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Deep Inference for Covariance Estimation:
Learning Gaussian Noise Models for State Estimation

Katherine Liu*, Kyel Ok*, William Vega-Brown, and Nicholas Roy

Abstract— We present a novel method of measurement co-
variance estimation that models measurement uncertainty as a
function of the measurement itself. Existing work in predictive
sensor modeling outperforms conventional fixed models, but re-
quires domain knowledge of the sensors that heavily influences
the accuracy and the computational cost of the models. In this
work, we introduce Deep Inference for Covariance Estimation
(DICE), which utilizes a deep neural network to predict the
covariance of a sensor measurement from raw sensor data. We
show that given pairs of raw sensor measurement and ground-
truth measurement error, we can learn a representation of the
measurement model via supervised regression on the prediction
performance of the model, eliminating the need for hand-
coded features and parametric forms. Our approach is sensor-
agnostic, and we demonstrate improved covariance prediction
on both simulated and real data.

I. INTRODUCTION

We are interested in developing better models of sensor
uncertainty to improve the state estimation performance of
unmanned vehicles. Sensor noise characteristics are funda-
mental to applications such as the optimal fusion of mea-
surements from several noisy sensors into a single estimate
of the vehicle state. Even on vehicles with a single sensor,
noise characteristics are key to evaluating the uncertainty
in past estimates and reducing the accumulated error in the
presence of additional sources of information, e.g., loop-
closure detections added to visual odometry.

Sensor measurements are commonly modeled as Gaussian
random variables, conditioned upon the state from which the
measurement was taken. The covariance of these random
variables is often assumed to be a constant term either set by
hand or derived from empirical data. However, this approach
to noise specification is prone to error due to the sensor
performance being a function of the environment and the
assumptions of the measurement process. For example, a
visual odometry measurement relies on camera images and
a process (such as [1], [2]) that aligns the images of a static,
textured, and constantly-bright environment. Consequently,
the accuracy of the measurements in dynamic scenes such
as the one in Fig. 1, low texture environments, and poor
lighting conditions is often degraded.

Previous work in modeling sensor noise as a function of
the environment required significant domain knowledge and
could not easily generalize to an arbitrary high-dimensional
sensor. Vega-Brown et al. proposed a non-parametric kernel
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Fig. 1: Example measurement covariances (red) shown for
static and dynamic scenes. The visual odometry is corrupted
by a person walking through the scene (frame 0). DICE
correctly predicts an elongated covariance in the direction
of the person’s motion, where noise was added, and reduces
the covariance after the person has exited the scene (i.e.,
frame 1). The covariance is scaled here for visualization.

estimation technique for covariance estimation, CELLO [3],
which approximated sensor noise as the empirical covariance
of neighboring training data in a hand-coded feature space.
While this approach is effective for simple sensors, it is
challenging to hand-specify predictive features for complex
sensors such as a camera-based visual odometry sensor.
Furthermore, the approach required online kernel regression
on the training data, which scales poorly with the size of
the data and the complexity of the problem. Similarly, [4]
relied on hand-coded features, but addressed the scalability
problem by learning a parametric function of the features
offline. However, this approach required even more domain
knowledge, as both the parametric form of the sensor noise
and the predictive features must be specified.

We introduce Deep Inference for Covariance Estimation
(DICE), a constant time method for predicting the measure-
ment uncertainty of a highly complex sensor that does not
require any domain knowledge. We train a deep convolu-
tional neural network to learn the noise model of a sensor
measurement as a function of the pre-processed raw measure-
ment, while also constraining the covariance predictions to
be well-formed, i.e., positive definite. This novel approach
does not rely on specifying an exact parametric form for
the noise model or the predictive features in the model, and
scales well with the complexity of the problem, due to an
offline utilization of the training data.

In the following sections, we describe our approach and
show that we can learn the measurement uncertainty of
highly complex sensors, thereby improving the performance
of state estimation.



II. PRELIMINARIES

We consider a robot with state xi ∈ Rn, equipped with
a sensor providing a direct measurement zi ∈ Rp, where
p ≤ n, at each time step i. We assume that the measurement
process may consist of an initial stage to obtain a high di-
mensional raw measurement ξi ∈ Rm and a follow-up stage
to process the raw measurement into a direct measurement
zi of the state. For example, a GPS sensor first obtains a raw
measurement ξi of time-of-flight to satellites, then processes
it via multilateration to obtain a direct measurement zi of
the sensor position xi, i.e., zi = alg(ξi) where p = n.
We call zi a direct measurement for observing all or a part
of the state, as opposed to ξi, which is a high dimensional
measurement of the world such as images, laser scans, etc.

