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Abstract

While the gap between robot and human performance is rapidly closing, humans
still vastly outperform robots at dynamic interaction tasks, particularly those which
involve manipulation into kinematic singularities, and those which might involve col-
laborative or closed kinematic chain manipulation with multiple actuators. In this
work, compositional impedance control, or linearly superimposing impedance con-
trollers on a robot, is presented as a step towards closing this performance gap.

First, an overview of compositional impedance control is provided, along with
a discussion of the control framework's applications to redundancy resolution, con-
trolling closed kinematic chains, managing collaborative manipulation, and tackling
high-DOF manipulation tasks. This control scheme was implemented on a Baxter
Research Robot, and a series of system identification experiments were conducted to
determine how well the robot was able to render the desired impedance parameters,
and how well those parameters linearly superimposed between two arms collabora-
tively manipulating an object. Commanded static stiffness was found to be delivered
by each individual arm to within a 2% error, while the linear superposition was ver-
ified to within 3% error. Commanded endpoint damping was found to be delivered
by the robot with a 17% and 57% error by the left arm and right arm respectively.
Linear superposition for damping was verified to within 7% error.

Using this compositional impedance control framework, sample manipulation tasks
such as closed-chain manipulation into singularity, and high-speed closed-chain cloth
manipulation (in the form of robotic shoeshining) were implemented. Finally, nullspace
projection methods for redundant manipulators are discussed, and an impedance
based implementation of the nullspace projection method is presented.

Thesis Supervisor: Neville Hogan
Title: Sun Jae Professor of Mechanical Engineering
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Chapter 1

Introduction

Robot performance has seen tremendous improvements over the past several decades.

Nevertheless, humans still vastly outperform robots in tasks that involve complex

dynamic interactions with the environment [Hogan, 2017, Krotkov et al., 2018]. For

instance, a woodcarver might take a delicate workpiece with complex geometric fea-

tures and proceed to scrub or sand its intricate contours. A painter might extend her

arm to the edge of her dexterous workspace to carefully apply spackle to a difficult

to reach location. A shoeshiner might stretch out a cloth between his hands and use

it to rapidly buff a leather shoe.

In general, humans seamlessly transition from free to constrained motions, and

can readily perform dynamic interaction tasks into and out of kinematic singularities.

They easily manipulate a variety of compliant and non-compliant objects with two

hands, or even coordinate large object manipulation with several other people. All

of these tasks, while performed by humans with relative ease, can be challenging to

program on a robot.
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1.1 Equivalent Networks and the Human Motion Con-

troller

One source of inspiration for properly managing a robot's dynamic interactions with

its environment is our current understanding of the human motion controller. The

actual human neuromuscular physiology and control scheme is, of course, exceedingly

complex, and our ability to study its internal details are currently quite limited [Kan-

del et al., 2013]. One approach to gaining insight on the net interactive behavior of

this "black box" is to borrow the idea of an equivalent network from circuit theory

[Hogan, 2014, Hogan, 20171.

Given a complex circuit with an arbitrary number of interconnected sources and

dynamic elements (such as resistors, inductors, capacitors, voltage sources, and cur-

rent sources), we can exactly model the output port behavior of the circuit with a

far simpler Norton or Th6vinin equivalent circuit, as depicted in Figure 1-1 [Horowitz

and Hill, 2015]. In the case of a Norton equivalent, the complex circuit is replaced by

a controlled current source and parallel impedance, while in the case of a Th6venin

equivalent, the complex circuit is replaced by a controlled voltage source and series

impedance.

In the electrical domain, the impedance of an element is defined as the functional

relationship between the input current through the element (flow variable), and the

output voltage across the element (effort variable):

V = Z{I} (1.1)

For instance, the constitutive equation of a resistor could be written as V = RI,

that of a capacitor as V J f Idt, and that of an inductor as V = L . In the specialCf dt

case of a linear element, the impedance relationship can be expressed as a transfer

function in the Laplace domain:

Z(s) = V(s) (1.2)
I(s)

16



(a) (b

Ino

(c)

Sf : Ino 1- 7 0 -- Y : Load

ZnO

Z : ZnO

(d)

Figure 1-1: (a) A complex circuit with many interconnected dynamic elements and
sources. (b) A Th6vinin equivalent circuit with a voltage (effort) source and series
impedance. (c) A Norton equivalent circuit with a current (flow) source and par-

allel impedance. (d) A bond graph representation of the Norton equivalent circuit,
connected to a load modeled as an admittance.
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where s is the Laplace variable.

There exists a one-to-one mathematical analogy between the modeling of elec-

trical system dynamics and mechanical system dynamics [Brown, 2001, Hogan and

Breedveld, 2002]. The effort variable (voltage) becomes force, and the flow variable

(current) becomes velocity. Similarly, resistance is analogous to viscous damping,

capacitance is analogous to stiffness, and inductance is analogous to inertia, with all

constitutive equations taking on an identical form. In the mechanical domain the

impedance can be written as:

f = Z{i} (1.3)

However, the usual convention for mechanical systems is to write the impedance

operator in terms of x rather than +. The encoded information is the same, but

more potentially problematic differentiations may be required in the operator [Brown,

2001]:

f = Z{x} (1.4)

Finally, for a linear mechanical system, we can write:

Z(s) = Fs (1.5)

We can thus extend the ideas of Norton and Thevinin equivalent networks to

the mechanical domain, which includes the human musculoskeletal system [Hogan,
2014, Hogan, 2017].

A block diagram of a Norton1 equivalent network for a human limb is shown in

Figure 1-2. In addition to being competent enough to describe the full interactive

dynamics of the limb, this model reflects key insights that we have gained about up-

per limb motion control. Many findings suggest that the human motion controller

specifies a nominal limb position (or trajectory) by setting the relative activation level

of opposing antagonist muscle pairs [Feldman, 1966, Bizzi et al., 1982, Bizzi et al.,

'See [Hogan, 20171 and [Hogan, 20141 for a full discussion of why the Norton network, and not
the Thevinin network, is the appropriate choice here. In brief, the Norton network is translation
invariant (independent of our chosen coordinate frame), and its equivalent source is unambiguously
identifiable.

18



CNS
Impedance Command , Equivalent Impedance, Z{ Ax} f

(Interactive Dynamics)Ineato
Interaction

CNS AX Port
Motion Command , Equivalent Xo + -

Motion Source E

Figure 1-2: A block diagram of a Norton equivalent network of the human motion
control system. Here, the central nervous system provides a virtual trajectory xO and
an effective hand impedance, Z{}. The difference between the virtual and actual
hand position, Ax, along with the effective hand impedance determines the contact
force that will be felt at the interaction port. Figure adapted from [Hogan, 2014].

1984]. For instance, the nominal elbow joint angle is moved and set by changing

the ratio of activation between the elbow flexors (brachialis, biceps brachii, and the

brachioradialis) relative to the elbow extensors (triceps brachii and anconeus) [Net-

ter, 2014]. This trajectory, denoted as xO in Figure 1-2, is known as the reference

trajectory, zero-force trajectory or virtual trajectory 2, as it is the (potentially non-

physically realizable) trajectory along which the hand would move in the absence of

external forces or constraints. As long as the impedance operator is invertable, the

virtual trajectory exists, regardless of whether the hand is performing free motion

tasks, or constrained motion (contact) tasks [Doeringer, 1999, Hermus, 2018].

Another important aspect of human motion control that the model captures is the

equivalent impedance at the hand, which is also set by commands from the central

nervous system. Hand stiffness is adjusted by the central nervous system by either co-

activating opposing antagonist muscle pairs [Humphrey and Reed, 1983, Hogan, 1984],

or by modulating reflex gains in spinal cord feedback loops [Nichols and Houk, 1976,

Hoffer and Andreassen, 1981]. While the intrinsic mass of the adult musculoskeletal

system is fixed, the effective inertia felt in each direction at the hand is heavily

dependent on the configuration of the arm [Hogan, 1990]. The combined impact

of all of these factors determines the effective arm impedance, Z{-}. This effective

impedance is what determines the interaction force felt when the arm is deflected from

2While these terms can denote different concepts in human motion control research, they are
used interchangeably here in the context of robot control.
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its virtual trajectory in a constrained motion task, or in response to a disturbance

[Hogan, 2017]. For humans to successfully perform complex tasks, controlling this

effective arm impedance is key [Burdet et al., 2001, Franklin et al., 2007, Schabowsky

et al., 2007, Damm and McIntyre, 2008, Selen et al., 20091.

1.2 Impedance Control in Robots

1.2.1 Overview

Traditionally, many robot control frameworks involve tightly controlling a single set

of manipulator variables [Spong and Vidyasagar, 1989]. These variables might be

joint positions in the case of position control, endpoint forces in the case of force

control, or a combination of endpoint positions and forces in orthogonal directions

in the case of hybrid position/force control [Craig and Raibert, 1979, Raibert and

Craig, 1981, Mason, 1981, Ortenzi et al., 2017]. These methods work perfectly well

for many robot applications. Position control, for instance, is widely used for free

space tasks such as pick-and-place or spray painting operations [Gasparetto et al.,

20121, while force control is often used for interaction tasks, such as robotic deburring

in structured industrial environments [Stepien et al., 1987].

These traditional control algorithms are, however, not very versatile. For instance,

force control is only usable in situations when the manipulator is guaranteed to be

in contact with the environment, otherwise the manipulator will rapidly accelerate

to the edge of its workspace. Even in situations where contact is guaranteed, the

force control algorithm might still suffer from stability issues [Whitney, 1977, Colgate

and Hogan, 1989a]. Position control, by contrast, is only usable in free space, since

contact may cause damage to either the robot, or objects in the environment. It

is possible to switch between position control and force control via a finite state

machine when contact is detected, but this requires very accurate robot perception

algorithms, and robust methods to deal with event detection uncertainties [Salehian

et al., 2018, Atkeson et al., 2018].

20



X

Fact Fext

Figure 1-3: 1-DOF manipulator with mass m, actuation force Fact, and external force
Fex. All displacements and forces pointing to the right will be considered positive.

An alternative approach to robot control that is suitable for both free-space and

contact tasks might look like our equivalent ietwork model of the human motion

control system in Figure 1-2. In this paradigm, we forego rigidly controlling a single

set of manpulator variables such as endpoint forces or positions. Instead, we shape

the relationship between input flow variables (e.g. manipulator endpoint position

or velocity relative to a reference trajectory) and output effort variables (e.g. net

endpoint forces and torques) at an interaction point with the environment. By doing

this, we are essentially shaping the effective impedance of the robot endpoint. This

control technique was introduced by Hogan, and is called known as impedance control

[Hogan, 1985a, Hogan, 1985b, Hogan, 1985c].

1.2.2 Controller Derivation

1-DOF Case

To elucidate the idea of impedance control, we can consider the case of a 1-DOF

actuated manipulator, with mass m, actuation force Fact, and an external force Fet,

which represents either a directly applied disturbance force, or the interaction force

that arises over the course of a contact or manipulation task. Such a manipulator is

shown in Figure 1-3.

One simple impedance control implementation is to give a manipulator the appar-

ent behavior of a mass-spring damper system (second order dynamics). The behavior

21



X0
X

k

0 Fext

b

Figure 1-4: A 1-DOF manipulator under an example simple second order impedance
controller. All displacements and forces pointing to the right will be considered
positive.

of this controller is visualized in in Figure 1-4. To implement this, we can use the

control law:

Fact k(x 0 - x) + b(i0 - (1.6)

where x 0 is a reference (virtual) trajectory, k is the spring stiffness, and b is the

viscous damping. This controller gives us the desired behavior in Figure 1-4. The

disturbance response of the manipulator under this control law is:

Z Fet - os2 + bs + k (1.7)
X

where s is the Laplace variable. This is the effective endpoint impedance that char-

acterizes the interactive behavior of the robot. The forward path dynamics of this

controller are as follows:
X bs+k
X0  mos2 +bs+k

The forward path dynamics of this controller has a dynamic zero ats= - which

comes as a consequence of defining the damping relative to the reference trajectory,

xo. One important ramification of defining the damper this way is that in order

for our control law (Eqn. 1.6) to be implemented, x0 must be differentiable. If we

wish to maintain the system's desired interactive impedance (Eqn. 1.7), while also

allowing us to use non-differentiable reference trajectories, we can define the damper

relative to mechanical ground, as in Figure 1-5. This is particularly useful for system

22
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X0

X

k
Fext

b

Figure 1-5: A 1-DOF manipulator under a simple second order impedance controller
with damping defined relative to a fixed ground point. All displacements and forces

pointing to the right will be considered positive.

identification purposes, where a non-continuous and non-differentiable step function

in x0 can be used. This controller is implemented as:

F,1 k(1o - )b(J) (1.9)

This controller has the forward path transfer function:

X_ kX - k(1.10)
Xo mos2 +bs + k

All of the above control laws do not attempt to modify the effective manipulator

mass, mo. If we wish to do so, we can write a more advanced controller to replace

our given mo with a desired Md [Hogan, 1985b, Hogan, 1987]. Assuming we have a

measurement of the external interaction force Fet, we can implement the control law:

Fact = mo [k(xo - x) + b(o - )] + [MO- 1]Fext (1.11)
md md

which gives us the behavior shown in Figure 1-4, but with an arbitrary mass Md.

Replacing io with zero will yield behavior analogous to that of Figure 1-5. One

caveat to this approach is that incorporating force feedback into the control loop

for apparent mass modification might be a source of instability, depending on the

dynamics between the robot, sensors, and manipulated objects [Colgate and Hogan,

23



04 [aY,0

03

Figure 1-6: A 4-DOF manipulator operating in 3-DOF planar space. The joint-

space configuration variables are q = [01 02 03 04]T, while the endpoint spatial

coordinates are x = [X y #] , where x and y represent Cartesian position, and#

represents endpoint orientation.

1989a, Colgate and Hogan, 1989b, Newman, 1992].

Multi-DOF Case

We can extend the above analysis to a multi-DOF robot. Consider an n-DOF robot

operating in m-DOF space. The configuration of this robot is given by a vector of

generalized joint angles/positions q E Rn, and the spatial coordinates of the robot

endpoint are given by a vector x E R'. These coordinates are referred to as either

endpoint coordinates, or operational space coordinates. For robots operating in the

real world, m = 6. If a robot has more degrees of freedom in its joint-space relative

to its endpoint-space (n > m), the robot is known as a redundant manipulator. An

example of a 4-DOF planar robot operating in 3-DOF planar space is given in Figure

1-6.

