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ABSTRACT

This thesis consists of two parts, the first part is con-
cerned with nonlinear panel flutter and the second part con-
centrates on the interaction of panel flutter with forcing
excitation. In both parts von Karman's plate vibration theory
and linear Piston Theory are used to represent the elastic
forces and aerodynamic forces respectively.

The effect of aerodynamic damping u/M, membrance forces
Rys Viscous structural damping gg and hysteretic structural
damping g, on the flutter response are studied for both two-
dimensional simply-supported plate and three-dimensional
clamped-clamped plate. The effect of the length-width ratio
a/b is also studied for three-dimensional plates. Among these
parameters a/b and u/M are favorable both in stabilizing the
panel and limiting the amplitude of flutter. Membrane force
is unfavorable in destabilizing the panel. Both viscous and
hysteretic structural damping are unfavorable in both destabiliz-
ing the panel and making the flutter explosive once the critical
dynamic pressure Ac is exceeded.

Forcing excitation tends to increase the flutter stability
pboundary. Over a certain range of forcing frecuency §, pure
forced response may exist for a dynamic pressure ) well above
Ag. Coexistence of both the pure forced response and forcing-
flutter interaction are found over a certain range of Q and A.
For some fixed Q, a jump in the response resembling the on-set
of flutter may be found at a A much less than kc.
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CHAPTER 1

INTRODUCTION

This thesis consists of two parts. The first part concentrates
on the study of nonlinear panel flutter and the second part is
concerned with the nonlinear interactions of panel flutter and
forcing excitations.

Panel flutter is a self excited oscillation of a plate
when supersonic airflow passes by one side of it while the air
on the other side remains stationary. People became interested
in this problem when sustained and sometimes destructive,
vibrations were observed on certain skin sections of the German
V-2 rocket. This problem was first studied theoretically by
Milesl, followed by Shen2 and dozens of authors in the last
two decades.

Panel flutter results from the interaction of the inertia
force of panel, the elastic force associated with the panel
deformation and the aerodynamic pressure brought about by the
motion of the panel. The last one extracts energy from the
airflow and causes instability of the panel at its undeformed
position when a certain critical dynamic pressure is exceeded.
Hence an initial disturbance would result in a growing ampli-

tude oscillation. This growing, however, is limited by the
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membrane force induced by the large deformation of the panel and
the constraints at the boundary. The balance of destabilizing
dynamic pressure and stabilizing membrane force results in a
sustained limit-cycle motion.

In all the published papers, two expressions of the elas-
ric forces have been used. The first is the linear plate
vibration .theory. This expression is simpler and used by most
of the earlier investigatorsl—7. Theoretically, this analysis
can predict the flutter boundary (critical dynamic pressure)
correctly. But because this theory is good only for infini-
tesimal displacements, it is difficult to compare this analyti-
cal results with experiments since during the transient response,
the deflection could be so large that the linear theory is no
longer valid. Another drawback of this analysis is that, it
cannot predict the panel behavior after the critical dynamic
pressure is exceeded. The second expression of elastic forces,
which has been employed by many investigators recentlys-lz, is
the nonlinear plate vibration theory or the von Karman large
deflection theory. By introducing the nonlinear terms, the
problem becomes much more complicated and only approximate
solutions can be obtained. Because this analysis can remedy
the two drawbacks mentioned above, it is employed in this
thesis.

Five aerodynamic theories have been used in the previous
analysis. The first and the simplest one is the two-dimensional

static aerodynamic theory employed by Hedgepeth6 and others.

The second one is the two-dimensional quasi-static aerodynamic
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thecry employed by Dugundji7 and others. The third one is the

13 employed by Dowell10 and others. The

linear Piston Theory
last two differ from the first one in taking into account the
angle of attack caused by the velocity of the plate motion. Hence
some sort of aerodynamic damping is included. The third one
differs from the second by approximating M2—1:M% M2—2:M2, where
M is the Mach Number of the airflow. The fourth one is the
three-dimensional linearized, invicid aerodynamic theoryll’l4-l6.
This takes care of three-dimensional effect but results in a
much more complicated calculation of the aerodynamic forces.
The fifth one is the nonlinear piston theory employed by
Boloting. This nonlinearity introduces some destabilizing
effect. Because this nonlinearity is not likely to be impor-
tant as pointed out by Dowell10 and because of the complexity
involved, it is seldom used. As shown by Dixon17 and others,
the first three theories yield good results for high Mach
Number, M>1.6, and low initial angle of attack, and because of
their simplicity, they are the most often used ones., Since
the third one takes care of the aerodynamic damping, and is sim-
pler than the second one, it is employed in this study.

The compressive membrane forces caused by aerodynamic
heating always make the panel more prone to flutter as shown
by Hedgepeth6 and others. Failure to define and control the
membrane forces in earlier experimental work have been regarded
as one of the major causes of the discrepancy between experi-

mental and analytical results. The aerodynamic damping parameter,

represented by mass ratio /M, always makes the panel more stable
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and limits the flutter amplitudes once the critical dynamic

11

pressure is exceeded, as has been shown by Dowell™™, Morino,

Kuo and Dugundjilz. The strange role of the structural

damping on the stability boundary has been studied by Dugundji7*
and others for simply-supported panels. Because the actual
amount of structural damping is difficult to determine and
because a small amount of structural damping changes the
stability boundary substantially, some of the discrepancy
between experimental and analytical work could be attributed

to the failure to measure the structural damping correctly.

The effects of these parameters, along with that of length-
width ratio, on the flutter behavior have been carefully

studied in this thesis.

The flutter of buckled panels have been studied by Fungla’lg,

21 22

Eiselyzo, Houbolt and Fralich®®., 1In these studies, only the

stability boundary is sought. The flutter of curved plates

23 24 25,26

and shells are studied by Olson“”, Evensen”  , Dowell and

etc. The effect of flow direction on the flutter response has

27 and Friedmannzg. The effect

of boundary layer on panel flutter has been studied by Dowellzg,

been studied by Kordes and Noll

Some excellent summaries of panel flutter have been done by

30,31 32,33 34
r

Johns Fung , Dowell and Dugundji7. Some experi-

ments on panel flutter have been performed by Sylvester35,
Dixon36, Stearman37, Anderson38, Kappus and el39.
Several methods can be used to investigate panel flutter

problems. In linear sclution, only the critical dynamic pressure

and the normal modes of vibration are of interest, one can solve

*See also "Errata and Addendum,” AIAA J., Vol. 7, No. 8, August
1969, pp. 1663-1664.
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the problem exactly, see Goland3 and Dugundji7. In nonlinear
systems, exact solution to the partial differential equation

is a matter of art. The approximate technique most often

used is to assume normal-mode representation of the deflection,
then apply Galerkin's Technique to reduce the system to a set
of nonlinear ordinary differential equations. Various methods
can be used to solve this set of nonlinear differential equa-
tions. First and the most straightforward method is the direct
integration of the equations of motion from given initial con-
ditions. This has been used with considerable success by

4
10,11 and Ventres“o, see also Evensen and Olson24.

Dowell
Secondly, the equations of motion can be placed on an analog
computer with nonlinear compcnents, and the response observed.
Kobayashi9 and Bolotin8 have used this method. Thirdly, the
harmonic balance method can be used to determine the steady
limit cycles; see for example Kobayashig, Boloting, Eastep and
McIntosh4l, Morino, Kuo and Dugundjilz. Fourthly, the Kryloff
and Bogoliuboff method can be used to find both the transient
and limit-cycle solution, see Olson and Fung42. Fifthly,
perturbation methods can be used to obtain neighboring solu-
tions to the linear problem; see Morino43, Morino and Kuo44.
Finally, Lyapunov stability criteria can be used to study
qualitatively the nonlinear behavior of the response. Such a
technique has been employed by Librescu45.

In the first part of this thesis, the problem of panel
flutter of both two-dimensional simply-supported plates and

three-dimensional clamped-clamped panels has been studied. The
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harmonic balance method has been employed in a systematic way
so that one can include as many modes as a good convergency
requires. Because this approach takes much less time than
the direct integration method, it enables one to go through a
thorough study of the problem at a reasonable amount of com-
putation cost, hence proves to be a good alternative to the
direct integration method.

As one knows, the frame of a flight vehicle, on which the
panel (skin) is mounted, is not rigid. Hence during the flight,
vibration of the frame due to elastic deformation or noise from
the engine is possible. This vibration induces some inertia
loading on the panel, This inertia loading and the gust
loading make the panel constantly exposed to external excita-
tions besides that due to passing air. So in order to under-
stand the behavior of the panel during a flight, a forcing
excitation should be considered in the formulation of the

46 studied the forcing response of a gquasi-

problem. Dzygadlo
linear system at the dynamic pressure approximately equal to
the critical dynamic pressure of the panel., Some bubble-
shape solutions were obtained at A>A, and very small non-
linearity. Because of the small nonlinearity included in
this study, the lack of data for X<Ac, and because only one-
frequency solutions were sought, the study does not give a
complete picture of the behavior, and does not predict the
existence of flutter response besides the forcing response.

In the second part of this thesis, the interaction of panel

flutter with a harmonic forcing excitation is studied for the
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whole range of dynamic pressure A=0 to A>>Ac: The existence
of the flutter components as well as the forcing components
are sought. Harmonic balance method is the main tool used
in this investigation. Some of the results are checked by
the direct integration solutions obtained by this author.

It is hoped that this study would contribute a better under-

standing of the panel behavior during the flight.
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CHAPTER 2

NONLINEAR PANEL FLUTTER - THEORY

2.1 Irntroduction

In this chapter, the problem of panel flutter is studied.
As mentioned in Chapter 1, panel flutter is a self-excited
motion, When the speed of the air flowing over one face of
the panel is low, the plate motion will subside after an
initial disturbance. However, when the speed is increased and
reaches a certain critical value, some sustained motion can be
observed. Linear plate theory can predict this critical speed
by the classical stability analysis. This linear analysis can-
not give us the relation between the speed of the air and the
amplitude of vibration of the panel after the critical air
speed is exceeded. So, in order to obtain meaningful panel
flutter response, nonlinear plate vibration theory has to be
employed. A brief derivation of the nonlinear plate vibration
is given in sub-section 2,2.1 for a two-dimensional simply-
supported plate and in sub-section 2.2.2 for a three-dimensional
clamped-clamped plate. These two cases are studied here because
the former is the classical formulation, more data are avail-
able to check the results obtained by the method employed in

this study and the latter a more realistic representation of
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of the real problem. Since Mach Number M>>1 and the slope of
the vibrating plate is small, linear Piston Theory13 is used
to calculate the aerodynamic pressure exerted on the plate.
The complete equations of motion, Eq. 2.7 for the two-dimen-
sional plate and Egs. 2.22 and 2.23 fo; the three-dimensional
plate, are nonlinear partial differential equations.

In order to avoid the complexity of the problem, Galerkin's
Technique is used to eliminate the spatial variables and reduce
the equations to nonlinear ordinary differential equations. A
brief description of the Galerkin's technique is given in
Section 2.3. The application of Galerkin's technique to the
two-dimensional simply-supported panel and the three-dimensional
clamped-clamped panel are given in sub-sections 2.3.1 and 2.3.2
and the spatial series representation are given in Egs. 2.33
and 2.37 respectively for the two types of panels.

The resulting equations, Egs. 2.34 and 2.48, are studied
in Sections 2.4, 2.6 and 2.7. In Section 2.4, attention is
focused on finding the steady state or limit cycle solutions.
Since wind tunnel experiments shows that periodic vibration
exists for the dynamic pressure A greater than a critical
value Ac' and because direct integration method takes a lot
of computation time, the Harmonic Balance method is employed
here. The steady state solution is assumed to take the form
shown in Eg. 2.49. Employing this equation in either Eg. 2.34

or Eq. 2.48, and balancing the first harmonic, one obtains a

set of simultaneous nonlinear algebraic equations shown in
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Egs. 2.50 and 2.51. These equations are solved by Newton-
Raphson's iteration technique to obtain the steady state solu-
tion. Because this Harmonic Balance method gives both stable
and unstable solutions, a stability analysis of these solution
is given in Section 2.5 by giving a perturbation to the limit
cycle solution and studying the behavior of the perturbation
function,

Section 2.6 is concerned with the transient response.
The time required to reach the steady state is of major interest,
so only the envelope of the transient response is sought. Sec-
tion 2.7 is concerned with the static buckling solution. An
exact two-mode solution of a two-dimensional, simply-supported
plate is given to illustrate the conditions for the existence
of the static buckling solutions.

The results of the panel flutter solution are discussed
in Chapter 3 and are shown in figure form at the end of this

thesis.

2.2 Formulation of Problem

2.2.1 Two-Dimensional Simply-Supported Panel

The problem studied in this section is a simply-supported
two-dimensional plate with air flowing over one of its faces,
while the air on the other face remains stationary. The con-
figuration of the plate is shown in Fig. 1, where a is the
length of the plate, h is the thickness of the plate, k is the
spring constant at one end of the plate and it is assumed to be

equal to infinity in the calculation, U is the speed of the air-
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flow, x is the direction of the airflow. Let w denote the out
of plane displacement of the plate, then the equation of motion

of the plate can be represented by*

(2.1)
=0k 28+ puw) 1 AP
where 55 - the viscous type structural damping coefficient,
55 - the hysteretic type structural damping coefficient,

both are associated with bending,
P the density of the material of the plate,

Nx - the membrane force,

p(w) - thg pressure difference between the lower surface
and upper surface of the plate caused by the
deflection of the plate,

Ap - the static pressure difference.

N, may consist of two parts, one is the applied membrane force
a

Nx and the other is that caused by the deflection of the plate

wa. So one can write

Nix = Net Nz 22

where
E 2 w2
bJ;W:‘J 7;i§-.f; (;az) cﬂgﬁ (2.3)
and

o= Ra/(Ra+ER) | (2.4)

Since the plate is originally parallel to the airflow,

*, associated with g, represents the frequency of vibration.
This device is commonly used for hysteretic type structural

damping,.
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and the displacement w is small compared to the length of the
plate, the linear Piston Theorle, can be used to determine

plw), i.e.

. 28 L ow
Plur) = [ax g 52 | (2.5)

where M is the Mach Number of the airflow and q is the dynamic

pressure, which can be expressed as

‘Z - é.(L,LIZ (2.6)

where N is the density of the air.

If the plate has uniform thickness, D is constant., If
there is no body forces acting on the plate in the xX-direction,
is constant., Using relations 2.2 to 2.5, Eq. 2.1 becomes

a
NX

DLlf&ﬁTﬁgsﬁ’ [Nx‘fd f( )d] =

02 a-t’- 4 28 M [ ]* ap (2.7)
Use the following nondimensional parameters
i= %/a T=¢t[0o/80a1%
W=W/&  A=28%%p M=(lspp
(2.8)

N4y P=ataipp

1]

Fx
- - v/
35= 3s[D /p.hat 1% 909, w-ol[0f 4]

Eg. 2.7 becomes
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(1t ds3% +1 3%33‘1-6«(: V)[f( )43]

_R, ZW , 2w +g__uL (/"- /2_JN - P (2.9)
Za;’ 9'[’

Eq. 2.9 is the nondimensional form of the equation for panel

flutter. The boundary conditions for avtwo-dimensional, simply-

supported plate, written in nondimensional form, are

' W
= 2W _ o at £=0 and £=1 (2.10)

Solving Eq. 2.9 subject to the boundary conditions, Eq. 2.10,
for A greater than a certain critical value, one can obtain
the flutter amplitude and the corresponding frequency as func-

tions of v, R, u/M, 9gr 9y etc.

2.2.2 Three-Dimensional Clamped-Clamped Panel

The problem studied in this section is a three-dimensional
clamped-clamped plate, subject to airflow on one side of its
surface while the air on the other side remains stationary.

The geometrical configuration of the plate is shown in Fig. 2,
where a, h. U represent the same physical properties as those
for a two-dimensional simply-supported plate, b is the width
of the plate. Note that if b»>x, we have a two-dimensional
panel. The equation of motion in the out-of-plane direction

can be written as
- i a
D (14 gs‘a?'t'*ﬁg )[ 3x4+2 aga ]'?6'!'& at2 (2.11)

= "kax‘*Nﬁ ?‘JZ*ZN"’ + o) +8F
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where D, Es, 9pr Ppr Ny p(w) and Ap are the same as those de-

fined in subsection 2.2.2, N_ is the membrane force in the y

direction and ny is the in-plane torsional force.

The equilibrium equations of the in-plane forces8

are
2 2 - (2.12)
;) )
= Ngy T 2g Ny=0
or M4 "oy T (2.13)
Introducing a stress function ¢, such that
_ 2 a
2° Q
= = 1
Ny = Sz TNY (2.14)
2% a |
Ny = T axoYy H\\"?

where Nxa and Nya are applied membrane forces in the x and y

direction and substituting relation 2.14 into Egs. 2.12 and

2.13, one can see that these two equations are satisfied

automatically.