We assume Gaussian distributions for the conditional
probabilities of observation p(zi|xi) and state transition
p(xi|xi−1). Given appropriate functions for expected state
transition f(x) and observation h(x) along with their uncer-
tainties in the form of positive definite covariance matrices
Qi ∈ Rn×n and Ri ∈ Rp×p, we can write

xi ∼ N (f(xi−1),Qi)

zi ∼ N (h(xi),Ri).
(1)

The measurement model h for processed direct measure-
ments can typically be written in the form h(xi) = Pxi,
where P ∈ Rp×n.

Most probabilistic state estimation methods utilize the
covariance termsQi andRi to determine the optimal weight-
ing of the different sources of information. For example,
optimizing the trajectory of a robot equipped with a single
sensor can be written as a least-squares problem [5]

arg min
x0:N

{ N∑
i

‖f(xi−1)−xi‖2Qi
+

N∑
i

‖h(xi)−zi‖2Ri

}
, (2)

where ‖e‖2Σ is the Mahalanobis norm that directly scales the
modeling error e inversely proportional to the square root of
the covariance term Σ, i.e., ‖e‖2Σ

∆
= eTΣ−1e = ‖Σ−T/2e‖22.

As such, the optimal values of the estimated states are
sensitive to the measurement covariances, and we aim to
better estimate the measurement covariances in order to
improve the overall performance of state estimation.

III. APPROACH

A. Problem Formulation

We would like to predict the distribution over sensor
measurement error ei ∈ Rp, conditioned on the raw mea-
surement ξi, i.e., predict the distribution p(ei|ξi). Assuming
the distribution to be a zero-mean Gaussian (assuming an
un-biased sensor), we focus on predicting the covariance Ri

of the distribution as a function of the raw measurement ξi,
i.e., forming the predictive function g where

Ri ≈ g(ξi). (3)

The approximator function g must capture the highly com-
plex mapping between the raw sensor data to the covariance

matrix Ri. One way to predict a complex mapping is by
over-parameterizing the approximator function, then learning
the parameters using a labeled training dataset D. If an
ideal training dataset D = {ξi,N (0,Ri)|∀i ∈ [1, V ]} is
available (where ξi is a raw measurement and N (0,Ri)
the distribution over measurement error), one could directly
minimize the distance between the predicted distribution
N (0, g(ξi)) and the true distribution N (0,Ri) by using a
distance metric between distributions.

However, there are two complications to this approach.
First, it is often difficult to obtain the true distribution over
measurement error N (0,Ri) during training time. Second,
the approximator function g must only produce positive defi-
nite covariance matrices, i.e., the optimization is constrained
subject to vTRiv > 0 for any non-zero v ∈ Rn.

To overcome these difficulties, we instead maximize the
likelihood of drawing each measurement error ei from a
predicted distribution N (0, g(ξi)), foregoing the need for the
true distribution, and add a decomposition to the approxima-
tor function g to relax the constraint for positive definiteness
in the optimization. In the following sections, we describe the
details of the function approximator and discuss the changes
needed to robustly predict measurement covariances without
requiring difficult-to-obtain training data.

B. Deep Convolutional Neural Network

In order to learn the complex mapping g between the raw
measurement ξi and the covariance matrix Ri, we utilize
an over-parametrized form of the approximator function. We
take a similar approach to that of recent successes [6], [7] and
choose a deep convolutional neural network (CNN), shown
in Fig. 2, as our parameterization.

