Semantic Types
Address
Affiliate
Affiliation
Age
Album
Area
Artist
Birth date
Birth place
Brand
Capacity
Category
City
Class
Classification
Club

Code
Collection
Command
Company
Component
Continent
Country
County
Creator
Credit
Currency
Day
Depth
Description
Director
Duration

Education
Elevation
Family
File size
Format
Gender
Genre
Grades
Industry
ISBN
Jockey
Language
Location
Manufacturer
Name
Nationality

Notes
Operator
Order
Organisation
Origin
Owner
Person
Plays
Position
Product
Publisher
Range
Rank
Ranking
Region
Religion

Requirement
Result
Sales
Service
Sex
Species
State
Status
Symbol
Team
Teamname
Type
Weight
Year

Table 6.3: 78 semantic types included in this study.

Including this feature results in a total of 1,588 features. Then, we impute missing

values across all features with the mean of the respective feature.

6.3 Methods

We describe our deep learning model, decision tree baseline, two matching-based

benchmarks, and crowdsourced consensus benchmark. Then, we explain our training

and evaluation procedures.

6.3.1 Sherlock: A Multi-input Neural Network

Prior machine learning approaches to semantic type detection [94,186] trained simple

models, such as logistic regression, on relatively small feature sets. We consider a

significantly larger number of features and samples, which motivates our use of a

feedforward neural network. Specifically, given the different number of features and
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varying noise levels within each feature category, we use a multi-input architecture

with hyperparameters shown in Figure 6-4.

At a high-level, we train subnetworks for each feature category except the statistical

features, which consist of only 27 features. These subnetworks "compress" input

features to an output of fixed dimension. We chose this dimension to be equal to

the number of types in order to evaluate each subnetwork independently. Then, we

concatenate the weights of the three output layers with the statistical features to form

the input layer of the primary network.

Each network consists of two hidden layers with rectified linear unit (ReLU) activation

functions. Iteration over hidden layer sizes between 100 and 1, 000 (i.e., on the order

of the input layer dimension) resulted in hidden layer sizes of 300, 200, and 400 for the

character-level, word embedding, and paragraph vector subnetworks, respectively. To

prevent overfitting, we included drop out layers and weight decay terms. The neural

network, which we refer to as "Sherlock," is implemented in TensorFlow [1].
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Output Output
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ReLU (x units)

Softmax

Output (78 units)
Pr

Feature-specific
Subnetwork

Paragraph

Output Statistical

Concatenate

Batch Norm
(size=128)

ReLU (500 units)

Dropout
(rate=0.3)
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Figure 6-4: Architecture
and hyperparameters
of feature-specific sub-
networks and primary
network.

6.3.2 Benchmarks

To measure the relative performance of Sherlock, we compare against four bench-

marks.

Decision tree The first benchmark is a decision tree, a non-parametric machine

learning model with reasonable "out-of-the-box" performance and straightforward in-

terpretation. We use the decision tree to represent the simpler models found in prior

research, such as the logistic regression and random forest models used in Pham et

al. [129]. Learning curves indicated that decision tree performance plateaued be-

yond a depth of 50, which we then used as the maximum depth. For the remaining

parameters, we used the default settings in the scikit-learn package [125].

135

Metric Learning Rate Epochs
Accuracy 1e-4 100

Loss Function Weight Decay Rate Early Stopping Patience
Cross-Entropy 1e-4 5

Optimizer
Adam Hyperparameters



Dictionary Dictionaries are commonly used to detect semantic types that contain

a finite set of valid values, such as country, day, and language. The first matching-

based benchmark is a dictionary that maps column values or headers to semantic

types. For each type, we collected the 1, 000 most frequently occurring values across

all columns, resulting in 78,000 { value : type } pairs. For example, Figure 6-5

shows examples of entries mapped to the grades type. Given an unseen data column

at test time, we compare 1, 000 randomly selected column values to each entry of the

dictionary, then classify the column as the most frequently matched type.

Dictionary Entries (20 out of 1000)
9-12 KG - 05 06-08 KG - 12 KG -08 Figure 6-5: Examples of
K-5 PRESCHOOL-5 PK - K-B - 12
PK - 05 6-8 PRESCHOOL-8 06-12 PK- 12 dictionary entries and a
09-12 KG-06 PK-8 K-A PK - 08 learned regular expression

Learned Regular Expression for the grades type.
\w\w \-(?: \w\w)*+1[06PK][A-Za-z]*+\-\wl\w\w\w\w\w\w \w\w \w\w\w \w\w

Learned regular expressions Regular expressions are frequently used to detect

semantic types with common character patterns, such as address, birth date, and

year. The second matching-based benchmark uses patterns of characters specified

by learned regular expressions. We learn regular expressions for each type using the

evolutionary procedure of Bartoli et al. [8]. Consistent with the original setup, we

randomly sampled 50 "positive values" from each type, and 50 "negative" values

from other types. An example of a learned regular expression in Java format for the

grades type is shown in Figure 6-5. As with the dictionary benchmark, we match

1, 000 randomly selected values against learned regular expressions, then use majority

vote to determine the final predicted type.