Another condition that has to be satisfied is the com-

patibility condition. The compatibility condition is briefly

derived in the following: for large deflection w, €_, ey, and

exy should include the quadratic terms in w and its deriva-

tives, that is



x 2%
I, owW 2
5%-%‘_‘;.;-5(—3—) (2.15)
L, 9V, 2U 4y, -L aW 2w
Exy=7(2% 25 )Y 2 22 2y

The stress-strain relations for plane stress problems are

€x = Fp(Nz- YNy )
f.é‘""'g(“&‘”‘\j") (2.16)
Ery = 4 Ney
Combining Egs. 2.15 and 2.16, one obtains
(2.17)
2 =2 (Ne-yNy) - (2
i A ew
%§:"Z(NaVNM) 2 3) (2.18)
drauw v, _ 1V | oW 2w
2("' "")‘“'_ Nx "2 3o 34
°¢ °x 4 T2 55 29 (2.19)

Differentiating Eq. 2.17 with respect to y twice, Eq.‘2.18

with respect to x twice and Eq. 2.19 with respect to x and vy,
then adding up the first two equations and subtracting two

times the last equation, one obtains

L élﬁ:_ 2'Nx , 2Ny th
Eﬁ[ 2 Vo T 222 7 2Y?
) (a‘_x_d‘ o W Fw
“towy’ Tkt oy

-2(14V) a——-"Y] (2.20)
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Eguation 2.20 is the compatibility condition tO pe satis-
ameters defined

2.14, the nondimensional par

fied. Using Ed.

in Eq. 2.8 and letting

a r
R‘d - N‘é a/D (2.21)
A =% n=4/b
egs. 2.11 and 2.20 can be rewritten as *
9 2N
(1t ds3z 1 15362) [———-—+2A°?3 1-\'A a']*]* t’
"Rx'g!;—z +RyAa%v,l!, )..‘g'i" + —-—’)yz oW +P (2.22)
+-—{” gw , 22 W . , 22 ib'.
a'lz 93 ?31 alZ?. za"l 2331
4— 4?' 4 aé? 2
2= +2 =20y DA
T + 2A T Tl +A e I D, {(aga'(
sw 2 W (2.23)
73‘ ?’1‘}
jons to be

These are the two governing differential equat

solved.
The out-of-plane boundary conditions for a clamped—clamped
plate are
2W
N‘-‘-'—"'-‘:O atEOand€=
3 (2.24)
W= —a-w" = Oat n=0 and n=1
e inplane poundary con-

one requires th

For convenience,
instead of

ditions to be satisfied in an average sense, i.€.
a
is set to zexro.

*NXY
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_ 1 a a a
requiring Ax = R (NX —vNY 2) and Ay = R (Ny -VN_ ), one re-

.—l

quires
Jﬁxd'l IJ djdz (N:-)}N;) (2.25)
[ agdy = [ 2Edudy=gg (g2

hJ‘we.
* (2.27)
Using Egs. 2.14, 2.17, 2.18, 2.19 and the nondimensional
parameters expressed in Egs. 2.8 and 2.21, Egs. 2.25 and 2.26
can be rewritten as

‘e L 228 _ 2% 4 (2.28)
.Uo[zﬁ,’('Aa'(l Vag*’ (a} y]didr=0

J:L‘f’g'z(%%- i,f A2 1dyd1=o

(2.29)

Egqs. 2.24, 2.27, 2.28 and 2.29 are the boundary conditions to

be satisfied when we solve Egs. 2.22 and 2.23.

2.3 Method of Solution

Galerkin's Technique will be used to reduce Egs. 2.9,
2.22 and 2.23 to a set of equations having time T as the only
independent variable. This process involves expressing the

transverse deflection W in the following form

W= E i W (T) 5 3) K1) (2.30)

m=| N
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where Cm(E)Cn(ﬂ) is the assumed mode-shape of deflection and
must individually satisfy the out-of-plane boundary conditions.
In order to represent W exactly, cm(E)cn(n) must form a com-
plete set throughout the whole plate. After choosing the set
cm(E)cn(n), one substitutes Eq. 2.30 into the governing dif-

ferential equation

Diw)=o (2.31)

then uce the assumed mode shape as a weight function, satisfy

Eq. 2.31 by setting the weighted residual to zero47, i.e.

L'L‘ Fn (1 5.(1) D (W)d3d =0 (2.32)

This will yield M x N ordinary differential equations for Wone
M and N are the upper limits of m and n respectively. After
solving these ordinary differential equations, one has the
complete picture of the response.

Application of this technique to our present problems are

discussed in the following two sub-sections.

2.3.1 Two-Dimensional Simply-Supported Panel

Because the plate is infinitely long in the y-direction
and the air is flowing in the x-direction, it is reasonable to
assume that the lateral deflection is not a function of y.
From the previous statement of this section, one would assume
a deflection mode shape which will satisfy the boundary con-

ditions stated in Eqg. 2.10. Hence one assumes

W= 2 Wylinnt 3 (2.3

nai.
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where Wn is a function of the time factor 1. Note that sine
series is a complete set, it can represent any function of
£ except at the point of discontinuity.

Placing Eq. 2.33 into Eq. 2.9, multiplying it by sin mmg
then integrating it from £=0 to £=1, one obtains the following

set of equations*

Z [anw fqmnwu* ﬁBm,.ana.Eann‘l'KmW]

(2.34)

+
n'%»-lcmn, 2 Wh Wy Wz =0

where the coefficients are defined as follows
m
val.z Su
Iz, ~ ~
y aqcm _ Q%
G wn= [A2 )24 g m*T*]ST = X' Gnt 85 Gonm

Ganm: 55 m41r4§:

Kma = M2 [ 0% 1 Re ] 85 N

2rn [i- (- 1)™"]
m - R

Evn =

Cmnpg = 3022 (1) G1)'ST 5]

So the partial differential equation, Eq. 2.9, has been
reduced to a set of ordinary differential equations, Eg. 2,34,
having 1 as the only independent variable. According to 4if-

ferent objectives, equation 2.34 will be solved in sections

*P is set to zero.



-31~
2,4, 2.6 and 2.7.

2.3.2 Three-Dimensional Clamped-Clamped Panel

A simple set of functions that can satisfy the out-of-
plane boundary conditions of a clamped-clamped plate, i.e.
Eg. 2.24 can be written in the following formx

oo A
W= 3, Wen [Co8m-DT3- cogCms 1) 3] [eootnT T-coon+ 971 ] (2. 36)

‘ m, =1

Because the airflow has no velocity component in the y
direction and the strain energy is roughly proportional to n4,
where n is number of the mode shape, higher modes are not
likely tc become important in the y direction unless there are
some special constraints at the boundaries, i.e. high in-plane
loadings, etc. So it is reasonable to assume that the deflec-
tion shape in the y-direction can fairly well be represented

by the first mode shape. Hence Eg. 2.34 can be rewritten as

N
W= ..Z'a. W [ €06 (m-1)73- cootmen)[3] (1 - coo 27 (2.37)

Note that the particular solution fp for a function £

which satisfies the following equation

L, 2T £ e mytesem (2.38)
o 2 et Ao f, cog my3 cony T

is

fo
f? NCEY 3 coo w1 cod T (2.39)

for m and n not equal to zero at the same time.
Substituting Eq. 2.37 into Eq. 2.23 and -using Eg. 2.39, one

"can. find the particular solution of 3

*This is a complete set since it is a linear combination of
the cosine series, which is a complete set.
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G, [ Acod 417 + G co0 2T Jeoa (p-3)73
+[@ + B eogdnl + Heaa271] cod (p-3-2)73

t[R+Ccooaq+ Icoo2T]cod (p-3t2)7F

(2.40)
1[5 +DcsadT+ T cag27lIco0 CPTEIT
+ [ T+E cosan] 1M csd271]Cod LPHE-D)T3
+ [U + Fesgarq + N 80217 ] cod (43e2T3
where the coefficients A, B........ are defined in Appendix A

with details of the calculations.

In order to satisfy the boundary conditions, Eq. 2.27,
2.28 and 2.29, a homogeneous solution of § is needed. For
simplicity, one assumes

2, ='2"'[le'(2 'H:la}z-tz N,q}'? ] (2.41)

omo

where ﬁé, ﬁ&, and ﬁ#y are constants to be determined.

Note that the total solution of ¢ is ¢= Ehomo + §§arti:

Egs. 2.27, 2.40, 2.41 and 2.14 yields

N"3 =0 (2.42)

Substituting Egs. 2.37, 2.40 and 2.41 into Egs. 2.28 and

2.29, one obtains
1 |

x’u—_vT)A;(I.-tAzVIz) (2.43)
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| 2
L (1.)’+1;A ) (2.44)

N,=
where

N
I,= -}u-v’)q’u g' g'w?wz[z(nﬂ )5{

(2.45)
P10 Sy - (P31 Sgra ]
_ .. NN P P8 F P12
Iz = 6(!-1)3)1]' D %'zz;' w"pw; [2631‘52 "'ngz“sz ] (2.46)
So the total solution of ¢ is
| A 2 2 2 2
¢ - q’r*zo_-ﬂ-‘}[h’ (T4 AV )TV + 1A T ] (2.47)

where §§, I, and I, are defined in Eqgs. 2.40, 2.45 and 2.46
respectively.
Substituting Eq. 2.37 and 2.47 into Eq. 2.22 and applying

Galerkin's Technique, one again obtains

N
“Z..I {Mgn_wQ? Gr.m,V;/n 1';’5&8"15 V:In T K'nn Wn.

(2.48)

N
+AE, Wa ] + 2. 7 WaWep Wg = 0 for m=1,2....N
BT

where the coefficients an, G

mn’ Gan, K E and C

mn’ “mn mnpg are

defined in Appendix A. Eg. 2.48 constitutes a set of ordinary
differential equations. The upper limit N is determined by the

convergence of the modal representation. Eg. 2.48 will be
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solved in Section 2.4, 2.6 and 2.7 respectively according to

different objectives.

2.4 Steady State Solution

In this section, the steady state solutions of both Egs.
2.34 and 2.48 are obtained. Since they appear in the same
general form, only one discussion is given for both equations.

15,37 and results from direct

Wind tunnel experiments
integration methods show that a periodic solution generally
exists when the panel reaches its steady state motion for the

dynamic pressure A greater than a certain critical value Aee

S0 one can assume, for A>Ac, that

Wos QuAon W + bn Cog we (2.49)

where a, and bn are constants to be determined. Once a, and
bn are determined, th:: whole solution of panel flutter is
obtained.

Substituting Eqg. 2.49 into either FEg. 2.34 or Eq. 2.48,
and balancing the first harmonic, one obtains the following

two sets of equations. o

fomat (X) = Z L= Mo 0™t Koo YA Evnn JO (0 Gt §Bran) b ]
(2.50)

N
| =
* 4,25 Crupy (302505 4 O bpby + by by + bubpQg =0

[\
fom(Z) = 22 LEMn0* 4 Ky + A B JbnH (0 Gt GBron ) Q,e ]
+Z ﬁ Cmrzfsbnbbbgﬂ,,aragmnbraz +QnQy Z)]‘ (2.51)



-35-
Equations 2,50 and 2.51 constitute a set of 2N simultaneous
algebraic equations. So, instead of solving a set of ordinary
nonlinear differential equations, one has to solve a set of
nonlinear algebraic equations. Giving a value of A>Ac, both w
and the amplitude of vibration, hence an's and bn's, are fixed.
Because Ac is not known beforehand and the relation between A
and w is not known, one assumes both A and w as unknowns in

solving Egs. 2.50 and 2.51 and at the same time let a, equal

1

to zero and bl equal to a certain number. The value of bl
will determine the level of the amplitude of the vibration
and the value X and w. Rewrite Egs. 2.50 and 2.51 in vectorial

form

(&

- =0
f(’}_) =1 (2.52)
Ny
where x is the unknown vector to be found, or
A
[
3:
= (2.53)
(AN I
\bs}

Eq. 2.52 is solved by Newton-Raphson iteration technique. The

iteration formula is

(2.54)

”n

(%iﬂ) : (%L‘)- j‘i(gl.)i(%‘)
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where §i+l is the i + lsf iteratior value of the unknown vector
X, gi the ith iteration value of X and J(xi) is the Jacobian
of the vector g(g) calculated for x = §i, The Jacobian J(§)
is obtained by the partial differentiation of the vector f(f)‘
With the unknown vector chosen in Eg. 2.53, the Jacobian of the
vector—f is defined as

N ~

jzn-a, = Z Emhan - ‘-sz- w Zl Gr,...,bn

Tomy2 = -20 2 M,,,,,On-é Gmnbn
Fons2tey = =00"Mue + Kmg + L Eme 1 ZL.%,CM% [(3a,4
sbyby )% +(38uag+ bubg ) 55+ (30.0p +habp) 82 ]
Jamt,20 % 0 Gmg = GBue 17 ,.,Z: mapg L (Qpby+ g bp)S
+ (bnlg +Qnby) 5% + (ba a?+ Qnbyp) Y

]—lm t - i Emnbn*zlwzq’"mqﬂ

nal

jzm,?- - - 'ézw M'nmbn + g} G’Man_
- | jg c: [ b b n
Jam20-1 = Gma t GBmg + 7. (Qpby+0ps)oe (2.55)
+ (Axbg+bnQg)Sh + (Anbptbnls) §¢ ]
N
Izm,ze = "sz'g,,'Q 1 Km,g‘"l Em.( 1 —4‘_ "2-)2 mnp3 [3L "Z

+040g )S (3&62162"612)32’ + (3bnkr+0nap)5j]

for m=1,2,..N



-37-

~

where Gmn represents the part of Gmn that contains kl/z as

shown in Eq. A.9.2.

Equation 2,52 is solved by using the iteration formula
shown in Eq. 2.54. The iteration stops when the absolute
value of the ratio of the correction value J-1(§i)F(§i)

i

to ¥ is smaller than 10—4. Some results obtained are shown

~

in figure form and are discussed in Chapter 3.

2.5 Stability of Steady State Solutions

The method described in Section 2.4 yields both stable
and unstable solutions; hence each limit cycle solution
must be checked for stability by giving a small perturba-
tion to the limit cycle solution (steady state solution).

Let

Wot) = [Ont S ] pin WT+ [bnt 300 T30 w T (2.56)

where En and ¢, are the perturbed values of a, and bn
respectively, a, and bn are the limit cycle solution and
satisfy Egs. 2.50 and 2.51. Stability is to be studied in
the vicinity of the limit cycle solution, hence one as-

sumes

| fat®)] << [ Q] 13, (2) | << | bl (2.57)
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Since En and ¢, are only small perturbations, it is also rea-

sonable to assume that they are only slowly varying functions

of T, i.e.

21 << | 3“ << |
Rl B 3n
(2.58)
27 << | }" << |
* 3’ " 3n

So one can neglect Tne En Zn and gn in comparison with Cnr Epe

T and én respectively.

Placing Eq. 2.56 into either Eq. 2.34 or Egqg. 2.48, bal-
ancing the first harmonic, substracting the limit cycle solu-
tion, neglecting the higher order terms of gn and Zh and the
higher order derivatives of En and Cn according to the small-
ness and slowly varying characteristics of En and L,r one
obtains the following two sets of linear differential equations

for En and Cn’

Z[-Z«!Mu-}’n G 3 M\Z [(WGmnt GBmn) $ot(Kmn

L3 &1

- @ Mumnt L En) 3,7t 4"%—' m.n[(abnbr td,04p) fgf 18 W’g (2.59)

'tanaz)gr + (3bfLZ+ Ofaz)}n'f (anbf'r bn@',)}}

+ (anbg"'bnaz )f? + (b? az"f bes)ﬁ' ]: 0



-39-

. . N N
H.Z: [‘sznngn'f Gmn rn]" % [(&) ﬁmnfﬁ'ﬁm‘]gnf%’ CK»\){' N,an
* AEmn) Y t -4% .‘%&S'Cmnfz {( 30-04 +bn br)ﬁ* (.30"%

(2.60)
+babg) fp+ (3 Apag +beby) X, +@Onbp+Qpbn) }p
1( anbzf bn ag )f? + (apbg-i- a% br) 3. ]fg%-;_go
for m=1,2....N
Let
- o
fn(t)- éw © (2.61)

) =g, %" n=1,2....

where q, _;+ 95, and a are constants.
Placing Eq. 2.6l into egs. 2.59 and 2.60, dividing the
former by -2w, the latter by 2w and writing the resulting

equations in matrix form, one obtains

{Q-—O(L\j}?v:o (2.62)

where Q and N are defined as follows
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l |
NZm-l 20-1 = Mmg Nzm-1,2¢ = 2w qmt*ﬁanm,.
sz 2441 = = 73 qm.! 5 ‘qa“ N 2m,2¢ = Mm
N
i
szq 20+ = "E;){w qm_c + GBMQ 'f_— '{?z‘, Cmuﬂ[(a"b?

1 bna?)sl (anby 1 bn g )5 (by Oy + aZ !’?) 5% 1}

Q?m-l,ﬁl = {KMC w’ Mme AEmet 4 Zz Cnm?{ ('31"'bf

t Gnly ) Su (3bnbg t AnGg) st+ (3bpby+ Apap) 5213
IJ
Q 2m,20- 2,,3 { Kme~ WMo +AEmet 3 4 "*?Z‘ mnﬂ[caanaf

+ bn bp ) 53 +(3 anaz + bnbz ) 31 + (30,,021' b?bz)sl.]}

sz,zt = é‘;’,{"’ wq'n.z - GBn¢ "4 %-,C'""‘Pg [(an"p"’a?b )8(

+(Gaby +bnly) 5% + (ap by + Ag bp) 5213

In order to obtain nontrivial solution of g from Eq. 2.62,

(2.63)

one has to set

|Q"’(ﬂ|=0 (2.64)

This is an eigenvalue problem. One can find o by power method.
If all real parts of o are negative or equal to zero, the
limit cycle solution is a stable one. If any of the real
parts of o is greater than zero, the limit cycle solution is

an unstable one,.