Let fk(ξi;K1, ...,Kk,B1, ...,Bk) 7→ Rr be a convo-
lutional neural network with k convolutional filters, where
the parameters being optimized are convolutional filters
K1:k ∈ Rq×s×t and bias matrices B1:k ∈ Ru×v . Cascaded
operations of strided multi-channel convolution and non-
linear activation function (with optional max-pooling) reduce
the high-dimensional raw measurement ξi ∈ Rm down to a
set of low-dimensional features, which are then vectorized
such that fk(ξi) ∈ Rr, i.e., r � m. These feature responses
are analogous to the hand-coded features in [4], and as done
in previous work, we linearly combine them to produce a
vectorized form of the covariance matrix:

ri ≈ g(ξi) = W · fk(ξi) + b. (4)

Our method combines the optimization of feature repre-
sentation, i.e., the convolutional filters K1:k and the bias
matrices B1:k, as well as the weighting, i.e., the weight
matrix W ∈ Rn×r and the bias vector b ∈ Rn, of the fea-
tures fk(ξi) ∈ Rr to predict the final covariance parameters
ri ∈ Rn×n. The optimized features are therefore tailored
for accurate covariance prediction and do not require hand-
coding. Additionally, after the network parameters have been
optimized, covariance prediction is simply the evaluation of
the raw sensor data through the network, and is therefore
constant time, and real-time for moderate network sizes.
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Fig. 2: Neural network architecture used to approximate the covariance prediction function. The input to the network is the
raw measurement, e.g., a (possibly) down-scaled camera image, and the output is the vector of the free parameters of the
covariance. The narrowing architecture in the beginning reduces the raw measurement into low-dimensional features, and
the following fully-connected layer optimally combines the features for the covariance prediction task.

C. Likelihood Loss Function

Given a training dataset D = {ξi,N (0,Ri)|∀i ∈ [1, V ]}
of pairs of raw measurement ξi and a distribution over
measurement error N (0,Ri), one could optimize for the
parameters G = {Kj ,Bj ,W , b|∀j ∈ [1, k]} of the neural
network by directly minimizing a distance metric such as
Kullback-Leibler divergence between the predicted and the
true distributions, i.e.,

arg min
G

V∑
i=1

KL(N (0, g(ξi))||N (0,Ri)). (5)

However, it is infeasible to obtain the true distribution
over sensor measurement errors. Instead, it is much easier to
obtain measurement errors ei (drawn from N (0,Ri)), given
a reliable sensor such as an indoor positioning system (IPS)
that can obtain the same measurement z∗i with higher pre-
cision and accuracy. Therefore, one can more conveniently
obtain a training dataset D = {ξi, ei|∀i ∈ [1, V ]} where ei
is the error made by the sensor, i.e., ei =

∣∣z∗i − zi∣∣.
Given the training dataset D = {ξi, ei} of raw mea-

surements ξi and measurement errors ei, we can instead
maximize the likelihood of drawing the measurement errors
from the distribution over the errors

arg max
R1:V

V∑
i=1

p
(
ei|Ri

)
, (6)

or minimize the negative log-likelihood

arg min
R1:V

V∑
i=1

− log(p
(
ei|Ri

)
) (7)

= arg min
R1:V

V∑
i=1

log|Ri|+ eTi R
−1
i ei. (8)

≈ arg min
G

V∑
i=1

log|g(ξi)|+ eTi g(ξi)
−1ei (9)

where G is the set of parameters of function g, i.e., the
parameters of the neural network being optimized.

D. Decomposition for Positive Definiteness
The optimization in Eq. 9 is subject to all predictions

g(ξi) being positive definite matrices. We would like to
remove this constraint so that the function can be optimized
using standard Stochastic Gradient Descent. To do this, we
reformulate g to predict a decomposition of the covariance
matrix Ri, i.e., the free parameters αi ∈ Rq where q =
n(n+1)

2 , instead of its vectorized form ri ∈ Rn×n. We then
add a known function gd that re-constructs the covariance
matrix, i.e., splitting Eq. 3 into Ri ≈ gd(gh(ξi)), where gh
is the new predictor function for the free parameters αi:

αi ≈ gh(ξi) = W · fk(ξi) + b. (10)

We choose the LDL decomposition as in [4],

Ri ≈ gd(αi) = L(li)D(di)L(li)
T (11)

where the free parameters αi =
[
li,di

]T
consist of a sub-

vector di ∈ Rn for reconstructing the diagonal matrix, and a
sub-vector li ∈ R(n2−n)/2 for the lower unitriangular matrix.
This decomposition exists and is unique for all positive
definite matrices as long as the diagonal elements of D(di)
are constrained to be positive. A simple way to enforce this
constraint is to add an element-wise exponential function to
the diagonal vector, i.e., update the diagonal matrix to be
D(exp(di)). While any decomposition that does not impose
difficult constraints on the free parameters αi would suffice,
the LDL decomposition is particularly attractive due to its
numeric stability in computing the log-determinant:

log |Ri| = log|L(li)D(exp(di))L(li)
T|

= log(|(D(exp(di))|) = sum(di),
(12)

where sum(v) denotes the summation of the elements of the
vector v. The final optimization problem is then

arg min
G

V∑
i=1

sum(di)