Crowdsourced annotations To assess the performance of human annotators at

predicting semantic type, we conducted a crowdsourced experiment. The experiment

began by defining the concepts of data and semantic type, then screened out partic-
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ipants unable to select a specified semantic type. After the prescreen, participants

completed three sets of ten questions separated by two attention checks. Each ques-

tion presented a list of data values, asked "Which one of the following types best

describes these data values?", and required participants to select a single type from a

scrolling menu with 78 types. Questions were populated from a pool of 780 samples

containing 10 randomly selected values from all 78 types.

We used the Mechanical Turk crowdsourcing platform [79] to recruit 390 participants

that were native English speakers and had >95% HIT approval rating, ensuring high-

quality annotations. Participants completed the experiment in 16 minutes and 22

seconds on average and were compensated 2 USD, a rate slightly exceeding the United

States federal minimum wage of 7.25 USD.

Of the 390 participants, 57.18% were male and 0.43% female. 1.5% completed some

high school without attaining a diploma, while others had associates (10.5%), bache-

lor's (61.0%), master's (13.1%), or doctorate or professional degree (1.8%) in addition

to a high school diploma (12.3%). 26.4% of participants worked with data daily, 33.1%

weekly, 17.2% monthly, and 11.0% annually, while 12.3% never work with data. In

terms of age: 10.0% of participants were between 18-23, 24-34 (60.3%), 35-40 (13.3%),

41-54 (12.6%), and above 55 (3.8%).

Overall, 390 participants annotated 30 samples each, resulting in a total of 11, 700

annotations, or an average of 15 annotations per sample. For each sample, we used

the most frequent (i.e., the mode) type from the 15 annotations as the crowdsourced

consensus annotation.
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6.3.3 Training and Evaluation

To ensure consistent evaluation across benchmarks, we divided the data into 60/20/20

training/validation/testing splits. To account for class imbalances, we evaluate model

performance using the average F1 -score = 2 x (precision x recall)/(precision+ recall),

weighted by the number of columns per class in the test set (i.e., the support). To

estimate the mean and 95% percentile error of the crowdsourced consensus F1 score,

we conducted 105 bootstrap simulations by resampling annotations for each sample

with replacement.

Computational effort and space required at prediction time are also important metrics

for models incorporated into user-facing systems. We measure the average time in

seconds needed to extract features and generate a prediction for a single sample, and

report the space required by the models in megabytes.

6.4 Results

We report the performance of our multi-input neural network and compare against

benchmarks. Then, we examine types for which Sherlock demonstrated high and

low performance, the contribution'of each feature category in isolation, decision tree

feature importances, and the effect of rejection threshold on performance.

6.4.1 Benchmark Results

We compare Sherlock against decision tree, dictionary-based, learned regular ex-

pression, and crowdsourced consensus benchmarks. Table 6.4 presents the F1 score

weighted by support, runtime in seconds per sample, and size in megabytes of each

model.
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Method F1 Score Runtime (s) Size (Mb)
Machine Learning

Sherlock 0.89 0.42 (±0.01) 6.2
Decision tree 0.76 0.26 (±0.01) 59.1

Matching-based

Dictionary 0.16 0.01 (±0.03) 0.5
Regular expression 0.04 0.01 (±0.03) 0.01

Crowdsourced Annotations

Consensus 0.32 (±0.02) 33.74 (+0.86) -

Table 6.4: Support-weighted F 1 score, runtime at prediction, and size of Sherlock and
four benchmarks.

We first note that both machine learning models significantly outperform the matching-

based and crowdsourced consensus benchmarks, in terms of F1 score. Inspection of

the matching-based benchmarks suggests that dictionaries and learned regular ex-

pressions are prone to "overfitting" on the training set. Feedback from crowdsourced

workers suggests that annotating semantic types with a large number of types is a

challenging and ambiguous task.

Comparing the two machine learning models, Sherlock significantly outperforms the

decision tree baseline. However, the decision tree still demonstrates strong perfor-

mance relative to other benchmarks. For cases in which interpretability of features

and predictions are important considerations, decision trees may be a suitable choice

of model.

Despite poor predictive performance, matching-based benchmarks are significantly

smaller and faster than both machine learning models. For cases in which abso-

lute runtime and model size are critical, optimizing matching-based models may be

a worthwhile approach. This trade-off also suggests a hybrid approach of combin-

ing matching-based models for "easy" types with machine learning models for more

ambiguous types.
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6.4.2 Performance for Individual Types

Table 6.5 displays the top and bottom five types, as measured by the F1 score achieved

by Sherlock for that type. High performing types such as grades and industry

frequently contain a finite set of valid values, as shown in Figure 6-5 for grades.

Other types such as birth date and ISBN, often follow consistent character patterns,

as shown in Table 6.1.