2.6 Transient solutions

The time required to reach the steady state is of interest,

Of immediate concern is the transient response of the envelope
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of the panel flutter. For simplicity, the fluttering frequency
is assumed to be constant at its final steady state value,

throughout the process of reaching the steady state. Assume

Wa(T)= On(t) inwT +bnlT) coowl (2.65)

where an(r) and bn(r) are assumed to be slowly varying function
of time. Note that an(r) and bn(T) may bring some frequency
correction for the transient response. Again, using the

properties of slowly varying function, one finds that

Wa= (Gn - wbn ) pinw T +(bntwan) CoowT
(2.66)

Wn= (-2wf>n - W0 Y T + (AW O - 0 bn) oo

Substituting these relations into either Eq. 2.34 or Eq. 2.48

and balancing the first harmonic, one obtains
N . ~ ) . N
260 2 MunOn * 2 (Gunt TEGByn b+ 25 (@ Gount GBn) A
n=l n=i s

N
. hﬁ“} (Kt A Evn= @ Mmd bt 1‘-5,2:'@,,1,2 [ 3bnbp by (2.67)
= 7AN]

+ b..a?az + bfan ag'l' bganao’,]'-'b

w . N . N
-2W nz__, Munbn T 'E:(é‘r..m 5GBon) On = :Z-_l (W Gmnt GB,,) bn

N 2 N
+nZ=T (Kwn + A Emn- @ Mmn) Qn +2"-'Z Cm

Ty N 4 [ 309 C!z

(2.68)

-thrbz + Ay bnbz + azb.,b1, Jj=0

for m=1,2...N
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Egs. 2.67 and 2.68 are first order nonlinear differential equa-
tions for a, and bn' Integrate these two equations by either
Runge-Kutta method or Predictor-Corrector method, one can
obtain the transient response of the envelope of the panel

flutter.

2.7 Static Buckling Solutions

Under certain combinations of the dynamic pressure and the
in-plane loading, the panel could undergo static buckling in-
stead of fluttering. In order to find the static buckling
solutions, one sets ﬁn(T) and ﬁn(T) to zero. Then the

governing differential equations become

Z ( Kmn"'lEmn)Wn_* ZZ Cmmrz \'\/nW‘P Wz =0 (2.69)

This can be programmed for solution by the Newton-Raphseon
iteration technique in the same way as the previous flutter
equations, i.e. Eq. 2.34 or Eg. 2.48, only now, the unknown

vector is taken as x = (wl, w ,......wn) and )\ is assumed

2
known. The Jacobian for Eg. 2.69 with the x vector taken here

is

(2.70)

N
4
Jm’g = Km{ t lEme t %qcmnr: [WnWr SJ

";W"WZ st + Wy Wy Ss ]

One has to note, however, that there is a limit on A be-
yond which no static buckling solution exists. This point can

be visualized by solving the two-mode solution of a two-
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dimensional, simply-supported panel exactly. The governing

equations are

KW, + LE.Wy+( Ci W+ 4 CaWa' )W, =0 (2.71)

K?Z W2 -A.En W( t (4 Cl‘sz"' fG C“ sz )Wz=0 (2.72)

where

c'l = CHII
Taking 4 X W2 x Eq. 2.71 - Wl x Eq. 2.72, and dividing by A
E,, gives
l
2 z
W, t4W, = - AT, (4K~ Ka2) W, W, (2.73)

Employing Eq. 2.73 in Eq. 2.71 gives

W,_ - Ku 2.. E|2 W, (2.74)

X EZ - (4K~ K2 )CuW,?

Substituting Egs. 2.73 and 2.74 into Eq. 2.72, using the rela-

tion 4K11 - K22 = —127r4 and solving for W, one obtains
2 | 2~ 2
W= g {K. [-67** per-42 .1 -AES ] (2.75)
!
then
- — 2.2
w7- _ X E; {Kn [G’Ta'l’ 135!]8 =~ 42.:1:132 ] tAE. } (2.76)
2 ~ < .
127 G [-67* £ 3675 4 Es” ]
Wl must be real, and since Jgéﬂs - 4>\2E122 <6ﬂ4, the first

requirement is
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Ku<o oL Rx< -T2 (2.77)

This condition is the conventional plate buckling condition.

The second requirement is that

36l -4 N Es0 o A 9T /S (2.78)
This gives one of the upper bounds of A.
Note that:
(a) If Kpjl-61" + Ber® - 028217,

there are two solutions

4 8 2, 2,42, 2 4
(b) If Ky [-67" + 156w - AATE],TI<ATE 5 <Ky, 6T -

1368w— 412E 22] there is one solution

5. .2 2
E)p 1<ATEp,

1
(c) If Kll[—Gﬂz = |6r® - ax

there is no
solution.

Case (c) gives another upper bound for A, usually this upper

bound is more restrictive than that in Eq. 2.78. This illus-

trates that there is an upper limit on A for static buckling

solution to exist.
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CHAPTER 3

NONLINEAR PANEL FLUTTER--RESULTS

A computer program has been written to solve the steady
state panel flutter equations, Eg. 2.34 or Eg. 2.48, subject
to different boundary conditions. Three other programs have
also been written for solving the static buckling equations,
Eq. 2.69, the transient equations, Egs. 2.67 and 2.68, and
the stability analysis, Egs. 2.62. All these programs have

GB

a common sub-program to generate the coefficients an, G —

mn’

E K and C

mn’ “mn mnpq’

For the two-dimensional plate, the harmonic balance
method takes less than 1/12 of a minute on the IBM 360/65
computer to get one point for the 6-mode analysis and less
than 3/10 of a minute for a 20-mode analysis. For the three-
dimensional clamped-clamped plate, it takes approximately
1/10 of a minute to obtain one point for a 6-mode analysis.
These mean quite a lot of computer time savings when com-
pared to Dowell'slO and Ventres'39 direct integration method
which takes 2 to 10 minutes for two-dimensional plates and
more for three-dimensional clamped-clamped plates.

The panel flutter response is affected by a few parameters.

First, there are influences from the panel such as the length to
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width ratio a/b, the viscous type structural damping gg and
the hysteretic type'structural damping gy,. Secondly, there
are influences from the airflow such as the dynamic pressure
A, the aerodynamic damping coefficient u/M. Thirdly, there
are influences from the boundary conditions such as the ap-
plied membrane force R, and RY and the spring constant K.
Influence of these parameters are discussed in the next two
sections where the varicus properties of panel flutter are
presented for two-dimensional simply-supported panels and

three-dimensional clamped-clamped panels.

3.1 Two-Dimensional Simply-Supported Plates

Consider, first, the guestion of convergence. The series
representation for W, Eq. 2.33, is a complete set only when
infinite terms are used. 1In practice, using infinite terms
is out of guestion, hence truncation is inevitable. So a good
understanding of the convergence of the series is important.
Fig. 3 is a typical chart showing the convergence of the solu-
tion. It is clear from the figure that a 6-mode solution
gives good convergence for the range of amplitude of vibra-
tion and dynamic pressure of interest here. It is also clear
that convergence is better for a limit-cycle of low amplitude
than for one of high amplitude. This is true because the high
dynamic pressure associated with high amplitude response tends
to blow the peak of the deflection to the rear, hence the de-
flection shape deviates more from the shapes of the first few
modes. It has been found that the presence of the viscous

type damping, Jg terms, damps out the higher modes and moves
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the peak towards the center of the plate. Another parameter
affecting the convergence of the solution is the membrane

2

force R .. Tt has been found that for Rx=-4n , u/M=.01, only

four modes are needed.for gdod convergence whereas six modes
are required for Rx=0' u/M=.01l. Again, the explanation is

that the larger the compressive membrane force is, the smaller
the dynamic pressure is needed for the same amplitude of de-
flection, hence the peak is not blown so far back to the rear.
Fig. 4 gives a comparison of the deflection shapes for dif-
ferent values of 9g and Rx. Because in panel flutter all

the points do not reach the maximum amplitude at the same time,
the deflection shapes shown in Fig. 4 indicate the maximum
deflection of all the points for a given x-coordinate, rather

than the deflection shapes of a certain instant.

3.1.1 Critical Dynamic Pressure

It is important for a flight vehicle designer to know
under what circumstance the panel he designs will start to
flutter. It is also important for him to know how many fac-
tors affect, and how they affect, the on-set of the flutter so
that he can have a clear picture to avoid the occurence of the
flutter, if required to do so. This sub-section is devoted to
the study of the pertinent factors that affect the stability
boundary. In this sub-section, the influence of the mass
ratio u/M, the membrane stress RX, the viscous type structural
damping g. and the hysteretic type structural damping g, on the

critical dynamic pressure Ac is explored.
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First, consider the influence due to the membrane force
R.» Fig. 5 shows the effect of R on Ac for different values
of u/M. Only compressive membrane force is considered here.
It is clear that the compressive membrane force always makes
the panel less stable. A linear relation holds quite well for
the range of R investigated here. Rx=-w2 is the classical
buckling load of the plate, but because of the effect due to
the passing air, the plate is not buckled in the range of R
and )\ shown*. Next, consider the effect of u/M on Xc. From
Fig. 5, one can see that u/M always makes the panel more sta-
ble. For these particular values of dg and Iy @ linear rela-
tion between u/M and kc also holds quite well. It can also
be seen that the stabilizing effect of u/M is greater for
smaller compressive membrane forces.

Fig. 6 shows the effect of the viscous type structural
damping gg on xc for different values of u/M. It can be seen
that for small p/M, existence of small viscous damping dras-
tically destabilizes the panel. Minimum A, occurs around
gs=.025. After this point, increase in = tends to make the
panel more stable. with higher u/M, however, the destabiliz-
ing effect of dg is not so pronounced. The curve corresponding
to u/M=0 serves as an asymptote only since some aerodynamic
damping always exists. S0 the limiting value of Ac for both
dg and u/M approaching zero is the upper limit in the figure,

i.e. ACZB44. From this figure, it is also clear that increase

*a discussion of the static buckling solution is _given in sub-
section 3.1.5. One is also referred to DowelltV, for a
detailed discussion.
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in u/M has a greater stabilizing effect if 9q is at the range
of .002 to .02. Since small amount of viscous type structural
damping has great destabilizing effect and its exact value is
verv difficult to determine, this figure may well explain

some of the discrepancy between the results of experiments

and that of analytical work.

Fig. 7 shows the effect of the hysteretic structural
damping gy, on xc. It can be seen that these two type of
ctructural dampings have similar effect on Ac except that the
viscous type damping effect is magnified by the critical
flutter frequency ., hence the minimum A is reached at a

Jg smaller than the corresponding value of gb.*

3.1.2 Critical Flutter Frequency

As one knows that the natural frequency of a plate deter-
mines the nonlinear forced response of the plate, so we de-
vote this sub-section to study the variation of the critical
flutter frequency as various parameters change. Coupled with
the second part of this thesis, hopefully this study will
enable the designer of space vehicles to avoid resonance peak
when the panel is on the verge of fluttering. Fig. 8 shows
the combined effect of R, and p/M on the critical flutter
frequency w,. Presence of compressive R tends to reduce w,
whereas u/M tends to increase uw,. For both 9g and 9y equal to

zero, the influence on w, due to R, seems to be much greater

\

*Comparing structural demping coefficients gg and g with the
usual critical damping ratio Zop as measured from decaying
measurements for the first mode w%th no airforceg or mid-

4

oy e A i = = /
plane forces present gives Jgg 2/m cr and Iy 2/T°C .
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than that due to p/M. Fig. 9 shows the effect of g, on w,
for different values of u/M. As one can see, the presence

of small amount of Iq reduces Wy drastically. For Ig greater
than .04, further increase of Iq doesn't seem to have much
influence on Wy It is also clear that u/M has a great in-
fluence on Wg when a small amount of Ie presents. Fig. 10
shows the effect of 9, On W,. Again the effect is similar to
that due to Ig but the rate of change of Wy is slower here.
So examination of both lower critical frequency and lower

critical speed than predicted can help ascertain whether sig-

nificant gy Or gy is present.

3.1.3 Limit-Cycle Amplitude

According to the classical estimation of the fatigue life
of materials, the number of cyclic loading an aluminum material

can take before fatigue failure45 is

Ne = (2x10%/¢ ) (3.1)

and the fatigque life T is equal to Nc divided by the frequency

f = %F, or

Nc 2 6
T=7= :JNC = 2L (2x10%/% ) (3.2)

where o, is roughly proportional to the maximum out of plane
deflection. So if flutter is inevitable in the flight, it is
desirable to keep amplitude of flutter as low as possible.
Hence it is important to understand how the panel will behave
after the critical dynamic pressure kc is exceeded and how the

parameters discussed before affect the flutter response. All
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the limit-cycle amplitudes in the following discussion are mea-
sured at £=x/a=.75 for gs=0 and £=.6 for gs=0, since for gs=0,
the maximum deflection point occurs near £= .75 and presence
of Ig tends to damp out higher modes and hence moves the peak
towards the center. The results obtained by Harmonic Balance
Method agree quite well with both the Direct Integration
Method and the Multiple Time Scale Technique, see Ref. 12.

The third order approximation by Multiple Time Scale Technique,

Ref. 41, gives

W/ =C(A-Ae )yZ«rJ{.a.t. (3.3)

so all the response curves shown latter are very close to a
parabola with w=0 as its axis. And c is a measurement of the
opening of the parabola.

Fig. 11 shows the effect of R ©On the limit cycle ampli-
tude of flutter. A careful study will reveal that compressive
membrane force not only reduces Ac put also increases the value
¢ hence causes the amplitude grow faster once Ac is exceeded.
Fig. 12 shows the effect of u/M on the flutter response curve.
It is quite clear that u/M tends to reduce the opening of the
A-w/h curve. Fig. 13 shows the effect of g, on the flutter
response, It can be seen that small g, cause the panel to
start flutter at smaller Ac and once flutter starts, the ampli-
tude increases very fast with increasing A. SO the presence
of gg is highly undesirable. One should also note that with
g. = .15, although Ac is greater than that of gs=0, the opening

s
of the A-w/h curve is still much greater for gs=.15 than for gs=0.
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So the opening of the curve, or the value of ¢, is not just a

function of A, as one may conclude from the last two figures.*

3.1.4 Frequency of Flutter

From Eg. 3.2, one knows that the fatigue life is inversely
proportional to the frequency of vibration, so it is of inter-
est to see the variation of the flutter frequency w. Fig. 14
shows the effect of membrane force R  on the A-w relation.
Compressive Ry reduces flutter frequency w over a certain
range of A, but the effect is not great. All the curves approach
that for Rx=0 as A increases. Fig. 15 shows the variation of
w with ) for different value of u/M. It is guite clear that
u/M always reduces w for a fixed value of 2. It can also be
seen that a linear relation between w and A holds quite well,
this shows that the perturbation expansion used by Morino41
is quite good. The variation of w with A for different values
of Ig is shown in Fig. 16. Effect of 9e is not quite clear,
first it reduces w, then increases it and finally reduces it

again.

3.1.5 Static Buckling Solutions

The static buckling solution are shown in Fig. 17. Since

the panel is not vibrating and A is small, higher modes are not

*In the above discussion, one should keep in mind that £ is
kept constant (i.e. either &=.6 or g=.75) for the whole re-
sponse curve and does not always coincide with the maximum
deflection point, so the response curve will change slightly
if one plots the maximum deflection versus A. Then the dis-
cussion of the variation of c would be more meaningful. But
it's quite academic to locate the maximum deflecticn point
for every A. '
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likely to be important, so only two-mode results are shown. It
can be seen that higher compressive membrane forces exaggerate
the deflection. For higher compressive membrane forces,
Rx<—3ﬂ2, two solutions exist over a certain range of A. Sta-
bility analysis shows that the lower branch is unstable. The
figure also shows that there is an upper limit for static
buckling solution to exist. For Rx>-3w2, this limit is lower

than that given by Eq. 2.78, so the upper limit is governed by

that stated in Case C following that egquation.

3.1.6 Transient Envelope Solution of Flutter

Fig. 18 is a typical curve of the transient envelope
solution of flutter. Experience here shows that the analysis
given in Section 2.6 yields good convergence for a two-mode
solution. The time increment can be set very large (about 1/4
of the period of the limit cycle solution). But as one in-
creases the mode number to six, one has to decrease the time
increment to such a small size (about 1/120 of the period of
steady state oscillation) that this envelope analysis doesn't
have great advantage over the direct integration analysis.

One explanation is that during the transient period amplitudes
of higher modes are not necessary small and thev vibrate at
their own frequencies which are not necessary close to that of
the steady state solution; hence the assumption of slowly

varying character of an's and bn's are no longer valid¥*,

+1£ W, (£)=Kge (T0TH06) Fan (£) 0T
frequency, KS is a constant and A, (t) is a damped oscillating
[-o +ilwg-w)lt

where w is the steady state

function. Then A6(t)=K6e , and when a<<l, wg>>uw,

A6(t) is no longer a slowly varying function.
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3.2 Three Dimensional Clamped-Clamped Panels

As in the two-dimensional simply-supported case, the
convergence of the series representation of w, i.e. Eq. 2.37,
is of immediate concern. The present analysis shows that for

a/b = 1, R, =gg = =0 and /M = .1, an eight-mode solution

Ip
can contribute a few percents of improvement over a six-mode
solution. Whereas with Rx=—4n2, the improvement is not
appreciable unless the amplitude of vibration is very high.