+ eTi (L(li)D(exp(di))L(li)
T)−1ei,

(13)

where gh(ξi) ≈ αi =
[
li,di

]T
. In the following section, we

evaluate the accuracy of the covariance prediction function
learned from solving the optimization problem.
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Fig. 3: Predicted covariance ellipses (red) and ground-truth
covariance ellipses (green) are shown for a few samples in
the simulated map. It can be seen that the Kullback-Leibler
divergence is quickly reduced in just 25 epochs.

IV. SIMULATION RESULTS

A. Simulation Setup

To validate our approach, we first picked a virtual en-
vironment where we could simulate a sensor with known
measurement covariances. Ground-truth covariances are nor-
mally difficult to obtain, but using a simulation environment
circumvented this difficulty. We picked a simulated position
sensor whose performance is correlated with the brightness
of the location xi ∈ R2 within a 2D map m ∈ Rk×k, i.e.,

Ri = f(xi,m). (14)

We designed the ground-truth sensor noise model f , con-
sisting of exponential and cosine functions, to introduce
complex non-linear noise characteristics. We then randomly
sampled 1000 locations xi within a known map m and for
each sample, computed the measurement covarianceRi from
which to draw an error label ei, i.e.,

ei ∼ N (xi, f(xi,m)). (15)

We chose the local region of the map m around the robot
position xi to be the raw measurement ξi, i.e.

ξi = h(xi,m), (16)

and obtained the training set D = {Ri, ei, ξi|∀i ∈ [1, V ]}.

B. Simulation Results

We optimized the objective function g in Eq. 13 using
Stochastic Gradient Descent. Due to the simplicity of this
problem, we were able to reduce the complexity of the
function, removing convolution and reducing the network
size. After optimizing for 25 epochs, we obtained predicted
covariances g(ξi) for each raw measurement ξi. With access
to ground-truth covariance labels Ri, we evaluated the
Kullback-Leibler divergence (KLD) in Eq. 5 at each epoch.

As shown in Fig. 3, minimizing the negative log-likelihood
quickly reduced KLD, an evidence of the alternative opti-
mization in Eq. 6 reducing the direct distance metric. We
also compared a few representative covariance predictions
against the ground-truth for qualitative evaluation.

V. EXPERIMENT RESULTS

A. Experiment Setup

We evaluated the performance of DICE on predicting
the measurement covariances of the output of a 2D visual
odometry (VO) algorithm based on DVO [8]. The algorithm
densely aligns each RGB image to the previous image by
projecting the image into the world using known depth
information, then solving for the best back-projection into the
previous image that minimizes the photometric error between
the two. The difference between our 2D VO algorithm
and standard DVO is that back-projection is limited to 2D
motions, and no motion prior is used.

We chose the Microsoft Kinect as the raw measurement
sensor to pair with the algorithm, creating a Kinect-DVO
sensor that measures relative 2D motion. Based on the fact
that the odometry is computed by minimizing a metric in the
image-space (while the depth information is only used for
projections) and the similarity of consecutive RGB images
under moderate motion, we assumed that most predictive
features of uncertainty are in the latest RGB image. We
therefore chose only the latest RGB image as the input to
our predictor function g, although the VO algorithm required
both RGB images and a depth image to solve the alignment.

B. Training Data Collection

To generate training data, we collected RGB-D images
in an environment equipped with a Vicon motion capture
system. We obtained relative pose measurements using the
Kinect-DVO sensor, and computed the error in the mea-
surements as deviation from the Vicon measurements. We
collected approximately 42,500 pairs of images and error
labels as training data. In this experiment, we specifically
explored two common failure modes of VO algorithms: low
texture scenes and dynamic scenes. The environment was
set up to include varying degrees of texture, and a person
periodically walked in and out of the sensor frame during
data collection. The objects in the environments were also
moved around to prevent overfitting to the environment.

C. Network Structure and Training

While representing the covariance predictor as a CNN
removes the need to carefully specify a parametric form
of the covariance approximation function, high-level design
choices (width, depth, etc) are required for the network.

