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Abstract

Machine learning has long been touted as the next big tool, revolutionizing scientific endeavors
as well as impacting industries like retail and finance. Naturally, there is much interest in the
potential of next improving healthcare. However, using traditional machine learning approaches
in this domain has many difficulties, chief among which is the issue of interpretability. We focus
on the medical condition of stroke, a particularly desirable problem to target because it is one
of the most prevalent and yet preventable conditions affecting Americans today.

In this thesis, we apply novel interpretable prediction techniques to the problem of predicting
stroke presence, location, acuity, and mortality risk for patient populations at two different
hospital systems. We show that using an interpretable, optimal tree-based approach is roughly
as effective if not better than black-box approaches. Using the clinical learnings from these
studies, we explore new interpretable methodologies designed with medical applications and
their unique challenges in mind. We present a novel regression algorithm to predict outcomes
when the population is comprised of notably different subpopulations, and demonstrate that this
gives comparable performance with improved interpretability. Finally, we explore new natural
language processing techniques for machine learning from text. We propose an alternate end-
to-end framework for going from unprocessed textual data to predictions, with an interpretable
linguistics-based approach to model words. Altogether, this work demonstrates the promise that
new parsimonious, interpretable algorithms have in the domain of stroke and broader healthcare
problems.

Thesis Supervisor: Prof. Dimitris Bertsimas
Boeing Professor of Operations Research
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Chapter 1

Introduction

The cost of healthcare in the United States is constantly rising, by latest estimates it is today

over three trillion dollars a year. Even though as a country we spend more each year, medi-

cal errors are widespread and conditions go undiagnosed or mismanaged. The use of machine

learning in this context is hardly new - the use of computing technologies for healthcare set-

tings extends at least as far back as the 1970s, when a group from Stanford developed a system

identifying infections caused by bacteria [66]. Ever since then, new approaches have constantly

been published in the academic literature, and yet real-world success stories of using machine

learning in the clinical setting to diagnose or treat patients has been few and far between. This

is likely due to the unique challenges healthcare problems pose to machine learning algorithms.

Sufficient amounts of training data could be difficult to obtain, causing algorithms that worked

well in a theoretical or limited setting to generalize poorly or preventing their development

in the first place. Even strong algorithms developed on immense amounts of data were not

adopted as they are difficult to fit well into the workflow, not least because these algorithms

were often black-box techniques that clinicians could not easily interpret. Without easily in-

terpretable algorithms, using machine learning to predict outcomes for patients is risky, since

test populations differ from trial or training populations and change over time, and models can

overfit to noise rather than real medical factors.

In the last decade or so, there has been a resurgence in using machine learning in the medical

community. Some factors contributing to this include the widespread use of electronic health

records in the United States, which increased from 20 percent in 2004 to nearly 90 percent in 2017

[59], as well as publicly available de-identified data released to non-clinical researchers. There

have also been major breakthroughs in machine learning and revived interest from the medical

community. The one constant from before this period that is still true now is the desperate

need for interpretability in deployed algorithms. Indeed, there has been increased focus given to

the subject of interpretability in machine learning, with conferences and publications dedicated

to the subject. In this thesis, we demonstrate the need and the potential for interpretable

predictive algorithms in the specific context of stroke. As one of the country’s leading causes of

death as well as drivers of healthcare costs [26], stroke is also one of the more preventable and

manageable medical conditions in the population.
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CHAPTER 1. INTRODUCTION

1.1 Contributions

In Chapter 2, we describe an application of an interpretable machine learning technique, Opti-

mal Classification Trees (OCT), on predicting stroke outcomes, both mortality and recurrence,

of patients at Hartford Healthcare using available structured data. Collaborating with chief

neurologists at the institution, we present decision trees for calculating stroke risk trained on

the hospital system’s own patient population and verified by practicing clinicians. This was

joint work done with Katerina Giannoutsou.

In Chapter 3, motivated by patterns observed in our actual patient populations, we introduce

a novel method for regression problems in the context of medical outcomes. Called Sparse

Regression over Clusters (SparClur), the model trains a set of coordinated linear regressors

that share the same support. The coordination is done over leaves generated by an optimal tree

on a given patient population. We show this technique recovers the true support on synthetic

data, and performs well on empirical data with a low cost to accuracy. This was joint work

done with Lea Kapelevich.

In Chapter 4, we shift from using structured phenotypic data to analyzing text data. We

predict the presence, location, and acuity of ischemic stroke from radiology reports at Partners

Healthcare. We again employ OCTs, as well as a suite of other classification techniques including

neural networks, and demonstrate that simpler, more interpretable methods can perform on

par with black-box approaches. We also contribute a set of GloVe word embeddings trained

for the specific context of parsing radiology report texts. This was joint work done with Agni

Orfanoudaki and Francois Caprasse.

Finally, in Chapter 5, we introduce a set of optimization-based approaches to natural lan-

guage processing problems. These techniques are designed with interpretability in mind. We

demonstrate that these new word embeddings and document representations result in higher

predictive performance in downstream machine learning tasks.

1.2 Summary

In this thesis, we present a collection of works using interpretable machine learning approaches

to predict characteristics or outcomes of stroke at various hospitals. At Hartford HealthCare,

we illustrate the ability of Optimal Classification Trees to predict in-hospital mortality, mortal-

ity within a year from discharge, and recurrence of stroke. We show that our method not only

has predictive performance similar to or better than other machine learning techniques and risk

scores, but that the resulting trees are highly interpretable and verify neurologists’ clinical un-

derstanding of stroke. Motivated by this experience, we devise a similar approach for regression

problems, where a real-valued variable of interest depends on the same set of features, but the

degree of dependence can differ for various subpopulations. We present SparClur as a method

that achieves this generalizability on the feature set while still ensuring state of the art accu-

racy and retrieval of the correct support. We next shift our focus to unstructured text data,

extremely prevalent in healthcare, and give a comprehensive overview of how a combination

of popular machine learning classifiers combined with natural language processing techniques

perform for predicting presence, location, and acuity of ischemic stroke in patients at Partners

9



CHAPTER 1. INTRODUCTION

HealthCare from the raw text of radiology reports. Our findings suggest that in this domain,

simple, interpretable methods perform comparably and may be preferable to black-box meth-

ods. Finally, we conclude by presenting initial work in developing interpretable natural language

processing techniques. This includes language-based approaches for word sense disambiguation,

word representation, and classification. We introduce WordNet and show promising preliminary

results indicating that optimization-based approaches to these problems may be more powerful

than traditional approaches on both regular and medical text. As a whole, this thesis begins

grounded in real-world problems faced by actual clinicians concerned with understandable yet

sophisticated methods that can capture the complexities and non-linearities of stroke in the

real world. From there, we continue by demonstrating the importance and the potential of

interpretable machine learning approaches, and present new methodologies with the objective

of improving accuracy and interpretability together.

10



Chapter 2

Predicting Stroke Outcomes at HHC

2.1 Introduction

Stroke is one of the leading causes of death and one of the most prominent drivers of health costs

in the United States [26]. The readmission rates within 30 days or within one year are causing

a significant increase in healthcare costs [50] making the reduction of hospital readmission rates

after a stroke a top priority among the hospitals and the Centers for Medicare and Medicaid

Services (CMS). In order to be able to counsel patients and families, allocate resources in an

optimal way and ultimately, reduce the recurrence and mortality rates following a stroke, it is

essential to understand and assess the mortality and readmission risk of the patients. Although

some risk factors for stroke recurrence are known, the mortality risk remains unclear and studies

have been conducted in order to find the etiologies and best predictors of mortality risk [58].

Since there are numerous factors that can cause a wide variety of complications to the patient,

a better understanding of them, particularly those not yet well-established, are key to reducing

readmission and mortality following a stroke. Over the past four decades, several risk scores

have been introduced to identify individuals at high risk for cerebrovascular disease [71, 54, 19].

These approaches apply traditional statistical tools such as the Cox Proportional Hazards model

[25], which assumes a linear relationship between the risk factors and the prevalence of stroke.

While useful, they assume that the variables in their models interact in a linear and additive

fashion. The mathematical and medical realities, however, suggest that the interaction of risk

factors and markers of disease acuity are far from linear, and that some variables gain or lose

significance due to the absence or presence of other variables [20, 47].

Take, for example, three variables which have been repeatedly found to be independent

predictors of stroke: age more than 75 years, high cholesterol, and atrial fibrillation. In existing,

linear predictive models, each of these variables is treated as “present” or “absent”, and often

assigned the same weight irrespective of the presence or absence of the other two risk factors.

However, it is theoretically possible that, for patients older than 75 years, high cholesterol plays

a role but atrial fibrillation does not; whereas in patients younger than 75 years, high cholesterol

does not play a significant role but atrial fibrillation does. Therefore, in a non-linear risk model,

the age of the patient would determine whether high cholesterol or atrial fibrillation would be

included in the prediction of outcomes. The inclusion of one of these two would then determine

the next variable to be included, and this variable could be different for each of the two choices.

11



CHAPTER 2. PREDICTING STROKE OUTCOMES AT HHC

For example, if atrial fibrillation was chosen, then presence of cardiovascular disease could be

the next variable added; if high cholesterol was chosen, then diabetes could be added. As a

result, in a linear model the stroke risk of these two observations would be established based on

the presence or absence of the same set of variables, while in a non-linear model, the risk could

be determined by two very different sets of variables. The latter arguably better represents the

complexity, interactivity, and non-linearity of real life.

2.1.1 Existing Methodologies

As described above, currently the most popular techniques used to evaluate mortality and

recurrence risk operate on the assumption of linearity in the factors. [2] conducted a widely

cited study predicting mortality in-hospital on the Lausanne Stroke Registry of 3362 patients.

Using a multivariate logistic analysis, the authors found that impaired consciousness and weak

limbs along with the presence of various past health events were predictors of mortality for brain

infarction. Likewise, impaired consciousness and weak limbs were good predictors for mortality

for brain hemorrhage. They noted that age did not appear as a predictor in their models, but

the average age of patients who exhibited all of the risk factors in the predictive model increased

as the number of risk factors increased, a clear indication of a non-linear interaction between

these features.

Predicting mortality within a year has also been treated linearly in the past. [70] developed

a technique based on the Cox proportional hazards model for the mortality within a year of 440

patients hospitalized for acute ischemic stroke. The final model used eight clinical predictors,

each assigned varying integer weights between two and nine, and patients whose total score

exceeded 10 were assigned to a high-risk group. The high-risk group had a mortality rate of

76% compared to 8% in the low risk group. Aside from the linear treatment of the predictors,

the model has the additional shortcoming of assigning only two drastically differing rates to all

patients.

2.1.2 Contributions

Considering the challenge of both identifying risk factors and understanding their non-linear

impact on a patient’s total risk of mortality and recurrence from stroke, we sought, in this paper,

to create a non-linear, highly accurate, and user-friendly mortality and recurrence risk calculator

for patients who experience a stroke. Our predictive algorithm is a tree-based method called

Optimal Classification Trees (OCT) that allows the physician to explore the exact model and

assess the interpretability of its results [6]. We implement multiple machine learning classifiers

and use medical risk scores to predict the outcomes of in-hospital mortality, mortality within a

year, and recurrence within a year on a large-scale patient population at Hartford Health Care

(HHC). Our results demonstrate that the three tasks are of varying complexity, with recurrence

in a year being a low-signal problem. Our algorithm outperforms others in the task of predicting

mortality within a year, and is close to optimal in performance of in-hospital mortality while

being far more interpretable than the most accurate model. The resulting trees are validated by

neurologists and match clinical intuition and understanding of stroke in our patient population.

12



CHAPTER 2. PREDICTING STROKE OUTCOMES AT HHC

2.2 Methods

In this section, we describe in detail the formal methodology used to define, formulate, and

solve the problem of predicting stroke mortality and recurrence at HHC.

2.2.1 Data

Three data tables, comprising basic patient information, medication information, and core data,

were made available. These included all 11,665 visits of 10,543 unique patients hospitalized for

an ischemic stroke, hemorrhagic stroke, or transient ischemic attack (TIA) between January

1st 2005 and June 29th 2016 at HHC. The medications table lists the medications prescribed,

both at admission (home med) and at discharge. These include over 400 specific medications,

which to incorporate into our model, we mapped to six medication types: anticoagulant, an-

tihypertensive, antiplatelet, diabetes, statins, and other medications. Each visit then included

12 binary variables, marking whether a medication of that type was taken at admission as well

as whether it was prescribed at discharge.