For a robot, the forward kinematics represents the unique mapping from joint

space coordinates q to endpoint coordinates x [Spong and Vidyasagar, 1989]:

x = L(q) (1.12)

This relationship is not, in general, uniquely invertible [Pieper, 1968]. The velocity

kinematics of a robot is the mapping of joint space velocities q to endpoint velocities
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+ [Spong and Vidyasagar, 1989]:

x==J4 (1.13)

where J =x n ER Xis the robot Jacobian matrix. The entries of this matrix areaq

usually nonlinear functions of q.

From the principle of virtual work, we obtain the mapping between joint torques

and endpoint forces3 as follows [Spong and Vidyasagar, 19891:

_r = JT f (114

where r E R" is the vector of generalized joint torques/forces, and f c R" is the

vector of generalized endpoint forces/torques.

The natural dynamics of a robot (neglecting friction and other possible non-

conservative forces) are given in joint-space by the manipulator equation [Spong and

Vidyasagar, 1989]:

Mgq +C4+ g = ract + JTfext (1.15)

Here, Mg E R nX" is the robot joint-space inertia matrix, whose entries are usually

nonlinear functions of q. C E Rn"" is the Coriolis matrix, whose entries are usually

nonlinear functions of q and 4. g E R' is the vector of gravitational torques, whose

entries are usually nonlinear functions of q. Tact E Rn is the vector of joint actuator

torques, and fext c R' is the vector of external/interaction forces applied on the

robot by the environment.

In our example system in Figure 1-6, we wish to implement a simple second

order impedance controller such that the system will behave as a mass-spring-damper

system (as in Figure 1-4), but along each of the coordinates in x. This desired

behavior is illustrated in Figure 1-7. In essence, we wish to replace the natural

3As is standard in the robotics literature, the term "joint torques" is a generalized term used
to refer to both forces and torques in the joint space (torques about revolute joints, and forces on
prismatic joints). Similarly, the term "endpoint forces" also refers to forces in linear coordinates,
and torques along rotational coordinates. The 6 x 1 vector of generalized endpoint forces in robots
operating in the real world is sometimes referred to as the "endpoint wrench"
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Figure 1-7: The desired behavior of a planar manipulator under impedance control.
The system behaves like a mass-spring-damper system along each coordinate in x.

dynamics of the robot (Eqn. 1.15) with:

Mxz + Ki(X -xo) + BX(i -O) = fext (1.16)

Here, Mx,d E R"X"' is the desired endpoint-space inertia matrix, K 1 E R"X"' is

the desired endpoint-space stiffness matrix, and Bx E R"'X is the desired endpoint

viscous damping matrix. Usually, we would like the mass-spring-damper systems

along each coordinate in x to be decoupled from one another. In this case, the

matrices Mx1 , K, and Bx would all be diagonal, and the entries would represent

the inertia, stiffness value, and damping value along each direction in x. There are

times, however, where off-diagonal couplings between endpoint coordinates may be

desirable [Hogan, 1985b].

[Hogan, 1987] provides a control law to replace the dynamics in Eqn. 1.15 with

those of Eqn. 1.16. First, using the force-torque mapping in Eqn. 1.14, we can

transform the actuator torques from joint space torques into endpoint forces. Eqn.

1.15 becomes:

Mq + C4 + g = JT(fact + fext) (1.17)

Since Mi is a mass matrix, it is guaranteed to be positive definite and therefore

invertible. Thus, we can solve for 4:

4 = M ( [JT( fact - fext) - C4 - g] (1.18)
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Recalling our velocity kinematics:

x=J4 (1.19)

If we differentiate this relationship with respect to time, we have:

x= Jid + j (1.20)

Substituting Eqn. 1.20 into Eqn. 1.18 and rearranging yields:

x = JM-1JT(fact+fext)- JM--[C4+g]+jq (1.21)

Here, we can touch upon the relationship between the joint-space inertia matrix of a

manipulatorMq, and the endpoint-space inertia matrix of a manipulator Mx [Hogan,

1987, Khatib, 1987, Khatib, 19951:

M;1 = JMq-1 JT (1.22)

Substituting into Eqn. 1.21:

X = M1(fact + fext) - JMq-1 [C4 + g] + j4 (1.23)

Now, we solve for fact:

fact = Mx (2 + JMq-I [C4+ g - i4] - fext (1.24)

This equation gives us the actuator forces that must be applied to the robot in order

realize any desired trajectory, z, with all modeled robot dynamics compensated for.

If we recall, our desired manipulator behavior under impedance control was given by

Eqn. 1.16. Writing this in terms of a desired x:

d = M-" [fext + Kx(xo - x) + Bx(xo- i)] (1.25)
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We now substitute zd from Eqn. 1.25 into z from Eqn. 1.24:

fact = MxM-[Kx(xo - x) + Bx(.0-

+ M [JM 1 [C4 + g] - j4] (1.26)

+[MxM- - I] fext

where I is the identity matrix. We can multiply this equation by jT to transform

fact back to actuator joint-space torques to yield the control law:

Tact = JTMxM-' [Kx(xo - x) + Bx(0 - ]

+ JTM[JM j-'[C4 + g) - j4] (1.27)

+JT [MXM- 1 - I]fest

This is the multi-DOF equivalent of Eqn. 1.11, with the same stability caveats of

incorporating force feedback into the control loop [Colgate and Hogan, 1989a, Colgate

and Hogan, 1989b, Newman, 1992].

We can apply several simplifications to this controller. First, if gravity compen-

sation is included in a lower level of the robot control stack, we can neglect the

gravitational torque vector (g = 0). Next, if the manipulator is moving slowly, we

can neglect the Coriolis term (C4 = 0) and the Jacobian derivative term (j4 = 0).

This eliminates the entire second line of Eqn. 1.27. The forces arising from these

terms will now be treated as external disturbances to the controlled system.

If the user does not wish to modify the robot's endpoint inertia matrix, we can

setM ,d M. This sets the term MxM-j = I, which simplifies the first line, and

eliminates the third line of the equation, along with the need to incorporate force

feedback into the loop. This will be the approach taken for the remainder of this

work.

Our simplified controller thus becomes:

Tact = jT [Kx(xo - x)+ Bx(. 0- b )] (1.28)
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In a robot, we usually have accurate measurements of q and 4. Through the for-

ward kinematics and velocity kinematics, our knowledge of q and 4 gives us accurate

measurements of x and for incorporation into the controller:

Tact JT [Kx(xo - L(q))+ Bx(0 - J4)] (1.29)

This control law effectively "programs in" the impedance form of the constitutive

equations of an operational space spring-damper system at the endpoint of the robot.

The impedance control framework is, however, more general than this. We can im-

plement any operational space equivalent dynamic behavior at the endpoint of the

robot, as long as it can be described in the form of Eqn. 1.4 [Hogan, 1985c]. The

torque control law would look like:

ract = jT [Z{x, X 0 , ...}] (1.30)

where Z can depend on an arbitrary number of system states or fixed parameters.

We are of course, always free to add in inertial and Coriolis force compensation as

in Eqn 1.27. One example application of this might be obstacle avoidance in the

environment. We can define a three-dimensional nonlinear impedance field in the

environment, with a unilateral non-linear repulsive potential (e.g. non-linear one-way

spring force and state-dependent damping) being defined in the immediate vicinity

of perceived objects in the robot's work space [Hogan, 1985c, Khatib, 1986, Newman

and Hogan, 1987].

1.2.3 Advantages

The control law in Eqn. 1.29 has many favorable attributes from a robot control

perspective. For instance, it allows us to control the endpoint trajectory of the robot

by directly specifying x0, without the use of any inverse kinematics. This is a highly

desirable quality since for many robotic manipulators, the inverse kinematics are

difficult to compute in closed form (and thereby require a nonlinear optimization
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approach, which is not guaranteed to converge), and are non-unique (in the case of a

redundant manipulator, there are infinitely many solutions for the inverse kinematics)

[Goodwine, 2004].

Many operational space controllers heavily depend on computing the inverse of

the Jacobian matrix inside the control loop [Khatib, 1987, Raibert and Craig, 1981,

Miomir et al., 2008]. This becomes problematic when the manipulator is commanded

into a singular configuration (i.e. at the edge of the manipulator workspace), since

the Jacobian rapidly loses rank and becomes ill-conditioned near singularities. This

method, however, does not depend on any Jacobian inverse operations, and therefore

is able to seamlessly venture into and out of singular configurations without any

numerical instabilities.

Another advantage of this control law is that it is suitable for both manipulation

tasks in free space, and in contact with the environment [Hogan, 1985c, Hogan, 1987].

This is in contrast to the aforementioned position control and force/hybrid control

paradigms. In free space, the robot behaves as if the endpoint was under a compliant

position controller, with inertial lag (i.e. x 0 will tend to lead x due to the inertia

of the robot). When the manipulator is brought into contact with the environment

(i.e. when the virtual trajectory xo dips below the surface of a rigid object in the

environment) the robot simply comes into contact with the object and applies a

contact force. The magnitude and direction of the applied contact force can be

controlled by modulating the Kx gain, or by adjusting how deeply x0 penetrates into

the object.

One final advantage of the impedance control framework is the ability to linearly

superimpose a number of arbitrary non-linear impedance controllers onto a single

robot manipulator [Hogan, 1985c]. This allows us to compose a number of differ-

ent impedance controllers on a robot to achieve tasks such as redundancy resolution,

closed kinematic chain manipulation, collaborative manipulation, and to tackle com-

plex tasks involving many degrees of freedom. The compositionality property of

impedance controllers will be the primary focus for the remainder of this work.
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1.3 Overview of Thesis

This introductory chapter has provided the foundation for understanding robot impedance

control in terms of its biologically inspired origins, implementation details, and ad-

vantages over more traditional robot control approaches.

Chapter 2 delves into the compositionality property of impedance controllers.

Applications to redundancy resolution, closed kinematic chains, collaborative manip-

ulation, and scaling up to many degrees of freedom are discussed.

Chapter 3 discusses the particulars of implementing the impedance controller on

a Baxter Research Robot, including high and low level control loop details, and the

quaternion representation of rotational stiffnesses for numerical stability.

Chapter 4 discusses system identification performed on the Baxter Research Robot

to verify how well multiple impedances linearly superimpose in practice, as well as to

evaluate how well a commanded endpoint stiffness and damping can be realized at

the robot endpoint.

Chapter 5 examines proof of concept tasks such as manipulating the robot into

and out of singularities under impedance control, and also the application of the

compositional impedance control method to a complex task, such as robotic shoe

shining.

Chapter 6 discusses traditional nullspace projection techniques for controlling ma-

nipulator redundancies (such that the redundancy resolution criteria does not impact

the operational space task), as well as a new approach to generating a nullspace pro-

jection operator, based on the kernel of the operational-space stiffness matrix reflected

into joint-space.

Finally, Chapter 7 discusses the conclusions of the present work, along with future

directions for further inquiry on the subject at hand.
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Chapter 2

Compositional Impedance Control

2.1 The Linear Superposition Property

One important property of impedance controllers is the ability to linearly superimpose

them in a robot [Hogan, 1985c]. To elucidate this idea, we consider an inertial object

of mass m. Let us first attach a nonlinear spring, referenced to a virtual trajectory

x 1, with the constitutive equation fi = Zi{x,xi} = kX2 (XI- x) . Next, let us

attach a nonlinear damping element, referenced to a virtual trajectoryx2, with the

constitutive equation f2 = Z2 {X, X2 }= bsgn(iz 2 - (- )2. Finally, let us attach a

general nonlinear dynamic element with the constitutive equation fi = Zi{x, xi, ... }.

This arrangement is visualized in Figure 2-1.

For N arbitrary nonlinear dynamic elements attached to the mass, Newton's sec-

X1aX

ZiZ

Z2 m -Z

X2

Figure 2-1: An inertial object of mass m with nonlinear impedance elements attached.
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ond law yields:

N

mz = Zi{x, xI} + Z2{x, X2 } + ... + ZNX, XN} i{X, Xi (2.1)
i=1

Thus, we see that the net impedance (or net force) of a set of non-linear impedances

acting on an inertial object is the linear superposition of those non-linear impedances.

We can observe the same behavior for impedance controllers acting on a robot (which

is fundamentally a set of inertial linkages). Given a set of N nonlinear endpoint-space

impedance controllers that we would like to apply to a robot, our control law would

be:

N

ract = JT Zi{x,1x}] (2.2)
i=1

We can also include impedances relative to any arbitrary coordinate system, as

long as we have a Jacobian matrix that maps the joint-space coordinates to the new

coordinate system. Finally, we can also add in M joint-space impedances into this

framework as well (the Jacobian for this transformation is, of course, the identity

matrix):

N M

Tact = JT[ Zix, xz}] + Zj~q, qj} (2.3)
i=1 j=1

2.2 Redundancy Resolution

One application of this linear superposition principle is redundancy resolution. Con-

sider our example planar manipulator (reproduced in Figure 2-2). Since this robot

has more joint-space degrees of freedom than endpoint degrees of freedom (n > m),

it is a redundant manipulator. This means that the joint angles can be actuated

continuously without impacting the position or orientation of the endpoint.

To better understand this, we first recall the velocity kinematics of the robot (Eqn.

1.13). Here, the m x n Jacobian matrix maps the n-dimensional joint-space velocity
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Figure 2-2: A 4-DOF planar robot. In this example, n= 4 and m= 3

vector to the m-dinensional endpoint-space velocity vector. If we assume the robot

is not in a singular configuration, the rank of the Jacobian is m (full row rank). Thus,

we see that the Jacobian has a null space with n - m basis vectors. Any joint space

velocity vector 4 in this null space will cause no motion in i, and will therefore not

be impacted by the endpoint impedance controller (Eqn. 1.29). Consequently, small

disturbance forces in the joint space of the robot can cause large, uncorrected motions

in the joint-space.

To counter this, we can add a second impedance controller that operates in the

joint space of the robot. A simple controller might specify a small stiffness about a

nominal joint-space pose, q0, along with a small joint-space damping. This controller

has the form:

Tact =Kq(qo - q) - Bq(4) (2.4)

Here, Kq E R"X is the desired joint-space stiffness matrix, and Bq E R"" is the

desired joint-space viscous damping matrix. These matrices are usually diagonal,

in which case the entries correspond to independent virtual rotational springs and

dampers placed at each joint of the robot. The final control law is simply the sum of

the two impedance controllers:

Tact = JT [Kx(xo - L(q)) + Bx(5 0 - J4)] + Kq(qo - q) - Bq(4) (2.5)

This is the controller that was implemented on hardware in the later sections of this
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Figure 2-3: The effective behavior of a planar manipulator under a superimposed

endpoint and joint-space control law, as in Eqn. 2.5.

work. With this controller, all disturbances in the joint space will be met with a

restoring force to bring the manipulator back towards its nominal joint space config-

uration. The effective endpoint of this control law is visualized in Figure 2-3.