As discussed at the beginning of Section 3.1, both I and com-
pressive R, improve the convergence of the series representa-
tion. The present analysis also shows that the length to
width ratio a/b is a very important factor in deciding the
convergence. For a/b=3, as many as sixteen modes are required
for good convergence. Since computation time goes up very

fast with the number of modes used, if long panel are used

very often and computer time is a matter of ccncern, some other
modal representation with peak near the rear part of the panel
may be used. But use of such modes would increase much more

mathematical manipulation to the already complicated one re-

quired in this work.

3.2.1 Critical Dynamic Pressure

The influence of a few parameters on the critical dynamic
pressure is discussed in this sub-section. Fig. 19 shows the
combined effect of R and the length to width ratio a/b on
the critical dynamic pressure AC. As in the two-dimensional

case, compressive membrane force always makes the ‘panel more
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unstable. Also a linear relation between Ac and Rx seems to
hold quite well. The increase in length to width ratio a/b
makes the panel more stable and the rate of increase is higher
at higher a/b. Fig. 20 shows the effect of u/M on kc. As
before u/M always stabilizes the panel., Fig. 21 shows the
effect of the viscous type structural damping gg on Ac for
different values of u/M. The characteristics of these curves
are similar to those shown in Fig. 6 for two-dimensional
plate, only now minimum Ac occurs around 9 = .0035 instead

of 9g = .025, One should also note that for uy/M>.1l5, presence
of I only stabilizes the panel. So for a/b = 1%, if one can

keep u/M>.1, one would be quite safe even if he does not take

gq into account.

3.2.2 Critical Flutter Frequency

Fig. 22 shows the combined effect of a/b and R, on the
critical flutter frequency. These curve look like parabolas
with its axis coincide with Wy axis. It is clear that increase
in a/b always increases wg and increase in the compressive
membrane force causes a decrease in W Fig. 23 shows the
u/M - W, relation, one can see that increase of y/M always
increases the critical flutter frequency. Fig. 24 shows the
effect of gg on w, for different values of y/M. The character-
istics is similar to that of two dimensional case: presence
of dq first reduces W drastically, then as 9 increases, w

approaches a certain limiting value.

*Results for a/b=.1, however, shows that the destabilizing
effect of 9 at u/M=,15 is still quite appreciable.
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3.2.3 Limit-Cycle Amplitude

Fig. 25 shows the effect of a/b on the A-w/h relation.
It can be seen that increase in a/b decreases the opening of
the A-w/h curves as well as increases the critical dynamic
pressure. So increase in a/b is desirable both in preventing
flutter and in prolonging the fatigue life of the panel. Fig.
26 shows the effect of R, on the response curve. If one moves
all the curves horizontally so that all the starting points
fall on that for RX=0 curve, one can see that all the curves
coincide with that for Rx=0 quite well up to w/h=1, so one
can conclude that for this length to width ratio a/b, the
major effect of R is to change Aot while its effect on the
opening of the A-w/h curve is secondary. Fig. 27 shows the
effect of u/M on the opening of the A-w/h curve. It can be
seen that u/M not only increases the critical dynamic pressure,
but also makes the opening of the A-w/h smaller, hence limits
the flutter amplitude once xc is exceeded. The effect of g
on the opening of the \-w/h curve is not guite definite as can
be seen in Fig. 28. For gs=.001, the opening of the curve is
smaller than that corresponding to gs=0, whereas the curves
with greater Ig have larger opening than that with gs=0. The
reason for the smaller opening for gs=m001 may be because
£=.6 is too far away from the actual peak of the deflection
curve, so the deflection shown here is much less than the
maximum deflection of the plate.

The effect of the membrane force RV is small for small

a/b as can be expected since every Ry is associated with (a/b)2
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in the differential equation, Eq. 2.22. The effect of Ry is also
small for a/b=1.0 as can be seen in Table 1. This may result
from the lack of coupling between the aerodynamic force and

the deflection mode in y direction as pointed out by Hedgepeth6
in his study of the three-dimensional simply-supported panel
flutter. One should be aware of the result shown by Fralich22
that at higher compressive R if Rv=0’ the first mode repre-
sentation in y direction is no longer good and additional

spanwise modes have to be included.

3.2.4 Frequency of Flutter

The variation of the flutter freguency w with dynamic
pressure A for different values of a/b is shown in Fig. 29.
Tt can be seen that a linear relation between A and w holds
gquite well., 1Increase of a/b increases the value of w for a
fixed A, but the shape of the \A-w curve is not changed sig-
nificantly. Fig. 30 shows the effect of R on the A-w
relation. Compressive L always increase w for a fixed A,
however, increment is not great and the shape remains the same.
Fig. 31 shows the effect of /M on the A-w relation. Again
linear relation holds quite well for all range of u/M studied
here, so the only effect of u/M is to “decrease the value of
w for a fixed A. Fig. 32 shows the effect of g, on A-w
relation., Presence of Ig tends to reduce the flutter fre-
quency. As before, the effect of g, on the A-w curve is

secondary.
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CHAPTER 4

NONLINEAR INTERACTION OF PANEL FLUTTER AND FORCING

EXCITATION--THEORY

4.1 Introduction

The problem studied in this chapter is the interaction of
aerodynamic forces, elastic forces, inertia forces and external
forcing excitations. In Chapter 2, the interaction of the
first three forces has been thoroughly studied. The results
obtained there are good enough if one assumes that during the
flight, the vehicle will not encounter any strong external
excitations from the air, or from the body vibrating as a
flexural structure. However, gust loading is inevitable dur-
ing the flight and the vehicle is a flexural structure. 5o
external forcing excitations due to the gust or vibration of
wings or some other flexural components of the structures
always exist. Hence in order to better understand the be-
havior of the panel during the flight, one should include the
external excitations. For simplicity, however, only simple
harmonic excitation is considered here.

Section 4.2 gives the formulation of the problem. Galerkin's
technique is also used here to reduce the partial differential

equation to a set of ordinary differential equations with time,



-59-~

T, the only independent variable., The resulting equation,
Eq. 4.6, is similar to those for panel flutter, i.e. Egs.
2.34 and 2.48, except for the forcing terms on the right hand
side. Section 4.3 is concerned with the solution of Eg. 4.6
for the dynamic pressure )\ smaller than the critical dynamic
pressure Ac. At this stage, the panel is not fluttering, so
the response frequencies will be that of the forcing frequency
or a multiple or fraction of it. 1In order to obtain a clear
picture on the effect of aerodynamic force on the forcing
response, both the linear and nonlinear analyses are given.
Section 4.4 is concerned with the solution of Eg. 4.6 with A
greater than Ac. Since the panel might be fluttering, both
the responses with forcing frequency and with flutter fre-
quency have to be considered. Hence a series representation
of w like that shown in Eg. 4.23 has to be used. This
enables one to see both the effect of forcing excitations on
the flutter and the effect of the flutter on the forcing
response. The results of these studies are discussed in
Chapter 5, and are shown in figure form at the end of this

thesis.

4.2 Formulation of Problem

The problem studied in this chapter is a plate subject
to both the aerodynamic force described in Section 2.2 and
a harmonic varying uniform pressure loading. This loading
could come from either a gust loading, the noise from the
engine, or the inertial loading due to the vibration of the

supporting frame caused either by the response of the airplane
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to gust or by the vibration of the wing if the panel is located
at or near the wing tips. Attention is focused on a uniform
loading. Other types of spatially varying loading can be
similarly incorporated. The equation of motion of & plate

is briefly derived in Section 2.2 and is not repeated here.

The equation of motion corresponds to Eg. 2.7 for a two-

dimensional simplv-supported plate is

a L2

D(1tds3s zbt) - [Ny + f( )d“‘]’ax (4.1)
28 - = —~

'F‘Katz [agc Ugt J12P +F cealt

where F and @ are the amplitude and frequency of the forcing
excitation. The boundary conditions are the same as those
shown in Eg. 2.10.

The equations of motion corresponding to Egs. 2.22 and

2.23, i.e. for three-dimensional clamped—clamped plate, are
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with the same boundary conditions as those shown in Egs. 2.24,



2.27, 2.28 and 2.29.

In both Egs. 4.1 and 4.2, only simple harmonic forcing
excitation is considered. One should also note that if the
dynamic pressure g in Egq. 4.1 and A in Eq. 4.2 were set to
zero, one obtains the equations for forcing vibration of a
plate.

Here again Galerkin's Technique is employed to eliminate
the spatial variables and reduce the equations to ordinary
differential equations. For the two-dimensional simply-
supported plate, substituting Eg. 2.33 into Eq. 4.1 for w,
using the non-dimensional parameters shown in Eq. 2.35,

applying Galerkin's Technique, one obtains

SW DWh I 2W
Z [M"“atz +that ‘rGanuJ azn'l'AEann_"' Khmw",] (4.4)
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for m=1,2,...N

GR E K and C are the same as those

h G
where an' mn’ “mn’ “mn mnpg

mn’
defined in Eg. 2.35, and
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For the three—dlmen51ona1 clamped-clamped plate, using

(4.5)

the deflection mode, Eq. 2.37, for w in Eqg. 4.2 and 4.3, going

through the same procedufes as in sub-section 2.3.2, one ob-

tains,
N W |
2 [ M T - Wo | GBSt A B Wit KnWh ]

= (4.6)

N
13, Copy Wk g = Ton 00022
_ mn'r g
np = Z for m=1,2...N



-62-

, GB__, E

n K and C are defined in appendix

mn’ “mn mnpq
A, Egs. A.9.1 to A.9.6 and

where M__, G
mn mn

Fo =, J, EL [ cottmm)T3-coo o ym31L1- co0277 T3y

- (4.7)

Egs. 4.4 and 4.6 are the subjects of study in the next two
sections. Section 4.3 concerns with forcing excitation before
the classical flutter dynamic pressure Ac is reached., At this
state, the panel is not fluttering, so the response frequency
will be that of the forcing frequency or multiples or frac-
tions of the forcing frequency. Hence the interaction is

a one-way influence, i.e. the aerodynamic force affects the
forcing response of the plate. Section 3.4 concerns with the
forcing excitation with A greater than the conventional
critical dynamic pressure. At this state, the plate may be
fluttering, so the response solution should include a com-
ponent which has a frequency the same as the flutter fre-
gquency. Because Egs. 4.6 and 4.4 have the same general

form, only one discussion will be given in both sections 4.3

and 4.4.

4.3 Forced Response of Panel Below Flutter

In this section, the effect of the aerodynamic force on
the forced response characteristics of a plate is studied.
With appropriate amount of aerodynamic damping present, it is
well known that when the dynamic pressure increases and ap-

proaches its critical value, i.e. the value that causes the
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panel to flutter, the frequencies of the first two modes ap-
proaches each other. In some cases, i.e. in the absence of
structural damping, they even merge together and cause the
so-called frequencies colescence. How the response curves
corresponding to these first two frequencies pile up is the
matter to study in this section. As mentioned at the end of
the last section, at the range of dynamic pressure interested
here, the panel is not fluttering, and the plate responds
only with frequencies ecual to or multiple or fraction of the
forcing frequency. We focus our attention on the following
two regponse characteristics: (a) Response characteristics
of the linear system and (b) response characteristics of non-

linear system.

4.3.1 Linear System

Setting C equal to zero in either Egs. 4.4 or 4.6,

mnpg
one obtains the linear system

3 W | oW

OWa A 9Wn -

2 [ Mmnggs + Gmn o TAERLIST +AEmnW-t KonaWn ]=Fn 0600T  (4.8)
gince this is a linear system, the only response is the

one with frequency {, so assume

Wn= Cn fim QT + O ceol (4.9)

substituting this into Eq. 4.8 and setting the coefficients of

sinQt and cosft to zero, onz obtains,

N
> [ B Moyt AEvnt K ) o= (00 Grun T GBran JIn ]=0 (4.10)

=t
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N
Z[(-0*Mun + A B+ K ) Aot (00 Gorant @B )] =

for m=1,2...N (4.11)

Solving Egs. 4.10 and 4.11 simultaneously for cn's and
dn's, one obtains the solution to this problem. Solutions
for different value of ) have been obtained, discussed in
subsection 5.1 and shown in figure form at the end of this

thesis.

4.3.2 Nonlinear System

In order to find the nonlinear response characteristics,
the whole equation of either equation 4.4 or equation 4.6
has to be considered. For the convenience of later discus-

sion, the following new time gscale is used, let

Dr=4kt, (4.12)

and rewrite either Eg. 4.4 or Eg. 4.6 in the following form,

o — dzw —~ _d__w_n -+ i\ﬁ“_" +
é [an E:E}l -t Grmh dt, + G.Bnm W dt A Ehmwn
~ (4.13)
+ Kman]*ﬂ%ﬂCManWn‘/\‘?wz = F“m CM-&t,
for m=1,2...N
where
— o
M., = 35 Mmn
mn _&
- (.10
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Because nonlinear terms are present in Eq. 4.13, subhar-
monic and superharmonic responses might occur as well as
simple harmonic solution. To explore their existence, one

assumes

3
Wn=[dwot 2 (Corpin rt,+dar cogtt )] (4.15)

Employing this expression in Eq. 4.13 and balancing con-
stant term and the first to the third harmonics, one obtains;

constant terms

N N
A —mn mh no‘r Z Cmn. /_P| =0 (4.16)
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cosZtl terms:

N — _ —
’LZH (‘4' M-n,,,'r /1 tmn + Kmn ) d*n?. + nzj; czq;nh-r G'th)an
N (4.20)
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sin3tl terms:
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where all the p's are functions of CLhi's and dn.'s. The

i i

definitions of p's along with the details of the calculation
are given in appendix B. According to different objectives,
the solutions of Egs. 4.16 to 4.22 are discussed in the follow-
ing:

Case A: Simple harmonic response

In order to obtain the simple harmonic response, one sets

k=1 in Eq. 4.12. Note that if one sets 4 to

no’ cn2 and dn2

zero, Egs. 4.16, 4.19 and 4.20 are satisfied identically. So
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there are only four equations left, i.e. Egs. 4.17, 4.18, 4,21
and 4.22. Results obtained here show that inclusion of €3
and dn3 only yield less than a few percents difference in

the solution of Ch1 and dnl' and Ch3 and dn3 themselves are
small compared to Ch1 and dnl' So if many modes are needed
for good convergence and computer time is a matter of concern,
one can set ¢ . and dn3 to zero and solve Egs. 3.17 and 3.18
and d

nl nl-
Case B: Superharmonic Response of order 3

for C

In order to obtain this superharmonic response, one sets
k=1. Again one can set an’ Cho and dn2 to zero and solve
the four equations, Egq. 4.17, 4.18, 4.21 and 4.22. One
should note that this branch of solution is important only
when the forcing fregquency is around one third of that of the
nature frequency of the plate with air flows over one of it's
surfaces. One should also note that solutions corresponding
to this branch have €,3>>Cp1r dn3>>dnl. So one should take
this fuct into account when one gives the initial values for
the Newton Raphson iteration.

Case C: Subharmonic Response of Order 3

This case is quite similar to case B. Only now one sets
k=3 and the solutions have €,11>>Ch3 and dnl>>dn3.
Case D:

For the other possible superharmonic solution, order 2
and order 3/2, and the other subharmonic solutions, order 1/2
and order 2/3, all the equations from Eq. 4.16 to Eq. 4.22 have

to be used. One is referred to Tseng%ﬁG work on vibration of



-68-
beams for more detailed discussion.

In solving Egs. 4.16 to 4.22, X is assumed known. It
ranges from zero to Ac obtained in Chapter 2. For A=0, one
obtains the forced response of a plate. This solution is
not good for A>>Kc, because in this case, the plate already
undergoes flutter and the flutter components of the response
are no longer negligible. The solution given by Eq. 4,15 is
not good for two reasons: first it doesn't yield response
having flutter frequency, secondly, it doesn't show the effect
the fluttering components on the components of the forcing
response. The case of k>>xc is discussed in Section 4.4,

The nonlinear equations 4.16 to 4.22 are solved by Newton
Raphson's Technique. The unknown vector is §=(d10, Cqqr dll' Cior
d12' Cq37 STEY, d20"""'dn3)‘ The Jacobian of these equa-
tions are given in Appendix B. The results of calculations,
for different value of A, are discussed in Section 5.2 and

shown in figure form at the end of this thesis.

4.4 Interaction of Forcing-Flutter Response

As mentioned at the end of sub-section 4.3.2, when the
dynamic pressure A is greater than xc (the critical dynamic
pressure of a panel without forcing excitations), the plate
may undergo flutter and may change the whole picture of re-
sponse firstly by introducing the fluttering components and
secondly by changing the magnitude of the response components
having the frequency of the forcing excitations. Hence we
have the whole problem of interaction between panel flutter

and forcing excitations.
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In order to study the interaction, one has to add a
response component, having a frequency equal to that of
panel flutter, to the series in Eq. 4.15. However, for
simplicity, one would concentrate on the interaction be-
tween the flutter component and the first harmonic only.