Feature Variables

The variables used to design our predictive models are collected on each visit of a patient to

HHC and include basic demographic information and medications prescribed (Table 2.1), as well

as Medical Data/Stroke Risk Factors. We also had available the Risk Scores that are assigned

to each patient and the complications that might arise during the hospital stay, but these are

usually known only close to discharge. As a result, we do not include them in the predictive

model for mortality inside the hospital, but do include them in the mortality within one year

and stroke recurrence within one year models.

Demographic Data % Medication %

Female 51.26 Anticoagulant, HomeMed 12.92
Age, Mean (SE) 69.1 (0.15) Antihypertensive, HomeMed 60.51

Height, Mean (SE) 87.64 (10.35) Antiplatelet, HomeMed 40.94
Weight, Mean (SE) 177.52 (1.39) Diabetes, HomeMed 15.19

Race/White 77.3 Other, HomeMed 6.11
Race/Black or African American 8.79 Anticoagulant, Discharge 26.84

Hispanic Ethnicity 9.46 Antihypertensive, Discharge 61.49
Marital Status/Married 45.68 Antiplatelet, Discharge 58.41

Admitted for Ischemic Stroke 62.55 Diabetes, Discharge 16.97
Admitted for Hemorrhagic Stroke 23.86 Other, Discharge 10.86

Table 2.1: Breakdown of basic patient and medication information.

Missing Data Imputation

Missing data are a prevailing problem in any type of data analysis. A participant variable is

considered missing if the value of the variable for the participant is not observed. The most

common type is missing response and/or covariate data for covariates with either discrete or

continuous values [41]. In most analyses appearing in the medical literature, the most common

13



CHAPTER 2. PREDICTING STROKE OUTCOMES AT HHC

way of dealing with missing data is to just omit those participants who have any missing data.

Another very common approach in the literature is to just replace the missing value with the

most common value (discrete case) of the covariate or the mean (continuous case).

Due to the relative rarity of observing mortality or stroke recurrence, it was a priority for us

to retain as many observations as we could. Therefore, we chose not to omit observations that

had any missing values. Instead, we dropped variables that were rarely observed - specifically,

those that were missing in more than 90% of the entries. For the remaining variables, we imputed

missing values using a recently developed and novel machine-learning method called OptImpute

[12], which formulates the . Imputing the missing values in this way before building predictive

models has been shown in multiple real-world datasets to lead to significant improvements in

prediction accuracy compared to classical missing values imputation methods.

2.2.2 Task and Cohort Definition

In this section, we describe our problem definition. The task of predicting outcomes in an inter-

pretable way is by no means straightforward, especially due to the problem of data censoring.

That is, since many patients in HHC are at risk of mortality due to other comorbidities and

most tend to be elderly, the data may show that they didn’t have an additional stroke, even if

they would have suffered a recurrent stroke or TIA had they survived. In addition, the usual

problem in healthcare data of patients switching providers is present here. Those patients who

go on to have a recurrent stroke outside of HHC will not be captured in the available data,

which only has information surrounding the patient hospitalisation.

Given this, we separate our goal into three distinct tasks: predicting mortality of the patient

during the hospital stay, predicting mortality within a year of patients discharged from the

hospital, and predicting the recurrence of stroke within a year in patients who survive for at

least a year from discharge. A patient will display different features (age, past medications,

history of stroke, etc) at each distinct visit. Therefore, we treat each hospitalization as its own

observation, regardless of whether that patient has presented in the data before.

We define our cohorts and their outcomes as follows:

1. Patients who died while in-hospital: defined as those visits with a discharge type labeled

as “death”, or where discharge type is missing but the date of death is before or the same

as the date of discharge. Any visit that was missing a discharge date but has a date of

death was treated as if the discharge date was the date of death. This comprises 1404 out

of a total of 11665 visits (a 12% mortality rate).

2. 10261 visits then remained where the patient was discharged alive from the hospital. We

find those patients whose mortality outcomes are known within a year. Since the last

date of death available in our dataset is July 4th, 2016, any patient who was discharged

after July 4th, 2015 will have an unknown outcome for mortality within the year. For

example, some patients were admitted and discharged January of 2016, and since the data

collection period ended only six months later, whether they survived the year is unknown

and should not be marked as not having died. To keep our dataset clean, then, we consider

only hospital visits with a discharge date of July 4th, 2015 or earlier. This leaves us a total
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of 9066 observations. In addition, note that since we use as observations all patient visits

rather than the individual patients themselves. Therefore, if a patient dies, it is possible

for multiple of their previous visits to result in mortality within a year if they were close

in time. For example, if a patient is hospitalized for stroke on day 1 and day 30 and later

dies on day 300, both visits on day 1 and day 30 would be labeled with mortality within a

year as true. This gives us a dataset of 555 out of 9066 visits resulting in mortality within

a year (a rate of approximately 6%).

3. Finally, we remove all visits where the patients died in-hospital and all visits where patients

died within a year of discharge. Once again, we remove visits where the outcome of

recurrence in a year is unknown. Visit data was collected up to June 30th, 2016, so

we therefore keep only visits where the patient was discharged on or before June 30th,

2015. This also takes into account those visits where mortality within a year is uncertain,

since the cutoff date of June 30th is before the cutoff date of July 4th we used for the

mortality outcome, and therefore we know these patients’ mortality within a year status

with certainty. Out of those remaining, we found those visits that resulted in patients

returning to the hospital for ischemic or hemorrhagic stroke (not TIA) within a year.

Those visits were marked as having a recurrence. This gave us a dataset of 379 recurrences

out of 8504 visits (a rate of approximately 4.5%).

As an illustration of this process, we give an example in Table 2.2. Patient A is still alive at

the end of the data collection period, so both mortality outcomes at the two visits are marked

with a 0. Their second hospitalization is for a TIA, not ischemic or hemorrhagic stroke, so even

though that admission date is within a year of the last discharge date, we do not count this as

a recurrence, so the first visit’s outcome for recurrence within a year is also 0. Finally, since

they have not had a third hospitalization with CVA type stroke, the second visit’s outcome for

recurrence is again 0.

Patient B has a slightly more interesting history at HHC. Over a year passes between the

discharge of their first visit and the admission of their second visit, and additionally the second

hospitalization is for a TIA, so the recurrence outcome for the first visit is 0. Their third visit

occurs soon after their second, and is of a stroke type, so the recurrence outcome for the second

visit is 1. Finally, the third visits results in death in hospital, so that field in the third visit and

mortality within a year for the second visit are both marked as 1.

Pt CVA Admit Date Discharge Date Death Date Mort Inhosp? Mort Yr? Recur Yr?
A Stroke 1 10 - 0 0 0
A TIA 370 372 - 0 0 0
B Stroke 1 3 418 0 0 0
B TIA 410 415 418 0 1 1
B Stroke 417 418 418 1 1 0

Table 2.2: An illustration of the cohort definition and outcome labeling process.

2.2.3 Optimal Classification Trees

Our predictive algorithm is a tree-based method called Optimal Classification Trees (OCT) that

allows the physician to explore the exact model and assess the interpretability of its results.
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Compared with other ML methods such as Neural Networks that are not interpretable [51],

OCT is comprehensible and can be easily visualized in a tree form. The final model optimally

estimates the probability of the event in each one of the leaves of the tree.

Classical decision tree methods typically cannot achieve the same level of accuracy as deep

machine learning methods. Moreover, the early AI machine learning trees often suffered from

limited interpretability. Our novel OCT methodology is a recent advancement in machine

learning classification that trains a single decision tree, permitting high-accuracy predictions

without sacrificing interpretability [6]. This high level of accuracy is achieved by leveraging

modern optimization techniques to train decision trees from the perspective of global optimality

rather than using greedy heuristics like the classical methods.

Through OCT, we produced a set of predictive models for inhospital mortality, mortality

within one year and recurrence of stroke within one year. We trained a separate decision tree

for each of the above outcomes. To illustrate how an OCT works, a path from a decision tree

that estimates recurrence of stroke within one year is displayed in Figure 2.1. This tree is built

on a random subset rather than the entirety of our data. The root node of the tree shows that

the overall risk of stroke recurrence is 4.6%. The first decision tree split refers to history of

stroke. If the patient has history of prior stroke events, then we proceed to the right branch

where the updated risk of stroke recurrence is now higher at 6.84%. The tree then proceeds

to split on the Weight variable, where we see that if the weight of the patient is less than

208.5 pounds, the risk of a recurring stroke is 6%. If, however, the patient weighs more than

208.5 pounds, the outcome depends on whether Antiplatelet medication was taken at home,

before hospital admission. If the answer to this question is positive, the final risk estimation for

that patient is approximately 17% while if it is negative, meaning that the patient was not on

Antiplatelets before arriving at the hospital, then the algorithm predicts no risk for this patient.

It is important to notice in this setting that after each new split the risk is re-calculated and

the pre-operative variables used by the tree are not the same at each level; the questions asked

change based on the responses at the prior node capturing, in this way, nonlinear interactions

between the variables.

2.2.4 Model Performance

OCT has been shown in previous studies [6] to outperform other machine learning techniques,

in that it provides the highest degree of interpretability at no or little cost to accuracy. In this

study, to demonstrate the power of the OCT methods, we also implemented logistic regression

with LASSO and gradient boosting as baselines for comparison. LASSO logistic regression [68]

is a technique that models the log-odds of a binary outcome as a sum of a linear combination of

a limited number of predictors. While it is somewhat interpretable, logistic regression assumes

a linear relationship betweeen the features with the outcome, and will not capture nonlinear

interactions that may exist. Gradient boosting is a technique that builds a large number of

decision trees and then uses a voting process to arrive at a prediction [33]. While this enables

it to capture nonlinear behavior, it is highly non-interpretable.

The OCT algorithm performance and its ability to predict mortality within the hospital-

ization, mortality within one year and stroke recurrence within one year was measured using
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Figure 2.1: Selected path from an OCT for the prediction of recurrence of stroke within one year

Area Under the Curve (AUC), also known in the medical community as the c-statistic. The

c-statistic measures the ability of a model to discriminate between the outcomes of interest and

has been used as a measure of model success in multiple prior risk-scoring development efforts

[15, 37, 65, 46]

The out-of-sample performance of our models was also measured against the performance of

the Intracerebral Hemorrhage (ICH) Score [39], pre-morbid modified Rankin Scale (mRS) [31]

taken prior to stroke, and mRS at hospital admission. The ICH score ranges from 0 to 6 and

measures the severity of an intracerebral hemorrhage, while the mRS is used to measure the

level of disability of a patient with a neurological condition and also has a range of 0 to 6. In

order to calculate the c-statistic of the risk scores for this comparison, we used each risk score

to group patients into five groups. In each group, we calculated the empirical probability of the

outcome and used that as the predicted risk for anyone with that score. Although these scores

were not necessarily developed to predict our exact outcomes of interest for any given patient,

this approach provides a good baseline for the accuracy of the methods that are currently used

to counsel patients who experience a stroke and has been used in previous literature comparing

machine learning techniques with these types of risk scores [8].

2.3 Results

For each task and corresponding cohort, we developed an optimal tree algorithm to predict the

outcome of interest. Table 2.3 compares the performance of our OCT models with those of

logistic regression with a LASSO penalty and the XGBoost implementation of boosting [21] in

predicting in-hospital mortality, mortality within a year from discharge, and recurrence within

a year from discharge. The numbers shown are an average of five c-statistics of the model on
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out-of-sample test set. We can see that for each task, a different model has the highest perfor-

mance. For the mortality inhospital task with 11665 visits, boosting has the highest c-statistic

of 0.8428, outperforming optimal trees (0.8177) and logistic regression (0.8095). Optimal trees

with hyperplanes had the best performance for predicting mortality within a year of discharge

(0.7958), with XGBoost a few percent lower (0.7862) and logistic regression significantly lower

(0.7309). Finally, for predicting which visits will result in a stroke readmission within a year from

discharge, logistic regression had the highest c-statistic (0.5921), outperforming both boosting

(0.5736) and optimal trees (0.5447) by a few percentage points.

Model Mortality inhospital Mortality in a year Recurrence in a year
OCT 0.8177 0.7916 0.5384

OCT-H 0.8068 0.7958 0.5447
XGBoost 0.8428 0.7862 0.5736

Lasso Logistic Regression 0.7862 0.7309 0.5921
ICH 0.702 0.6836 0.5380

Pre-morbid mRS 0.604 0.6525 0.5401
Hospital Admission mRS N/A 0.7368 0.5740

Table 2.3: The performance of Optimal Classification Trees (OCT) and OCTs with hyperplanes (OCT-
H) in predicting each of the outcomes, as compared to other machine learning methods and known stroke
risk-scores.