One drawback of this method is that the effective endpoint stiffness and damping is

no longer completely described by K, and B2. Instead, there is also some contribution

to the endpoint stiffness and damping behavior from the small virtual springs and

dampers that were placed at the robot joints. To analyze the net endpoint impedance

behavior, we can map the joint-space stiffness matrix into endpoint-space.

For a robot, the map from a full-rank joint-space stiffness matrix Kq to an

endpoint-space stiffness matrix B, is given by [Mussa-Ivaldi and Hogan, 1991]:

K (J(K - T )-1jT)-l (2.6)

Here F is the kinematic stiffness term, which is given by:

F = f (2.7)
,9q

If we evaluate the system about zero endpoint force, the effective endpoint-space

stiffness matrix becomes:

Kx|f=0 = (JKq-1JT (l (2.8)

Similarly, The endpoint-space damping matrix resulting from a full-rank joint
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space damping matrix is given by:

BX = (JB - JT)-- (2.9)

Note that these relationships are only valid when the manipulator Jacobian is of

full row rank. In singular configurations (where the Jacobian loses rank), the endpoint

stiffness and damping become unbounded in certain directions, since arbitrarily large

forces applied in those directions will yield no motion. In contrast, the endpoint

compliance matrix (the inverse of the endpoint stiffness matrix), and the inverse of

the endpoint damping matrix, are both well defined quantities, and will go to zero in

certain directions (instead of becoming unbounded) at singular configurations [Hogan,

1985b]. However, since stiffness and damping are more familiar properties to most

readers, those parameters, rather than their inverses, will be used in this work.

From Eqns. 2.8 and 2.9, the net endpoint-space stiffness and damping matrices

for the control law given in Eqn. 2.5 are:

Kx,nelf = Kx + (JK--i JT)l (2.10)

Bx,net B + (JBq-- JT)-l (2.11)

Another drawback of adding in a joint-space impedance to manage redundancies

is that if qo remains fixed, there will be increasing steady-state errors in positioning

if xO is driven far away from L(qo). In real systems, this can be mitigated by keeping

Kqvery small compared to K, or by periodically re-adjusting qO to the current joint

positions (this approach to mitigating positioning errors was not pursued further in

this work).

An alternate approach would be to use null-space torque projections to ensure that

the torques generated by the joint-space stiffness controller never produce any torques

at the robot endpoint [Dietrich et al., 2015, Khatib, 1987, Khatib, 1995, Siciliano and

Slotine, 1991]. These projections, along with their advantages and disadvantages will

be discussed in Chapter 6.
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Figure 2-4: A closed kinematic chain manipulator. For simplicity, we can assume
that the first three joints of each sub-chain are actuated.

2.3 Closed Kinematic Chains

The idea of impedance composition can also be used to control closed kinematic chain

manipulators, such as that shown in Figure 2-4. One way to control these robots is to

"cut" the closed kinematic chain into two sub-chains at an un-actuated joint, and use

position control techniques to place each subchain endpoint at the desired location

[Siciliano et al., 2010]. In addition to the restrictions of position control mentioned

in Section 1.2.1, one additional problem is that any imperfections in the kinematic

model of the robot (e.g. from manufacturing tolerances or base coordinate system

measurement error) will give rise to large, and possibly unacceptable internal forces

on the distal link of the closed chain.

An alternative way of controlling this closed kinematic chain mechanism is via

impedance control. In the case where every sub-chain is fully actuated or redundantly

actuated, we can place the endpoint of each sub-chain under impedance control. The

effective behavior of this controller is visualized in Figure 2-5. The net impedance

behavior at the manipulator endpoint is again the sum of the two individual chain

endpoint-space impedances. Additionally, this directly gives us endpoint space control

without any inverse kinematic operations. This method also naturally lends itself to

superimposing additional impedances for tasks such as collision avoidance.
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IU0
Figure 2-5: The effective behavior of a closed kinematic chain manipulator with each
sub-chain under impedance control.

2.4 Collaborative Manipulation

Another (similar) application of impedance control is to simplify collaborative manip-

ulation between multiple robots, as in Figure 2-6. One traditional way of doing this

is with a master-slave manipulation paradigm, where one robot (called the master)

operates under endpoint position control mode to dictate the 6-DOF positioning of

the object, while all of the other robots operate in force control mode to regulate

the internal forces in the object [Kosuge and Hirata, 2004, Caccavale and Uchiyama,

2016, Nakano et al., 1974, Luh and Zheng, 1987]. Since this method may put undue

burden on the master manipulator to handle most of the load, one can implement

hybrid position/force control on all of the cooperative manipulators to divide the po-

sitioning and force regulation tasks between them [Kosuge and Hirata, 2004, Hayati,

1986, Uchiyama and Dauchez, 1988]. These methods, while immensely useful, can

be sensitive to kinematic modeling errors within and between the robots, and are

not robust enough to handle situations where contact might be lost. Additionally,

these control methods would not be suitable for situations where the commonly ma-

nipulated object must be brought into or out of contact with other objects or rigid

constraints in the environment.

Impedance control provides an alternative way to handle the collaborative manip-

ulation problem [Kosuge and Hirata, 2004, Koga et al., 1992]. In this case, we place

both robot endpoints under impedance control, and the manipulated object behaves

as if it is suspended by a set of mass/spring/damper systems, as in Figure 2-7. Here,
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Figure 2-6: An example of two robots collaboratively manipulating an object

MX

Yoi

Figure 2-7: Impedance controllers on each collaborative manipulator makes the object
behave as if it were suspended by a set of spring-damper systems

any errors in manipulator or object kinematics will only cause small deflections in

the virtual springs at each robot endpoint, and will not result in large object inter-

nal forces. Additionally, if tensile or compressive forces are desired in the object,

they can be exerted by coordinating the equilibrium points of the multiple manip-

ulators in contact with the object. One further advantage of this paradigm is that

the system remains stable even if an individual manipulator loses contact with the

object. The robustness inherent in this method of manipulator coordination makes

it particularly suitable for manipulation in uncertain environments, manipulation of

poorly modeled, delicate, flexible, or compliant objects (such as cloths), or manip-

ulation with low-cost robots, which may have relatively large uncertainties in their

kinematics due to manufacturing tolerances and variability. As noted in the previous

section, the impedance composition method also allows for secondary impedances to

be superimposed to handle tasks such as collision avoidance.
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2.5 Tackling the Scale Up Problem

2.5.1 Complex Tasks

Managing complex manipulation tasks requires balancing and satisfying many differ-

ent task requirements. One example of a complex robotic manipulation task might be

to rapidly buff a shoe using a cloth outstretched between two robotic manipulators.

This is a task that humans can do with relative ease, but might pose a challenge to

implement on a set of redundant robotic manipulators. In order to perform this task,

the two robotic arms must first pick up a cloth, apply tension to the cloth without

snapping it, bring the cloth above the shoe, bring the cloth into contact with the

shoe, maintain a reasonable level of normal force on the shoe along with a reasonable

amount tension in the cloth, and finally apply rapid oscillatory motions on the cloth

to achieve a buffing effect.

If this is to be done with two 7-DOF manipulators, the task would require the

coordinated motion of 14 degrees of freedom in a closed kinematic chain configuration

incorporating the contact dynamics of a cloth, which are usually not trivial to model

[Yamakawa et al., 2011, Bai et al., 2016].

This is an example of a complex problem that is made far simpler by using a

compositional impedance programming approach. First, the two robot manipulators

would grip a slackened rectangular cloth, with one gripper on each end of the cloth.

Next, a set of endpoint-space virtual spring-dampers would be applied to the end

effectors to gently pull the arms apart and apply outward tension on the cloth. Next,

with the shoe placed under the cloth, a second set of spring-dampers would be applied

to draw the cloth downwards to apply a normal force to the shoe. Finally, a third set

of stiff spring-dampers would be applied with an oscillatory reference trajectory xo

to rapidly draw the cloth back and forth over the shoe. Throughout the process, an-

other set of small joint-space impedances would be applied to manage the redundant

degrees of freedom in the robot. Due to the built-in controller compliance, a detailed

computational model of the cloth and shoe are not necessary; an approximate mea-

surement of the cloth length and shoe position will suffice. An implementation of this
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strategy on hardware is given in Chapter 5.

The strategy here was to divide a complex task into smaller sub-tasks, and to

devise an impedance controller to handle each sub-task or requirement. Additionally,

we can sometimes rely on manipulator compliance in lieu of developing more pre-

cise (and therefore computationally complex) models of the manipulated object and

environment.

2.5.2 High-DOF Systems

Another challenge that compositional impedance control may be poised to tackle is

that of controlling high-DOF systems. This may include modern humanoid robots,

which may have 28 DOF in the case of Boston Dynamic's Atlas, 44 DOF in the case of

NASA's R5 Valkyrie, or as many as 58 in the case of NASA's Robonaut 2 [Boston Dy-

namics, 2019, Paine et al., 2015, NASA, 2014]. Controlling these high-DOF systems

is a challenge, since the dynamics are nonlinear, and in the case of walking humanoid

robots, underactuated [Tedrake, 2019]. One common approach to tackling this control

problem is to perform large scale model predictive control (MPC)/nonlinear program-

ming (NLP) to solve for a feasible torque trajectory subject to the system dynamics as

constraints to the optimization problem, and a (usually) quadratic objective function

to minimize [Betts, 1998, Tedrake, 2019]. While these methods scale well for a small

to moderate number of degrees of freedom, the computational complexity causes it to

fail for high-DOF systems [Kuindersma et al., 2014, Valenzuela, 2016, Betts, 19981.

While progress can be made by linearizing the instantaneous dynamics at each opti-

mization iteration, thereby converting the problem into a quadratic program (QP),
the task still remains challenging [Kuindersma et al., 2014].

As mentioned previously, one of the promises of the compositional impedance

control method is the ability to divide a complex interaction task into a number of

sub-tasks, and to fabricate an impedance controller for each one. If an impedance

approach is suitable for a manipulation scenario involving a high-DOF system, we can

identify sub-tasks and use optimization methods to aid in the design of impedance

controllers for each one of those sub-tasks. In this manner, we would be solving several
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lower dimensional NLPs, rather than one large scale NLP (which may not converge,

or whose solution may be heavily dependent on the decision variable initializations)

[Valenzuela, 2016].
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Chapter 3

Implementation on a Baxter Research

Robot

3.1 Robot Hardware Overview

All of the experiments in compositional impedance control were performed on a Baxter

Research Robot, which was manufactured by (the now defunct) Rethink Robotics

(Boston, MA). The Baxter Robot is a low-cost anthropomorphic humanoid robot

with two 7-DOF arms. A visualization of the robot joint naming convention, along

with an image of the robot arm internals is given in Figure 3-1. A dimensioned

drawing of the overall dimensions of the robot, along with the coordinate system is

given in Figure 3-2.

Each joint contains a motor with a peak torque of 50 Nm for the shoulder and

elbow joints, and 15 Nm for the wrist joints [Rethink Robotics, 2015g]. Each motor

has the output of its gearbox connected to a relatively stiff series elastic element (843

Nm/rad on shoulder/elbow joints, and 250 Nm/rad on wrist joints), which allows for

torque measurement and torque control at all joints [Rethink Robotics, 2015d, Re-

think Robotics, 2015g, Hosford, 2016]. While each joint has a 14 bit encoder (yielding

a 0.02° resolution), joint-level non-linearities yield a typical accuracy on the order of

±0.100 [Rethink Robotics, 2015g]. This, combined with manufacturing tolerances,

yields a ±5 mm endpoint-space positioning accuracy while in position control mode
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Figure 3-1: The image on the left shows a Baxter Robot arm with its cover removed.

Here, one can see the joint motors, series elastic elements, and joint control boards.

On the right is the joint naming convention. As this is an anthropomorphic robot,
"S" stands for shoulder, "E" stands for elbow, and "W" stands for wrist. Images are

adapted from [Knight, 2013] and [Rethink Robotics, 2015g]
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Figure 3-2: The overall dimensions of the robot, and the robot's cartesian coordinate
system. The origin is located on the plane where the robot body is mounted to the
pedestal. The positive x axis points out of the page. Image modified from [Rethink
Robotics, 2015i].
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[Rethink Robotics, 2015g]. The robot also has a built-in proprietary gravity com-

pensation algorithm, with the parallel elastic elements on the S1 joints bearing much

of the gravitational load [Rethink Robotics, 2015f]. The gravity compensation algo-

rithm also accounts for hysteresis effects in the S1 springs, and off axis torques that

are detected by the S1 torque sensor [Rethink Robotics, 2015a, Rethink Robotics,

2015f].

3.2 Robot Control Overview

The Baxter Robot control system is built over ROS, which is an asynchronous sys-

tem for shuttling data between many different components such as sensors, motor

controllers, and various software programs running on either the same, or different

computers [Open Source Robotics Foundation, 2019]. Each component, or "node" in

the ROS framework can broadcast, or "publish" data to the ROS network, and can

"subscribe" to data coming from other nodes in the ROS network. No upper bounds

are provided for message latency, and message delivery is not guaranteed.

Several different control modes are available on the Baxter Robot, including po-

sition control, raw position control, velocity control, and torque control [Rethink

Robotics, 2015b, Hosford, 2016]. In this work, the torque control mode was used

exclusively. A block diagram outlining the details of running a high-level torque con-

troller on a Baxter Robot in torque control mode is provided in Figure 3-3. The

implementation is as follows [Rethink Robotics, 2015c, Rethink Robotics, 2015g]:

First, the user programs the high-level torque control law (in our case, an impedance

control law) on a Linux Machine, typically in Python. The script can obtain the latest

measured values of -r, q, and q for all 14 joints over a subscription to the ROS Topic

(data stream). It should be noted that Rethnk Robotics provides a python API to

handle much of the ROS subscribing and publishing [Rethink Robotics, 2015d]. The

user's control loop then computes commanded torque values, rcmd for all joints. This

loop was operated reliably at 520 Hz on the author's hardware (Intel Core i7-7500U A

2.70 GHz). These torque values are then published over the ROS network and sent to

48



User's Ubuntu Linux Computer Baxter's Gentoo Linux Computer
Python Script Proprietary Code

Gravity
Compensation

Model

Tctrl
Impedance Tcmd ROS Tcmd [m. P ?

x0 ,qa   Control [1.6ms] Publisher [1ms] Real Time Motor[1ins] Joint (PWM?)Joint Motors
Control Loop Control and

Law Subscriber---+ -Law Hz)er (1 KHz) r, q Boards r, q Sensors(520Hz) Networkms

ROS
Joint State
Publisher
Subscriber T'q'q

[1.6 ms] (800 Hz) [1I ms]

Figure 3-3: Running an impedance controller in the Baxter Robot's torque control mode. All signals are labeled, with typical
message latency times in brackets. Note that there are, in actuality, 14 Joint Control Board and Motor/Sensor blocks (one for
each joint on the robot). All latency data were obtained from [Rethink Robotics, 2015c]



the robot over an Ethernet LAN connection. This step has a typical latency of 1.6 ms.

