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Abstract

Boronic acids have been typecast as moieties for covalent complexation and are employed only 

rarely as agents for noncovalent recognition. By exploiting the profuse ability of a boronic acid 

group to form hydrogen bonds, we have developed an inhibitor of HIV-1 protease with 

extraordinary affinity. Specifically, we find that replacing an aniline moiety in darunavir with a 

phenylboronic acid leads to 20-fold greater affinity for the protease. X-Ray crystallography 

demonstrates that the boronic acid group participates in three hydrogen bonds, exceeding that of 

the amino group of darunavir or any other analog. Importantly, the boronic acid maintains its 

hydrogen bonds and its affinity for the drug-resistant D30N variant of HIV-1 protease. The 

BOH⋯OC hydrogen bonds between the boronic acid hydroxy group and Asp30 (or Asn30) of the 

protease are short (rO⋯O = 2.2 Å), and density functional theory analysis reveals a high degree of 

covalency. These data highlight the utility of boronic acids as versatile functional groups in the 

design of small-molecule ligands.
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Clinical inhibitors of HIV-1 protease are quintessential triumphs of structure-based drug 

design.1 The protease cleaves diverse sequences that connect individual domains of viral 

polyproteins, recognizing four substrate residues on each side of the scissile bond.2 The 

components of most effective inhibitors—a tetrahedral-intermediate mimetic flanked by 

subsite-targeting groups—have undergone iterative optimization for 30 years.3 The 

discovery of the bis-THF moiety of darunavir, which targets the enzymic S2 subsite, was a 

major breakthrough.4 Its two bis-THF oxygen atoms accept hydrogen bonds from the main-

chain amides of Asp29 and Asp30, leading to low picomolar affinity (Table 1).5 Mutations 

that overcome such main-chain interactions are rare,6 and darunavir is among the most 

resilient of protease inhibitors.7

Despite countless attempts at optimization, an ideal functional group for the S2′ subsite has 

been elusive. Inspection of structures of complexes between substrates and darunavir 

analogs (Table 1, Figure 1) in conjunction with biochemical characterization revealed 

opportunities to us. Half of endogenous substrates occupy the S2′ subsite with a glutamine 

or glutamic acid residue.8,2 These side-chains have been observed to form hydrogen bonds 

with both the main-chain N-H and the side-chain carboxylate group of Asp30 (Figure 1A). 

The aniline nitrogen of darunavir and the methoxy group of an anisole analog form only a 

single hydrogen bond (Figures 1B and 1C). Benzyl alcohol and cyclopropyl-amino-

benzothiazole groups can form two hydrogen bonds with Asp30, one with the main-chain 

N–H and another with the side-chain (either via a water-bridge or directly), but provide <2-

fold increases in affinity (Table 1, Figures 1D and 1E). Other aryl sulfonamide substituents, 

including benzoic acid and benzamide, form a water-bridge with Gly48 in addition to 

accepting a hydrogen bond from the main chain of Asp30, but again exhibit a <2-fold 

increase in affinity (Table 1, Figure 1F). This water-bridge with Gly48 is another interaction 

that can be exploited to recognize the main chain. Yet, no extant protease inhibitor interacts 

with all three of these targets: main chain and side chain of Asp30, and a water molecule that 

bridges to the main chain of Gly48.

We reasoned that an optimal functional group for targeting the S2′ subsite would serve as 

both a donor and an acceptor of hydrogen bonds. We were aware that the two hydroxy 

groups presented by boronic acids are versatile in this manner.12 These hydroxy groups 

display four lone pairs and two hydrogen-bond donors. No other functional group provides 

six opportunities to form hydrogen bonds so economically. We anticipated that one hydroxy 

group of a boronic acid could form both interactions with Asp30 while allowing the other 

hydroxy group to form a water-bridge with Gly48. Accordingly, we synthesized boronic acid 

1, in which the 4-sulfonylaniline moiety of darunavir is replaced with a 4-

sulfonylphenylboronic acid (Table 1, Scheme S1).
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Boronic acid 1 is a competitive inhibitor of catalysis by HIV-1 protease. By using a 

hypersensitive assay of catalytic activity,9 we found its inhibition constant (Ki) to be 0.5 

± 0.3 pM, which is indicative of 20-fold greater affinity compared to darunavir itself (Table 

1, Figure S1D). Because the boronic acid moiety of 1 is anticipated to interact with Asp30, 

we suspected that D30N HIV-1 protease, which is a common variant that endows resistance, 

could compromise the affinity of boronic acid 1. For example, the D30N substitution entices 

darunavir to form a water-bridge between its aniline nitrogen and the nascent asparagine, 

diminishing affinity by 30-fold.13 Remarkably, the affinity of boronic acid 1 for the D30N 

variant (Ki = 0.4 ± 0.3 pM) is indistinguishable from that for wild-type HIV-1 protease.