Table 2.3 also includes the c-statistics from predictions generated using ICH, pre-morbid

mRS, and hospital admission mRS scores as a baseline. As expected, these scores generally

perform significantly worse than the machine learning algorithms, given that they were not

designed to predict these outcomes explicitly and instead were used as a proxy for risk in our

data as described in the previous section.

2.4 Discussion

2.4.1 Contributions

We proposed a novel stroke risk calculator to assess the risk of patients for mortality and recur-

rence following a stroke, that considers non-linear relationships between the variables utilizing

state-of-the-art machine learning methods. Our approach introduces tree-based decision rules

where the number of parameters required determine the risk is not fixed. Other than its non-

linear aspect, the calculator offers the advantages of being more accurate than the currently

existing methods of measuring stroke risk, as well as significantly more interpretable. At the

same time, our user-friendly interface renders it very actionable to both physicians and patients

while being amenable to integration into existing Electronic Health Records (EHR).

We demonstrate the predictive performance of our OCT models on the tasks of predicting

in-hospital mortality, mortality within a year from discharge, and recurrence within a year from

discharge. We first note that overall, predicting inhospital mortality appears to be the least

difficult task while predicting recurrence within a year is most difficult, with a c-statistic close

to 0.5 indicated performance that is barely better than random chance. Given the way we

structured our cohorts and the problem definition, this makes sense: while in-hospital, patient

information and activity is restricted and the data available more readily captures any factors
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Figure 2.2: Tree to predict mortality risk within the hospital stay

pertaining to their treatment and state that could affect the outcome of interest. On the other

hand, once a patient is discharged, the data collected at discharge does not accurately reflect

their behavior over the next year. For example, the medications prescribed at discharge will not

necessarily be adhered to, resulting in noise in the dataset. The outcomes of mortality within a

year and recurrence in a year could also be affected by changes in patient health that occur after

discharge, and for mortality in particular, could result from any number of unrelated conditions

not captured in the admission data of the current visit. Finally, we will have a number of false

negatives in the data (patients marked as not having died or been readmitted within the year)

due to the fact individuals can leave the HHC system at any time and would thus be omitted

from the data.

We also note that while the three techniques are generally on par with each other, for each

task, a different technique appears to be strongest. For predicting inhospital mortality, boosting

is the strongest, while for mortality and recurrence within the year, OCT and logistic regression

are the best models respectively. This indicates that predicting mortality for a patient who has

previously had a stroke is a mostly nonlinear problem, whereas predicting whether a patient

will suffer a recurrent stroke is more linear. Given how noisy the data for stroke recurrence

is, focus should be given to the task of predicting inhospital mortality and mortality within a

year from discharge, in which performance is quite high. In these respects, OCT provides the

highest interpretability at the lowest cost to accuracy, and should be the tool of choice as it

achieves this balance.

The model we developed for the prediction of mortality within one year of the stroke event

is displayed in Figure 2.3. The root node of the tree shows that the overall risk of mortality

is around 6%, since the probability of survival is around 94%. The first decision split refers to

anticoagulant medication prescribed at discharge. If the patient was put on anticoagulants at

the time of discharge then this leads to the right branch of the tree where the tree now splits

on the variable “History of Stroke”. If the answer to this question is positive and the patient

has experienced a stroke in the past then the algorithm leads to the right with an updated risk

of 11.21% . On that node the tree finally splits on the variable regarding the Modified Rankin

Scale (MRS) score of the patient, measured at the time of hospital admission. If the score is 4.5

or below then the final risk estimation for the patient is around 8%. If, on the other side, the

score is greater than 4.5 then the final risk of mortality is significantly higher, at almost 20%.
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Figure 2.3: Tree to predict mortality risk within one year of stroke
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We also see that if we had followed the left path at the node referring to “History of Stroke”

then the tree would have next split on a different variable, the age of the patient. Patients aged

less than 71.5 are given different risk estimates than those older than 71.5 but still considerably

lower than the patients who have history of stroke and a high MRS score. What is important

to note here is that the variables used by the tree are not the same at each level; the questions

asked change based on the responses at the prior node. In this way, decision trees can capture

nonlinear interactions between variables rather than mandate that the variables interact in a

linear and additive fashion, as classical logistic regression does.

One of the most important goals of this study is to create a predictive tool that doctors

can use on an everyday basis. It is therefore imperative to have an output that is interpretable

and carries meaningful insight on the patient’s risk. Consequently, it is of great importance

that the specific variables and thresholds on which our tree algorithm splits on make sense from

a medical perspective. Based on our results, we believe that we have succeeded in creating a

model that combines high accuracy with interpretability. Such a model can be easily deployed

in the hospital setting for use by clinicians, using an app on their devices to arrive at an easily

explainable and accurate outcome prediction, as illustrated in Figure 2.4.

Figure 2.4: Screenshots showing a questionnaire that can be used to predict risk of mortality within a
year (outcome = 1) for HHC stroke patients. On the left, an example of a patient who has been prescribed
anticoagulants at discharge, has a history of stroke, and a modified Rankin score of 5 is predicted to
have a 20% risk; on the right, a different outcome for a patient who was not prescribed anticoagulants
at discharge, was discharged to hospice, and has a modified Rankin score of 4 is predicted to have a 52%
risk. Note the questions asked appear sequentially and depend on the answers of the previous questions.
At each step, the sample size used to determine the risk is displayed.
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2.4.2 Further Work

We recognize the limitations of this study which can affect the final output of our model. Central

to the limitations of our study lies the fact that the power of machine-learning prediction depends

on the accuracy and comprehensiveness of the data it uses [20], in this case the Hartford Hospital

database. As such, systematic biases resulting from Hartford’s data collection methodology, and

its changes over the multiple years of data might exist. For the missing values interpretation

for example, we had to closely work with with the data collection team of Hartford in order

to be able to separate for which features we could safely assume that a missing value refers to

a negative answer (e.g a certain complication did not occur) and for which features we could

not make this assumption and impute them using our state-of-the-art method. The same goes

for the understanding of the medication data that we were given from Hartford as well as

the marking of recurrent visits; our body of work is tightly related to the way information is

collected and validated in the Hartford system. Furthermore, the fact that our algorithm uses

as input data solely from Hartford which is a mainly Caucasian population does not allow for

much generalization to other ethnicities. Thus, in order for our results to be generalized, they

may need to be refined by retraining our algorithm with data from other longitudinal studies.

Another limitation refers to causality between the variables and the outcomes, which is still

not proven despite the high degree of connectivity between the two. Therefore, interpretability

and actionability on the relevant variables remains controversial. For example, if the mortality

decision tree of a specific patient included a high cholesterol level, correcting it might not

necessarily improve the patient’s chances of survival. The decision-tree might simply change

in a different direction, and ultimately estimate the same mortality risk. Further studies are

therefore needed to explore the ability of our calculator to identify actionable “break points” in

patient care after a stroke event that can effectively lower their mortality and recurrence risks.

2.5 Conclusion

This study demonstrates the potential of Optimal Classification Tress in the field of medical pre-

diction, and more specifically, in the difficult task of predicting mortality and stroke recurrence

for patients who have already experienced a stroke. The models we have developed for each of

our tasks have high c-statistics and good higher prediction performance than the already exist-

ing stroke risk classification methods. At the same time, they can prove to be valuable tools for

more accurately and efficiently identifying individuals at high risk of mortality or stroke recur-

rence because of their interpretability and therefore ability to demonstrate to the physician and

patient the relation and non-linearity of the stroke risk factors. The highly-accurate and user

-friendly risk calculator we have developed can therefore appear useful as an evidence-based,

adaptive, and interactive tool for stroke patients.
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Chapter 3

SparClur: Sparse Regression Over

Clusters

3.1 Introduction

In this chapter, we aim to develop machine learning models that combine state of the art

accuracy and interpretability. Motivated in particular by applications of medicine, we turn

our attention to methods that capture highly nonlinear relationships between features and

continuous target variables. Currently, the most popular among these include decision trees

(classification and regression trees), random forests, and boosted trees.

Deep learning and ensemble models (including random forests and boosted trees) achieve

state of the art accuracy, but are not interpretable. This limits their applicability in areas where

understanding the rationale of a model’s prediction is important. This is particularly relevant

in applications where human experts use machine learning predictions in conjunction with their

own knowledge to make decisions.

Sparse regression models [32] and decision trees [18] are machine learning models that aspire

to be interpretable and have strong out of sample accuracy. In this paper, we combine ideas

from new developments in sparse regression [13] and classification and regression trees [6] to

propose a new method that is interpretable, and also provides state of the art accuracy.

To motivate the problem we address, assume we have data (xi, yi), i = 1, . . . , n with xi ∈ Rp

and yi ∈ R. Let xi represent electronic medical records of patient i and yi represent a medical

outcome, for example, a measure of glucose levels of patient i.

Applying Optimal Regression Trees from [29] gives rise to trees similar to that depicted in

Figure 3.1.
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Past HbA1c

< 6.31

Previous HbA1c

< 5.3

0.4 + 0.05 age -

0.004 BMI +

0.005 previous HbA1c

1.0 + 0.07 age +

0.05 HbA1c change

true

Median HbA1c

< 6.5

1.5 +

3.8 years since diagnosis

- 0.009 mean BMI

1.8 +

0.9 years since diagnosis

+ 0.005 HbA1c change

false

Figure 3.1: Example of an Optimal Regression Tree of depth two for predicting blood glucose levels
based on electronic medical records.

In each of the leaves L1, . . . , L4 the outcome is predicted as a regression involving different

variables:

ŷi = w0,j + w>j xi j = 1, . . . , 4. (3.1)

In other words, there can potentially be different factors in each leaf affecting the prediction.

Suppose we impose the additional constraint that the support of each vector wj is the same

for all leaves and in addition the cardinality of this support is limited. That is, |supp(wj)| ≤ q
for some positive integer q, and supp(wj) = supp(wk), for j, k = 1, . . . , 4.

With this criterion, the regression in each leaf is sparse and coordinated among leaves

to involve the same variables. This increases the interpretability of the model significantly.

Specifically, in the uncoordinated case, it is possible within some leaves for glucose level to be

affected by past HbA1c, while not in others, which is medically implausible. More generally,

the problem we consider is as follows:

Given data (xi, yi), i = 1, . . . , n and a partition of the data within clusters Lj such that

(xi, yi) ∈ Lj , j = 1, . . . , J we want to solve the sparse regression problem over J clusters:

min
1

2γ

J∑
j=1

||wj ||2 +

J∑
j=1

∑
i∈Lj

(yi −w>j xi)
2 (3.2)

s.t. ||wj ||0 ≤ q ∀j (3.3)

supp(w1) = . . . = supp(wJ). (3.4)

The term 1
2γ

∑J
j=1 ||wj ||2 is a regularization term that makes the overall model more robust [5].

Note that the Problem given by (3.2) — (3.4) reduces to the sparse regression problem studied

in [13] when J = 1.

3.1.1 Existing Methodologies

Recently introduced in [29], Optimal Regression Trees (ORTs) are a predictive tool similar to

CART. ORTs are constructed in a fashion that is optimal for a loss function with respect to a

local neighborhood. While granting a higher degree of interpretability than black-box methods
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such as random forest and boosted trees, ORTs attain comparable performance, in terms of

predictive accuracy to these black-box methods, and notably higher predictive accuracy than

CART [29].

Linear regression models in tree based methods, including ORTs are currently computed

heuristically [17, 29]. These regression models are either point predictions, or in the case of

ORTs, linear models built using Lasso. This has several shortcomings. As shown by [10], while

Lasso generally performs well at the task of discovering relevant features, it has the property

of also selecting a significant number of features that are not part of the true support. This

hinders the interpretability of trees because often a large number of features are selected in the

support of the linear model at the leaf nodes, and it is unclear which features are truly relevant.

Secondly, the use of heuristics for sparse linear regression does not leverage the predictive power

of optimal regression methods.

A powerful approach for achieving sparse regression models with an explicit constraint on

the zero norm of the weights was recently proposed in [13]. This approach is more favourable in

terms of interpretability, because it is able to explicitly limit the support in a regression model to

a fixed number of features. Furthermore, the authors have shown that the method outperforms

Lasso in terms of accuracy and especially in false recovery rate on a test set of problems.

The paper also introduced the phenomenon of phase transitions for the exact sparse regression

problem. That is, at a critical number of observations, the performance of the algorithm begins

to improve in terms of accuracy, false detection, and computational speed. This is a notable

empirical result, as it puts in question the commonly held belief that exact algorithms are not

comparable in practice with heuristics for solving large scale regression problems.