Next, subscribers on the Baxter Robot's internal Gentoo Linux machine (Intel Core

i7-3770 @ 3.4 GHz) listen for the torque commands and forward them to the robot's

Real Time Motor Control Loop, with a typical latency of 1I ms. The Real Time Motor

Control Loop is the highest priority process on the robot's internal computer, and

operates at 1 KHz. Other processes, such as the gravity compensation modules run

in parallel with this loop. The Real Time Motor Control Loop incorporates gravity

compensation torques, S1 spring compensation torques, and torque limit scaling on

Tcmd in a proprietary manner to produce r, which is then forwarded to each of 14

Joint Control Boards. These are microcontrollers associated with each joint. This

step has a typical latency of 1I ms. Finally, the Joint Control Boards power the mo-

tors, presumably via pulse width modulation. The low-level controller structure and

particular gains used are proprietary.

Simultaneously, the Joint Control Boards measure the joint angles and joint

torques from the encoders and series elastic elements attached to each motor. These

values are fed back to the Real Time Motor Control Loop with a typical latency of

1I ms. The Real Time Motor Control Loop then forwards these with a 1 ms latency

to a ROS publisher, which broadcasts these values reliably at about 800 Hz. These

values are sent over an Ethernet LAN connection to the ROS subscriber on the user's

high-level control loop with a 1.6 ms typical latency. The cumulative loop latency for

this control stack is roughly 7.2 ms [Rethink Robotics, 2015c].

3.3 High Level Impedance Controller Implementa-

tion Details

The impedance control law used in the following sections was that of Eqn. 2.5, with

the endpoint space damping term specified relative to ground, or relative to io, de-

pending on whether or not the refrence trajectory, xo was differentiable. In the former

case, io was set to zero in the control law, regardless of the value of xo. Additional
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impedances were superimposed as necessary. Whenever required, kinematic proper-

ties such as the Jacobian matrix, joint-space inertia matrix, and endpoint-space iner-

tia matrix were all computed from the Rethink Robotics Provided URDF (an XML

based description of the robot kinematics), using an implementation of the Orocos

PyKDL Library [Rethink Robotics and Maroney, 2015, Rethink Robotics, 2015h].

The suitability of this library for use in the impedance controller was confirmed by

[Hosford, 2016].

One notable implementation aspect is performing computations with rotation an-

gles in a numerically stable manner. The endpoint stiffness term in Eqn. 2.5 requires

us to compute the difference, x0 - x. This is trivial for the Cartesian x, y, and

z components of x, but the rotational parts are more complicated. If we wish x

to be a minimal set of configuration variables (that is, have x E R6), one common

choice of representation would be Euler angles, which would give x the structure
-T

x y z # 0 0 . When dealing with such Euler angles, one must be careful to

define the convention being used. This is due to the fact that there are 12 differ-

ent ways to define rotations from a set of Euler angles, depending on whether fixed

(extrinsic) or object (intrinsic) coordinates are used, and whether one of the proper

Euler sequences (e.g. ZYZ) or one of the Tait-Bryan/Cardan sequences (e.g. XYZ)

are used [Diebel, 2006, Spong and Vidyasagar, 19891.

When using sets of Euler angles to register finite rotations, subtracting them to

define Ax might not be physically meaningful, except perhaps for small differential

rotations. Furthermore, Euler angles are subject to singularities. For instance, in

order to define a unique set of angles for each rotation, the Euler angles are given

ranges. For example, Tait-Bryan angle ranges are often defined as # E [0, 27r], E

[0, 27r], 0 [0, 7r]. In the case of an orientation where one of the angles is at the edge of

its permissible range, even a minute rotation can cause drastic differences in all three

values, making the subtraction physically meaningless even for infinitesimally small

differences. Another example of a singularity is called gimbal lock, when the body is in

a configuration such that a rotation in a certain direction can be encoded by multiple

sets of Euler angles (i.e. two of the three Euler angles become interchangeable)
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[Diebel, 2006].

In order to avoid these problems, encoding rotations in quaternions (a non-minimal

representation) is far more desirable, as unit quaternions describing rotations are

always continuous, and free from singularities [Hanson, 2006]. Consequentially, the

rotational portion of xo was converted to quaternion formi, and the rotational stiffness

portion of the impedance control law was implemented directly with quaternions, as

in [Caccavale et al., 1999, Caccavale et al., 2008].

'The rotational part of x provided by the robot's Joint State Publisher is already given in
quaternion form
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Chapter 4

Verifying Impedance Composition

and Controller Performance

4.1 Overview and Methodology

This chapter describes a set of system identification experiments performed on the

Baxter Robot, under the impedance control law given in Eqn. 2.5, with endpoint-

space damping set relative to ground:

Tact = JT [Kx(xo - L(q)) - BxJ4] + Kq(qo - q) - Bq((4) (4.1)

The experiments had two primary aims. The first was to verify how well a low-cost

torque-controlled robot such as Baxter could provide a commanded endpoint stiff-

ness/damping impedance. The second was to verify how well the impedance at each

endpoint would linearly superimpose in a closed kinematic chain configuration, simi-

lar to the setup in Figures 2-4 and 2-5. For simplicity, all identification experiments

were carried out along a single endpoint Cartesian dimension (the robot's x axis). The

robot was also fully calibrated before all experimentation [Rethink Robotics, 2015a].

For these experiments, the left and right robot arm endpoints were first servoed to

symmetric positions about the robot's sagittal plane, with all joint positions closely

mirrored. An exact joint-space mirroring cannot be guaranteed since each robot arm
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Table 4.1: Nominal starting endpoint coordinates for system ID, x, with endpoint
rotation expressed as a quaternion.

x y z qI qy qz qw

0.80 m ±0.135 m 0.211 m 1 00 0.02 2

Table 4.2: Ideal (Perfectly Mirrored) and Actual Joint Angles, qO [rad] The Right/Left
Difference row indicates the difference in magnitudes between the right and left arm
joint angles.

SO S1 EO El WO W1 W2
Nominal Angles +0.0820 0.2963 ±1.3254 1.7641 T-0. 4 1 77  -1.1360 +1.7603

Actual Right Arm 0.0993 0.2848 1.3352 1.7702 -0.4039 -1.1449 1.7374
Actual Left Arm -0.0842 0.2911 -1.3311 1.7685 0.4081 -1.1381 -1.7512

Right/Left Difference 0.0151 0.0063 0.0041 0.0017 0.0042 0.0068 0.0138

is hand-welded to the robot torso, resulting in slightly different (but known) forward

kinematics transformations from the base frame to the endpoint for each arm [Rethink

Robotics, 2015e]. The nominal endpoint positions used, along with ideal and actual

initial joint angles are shown in Tables 4.1 and 4.2. An image of Baxter at these

equilibrium joint positions is shown in Figure 4-1.

The controller in 4.1 was activated, and impedance parameter identification was

performed on each arm individually. Next, to test how well the impedances superim-

pose in the closed chain configuration, the two arm endpoints were bolted together

with a 0.265 kg aluminum linkage (Figure 4-2), while maintaining the initial joint

angles used in the previous experiment. A bolted linkage was chosen to provide a

closed-chain configuration, rather than a commonly gripped object, or custom con-

nectable end effectors, due to its simplicity and rigidity. The experimental setup with

the arms bolted is shown in Fig. 4-3. Impedance parameter identification was then

performed at the center point of the linkage.

For each individual arm, our expected net endpoint-space stiffness matrix arising

from this controller is given by Eqn. 2.10:

Kx,tota f =0= Kx + (JK-1JTl (4.2)
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Figure 4-1: The Robot's pose at the beginning of the system ID experiments. The
image on the left is a top view from the Gazebo simulator, and the image on the right
is an angled view of the actual robot.
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Figure 4-2: A Drawing of the 6061 aluminum linkage used to bolt the arm endpoints
together. The small center rectangular reinforcement rib was bolted onto the main
linkage body to add extra rigidity. All dimensions are in inches.
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Figure 4-3: Angled view of the Baxter Robot with both arms bolted together in a
closed-kinematic chain configuration.

An expression for the expected net endpoint damping matrix was also given by

Eqn. 2.11. However, that equation assumed a frictionless robot/mechanism. In a

real system such as the Baxter Robot, the joint friction may be considerable. A basic

estimate of the Baxter Robot's friction (approximated as joint viscous damping) was

provided in the manufacturer's URDF file [Rethink Robotics, 2015h], which we take

to be a reasonable first approximation of actual robot friction. The joint-space friction

matrix arising from the joint viscous damping parameters given by the manufacturer

is:

Bf = diag([0.7 0.7 0.7 0.7 0.7 0.7 0.71) (4.3)

Here, the damping vector is structured as: bs0 bsi bEo bE1 bwo bw1 bW2 ,and

Bf RX. All damping values are given inN. We can add this joint space friction

matrix to our commanded joint space damping matrix to obtain a more accurate

estimate of our endpoint damping matrix:

Bx,,ota = B,+ (J(Bq + Bf)-lJT)-l (4.4)

The expected endpoint-space inertia matrix is, at first glance, given by taking the

inverse of both sides of Eqn. 1.22:

M = q(JMg-1JT)-1 (4.5)
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However, [Hosford, 2016] has shown that the Baxter robot has non-negligible reflected

motor inertia. Hosford measured the reflected motor inertias on joints El and W1.

Since all of the wrist motors have identical specifications in terms of maximum joint

speed, joint flexure stiffness, and peak torque, we can extrapolate the W1 measure-

ment to WO and W2 [Rethink Robotics, 2015g]. Similarly, since all of the shoulder

and elbow motors have identical specifications for the aforementioned parameters, we

can extrapolate the El measurement to SO, S1, and E [Rethink Robotics, 2015g].

This approximation gives us [Hosford, 2016]:

I, = diag( 0.60 0.60 0.60 0.60 0.044 0.044 0.044]) (4.6)

We can incorporate these reflected motor inertias into our computation as follows:

Mxtota = (J(Mq + Ir)-lJT)-l (4.7)

It is important to note that the joint gear ratio values were not disclosed by the man-

ufacturer. It is thus entirely possible that there are different gear ratios in the joints

within each grouping (SO - El and WO - W2), which would render this approximation

invalid. However, since the identical parameters mentioned above heavily depend on

the gear ratio, this approximation is a reasonable one to make.

Under the control law in Eqn. 4.1, starting from a static equilibrium position

where x0 = L(qo), if motion only occurs along the x direction, and q does not deviate

significantly from q0, each robot arm should exhibit behavior along the x coordinate

like that of the system in Figure 1-5, with forward path transfer function:

Xk X - kX(4.8)
Xo mXs 2 +bss+ kx

and disturbance response (back-driving dynamics):

Fex
Xt = ms 2 + bxs + kx (4.9)X
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In these equations, k, is the upper left diagonal entry in K,net 1-0' b, is the upper

left diagonal entry in B,totaiand m is the upper left diagonal entry in Mtota.

Note that these equations are the same as Eqns. 1.10 and 1.7.

The identification problem now reduces to finding the transfer function of a locally

linear SISO system. One common approach to performing this identification is to

excite the system with a set of input sinusoidal waves of different frequencies, and

measure the ratio of the output to input magnitudes and phase differences. This

allows us to construct a Bode plot, and thereby estimate the dynamic parameters

[Phillips and Parr, 2011, Franklin et al., 2015]. However, since we are studying a

high order system (if we neglect the series elastic actuators, each individual arm is

at minimum, a 14th order system, and the closed-chain configuration is a 28th order

system with six algebraic constraints), there is some concern that other misleading

resonant behaviors in the joint-space may appear at different excitation frequencies.

This might have made the resulting Bode plot challenging to interpret. Due to this

potential difficulty, the dynamic parameters were identified using step responses in

xo, and fitting the resulting x(t) with time-domain step responses of Eqn. 4.8.

One concern with performing system identification with step responses in the

forward path dynamics, is that the transfer function can only be fit to within a

constant. For instance, if stiffness, mass, and damping were all doubled, the resulting

transfer function in Eqn. 4.8 would be identical. Thus, a minimum of two experiments

need to be done in order to uniquely identify all three parameters. In this case, static

stiffness was identified by pushing on the robot endpoint extremely slowly, such that

inertial and damping forces are negligible. This reduces Eqn. 4.9 to:

Fext _= k (4.10)x

This allows us to identify the endpoint stiffness (kx) from a simple linear regression.

This endpoint stiffness could then be fixed, with the transient forward-path step

response data used to uniquely fit bx and mx.

The closed chain system identification was carried out in an identical manner
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(using both a slow interactive measurement for static stiffness, and a forward step

response for damping and inertia). For this configuration, the endpoint of the linkage

will have a nominal stiffness of 2k, a damping value of 2b, and an inertia value of

2m, + m, where mz is the mass of the linkage connecting the two arms.

One point that should be emphasized is that the parameters k, b, and m. would

be the same for Eqn. 4.8 (the forward path dynamics) and Eqn. 4.9 (the back-

driving dynamics) in an ideal linear system. In an acutal hardware implementation

such as Baxter, there may be significant discrepancies between the forward-path dy-

namics and back-driving dynamics [Hosford, 2016]. While the apparent endpoint

inertia and static stiffness should appear to be similar, there might be significant

non-linear frictional effects that might differ between the forward-path response and

the back-driving response. Coulomb friction, which is present in virtually all me-

chanical systems, is inadequately accounted for by a linear damping term, and is also

dependent on the driving direction. If the robot endpoint is slowly pushed from its

nominal position and then slowly allowed to return to its nominal position (as in the

aforementioned static stiffness identification experiment), a significant Coulomb fric-

tion relative to controller damping would appear as hysteresis in a plot of Eqn. 4.10.

Additionally, there may be many other dynamics (e.g. those arising from motor am-

plifiers, etc.) which may further contribute to differences between the forward-path

and back-driving system responses.