So one assumes

nZ An Mwati 'rbn CMOJ;'Z'; +Cn ,OA/rL't, 'l‘dnCM—t, (4.23)

where a_ and b~ are the fluttering components, c and dn
are the forcing response components and wq is the flutter
frequency based on the time scale t.

Employing Eg. 4.23 into Eq. 4.13, balancing the four
most important components sinwltl, coswltl, sintl and
costl, one obtains*

51nwltl terms:

N —
2 T ¥+ A Ennt Koo 1Qn= 23 (&) Gt GBran) b
n=l n=t

N
t ZZ {5an01oag+ahb?b?+ bnarbZ‘l’bhbr,a

SR 4
nhE (4.24)
+2(ah(C13CZ-t drd?)‘f Qp(Cth ‘l’dndg)-r qZ(C"CP
'fdhd'P)]}-‘-O
m=1,2,..N
*Other harmonic components, sin(2w,-1)t sin(2-w 17 etc.,
have been neglected, as a first approx}matlon hese could

be included in a more accurate approximation.
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C .
oswltl terms:

N — N —
2 [~ My ¥ A B 1 Konn]bn T 25 (01 Gt GBoon )

n=i

N
A
tZ %,FCWPZ { 3bubpbg t b OpOg+anbpag + Qnay by
(4.25)

2 [bn(CpCy+ dpoly )+ bp(CnCy+onclg)tbg(Cacp
'fdnd?)]}=0

sintl terms*:

nN —
é["ﬁmh"'/l Ehm-r Kmy, ] Ch - % (-G'mn‘t G'thn)dn

n'p =)
hE (4.26)

t CZ (Qna?+ bn b/p)]}-‘-()
Cost1 terms:
Y N
2 [- Myt At KmnJ 0™ 2 (Gt GBn) C

P
7z 2.G.

Z vpy [ 3dndpdy + AlnCpCy + CadlpCpt CnGodly

(4.27)

+2 [dn(q?az‘fbpbz)‘f dp(GnGgtbnbg)
%dz(dna@1bnb@)]]= hn

*The # associated with GB in equation 4.13 is equal to w4
for the flutter componeﬁ% and equal to 1 for the forcing
component, since by definition, the total work by hysteretic
type structural damping is independent of the frequency of
vibration.
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From the above four equations, one can see that the forcing
response and flutter response are coupled only through
nonlinear terms. One should note that the nonlinear coupling
due to forcing response add some terms linear in am's and
bm's to Egs. 4.24 and 4.25. As one knows that linear terms
determine the boundary of stability of panel flutter, the
addition of these "linear" terms is going to change the
boundary of stability, or Ac, significantly if the components
cm‘s and dm's are not small. One can also see that the
effect of the flutter components on the forcing components

is significant only when the magnitude of the flutter com-
ponents are not small.

Equations 4.24 to 4,27 are solved by Newton Raphson's
Technigque. Since we don't know the critical dynamic pres-
sure for a certain amplitude and frequency of forcing excita-
tion, the unknown vector should include both A and w. Hence
one assumes X = (A, w, cq, dl, a2,.....dn). The Jacobian of
Egs. 4.24 to 4.27 is shown in Appendix C.

Equations 4.24 to 4.27 are solved for different ampli-
tudes and frequencies of the forcing excitation. Results
are shown in figure form at the end of this thesis and the

detail of interaction is discussed in Section 5.3.
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CHAPTER 5

NONLINEAR INTERACTION OF PANEL FLUTTER

AND FORGING EXCITATIONS--RESULTS

The results of nonlinear forcing-flutter interaction are
discussed in this chapter. Only the case of no structural
damping is given as an illustration, since in the absence
of the structural damping the first two frequency coalesce
at the stability boundary, so it is easier to discuss the
stability boundary of the panel under forcing excitation.
Because the first two modes are the most important ones in
panel flutter and because only limited computer time is avail-
able, most of the results shown are two-mode solutions. A
six-mode solution is given at the end of this chapter for the
forced response at A equal to the classical critical dynamic
pressure Ac for comparison. For the same reascn, only one
superharmonic resonance solution is shown for the A=0 case
and nothing is done on the three-dimensional clamped-clamped
plates.

Some results of direct integration on ﬁq. 4,13 obtained
by this author are also shown to check the results from

Harmonic Balance method.
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5.1 TForced Response of Panel Below Flutter

5.1.1 Linear Systems

As a first step to the study of the nonlinear interaction
of panel flutter and forcing excitations, the linear forced
response of the panel below flutter is studied here. Fig. 33
shows the linear forced response of a panel as a function of
the forcing frequency § at different values of dynamic pres-
sure Aixc. The curve for \=0 is the linear forced response
of a plate without airflow over its surface. Because of no
damping from the air, the resonance peak at the first natural
frequency w1=9.87 goes to infinity. However, because the
forcing excitation is uniform and because of lack of coupling
between modes, €/en modes are not present, hence there is no
resonance peak at the second natural frequency, w2=39.48, of
the plate. When air flows over one of the faces of the plate,
it causes both damping and coupling between the two modes. So
the resonance peak becomes finite and the second peak comes up.
As ) increases, the first two natural frequencies move toward
each other, so do the resonance peaks. When there is more
coupling between the first two modes, the effect of aero-
dynamic damping becomes smaller and smaller so the peaks grow
higher and higher. At A=Ac, linear flutter analysis shows
that undamped vibration exists, so the resonance peak goes

to infinity as for a system of no damping.*

*For the example given here, i.e. gg=g,=0, the two frequencies
merge together at A=X_., so only one résonance peak is obtained.
For ggx0 and/or gbto,ctwo peaks may present at A=Ao. One
peak goes to infinity while the other remains finite.
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5.1.2 Nonlinear Systems

In this sub-section, the nonlinear forced response of a
panel with air flows over one of its faces is studied. The
speed of the air is limited such that the panel is not flut-
tering. So only the response with a frequency equal to, or
a multiple of, or a fraction of the natural frequency will
present.

First, look at the case of )=0. Unlike the linear case,
which has only one resonance peak at the first natural fre-
quency w,, we now have several resonance peaks as shown in
Fig. 34. The first peak from the left corresponds to the
superharmonic resonance of order 3. This branch occurs
through the nonlinear coupling between the first and third
harmonics. It can be obtained by giving an iterative initial
value Cn3>>cnl’ dn3>>dnl' One should note, however, that this
branch exists only for the forcing frequency @ greater than
1/3 of the first natural frequency w,. At this branch, the
plate vibrates at its first natural frequency Wy instead of
the forciné frequencv !, The forcing amplitude has little
effect on response curve, so the two curves for FR=40 and 80
become one on the scale used here. Due to limited computer
time available, this is the only superharmonic solution studied

49 for more detailed

in this thesis. One is referred to Tseng
discussion of other superharmonic and subharmonic solutions.
The second peak is the simple harmonic resonance of the

first mode. This response is similar to that for Duffing's

equation, The third peak corresponds to the usual
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resonance of the second mode. This resonance occurs through
the nonlinear coupling among modes and exists only for &
greater than the second natural freguency W, - This branch
of solution can be obtained by giving iterative initial
value Cop and d2r much greater than the other components.

Fig. 35 shows the nonlinear forced response at the dy-
namic pressure equal to 3/4 of the classical critical dynamic
pressure Xc‘ It can be seen that the solution for FR=10 is
still quite linear: the peaks are not bent and the amplitude
is about 1/4 of the linear solution shown on Fig. 33. For
higher amplitude, the nonlinear terms come into play and the
peaks are bent in the hard-spring fashion.

Fig. 36 shows the nonlinear forced response of a panel
with dynamic pressure A equal to the critical dynamic pres-
sure A.. Recall that the linear solution yields an undamped
harmonic resonance peak, i.e. with peak going to infinity at
Q0 equal to the flutter frequency w=28.77. Instead of bending
the resonance peak of a linear system to the right as for the
case of A=0, the nonlinear terms create two peaks. The two
peaks move away from each other farther and farther as the
forcing amplitude increases. 1In order to have a better in-
sight into the problem, see Fig. 37 first. This figure shows
the forced response at x=xc but with smaller forcing ampli-
tude. The response curve for FR=.01 behaves like linear
system with a peak at Q=mc except that the peak does not go
to infinity. As Fp increases, the resonance region grows

wider. For FR=1.O, the resonance region splits and yields
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two peaks. Since one knows from Figs 35 and 36 that two
resonance peaks exist for sub-flutter condition, these re-
sults suggest that the nonlinear terms, which became important
through forcing excitation, make the system more stable as

far as flutter is concerned. The greater the forcing ampli-

tude, F the more important the nonlinear terms are, so the

RI
two peaks move farther and farther away from each other.*
This effect of the forcing excitation on the flutter sta-
bility boundary would become clearer in the discussion of the

next section where both flutter component and forced response

components are taken into account.

5.2 Forcing-Flutter Interaction

In the discussion of this section, we allow the dynamic
pressure )\ to go beyond the classical critical dynamic pres-
sure 2. Since flutter components may present in this case,
one has to include both flutter and forced response components.

Figs. 38 to 43 are the complete solutions for the forced
response of the panel with A>Ac. Fig. 38 to 41 are the
solutions for forcing-flutter interaction and Figs. 42 and 43
give the pure forcing response of the panel (no flutter com-
ponents). These latter two pure forcing responses supplement
the forme-r forcing-flutter interactions.

Looking first at the forcing-flutter interaction, Fig.
38 shows the flutter stability boundaries at different
forcing amplitudes. For a dynamic pressure greater than the
"actual” critical dynamic pressure Aot the panel may undergo

fluttering, so both forcing component and flutter component

*The physical size of F_, can be visualized by noting the static
deflection it causes, i.e. the Q=0 value in Fig. 34 for A=0
(no airflow)



-77-

may be observed. The dotted portions of the flutter boundaries
are the flutter boundaries predicted by harmonic balance method
but not verified by direct numerical integration method. This
region remains unclear, more discussion about this region will
be given later. Fig. 39 shows the amplitude of the flutter
component for different values of the forcing frequencies Q.
The curve for 0+0 is the flutter response curve without for-
cing excitation. For <20, the response curves show the
influence of the forcing excitation on the flutter boundary
Xc. Onge A is exceeded, the influence of forcing excitation
decreases, and the response curves approach that for Q§0
rapidly. For Q=25, the deviation of the flutter resvonse
from that for Q0 is large over a greater range of ). . And
for =40, the deviation is very small at the beginning and
becomes greater as A increases. Fig. 40 shows the amplitude
of the forcing component in the flutter-forcing interaction
solutions. For <20, the amplitude of the forcing component
always decreases as )\ increases. For (=25, it increases
first then decreases. For (=40, it alwavs increases with
A in the range of ) studied here. m™his variation of the
forcing component may help explain the flutter response curves
shown on Fig. 39. Fig. 41 shows the effect of the forcing
excitation on the frequency of flutter. Forcing excitation
tends tc increase the flutter frequency slightly but the
effect is not significant,

Looking next at the pure forcing response, Fig. 42 shows

the pure forcing response for Azxc. This figure can be better
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understood if studied together with Fig. 38. At A=Ac=274.55,
no flutter exists for the plate under forcing excitation. The
only response is the pure forcing résponse. The whole curve
for X=kc in Fig. 42, except for the two usual unstable branches,
is stable. At A=300, Fig. 38 shows that the flutter component
may exist for <22.5 and 0>35.5. The direct integration
method indicates that the pure forcing response Curves for
A=300 in Fig. 42 are unstable for 0<22.5 and Q>40.7, and that
flutter components occur in these ranges of Q. Further, the
direct integration method showed that in the range 35.5<0<40.7.
+he lower branch of the pure forcing response was unstable
while the upper branch was stable. No flutter components
were observed in the range 35.5<{1<39. Near Q240, both a pure
forcing response solution and a flutter-forcing interaction
solution were found. Why the flutter components do not appear
for 35.5<0<39 as suggested by the harmonic balance method or
why, if they exist, it is so difficult to obtain the flutter
components by numerical integration remains to be investigated.
For \=320, 340 and 370, again all the solid curves shown in
Fig. 42 are possible pure forcing response solutions. It can
be seen that this stable portion moves to the right as ) is
increased.

Fig. 43 shows the pure forced response of the plate, at
different forcing frequencies, as a function of the dynamic
pressure A. This is a cross plot of Figs. 34, 35, 36 and 42.
But plotting w/h as a continuous function of A reveals some

interesting characteristics. For A=0, because there is no
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structural damping, the simple harmonic resonance peak extends
to infinity as shown in Fig. 34. So the upper branch of the
solution at A=0 increases with the forcing frequency Q as
shown in Fig. 43. With increasing A, this resonance peak
moves to the right, i.e. to higher frequency. Meanwhile
because of the presence of aerodynamic damping, the length
of the peak becomes shorter and shorter. This shortening
causes the upper branch solution for =35 to disappear at
2220, for 9=30 to disappear at A<40, and for Q=25 to disappear
at AZ100. For Q=20, the rightward moving of the peak over-
comes the shortening effect, so we have a continuous curve.
As X increase, the shortening of the length of the peak slows
down, and the rightward moving of the peak makes the upper
branch solution for =25 appear again at A<240, and that for
Q=30 at A<360. As A increases, the lower branch solution for
Q=20 and 25 increases because of the rightward movement of the
simple harmonic resonance peak. The one for (=20 disappears
at AZ175 and that for Q=25 disappears at 12265, when the peak
passes by these two frequencies respectively. The lower
branch solutions for Q=30 and 35 increases with A because of
the piling up of the first and second harmonic resonance peaks.
This increase continues for =30 until the resonance tip
passes by Q=30 (see Fig. 42), then the response changes to the
other branch and decreases in magnitude until it disappears at
AZ375.

A typical forced response of the panel for =20 would be

to follow the lower branch at low A and jump to the higher
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branch at AZ175. Then the magnitude of vibration decrease«
with increasing A until the flutter component comes in at
A=291.5., The same pattern would be followed by the case for
=25, When one is observing the fesponse of a panel during
a‘flight, one is advised not to misinterpret the jump from
lower branch to higher branch as the on-set of panel flutggr.
For 9=30 and 35, all the curves shown here are possible
solutions. It is to be noted that for =30, no pure forced

response can exist for A>375,

5.3 Examples of Numerical Integration

Figs. 44 to 47 show the results obtained by numerical
integration for FR=40, Q=20 and A=285, 292 and 296 respecC-
tively. Although A=285>kc, the integration yields a pure
forced response as shown in Fig. 44. This shows that the

flutter stability boundary is affected by the forcing excita-

tion (Tc=29l.5). For A=292, harmonic balance method gives
forcing amplitude WFR=.258, flutter amplitude WF=.017 and
frequency ratio wF/Q=l.497. With the information given by
Dugundji and Horeso, one can read from Fig. 45 that WF =.253,

R
WF='015 and mF/Qil.S. For A=296 results from harmonic balance

method shows that WF =.,254, WF

=.,167, w_/0=1,509. Fig. 46
R F
=.162, and the gradual change in the phase

=.26, W

gives W F

Fr

of the inner peaks indicate that wF/Q is slightly off from
1.5. So the numerical results agree quite well with the
results from harmonic balance method. However, if WFR and WF
are both of order 1, the components with frequency (ZQ—wF)

and (2mF—Q) may become important and make the response curve
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too complicated to read, thus making the comparison for the
major response components very difficult. Other numerical
results of the direct integration method are shown on Figs.
36, 39, 40 and 42. It can be seen that the two methods agree
quite well, except for Q ranges from 28 to 39. Fig. 47 is

an example to show the existence of both pure forced response

and response with both forcing and flutter components at (=40.

5.4 Comparison of Two-Mode Results with Six-Mode Results

In the study of panel flutter, one knows that a six-mode
solution yields good quantitative as well as qualitative
representation of the exact solution. So a six-mode solu-
tion of the forcing excitation at x=xc=344.2 and FR=40 is
given on Fig. 48 to illustrate the quantitative improvement
by employing more modes. For this six-mode system, the
critical flutter frequency is wc=32.44 as compared to wc=28.8
for a two-mode system. The two peaks for six-mecde solution
occur at 2-28.5 and Q245.2 and those for two-mode solution
occur at Q%26.3 and QX42.6. So the size of the resonance
region is not changed much. The deflections of the two peaks

for six-mode solution are WF =1.16 and WF =.6 and those for
R R
two-mode solution are We =1.16 and We =,5, Thus this example
R R

shows that the most important improvement due to more modes
is the accurate allocation of the resonance peaks and the

other corrections are not appreciable.
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CHAPTER 6

CONCLUSTONS

Some problems of Panel Flutter and the interaction of
Panel Flutter and Forcing Excitations have been studied
theoretically. 1In both studies, nonlinear von Karman plate
theory is used to represent the elastic forces and linear
Piston Theory is used to calculate the aerodynamic loadings.
Harmonic Balance Method is used to find the steady state
solution. Because much computer time is saved and good
results are obtained as compared to straightforward direct
integration, it has proved to be a good alternative to the
Direct Integration Method.