3.1.2 Contributions

There is currently no approach that leverages the interpretability and predictive power of in-

teger optimization approaches together with tree based methods. To that end, we propose an

integer optimization approach for regression that can be naturally applied to prediction trees.

The technique we propose, called SparClur (sparse cluster regression), computes a number of

regression models simultaneously for different nodes in a tree, and enforces coordination between

nodes by requiring for the support within all regression models to be the same.

We demonstrate the validity of SparClur in both synthetic and real world datasets. Specif-

ically, we show that imposing the coordination constraint (3.4) is computationally inexpensive

while the formulation results in similar accuracy to the uncoordinated problem. We also demon-

strate that SparClur recovers the true support while ignoring irrelevant features, and can do so

for large problems in seconds.

In order to solve Problem (3.2), we use a variant of the approaches presented in [13] and

[11]. In [13], the authors formulate the sparse regression problem (J=1) as a mixed integer

optimization problem and suggest an outer approximation algorithm for computing provably

optimal solutions. In [11], the authors develop a subgradient descent algorithm for a relaxation

of the problem, and show empirically that the algorithm produces solutions of high quality,

similar to the exact algorithm on large datasets. In this paper, we extend the earlier work on

sparse regression methodologies to Problem (3.2).
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3.1.3 Outline

We present a formulation and describe an algorithm for solving Problem (3.2) in the next section.

In Section 3.3, we test the performance of solutions generated by SparClur in synthetic datasets.

In Section 3.4, we apply the same approach to two separate high dimensional datasets. The

first addresses a prediction problem arising in personalized diabetes management. The second

relates to the prediction of stroke in participants of a longitudinal study.

3.2 Problem Formulation

In this section, we review key results from previous literature and generalize the algorithm for

the case where input data is divided among clusters. We formulate (3.2) as a mixed integer

optimization problem with a Tikhonov regularization term [69]. Let s ∈ {0, 1}p denote the

common support of all sparse weight vectors. Let Wj be a matrix with its diagonal entries the

components of wj . The problem that SparClur seeks to solve can be written as

min
w,s

1

2γ

J∑
j=1
||wj ||22 +

1

2

J∑
j=1

∑
i∈Lj

(yi − x>i Wjs)2

s.t. 1>s ≤ q
w ∈ Rp, s ∈ {0, 1}p

(3.5)

where γ ∈ R+.

Although (3.5) is NP-hard, the algorithm for the single cluster case was able to recover

provably optimal solutions in practical times, that scaled well for problems with hundreds of

thousands of observations n and tens of thousands of features p.

Theorem 3.2.1. Problem (3.5) is equivalent to solving:

min
s∈{0,1}p:1>s≤q

1

2

J∑
j=1

1

2
Y>j

Ip + γ
∑
i∈[p]

siKi
j

−1 Yj

 (3.6)

where we have used Ki
j to denote the micro-kernel in cluster j, that is, Ki

j := Xi
jX

i>
j and Xi>

j

is a column of Xj corresponding to the ith feature.

Proof. Proof: The proof follows from the argument in [13]. For a fixed support vector s, the

problem admits an explicit solution

c(s) =
1

2

J∑
j=1

[
Y>j

(
In −Xj

(
1

γ
Ip + X>j SX

)−1
X>j

)
Yj

]
(3.7)

=
1

2

J∑
j=1

[
Y>j

(
Ip + γX>j SXj

)−1
Yj

]
, (3.8)

where S = diag(s). The optimum is attained at the set of weights

w∗j =

(
1

γ
In + X>j SXj

)−1
X>j Yj . (3.9)
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This allows us to write the sparse regression problem of minimizing (3.7) in a form that explicitly

represents the objective as a convex function of the constrained binary vector s.

The convexity of the objective function in s enables us to apply a cutting plane algorithm

to solve (3.6). It is convenient to consider the dual of (3.7) in order to derive the form of the

cuts. The dual problem has the following form (Theorem 2 [13]):

max
αj ,j=1,...,J

−γ
2

J∑
j=1

α>j Kj(s)αj −
1

2
α>k αj + Y>k αj (3.10)

s.t. αj ∈ Rnj ∀j (3.11)

where Kj(s) = XjSX>j and nj is the number of observations in cluster j. Here αj can be

interpreted as the Lagrangian dual variables corresponding to constraints of the form Yj =

XjWjs. As (3.10) is an unconstrained quadratic problem, we can derive a closed form solution

for the optimal dual variables α∗j :

α∗j = (In + γKj)
−1 Y ∀j = 1, . . . , J. (3.12)

Now, at a given candidate solution ŝ, we have that our kernel matrices Kj(s) are differentiable

and furthermore

dKj(s)

ds
=

p∑
i=1

siXi
jX

i>
j ∀j = 1, . . . J

so we can always attain a subgradient as follows (Lemma 2 [13]):

∇c(s) = −γ
2

J∑
j=1

α∗jK
>
j

dKj(s)

ds
. (3.13)

In practice, to avoid computing the inverse of the n × n matrix in (3.12), we compute the

capacitance matrix

CMj =
I

γ
+ Zj(s)>Zj(s)

where Zj(s) is formed by taking the columns of Xj that are in the support vector s, and this

enables us to evaluate the matrix inverse as

(I + γKj(s))−1 = I− Zj(s)(CMj)
−1Zj(s)>.

This formulation gives rise to the SparClur cutting plane algorithm.
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Algorithm 1 SparClur

Input: Xj ∈ Rnj×p,Yj ∈ Rnj , j = 1, . . . , J, q ∈ [p], γ ∈ R++

Output: s ∈ {0, 1}p

1: procedure Cutting plane algorithm
2: s1 ← warm start
3: η1 ← 0
4: ν ← 0
5: c(s1)←∞
6: while ην < c(sν)
7: ν ← ν + 1
8: for j ∈ [J ]
9: S← diag(s)

10: α∗j ← Yj −XjS(Iq/γ + X>j SXj)
−1X>j SYj

11: c(sν)← 1

2

∑
j Y>j α

∗
j

12: for i ∈ [p]

13: ∇ci ←
γ

2

∑
j(X

i>
j α∗j )

2

14: sν+1, ην+1 ← arg min
s,η
{η : η ≥ c(st) +∇c(st)>(s− st)} ∀t ∈ [ν]

As well as the given exact cutting plane algorithm, the SparClur formulation is amenable

to algorithms for the relaxation of (3.2) such as the subgradient descent algorithm suggested in

[11] for the convex relaxation of the sparse regression problem. The convex relaxation is useful

for providing warm starts to a mixed integer solver, but can also provide high quality solutions

on its own. The convex relaxation takes the form:

min
s∈Conv({0,1}p:1>s≤q)

max
αj∈Rnj

f(α1, . . . ,αJ , s) = (3.14)

min
s∈Conv({0,1}p:1>s≤q)

max
αj∈Rn(j)

−γ
2

J∑
j=1

α>j Kj(s)αj −
1

2
α>j αj + Y>j αj (3.15)

and we can exchange the order of the global minimization and maximization operators, so (3.14)

is equivalent to

max
αj∈Rnj

− 1

2

J∑
j=1

[
α>j αj +w Y>k αj − max

s∈Conv({0,1}p:1>s≤q)

γ

2

∑
i

siα
>
j Xi

jX
i>
j αj

]
. (3.16)

The inner maximization problem always has at least one analytic solution that can be con-

structed by finding q indices i where
∑
j
α>j Xi

jX
i>
j αj take on the largest values in order, and

assigning si = 1 to those indices. The outer maximization problem can be solved via a non-

smooth optimization algorithm. That is, for a given candidate dual solution α̂1, . . . , α̂J we

can analytically compute the optimal support vector and a subgradient ∇f(α̂j , s) and apply a

suitable global first order method to (3.16).

28



CHAPTER 3. SPARCLUR: SPARSE REGRESSION OVER CLUSTERS

3.3 Experiments with Synthetic Data

An exact method for sparse regression is only successful if it can be demonstrated that the

method is capable of producing solutions that contain the true sparsity pattern when this

pattern is known, without including features that are not truly relevant (“false positives”)

in the solution. We will demonstrate that Algorithm 1 is capable of recovering solutions that

capture all relevant features in synthetic datasets with a known underlying sparsity pattern, and

no features that are not part of the true underlying sparsity pattern. In other words, SparClur

recovers the whole truth and nothing but the truth. In this section we look into experiments

using synthetic data in order to address three key questions:

1. Does our mixed integer formulation recover correct solutions to the sparse regression

problem, particularly in the presence of noise?

2. Does SparClur enjoy practical solving times as the dimensionality of a problem grows?

3. What is the cost of imposing the assumption of common support among clusters, when

there is no such phenomenon in the underlying data?

We measure the ability of our formulation to recover the truth by reporting the accuracy A

and the false positive rate F , defined below. Let supp(wtrue) denote the known true support in

a synthetic dataset. Then for solution w∗ we have

A =
|supp(wtrue) ∩ supp(w∗)|

q

F =
|supp(w∗) \ supp(wtrue)|

|supp(w∗)|
.

All experiments were run on a Linux system with an Intel Xeon CPU E5-2650 processor.

All time related results report the time taken to perform tasks on a single processor. All our

formulations were written in Julia [14], and all optimization problems were built using JuMP

[30] and solved in Cplex 12.8.

3.3.1 Support Recovery

In order to investigate the ability of our formulation to recover the true support in the presence

of noise, synthetic data were generated as follows. Each entry of the matrix X ∈ Rn×p was

independently generated from a N (0, 1) distribution for n ranging between 100 and 500 obser-

vations and p = 2000. Our observations were randomly and evenly divided among J clusters,

creating clusters of observations X1, . . . ,XJ . The value of J was taken from all values in the

range {1, 2, 5, 10, 20}. The set of features in the support S was fixed with |S| = q = 10 randomly

selected features. For each feature i in the true support, a corresponding coefficient wi ∈ {−1, 1}
was sampled. We compute the target variable Yj = Xjwj + ξj where ξj ∼ N (0,Σ) was scaled

so that we have a signal-to-noise ratio ||Yj ||/||ξj || = 20.

We generated five synthetic datasets as described above for varying values of n, and we

report the mean out of sample accuracy and false positive rate for each n. These are shown in

the plots of Figure 3.2. For each datapoint shown, the value of γ was taken to be some constant
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multiplied by q/n. The value of this constant was chosen following a cross validation procedure

for each value n used in testing out of sample. The plots demonstrate the occurrence of a phase

transition, and demonstrate that the point of this phase transition depends on the number of

observations in each cluster.
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Figure 3.2: Accuracy and false positive rate as a function of number of observations for synthetic data
with SNR=20, q=10. All problems were solved using Algorithm 1. Each curve passes through the
average measurement made over five sets of synthetic data and error bars correspond to one standard
deviation.
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Time of Phase Transition

Our experiments reveal an interesting phenomenon, where the solving time of a problem begins

to decrease once some critical number of observations is exceeded. This has an interesting

implication for the SparClur formulation. As an example, consider the computational time for

the synthetic problem described above, shown in Figures 3.3a for J = 1 and 3.3b for J = 5. For

a modeler computing regression weights at several leaf nodes, it is desirable for the number of

observations at each leaf to be greater than the critical value mentioned, since this allows them

to enjoy significantly lower solving times. A key advantage of SparClur is that the coordination

imposed reduces the number of observations necessary to attain the solving times observed

beyond the phase transition. For the case illustrated in Figures 3.3a and 3.3b, if a model

consisted of five leaf nodes, then around 200 observations would be sufficient to achieve phase

transition with SparClur. On the other hand, the single cluster model experiences a phase

transition beyond 140 observations, meaning that if a modeler was to use an uncoordinated

regression model at each leaf, 5× 140 = 700 observations would be necessary.
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Figure 3.3: Computational times in seconds as a function of number of observations for a model with
binary weights and SNR = 20.

3.3.2 Scalability

As well as being able to attain 100% accuracy and 0% false positive rate, we want to ensure

that the SparClur formulation continues to allow practical solving times as the size of the input

data grows. Table 3.1 summarizes the solving times we observe as we increase the number of

observations to the range of the hundreds of thousands, and the number of features to the tens

of thousands. At this scale, we are able to recover the full support with no false detection in

seconds.