We used an eight layer deep CNN and the input RGB
images were down-sampled to 48x64 pixel greyscale images.
Each of the two convolutional layers consisted of 32 kernels
of size 5x5, followed by a 2x2 max pooling layer. Before
the output, there was one fully connected layer of 256 units,
and a dropout layer with a dropout rate of 50% to prevent
overfitting. The network, visualized in Fig. 2, was trained
using an Nvidia GeForce GTX 1080 for 6000 epochs, with
a learning rate of 0.0001, a Nesterov momentum of 0.9, and
a mini-batch size of 500. After experimenting with different
nonlinear activation functions, we found that a leaky rectify
activation [9] provided the most stable optimization.
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Fig. 4: Constant (blue) and DICE (red) measurement covariances are plotted for the Dynamic (left) and Unseen-Dynamic
(right) datasets. The thumbnail images show the RGB frames at the correspondingly labeled points on the ground-truth
trajectories (black). The constant covariance, which is empirically fit to the training data and non-spherical, underestimates
the error in non-static scenes (i.e., 1 and 2 in Dynamic, 2 and 5 in Unseen-Dynamic) and overestimates in static scenes.
DICE covariances vary largely both in magnitude and shape (larger and elongated in non-static scenes, while small and
spherical in static scenes), more accurately representing the distribution of measurement error in different scenes. The major
and minor axes of the covariance were enlarged by a factor of 20 for visualization purposes.

D. Test Sets

We chose four test sets to benchmark DICE:
• Dynamic: A person present in the training dataset

walked across the camera frame once
• White-wall: The Kinect moved in a loop with two

separate low texture scenes
• Unseen-Dynamic: A person not present in the training

dataset walked across the camera frame twice
• TUM: This is the freiburg3 walking static dataset (from

the TUM [10] RGB-D SLAM benchmarks). The Kinect
was static and two people walked in and out of frame

The first three, Dynamic, White-wall and Unseen-Dynamic,
were drawn from the environments in the training data.
For reporting the likelihood metric, we removed data points
where Vicon measurements were measurably wrong (approx-
imately 2% of the measurements).

E. Measurement Likelihood Performance

In real environments, we do not have access to the true
distribution over measurement error to compare directly
against the predicted distributions as done in Section IV.
Instead, we could compare the likelihood of drawing true
measurement errors from predicted distributions as in Eq. 6.

We benchmarked the covariance prediction performance
of DICE against a constant covariance model, DVO’s in-
ternal prediction based on the Cramer-Rao bound [11], and
CELLO. To determine an appropriate constant covariance,
we calculated a single covariance over all of the training data.
The Cramer-Rao covariances were obtained by inverting
the Fisher information matrices of the dense photometric
alignment and multiplying by an empirically-determined
factor to compensate for the bounds being lower-bounds and
largely conservative. We used the empirical factor provided

TABLE I: Mean log-likelihood results are shown for each
prediction method and dataset pair. Values marked with
† were generated after the prediction method was further
trained with the augmented training dataset. On average,
DICE predicted covariances better modeled the errors over
all four test sets, and each DICE covariance prediction took
approximately 0.01 seconds, in Python using a modern i7.

Dynamic White-wall Unseen-Dynamic TUM
Constant 9.20 8.84 9.27 8.62

Cramer-Rao -26.72 -2.92 -29.06 4.95
CELLO 10.61 9.52 10.36 9.15†

DICE 11.80 10.38 11.13 9.63†

in the open-source implementation of DVO, noting that this
parameter can also be tuned to perform arbitrarily well on
any given dataset. The CELLO covariances were obtained
using 10 image-space features proposed in [12] (e.g. dynamic
range, pixel entropy, image gradients, etc) and the entire
training dataset for DICE was used as potential neighbors
in the kernel estimator. A few representative constant and
DICE measurement covariances are shown in Fig. 4.

Table I summarizes the performance of the four methods
on each test set described in Section V-D. We observed that
on average, the covariances estimated by DICE better ex-
plained the observations than those of the other approaches.
Fig. 6 illustrates the predictive performance of DICE on
Dynamic test set; regions of the trajectory characterized
by larger measurement error magnitudes were paired with
larger covariance estimates by DICE. In comparison, the
constant covariance method was unable to adapt, the Cramer-
Rao approach was still a severe underestimate, and CELLO
adapted but underestimated the magnitude of the covariance.