For the purposes of this work, however, we regard the forward-path and back-

driving dynamics as interchangeable, as we obtain the parameter k. from the back-

driving response, and we obtain b, and m_ from the forward-path response. A more

sophisticated (and challenging) approach would be to directly measure all impedance

parameters from the back-driving dynamics (as that is what matters more in an

interaction task). One potential method for doing this would be to have one robot

arm in a high-gain position control loop drive the impedance controlled second arm.

A discussion of the methods and challenges for this approach is given in Section 7.2.1.

Another limitation in the scope of this work is that the robot endpoint impedance

was only measured along the x direction. Linear and rotational impedances along
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other endpoint-space coordinates were not measured.

4.2 Controller Settings

The system ID was performed for three different sets of controller endpoint stiff-

ness values. The vectors were structured as 1kx ky kx kox kev koz , with linear

stiffnesses having units of N/m, and rotational stiffnesses having units of N-m/rad.

Kx,5oo= diag([500 500 500 5 5 5]) (4.11)

Kx,40o= diag([400 400 400 5 5 5]) (4.12)

Kx,3oo= diag([300 300 300 5 5 5]) (4.13)

The joint space stiffness was held constant across all trials. The joint space vector was

structured as: kso ksi kEo kE1 kwo kw 1 kW2 with all values having units of

N-m/rad.

Kq= diag( .005 12 5 0.005 0.005 0.005 0.005]) (4.14)

The elevated stiffness values for Si and EO were chosen to help counteract observed

drift arising from imperfections in the gravity compensation controller.

The endpoint and joint-space damping matrices were constant throughout the

transient analysis. They were as follows, with values reported in N-s/m and N-m-

s/rad:

BX = diag([20 30 20 0.3 0.5 0.8]) (4.15)

Bq= diag([0.01 0.01 0.01 0.01 0.01 0.01 0.01]) (4.16)

The resulting net endpoint stiffness, damping, and inertia matrices arising from

these controller settings are computed in Appendix A.
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4.3 Static Stiffness Identification

The static stiffness values were obtained by pushing the individual robot arm end-

points, and linkage midpoint along the -x direction at a rate of less than 5 mm/s

for a total displacement of 5-7 cm. The arm endpoint was then slowly released at

the same rate until it reached its nominal starting position. A linear fit was then

performed on the resultant force vs. displacement curves.

Since Baxter does not have an endpoint force/torque sensor, the endpoint forces

and torques were computed from measured SEA torques at each joint. This conver-

sion was implemented in the robot's software by the manufacturer, and presumably

performs the computation [Maroney, 2014]:

f = Jr(TSEA - 9) (4.17)

where j+ is the Moore-Penrose pseudo inverse of the Jacobian transpose, TSEAare

the measured SEA torques, and g are the computed gravity compensation torques,

which include compensation for the parallel springs on the S1 joint, and corrections

for torque sensor distortion from off-axis torques [Rethink Robotics, 2015a].

For the static stiffness verification, all force vs. displacement curves were linear,

and matched quite well with the expected stiffness values. The force vs. displacement

curves, along with linear fits are shown in Figures 4-4, 4-5, and 4-6 for all three

stiffnesses. The results are summarized in Table 4.3. In this table, the first column

indicates the nominal endpoint stiffness value (from K,), and the second column

indicates the expected value of k. for a single arm from K,tta. The rest of the

columns indicate the fit parameters, and percentage error from the expected value of

k, or 2k, for the single arm and closed-chain configuration, respectively.

Some hysteresis effects were seen on the left arm in the plots given in Figures

4-5 and 4-6. This characteristic, consistent offset between the measured forces which

arise from slowly pushing the endpoint versus slowly releasing the endpoint indicates

the presence of of non-negligible coulomb friction in the robot.

All measured individual arm stiffnesses were within 2% of the commanded value,
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and all closed chain stiffnesses were within 3% of double the commanded stiffness for

each arm. These results show that a precise manipulator static impedance can be

readily achieved, at least locally, even on a fairly low-cost robot arm. Furthermore,

static impedance terms linearly superimpose for the closed chain configuration/for

multiple manipulators in contact with a common object.

4.4 Damping and Inertia Identification

The damping and inertia values were obtained by subjecting the manipulator to a 5

cm step in xO, while recording the resulting actual endpoint trajectory, x(t). Using

the fixed stiffness values obtained from the static stiffness identification trials, the

parameters bx and mx were obtained by performing a nonlinear fit of x(t) to a 5 cm

step applied to the second order transfer function in Eqn. 4.8, using the nonlinear

least-squares solver lsqcurvefit in MATLAB (Mathworks, Natick, MA). The step re-

sponse data and corresponding fits are shown in Figures 4-7, 4-8, and 4-9. While some

damped residual oscillations occurred in the wrist joints of the left arm (presumably

due to backlash) in the single arm experiments, the endpoint data obtained was quite

clean.

4.4.1 Damping Parameter Fits

The damping data are summarized in Table 4.4. In this table, the first column

indicates the nominal endpoint stiffness value of the trial, and the second column

indicates the expected value of bx for a single arm from B,tota. The left and right

arm columns express the percentage error relative to the expected value of bx. For the

closed chain column, the percentage error was calculated in two ways. The first way

was relative to double the single arm expected value (to evaluate controller perfor-

mance), and other way was relative to the sum of the two measured damping terms

(to evaluate compositionality). Since there are many unmodeled sources of friction in

an actual robot, it is quite challenging to specify an actual endpoint damping term.

The 0.7 Ns/rad viscous damping factor provided in the manufacturer URDF file is

62



40

Left Arm Stiffness, 500 N/m

30-

20-

10-

0

0.72 0.74 0.76 0.78 0.8 0.82

Endpoint X Displacement [m]

Right Arm Stiffness, 500 N/m

40[

0.72 0.74 0.76 0.78 0.8 0.82

Endpoint X Displacement [m]

Linkage Stiffness, 500 N/m

Experim
0 -Linear Fi

0.72 0.74 0.76 0.78 0.8 0.82

Linkage Midpoint X Displacement [m]

Figure 4-4: Force vs. Displacement curves for the 500 N/m static stiffness trials
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Figure 4-5: Force vs. Displacement curves for the 400 N/m static stiffness trials
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Figure 4-6: Force vs. Displacement curves for the 300 N/m static stiffness trials.
Note the hysteresis on the left arm.
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Table 4.3: Results From Static Stiffness Identification Experiments

Nominal Value kx Left Arm (95% CI) Error Right Arm (95% CI) Error Linkage (95% CI) Error
500 N/m 504.0 509.4 (509.6, 509.2) 1.1% 509 (509.4, 508.5) 0.9% 996.6 (997.2, 996) 1.1%
400 N/m 404.0 404.6 (404.8, 404.3) 0.2% 405.1 (405.5, 404.8) 0.3% 801.1 (801.5, 800.7) 0.9%
300 N/m 304.0 303.4 (304, 302.8) 0.2% 308.1 (308.3, 307.8) 1.4% 594.2 (595.2, 593.2) 2.3%
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Table 4.4: Results From Damping Identification Experiments

Trial Expected b, Left Arm Error Right Arm Error Linkage Error Error
(From 2b,) (From Meas. Sum)

500 N/m 31.4 Ns/m 36.2 15.4% 44.3 41.1% 85.6 36.3% 6.3%
400 N/m 31.4 Ns/m 36.7 16.9% 49.2 56.8% 82.9 32.1% 3.6%
300 N/m 31.4 Ns/m 46.1 47.0% 80.4 156% 96.8 54.1% 23.5 %



Table 4.5: Results From Inertial Parameter Fits

ErrorError
Trial mx,URDF mz Left Arm Error Right Arm Error Linkage Error r e S

______________(From_2mx +_inl)_(FromMeas. Sum)

500 N/m 4.40 kg 11.53 kg 6.89 40.1% 6.40 44.3% 18.7 17.6% 41.5%

400 N/m 4.40 kg 11.53 kg 6.81 40.8% 6.31 45.1% 17.9 20.6% 38.0%

300 N/m 4.40 kg 11.53 kg 6.43 44.1% 4.40 61.8% 16.9 25.1% 57.1%



at best a rough approximation meant to make the robot behavior under simulation

look comparable to actual robot performance. Nevertheless, for both arms, the values

obtained for the 500 N/m and 400 N/m trials were consistent between trials, and the

left arm damping was reasonably close to the expected value. For the 500 N/m and

400 N/m trials, the impedance composition error was low (< 7%). Although we were

not able to accurately dictate endpoint damping for each arm, the impedances still

combined linearly. The parameter estimation at 300 N/m was poor, since (as can be

seen from the step-response plots) the 1-DOF linear approximation began to break

down at this stiffness level. This is because 300 N/m is too low of a driving stiffness

level to rapidly overcome the high levels of unmodelled static friction inherent in the

Baxter Robot. Since the linear approximation breaks down, the fitted parameters of

a linear model become uninformative.

4.4.2 Inertial Parameter Fits

The apparent mass at the manipulator endpoint was the most challenging parameter

to identify. Our controller did not attempt to modify the mass, so we simply aimed

to identify the given manipulator endpoint x mass value. The results for the inertia

fits are summarized in Table 4.5. Two expected inertial values are shown here. The

firstlm2,URDFwas computed from M , which excludes measurements of the reflected

motor inertias, and relies only on structural data contained in the URDF. The second,

mx, was computed from Mx,tota, which includes reflected motor inertia measurements.

The left and right arm columns express the percentage error relative to the expected

value of m2. For the closed chain column, the percentage error is calculated in two

ways. The first way was relative to 2mx + m(to evaluate controller performance),

and other way was relative to the sum of the two measured inertia parameters, plus

m, (to evaluate compositionality).

Here, the inertial values deviated significantly from what we would expect. For

the individual arms, the measured inertia value was greater than the inertia predicted

from the links alone, but less than the inertia predicted from the links and motors

combined. The measurements were, however, closer to the former. Regardless of the
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accuracy of the robot inertia model, these individual arm inertias did not appear to

add linearly when coupled by the link. One possible explanation for this phenomenon

is that the upper left element of the endpoint Cartesian space inertia might not cor-

rectly predict the 1-DOF behavior of the system. During the step response, although

the robot was only commanded along the x coordinate, the robot motion was not

confined to solely the x direction. Due to the non-linear nature of the linkages, the

off-diagonal terms in the inertia and net stiffness matrix induced slight accelerations

in orthogonal endpoint-space directions, which may have affected the apparent mass

observed in the x direction. Displacements observed along the y and z directions

during the step response are plotted in Appendix B. While the residual motions are

negligible along the z direction, there are some residual oscillations along the y coor-

dinate which peaked at 0.8 - 1.5 cm from the nominal y position during the individual

arm trials. These motions were mirrored, and peaked outwards, away from the robot's

XZ plane. When the linkage step responses were performed, the linkage midpoint

did not exhibit any residual motion along the y direction, since the rigid linkage pre-

vented any anti-phase oscillations between the two arms along the y direction. Had

the motions been directed along the same direction, they would have also appeared

in the linkage responses. This lack of consistency in residual motions may have been

an explanation as to why there were errors in the individual arm inertia estimates,

and furthermore, why the measured closed-chain configuration inertia did not reflect

he sum of the individual arm inertias. Additionally, further examination should be

performed into any residual oscillations that may have occurred in the manipulator

nullspace, as those may also have impacted the measured inertia at the endpoint.

While this result is disappointing, it is widely acknowledged that obtaining accu-

rate inertia measurements for a robotic manipulator is a challenging task [Dietrich

et al., 2015, Nakanishi et al., 2008]. Despite these difficulties, the measurements were

consistent between the right and left arms, across the various stiffness values. As

before, the parameters derived from the 300 N/m trial are unreliable, especially for

those in which the both arms are coupled through the link.
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Chapter 5

Sample Manipulation Tasks

5.1 Manipulation Into A Singularity

One of the major advantages of the compositional impedance approach is that each

impedance controller does not require any inverse kinematics computations, or Jaco-

bian inversions in the control loop. This enables the manipulator to venture seam-

lessly into and out of singularities, which is an important prerequisite for the goal of

programming robots to be as dexterous and adaptable as humans.

In order to verify that the controller would behave as expected in a manipulator

singularity, the robot was first brought to the endpoint and joint-space positions

listed in Tables 4.1 and 4.2. Next, the impedance control law given by Eqn. 4.1 was

activated on the robot. The equilibrium endpoint position, x0 , was then increased at a

rate of 0.02 m/s, to a point which was 17 cm past the edge of the robot's workspace.

After pausing at this position, x0 was then brought back at the same rate to its

starting position. This task was then repeated in the closed chain configuration with

the linkage installed, and also at a variety of speeds. This task is visualized in Figure

5-1.

At singularity, the Jacobian condition number increased by roughly two orders of

magnitude, going from an initial value of about 8.31, to a peak value of 278.4 in the

left arm, and 152.1 in the right arm, in the closed chain configuration. However, at

the singularity point, the jacobian condition number is extremely sensitive to small
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Figure 5-1: The robot's pose at the beginning of the singularity manipulation task,
and the robot's pose at singularity, performed in the closed kinematic chain configu-
ration

changes in position. Lightly tugging at the linkage brought the Jacobian condition

numbers to values on the order of 103. One very critical advantage of introducing an

additional joint space impedance is that as the manipulator is brought out of singu-

larity, the joints will always return to their original configurations in a deterministic

manner, and not get locked in an alternate, less desirable configuration. Exiting a

singularity configuration in a deterministic manner is not a straightforward task to

implement using motion control methods which rely on inverse kinematic computa-

tions, or Jacobian inversions. Plots of the equilibrium x0 trajectory along with the

actual x trajectory, as well as plots of the Jacobian condition numbers in the closed

kinematic chain case, are given in Figures 5-2 and 5-3.

5.2 Complex Task Proof of Concept: Robotic Shoe

Shining

One of the promises of the compositional approach to impedance control is the ability

to break down a complex task, which involves balancing many task requirements,

into a number of sub-tasks, with an impedance controller designed for each one. The

example of robotic high-speed dual-arm shoe buffing that was introduced in Section
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Figure 5-2: The reference trajectory (xo), and the actual trajectory (x) for the closed
kinematic chain singularity manipulation task
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Figure 5-3: The Jacobian condition number of the left arm and right arm during the
singularity manipulation task in the closed kinematic chain configuration.
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2.5.1 was implemented on the Baxter Robot as a proof of concept for the method.

First the robot arms are brought to a symmetric starting position (Figure 5-4a).