γ p n = 20,000 n = 50,000 n = 100,000

0.005 20,000 16.3 33.6 63.6
0.01 20,000 14.9 33.1 63.2
0.02 20,000 15.1 35.2 68.9
0.005 50,000 6.99 14.6 26.8
0.01 50,000 6.45 13.9 26.0
0.02 50,000 6.53 13.9 27.2

Table 3.1: Computational times in seconds (mean over five datasets) for different values of n, p, and γ.
In each experiment accuracy was 100% and false positive rate was 0%.
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3.3.3 Effects of Clusters with Varying Support

In these experiments we seek to explore the behavior of SparClur when it is applied to observa-

tions that do not truly share the same support. To do so, we generate data for observations Xj

and Yj as described in the previous section, with the number of clusters J = 2. The weights

for each cluster w1,w2 were generated so that there are 10 features in the true support of each

cluster, but not necessarily the same 10 features in both clusters. The number of features in

{supp(w1)∩ supp(w2)} was varied.

When we come to build a model for our synthetic data, we must assume some underlying

sparsity q which may be lower than, or greater than, the total number of features in both

clusters |w1 ∪ w2|. Of course when q < |supp(w1) ∪ supp(w2)|, it is not possible to attain an

accuracy of 100%. Instead, the maximum attainable accuracy is q
|supp(w1)∪supp(w2)| .

In Figures 3.4 and 3.5, the dashed curves correspond to the maximum attainable accuracy.

The points correspond to the accuracy attained each time the problem is solved with SparClur.

In every case, the accuracy matches closely with the maximum attainable accuracy, and we

never detect any features not in the support of one of the two clusters, except when q >

|supp(w1) ∪ supp(w2)|. We do not claim, however, that when q < |supp(w1) ∪ supp(w2)|,
features in the support of both clusters, |supp(w1)∩ supp(w2)|, are always in the set of features

discovered. Rather, any of the features in any support vector may be in the solution.

We note that selecting a value of q that is too large is not an issue for the performance of

a model if weights are obtained with a least squares calculation, once the support is chosen. In

practice, the choice of q would be determined following a cross validation procedure. When the

ground truth is not known, this would be done by measuring the out of sample R2 for different

choices of q. Figure 3.6 shows the out of sample R2 for different values of q. We see that the

optimal choices of q are 18 in the first experiment, and 15 in the second experiment from the

figures (which conforms with |supp(w1) ∪ supp(w2)|).
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Figure 3.4: Accuracy and false positive rate when |supp(w1) ∩ supp(w2)| = 2.
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Figure 3.5: Accuracy and false positive rate when |supp(w1) ∩ supp(w2)| = 5.
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Figure 3.6: Out of sample R2 as a function of q.

3.3.4 Findings from Synthetic Experiments

Our experimentation with synthetic data suggests that SparClur enjoys several properties that

make the approach useful in practical settings.

1. The algorithm recovers the true support in a set of features when this support is known,

and is capable of successfully ignoring irrelevant features.

2. The algorithm is practical for offline problems where the number of observations is in the

hundreds of thousands, and the number of features is in the tens of thousands. That is,

we can attain high quality solutions for problems of such scale in seconds. Furthermore,

the quality of solutions for a fixed number of features has the potential to be higher with

SparClur than with uncoordinated sparse regression, because we often require a smaller

number of observations to be present before the phase transition phenomenon occurs.

3. Any increase in q (which generally reduces the interpretability of a model in terms of the

number of features included) has never resulted in features being included in the model

that should not be part of the true support, when q was chosen to be smaller than the

total number of relevant features. When the underlying regression models in clusters

do not truly share a common sparsity pattern, there is a tradeoff to be made between

interpretability (which improves as q decreases) and accuracy (which improves up to a

limit as q increases).
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3.4 Case Studies with High Dimensional Data

One of the key motivations for the SparClur formulation arises in medical studies, particularly

in the realm of personalized medicine. In this section, we investigate the performance of the

algorithm in three different real-world prediction problems.

The first medical prediction task we look at is the problem of predicting glucose levels in

diabetes patients. From our experience, many clinicians intuitively use a series of questions to

arrive at an estimate for patient outcomes. Key characteristics of the patient such as weight, age,

and medical history could be taken into consideration. However with an algorithmic approach,

the unique features of each patient can be used in a model to predict glucose levels. A related

prescriptive problem has previously been studied in [9], where k-nearest neighbor regression was

applied to predict prescriptive outcomes. Using decision trees, we can further personalize the

prediction problem for each patient by taking into account the fact that different features may

play varying roles in the progression of a person’s health. For example, the past adherence to

a line of treatment may affect glucose levels in a different way for elderly male patients than it

does for middle-aged females. At the same time, it makes medical sense that the same covariates

have a nonzero impact across all patients regardless of their differences.

The second high dimensional dataset we turn our attention to is derived from the Framing-

ham Heart Study [3]. This dataset has previously been studied in [4] in a classification setting,

to predict the event occurrence of stroke in subjects. The same dataset has been used to study

a number of other medical conditions, due to the richness of the features collected and the

longitudinal aspect of the study. Here, we seek to predict two continuous outcomes of interest.

The first, is the change in blood pressure of patients at subsequent visits. The second, is time of

stroke occurrence from the first observation of a subject. We had access to demographic features

including age, gender, and BMI, as well as biological information about patients derived from

blood test data.

In stroke management, as in diabetes management, clinicians often use a checklist of ques-

tions to determine a patient’s risk for the condition [34, 48]. Currently, these risk score calcula-

tors give points to each individual risk factor and assign a risk percentage based on thresholds

of the cumulative score. For example, one of the most widely used approaches for stroke risk

assessment is CHADS2 [60], which assigns a score 0—6 to patients, each corresponding to a

likelihood of stroke between 0 and 18%. Generally, such approaches have several shortcomings.

For instance, in CHADS2, equal weight is assigned to each risk condition, a linear relationship

between factors is assumed, there is a limited number of features which may not be predictive

across different patient groups, and there is no differentiation of risk within buckets assigned,

providing a discrete numeric score rather than a continuous measure. Nonetheless the advantage

of a method like CHADS2 is that clinicians prefer a highly explainable model.

3.4.1 Description of Data

We obtained electronic medical records (EMR) for over 1.1 million patients at Boston Medical

Center (BMC) from 1999 to 2014 for the glucose prediction problem. In this dataset, 10,806

patients met the inclusion criteria described in [9]. We had access to demographic data, including
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date of birth, sex, and ethnicity, and to all BMC EMR data, including a history of drug

prescriptions and measurements of height, weight, BMI, and HbA1c (an indicator of past blood

sugar levels) as well as creatinine levels. All together, the model considered 85 features.

The Framingham Heart Study contains the examination data from 41 clinical exams which

started in 1948 and have been followed up through 2010. Our data comprises two cohorts:

the Original Cohort, consisting of 5,209 respondents of a random sample of two thirds of the

adult population of Framingham, Massachusetts. These respondents were 30 to 62 years of age

by household, starting in 1948 with follow-ups until 2010. The Offspring Study Cohort was

initiated in 1971 with a sample of 5,124 men and women, consisting of the offspring of the

Original Cohort and their spouses.

Unifying the two cohorts, we have patient characteristic data at each visitation, for 10,092

unique patients. Of those, 1,266 (roughly 10%), went on to have an occurrence of stroke by the

end of the study.

We considered only the patients who experienced a stroke for the time of stroke prediction

problem. We retained the health information from their initial baseline visit and computed the

number of days from when that data was collected to the date of their first occurrence of stroke.

Overall, the model we built had 1,266 observations and 40 features.

For the blood pressure prediction problem, we calculated the change in systolic blood pres-

sure of patients between consecutive visits, and treated each pair of consecutive visits as an

observation. The final model had 91,955 observations and 41 features.

3.4.2 Comparison of Methods

We examined the performance of optimal regression trees with point predictions at leaf nodes, as

well as linear prediction models at leaf nodes. All linear prediction models were constructed after

the optimal regression tree (with point predictions at the leaves) was found and the parameters

for the tree were cross validated. The leaves of each tree were treated as clusters. We considered

building linear models using Lasso1, sparse regression (without coordination), and SparClur.

The linear models built with SparClur were found by utilizing Algorithm 1, as well as using

the convex relaxation of our formulation. When solving with cutting planes, we set a time limit

of two minutes in CPLEX and use the incumbent solution if the time limit is reached. We

did not employ an exact cutting plane algorithm to solve the uncoordinated sparse regression

problem. The deepest trees we obtained typically had hundreds of leaf nodes. Therefore,

training and cross-validating for appropriate parameters using uncoordinated sparse regression,

which involves building linear models within each leaf separately, would take over a week of

computational time. In contrast, the results we are able to report using the exact mixed integer

formulation with SparClur correspond to only hours or days of computation.

We measured the average out of sample accuracy from five different training and testing

splits of our data and report the out of sample R2 for trees of increasing depth. Our results

are summarized in Tables 3.2 — 3.4 and depicted in Figures 3.7 — 3.9. Each tree we built was

created using the software package OptimalTrees.jl described in [29] and for each regression

model, the hyperparameters q (in the range 1—10) and γ were chosen following a cross validation

1For Lasso regression we use the implementation of https://github.com/JuliaStats/GLMNet.jl [43].
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procedure. We chose to restrict the sparsity of our models to 10 features (including a bias term)

or fewer, as we consider this to be an appropriate number of features for clinicians to reflect on.

Depth Lasso ORT SparClur: SparClur: Sparse
at leaves exact relaxation (uncoordinated)

0 0.506 0.000 0.499 0.464 0.464
1 0.521 0.323 0.514 0.498 0.490
2 0.524 0.438 0.517 0.502 0.490
3 0.532 0.476 0.524 0.509 0.490
4 0.535 0.502 0.530 0.525 0.495
5 0.535 0.511 0.530 0.526 0.497
6 0.535 0.516 0.530 0.527 0.497
7 0.535 0.516 0.530 0.527 0.497
8 0.535 0.516 0.530 0.527 0.497
9 0.535 0.516 0.530 0.526 0.497
10 0.535 0.516 0.530 0.526 0.497

Table 3.2: Out of sample R2 for prediction of glucose levels using different depths.

Depth Lasso ORT SparClur: SparClur: Sparse
at leaves exact relaxation (uncoordinated)

0 0.364 -0.005 0.352 0.261 0.261
1 0.359 0.172 0.365 0.303 0.272
2 0.358 0.234 0.350 0.312 0.316
3 0.357 0.253 0.342 0.316 0.320
4 0.357 0.253 0.341 0.316 0.320
5 0.357 0.253 0.341 0.316 0.312
6 0.357 0.253 0.341 0.316 0.312
7 0.357 0.253 0.341 0.316 0.312
8 0.357 0.253 0.341 0.316 0.312
9 0.357 0.253 0.341 0.316 0.312
10 0.357 0.253 0.341 0.316 0.312

Table 3.3: Mean out of sample R2 for prediction of days until stroke onset using different depths.

Depth Lasso ORT SparClur: SparClur: Sparse
at leaves exact relaxation (uncoordinated)

0 0.306 0.000 0.296 0.281 0.281
1 0.341 0.151 0.328 0.319 0.300
2 0.521 0.372 0.516 0.503 0.465
3 0.527 0.459 0.523 0.513 0.468
4 0.528 0.487 0.522 0.518 0.506
5 0.528 0.498 0.524 0.520 0.506
6 0.528 0.505 0.524 0.519 0.507
7 0.528 0.508 0.524 0.519 0.511
8 0.528 0.508 0.524 0.519 0.511
9 0.528 0.508 0.524 0.519 0.511
10 0.528 0.508 0.524 0.519 0.511

Table 3.4: Mean out of sample R2 for prediction of change in blood pressure using different depths.
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Figure 3.7: Out of sample R2 as a function of depth for prediction of glucose levels.
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Figure 3.8: R2 as a function of tree depth for prediction of days until stroke onset.

The models created from our larger datasets (in glucose and blood pressure prediction)

attained R2 scores of around 0.5. The best models we produced for predicting time of stroke,
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Figure 3.9: R2 as a function of tree depth for prediction of change in blood pressure.

attained R2 scores of 0.3 — 0.4. In the stroke prediction problem, we also had a lot more

variance in the R2 across folds. This is likely due to the smaller sample size of 1266, while the

diabetes and blood pressure datasets had around 10,000 and 91,000 observations.

The models we obtained with sparse regression methods (both coordinated and uncoordi-

nated) had significantly fewer features than the trees obtained with Lasso at the leaves, in each

example we studied.