Type F1 Score Precision Recall Support

Top 5 Types

Grades 0.991 0.989 0.994 1765
ISBN 0.986 0.981 0.992 1430
Birth Date 0.970 0.965 0.975 479
Industry 0.968 0.947 0.989 2958
Affiliation 0.961 0.966 0.956 1768

Bottom 5 Types

Brand 0.685 0.760 0.623 574
Person 0.630 0.654 0.608 579
Director 0.537 0.700 0.436 225
Sales 0.514 0.568 0.469 322
Ranking 0.468 0.612 0.349 439

Table 6.5: Top five and bottom five types by F1 score.

Examples True type Predicted type

Low Precision
81, 13,3, 1 Rank Sales
316, 481, 426, 1, 223 Plays Sales
$,$$,$$$,$$$$,$$$$$ Symbol Sales

Low Recall

#1, #2, #3, #4, #5, #6 Ranking Rank
3, 6, 21, 34, 29, 36, 54 Ranking Plays
1st, 2nd, 3rd, 4th, 5th Ranking Position

Table 6.7: Examples of low precision and low recall types.

To understand types for which Sherlock performs poorly, we include incorrectly pre-
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dicted examples for the lowest precision type (sales) and the lowest recall type

(ranking) in Table 6.7. From the three examples incorrectly predicted as sales,

we observe that purely numerical values or values appearing in multiple classes (e.g.,

currency symbols) present a challenge to type detection systems. From the three

examples of incorrectly predicted ranking columns, we again note the ambiguity of

numerical values.

6.4.3 Contribution by Feature Category

We trained feature-specific subnetworks in isolation and report the F1 scores in Ta-

ble 6.9. Word embedding, character distribution, and paragraph vector feature sets

demonstrate roughly equal performance to each other, and significantly above that

of the global statistics features, though this may be due to fewer features. Each fea-

ture set in isolation performs significantly worse than the full model, supporting our

combining of each feature set.

Feature set Num. Features F1 Score
Word embeddings 200 0.79
Character distributions 960 0.78
Paragraph vectors 400 0.73
Global statistics 27 0.25

Table 6.9: Performance contribution of isolated feature sets.

6.4.4 Feature Importances

We measure feature importance by the total reduction of the Gini impurity criterion

brought by that feature to the decision tree model. The top 10 most important

features from the global statistics and character-level distributions sets are shown in

Table 6.10. While word embedding and paragraph vector features are important,

they are difficult to interpret and are therefore omitted.
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(a) Top-10 global statistics features (out of 27).

Rank Feature Name Score

1 Number of Values 1.00
2 Maximum Value Length 0.79
3 Mean # Alphabetic Characters in Cells 0.43
4 Fraction of Cells with Numeric Characters 0.38
5 Column Entropy 0.35
6 Fraction of Cells with Alphabetical Characters 0.33
7 Number of None Values 0.33
8 Mean Length of Values 0.28
9 Proportion of Unique Values 0.22

10 Mean # of Numeric Characters in Cells 0.16

(b) Top-10 character-level distribution features (out of 960).

Rank Feature Name Score

1 Sum of 'D' across values 1.00
2 Mean number of 'M' 0.77
3 Minimum number of'-' 0.69
4 Skewness of ',' 0.59
5 Whether all values have a',' 0.47
6 Maximum number of 'g' 0.45
7 Skewness of ']' 0.45
8 Mean number of',' 0.40
9 Mean number of 'z' 0.37

10 Sum of 'n' 0.36

Table 6.10: Top-10 features for the decision tree model. "Score" denotes normalized
gini impurity.

Inspecting Table 6.11a, we find that the "number of values" in a column is the most

important feature. Certain classes like name and requirements tended to contain

fewer values, while others like year and family contained significantly more values.

The second most important feature is the "maximum value length" in characters,

which may differentiate classes with long values, such as address and description,

from classes with short values, such as gender and year.

The top character-level distribution features in Table 6.11b suggest the importance of
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specific characters for differentiating between types. The third most important fea-

ture, the "minimum number of'-' characters", likely helps determine datetime-related

types. The fifth most important feature, "whether all values have a',' character" may

also distinguish datetime-related or name-related types. Further study of feature im-

portances for semantic type detection is a promising direction for future research.

6.4.5 Rejection Curves

Given unseen data values, Sherlock assesses the probability of those values belonging

to each type, then predicts the type with the highest probability. Interpreting prob-

abilities as a measure of confidence, we may want to only label samples with high

confidence of belonging to a type. To understand the effect of confidence threshold

on predictive performance, we present the error-rejection curves of Sherlock and the

decision tree model in Figure 6-6.

1.0-
0
0.

C,

Figure 6-6: Rejection
curves showing perfor-

n0.8- mance while rejecting all
but the top x% highest

Model
0 0 Neural Network (Sherlock) COnfidencesamples.