Next, the robot arms navigate in free space, under an impedance controller (Controller

I), to pick up a slackened cloth at pre-determined pick-points (Figure 5-4b). This

impedance controller has damping defined relative to the reference trajectory, as in

Eqn. 2.5.

The parameters of Controller I are as follows:

K2 = diag( 500 300 500 5 5 5]) (5.1)

B2 = diag([10 10 10 0.3 0.5 0.81) (5.2)

Kq= diag( 0.5 10 5 0.7 0.7 0.08 0.051) (5.3)

Bq= diag([1 4 2 1 0.5 0.6 0.51) (5.4)

The robot then moves this cloth to a position above the shoe (Figure 5-4c). A

second endpoint impedance controller (Controller II) is then applied to the robot to

tension the cloth. This impedance controller applies 40 N/m virtual springs to both

robot endpoints, and stretches them by 10 cm relative to the Controller I reference

trajectory, in the ±y direction (Figure 5-4d). This impedance controller is kept active

throughout the duration of the task to ensure tension on the cloth is upheld. As this is

a relatively compliant spring, there is little risk of tearing the cloth, or compromising

robot's grip on the cloth. An alternative approach that could also be applied is to

saturate the output force arising from the Cartesian impedance controller (or from

any sum of Cartesian impedance controllers). This is a particularly effective approach

when the maximum forces that a manipulated object can tolerate are known.

Now, the cloth must be brought into contact with the shoe. The impedance

parameters of Controller I are modified mid-task for this purpose, as follows:

K_ = diag([200 250 250 5 8 5 ) (5.5)
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(b) Grabbing Cloth

(c) Bringing Cloth Over Shoe (d) Tensioning Cloth

(e) Bringing Cloth Into Contact With Shoe (f) Buffing

Figure 5-4: Various stages of the robotic shoe shining task.
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BX = diag([10 10 10 0.3 0.5 0.8]) (5.6)

Kq= diag(0.005 12 5 0.005 0.005 0.005 0.005]) (5.7)

Bq= diag([ 4 2 1 0.6 0.9 0.9]) (5.8)

In this set of controller parameters, more compliance was added to the x, y, and z

components of Kx in anticipation of the contact task. Additional stiffness was added

in one of the rotational components of Kx to brace for the rapid motions. More

stiffness was added to the S1 and E joints in K to correct for joint-space drift due

to imperfections in the gravity model (which become slightly more apparent due to

the increased compliance at the endpoint). Additionally, more damping was added

to the wrist joints in Bq to ensure smoother movements.

The equilibrium position of Controller I was then brought downwards, such that

the cloth comes into contact with the shoe, and maintains an appropriate normal force

(Figure 5-4e). Since there is added compliance under the new impedance parameters,

larger errors in manipulator positioning can be tolerated. This allows us to forgo any

detailed modeling of the cloth contact shape, and robot-cloth contact points. Finally,

the robot begins moving the equilibrium trajectory, xo, such that it undergoes a 1.25

Hz rhythmic oscillation in the z-y plane (Figure 5-4f). This virtual trajectory motion

has an amplitude of 0.07 m, at an angle of 850 relative to the robot's y axis. Once

again, the built in compliance removes the need to model cloth dynamics such as

nonlinear stretching, or contact friction forces. Relying on manipulator compliance

to forego detailed modelling of the manipulated object is of great benefit for many

flexible object manipulation tasks. Flexible objects such as paper, ropes, or cloths

are very difficult to model, since their complete states may never be fully known, and

finite element approximations of the dynamics tend to be computationally taxing

[Yamakawa et al., 2011, Bai et al., 2016, Hopcroft et al., 1991, Miller et al., 2011,

Balkcom and Mason, 2008].

Additionally, this controller is robust to large disturbances. Large forces can be

applied to the robot arms, the cloth can be ripped out of the robot's grippers, and the
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shoe can even be removed from the workspace without any loss of controller stability.

These simple motions, all planned in endpoint-space, can yield intelligent, stable, and

robust cooperation of 14 degrees of freedom to accomplish a high-speed closed-chain

contact manipulation task.

One shortcoming of this implementation is that the manipulation is carried out

without any higher order perception control loop. While the controller will remain

stable in the face of disturbances, the robot cannot adjust for any changes in the

manipulation task while it is underway. This framework could be combined with

visual perception to close a higher-level task supervisory loop for more advanced

applications.
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Chapter 6

Nullspace Projections: An Impedance

Based Interpretation

For redundant manipulators (i.e. when the the number of robot degrees of free-

dom, n, is greater than the number of endpoint-space coordinates, m), this work

has emphasized using two impedance control laws in parallel, as in Eqns. 2.5 and

4.1. In these controllers, an endpoint-space impedance controller was specified for

the task, and a second joint-space impedance controller with relatively small stiffness

and damping specified to control the n - m redundant degrees of freedom. There

are two major problems with this approach. The first problem is that adding on this

extra joint-space stiffness and damping will distort the desired endpoint-space stiff-

ness and damping matrices. The net endpoint stiffness and damping matrices will

have elevated diagonal values, and many introduced off-diagonal values, compared

to the specified endpoint-space matrices. This can be observed by comparing Eqns.

4.11, 4.12, 4.13, and 4.15 to Eqns. A.1, A.2, A.3, and A.4. The second problem is

that as the manipulator moves away from its starting equilibrium position (where

x = xo = L(qo)), the added joint-space stiffness, K, will always work to drive q and

x to their starting positions of qO and L(qo), respectively. This may add sizable and

troublesome steady state errors to positioning tasks performed in a large portion of

the manipulator's workspace.

In order to counteract these negative effects, the controller must delegate com-
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plete control of all m endpoint degrees of freedom to the endpoint-space impedance

controller, while also only delegating the n - m redundant degrees of freedom in the

joint-space to the joint-space controller. No torques arising from the added joint-

space controller should interfere with tasks performed in the endpoint-space of the

robot.

One should also note that a secondary controller operating in the n -m redundant

degrees of freedom does not need to be a simple impedance around a nominal set of

joint angles. Examples of other secondary tasks that would control the redundant

degrees of freedom in a robot might be managing elbow contact with the environment,

collision avoidance, or endpoint mass matrix optimization. For this work, however,

we will focus on the example of a simple additional joint space impedance controller.

6.1 The Traditional Approach

The traditional approach to preventing a secondary controller acting in the redundant

degrees of the joint space from interfering in the endpoint degrees of freedom is

to use a nullspace projection matrix [Dietrich et al., 2015, Khatib, 1987, Khatib,

1995, Siciliano and Slotine, 1991]. The general idea is as follows:

The relationship between the generalized forces applied to the manpulator's end-

point and the torques felt at its joints are given by Eqn. 1.14. We can non-uniquely

invert this relationship by taking the generalized inverse of the m x n Jacobian:

f = J#Tr (6.1)

where J#T represents the transpose of the generalized inverse of J. One formula for

this generalized inverse is:

j# = WJT(JWJT)- 1  (6.2)

where W E R"' is an invertable weighting matrix. If W is equal to the identity

matrix, I, then J# is the Moore-Penrose pseudoinverse of the Jacobian, denoted by
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J+

If we take a vector of arbitrary joint torques and project them into the nullspace

of j#T, we can see from (6.1) that these projected torques will produce no net force

at the manipulator endpoint. We can implement this nullspace projection by premul-

tiplying our arbitrary torque vector by the following matrix [Dietrich et al., 2015]:

N = (I - JT(J#)T) (6.3)

where N c R".

For simplicity, let us consider our usual controller, but with only the stiffness

terms (the damping terms can be incorporated into this framework trivially):

Tact = JT [Kx(xo - x)] + K(qo - q) (6.4)

If we apply the nullspace projection matrix to the joint-space impedance controller,

we have:

Tact = jT [Kx(xo - x)] + NKq(qo - q) (6.5)

This controller will now exert a restoring stiffness on the n - m degrees of free-

dom in the manipulator nullspace, without any impact at all on the endpoint-space

impedance. For this controller, Kx,,et = Kx. This is an extremely effective approach

while the robot is well inside its workspace, and has a Jacobian of full row rank (i.e.

the rank of J is m). However, the behavior of the controller at singularity must be

analyzed. If we use the formula given in (6.2) to compute J#, we can see that at

singularity points, when the rank of J drops, the matrix (JWJT) becomes rank de-

ficient, which causes the inverse (JWJT) 1 to become unbounded. For the following

analysis, the variable r will be used to refer to the rank of J.

A more sophisticated (and perhaps robust) way to take a generalized inverse of J is

to use singular value decomposition (SVD) to obtain the Moore-Penrose pseudoinverse

of J. This algorithm is used in many numerical software packages such as MATLAB,

NumPy, and GNU Octave [MathWorks, 2019b, The SciPy Community, 2018, Eaton,
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2015].

First, J is factored using SVD:

J =UEVT (6.6)

For the case where J is of rank m, U E Rm'm is the matrix whose columns are the

eigenvectors of jjT, and V C R"X is the matrix whose columns are the eigenvectors

of jTj. E Rmxn is a diagonal vector of singular values, which are the square roots

of the eigenvalues of both jjT and jTj. E also has n - m columns of zeros. This

structure can be visualized as follows:

- 1  0 --- 0 - Vi

J = U 2 ... Um V2  (6.7)

Jill 2 *..Urn] rn 0r0 _

- -o-, 0 -.-. 0 - n -

The Moore-Penrose pseudoinverse of J can now be expressed as [Strang, 2016]:

j+ = yE+UT (6.8)

The pseudoinverse of the diagonal matrix is defined as taking the reciprocal of all

non-zero diagonal entries in the matrix. This equation can be visualized as:

1U...0 0 U,

+ V V 2 ... Vm U (6.9)
_ VT~1 -1

o--l 0 ... 0 Un

When the robot reaches a singular configuration, J loses rank such that r < m.

In this configuration, the last m - r singular values on the main diagonal of E will

go to zero, and the corresponding vectors in U and V will become nullspace basis

vectors of J. Now, when we take the Moore-Penrose pseudoinverse of E in Eqn. 6.8,
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we ignore these zero values on the diagonal, while taking the reciprocals of all the

non-zero diagonal entries. This leaves us with a pseudoinverse matrix that is bounded

at manipulator singularities [Strang, 2016].

While the behavior of the pseudoinverse at manipulator singularities is well be-

haved, the Jacobian pseudoinverse when approaching singularities needs more analy-

sis. When J approaches a singularity, and goes from rank m to, for instance, rank

m - 1, the singular value an in E continuously approaches zero. When this value is

close to zero, but not quite zero, the reciprocal, a-1 , tends towards infinity. In fact,

this reciprocal becomes by far the dominant singular value in J+, and thus, ||J+1
tends towards infinity. However, once the singular value reaches zero, it is ignored,

and |J±H immediately drops down to a reasonable value. The way this behavior is

practically implemented in floating-point computer arithmetic is that Um is checked

against a threshold, and if it is below that threshold, it is set to zero [MathWorks,

2019b, The SciPy Community, 2018, Eaton, 2015]. In MATLAB for instance, this

threshold, by default, is set to: max(m, n) x eps(max),where eps(-) gives the distance

from its argument to the next largest floating-point double-precision number [Math-

Works, 2019a]. Essentially, this is the computer's double-precision floating-point

resolution around a given number (also known as the machine epsilon). NumPy and

Octave have similar zero-cutoff tolerance schemes. To get a sense of the typical mag-

nitudes, in MATLAB, eps(5.0) = 8.8816 x 10-16. One should note that the SVD

zero cutoff tolerance can be manually set higher for the purposes of pseudoinversion.

This Jacobian pseudoinverse ill-conditioning is also the reason behind why motion

control schemes based on inverse kinematics and Jacobian inversion fail to operate

into singularities.

'If ignoring zero values on the diagonal of E bothers the reader, one can visualize truncating the
original SVD matrices (Eqns. 6.6, 6.7) to get the same result. If we perform an SVD on a rank
deficient Jacobian (r < m), the last m - r rows of E will consist entirely of zeros. We can truncate
these three matrices by removing the zero rows and columns in E, along with the corresponding
nullspace basis vectors in U and V. Now, U E Rmxr, E c RrX', and VT E Rrxn. If we multiply
these truncated matrices, we will obtain the same J matrix as our product. All we have done is
removed the rows and columns of the matrices that would have multiplied out to zero in the SVD.
Now, we can perform the pseudoinversion in 6.8 on these truncated matrices without ignoring any
diagonal values in E. See pp. 371-372 and pp. 395-396 of [Strang, 20161.
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Figure 6-1: Four-link planar robot approaching a kinematic singularity.

25

To visualize this discontinuity in J+, a simple numerical experiment was per-

formed in MATLAB. The kinematics of a four link planar manipulator, of unit

link lengths was simulated. The links were assigned joint angles (in degrees) of

q = [90 -, , - T ,and the parameter 0 was varied form 300 to 0° with the

resolution of a 16-bit encoder. The manipulator reaches singularity when 0 reaches

zero. This setup with a few sample values of 0 is shown in Fig. 6-1.

As the manipulator reaches the singularity point, the Jacobian condition number

becomes unbounded, and the norm of the pseudoinverse rapidly increases, as seen

in Fig. 6-2 (note the semi-log scale). In Fig. 6-3, we can see that during this

process, the norm of the Jacobian pseudoinverse also rapidly rises (note the semi-log

scale). At 9 = 30°, ||J+|| = 4.481. With a 16-bit encoder angular resolution and the

default pseudoinverse singular value zero cutoff tolerance on MATLAB, ||J+|| peaks
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at 8.379 x 106. If we were to increase the angular resolution, |J+|max would increase

correspondingly, since we would compute J+ with amin(J) at values increasingly

to machine epsilon. Once we reach a value of min(J) = max(m, n) x eps(max(J)),

the computer stops taking the reciprocal of om(J), and simply sets it to zero. This

causes ||J+1| to instantaneously drop to a steady state singularity value of 1.292,

which is well below the 4.481 value of jJ+|| at 6 = 300.