In the glucose prediction problem, some of the trees modified with Lasso had close to 50

features in the support set. In contrast, the trees obtained with SparClur contained at most 10

variables which participated in the entire tree, and these variables appeared repeatedly among

different trees. An example of a tree we obtained (with features denoted by x1, x2, . . . x85) is

depicted in Appendix 3.6.2. A few of the features present in the support for almost all testing

folds in our deepest tree were:

• Age of patient,

• Time since diagnosis,

• Whether a previously assigned treatment was none

• One or several metrics relating to past HbA1c (either the change from the last two visits,

or a quantile of HbA1c),

• Whether previously assigned regimen included Metformin,

• Whether the second to last, third to last, or fourth to last treatment was none.
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In the blood pressure prediction models, several trees modified with Lasso had over 20

features in the support set, often varying among different trees. SparClur again resulted in

trees with at most 10 variables participating in the support of all leaves in the tree. An example

tree we obtained can be found in Appendix 3.6.3. A few features present in the support for

most of the leaves were:

• Age,

• Gender,

• Past SBP,

• Whether they were on AHT,

• BMI.

These features are clearly medically significant.

3.4.3 General Trends

The results in Tables 3.2—3.4 display some interesting patterns. Each of the regression methods

examined attained an R2 score within 5% of the other methods, apart from the point-prediction

model for time of stroke. Given that the difference in interpretability between the models

employed is significant, the similarity in R2 scores demonstrates that the price to be paid for

imposing additional structure that favors this interpretability, tends to be small.

Interestingly, the uncoordinated sparse regression approach had inferior out of sample per-

formance to optimal regression trees with point predictions in the glucose prediction problem,

and inferior performance to SparClur in the stroke related problems. This would typically be

an indicator of overfitting by a model. In this case, the behavior could be an artifact of a

large number of clusters and an insufficiently large number of observations within each cluster,

for optimal sparse regression to be performant. The performance of SparClur is always a few

percentage points higher than optimal regression trees at high depths.

We also make the observation that the optimization of the exact coordinated regression

problem provides a relatively small improvement in the out of sample R2 over the relaxation

solution in each case study. We note that a warm-start for the cutting plane algorithm is

always computed using the convex relaxation of the exact method, and the integer optimization

solution often consists of swapping a small number of variables selected by the relaxation with

unselected variables (this can bee seen in the example in Appendix 3.6.2). This suggests that

the convex relaxation of the problem is able to provide high quality solutions for the problem

studied.

Notably, the models we obtained with sparse regression methods (both coordinated and

uncoordinated) gave rise to trees that were significantly more interpretable than the trees ob-

tained with Lasso at the leaves. In each case, there were Lasso models that contained not only

significantly more covariates in the leaves, but different subsets as well. In addition, for each

of our cases, scores would plateau at a depth of around 3—4. This indicates that particularly

deep trees are unnecessary, maintaining explainable models.
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For stroke prediction, the tree structure did not provide as much lift (depth 0/1 performed

best). For the other two cases, however, the R2 increased significantly with depth. This could

be because the features did not differ much in the leaves, indicating that the problem of stroke

prediction is more uniform across certain demographics than believed.

In the stroke prediction problem, we also had a lot more variance in the R2 across folds.

This is likely due to the smaller sample size of 1266, while the diabetes and blood pressure

datasets had 10,00 and 91,000 observations.

In comparison to current state of the art patient prediction methodologies which rely on a

fixed series of questions, SparClur leverages the predictive power of ORTs, allows us to capture

nonlinear relationship between observations and the target variable, and naturally performs dif-

ferent splits at different regions of the tree, suggesting that there is a potential for improvement.

3.5 Conclusions

We offer SparClur as an approach for building regression models within tree based predic-

tion methods that combines state of the art accuracy, and interpretability. SparClur enforces

additional structure within predictive models, but leads to models that are arguably more in-

terpretable than other linear regression methods. Furthermore, we have shown with synthetic

data that the method is correct, scalable, and capable of attaining stronger result than sparse

regression without coordination when the number of observations available is below a certain

threshold. In the large scale datasets we have studied, SparClur improves on the accuracy of

ORTs with point predictions, and has very similar out of sample accuracy to models utilizing

uncoordinated sparse regression, and Lasso regression. In other words, we see a substantial gain

in interpretability at a very small cost to accuracy.
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3.6 Appendices

3.6.1 Listing of Model Covariates

x1 Visit Number x18 Past metformin user
x2 Line Number x19 Adherence
x3 Age x20 Number of drugs last prescribed
x4 Time from diagnosis x21 Number of drugs prescribed two visits ago
x5 Past HbA1c x22 Number of drugs prescribed three visits ago
x6 Last HbA1c increment x23 Kidney contraindication
x7 HbA1c on second to last visit x24 Line choice
x8 HbA1c.change x25 Current number of drugs
x9 Median HbA1c x26 Sex
x10 75th quantile HbA1c x27 Race: is hispanic
x11 25th quantile HbA1c x28 Race: is white
x12 Mean HbA1c x29 Race: other
x13 Previous BMI x30−40 Categories of last treatment
x14 BMI median x41−51 Categories of second to last treatment
x15 BMI 75% quantile x52−62 Categories of third to last treatment
x16 BMI 25% quantile x63−73 Categories of fourth to last treatment
x17 BMI mean x74−84 Categories of current treatment

Table 3.5: Description of all features used to build models in the diabetes case study. There are 85
features in total, including a dummy variable for offset.
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x1 Age x19 BMI
x2 Gender x20 Hemat
x3 Systolic Blood Pressure x21 Glucose (blood)
x4 Diastolic Blood Pressure x22 Glucose (urine)
x5 Anti Hypertension Treatment x23 Albumin (urine)
x6 Nitrates x24 XRay Enlarg Before
x7 Diuretics x25 Ventricular Rate
x8 Diabetes 200 x26 Left Ventricular Hypertrophy
x9 Diabetes 150 x27 Intravent block
x10 Diabetes 140 x28 Atrioventr block
x11 Smoking x29 T wave
x12 Cardiovascular Disease x30 ST segment
x13 Afib x31 Prem beats
x14 Coronary Artery Bypass Graft x32 Hypertension
x15 Percutaneous Coronary Intervention x33 Cholest total
x16 Myocardial Infarction x34 HDL
x17 Transient Ischemic Attack x35 Exam Number
x18 Marital Status x36 Cohort

Table 3.6: Description of all features used to build models in the stroke case study. There are 37 features
in total, including a dummy variable for offset.

x1 Dates x21 Hemat
x2 Age x22 Glucose (blood)
x3 Gender x23 Glucose (urine)
x4 Systolic Blood Pressure x24 Albumin (urine)
x5 Diastolic Blood Pressure x25 XRay Enlarg Before
x6 Anti Hypertension Treatment x26 XRay Enlarg After
x7 Nitrates x27 Ventricular Rate
x8 Diuretics x28 Left Ventricular Hypertrophy
x9 Diabetes 200 x29 Intravent block
x10 Diabetes 150 x30 Atrioventr block
x11 Diabetes 140 x31 T wave
x12 Smoking x32 ST segment
x13 Cardiovascular Disease x33 U wave
x14 Afib x34 Prem Beats
x15 Coronary Artery Bypass Graft x35 Hypertension
x16 Percutaneous Coronary Intervention x36 Cholest Total
x17 Myocardial Infarction x37 HDL
x18 Transient Ischemic Attack x38 Exam Number
x19 Marital Status x39 Cohort
x20 BMI x40 Had Stroke

Table 3.7: Description of all features used to build models in the blood pressure case study. There are
41 features in total, including a dummy variable for offset.
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3.6.2 Tree for Glucose Level Prediction

Figure 3.10: Optimal regression tree structure for the diabetes case study when maximum depth is four.
Out of sample R2 was highest at this depth.

Figure 3.11: Example of trajectories of patient characteristics that correspond to nodes 12 and 24 in the
optimal regression tree above.
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Node 12 linear models
Lasso at leaves Model with 48 variables
SparClur: relaxation 0.2− 0.44x3 + 0.108x4 + 0.291x10 + 0.163x14 − 0.391x15

−0.337x17 + 0.001x19 + 0.057x370.035 + x81
SparClur: exact 0.21− 0.466x3 + 0.103x4 + 0.015x6 + 0.24x7 + 0.892x9

+2.323x10 − 0.003x18 + 0.059x37
Sparse (uncoordinated) −0.05 + 0.002x3 + 7.145x7 + 0.542x14 + 0.059x15 + 0.119x16

−1.151x17 + 0.107x19 − 0.012x34 + 0.195x26 + 0.11x48
Node 24 linear models

Lasso at leaves Model with 20 variables
SparClur: relaxation 0.48− 1.614x3 + 0.426x4 + 0.022x10 + 0.038x14 + 0.292x15

+0.625x17 + 0.128x37 − 0.155x81
SparClur: exact 0.25− 1.6x3 + 0.574x4 − 0.065x6 + 0.062x7 − 6.572x9

+6.564x10 + 0.069x37
Sparse (uncoordinated) 0.13 + 0.655x4 + 0.328x5 + 0.084x8 + 0.075x10 + 0.293x15

+0.49x17 + 0.099x48 + 1.292x59 + 0.887x70

Figure 3.12: Regression models using different approaches for nodes 12 and 24 in the tree of Figure 3.10.
At both nodes, SparClur gives the same support. Sparse regression gives models with the same number
of features but different support. Lasso produced models that varied substantially in different leaves in
terms of the number of variables and the features chosen in the model.

3.6.3 Tree for Blood Pressure Prediction

Figure 3.13: Optimal regression tree structure for the blood pressure case study when maximum depth
is three.
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Table 3.8: Example of trajectories of patient characteristics that correspond to nodes 11 and 15 in the
optimal regression tree above.

Node 11 linear models
Lasso at leaves Model with 15 variables
SparClur: relaxation 0.569 + 0.008x4 − 0.337x5 + 0.07x6 + 0.02x7 + 0.005x20

+0.008x21 − 0.032x28 + 0.06x37 − 0.023x38
SparClur: exact 0.558 + 0.1003x3 + 0.005x4 − 0.383x5 + 0.084x6

+0.015x7 + 0.007x21 + 0.012x29 − 0.001x40
Sparse (uncoordinated) 0.63 + 0.005x4 − 0.29x5 − 0.005x13 + 0.013x21

+0.001x26 − 0.04x28 + 0.013x29 − 0.045x31 − 0.019x38
Node 15 linear models

Lasso at leaves Model with 20 variables
SparClur: relaxation 0.594 + 0.008x4 − 0.347x5 + 0.019x6 + 0.005x7

−0.02x20 + 0.075x28 + 0.048x37 − 0.018x38
SparClur: exact 0.66− 0.084x2 + 0.043x3 + 0.001x4 − 0.377x5

−0.01x6 + 0.013x7 + 0.015x21 + 0.008x29 − 0.034x40
Sparse (uncoordinated) 0.652− 0.116x2 + 0.047x3 − 0.367x5 − 0.008x6 − 0.009x20

+0.02x37 − 0.01x38 + 0.042x39 − 0.022x40

Figure 3.14: Regression models using different approaches for nodes 11 and 15 in the tree of Figure 3.13.
At both nodes, SparClur gives the same support. Sparse regression gives models with the same number
of features but different support. Lasso produced models that varied substantially in different leaves in
terms of the number of variables and the features chosen in the model.
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3.6.4 Tree for Time of Stroke Prediction

Figure 3.15: Optimal regression tree structure for the stroke case study when maximum depth is four.

Table 3.9: Example of trajectories of patient characteristics that correspond to nodes 5 and 12 in the
optimal regression tree above.
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Node 5 linear models
Lasso at leaves Model with 13 variables
SparClur: relaxation 0.644− 0.020x3 − 0.105x12 − 0.212x23 − 0.226x24
SparClur: exact 0.741− 0.228x2 − 0.096x12 − 0.200x23 − 0.202x24 − 0.138x27
Sparse (uncoordinated) 0.33 + 0.026x2 + 0.007x5 − 0.08x12 + 0.124x19

+0.143x21 + 0.121x26 + 0.134x34 + 0.130x35
Node 12 linear models

Lasso at leaves Model with 17 variables
SparClur: relaxation 0.206 + 0.206x3 − 0.045x12 − 0.347x14 − 0.008x23 − 0.022x24
SparClur: exact 0.517− 0.124x2 − 0.105x9 − 0.042x12 − 0.245x13

−0.284x14 − 0.025x23 − 0.002x24 − 0.161x27 − 0.038x33
Sparse (uncoordinated) −0.266x9 − 0.064x11 − 0.013x12 − 0.499x13 + 0.803x22

−0.023x25 − 0.1x33 + 0.721x34 − 0.048x37

Figure 3.16: Regression models using different approaches for nodes 5 and 12 in the tree of Figure 3.15.
At both nodes, SparClur gives the same support. Sparse regression gives models with the same number
of features but different support. Lasso produced models that varied substantially in different leaves in
terms of the number of variables and the features chosen in the model.
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Chapter 4

Stroke Prediction from Radiology

Reports

4.1 Introduction

Unstructured text in the form of radiology reports or patient-notes contains some of the most

useful real-time and patient-specific information to practicing clinicians, but can be difficult to

access and organize in a retrospective and scaled fashion. This often results in studies that must

either eschew the wealth of information contained in these reports for analyses, or institute a

labor-intensive and manual hand-labeling of pertinent features that substantially reduces sample

size. These barriers deter the regular use of unstructured text in “big-data” studies, which can

lead to missing important modifiers of the outcome studied. Specifically within the field of

Neurology, the radiologic report of stroke is frequently diagnostic, and often considered the gold

standard when determined by Magnetic Resonance Imaging [49].