IL 0 Decision Tree Baseline

0.6 I I I i i I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of Samples Rejected

By introducing a rejection threshold of 10% of the samples, Sherlock reaches an F1

score of -0.95. This significant increase in predictive performance suggests a hybrid

approach in which low confidence samples are manually annotated. Note that the

higher rejection threshold, the lower the error we make in predicting labels, at the

cost of needing more expert capacity.
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6.5 Discussion

We began by considering a set of semantic types described by prior work that identifies

the correspondences between DBPedia [7] and WebTables [19]. Then, we constructed

a dataset consisting of matches between those types with columns in the VizNet [65]

corpus. Inspection of these columns suggests that such an approach yields training

samples with few false positives. After extracting four categories of features describing

the values of each column, we formulate type detection as a multiclass classification

task. A multi-input neural network demonstrates high predictive performance at the

classification task compared with the decision tree, matching-based, and crowdsourced

benchmarks.

Developers have multiple avenues for incorporating ML-based semantic type detec-

tion approaches into systems. To support the use of Sherlock "out-of-the-box," we

distribute Sherlock as a Python library3 that can be easily installed and incorporated

into existing codebases. For developers interested in a different set of semantic types,

we open source our training and analysis scripts.2 The repository also supports devel-

opers wishing to retrain Sherlock using data from their specific data ecologies, such

as enterprise or research settings with domain-specific data.

6.6 Summary and Future Work

Correctly detecting semantic types is critical to many important data science tasks.

Machine learning models coupled with large-scale data repositories have demonstrated

success across domains, suggesting a promising approach to semantic type detection.

Sherlock provides a step forward in this direction.

We identify five promising avenues for future research: (1) enhancing the quantity

and quality of the training data, (2) increasing the number of considered types, (3)

enriching the set of features extracted from each column, (4) developing shared bench-
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marks, and (5) using real-world data repositories to develop systems components that

address other parts of the data science workflow.

Enhancing data quantity and quality. Machine learning model performance

is limited by the number of training examples. Sherlock is no exception. Though

the VizNet corpus aggregates datasets from four sources, there is an opportunity

to incorporate training examples from additional sources, such as Kaggle,4 datasets

included alongside the R statistical environment, 5 and the ClueWeb web crawl of

Excel spreadsheets.' We expect increases in the training data diversity to improve

the robustness and generalizability of Sherlock.

The quality of model predictions is further determined by the correspondence between

training data and unseen testing data, such as the datasets uploaded by analysts to a

system. Our method of matching semantic types with columns from real-world data

repositories affords both the harvesting of training samples at scale and the ability

to use aspects of "dirty" data (e.g., missing values) as features. While we verified the

quality of training data through manual inspection, there is an opportunity to label

data quality at scale by combining crowdsourcing with active learning. By assessing

the quality of each training dataset, this approach would support training semantic

type detection models with completely "clean" data at scale.

Increasing number of semantic types. To ground our approach in prior work,

this chapter considered 78 semantic types described by the T2Dv2 Gold Standard.

While 78 semantic types is a substantial increase over what is supported in existing

systems, it is a small subset of entities from existing knowledge bases: the DBPedia

ontology [7] covers 685 classes, WordNet [182] contains 175K synonym sets, and
4 https://www.kaggle .com/datasets
5 https://github.com/vincentarelbundock/Rdatasets
6http://lemurproject.org/cluewebO9.php
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Knowledge Graph7 contains millions of entities. The entities within these knowledge

bases, and the hierarchical relationships between entities, provide an abundance of

semantic types.

In lieu of a relevant ontology, researchers can count the frequency of column headers

in the available data to determine which semantic types to consider. This data-driven

approach would ensure the maximum number of training samples for each semantic

type. Additionally, these surfaced semantic types are potentially more specific to

usecase and data ecology (e.g., data scientists integrating enterprise databases within

a company).

Enriching feature extraction. We incorporate four categories of features that

describe different aspects of individual column values. A promising approach is to in-

clude features that describe relationships between columns (e.g., correlation, number

of overlapping values, and name similarity), aspects of the entire dataset (e.g., number

of columns), and source context (e.g., webpage title for scraped tables). Addition-

ally, although we used features to aid interpretation of results, neural networks using

raw data as input are a promising research direction. For example, a character-level

recurrent neural network could classify concatenated column values.

Developing shared benchmarks. Despite rich prior research in semantic type

detection, we could not find a benchmark with publicly available code that accom-

modates a larger set of semantic types. Therefore, we incorporated benchmarks that

approximated state-of-the-art data systems, to the best of our knowledge. However,

domains such as image classification and language translation have benefited from

shared benchmarks and test sets. Towards this end, we hope that open-sourcing the

data and code used in this chapter can benefit future research.
7https://developers. google.com/knowledge-graph
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Learning data science systems components. Semantic type detection is one

of many tasks critical to the data science workflow. Prior work has introduced au-

tomation into data preparation [73], database query optimization [108], statistical

modeling [101], and report generation [40] tasks. Learned systems components ad-

dressing these tasks may benefit from approaches such as Sherlock that are trained

and benchmarked using repositories of real-world data.
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Chapter 7

Conclusion

To contend with the increasing volume and availability of data, communities have

adopted data visualization as a means to explore and communicate information. Ex-

isting data-agnostic visualization systems, which better are suited for tasks such as

creating custom visualizations, frequently require programming experience and man-

ual specification. As a result, data visualization remains inaccessible to those without

technical experience. This thesis is motivated by the goal of bringing data visualiza-

tion capabilities to a non-technical audience. One promising approach is visualization

recommendation, which automatically generates visualizations for users to search and

select. This thesis contributes new systems, methods, and data repositories toward

advancing visualization recommendation.