Effects of some pertinent parameters on nonlinear panel
flutter have been investigated. Among them, the mass ratio
u/M is favorable both in preventing flutter and keeping the
flutter amplitude low after the critical dynamic pressure is
exceeded. But since the practical range of u/M is .01-,1, Ref. 10,
its effect is quite limited unless a small amount of structural
damping exists. Compressive membrane force is unfavorable
because it always reduces the critical dynamic pressure hence
making the panel more vulnerable to flutter. So compressive
membrane force due to aerodynamic heating should be kept as

low as possible. Effect of structural damping varies over a
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wide range depending upon the other parameters. For small
/M and low a/b, a small amount of = has a great destabilizing
effect. Presence of I also causes the amplitude to grow
faster once Xc is exceeded. So it is important for a
designer to know the exact value of Ig of the material he is
using. A meaningful comparison between experimental results
and analytical results also requires a good knowledge of the
value of gg- In the range of a/b studied here, increase in
a/b is an effective way in controlling flutter.

The study of the interaction of panel flutter and forcing
excitation gives one a clearer picture of how the skin of a
space vehicle will behave when external disturbance exists.
The splitting of the resonance region at X equal to classical
xc is quite a breaking away from the response of Duffing's
Equation49’51. This happens because the forcing excitation
makes the already coalesced two frequencies separate again.
Flutter stability boundary is increased by the forcing ex-
citations. The amount of increase in this boundary is great
for 18<0<38, but this boundary is still not clear for 28<0<39.
pure forcing excitation responses may exist well above the
pure flutter stability boundary A,. For Q around 40 and over
a certain range of dynamic pressure ), coexistence of pure
forcing response and forcing-flutter interaction responses
have been observed.

The effect of forcing excitation on the flutter
behavior is small if Q-is less. than 20, It is small first,

then increases with increasing A if 2 is greater than 40.



-84~

Flutter makes the forcing component decrease with increasing
A if Q<20, and it makes the forcing component increase with
A if @>40. For a given forcing frequency, as the dynamic
pressure )\ increases, large jump may occur in the panel
response at A well below the onset of flutter. One is
advised not to misinterpret this jump-as the occurence of
flutter.

For the range of dynamic pressure ) studied here and
. outside of the region of 28 to 39 the forcing-flutter
results from direct integration agree quite well with those
obtained by harmonic balance method. Inclusion of the com-

penents with frequencies 20-w and ZmF“Q would bring improve-

F
ment to the harmonic balance method used here. This improve-
ment is significant if both flutter components and forcing
components are of order 1. For all ranges of Q@ and ), the
. pure forced response obtained by both methods always agree
very well. The guestion of the existence of the flutter
component in the frequency range 28<Q<39 requires more study.
Comparison of six-mode results and two-mode results shows
that the prime improvement of including more modes is on the
location of the resonance zone. Since the location of the
resonance zone is very important practically, one has to
use more modes if one wants to apply the imformation ob-
tained here to praetical problems.
More work should be done to study the effect of structural
damping on the response characteristics. Interaction of

flutter with random excitation should also be studied to
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understand the effect of engine noise and random gust on the

flutter response.

As one can see from the work by Morino, Kuo and Dugundji12

perturbation methods yield a convenient solution to the panel
flutter problem. Since the general physical properties of
forcing-flutter interaction are known through this study, one
may find a proper perturbation expansion and apply this tech-
nique to obtain a convenient form for the response character-
istics.

The scheme used in this work may also be applied to in-
vestigate flutter-parametric excitation interactions, as for
example, may occur in the case of engine thrust variations

acting together with the flutter response of missile panels,

r
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APPENDIX A

GALERKIN'S TECHNIQUE FOR THREE~DIMENSIONAL

CLAMPED~-CLAMPED PANELS

As mentioned in sub-section 2.3.1, one of the simple forms
to represent the deflection w is that expressed in Eq. 2.3.7,

the derivatives of w can be written as follows

N
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tains
é 2 § #é - 2 2 N
234 +2A a?’a'( tA* ot 124-YJ)DA ’141,%, ”fW;fZP‘Z‘?)w(‘P'Z"Lf

T 2PWHE) oo (PR3- (pHIPHEH2) Codtp + §12)T §

t PP 42)cod (P-g+2)TIHP-DPE-2) coa(pg-2)TF
~(p-1) (p+g-2)coa (P18-2)731[- 2(pgtPp*+2) cod (P-2T$
T2 (P-Pgt2) Coatptg)NE +(P11) (J-pIese (Pt 2+2)T §
PP (PIE) coolp-g+2ITF + (p-1) (Pt 5) Cae (P-Z-27§
t(P-0@-P)csd (p+8-2)T 3 ]x csd4T 7 o
~2x[2 (p1) cod (ptgrT 3 - 2(4711) I (p-PT 3

+ (?il)zw L*p-gfzmg—(?i"fw (pt§ -2)1)'}

tCP-  ca0cp- pr2)T ] - (40-1)  cod (pt 3-2M3 1 cso2y 1]



-88-~
Using Egs. 2.38 and 2.39, one obtains
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Comparing the coefficients of Egs. 2.40 and A.3, one obtains
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In order to have a complete solution for ¢, one assumes the homo-

geneous solution of ¢ as
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. p-1) (P E)
[p-g-2)*+1687]°

D = 2(?z"ng2 )
Lip+8)*+16A*]?

F = (Pr1) (8- p)
[(p+8t2)2+16A%]°

H = ’2(?‘|)2

[ tP-8-2)% 4A* ]2
- 4 (P+V)
[(ptE)*+4A']*

; 2(p+1)°
C [p+8+2)%+ 4A*T

22
Gl - (P-1) (- 34: )

J-=

(p-3-2)°
. 2F
S (p+ 8)°
__-(Pt))
u (ptg+2)°®

Ppemo™ 7 [N+ Ny T3 + Ny 3°]

where ny, N

< and NY

The complete solution of § is

are shown in Egs.

2.42,

(A.4)

(A.5)

2.43 and 2.44.
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¢ = é«p T Phome (A.6)

Employing Egs. A.l.1l to A.1.8, Egs. A.3 and Eq. A.5 in
Eg. A.22 and applying Galerkin's Technique to the resulting

equations, one obtains

dz\hlm_ dawwz‘ dzwm-z ,Ul dWm dwn-z
dt: dvt  dot | )7[(2 +8 ST GT

(2¢87)

- %‘L“tm*‘]-rq“{[(m—l Yt (m1) +§-Az[('n-o Y+ (me1)t ]

f-'—é(h s") A fi, dw" wabdz-} T om®

+ 8 Ao+ -6 3, DU AT (s S’
12 A1 4, dwm'fz:sgbddt P+ { 2R m*1) +5-Re TA%(215.)

+T*L % m)*] 't:g;)'f‘A’[ (m-1)% (m1) ]+ Lsé (24 5:,,)1]4,44}wm

- [Ryptm=t*+ SR TA% On-**+ Lm0 144 W2

= omn) Rx/ffz'r%A’Ry/ﬁ‘-r (ment L A% me1) 45 A% I Wins 2 (2.7)
2n n my_ nti . _ gnw2 -L_ n-nn
' Ang' [ﬂwn —‘n—m (-5.) + -m-rZ(' Sm ) n+m ‘2 "8z )
LS LI -g-1) 1 7, Conng WnWeW
m'mﬁz-'.n-m-z(l *2)][ ]w“ ZI“?Z s
nPe=
=0

m=1l,2,....N
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where C is defined as follows

C mapy -160- ) A*T*{[(HtA -G-B)(n+ 1)+ (A+1-C-G)
x(n-1)' = 20 (p-§)(§-A )-{p-§-2)(nt1)(B-H)-(p-§+2) (n-1)
((C-1)-(G-P-3A)(P-2)*- 7(@+7B-H)(p-§-2)°

LRt EC-1)(p-g+2)2 ][ St §TE It G-A- 1) r1)’
1(B+G-A~H)-1)'-2n (P-§)(G-A)-{p-§-2) (n-1) (B-H )

- (p-gr2)(na)(C-1) +(§-P-2A)#E) 1 7 (Q+3B-H)

X (p-3-2)*14(Rt7C- I)p-ge2) L8 .50 §P ER14[( D+MET)

x (n+1)*+(D+N -F'ﬁ)(n-l)z-zn(?fg)(J’-D)-(Pfg-Z) (n+1)
x (E-M)- (Pt 2#2)(n-')(F-N)-(J~5—2'D)('P+g)z-%(u+z'F-N)
f (P13t2) - S (TH2E-M)(Pt8-2)2] ST oo [(F+T-D-N) (nt1)?

t(E+T-D-M)(n-1)-2n(Ptf)(3-D)- (ptg-2)(n-1)(E-M)

S0 P32 ) (F-N) +(T-S 2D (P+8)+7 (U+ZF-N) (p1gr)°
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+ z(T-rz,E M)(p1+2-2) ][51”8’5- ﬁi-n] + l'_LB—H)(n-H)2
t(BtG-A-H)m-1)*-(P-§)n-D(A-§)-2n(p-§-2 ) (#-B)
P-gth-2
+4(G-P-4 B)(p-g)t @1z B-HI(P-8-2][ 3.
P
14 [(A +H-B-G)(nt )% (H-BX(N-D)> (-2 ) (1) (A-6)
2n(p-3-2)(H-B)-L(G-P-2A)p-8)'- (813 B-H) (P-§-2)]
- Zn-z fpgn
[ Sm ]+ [(E-M)vt)'+(E+T-D D-M) (-1)’-(P+2) (n-)
((D-T)-2n(P+E-2)(M-E)+3(T-S-2DIP+E)"+ (T+3E-M)
2 4 Pt8n-2 2 2
X (£42-2)"15 » +[(DEM-E-F)(Mt1) +(M-E)(n-1)-(ptE)
x(TL-H)(D-J’)—ZYL('PTZ-2)(M-E)"‘2L (T-S-zD)(P+8)”
- (T+7E-M)(P+E- 2) ][51”?’ R g?ji-n-z]-t[(uq-ﬁ-:[)

x(nt1) + (€= I)(n-1)*- (1a-3)(n+1)(/5-_€r) -2n(p-8+2)(1-C)

g ez P-gtni2

+E(G-P-%A )p-g)*t (RTTC-TI) (p- 912 ][§ A 8 ]

+[(T-C)un t (A+1-C-G) (n-1) "= (P-Z)r(n-1) A-G)
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—2n (p-g+2)(x-c)- Z(G-P-ZA)P-Z)-(RtZC-1T)

‘PZhﬁ. 'P

x(p-8+2)°1[ 6., o f]+[(F-tJ D-N)(nt1 )

H(F-N)(m-1)"+ (p+2)(n# ) (D-T) - 2n(P+2+2)(N-F)

nﬂHXfZ

+4(T-5-+D)P+D + (Ut 7 F-NI(P18+2)'] S
+ [(N-F)Ot )+ (DIN-F-J )(m-1)- (P1Z)(n-1)(D-J) ~2n

(@ 1842)(N-F)-F (T-S-3 DIPtH=(Utz F-N) (P8r2)]

x[ 1913-»112 “P-#g -nt2

% m J+ [-(B-H) ()™= (p-g-2)(n-1) (B-H)

?gm4 ?z-t

t2(p-2-2)*(H-@-3B)I[ S ]‘*[LBTH)(YL"H)

P-g-n-4 p-3-n4
- (P-2-2) 118 -H)- 3 (b7 -2)"(H-@-ZB)][S ., BARE s

TLE-M) (it )= (P1g-2)(ntD) (E- M)+z(1°18 2)*(M-T- zE)][ MM

-51““ ]f[—-(E M) tn=1)*- (P +£-2) (n-1) (E- M')fz P+ -2)'(M- T-ZE)]

Prim-4

X0,  tl(C-I)(n- ()= (P-§+2)(n-1)(C-I) -7 (m-nt2) *T1-R-%4¢)]

(LSS T R - et (- gez) e Ty o 14 (- §r2)°
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P- 2
X(I-R-2¢ ) ][5 ™2 o 3™y [(F-N)m-0)% P+ 2 +2)(n-1) (F-N)

-_2'.(,”3*2)2(“_“ F)][§ ?nr4 ?r&nr

JH[-GF-N (e = (pr2r2)

X+ (F-N)+ 2 (P13+2)"(N-U-2 F)]S - “”‘ '25)5 m Z_}

(A.8)
2A2

1%2 A LW [(ne1)? Sm"z(n 1) 5m'rz 2(" ) 5m]
,,-‘

4 z~ N+d n. m
Z ""JIN#W[S 1m+2 28 -5, 9 ]
)?Z‘
where A,B,----U are defined in Eg. A.4, ﬁ% and ﬁ& are defined
in Eq. 2.43 and 2.44.

Comparing the coefficients of Egs. 2.48 and A.7, one

obtains
(A.9.1)
Mumn= =~ Sm-z T 2187180 = S1ma
./z n m-2
Eimrl= (AJ“/@{) P1nn'fC34CM)5.1"(36111)5)1
/s ~ ~ (A.9.2)
_cetm) Sm = 126,“1 Gmn
m -
GBmn= CA (’"‘)Sn = CBL“)ST’LJ- CClm) S":_Z (2.9.3)

Kmn= [DA cm) Sz~ DBm) S - DCom S ]
(A.9.4)
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_[2n_ . 2n m. . nt nt2. -
Fon= [~ S (800 22 (- 807)-

_ N+l n-i _ n o n+m
ntmt+2 + n-m-2 (l Snwz)][' 1) .]

C =defined in Eg. A.8
mnpgq

where

CAtm = T* [(mt1)%+ (m=-1)%] -r-g— T°A" [m#1)®

+(m-1)"] + —'367- (2+87)7*A*
CBUm) = (m-1)** 45 T )"+ L 7%

CClmy= Omr )+ g Women ™+ L 7°A°

DA(m) =2 R, (m% :)-r;—’R), n‘A‘(ZJrS.:. )T CA(m)

DB(m)= R, T (m~) -t% KﬂIzAz—} CB(m)

DCim) = Ry tme1) + R, TA +Cetm)

(-5

(A.9.5)

(A.9.6)

(A.

(A.

(A,

(A.

(A,

(A.

10.

1o0.

10.

10

10.

10.

1)

2)

3)

.4)

3)

6)
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APPENDIX B

HARMONIC BALANCE METHOD FOR FORCED RESPONSE

BELOW FLUTTER

Concentrate on the nonlinear terms first. Rewrite

4,15 here

3
Wo= dno t Z (Car gim rt, tcnr coort;) (B.1)
€Y}
Then

Wi Wiy = [chnot G A, +dn, oo, TCnain 2, +dm Co0at,
+Cn3 3T, +dns Co03t; JX [dro"’ Cfaﬂ*"-t; tdp Cool
+Cpa in 21, + Clypz Co02E,  Cpa @31, +dps o3 Jx [ dgo
+ Cyy Aot +d g coot, +Cga fnat,+dly: Coo 2T 1 Gy fim3l,

fdzs Gooa'f,]-‘ s, + 3. Ca-a‘ﬁ; + Ssﬂ&"ilf Sa- ngt;‘hs;//"'"'?{l

+ScCo03t,t SqAem3t, T Sp oot 1 Sy Covly imT, + Siv i,
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1S, Cool, 002ty +5i2 00y in 21 +5,8 L) Cad Tt 15, firtitin 2l +S,s eot, oot
15,4 Codt Aindt, 15, fonl, Coo3t, T3 famt Min3T; 159000 2L 500 A 2T
+ Say An32%, + S,2 C0d2E, Cod3t, + Saa Cog 2, Ain3t, + Saafin 2T,

X co03t, +515 A2ty An3E, + Sy c8d*3T, T Sap Co03L, An3L,
525 A3t 1S9 Co°t, + o0 Coa’ L Ant, 153 (80T, A7,
t Ssa firlt, 333 cod't, cooat, T Saq Co0>t fin2t, 1 Ss5 Codt;
X c8431, + Sz Cod’t fin3t, + Say Codt, funt  Co921 + Sss CodZ,
x gont, Ain2t, 1 Ssq Cool, fint, C8d3T, t Sso Cool, Ain T,
X Ain3t, 154 Aint, Cog2t, 1 Saz Rirl T, An21, + Sasfin’t,
X cog3t, tSes At Aun 3T, + 345 codt, Co0?27, +S46 COOZ,
X ceg2 £, an 2T, + Sen Coat, Aen®2t, + 5.4 COI £, C892£, (o031,

t S4q co0l, Co02¢ pn3T, + S50 Cool Am 2L, Cag3t, +Ss Cogl,
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xin 2t, co03t, +Ss2C80t, cos 3L, + Ss3 caot, Co93t, An3 T,
+S54 o0, pin’BL, + SssAint, Cog’2L; + Sscfint, 8921, pum2E,

t Sgp Mint, gini2t, + S funt, cog2l; c843% 1 Ssatin 1, o921,

X irn 31, + Seofant, pin 2¢,C093t, t Sé pint, An2t; An 3T,
+ Sez frri t, C80°3T, 1 Sgsdunt, Coa3t, fensl, +Seq Ainl, 3T,
t Sgs 802t +Ssc Cag’2t, pin2t,  Sey Cog 2, fen 21 +Seshin 2t,
+ Sy 802, cag3t, +Sqo COO2L, finBT, + 5, C80 2L, An2; Co03l,

t Syz cs02t, fin 2, Aon 3¢, + Sps A28, Ce93L,

+Spq prl 2t Ain3T, + S5 Co021, C89°3T, +S)y4 Cag 2 Z,

X cag3t, findt, + Syq CO92T  RER3L, T Sppn 2,

X C80*3%, T Sy AAn 2T, C803T,Min3t, + S50 Ain 22, fn 3T,

+S,,C04°3, + Sy, COd3E, pun 3t, +5p; Cao 3¢, An’3E,

T Spa /MSB t,
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where

S, = dno dpo dge

S, = dnodlpdg, + dnodp dgo + cln g dgo

Ss =dnodype Cg, + dne Cpy dgat Cridpodyge

Sa = dyodpo dga +dnedpadye t Anz dpodye

S5 = Gnodps Cg2  dno Cpu dgo 1 Cradpodye

Se = dmo dpodys + dno dps dlge tdmadpe dge
Sy = dno dpo Cga + dno Cp3dge + Cnadype dge
Sg = dnedpdgit dnt dpodg +cInidp dgo