The ability to extract this information quickly and accurately would provide a considerable

improvement over traditional methods of identifying stroke retrospectively in large data-sets.

ICD-9/10 codes for ischemic stroke are not immune to misclassification [42] and furthermore do

not accurately distinguish acuity or location. An algorithm that correctly identifies diagnoses

would also have substantial value in helping to triage critical reports in the clinical setting [72].

Fortunately, increased computing power has led to a resurgence of employing machine learn-

ing techniques, in which computer-algorithms trained on sufficiently large data-sets to accurately

classify information better than traditional and commonly employed heuristic methods like sim-

ple logistic or linear regression. In this study, we approached the classification of radiology

reports using natural language processing methods to determine three binary outcomes:

1. Whether ischemic stroke is present

2. Whether the location of stroke is in the middle cerebral artery (MCA) territory

3. Whether the stroke is acute

Our purpose was to compare different methods to determine whether automated methods could

adequately classify these relevant findings in reports.
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4.1.1 Existing Methodologies

Previous efforts to automate diagnoses from radiologic text have resulted in algorithms able

to identify the presence or absence of breast cancer [62] and of pneumonia [28]. In [62], the

authors used an almost entirely manual approach to classify reports describing breast tissue as

belonging to one of four composition categories. Starting from the Breast Imaging Reporting

and Data System (BI-RADS) full lexicon of key terms, they used regular expressions to find

these terms in the report body and then manually reviewed the neighboring words in a certain

window to identify those that were informative, iteratively increasing the window. Though

their final algorithm had very high accuracy, there was little automation and no use of machine

learning to identify key phrases, optimal windows, and other parameters.

In [28], the authors took a slightly more sophisticated approach by training an out-of-the-box

system, ONYX, with the goal of reducing the amount of manual review needed by clinicians

rather than fully automating the process. ONYX takes in raw text as input and outputs

identified key concepts in the form of phrase groups [23]. Clinicians then generated a set of

decision rules on this output to classify reports as consistent or inconsistent with pneumonia,

or needing review, depending on what combination of concepts were present.

Only in the last few years have more advanced machine learning techniques been applied to

radiology reports. A recent study by [72] sought to classify whether radiology reports contained

certain findings, using multiple Natural Language Processing methods including Bag of Words,

Latent Dirichlet Allocation and word embeddings. They found that simpler featurization and

classification techniques perform comparably to more sophisticated deep learning approaches

in identifying binary critical head CT classifiers (i.e. critical v. non critical; ischemia v. no

ischemia).

4.1.2 Contributions

In this study, we conduct a thorough analysis of head CT and brain MRI reports using a com-

pletely automated end-to-end natural language processing framework for classifying presence,

location, and acuity of ischemic stroke. We empirically test the combination of three text featur-

ization techniques with seven different machine learning classifiers. In addition, we train a novel

set of word vector embeddings specific to the stroke neuroradiology context, and demonstrate

the validity of these embeddings using multiple quantitative and qualitative metrics.

Further, no existing methods have gone so far to specify acuity and location of ischemia. In

particular, language used to characterize stroke features is diverse. For instance, “sub-acute” is

a relative term, and is used to characterize strokes hours to weeks or even months old. Findings

that describe characterization of hypodensities in the case of head CTs, or MRI characteris-

tics like Apparent Diffusion Coefficient (ADC) correlation provides better clinical insight. We

demonstrate that our custom embeddings, combined with deep methods like recurrent neural

networks, can achieve extremely high AUC scores for all three classification tasks. We also find

that far more interpretable combination of featurizations and classifiers perform comparably,

showing that in this context, interpretability comes at a very low cost.
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4.2 Methods

4.2.1 Study Population

In this study, approved by the Partners Human Research Committee, we collected radiology

reports from a cohort of patients with ICD9 labeled diagnosis codes of ischemic stroke from

2003-2018 from the Research Patient Data Registry, a clinical repository of patient information

from Massachusetts General and Brigham and Women’s Hospitals. Additional eligibility cri-

teria for study inclusion consisted of full reports of Head Computed Tomography (CT) or CT

Angiography studies, Brain Magnetic Resonance Imaging or Angiography studies of patients

over 18 years of age. 1359 original reports were collected and hand-labeled.

4.2.2 Text Preprocessing

Unstructured text data, like radiology reports, require a preprocessing step to remove basic

non-uniformities that arise in language. On the radiology reports from our study population,

we implemented the following steps:

1. We removed any reports that were incomplete, conducted at an outside institution, or

lacked an “Impressions” section

2. From each report we removed header text that began before the main report, which

included patient information, visit information, and details of the radiology procedure

3. Standardized language at the end of the report was removed, including names and elec-

tronic signatures of radiologists and providers

4. Reference texts included in the report body were removed, for example “==== ”

5. Groups of word tokens (n-grams) that often appeared together to refer to a single entity

were replaced with the n-gram without spaces, for example “middlecerebralartery”

6. All whitespace was standardized, punctuation removed, and all text was made lowercase

4.2.3 Featurization

In this section we describe the methods that we used for feature encoding of the pre-processed

radiology reports. Machine learning methods require structured information as input and thus

it is impossible to leverage raw text directly [35]. Thus, each radiology report needs to be rep-

resented by a vector in order to be utilized by any supervised learning algorithm [53]. Multiple

approaches have been proposed towards this goal. In the medical literature, researchers have

followed three different streams: a pure rule based, an ML and a hybrid approach [64]. We

followed the ML driven paradigm which included the use of the state-of-the-art methods that

featurize unstructured text.
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Bag of words (BOW)

Bag of words is the simplest model for text featurization, disregarding context, semantic prox-

imity and grammar. Each word included in the main corpus of the text is considered to be a

distinct feature. Thus, every report can be represented with a D-dimensional vector, where D

is equal to the vocabulary size found in the collective set of radiology reports. The value of each

feature corresponds to the number of times a word was found in a given report. If the word

was not present in the document, we assigned the value 0. For example, if the vocabulary size

was 4,432, that means that each observation (report) would be encoded as 4,432 dimensional

vector which would have positive values only for the words that were contained in this text. We

also included 2-tuples of words to be included as a single feature in the case of common medical

terminology.

Term Frequency-Inverse Document Frequency (tf-idf)

The term frequency-inverse document frequency method (tf-idf) builds upon the BOW frame-

work, by re-weighting the document features based on the relative importance of the word in

the text [52]. The weight of each word is positively correlated to the number of times a word

appears in each document but it is offset by its frequency in the collection of all the training

corpus. Let ft,d be the number of times that term t appears in report d and sd be the number

of distinct words that appear in document d. We can then define the following:

• Term Frequency: tf(t, d) =
ft,d
sd

• Inverse Document Frequency: idf(t, d) = log
(

N∑N
d=1 1(TFt,d>0)

)
where N is the total number of documents. The latter term is a measure of how much in-

formation the word provides, i.e., if it’s common or rare across all documents. Thus we can

define:

tf-idf(t, d,N) = tf(t, d) · idf(t, d)

For example, consider the case of a report that includes 100 different terms wherein the word

stroke is encountered 5 distinct times. The term frequency (i.e., tf) for stroke is then (5 / 100) =

0.05. Assuming that we have 10 million documents and the term stroke appears in one thousand

of these. Then, the inverse document frequency (i.e., idf) is calculated as log(10,000,000 / 1,000)

= 4. Thus, the tf-idf weight is the product of these quantities: 0.05 * 4 = 0.2. This method

does not take into account the sequence of words in the text neither their semantic proximity.

However, it is more successful in distinguishing the importance of words in the text based on

their relative frequency.

GloVe

BOW and tf-idf are techniques for converting documents into structured numeric representa-

tions. It has become increasingly common in NLP to instead use word embeddings, which rep-

resent individual words as d-dimensional vectors and have been popularized through techniques
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like [55]. While each dimension value in the vector does not have an absolute interpretation,

word embedding vectors allow for complex pairwise comparisons between words that capture

underlying semantic relationships. See Figure 4.1 for an illustration.

The current state of the art word embedding is Global Vectors for Word Representation

(GloVe) [61]. GloVe takes a corpus of text and looks at how often pairs of words co-occur in

some window, since these frequencies have some sort of semantic meaning. For example, the

pairs “ice”-“solid” and “steam”-“gas” co-occur much more frequently than the pairs “ice”-“gas”

and “steam”-“solid”, with exact frequencies depending on the training corpus GloVe uses. The

algorithm then learns a d-dimensional vector for each word such that their dot product, a rough

measure of how close they lie in the vector space, is a positively correlated function of the words’

co-occurrence probability. The dimension d is usually chosen to be between 100 and 300. These

word representations then are either fed as inputs one-by-one into sequential models, or are

converted into document representations by simply taking an average over words.

While pre-trained GloVe vectors are available, radiology reports and other clinical text often

contain domain-specific jargon and abbreviations that do not appear in most training corpuses.

To learn GloVe representations suited for our specific application, we gathered a corpus of

clinically relevant texts:

• UpToDate the complete set of Neurology articles, to capture general medical language

• Stroke, Pathophysiology Diagnosis and Management, to capture disease specific language

• Yousem’s Neuroradiology: The Requisites textbook, to capture neuroradiology specific

language

• A sample of Partners’ Healthcare radiology reports from 2010-2017, to capture radiology

report specific local language

As a result, we now have available the first known neuroradiology-specific vector representations

ready to be released for other applications of clinical NLP. We evaluate the results of our GloVe

training in the Results section.

4.2.4 Clinical Labeling Methods

4.2.5 Supervised Learning

In this section, we outline the supervised learning methods that we used to classify the radiology

reports for three outcomes of interest: (1) presence of stroke, (2) stroke MCA location, (3) acuity

of stroke. We compared the performance of the most prevalent state-of-the-art ML algorithms

to predict human-generated reference-standard document labels for all the feature encoding

approaches outlined above.

kNN

The k-Nearest Neighbors (kNN) algorithm [24] is a supervised technique that can be applied to

both classification and regression problems. In a class prediction setting, given an observation

in the testing set to be classified, the algorithm searches for the k observations in the labeled
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Figure 4.1: GloVe vectors projected into the two-dimensional plane showing relationships between anal-
ogous pairs

training set that are nearest in feature space, where k is a small integer. The observation

is then assigned to the class to which the majority of its neighbors belong. Though the kNN

algorithm is the simplest of machine learning algorithms, it is a technique with strong guarantees

and often has powerful empirical performance. Its simplicity is also an advantage in terms of

interpretability: we can assess why a point was predicted to fall into a certain class by looking

at its neighbors and in which features they are most similar.

Logistic Regression

Logistic Regression is one of the simplest yet powerful classification algorithms used in the

literature. It is similar to the linear regression function, but uses a nonlinear transformation

to transform the output of the function to a probability [68]. These probabilities are compared

to a threshold value to predict a binary class. If one looks at the ’Logit’ function, that is the

logarithm of the odds, the coefficients of the logistic response function can be interpreted in

a similar fashion as those of the linear regression. To improve the regression, we have added

the “l1”/Lasso regularization term to protect it against feature-wise perturbations. This will

ensure a greater robustness of the regression.

CART

The Classification and Regression Trees (CART) methodology [18] trains a decision tree by

splitting on variables with a greedy and top-down approach [16]. The tree is built by branching

on the value of a single variable after solving a local optimisation problem that does not take

into account previous splits. The tree starts with the root node and recurses on the resulting

nodes. The algorithm stops when the predefined minimum number of observation per node is

achieved. All the splits that do not decrease the impurity sufficiently are subsequently pruned

to respect the maximum depth. CART has two major benefits: it does not assume a linear
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model and is interpretable as a result of the tree structure and its simple splits. To predict a

class for an observation one has to follow the splits and at the end predict the most frequent

outcome of the obtained leaf.