7.1 Review of Contributions

We began by introducing bespoke visualization systems such as Pantheon [205] and

the Global Language Network [148]. Reflecting on the challenges of building such

systems, we motivated the creation of DIVE, a mixed-initiative data visualization and

analysis tool that affords both manual and recommendation-driven data exploration.

CHAPTER 3 describes the rule-based recommender system, design considerations,

experimental evaluation, and implementation of DIVE. Since its public release in

June 2018, DIVE has received thousands of users and has been deployed in both

public and commercial settings.

1. Design considerations (§3.2): describing the design considerations for mixed-

initative data exploration systems

2. Open-source system (§§3.3, 3.4): designing and implementing a publicly avail-
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able and open source system that has received over 15K users and was deployed

within commercial settings

3. Evaluation (§3.5): assessing DIVE for task completion accuracy and time among

a group of 67 professional data scientists, compared to an Excel baseline

The limitations of rule-based recommender systems led to VizML, a machine learning-

based approach to visualization recommendation using data from a popular online

platform. CHAPTER 4 formulates the visualization recommendation problem, de-

scribes our collection of a large corpus of datasetvisualization pairs from Plotly, ex-

traction of features from datasets and design choices of visualizations from correspond-

ing visualizations, model training and evaluation, model prediction performance, and

crowdsourced benchmarks.

1. Problem formulation (§4.1): learning design choices from a corpus of data-

visualization pairs

2. Data processing pipeline (§§4.2, 4.3): collecting and cleaning corpus, then

extracting features and design choices

3. Predicting design choices (§4.4): evaluating neural network performance at

predicting design choices

4. Feature importances (§4.4): reporting and interpreting the contribution of each

feature to the prediction tasks

5. Crowdsourced benchmark (§4.5): evaluating human and ML models at pre-

dicting the crowdsourced visualization type

The lack of high-quality training data in sufficient quantities motivated VizNet, a

large-scale visualization learning and benchmarking repository. CHAPTER 5 presents

our collection of four corpora from web-based visualization platforms, tables from the

web, and open data portals, characterizes the datasets within VizNet, replicates a
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prior study using datasets sampled from VizNet, and presents the training of a model

to predict the effectiveness of unseen (dataset, visualization, task) triplets.

1. Data (§5.1): collecting and characterizing four corpora from web-based visualiza-

tion platforms, tables from the web, and open data portals

2. Replication (§§5.2, 5.3): replicating a prior study using the datasets sampled

from VizNet

3. Learning Effectiveness (§5.3): training a model to predict the effectiveness of

unseen (dataset, visualization, task) triplets (§5.3)

Enabled by the availability of real-world data, Sherlock is a deep learning approach to

semantic type detection. CHAPTER 6 describes the 78 semantic types obtained from

the literature, matching column headers from the VizNet corpus to these semantic

types, extracting four categories of features that describe the values of each column,

training a multi-input neural network, and benchmarking against two matching-based

and one crowdsourced benchmark.

1. Data (§6.2): Demonstrating a scalable process for matching 686, 675 columns from

VizNet corpus for 78 semantic types, and then describing each with 1, 588 features

2. Model (§6.3): Formulating type detection as a multiclass classification problem

and then contributing a novel multi-input neural network architecture

3. Results (§6.4): Benchmarking predictive performance against a decision tree base-

line, two matching-based models, and crowdsourced consensus

7.2 Future Work

The contributions - and limitations - of this thesis can hopefully serve as useful start-

ing points for future researchers. Three lines of inquiry are particularly promising

because they sit at the intersection of impactful and addressable. The first direction
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is to establish design considerations for mixed-initiative interactions, which is relevant

especially to DIVE. The second is measuring and ensuring the statistical validity of

visual analysis. This is especially important if ML-based recommender systems gain

adoption. The third is assessing the similarities and differences between visualization

expert versus non-expert judgment, which is relevant to all parts of this thesis, espe-

cially VizML. Each section begins by discussing a relevant piece of recent work and

then outlines questions and potential approaches for future research.

7.2.1 Mixed-Initiative Interactions

Diverse tasks such as spam detection, content recommendation, and cancer screening

have benefited from the wholesale replacement of rule-based systems and human

judgment with learned systems. These cases of successful automation have heralded

efforts to automate the remaining tasks still performed by humans. However, many

tasks, especially those requiring domain knowledge, require a more careful balance

between human interaction and machine automation.