While the J+ matrix becomes very badly scaled while approaching singularity,

these scaling issues do not appear in the output nullspace projection matrix given in

Eqn. 6.3. Instead, the singularity behavior manifests itself only as a step change in

the values of the nullspace projection matrix once singularity is reached. In order to

understand this behavior better, we can perform an SVD of each term in Eqn. 6.3

by substituting in Eqns. 6.6 and 6.8 [Dietrich et al., 2012]:

N = (I - (UEVT)T(VE+UT)T) (6.10)

N = (I - VETUTUE+TVT) (6.11)

Since U is orthogonal, we have:

N = (I - VT+TVT) (6.12)

Since the diagonal values of E+T are the reciprocal values of ET, the term EIE+T

becomes a square diagonal matrix of size n x n containing entries of ones and zeros

[Dietrich et al., 2012]. We can call this matrix S:

N = (I - VSVT) (6.13)

Essentially, each singular value is divided by itself to yield unity, no matter how badly

scaled each singular value is. If a particular singular value nears the machine epsilon

and is ignored by the pseudoinversion algorithm, the corresponding diagonal value

in S instantaneously becomes zero. This leads to a discontinuous step in actuator

90



torques once singularity is reached in a robot. In terms of the usual implementation

of N as given in Eqn. 6.3, we can see that all very large entries in J# are multiplied

by a correspondingly small value in J to yield a well-scaled output matrix N. Several

techniques have been implemented to limit the sharp step change in torques that come

about from ones flipping to zeros in S at singularity [Dietrich et al., 2012, Dietrich,

2016, Chiaverini, 1997, Deo and Walker, 1995].

6.2 An Impedance Based Approach

The fundamental problem that led us to use an additional joint-space stiffness matrix,

Kq, is that K, was insufficient to apply a restoring stiffness to all n degrees of freedom

in the manipulator. We can see this more clearly by directly reflecting this endpoint-

space stiffness matrix into the joint-space. Ignoring any kinematic stiffness terms,

like that in Eqn. 2.7 (i.e. assuming zero endpoint force), the equivalent joint-space

stiffness matrix arising from an endpoint stiffness matrix is given by [Mussa-Ivaldi

and Hogan, 1991]:

Ko = JT KxJ (6.14)

Here, J is of rank r < m < n. Since K E R"'X with rank m, we know Ko E R

with at most rank r < n. This means that the joint-space reflection of our desired

endpoint stiffness matrix has an n-r dimensional nullspace. We previously attempted

to control these nullspace motions by superimposing a full rank n joint-space stiffness

matrix. A superior approach might be to craft a rank n-r joint-space stiffness matrix

which spans the nullspace of Kx reflected into the joint-space. This would control

the redundant degrees of freedom without impacting the endpoint-space interactive

properties.

First, an eigenvalue decomposition is performed on the reflection our endpoint

stiffness matrix into joint-space (Ko):

Ko = VAV 1 (6.15)
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Here, V is a matrix whose columns are the eigenvectors of KO, and A is a diagonal

matrix of eigenvalues of KO. If we chose K, to be symmetric, KO is also symmetric,

which means that V is orthogonal, and all the eigenvalues are real. Therefore, V =

VT, and we are left with:

Ko = VAVT (6.16)

In the case where the Jacobian is full row rank (corresponding to conditions where

the Jacobian is well within its dexterous workspace), we have r = m. The structure

of these matrices in this case are as follows:

0 0 --- 0

A1 1
- -. -. : - v in

0 0 -V2 -617
KO = 1 Vi 2 ... Vn (.7

0 AA

-0 --. 0 AM-

In the diagonal matrix, we have (n-m) diagonal zero entries (which always remain

zero), and m non-zero eigenvalues. In this decomposition, the nullspace properties

become apparent. The nullspace dimension is (n - m), and the first (n - m) eigen-

vectors are the nullspace basis vectors. The m non-zero eigenvalues and eigenvectors

multiply to give us our original KO matrix.

From Eqn. 6.17, we can see how to fill in the nullspace. We can replace all (n -m)

zeros on the diagonal with arbitrary real constants, ki ... kn-m. We can multiply this

out to obtain a full rank version KO, which will be called K,Full. The eigenstructure
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is now:

I-

0 0

0kn-m

0 A1

0 --- 0 Am

V 1

V 2

Vn

(6.18)

These arbitrary constants, ki, correspond to stiffnesses that will provide a restoring

force to any perturbations in the manipulator nullspace. This ensures that K,Full is

full rank, and thus, the robot will not have any uncontrolled nullspace motions. Now,

we can break up this full-rank joint space stiffness matrix into a rank m endpoint

stiffness matrix, and a rank n - m joint-space stiffness matrix that operates in the

nullspace of the joint-space stiffness matrix.

To examine how this might be done, we could treat the matrix multiplication in

Eqn. 6.18 as a sum of n rank 1 matrices of size n x n. This allows us to break down

KO,Full into an original KO component, and a nullspace-filling K,Null component:

KO,Full =KO,Null+Ko [vi k 1

+ Vn-m+1 A1, Vn-m+

V 1  -t+...+Vnmi kn-m

1 .+ n Am [- v

- ]n-m

n -] (6.19)

This summation can be written more compactly as:

(6.20)KO,Full= KONull +K= vikiv + viAiv T

i=(n-m+1)

Thus, the first n - m terms in the sum encode the filled nullspace portion of the
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matrix, and the last m terms in the sum represent the original KO matrix, which

encodes the original K, matrix. Thus, we can implement the endpoint-space portion

of the original controller (Eqn. 6.4), and add on an additional nullspace filling matrix:

r = J Kx(x0 - x) + K,Null(qo - q) (6.21)

This controller gives us the proper restoring torques (parametrized by ki ... kn)

without interfering with the desired endpoint behavior. As a simple verification, in

the case of a well conditioned Jacobian, if one computes K,Null from Eqn. 6.21 with

setting all arbitrary k values to unity, we will obtain the same matrix as NK from

Eqn. 6.5 if we set W = I (corresponding to J# = J+) and K = .

6.3 Comparison of Projection Behavior at Singular-

ity

In order to visualize the differences between the traditional and impedance based

nullspace projection approaches, a series of numerical experiments were performed

on a three link planar robot, with unit link lengths. The enpoint coordinates of

this robot were considered to be x [x, y T, which meant that the robot had

one degree of redundancy, since m= 2 and n = 3. The robot was assigned joint

angles q = 90-0, 0, -2T , and the parameter 0 was varied form 10° to 0°. This

manipulator is visualized in Figure 6-4 in'its initial configuration, and at a singular

configuration.

For the purposes of computing the projected nullspace torques using the tradi-

tional approach, a joint space stiffness of Kq= I was assigned to the manipulator.

This stiffness was associated with a nominal position q0 = [80, 10, - 2 0 ]T. This corre-

sponded to the initial state of the parameter 0. For the impedance based approach,

an endpoint stiffness of Kx = diag(10, 10]) was assigned to the manipulator.
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Figure 6-4: Three link planar robot in its initial configuration, and at singularity.

6.3.1 Traditional Approach

The nullspace projected torques given by the second term of Equation 6.5, with

the generalized inverse in N (Equation 6.3) being the Moore-Penrose pseudoinverse

carried out with MATLAB's default zero singular value threshold (which in this case

was 1.33 x 10-15). These nullspace projected torques are plotted in Figure 6-5.

This plot illustrates the step discontinuity in torques that occurs at the kinematic

singularity, due to ones becoming zeros on the main diagonal of S. If the zero singular

value threshold for computing the Moore-Penrose psuedoinverse of J is increased, the

discontinuity will still occur, but will be shifted away from 0 = 0. An example of

this, with the threshold set at 0.005 is shown in Figure 6-6. Here, the final torque

values were identical to the plot with the default threshold, but the discontinuity

was shifted to 0 = 0.297. As mentioned previously, there are many methods in the

literature for limiting the sharp step change in torques that arise from this approach,

but a detailed comparison with these methods is outside the scope of the present work

[Dietrich et al., 2012, Dietrich, 2016, Chiaverini, 1997, Deo and Walker, 1995].

6.3.2 Impedance Based Approach

In the impedance based approach, we first examine the eigenvalues of KO, which is

the reflection of the endpoint-space stiffness matrix, K,, into the joint-space. For a
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Figure 6-5: Nullspace projected torques along each joint, generated from the tradi-
tional method (the second term of Equation 6.5). Only the last degree of 0 is plotted.
While a vertical line connects the singularity point to the non-singularity curves in
this plot, this step is discontinuous. The data points were plotted with solid lines for
visual clarity.
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Figure 6-6: Nullspace projected torques along each joint, generated from the tradi-
tional method, with the zero singular value threshold adjusted to 0.005.
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Figure 6-7: The eigenvalues of KO. The values are plotted starting at 0 450, in

order to better visualize A

general robot, the eigendecomposition of Ko is given by Equation 6.17. As a robot

moves towards a singularity, A (and perhaps more eigenvalues) begin to steadily tend

towards zero. While this is happening, all computations performed with this control

law remain well bounded and continuous. When the robot does reach singularity,

A becomes zero. As this happens, all of the eigenvectors appear to rapidly shift

directions.

For the example three link system, there were three eigenvalues associated with

KO: Ao, ,, and A2. Here, A was always zero, due to the single degree of redundancy.

In order to form the null-space stiffness matrix, K,Null, this eigenvalue was always

replaced by an arbitrary constant, ki (which was set to unity). A in this experiment

was strictly positive in non-singular configurations, but gradually became zero as the

manipulator reached kinematic singularity. A2 in this experiment remained strictly

positive. These eigenvalues are plotted in Figure 6-7.

For the first numerical experiment with this approach, A was always replaced

with ki = 1, and A was allowed to become zero without replacement. Thus, the
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Projected Nullspace Torques (Impedance
Method, k1 only)
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Figure 6-8: The nullspace torques arising from replacing Ao with unity, but not re-
placing A1 .

nullspace stiffness was always given by:

KO,Null = vikv T (6.22)

Which, under the control law in Equation 6.21, gave rise to the nullspace torques:

anui = v 1 k 1 vT(qO - q) (6.23)

These torques are plotted in Figure 6-8. At singularity, there was an apparent step

in the manipulator torques. This step occurred as a result of the rapid changes in

the direction of vi when the manipulator reached singularity. While these changes

are in principle continuous, they happen extremely rapidly, so that for all practical

purposes, they will be experienced as torque discontinuities. The magnitude of these

torque increases depends on the magnitude of ki

The above experiment differentiated between the zero eigenvalues arising from

the redundancy, and the zero eigenvalues that arise at singularity. Eigenvalues of the

second type were then allowed to remain at zero. In real robotic systems, however,
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Figure 6-9: The nullspace torques arising from replacing A with unity, and A with
unity at singularity. Note the similarity to Figure 6-5.
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Figure 6-10: The nullspace torques arising from replacing A with unity, and A with
unity at a reduced threshold of 0.0003. Note the similarity to Figure 6-6.
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it may not be trivial to track the origins of all the eigenvalues that are zero at

singularity. Furthermore, allowing eigenvectors to remain zero at singularities in

high-DOF systems may lead to uncorrected drift in the manipulator's nullspace, if

the manipulator is held at singularity for any extended periods of time. A more

practical control scheme would be to automatically replace any zero eigenvalue with

a constant, k. This will lead to an actual step discontinuity in the nullspace projected

torques.

Furthermore, since this controller is implemented in floating point arithmetic, we

must specify a threshold for regarding a specific eigenvalue as zero, in order to replace

it with the constant nullspace stiffness parameter. An experiment was performed

where A was replaced by unity once it crossed a threshold of 1 x 10-. Due to the

selected sampling resolution of 0 this threshold was only crossed at the singularity

point. Thus, the nullspace projection torques were given by Equation 6.23 when the

manipulator was not at singularity. The torques at singularity were given by:

T(vTk1 v +v 2 k2 v )(qo - q) (6.24)

where k1 = k2= 1. These torques are plotted in Figure 6-9. At singularity, there is

a superposition of the continuous (but extremely rapid) torque changes from the ki

term, and the discontinuous step, which arises from adding the k 2 term at singularity.

These torque curves are identical to the torques generated by the traditional method

(Figure 6-5).

Now that the source of the discontinuity is isolated in the k2 parameter, one

potential way to eliminate the added discontinuity is to ramp up and ramp down the

value of k2 whenever singularity is entered or exited. However, this requires advanced

knowledge of the manipulator state, and is therefore not suitable for unpredictable, or

poorly modeled interaction tasks. Furthermore, this method requires a way to reliably

separate the redundancy zero eigenvalues from the singularity zero eigenvalues.

In the traditional nullspace projection, the discontinuity could be moved away

from the singularity point by increasing the threshold that set the singular values in
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Jacobian pseudoinversion to zero. In the impedance based approach, similar behavior

was obtained when the threshold for replacing A with k2 was increased. Figure 6-10

shows the resulting torques when the threshold was set to 3 x 10-4. These torques

appeared nearly identical to the torques plotted in 6-6. One item of interest was that

the additional increase in torques at singularity that was observed in Figure 6-8 was

absent from these torques.

This phenomenon was further explored by plotting the contributing torques from

each eigenvector and k pair for each joint individually. These contributions are plotted

in Figure 6-11. From these plots, several patterns were observed.

Before A crosses the arbitrary zero threshold, its associated eigenvectors do not

appear in K,Null. Thus, the total torque precisely tracks the A0 torque, and the A

torque is zero. Once A crosses the zero threshold, and gets replaced by k2 , there is

a discontinuous jump in the A torque (but not the A torque). This causes to total

torque to increase discontinuously as well. Finally, at singularity, both of the eigen-

vectors change direction extremely rapidly. However, the sudden torque contribution

from the A 0 eigenvector is exactly canceled out by the sudden torque contribution

from the A eigenvector. Thus, the total torque remains unchanged. From this we

see that the the discontinuity in Figure 6-8 was caused by rapid changes in the A 0

eigenvector torque contribution not being canceled by an equal and opposite rapid

change in the A eigenvector torque contribution.

This suggests that it might be possible to eliminate all discontinuities by ramping

up k2 before singularity is reached, such that at singularity, the sudden torque changes

from the two eigenvectors would cancel each other. This strategy is visualized in

Figure 6-12.

In this experiment, the threshold for substituting A with k2 was set at 0.0003.

When this threshold was reached, k2 was linearly increased, such that it would reach

its maximum value of unity before the manipulator reached singularity. Once the

manipulator reached singularity, the sudden torque increases from each set of eigen-

vectors cancelled each other. This led to perfectly smooth and continuous torques

into singularity.
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Figure 6-11: The torque contribution from each eigenvector on each of the three links.
The total torque is shown as a black dotted line, and the two eigenvector component
torques are depicted as dotted lines.
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Projected Nullspace Torques (impedance
Method, Torque Ramp)
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Figure 6-12: Eliminating all discontinuities on a predetermined trajectory by ramping
up k2 before singularity is reached.