To test how well our method generalizes to new scenar-
ios and environments, we considered the Unseen-Dynamic
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Fig. 5: The trace of the predicted measurement covariances
of all four methods on the TUM dataset are shown, with
representative images for small (1) and larger (0 and 2)
magnitude trace predictions. The grey shaded region indi-
cates the samples that were used to augment the existing
training dataset, while the unshaded portions were reserved
for testing. DICE outperforms the other three methods,
predicting larger covariances in regions of higher error.

dataset. Although this dataset was set in the same environ-
ment as was used to train DICE, the person in this test set was
not present in the training dataset. We observed that DICE
predicted more likely measurement models, on average, than
the other covariance prediction methods, indicating that the
low-level representation was general to some degree.

To test the adaptability of our approach, we considered the
TUM dataset, which has both an entirely new environment
and new people. We augmented the original training dataset
with the first 400 samples of the TUM dataset, and tuned
the pre-trained network with the augmented dataset (for
comparison purposes, we also augment the CELLO training
dataset). The average log-likelihood results over the entire
TUM dataset is reported in Table I. Fig. 5 illustrates that
given examples of a new environment, DICE can be re-
optimized to predict better measurement models than con-
stant, Cramer-Rao, and CELLO models, better distinguishing
the measurement error in static and dynamic scenes. This
example further illustrates a strength of data-driven feature
discovery, providing evidence that the predictions can be
further improved in new environments by taking pre-trained
models and resuming optimization on new data.

F. Trajectory Estimation Performance

We adapted the generic single-sensor trajectory optimiza-
tion in Eq. 2 to test the utility of accurately predicting
covariances of relative visual odometry measurements. Since
our VO measurements fully observe the robot state relative
to the previous state, the measurement model is simply
h(xi,xi−1) = xi − xi−1. We removed the state transition
model to best highlight the differences between covariance
prediction methods, and added a ground-truth loop-closure
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Fig. 6: Raw measurement errors in Dynamic test set are
shown along with the trace of predicted covariances. The
trace of DICE covariance is highly correlated with the
error, demonstrating that DICE can accurately predict the
uncertainty of the measurements.

TABLE II: Mean and standard error for the absolute posi-
tional error (meters) in the loop-closed trajectory are shown.
DICE outperformed constant and Cramer-Rao approaches
on every dataset, and for the Dynamic dataset where the
error in the raw odometry was the greatest, the performance
gain using DICE was also the greatest. In this dataset, the
mean positional error in DICE was less than half of that
of constant. Comparing DICE to CELLO, in datasets where
CELLO’s features were inadequate (dynamic scenes), DICE
outperformed CELLO. For the dataset where the CELLO
features were representative, DICE was tied with CELLO.

Dynamic White-wall Unseen-Dynamic
Constant 0.57 ± 0.015 0.74 ± 0.013 0.70 ± 0.012

Cramer-Rao 0.59 ± 0.015 0.77 ± 0.011 0.67 ± 0.011
CELLO 0.37 ± 0.014 0.50 ± 0.0093 0.45 ± 0.010
DICE 0.25 ± 0.011 0.50 ± 0.010 0.39 ± 0.010

s∗ ∈ Rp with a small covariance S between the first and the
last states to observe the influence of covariances in loop-
closing a warped trajectory. We solved the adapted problem

arg min
x0:N

N∑
i

‖xi − xi−1 − zi‖2Ri
+ ‖xN − x0 − s∗‖2S (17)

with different sources of measurement covariances Ri, and
compared the absolute positional error in the loop-closed
trajectory. Summarized in Table II, DICE significantly out-
performed the other methods, reducing the average error
by more than a factor of two in the Dynamic dataset. In
this dataset, where a person walking across the camera cor-
rupted the raw odometry, DICE assigned high covariances,
distrusting the dynamic region and allowing the rest of the
trajectory to be recovered more accurately (shown in Fig. 7).
In comparison, CELLO distrusted the region noticeably less
than DICE, while constant and Cramer-Rao methods equally
trusted the dynamic region, resulting in the error from this
region being distributed across the entire trajectory. Simi-
lar results were obtained for the Unseen-Dynamic test set,
where a previously unobserved person came into the view.
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Fig. 7: Comparison of trajectory estimates in meters using constant, Cramer-Rao, CELLO, and DICE measurement
covariances. Unlike constant and Cramer-Rao methods, DICE correctly associates the accumulated error in the raw odometry
(shown in magenta) to regions of high measurement error (textureless/dynamic), accurately estimating other parts of the
trajectory when optimized with a loop-closure. On the other hand, loop-closing with constant measurement covariances
distributes the total accumulated error equally across the entire trajectory, deforming even regions with low measurement
error. For example, there is a region of high measurement error in the beginning of the Dynamic dataset due to a person
walking across the camera frame. DICE predicts a larger noise in this region (see Fig.4), and is able to better estimate the
remaining trajectory. Deformation in regions where DVO exhibits large measurement errors could also be improved if there
was a second source of odometry that is characterized by lower measurement error in those regions (e.g., an IMU).
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Fig. 8: Comparison of orientation estimates (radians) using
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orientation tracking of all methods is comparable.