In the recent paper "Agency plus automation: Designing artificial intelligence into

interactive systems," Jeffrey Heer presents questions for future work along the agency-

automation balance. Noting that the present discourse is dominated by artificial intel-

ligence (AI), Heer began by reintroducing the idea of intelligence augmentation (IA)

into the design of interactive systems [56]. In particular, IA motivates mixed-initiative

systems that "integrate proactive computational support" to augment, instead of re-

placing, intellectual work. This integration is reified by three systems in the fields

of data cleaning, exploratory data analysis, and language translation, each of which

possess shared representations of possible actions. To close, Heer raised questions re-

garding the development and evaluation of mixed-initiative systems that mirror those

suggested by this thesis. We discuss three of these questions below.
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Learning from interaction. The design of current visualization recommendation

systems such as DIVE is primarily concerned with how to present recommendations

to users. But these recommendations do not improve with continual user interaction.

Indeed, they do not "close the loop" by learning from user interaction. Going forward,

developing optimal methods that account for user feedback and designing interfaces

that account for these methods will be crucial to the effectiveness of visualization

recommendation systems.

Distinguishing between Top-1 and Top-N recommendations gives us a means to under-

stand different forms of user interaction with recommendations. Authoring interfaces

such as Tableau [173] and Charticulator [146] provide a single-view of a visualization,

which can be thought of as Top-1 recommendation. Systems with Top-1 recommen-

dations automatically suggest a strong initial visualization and then continues to

make adaptive suggestions as users specify encodings. This interaction is analogous

to Google Auto Reply combined with multi-suggestion autocomplete.

Several tools ( [66,119,128,200]) provide a gallery of potential results, analogous to a

list of content recommendations on streaming platforms such as Youtube or Spotify.

In this general case of Top-N recommendation, a first approach to learning from inter-

action would let users give binary feedback explicitly by "starring" recommendations

or by using up/down voting. Extending this binary boolean feedback into continuous

numeric feedback, which is used by the data preparation tool Data Tamer [174], lets

annotators supply a confidence or score to a recommendation.

However, harvesting explicit feedback requires additional steps from the user. In

contrast, mining implicit feedback from user interactions could provide timely and

abundant training data that corresponds more closely to the user's desires. For ex-

ample, engaging with a recommendation by "drilling down" into details, an extended

mouse hover, or an eye gaze can be interpreted as a form of feedback.
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Optimizing Top-N rankings from feedback lends itself to the rule-based content rank-

ing algorithms used on social news aggregators, which originated with Digg and re-

cently used by sites like Hacker News and Reddit. This problem is also addresssed

by Learning-to-Rank methods [98], which, despite potential bias issues [70], remain

state-of-the-art at learning from high-dimensional interaction data.

Learned models require overcoming the cold start problem of providing meaningful

results with insufficient information about the user, domain, or data. Current systems

bootstrap recommendations using defaults. For example, Voyager and DIVE [66,200]

use summary visualizations. Going forward, we suspect that models such as VizML

(CHAPTER 4), used either as a pre-trained model or as a source for transfer learning,

can help address the cold start problem.

There remains the issue of gathering enough data to properly train a recommendation

model. User interaction, especially when viewed as a form of manual labeling, is sparse

and expensive. Active learning, as suggested in the VizNet paper (CHAPTER 5), is

a promising path to maximizing the information provided by each user annotation.

But by optimizing training signal for the model, active learning increases time cost

for the user. One approach is addressing both of the prior issues to separate the user

workflow into two stages, the first in which the model queries the user and the second

in which the user queries the model. Trade-offs between short-term annotation costs

and long-term benefits is an open area of research.

Interpretable models for recommendations. The development and deployment

of mixed-initiative systems raises questions about how to evaluate and interpret such

systems. Regarding visualization recommender systems, the top-level evaluation met-

ric is the value of the recommended visualizations. Researchers have proposed nu-

merous frameworks to evaluate visualizations, ranging from effectiveness and expres-

siveness criteria, to task-based approaches, to insight-based, to long-term studies.
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Researchers have proposed various methods for operationalizing these evaluation cri-

teria through online and offline experiments with human subjects.

As automated visualization techniques gain adoption, users may demand evaluation

according to desiderata such as fairness, robustness, and usability, which go beyond

expected task performance. Identifying and formalizing the desiderata of data-driven

visualization systems is an open area of research. Until then, as Doshi-Velez and

Kim noted in "Towards A Rigorous Science of Interpretable Machine Learning," in-

terpretability serves as a popular fallback for other desiderata [39].

Defined in the context of ML systems as the "ability to explain or to present in

understandable terms to a human," interpretability is often needed in scenarios in

which the human's goal is to gain knowledge or where the system faces multi-objective

trade-offs. Data visualization employed in the service of exploratory data analysis fits

the former criteria. Data visualization used for communication falls under the second

criteria.