To understand the basis for the extraordinary affinity and resiliency of boronic acid 1, we 

determined the X-ray crystal structures of its complexes with both wild-type HIV-1 protease 

and the D30N variant. The two structures were solved at resolutions of 1.60 Å (Rfree = 

0.1967) and 1.94 Å (Rfree = 0.2203), respectively (Table S1, Figure S2). True to its design, 

the boronic acid participated in all three hydrogen-bonding interactions (Figures 1G and 

1H). Of special note are BOH⋯OC hydrogen bonds observed in both structures (Figures 1G 

and 1H). The interatomic distance of 2.2 Å between the boronate oxygen and side-chain Oδ 

of residue 30 is reminiscent of a low-barrier hydrogen bond (LBHB).14

We analyzed the atypically short hydrogen bonds between boronic acid 1 and HIV-1 

protease with computational methods. First, we optimized the hydrogen atoms by applying 

density functional theory (DFT) to a simple model extracted from the crystal structure. We 

examined the electronic structure by using Natural Bonding Orbital (NBO) analysis.15 NBO 

analysis revealed an interaction energy of 69.8 kcal/mol between boronic acid 1 and the 

wild-type protease. The typically non-hybridized p-type lone pair of the carboxylate oxygen 

hybridizes to sp3.99 in the hydrogen-bonded complex. This large interaction energy and 

hybridization suggest a large degree of covalency in the BOH⋯OC hydrogen bond. Next, we 

assessed the covalency of the short hydrogen bond between boronic acid 1 and the wild-type 

protease with quantum theory of atoms in molecules (AIM).16 AIM calculations—

specifically, structural elements at the bond critical point (BCP)—enable quantification of 

the covalency between neighboring atoms. At the BOH⋯OC BCP, we calculated an electron 

density (ρ) of 0.174 eÅ–3, a Laplacian (∇2ρ) of –0.08 eÅ–5, and a bond index of 0.22. 

Typical OH⋯OC hydrogen bonds display ρ < 0.2 eÅ–3, positive Δ2ρ values, and a bond 

index <0.1.17 Instead, the attributes of BOH⋯OC are consistent with the attributes of an 

LBHB.14

An LBHB arises from functional groups with closely matched pKa values.14 This 

requirement can be met by a carboxylic acid and a boronic acid,18 which are isoelectronic. 

In the enzyme·inhibitor complex (Figure 1G), the boronic acid group of 1 displays an 

no,p→pB interaction (i.e., resonance) of 89.1 kcal/mol, and the carboxylic acid group of 

Asp30 in HIV-1 protease displays a comparable no,p→π*C=O interaction of 87.9 kcal/mol. 

The ensuing hyperconjugative interaction between a boronic acid and carboxyl acid is 

reminiscent of a resonance-assisted hydrogen bond.19 Such hyperconjugation is absent in 

other inhibitors, such as the benzyl alcohol analog of darunavir (Figure 1D).
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Boronic acids possess attractive properties beyond their versatile hydrogen bonding. Boronic 

acid 1, like darunavir, is not toxic to human cells at concentrations up to 1 mM (Figure S3). 

In vivo, aniline moieties can exhibit problematic genotoxicity as a result of metabolic 

activation.20 In contrast, the major metabolite of boronic acids is the oxidative deboronation 

product, an alcohol, which is modified further in phase II metabolism for efficient excretion.
21,22

We conclude that a boronic acid group in a ligand can be profuse and versatile in forming 

hydrogen bonds with a protein. These attributes are especially valuable in the design of 

ligands for proteins that are under the selective pressure of drug resistance. In those 

instances, the ability of boronic acids to form multiple hydrogen bonds enhances affinity, 

and the admixture of hydrogen-bond acceptors and donors enables adaption to mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Interactions with a substrate, darunavir, or its analogs and the S2′ subsite of HIV-1 protease. 

(A) A substrate (PDB entry 1kj7). (B) Darunavir (4hla). (C) Anisole analog (2i4u). (D) 

Benzyl alcohol analog (3o9g). (E) Cyclopropyl-amino-benzothiazole analog (5tyr). (F) 

Benzamide analog (4i8z). (G) Boronic acid 1 bound to wild-type HIV-1 protease (6c8x). (H) 

Boronic acid 1 bound to D30N HIV-1 protease (6c8y). Major conformers are shown for 

inhibitors that bound in non-symmetry–related conformations.
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Figure 2. 
Orbital interactions in a model of boronic acid 1 and residue 30 of HIV-1 protease derived 

from X-ray crystal structures (PDB entries 6c8x and 6c8y). NBO rendering of the hydrogen 

bond between a boronic acid hydroxy group and Oδ of Asp30 (A) and Asn30 (B) with 

hydrogen atoms optimized at the M06–2X/6–311+G(d,p) level of theory employing the 

IEFPCM solvation model.
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Table 1.

Values of Ki for Inhibition of HIV-1 Protease

R Ki (pM) Relative Affinity
a Ref.

darunavir

10 ± 1 — 9

14 1.0 1b

12 1.2 1b

12.7 1.3 10

10 1.6 11

8.9 1.8 10
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R Ki (pM) Relative Affinity
a Ref.

1

0.5 ± 0.3 20 This work

a
Values of Ki can depend on assay conditions. Here, values are compared by using darunavir as a benchmark with Relative Affinity = 

Ki,darunavir /Ki,analog as reported in the indicated reference.
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