5¢ = dnodpidg. + dno Cpidy +Cnidpo dgy 1 dnidpeCy

+du, Cpuclgo + Cmidpr dgo

S0 dno Cp1 Cgit Cmdpo Cgi T CniCpi dlgo
S = dnodypr dgs + dnedpadys T dnidpedgat dnadpedy,

+ dmd?; d3° + dn2 d?' dZo
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Siz = dnodpi Cga + dno Cpadg tdnidpo Cgat C,,,d,,.,dg,
t dn) Cpadgo + Cradpidgo
Si3= dno Cprdgz +d nedpsCyi + Cndpodge +dnadpo Cgi
t Cnilpadg, +dna Cpidgo
Sta =dno Cyp, Cg2 1dn, Cpn Cai t Chn dpo Cya t Cnadpo Cs.
* CpiCpadge 1 Cna Cpi dgo
Si5 = dwodpi dgs * dnodps dgy +dnidpodgs +dusdpody
tdm dpsdg, t dns dpidgo
Si¢™ dnodpi Cgs 1 AnoCpydg, t dmdps Cos + Cnsdpe dg
tdniCpsdyo + Crsdyp dyo
S = dnoCpidys t dnodyps Cgi t Cmidpedys +dnsdp, Coi
+ C,..d?sdgo + dns Cp dgo

Sw = dnocrl Cga +dno CT” CZ' + Cn,.d?o Cz.a <+ Cnsdpo Cg;

t Cmcpadlo + Cns Crudgo
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3;1 = dnodpa dga + dnadpo dgz + dnadpa dgo

Sas = dnedpa Cgat dnoCpadya ¥ Cradpodgat dnadype (e
t Cnadpadgo + dna Cpadge

Sz

Gno Cp2 Cgat Cnadpo Cga + Cnz Cpndgo

Siz = dnedpadygs + daodpsdgz * dnadpodys +dnsdyedye
*dna dpsdge t dns dpa dgo

Ss = dnodpsCys +0n, Cpadya + dnadpo Cygs + Cosdpellye

+dn, Cpa dge + Cns dpz dgo

Sia

dnoC'Pz d33 T dho d—ps sz +t Cm.dfodgs‘fdnsd?o sz
1 Cna dys dz o +dns szdga
325 = dno sz Czs + dno Cpa C-z;,‘f an_dpo Cga 'l'cnsd?o CZ:

'1' an_ C?g dgo "r Cn_; C?l dxo

Szé = dno d?a dZs 'fdn.sd?odzs + dnsdpsdgo

327 = dnodrs Cgs + dno Gps dzs ‘fdhsd?n Cza + Cns d'rodgs
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t dny C?Sdfo + Cnsdps d&u
S;p= dno Cpa Cg3 + Cnadps Cops + Crs Cpadyo
S29 = dmdpidg
S0 dnclp Cgi t dmi Cpidgs 4 Cn O dgi
S31= CniCpidg t Cridypy Cgytdn Cpi Cgi
S32= Cay Cpi Cyy
Ssx = dnidpi dg2 + dni dpadg, tdnadpdy
Saq = dnidpi Cg2 1dm Cpadigi t Cnady,dpi
S3s = dmd?ndz.a + dmd?sdz. + dns dyp dzn
Ss¢c = dn dpy Cgs t dny Cpsdgi T Casdpdy
Saq = dnadgi Cpy +dnaCpidg, t dnidpaly ¥ Cn,dpady)
+dn, Cpdge Cridpidge

533 = Cm.d‘pn cgl + C"n— cP\ dzl 'td’" C?l- CZI + cm sz.dgl
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tdm Cp Cpz + Cnidyr Cpa

S24 7 clnadp) Cgi + s Cpidlys +nidps Cgi + Coidlps cly
*dni Cop, dé, t Codypi dys

S40 = Crnadlp: Cpit C..;C?.dz. + i C?5Cz, + CniCpsdy,
t da, Cy, Cgs + Coidpi Cps

S41 = CaCpidlga + Cardpe Cgr +dnaCp Cyy

S427 CaiCpiCga 1 CayCypa Cgy +Cna Cpy Cy

Sas® Cm Cpiclys + Cuiclps Cgy +ny Cpr C

Sas = CaiCpi Cgs 1 Cay CpaCai 1 s Cpu Cgy

S45 7 dnadpadg 1 daady,dga tdnidpadse

S4¢= dniCprdga+ duidpe Cga t Crady dg,_+c/n,_d1,. Cqe
t Cnadprdgy 1 dna Cpady,

5477 Caa Cr*dr 1 Cnadypi Cpa t di G, Cre

548 = dmd?zdzs + dmd?sdzz 1 dm d—p‘dgs + dn dru dz z
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tdndysdy +dnsdpady

549 = dn\dp2Cgs + dn, Cpa dga t dnadpi Cpat Casdypdye
tdua Cpadlgi t Cnadpa dgi

Sso = m Cpsdgs + Anidps Cpa + Coachpiga +dnsclps Cpa
t Cnadpsdgi +dns dp: dyg

Ssi = dwi Cpa Cgs + dm Cpa Cpa t Cradp) Cps + Casdp Cga
1 Cna Cpady 1 Cna Cpady,

Ss; dnadradz. + dy3dyp cps dnidps dge

Ss53= cniCpadys 1 dn dps Cgs t Cosdly dé 31 dns clpy Cps

T Cnydpsdys + dns Cps dg)
Sss = Cns Cpadly, + CasCh Cgs ¥ clui Cpa Cg
Sss = dnzd?ngl tdne Cprdga + Cni dpe dy2

55‘ = Cmc?;dz‘g 1 Cﬂp d‘rlczt 1 an C?| dz:. + dnz C?( CZ?_
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+ Cpadpa Cgy tdna Cpa Cg
557 CaaCpa Cgi + CneCpiCga tCniCps Cga
Ss9 *CmiCpadgs t Cni dpsdye -fdmCr:dgs t dns Cpidye
tdnadps Cgi+ dns dpaCy
Ssg = CnidlpaCys + Cni Cpadga t Am Cpi Cga 1 Cns Cop dga
+dn CpaCyqi t Cnsdyp. Cyi
Seo = Ch, c?,d23 + C‘mdf,; CZ"+ Cna C?;dzs + dns; C?'CZ"
+ Cnadps Cgi 4 dns Cpa Coi
S¢, = CniCpaCys t CniCpsCpat Cne Cpi Cgs 1 Cns Cp G
T Cnz CpaCyi + Cna Cpa Cg
Sz = Cn dpsdys +dns Cpidys +dnsdps Cg
Sés = Cm,Cpalys t Crillys Cpa T Cn3 Cpidgs + dna Cpy G

+ C.n}d»ps Czl +d"3c'rs C‘Z'
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Sea = Ch, Cyps cz3 +Chps Cpi CZ3 + Cn3 Cyps Cg,
S¢s = dna Olpa dy 2
Sec= dnadpsCqat dna Cprdya + Cnadypadye
Se7= CnaCpadgz + CnallpaCya + dyaCpa g
Ses = CnaCpa Cy
Seq = Onadpadygs tonadpsdye +dnadpadye
So = dnzd'rzcz.i t dn2 Cpadgz 1 Cns d??—dgz
Sqi =dn.Cpadya Tdnadps Cgz + Coadyadys + dnsdpa Cye
+Cnadpadyz+ dns Cp2 Cg2
Spa= dna Cpa Cys t A Cps Cat Cha d?chs + Cns dp2 G,
t Cny Cpadge + Cas Cpe Gy
573 = Cny Cpadgs + Cnadypa Cgz + s Cpa Cyz

574 = Cna C'pz Cga t Cmc'ps ng t Cns Cpz ng
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Sys = dnadpadys +dns dpadgs  dny dps dga
576 = dnadps Cgs +dna Cpadps +dnadnelys
t Condnadgs t dns Cpadga + Cnadpa dpa
S79= dnaCyps Cgs + Cns dp2Cga+ Cns C?adz:.
572 = Cadpsdgs +0lns Cpadps + dnadps Cse
S19 = Cnadps Cps + Cna Cpsdys +dnsCuadys
* CnyCpndys +dnyCpaCyat Coydps Cya
Sgo = CnaCpsCps ¥ Cny Cpa Cyat Ciy Cpa Cype 5.3)
Ss1 = dnadpsdys
Ssa = dna dpa Cqa 1 dny Cpades + Cnsdpadys

38‘3 = G, 3C173 dzs 1 Cos dfas Cgs T dnsts CZJ

Sea = Cna Cps Cgs
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Reducing the products of sine and cosine functions to the

sums of sine and cosine functions, one obtains

WaWp Wy = P, + P, dint, + Py coot, + Pa pin 22, (-4
+P5 ceazt, + Pepon 3¢, + Py co9 3%,
where
P =S, +53; +5(SietS1q+ Sa +3:6 +Szs) (B.5.
*i‘(Ssa't 333’34‘+S48T55,+55? - 560)
Pz= 53 T ‘é(sm“sls +S523~ S:.q."" Sss 'f'3571'3‘z (B.5.
_'$€4)+_4'-(530*3332 ‘1'536 - 537-544"370“'37, 1374)
Ps =3=+§"(5"*5a4+522*525 +S45 13474552 +S54 ) (B.5.

Tz','(3537f~33,+5351'34°"~5¢_3 "'Sse,'f 573"573)

PA = S5 4 %(51+516_S;7 43534 157¢ 155, )7‘2,7.(3421’ 347 (B.5.

~Ss0 1558 tS¢gi+ Seet 3Ssy )

1)

2)

3)

4)
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PS = Sa *—%(S&‘Sao*sls 'I‘Sli + 3933 + 34 +575

(B.5.5%)
)
+Sn )t g (S49+5s5 - 557 + St 3S651Ss7)
[
P = Syt 3(Su+5;5+S5c+Saa 1570t Sa) 7 (Sso
(B.5.6)
-53z+ S" "‘5.55 "’557 ""S}z 1’3334)
Py=Se +5(Su~ Sia + S35 1 Sas + Seq + Sr3)
(B.5.7)

M '4"(537'53: +S45 -~ Sapt s + 335, 1 S83 )

Employing Egs. 4.15 and B.4 in Eq. 4.13 and balancing terms up

to third harmonic, one obtains constant terms:

‘f\ﬂn z(lEmn-'-Km,,)d\w'l‘ZC (B.6)
"Bl "?Z

sin tl terms

Nr o
‘FM?-:Z_‘[(—MMnT)-Emn'fK G, (Efm +GB,, )d]fZCmrz =0 (B.7)

cos tl terms

N - -
‘Fms = Z [(“ Mo, A E,,,,‘,*' me) dm'f (E)‘m"-t GBm‘) Cna ]

n=i (B.B)

'Tg Conss B ~ $ﬁ: 0
"1?323! "’ﬂh’rg 3 ™
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sin 2tl terms

N _ -
{MA N ,,Z: [ (-4M,,,t AEmnt Kmn )Gy (2Goat qPB""‘)dm'J

X (B.9)
t 2 Conpg Pa=o
co:c 2tl terms
N _
s = 2 [C4Mmit A Bt Kinn Yy = (2 Gurit GB i) s )
“:LJ (B.10)
%
1-3§éﬂ C;wnleFg'_ T;n§2::0
sin 3tl terms
N - -
foe = 22 [ T3 A B itKinn) Cns = (3 Gt GBrn)dha]
n—u (B.11)
" Zg Crmp T = 0
cos 3tl terms:
H — ——
‘F'mv-, = E [(_ qun-t/‘l-.Emn.f Kmn )dhsf (3 Qmﬂ qBMh) Cn&]
(B.12)

N
TR s
Let the unknown vector x = (b b

b b

107 3117 P11+ 2127 Pi12r 2130 Py3v

asq s bNB)’ and write Egs. B.6 to B.12 as

f(%): fus (B.13)

ng
‘4u

\i?.
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one obtains 7xN equations with 7xN unknowns, Let

Mma= T (m-1)+l ba =7 (£-1)t
mb= mayt) Lb= Lot
me = matz Lc= da+2
md = moat3 Ld = fass
me=matd fe = Lat4
m{ = mats Lf = Lats
m3=mq-r6 £5= Latg

Then Jacobian of these equations are

3 Conpr 2
jmq’ﬂ;q = A Em2 'me! 1 nf g=! "‘"1’3 ‘adlo

N
J-nﬁlib= 2 C 21

Jma,ge = ,gé..c"‘"ﬁ%%,
JIma,ed = n%, C“‘“?‘b ;ZL
T ma, e ,,%fmrz =
Tma, o = %ﬁc“‘"?z SZS
Ina, g9 = ;:zz, C‘““ﬁ;&%

(B.14)
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N
- ot
Tns 40" Z3.,Cott 3a,,

Inb,!lb = MM1+lEm-¢ tKme t Z Ca a’P

"t 2,

z oF
j‘mb,lc. - a'ml GB,, t % cﬂ,n?z s,

N 2t

’ "1'?73:.' m"?Z aC@;

N ot
j-mbfez Z_:"—'lm'vrz >dez

2
"
SM
~

— 38
J-mc,.fb = - er- G[Bm_e + n,%z- Cmn?z -a—c—e:

oR
J—mcllc MM+A Eme t Km‘e t Z Cmn?g ade

N

oR
J;c,ed :n%:‘cmn?zach

N
= . Congy 22
jmc,'ee— ,.S.P' =\ ?Zad‘tz

mC .2{: = %—'Cmnfg C,es
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N 2P
- - C\m
Jmc,zg "éﬁ "P§ 2d,
N 9?4
jmd,-‘ec\ = u%i:l Cm"?z '5‘&:0
N YA
Jmc‘,-@h = “%q Cmn’fz aCz.
8. on
jmd)lc = "IZ?';z:‘ mnfz ?d-ﬂ g 2P4
J d e = -4 ‘qul‘rlE"'l-r Kimt 1-“%:2:» C""?Z 9Ce,
) ?)P4
Congpg =——
J—md e = ~ 2 Er“"e GBme 'f":?Zi| i3 gdez
N 2P
de 8 = Z ""‘TZ 9C£3
N c CIA
mn d
de .0.3 Z?é4 Jrz 2043
il 2Ps
jme,-ﬂa %f‘,‘z:_l mrer 'adl‘
H 2Ps
jme,lbz 't,ZtJZHC"'"?Z 2C,,
N 2%
Jme,ec = %Z Cn\n'pz —a—a—;‘
j e, ld = "’2 G[me &Bmp =+ %ZZ_,C“"73'36£1

oPs

Cmn' ~a
Tme, 2e == 4Mugt AEme 1 sz‘f%}zﬂ L 3d,,
me«) e~
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. c .. 2%k
mF,Ea K),?)Z:I ?Z ad‘eo
J'mf'fb - Zh‘_j\ o
) ")?Zd mnfrz acl’
N
J. 5 2%
" ée 'BZ‘F:lZ:o Cm"” 2dy,
N
. > oL °f
jh\f,ﬁd )\,%-l n?z BCQ

LR AL "'"1’3 adgz

_ N
T g = ~THM., ot
wf, 0f ¢tAFme T Kme *K:?Z'E:,CMn?z 2Css
N
Tt by = -3 Gt~ GBumg * 25 Compy o
’ j éi- ¢ & ¢ n)%gzl "'“1’2 Bdu

N
- oF
J"'\ g/ »Q a Z’ 8==C M“TZ 3d£o
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N
- °h
j“‘? ,.Ed ) n%-:l Cmn?z 3aly,

ZNZ CiX
= ory
J-mg)Qe - nﬂﬁj:‘c "’ngd&
P (B.15)
jmg,l,; 3 q-he-’- G[B + ; 'Cmnfz aC:a
ok
;TQ&?J -"3P4McT2.Enw‘fKﬁ¢‘+é§;4c;n?zaaha

where
;d: = [dp odgo * 7 7 (dp, dgi + Cp, Cg +dpadpa + Cpa Cye
‘fdfidgs‘qu st) ]S} 4 ?T-

where P.T. means permutation terms, i.e., n»*p, p>*q, g*n and so on

3C1 = [z (dp CZ' =+ Cfndzo) 'TZ(CP dz. 'l'd?s sz C’P‘dzz -d?;%,
1dp. Cgs 4 Cfstz = Cpadys-dp GzaJ] & tPT.
adg\ = [ Z(d‘?“*dz""d?‘dp’ )+ 4 (dfi dzz fdPIdZI | C’P‘- 2;'1 C‘r. C?z

+dfndzs‘rd?sdzz -+ Cp; Cza + Cra sz)] S} TP T
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an- [2 (d‘l’oczz'l'c‘}’:dZo ) +4(d1, Cgl'f C?|d2| ‘l‘d?. Cgs
+C1ndz| - Cpiclps - dps Cg0) 1St + P T

%z: [%(dr,dg;’fd?zdzo)‘f zl_'(dr.dZV'C?' Cz, -fd,ri dzs
+d1a3d2; + C’P' Czs ‘i'C»ra CZ') ] S,né +P.T.