The authors proposed a taxonomy of interpretability evaluation: progressing from

functionally-grounded evaluations with no humans and proxy tasks, to human-grounded

metrics with real humans and simplified tasks, and, finally, to application-grounded

evaluation with real humans and real tasks. Note that this progression from concrete

to abstract parallels the progression of visualization evaluation frameworks. Going

forward, interpretable ML research may provide useful concepts and language for rea-

soning about automated visualization, and visualization may serve as a well-defined

testbed for interpretable ML research.

Deskilling. A crucial evaluation criteria of AI-infused visualization systems is whether

they promote learning and skill acquisition, as opposed to deskilling users. This ques-

tion is increasingly pertinent across domains as systems, especially medical technolo-
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gies, begin incorporating Al and ML techniques. Data visualization is no exception.

Do automated visualization systems reduce the data literacy of users? To begin

investigating this question, it is necessary to first identify and distinguish between

the groups of users that are adopting such visualization systems. Data visualization

reaches users from a diverse set of backgrounds with a wide range of skills. Visualiza-

tion recommenders have been motivated, in particular, with the dual goal of lowering

the barriers-to-entry for non-technical users and reducing tedium for expert users.

By definition, non-technical users by do not possess the skills needed to use visual-

ization systems that require programming. Only a small number of them have the

time or resources to acquire programming skills in the future. Therefore, automated

visualization systems strictly increases the visualization capabilities of users. The

clearest analogy is the widespread adoption of machine language translation. As of

May 2017, Google Translate is being used by over 500 million people daily.1 Though

far from perfect, 2 the present state of machine translation is sufficient for many day-

to-day and business use cases where the users would probably not have learned a new

language. The risk of machine translation is not one of deskilling, but rather one of

drastically incorrect results. The analogous question for automated visualization is

one of safety: how can we design systems that promote valid statistical inference?

The effect of automated visualization on the skills of technical users is less clear.

Programming interfaces that require input in the form of textual languages to spec-

ify visualizations suffer from a wide "gulf of execution" [68]. The users of these

programming tools may benefit from a shared representation provided by a mixed-

initiative tool, as demonstrated by the success of interactive visual design tools such as

Lyra [152], Data Illustrator [100], and Charticulator [146]. Additionally, automating

ihttps: //www.nytimes. com/2016/12/14/magazine/the-great-ai-awakening html
2https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-

google-translate/551570
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tedious manual specification tasks may upskill users by freeing up the time needed for

higher-level reasoning tasks such as assessing perceptual effectiveness and statistical

validity. This optimistic view is balanced by a pessimistic counterfactual. Prior re-

search on humanrobot interaction [201] shows that humans grow to trust robots more

completely than humans, suggesting that users of automated visualization systems

may disengage and be uncritical of recommendations.

7.2.2 Statistical Validity of Visual Analysis

Analysts using visualization to explore and confirm hypotheses are at risk of arriv-

ing at spurious insights via the multiple comparisons problem (MCP) [207]. But if

visual analytics tools are fishing rods for spurious insights, then visualizations rec-

ommender systems are deep ocean bottom trawlers that implicitly conduct multiple

tests in parallel, rather than in series. The MCP is exacerbated by opaque ML-based

recommender systems, in which the number of implicit comparisons is difficult or

impossible to track.

VizRec, a "framework for secure data exploration" with visualization recommenda-

tion systems, recently was introduced to quantify the statistical significance of rec-

ommendations [171]. The authors demonstrate two methodologies for automatically

adjusting the significance of recommendations based on the recommendation search

space. The first classical statistical method derives bounds on the deviation from ex-

pectation of a single visualization using Chernoff bounds, with a given level of control

for false positive recommendations and for a given size of the data. These bounds are

then combined for multiple visualizations using the union bound.

The second method characterizes the Vapnik-Chervonenkis (VC) dimension of rec-

ommenders and then derives a maximum VC dimension guaranteed to meet a desired

family-wise error rate (FWER) control level with a given size of data. The authors
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also discuss the challenge of expanding beyond a single set of recommendations (also

called "one-shot predictions") to the case of iterative data exploration of multiple sets

of recommendations in series. In going so, they demonstrate that the VC dimension

approach is "agnostic to the adaptive nature of the testing as it accounts preemptively

for all possible evaluations of pairs of visualizations."

The latter method proposed by VizRec provides a powerful bound VC dimension of

recommender systems. By applying VizRec to SeeDB [107], the authors demonstrate

how some "top" visualizations are not marked as statistically significant. The method

can be applied to other data queries recommenders, such as Data Polygamy [27], but

also visual encoding recommenders, such as VizML, as long as there is a defined

scoring function and enumerable range space.

Issues arise when the scoring function or the range space is infinite, for example when

there is not a pre-defined discretization of continuous features and when the scoring

function is ill-defined. Safe use of visualization recommenders in either of these cases

depends on the use of a holdout test set. Though holdout sets can significantly reduce

the power of statistical tests and they can only be used once for a single test, there is

active research into "reusable holdouts" that permit multiple validation steps while

controlling for false discovery rates [42].