Additionally, in the White-wall dataset, DICE performed
significantly better than constant and Cramer-Rao methods,
but was on par with CELLO. We observed that for failure
modes that are well explained by the hand-coded features of
CELLO (i.e., white walls form a tight cluster in the feature
space defined using image-space statistics), CELLO could
perform as well as DICE. However, for failure modes that are
difficult to explain with the expert-specified features, DICE
outperformed CELLO, demonstrating the utility of learning
the feature space directly from the data.

In terms of the average rotational error, there was no
significant difference between the covariance prediction
methods. The different methods were relatively accurate in

estimating the orientation, and the empirically-fit constant
covariances often performed the best. In the White-wall
dataset shown in Fig. 8, the constant covariance method
outperformed DICE by 3.3 degrees, and this was the greatest
difference across all datasets. In conclusion, we observed that
in cases where the estimates were noisy, DICE out-performed
other methods by a significant margin, while in cases where
the raw estimates were accurate, DICE performed similarly.

VI. RELATED WORKS

Early approaches to covariance estimation were largely
reactive methods. These approaches include adaptive Kalman
filtering [13] and multiple model adaptive estimation meth-
ods [14]. The reactive nature of these approaches can cause
latency in the evolution of the noise model and be sensitive
to the window of measurements used to calculate statistics.

Another approach to covariance estimation is to specify
noise models for specific sensor-algorithm pairs. For exam-
ple, [15] and [16] developed covariance functions for laser-
based sensors (e.g. LIDARs) coupled with iterative-closest-
point (ICP) algorithms. Given that these approaches are
designed for specific sensors, it can be difficult to generalize
the results to a more diverse set of sensors and algorithms.



There is a significant body of literature regarding non-
parametric approaches to predictive covariance estimation.
For example, Ko et. al. [17] described how to use Gaussian
Processes to estimate heteroscedastic Gaussian noise models,
and Tallavajhula et. al. [18] proposed generic non-parametric
noise models. However, these types of approaches also suffer
from scaling problems without a lower-dimensional feature
space. We note that feature specification is itself a topic of
research, as in [19], which experimentally designs expertly
hand-coded features for use in covariance estimation.

The neural network community has also previously esti-
mated arbitrary probability distributions for joint [20] and
conditional distributions [21], but proper backpropagation
proved to be computationally expensive. Williams described
how neural networks could be used to model conditional
multivariate densities [22], proposing special “dispersion”
nodes to learn the parameters of a Cholesky decomposition.
They demonstrate the approach on one and two dimensional
examples, and extend to time series financial data.

Recent work [23], [24] using neural networks to estimate
uncertainties adopt similar log-likelihood models to ours.
[23] assumes a diagonal covariance matrix and estimates
the mean as well as the covariance of a specific end-to-end
learned VO sensor. [24] combines heterodescedatic aleatoric
noise, which we model, with epistemic noise in a single
model, but is orders of magnitude slower due to the expensive
Monte Carlo sampling required for the epistemic noise.

VII. CONCLUSION

We have presented DICE – a novel method for predicting
measurement noise of complex sensors without using ex-
tensive domain knowledge. We demonstrated that DICE can
accurately predict the measurement covariance of a simulated
light sensor, and a visual odometry sensor. We have shown
that predicting accurate measurement covariances can help
improve trajectory estimates, and achieve accuracy signifi-
cantly better than conventional methods for difficult scenes.

ACKNOWLEDGMENT

This work was supported by NASA under Award No.
NNX15AQ50A and DARPA under Fast Lightweight Auton-
omy (FLA) program, Contract No. HR0011-15-C-0110.

REFERENCES
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