This approach is not without its drawbacks. In addition to the aforementioned

limitations of requiring advance knowledge of the manipulator states (and thereby

not being able to apply the technique to unpredictable or poorly modeled tasks),

prematurely introducing k2 and linearly ramping it before the manipulator reaches

singularity will introduce errors in the desired endpoint behavior, which is the very

thing we sought to avoid by introducing nullspace projections methods. It should be

noted, however, that many of the methods meant to soften the torque jumps into

singularity for the traditional nullspace projection approach also introduce errors in

the desired endpoint behavior around singularities [Dietrich et al., 2012, Dietrich,

2016, Chiaverini, 1997, Deo and Walker, 1995].

In summary, the new controller given in Eqn. 6.21 provides identical performance

to that in Eqn. 6.5 inside the dexterous workspace, but with a reduced, and more

intuitive parameter space. At singularity, while the methods may appear to behave

similarly, the impedance based method can identify sources of discontinuity in a more

explicit and intuitive manner.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, the idea of reducing the human motor controller to an equivalent mod-

ulated impedance, and nominal position command was first discussed. This formed

the biologically inspired basis for impedance control in robots. An impedance con-

trol scheme for single and multi-DOF robots was derived, with and without inertial

compensation.

Chapter 2 discussed the linear superposition property of nonlinear impedance con-

trollers, along with applications to redundancy resolution in overactuated robots, and

simplifying the control of closed kinematic chain systems and collaborative manipula-

tion. The idea of breaking down complex tasks into simpler sub-tasks with individual

impedance controllers was explored. Finally, the potential to translate this idea to

very high-DOF humanoid systems was discussed.

Chapter 3 discussed the particulars of implementing this control scheme on a

Baxter Research Robot, including hardware and control software details. The issue

of numerical singularities with minimal coordinate representations of rotations in

impedance controllers was also touched upon.

Chapter 4 discussed the theory and methodology behind a set of system ID exper-

iments designed to evaluate the impedance controller performance in Baxter, and to

verify the compositionality of impedances in a closed kinematic chain configuration.
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It was found that a commanded static stiffness could be delivered by each individual

arm to within a 2% error. The static stiffness linear superposition was verified to

within a 3% error.

In terms of the dynamic damping and inertial parameters, step responses carried

out at a nominal stiffness of either 400 N/m or 500 N/m were found to yield sat-

isfactory second order response, while a driving nominal stiffness of 300 N/m was

insufficient to overshadow inherent nonlinear manipulator frictional effects. Endpoint

damping on the right arm was verified to be within 17% of the predicted value, while

damping on the right arm was found to be within 57% of the specified value. Since it

is known that the Baxter Robot is a low-cost manipulator with a large manufacturing

variability, this is not particularly surprising. Damping composition, however, was

verified to within 7% error.

Estimates for the endpoint x inertia were quite poor, but this may be due to a

variety of reasons. Since the inertia matrix has relatively sizable off-diagonal elements,

compared to the main diagonal elements, the upper right hand value might not be

particularly representative of the inertial behavior about the x coordinate. During

the step responses, displacements were observed along the y direction in the single

arm trials, but not the linkage trials. This may have impacted the accuracy of the

individual arm inertia measurements, in addition to causing the measured closed chain

inertia to deviate from the sum of the single arm inertia measurements. In any event,

it is widely acknowledged that obtaining accurate inertia measurements for a robotic

manipulator is a challenging task [Dietrich et al., 2015, Nakanishi et al., 2008].

Chapter 5 provided some sample manipulation tasks, including stable closed chain

manipulation into a singularity, along with an implementation of a shoe buffing task.

This is an example of a seemingly complex task which can be broken down into a

number of smaller tasks, each of which can be addressed with a separate impedance

controller.

Chapter 6 provided an overview of traditional nullspace projection methods and

a discussion of the projection's performance at manipulator singularities. A new,

impedance based implementation of the nullspace projection method was provided
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which may have improved properties over the traditional projection method for torque

controlled robots under impedance control.

7.2 Future Work

Many of the experiments, derivations, and discussions in this thesis have prompted

new avenues for potential exploration in future work. Several of these research topics

are listed here.

7.2.1 System Identification of Back-Driving Impedances

In Section 4.1, the difference between the forward driving dynamics (Eqn. 4.8) and

back-driving dynamics (Eqn. 4.9) was discussed. Between the two dynamic equations,

while the inertia and stiffness would probably be the same, there might be significant

nonlinear frictional effects, which would make the fitted forward driving damping

differ from the back-driving damping. For the purposes of an interaction controller,

identifying the parameters on the back-driving side potentially matter far more than

those on the forward driving side.

Since we have a two-armed robot platform available, one potential way to perform

this system identification is to have one robot arm in position control mode interact

with a second robot arm with an impedance controller running. If all interactions

are limited to a single coordinate, an approximation to these dynamics might be

two 1-DOF robot manipulators, as shown in Figure 7-1. The robots have effective

masses M 1 and M2 , and are actuated by actuator forces Fact and Fact2. The external

forces on each robot are given by Fet and Fext2. Let us also assume the existence

of some possibly non-linear (coulomb or viscous) joint friction forces (Ff) acting on

both robots.

Since the Baxter Robot has relatively high bandwidth torque control on the output

side of, the gearbox, it is assumed that Fact and Fact2 are known quantities. If we

clamp both robot end effectors together, we are left with the system depicted in Figure

7-2. Let us place robot 1 under a second order impedance controller, and robot 2 in
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Ff I Mi ~ M2 Ff2

Figure 7-1: Two 1-DOF robots to approximate the behavior of two 7-DOF manipu-
lators interacting along a single coordinate.

X

Facti Fact2
F 22

Ff Mi M2 Ff2

Figure 7-2: Two 1-DOF robots clamped together.

a very rigid, high-bandwidth position control mode.

Fact is given by our impedance control law: Fact = k(xo - x) + b(zo - z). Fact2

is given by an unknown control law which is presumably some very high gain PD or

PID controller, perhaps with a superimposed inverse dynamics feedforward controller

to compensate for inertial forces from M2 . We can model this as a controlled flow

source (Sf), and therefore, a system input. The closed loop system is depicted in

Figure 7-3. For the purposes of evaluating the interactive dynamics (rather than the

forward path dynamics), xo will be held constant at zero.

01k X Sf

Figure 7-3: Two clamped 1-DOF robots interacting one another. Robot 1 is un-
der second order impedance control, and robot 2 is in a very rigid, high-bandwidth
position control mode.
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One potential avenue for this system ID is to examine the dynamics of the en-

tire system. Assuming the second robot acts as a perfect flow source, and that the

combined robot system mass is M1 + M2 , the system behaves as follows, for a twice

differentiable commanded x(t):

Fact2 = kx+bi+Ffi +Ff2 + (Ml + M2 )2 (7.1)

This model isn't very workable in its current state, since it involves two (hopefully

identical) friction models. If we assume, as we did earlier, that the joint friction

for each arm can be modeled as viscous damping with a known value, we can fold

both friction terms into b and compensate for them in the fits. Alternatively, we can

ignore the friction terms and be cognizant that our fit for b will include un-modeled

nonlinear friction effects from two arms, rather than a single arm. It should be noted

that Ff Iis friction felt upon back-driving, and F2 is friction felt in the forward path.

If we assume known viscous friction and fold both frictions into b to get btnet, we are

left with:

Fact2 = kx +bnet+(Ml1 + M2 )2 (7.2)

Fitting the interaction behavior to this model presupposes the linear summing

of the masses, which was shown to be questionable in the aforementioned system

identification experiments. Additionally, if our actual x(t) doesn't track our com-

manded x(t) very well (i.e. if our assumption about robot 2 being a perfect position

source is invalid), then in order to force it into our framework, we are left with double

differentiating our actual x(t) signal, which is impractical.

Alternatively, we can change the causality of the system (consider robot 2 to be

an effort source, rather than a flow source) to get a proper system ODE. Now, we can

treat the measured Fact2 as the system's input function, and the measured x(t) as the

system's output function. We can integrate the ODE to getXint(t). This integration

can be nested within a non-linear optimizer to yield estimates for k, buet, M1, and M2

by driving the error between the measured x(t) and the integratedXzint(t) to zero.
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For any of these methods, all inertial estimates would depend on getting sizable

values for z, which might be difficult to obtain without having the Jacobian matrix

change significantly. Alternatively, if we are only after damping measurements, we

could use a ramp function for x(t), thereby yielding a zero second derivative.

This is only one possible method to yield a measurement of the back-driving

dynamics of a robot. Alternative methods might involve placing a force-torque sensor

between the two robot arms.

7.2.2 Tackling the Optimization Scale Up Issue

Another direction for future research is exploring the extent to which a compositional

impedance control framework could mesh with an optimization-based approach. The

approach with many trajectory optimization/MPC based approaches is to feed a high-

DOF nonlinear (or linearized) system with many constraints into a commercial solver

with a quadratic cost function, and hope for rapid convergence into a workable local

minimum [Tedrake, 2019, Kuindersma et al., 2014, Betts, 1998].

If the idea of splitting up a complex, high-DOF system into modular components

is viable, it would be worth examining how this could potentially assist with the

scale-up problem in optimization approaches. Instead of optimizing a large array

of joint torques over time, incorporating constraints from the entire system in one

large quadratic program (QP) or nonlinear program (NLP), one could solve several

smaller NLPs for desired impedance parameters and nominal trajectories over time.

Having many smaller, independent optimization problems running in parallel might

show improvements when compared to running a single, massive optimization.

One starting point for this might be to formulate a simple manipulation prob-

lem, such as a planar robot interacting with a spring. Automatically generating

impedance parameters and a nominal trajectory via optimization to satisfy a cost

function would be the first step towards this idea. Next, a high-DOF closed chain

system might be considered (consisting of two planar robot arms, connected via a

linkage, interacting with a spring). A comparison could be made between a naive

MPC approach, one large joint-space impedance control optimization, and finally
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two smaller superimposed endpoint-space impedance controllers with two additional

joint-space controllers to manage redundancy, all generated via optimization.

7.2.3 Impedance Based Nullspace Projection Behavior at Sin-

gularity

One final question generated by this work is how the impedance based nullspace

projection method behaves at singularity for robots with more degrees of freedom

and redundancy. Implementing the impedance based method in a simulator and

on real hardware to compare with the traditional method are important next steps.

Another question that may be worth pursuing is to develop a method to separate

out the n- m ever-present nullspace dimensions from the m - r additional nullspace

dimensions gained at singularity. For parts of the dexterous workspace where the

eigenvectors tend to change very little in direction from one control loop iteration

to the next, this should be a straightforward problem to implement. However at

locations near singular configurations, the eigenvalues and eigenvectors may to change

very rapidly over a short distance, which may pose a challenge for tracking them from

one time step to the next.

Finally, it is important to acknowledge that the literature on nullspace projections

and smoothing torque discontinuities at singular configurations is vast. Therefore,

it is highly likely that improvements in methodology can be sparked by surveying

this literature, and performing comparisons of various projection techniques to the

impedance based method.
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Appendix A

Expected Endpoint Stiffness,

Damping, and Inertia Matrices for

System ID Experiments

The following are the expected net endpoint stiffness (K,tota f0) damping (B,tota),

and inertia matrices (with and without reflected actuator inertias, Mx andM,tota,

respectively) for each individual right and left robot arm endpoint. These are gener-

ated using Jacobian matrices evaluated at ideal mirrored joint angles (The "Nominal

Angles" row of Table 4.2). This was done for simplicity, since the actual joint angles

deviated negligibly from these nominal angles. When a ± sign is given in the matrix,

the value is positive for the left arm, and negative for the right arm, and vice versa

for the T sign. All of the matrices are symmetric, and the values were rounded to

two decimal places (zero entries may represent small values).

A.1 Net Endpoint Stiffnesses

These matrices are generated using Eqn. 4.2.
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Kx,total,500=

Kx,totat,400=

Kx,total,300

504.00 ±0.91

500.25

404.00 -0.91

400.25

304.00 -0.91

300.25

A.2 Net Endpoint Damping

This matrix generated using Eqn. 4.4:

Bx,totai

31.44 ±1.37

35.14

-2.62

-F0.28

28.04

114

8.45

-F1.95

518.38

8.45

±1.95

418.38

8.45

-F1.95

318.38

-0.01

0.00

0.00

5.00

T-01

-0.01

0.00

0.00

5.00

±0.01

0.00

0.00

5.00

1.86

±0.43

4.04

0.00

5.90

1.86

-0.43

4.04

0.00

5.90

1.86

O.43

4.04

0.00

5.90

±0.18

-0.06

±0.42

0.00

±0.09

5.02

±0.18

-0.06

±0.42

0.00

±0.09

5.02

±0.18

-0.06

±0.42

0.00

±0.09

5.02

(A.1)

(A.2)

(A.3)

-±0.47

-0.30

±1.12

0.80

-0.20

T0.21

3.74

±0.59

2.76

±-1.12

-2.12

±0.64

0.22

±0.21

2.17

(A.4)



A.3 Net Endpoint Inertia

This matrix is generated using Eqn. 4.5:

4.40 T-2 .4 3 -0.38 0.00 -0.07 ±0.57

. 8.77 ±1.07 -0.01 ±0.25 -1.83

- . 3.76 0.00 0.67 T0. 2 5

0.00 0.00 0.00

- . . 0.14 T.06

. . . - - 0.40

This matrix is generated using Eqn. 4.7:

11.53 T-5. 2 9 -1.73 TO.01 -0.34 ±1.14

. 12.16 ±1.47 -0.04 ±0.33 -2.66

M,total = . - 7.38 -0.09 1.58 -FO. 3 2

0.04 ±0.04 0.01

0.43 T-0. 0 7

0.65
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Appendix B

Motions Along y and z Coordinates

During Step Responses

While the step responses performed in Section 4.4 were only along the endpoint

x coordinate, there were still some small residual oscillations and accelerations that

occurred in the orthogonal endpoint coordinates. Plots of the endpoint displacements

along the y and z coordinates are given below. All of the plots have axes which are

scaled identically to those in Figures 4-7, 4-8, and 4-9, and are therefore directly

comparable. All step commands occur at 1 second.

For the 500 N/m responses, there were some residual motions along the y coordi-

nate in arms for the individual arm step responses. These motions peaked at about

1.5 cm relative to the nominal positions. There were very few residual motions along

the z coordinate for the individual arm step responses. There were nearly no residual

motions in the linkage step response.

The residual y motions for the 400 N/m responses were of slightly lower ampli-

tude, peaking at about 1.5 cm relative to the nominal y position. Results for the z

coordinates were similar to the 500 N/m case. The residual y motions for the 300

N/m case were of even lower amplitude, peaking at about 0.8 - 1 cm, and were slightly

slower than the 500 N/m and 400 N/m cases.
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Left Arm Z Displacement, 300 N/m
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