7.2.3 Experts versus Non-experts

Each of the four contributions in this thesis involve human evaluation: DIVE was

evaluated by a large group of professional consultants who were fluent in working with

data; VizML, VizNet, and Sherlock recruited crowdsourced workers from Amazon

Mechanical Turk. The benefits of utilizing crowdsourcing platforms are well-known.

Recruiting evaluators is efficient and cheap relative to recruiting expert evaluators,

letting researchers collect a significantly larger quantity of experimental data [58],
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which is important for both establishing statistically significant experimental results

and training generalizable machine learning models.

There are also many limitations when it comes to relying on crowdsourced evaluation.

A major limitation is potentially introducing low-quality data into the experiment.

However, this limitation can be addressed in part with proper targeting, pre-screens,

attention checks, and post-filtering. Certain experiments, such as those involving

visualization authoring with programming interfaces, cannot be conducted with non-

experts. The major unknown limitations include the experimental effect of exper-

tise. Visualization experts are assumed to have preferences and actions informed by

knowledge of perceptual studies, best practices, and tacit experience. Visualization

non-experts, in contrast, do not have such backgrounds.

The recent paper titled "A Heuristic Approach to Value-Driven Evaluation of Visu-

alizations" by Wall et al. creates a heuristic-based evaluation methodology to assess

the "value" of interactive visualizations [190]. This notion of value, as proposed by

John Stasko in 2014 [170] and referred to as ICE-T, consists of four components corre-

sponding to a visualization's ability to minimize the time needed to answer questions

about the data (T), spur and discover insights (I), convey an overall essence (E), and

generate confidence about the data (C).

There are many approaches to evaluating the utility of a visualization, such as task

performance benchmarks used in DIVE (CHAPTER 3) and VizNet (CHAPTER 5),

insight-based methodologies, and longitudinal evaluations. We focus on the ICE-T

framework because of their use of experts (15 participants holding Ph.D.s who conduct

research in visualization) to evaluate three visualizations according to well-defined

criteria (21 heuristics evaluated using a 7 point likert scale). Assessing inter-rater

reliability, Wall et al. found substantial and statistically significant agreement among

the raters (correlation coefficient r = 0.66 across all visualizations, with a significance

level of p < 0.05 for each.) These results show that experts are consistent amongst
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themselves for this specific task with these specific visualizations.

To assess the within-group agreement among non-experts and the between-group

agreement, we can conduct the same heuristic-based evaluation among crowdsourced

workers. We use the same three visualizations about U.S. colleges with pseudoran-

dom ordering of visualizations, such that all six possible visualization orderings were

sampled evenly. We recruited 146 workers from Amazon Mechanical Turk, each of

which have a > 95% HIT approval rating, are native English speakers, and are using a

desktop computer. Then, we filtered out 18 participants whose score variance across

all heuristics was less than a threshold of 0.25.

Crowdsourced Expert

7-

6-

0 sN - Figure 7-1: Mean visualiza-
4 tion value across three visu-

alizations for crowdsourced
workers and experts.

Visualization Visualization

We calculate the value of the three visualizations per participant by taking the simple

average of the four guideline scores, which are simple averages of the component

heuristic scores. The final value of a visualization is the average across all of the

participants. As shown in Figure 7-1, the mean of the crowdsourced scores (5.41) is

higher than that of the expert scores (4.65), but the relative rank of the visualizations

(B > A > C) is consistent between the two groups.

Further analyzing these visualizations, we show the correlation between crowdsourced

and expert heuristic scores in Figure 7-2. Heuristic scores are not correlated for

Visualization A (r = 0.17, p = 0.46) but are significantly correlated for Visualization

B (r = 0.55, p = 0.009) and Visualization C (r = 0.64, p = 0.001). In particular,
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for Visualization A, the two groups disagree strongly on heuristics 11 ("The interface

supports reorganizing the visualization by the data's attribute values) and 12 ("The

visualization supports smooth transitions between different levels of detail in viewing

the data"). Taken together, these results suggest that the judgment of crowdsourced

workers may align with expert judgment in aggregate, but that there remain large

departures between the two for heuristic-level judgments.

7.3 Closing Remarks

In a properly automated and educated world, then, machines may prove

to be the true humanizing influence. It may be that machines will do the

work that makes life possible and that human beings will do all the other

things that make life pleasant and worthwhile

Robot Visions

ISAAC AsIMov, 1990

The volume of data and demand for data-derived insights is exponentially across do-

mains. Data visualization is one means to explore and communicate such insights.

Automated visualization is a promising means for bringing visualization capabilities

to domain experts who do not necessarily have technical backgrounds. In particular,
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visualization recommendation endeavors to minimize the labor needed to create visu-

alizations while respecting user agency. By contributing systems, methods, and data

for visualization recommendation, this thesis hopes to make visualization a capability

available to all those with data, not only those with technical backgrounds.
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