;%3 < ['i._(d'r, Czs + Cfsdzo) + ‘Z{'(d’ﬂ sz-tcr,_dz, -+ CT'de'*d?" CZ' ) ] S}*‘P'L

dl [z(df.dzs+d?sdzo)* ) (d?,dgz-td?zdz, - C'P‘ an C?,_C’ ,)]S *PT

9?: [d?"CZ' 1 C'P'dzo 17 (d?l zz-r C?z dZ' ;de = dp:.Cz; "l’d?-a. Cgs

?Crsd?z‘ C?;.dzs"d?‘s cz: )]S} tP T

2% .
9Cq

[d?"d? o"" Z (dfpdzz. + d?zd;b + d?de?. +C1oz C'Zz T dr dZs 'l'CTB CZ3 )
+ ﬁ’(d?udz |73C?|Cg|1’dradg." dfldgs‘cfa C33’Crs Cz»)] 5_2 "‘l’P-[
?)Fz [ 2 (d?ccz 1 C?zdzo) + 4 (dfu cgl "’Cptdzl ""d?l cz3

t Cpady, ~dys Cg1 - Cp dzs )]18%+P T
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9P
20‘ [2 (df,,dg' ‘l‘df dgo d‘rodz% df’a dZo + CT,:.. Cz‘ + C,‘,l gz)

"Ti (d?. dgs*dfs dgz_ t Cpa 633 + Cps ng,)] 5','2, +P T
:j: = [2 (d»yo Czs + Cfsdzo d?"CZ'— Co CJzo‘?d,P Cgi-tC? dz:)
+4L(C'dez3 *d?s sz-dp; Cza - ?3dzz )] SZ' ‘TPT
oF _ !
3¢, " L2 (dpodlys + dpadge ¥ CpuCyat Cp Cai) 1 Z(dpdy
- dfrzdzz + szcgz ) JS} T’P- T
’adp [z(Cr,dzg +d1n g, drr sz Cfo:.dg,)‘fz(dpz Cz;
+ C?;_de. - CL’" Cz. - c‘rl dZ| JJ S: +PT.
;5‘1»”[(d? le'fd»r dzo )'l' 2 (dr|dzz ‘fd?z dgl 1 C’P' Cz;"r CPZ_CZ,
'fd?deS ‘fd?s dgL + C-Pz Cga "fC?_; sz ) -_] Sﬁ’fp T.

g—%:[%(d?o sz'f' Cp;dZ,)TZ"(CP,dZ,fdP, Cg, -(-Cr_;dz,

tdp Cgs ’C'pudgs-dfzs Cai ] 5} +PT
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3
de |

'P“dgo* é’(d?odgz +d1o;dZo *d’pzdzz = C—?z ng + dpadzg,
+C?3 Cza ) +Z(3d?‘dz| + C’Pl CZ| ‘fd@dzs‘('d?sdp + CP’ 21
tCnCpa) 185 +P.T.

oMb

>Ce, L7 (dpe Cgi 4 Cpidget dpo Cps 1 Cpaclze + Cpadyy +0p Cpa)
2

*Z;.-(dfzcza +C1vad22 -szdZs"d‘Ps sz )] S} ‘TPT.

2B

adg { (d?pdz 1 d?. dZo + d?p d33 t dps dZo ‘fd»pzdgl + d‘fn diz)

-le-(d?zq'zs‘td?sdgz % CPz Czs + C‘Pa C?z).] 52 -tP-T.

;E)_C%;: [;l(dfo CZ" t Cpa dzo t CradZ' +d1" Cgs > i(d?‘ CZ'

t C‘Pldgl t dra CZLT Cr;dzz )] 5} +P T
_a_Ps_ -[ (d?,dzz Td?zdzo+dr3dzlﬁd?'d23)+4 (df'dg.
- CT.Cg. ‘l‘dopzdzz" Cr,, sz )] 8_"& + P T

1
254, “[CdgeCpat Cpudyo)t T e Cgo 4 Cpuddgy 4 dp, Cg

+Cpadp - Cpidgatdys Cqu) ] St +PT.
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:E: [ 7 (dpodgs +dp 1950 ~dpodga-dpaddse ) 4 7 (Cp, Cya

+CpaCq +dpadps +Cpa Cgs + CpaCpa) ] SG4PT
282 = [ (dpo Cpy + CpuClgo + dpo Cgo + Cpa dgo + iy Cp
* Cpadgi )+ 7 (dpa Cgs ¥ Cpadya=Cradpa -y Gga) | S5 11T,
2% = [dpudgo™ 7 (g 1 CpuCy1 +CpsCys +7pslga )4 5 (dnchs
+3CpuCq2 - pdlys - dpady 1 €4, Cg3+ Cps Cg,)JS,}* PT.
20 = 2l Cgst Cpadgyt CpuClga + cpaCyu + 0o g
+Cpnds] 85 + P T.

2% -r.x N
30, [z ,,dzmdf.dgncrl Cgs +CpsCga) 2 (dy, dge

‘l'd?zdzi + C‘Fu c22+ Csz‘ CZ, ) ] S_z + PT.

ad!s [ (L»rzdp'fd«[ps ng d»r. CZ'— C‘Pldzo)*‘}(c?cdgz

‘i’d'P:—%l"d‘rl CZZ - C‘Pz_le) J S; ‘TPT.

oFs - [drodzﬂd'p»dg" . -zl(d?\dgw%.dzaw* drs dzﬁ C?( Cga

ad Lo

*CP3C2."CP| Czl ] S,ZL*’PT
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o7, e
—a—c-‘z—‘ = [?(d?o Cza + C?BdZo "dtpo CZ'- C-P. dzO t C?" dz,_-{-d,rzcz')

“'i‘(copz dgs + d?; ng "d‘Pz Cga - C?JO’Zz) ] S"Lg +P.7T.

Z;’% = [F (dpodg + cipr dgo +0lpudgs +dpaclgs +0lpidy, +dpadg )

-t‘i'(d»f,,dza tdpadya + Cp2Cgs 1 Cps ng)]gjz tBT
n
2% = [dn Cga t Cpady,  Cpudlys <0lps Cpy + Cpadga +dpaCalliaPT
obs = [dfod?o + fl(d}ndZI +Cf| Cz: +d‘P3 dg3 t C‘PB cgs )t 2{. LC"“'CZZ

2dea

+3d1ndzz +df| dga‘rdfsdgn - C’P‘ Cza - Cra CZ‘ ) ] S: +PT
Gl 4
3B - (3 g+ e rche Cps v Craclp) 43 G

1 C?;dza - Cr.dgz _d‘f”‘ CZ') ]Sz tP. T

2o - [ (dpadgi+ dpudge + dyaclys * s clga) + 3 (picly

topady 1 Cpi €24 Cpa Cpu) ] 8 P T
aPc [(A-?o ZaJGCadZa)-r Q(df,ﬂz -tC,?Ldz. + C’P‘ dzz

‘fd?zcgl )] S;L + P T.
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an

'—5’5;‘ = [%(d?odzz“’ df”‘dz(’ + C?. C?.a t C’T’"’ Cg,)'l‘zl_'Cdfpl dz|
"'CP;CX| ""dfz. dz:.'f C?z sz)] S: 'f’P‘T.

2P
2da

= [—2" (_dgo CPQ -+ ngdf:o +O!1o: Cgs T C‘P3d3| ) *-4L(d?l cgl

_tCP'dZ' + CTszgz -+ d’]m. C—Zz) ] g’z T R T.

CIr

2Cps [—%(dj"dZ'Tdf‘ d2°+c1" Cgs'tcrs ng.)'rz"(d?,dza

+szdZ| + C‘Pz Cg,‘!' C?n ng) ]S:: "'P T.

3—13;3: [é’(d@ CZ’ -+ C'["dg" 'rdrz Cg;., + CPstz)"" '41'(0'19‘ sz

+C?zdz.—d1,,_Cz, - Ol"dg") ] 51 +P T

afe

acesz [dfdeo + —ZE.-CC‘n Cz. ‘l’chhdgl "f‘Cr; Cgl'l’d?bdg;_

*Z—L C 3Cp3C33 + dpa dgs)] Sg+P T

_‘:‘c%‘a: ::.'(.dpa Cga -+ Cr;dzs D S;L +PT

2P = [Ld?odzs *d?3d8°) -!"% (d»r; dgz +dfzdg‘ - C?,sz

adﬂu

~CpaCg) 18 + P
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'?E" = 2 (Crndza *dps Cgi -d?ocgz "Cr:.dzo) + (C?,dgz
'fd‘P:.Cg:.' C?.dg; "d?\ CZ' ) ] S,:. #PT

2.—1;2-‘ = [-2_'-(d1’°d3" + d?z dzo -rd?.dz}'fdpadg' ) *ﬁ(d’?'dZ'

- C?.Cz. ‘i‘d?dez -CP" Cz:) ] 5} +PT

21 = [ 3(Cpadgstdps Cpa-cpo Cq1~ Cpdlged+ 2 (Cpudy

2Ce2

'fd?; CZ"- C?;dzl-d?, ng ) ] sr,lé +?P.T.

ok . [ (d?o d%‘ -;.d?‘olzo 'rd?zdzs-tdf dz;) *4 (d’ptdgl

Bde (B.16)

TdT|d22’f C?. sz =+ Cr,, CZ' )J S: ‘rP'T

™
_23‘623 == (.Cpg,dza ‘fdfa CZs )5 +P.T.

P
gdqe [d?,,dzo* 2 (.Cj?,d2| + Cpi Cg.-l‘ dopzdzz‘l‘ Cp:.Cz;,)

".4l (3d193d33+ Cpa Cg3) 382 + P
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APPENDIX C

HARMONIC BALANCE METHOD FOR FORCING-FLUTTER

INTERACTION

As mentioned in Section 4.4, only the two most important
responses, forcing response and flutter response, are considered.
So, employing Eg. 4.23 in Eq. 4.13 and balancing terms with fre-
quencies one and w,, one obtains

sin wltl

N W _
-f'mu - Z [- ‘I;‘"m w: + 2' E"‘f\ *KMI\] an-é' (QJ.G"M“'(’G‘BM") bn

! N (C.1)
+Zﬂﬁ%z:lcmn?z {3ana1pa% + anb?bz T a?bn bz + az bn.bp

+2 [an(_cpca + d’sz ) 1'0?( Cn Cz""dhdz ) *GZ(qu,Tdndr)]}w

cos wltl terms:

N - —
{mz = Z‘ [(— anwl2+/’l. EmnT Khm ) bn t (wn é%mn_rq'an)an

net . (C.2)
*‘4L'S§Z=5C"'h?z {3bhbsz * bn a’Paz T anbp aZ‘f anapbz

t 2[bn (CyCg+ Olpdy ) +hp (CaCy+cndy) +bg(CaCptdndp)]}=o
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sin tl terms:

(N
'Fma = E[('Mnn"’ lE,,mT Kmn) Cn_‘ (éhn"’ El'an) dn

N
n
+4%='Cmn?g{3c"c1ncz+ Cndp dZ *d“CPdZ“d"d‘l’CZ (C.3)
t2[ Cn(.apaz-tbpsz + C‘l’La"ag"' bnbg ) 1-Cg(0nap-rbnb1,)]}=0

cos tl terms:

N - —
fra = 2o [ - Mot LEpmt Ko )Ant CGoniit GBun ) Cn
n=i

N
*4"'" 2, Cm,,?z{3dndf?dz +dnCPCz + Cndl{,Cz + C,-.CP dz

10 a (C.4)
t2[dnt C(pag-i-bpbg) + dr (an az-t bnbg )sz (Qndy
+ brtb? )j] } - Ti\: 0
Let
fu
fi2
fg)= £ | c.5)
fa
foa
and the unknown vector x = (A, w, cq, dl’ ay, by, €y, d,---dy),

then the Jacobian of Eg. C.5 is

It L
:rma,l = 2 [ E"f'\nan'—zI W, A : amnbn]

n=i
N - -
:ﬂmq,z = Z;I[-.z PLnna)laV\— GiMnEm]
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Jmﬂ,ﬂa = "‘(A),z Iq,w ‘tl Emc + Km{ + 4 P ‘mndrz {_[3017%
thpbg + 2 CpCy +2dpclp ] Se + [30n0g +bnbs 120G
+ zdndg J 51: + [BQna;’,-i-bnbft,‘i 2 ChC1,-+ 2dn0‘1o] Si}

N
Tima b=~ 6 Gne™ Ger*Aer-z\_l mapg L CQpby 107 bp) SE 1 (Onby
Tazbn)s'z 1 (.an:?»’o + a,an_)Si }
N
T 00 ° 7 Z Coyy {(RpCy+05Cp) S+ (O Cpt8pCn)SE
’ nhgs
+(AnCpt Qp Cu) % §

Jma,ed = .il— ")%Z:‘C"‘"’PZ {(a’r’dZ* C‘Zd? )Sz "'(-ahdg‘fagdn)sg

t (.Clnd»p-f Q?dn) 5,3 }

-'N

mbl = Z {Emnl) 7 wl Grmr\a ]
J—mb,z = y\zg‘: [‘.zw"qﬁmbn-t é’ﬂna"]

N n
Tk 2= ©O Gt G 7'155- Conmpy U (Op by + Qg by )62

t (Boby t Ggbn ) 57 + (b, +apbn) 53 ]



-126-

W
)
I I Kt > "
jmb,ﬁb"[ wlM,.,,e"'/L:E 421'< e] 4", i
+a1,azfchc8+2d1adz)52+(3bnb3-ranaz+zcncz
> h by Cr) Sy
3:'-5,.2:.: —2‘: n%:« C""‘?i {(-"1’68 +bfcf’ ) S“t -‘-(bn CZ-+ Z ) 2
*r(an»p-rb»an) Sf}
L3 “ 4 (bndq thycln) S7
:__Z Cen {(, d-\'b d?)SL"Y(bn z'fz n) Sy
Tnbd = 7 2 Corty by dg +9;

+ (bndp thpdn) 85

Jme, | =0
nglzo

o " )
JTme,0a ™ Z’L n%zqc"‘”?l {(Q?Cz-r Qg Cp )2+ (GnCg+ 0 Cn) s

<+ (OnC? 'farCn) 5% }

N n : i
_'Z— >, C’“"TZ { (bT’CZTBZCr)S“ +(,|oan+bgCn) O¢

Jme, 26 =
"=t

£ (bnCptbp Cn) 85 1
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T gc == Mg 2 A Fmet Ko + 3 2. Congg {03046
KiFs
fd?dz‘tz 01,02 +2 bsz )S.Z + (3CnCz +dhdg +2anag
»
+2 b.qszS,c t (3 Cn Cp 'fdnd?‘tzahaf'fzb”bﬁ)sij

N
= L
jmc,ﬁd == Gme™ GBme 2 '\%chmnfz { C dez'i' CZ dp) S}_ t (Cndz

+ ngh)gl‘: t (Cnd'fs‘fcpd" )SE—}

-
3

[0

[ =Y

9

Nl._
Mz

Cmn?z\ [(apdz‘fag dp) 52 +(a.n dg

sl

.
je]
e
Q
3
~
aNn S
AR

t( ahd'P+ aopdv\) Sg J

&
£z
~
¥
N —
Mz

C‘mn?,z [ ( b'pdz'f bz d’P) SL -+ (L)hdg

S
=
N

*bzdh)ﬁz TCbndr1-bpdh)5£J

N

de,ﬂc = G{,.,g‘f ETBmE't Z‘ mnrz{(c’pdg*c&d?)g'(

T(Cndg‘f ngn)%f + (_Cnd?,‘l'cpdh)&z}
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- N
Timd, 2d = - Mg t A Eme T Kime +jn%2dcmn,oz {(3dp d; +CpCe

+20pAg+2bp by )SE +(3dndy tCnCy12an0g +2bnbg IS¢

+3dndp + Cn Gy +;zana1p+;bhl;1, )SE}
where
ma = 4x(m-1) + 1
mb = ma + 1

mc = ma + 2

md = ma + 3 for m = 1121 N
fa = 4x(8-1) + 1
¢b = fa + 1 for 2 = 2,3,...N

e = 4x(&-1) + 3

2d = fc + 1 for %

il
[
N

~
2
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TABLE 1

EFFECTS OF APPLIED MEMBRANE FORCE Ry ON PANEL FLUTTER¥*

Ry =0 Ry = =27 2
A Amp. A Amp.
900.9 .061 898.7 .0€1
924.3 .303 922.2 .303
995.7 .600 993.4 .600
1110.5 .891 1108.1 .891
1267.9 1.177 1265.3 1.177

*This table is for the three-dimensional, clamped-clamped
plate with a/b = 1, Rx =0, u/M= .1, gq = 0, gy = 0.
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