Optimal Classification Trees

OCT is an innovative advanced algorithm that trains highly accurate and interpretable classifi-

cation decision-trees [6, 27]. Recently developed at MIT, this methodology leverages state-of-the

art optimization techniques to construct the best decision tree for the training data in a sin-

gle step. CART tree has splits that are locally-optimal, but the resulting tree could be far

from optimal. OCT overcomes this problem by solving for global optimality (as opposed to

traditional greedy heuristics). The model achieves therefore high accuracy and interpretability

simultaneously. Contrary to most of the modern high-accuracy but opaque ML techniques (e.g.

neural networks and random forests), the tree structure of the OCT method makes the model

interpretable. Indeed, each node of the tree will only be split through a few high-importance

variables in a straightforward manner. Accuracy on the other hand, is maintained because

OCT reboots themselves with each variable and are extremely adaptive. Due to its unique

combination of high predictive performance and interpretability, the OCT method has led to

the creation of innovative personalized risk prediction models for the medical practice [8, 7].

A variant of the OCT is the Optimal Classification Tree with Hyperplane (OCT-H) splits

[6, 27]. While each split of the OCT is based on a single variable OCT-H authorizes multi-

variable splits. This allows the algorithm to substantially improve its accuracy while only

marginally impacting its interpretability. To better illustrated the concept of OCT and OCT-H

an example is displayed in Figures 4.2,4.3.

tumor

No Stroke infarct

No Stroke Stroke

true false

true false

Figure 4.2: An example of an OCT model
with two partition nodes and three leaf
nodes.

0.8*tumor - 1.5*swell

No Stroke 0.5*infarct+1.7*mca

No Stroke Stroke

true false

true false

Figure 4.3: An example of an OCT-H model
with two partition nodes and three leaf
nodes.
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Random Forest

Random forest is an ensemble machine learning method designed to improve the prediction

accuracy of CART [17]. It builds a large number of CART trees in parallel and combines

them into a strong learner. Each CART tree only uses a random subset of the variables and

is trained with a sample of the training data. The random forest makes prediction by letting

every trained tree vote and selects the outcome with the most votes. This techniques works very

well in practice as the combined findings of each individual tree uncover very complex patterns.

Given the number of small trees trained (in our case 500) this model’s interpretability decreases

significantly.

Recurrent Neural Networks

Neural networks are computational nonlinear models, whose structure resembles the one of the

human brain, that are able to perform various ML tasks like classification and regression [36].

Their key components are artificial neurons or processing elements which are organized in three

interconnected layers: input, hidden that may include more than one layer, and output [38].

Recurrent Neural Networks, unlike feed-forward neural networks, allow for back-propagation of

the information in the model. This creates loops in the neural network architecture which act

as a “memory state” for its components. This state provides the neurons with the ability to

remember what have been learned so far [38]. This structure has been particularly successful

in Natural Language Processing applications where the sequence of words in the text can sig-

nificantly impact the overall meaning of the corpus [67]. We trained our models on a particular

subclass of recurrent neural networks that utilize an efficient, gradient based method called

Long Short-Term memory (LSTM) [40].

4.3 Results

4.3.1 Machine Learning Representation of Reports

In this section, we describe the results of our GloVe training process. As described above,

there are many parameters to be chosen, and each combination will yield slightly different

embeddings. There are two main ways of evaluating the quality of our vector representations

to decide whether additional training is needed.

Word Analogies

The claim of embedding techniques like GloVe and word2vec is that the high-dimensional rep-

resentations are able to capture complex structural relationships. These are often illustrated

by examples of words related in a particular manner through analogies. In Figure 4.1 we see

examples of word pairs, related by gender, and that their vector differences, represented by the

dashed lines, are all roughly equal.

In clinical text, finding such examples is a difficult task, as medical pairs of terms that

exhibit the same relation types are rare due to physiological variations in the body’s various
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systems. In the context of neurology in particular, one can examine the word pairing “heart-

carotidartery:brain-mca”. In Figure 4.4 we see a projection of the 100 dimensional word vectors

onto the two-dimensional plane, and observe that they exhibit similar vector differences. This

structural relationship becomes even more similar if we were to project all other keywords onto

the same space and observe their vector differences.

Figure 4.4: A projection of two word pairs, heart-carotidartery, and brain-mca, showing the vector
differences.

Nearest Neighbors

For a given word, we can look at that word’s vector representation and find its nearest neighbors.

The nearest neighbors can be determined using any appropriate distance metric for vectors; here

we choose cosine similarity as is often done in literature, though euclidean would also work.

To test how well our candidates overlapped with true synonyms, we used the Jaccard Index

as a metric. For several important keywords, we had clinicians come up with a list of relevant

words, which could be synonyms or commonly associated words like descriptors. We then

generated a set of the nearest neighbors in our embeddings of the same size as the set of true

synonyms.

Formally, suppose T = the set of true synonyms given by clinicians. Then we generate S =

set of the |T | number of nearest neighbors. Then we use as a metric the Jaccard index:

|S ∩ T |
|S ∪ T |

(4.1)

which looks at the number of words that are present in both sets divided by the total number

of unique words in either set. A Jaccard index = 1 means our set matches the true set exactly,

while a Jaccard index = 0 means our set did not generate a single one of the true synonyms.

To determine the best set of parameters and text corpuses to use in GloVe, we focused

on the quality of nearest neighbors of five key words of interest: “artery”,“chronic”,“edema”,

“hemorrhage”, and “stroke”. The resulting “true” list of relevant words can be seen in Table

4.1. Then, using the vector representations generated from 100, 200, 300 dimensional vectors,

56



CHAPTER 4. STROKE PREDICTION FROM RADIOLOGY REPORTS

Word Neighbors

Artery a1, a2, a3, aca, aica, basilar, branch, cca, circulation, ica, lenticulostriate,
lumen, m1, m2, m3, m4, mca, p1, p2, p3, pca, perforators, pica, sma, supr-
aclinoid, vasculature, vert, vertebral, vessel, vessels

Chronic atrophic, atrophy, encephalomalacia, encephalomalacic, gliosis, old, remote

Edema compression, cytotoxic, effacement, herniation, masseffect, medialization,
midlineshift, mls, subfalcine, swelling, uncal, vasogenic

Hemorrhage basalganglia, bleed, bleeding, blood, cc, cerebellar, collection, conversion,
epidural, frank, hematoma, hemorrhagicconversion, hemorrhagicinfarct, ich,
intracerebralhemorrhage, intracranialhemorrhage, intraparenchymalhemor-
rhage, intraventricular, iph, large, lobar, micro, microhemorrhage, perimes-
encephalic, petechiae, petechial, pontine, putaminal, sah, small, sponta-
neous, subarachnoidhemorrhage, subduralhemorrhage, subdural, thalamic,
transformation

Stroke cardioembolism, cerebralinfarction, cerebrovascularaccident, cerebrovascu-
larevent, clot, cva, emboli, embolic, embolism, hemorrhage, infarct, in-
farcted, infarctions, infarcts, ischemia, ischemic, tia

Table 4.1: Five keywords and the neurologist-determined ideal neighbors.

the 16 possible combinations of any number of the four corpuses, a window of 5 or 10 words,

and either ignoring or including co-occurrences of words across sentences. From this process we

found that the combination of parameters that has the best performance according the Jaccard

index, across the five keywords, was the GloVe representation using 200 dimensions, a 10-word

window, split across sentences using all four corpuses.

4.3.2 Classifiers

Our comprehensive use of machine learning methods both from the supervised and unsupervised

learning literature led to the development of highly accurate and applicable models. We created

classifiers that are able to detect the occurrence of stroke, its location and acuity with accuracy

above 90%.

Table 4.2 provides a summary of the final classifier results. We present the out-of-sample

AUC performance for each combination of unsupervised and supervised learning method. We

notice that our trained word embedding using GloVe combined with RNN provide the highest

performance (96.1%). However, even if this pair outperforms the rest it is not interpretable

and does not provide any intuition regarding the classification outcome. Logistic regression

coupled with BOW is associated with comparable results (95.9%) while also being less of a

“black box” to the user. On the task of predicting stroke presence, we notice that the GloVe

embedding leads to performance improvements only in the case of RNN across the three tasks

compared to BOW which seems to be more applicable to other classifiers. Random Forest has

equivalent performance to Logistic Regression with a slight edge over OCT-H. We observe this

same pattern for the other two tasks of predicting stroke location and presence.
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Average AUC kNN CART OCT OCT-H Logistic Regression RF RNN

BOW 0.808 0.889 0.805 0.915 0.951 0.922 0.838

tf-idf 0.857 0.883 0.813 0.894 0.939 0.929 0.844

GloVe 0.867 0.734 0.722 0.767 0.904 0.892 0.961
Stroke

Average AUC kNN CART OCT OCT-H Logistic Regression RF RNN

BOW 0.841 0.949 0.867 0.937 0.959 0.960 0.896

tf-idf 0.903 0.944 0.862 0.934 0.962 0.965 0.956

GloVe 0.843 0.734 0.699 0.809 0.906 0.873 0.976
Location

Average AUC kNN CART OCT OCT-H Logistic Regression RF RNN

BOW 0.815 0.797 0.735 0.797 0.898 0.901 0.754

tf-idf 0.857 0.801 0.733 0.807 0.893 0.9 0.899

GloVe 0.842 0.73 0.719 0.82 0.881 0.866 0.925
Acuity

Table 4.2: Out-of-sample mean AUC across five randomized splits between the training and testing sets.

4.4 Discussion

We provide a comprehensive framework for the creation of accurate machine learning models

that leverage natural language methods to identify patients with stroke, its location and acuity

from radiology reports. Our work serves as a paradigm for future researchers that would like to

leverage these techniques in the neurology field. We found that NLP methods perform very well

at extracting featurized information from radiology reports. Predicting acuity from a report

appears to be the most difficult for both machines as well as neurologist raters, while determining

whether a stroke occurred in the MCA territory was most straightforward. Notably, AUCs

above 90% were achieved for all three tasks using models that combine sophisticated artificial

intelligence algorithms, such as GloVe or RNN.

We also present more interpretable classifiers that physicians can use in practice such as the

one presented in Figure 4.5. This is the case of an OCT-H model which requires at most two

separate calculations to determine whether a radiology report refers to a stroke patient or not.

More specifically, if combination of phrases hemmorhagic transformation, infarctions, infarcts,

insula and subacute infarctions with the corresponding coefficients 0.024, 0.213, 0.111, 0.245

is higher or equal to 0.008, the report is considered a no stroke patient. In case, the answer

to the previous calculation is lower than 0.008, then the user needs to determine whether the

expression 0.058*infarct+0.038*infarction+0.268*mca<0.087 is satisfied. A phrase or a word

take the value of 1 if they are present in the text and zero otherwise. The tree can be broken

down to independent components (splits) each of which is characterized by set of coefficients,

similar to logistic regression. Thus, the model is able to identify in a non-linear but still

transparent way what are the patients who have suffered a stroke outcome.
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0.024*hemorrhagic transformation + 0.213*infarctions + 0.111*infarcts + 0.016*insula+0.245*subacute infarction < 0.008

No Stroke0.058*infarct+0.038*infarction+0.268*mca<0.087

No Stroke Stroke

true false

true false

Figure 4.5: An example of an OCT model with two partition nodes and three leaf nodes.

Our work is consistent with other studies that also report that simpler methods may be

suitable to effectively extract unstructured text information. Zech et al found that BOW paired

with lasso logistic regression had high performance with AUCs of >95% for critical head CT

findings [72]. Kim et al’s comparison of multiple machine learning methods to identify acute

ischemic stroke on MRI and found that a single decision tree outperformed more complicated

support vector machines [44]. However, for more nuanced and complex data, an embedded

vector approach such as the one we used with GloVe may be increasingly valuable. We observed

that it outperformed other methods by a wider margin in correctly classifying stroke acuity,

particularly when paired with a neural network structure. Because RNNs account for word

order, we expect that these methods will be increasingly used for accurate natural language

processing of medical text data.

It is also noteworthy that of our 1359 radiographic reports, only 925 (68%) were identified as

having had an ischemic stroke, a noteworthy finding in itself as our inclusion criteria consisted of

patients with an ICD-9/10 billing code of stroke. Other studies have reported on the difficulties

of using ICD to classify CNS disease [63, 1]. Our postulated discrepancies between ICD 9/10

codes of ischemic stroke and radiologic diagnosis include 1) Inaccuracies in billing coding; 2)

Failure to report chronic known findings in radiology reports; and 3) Failure to detect previously

MRI-identified strokes on head CT. Given that ICD-9 codes for ischemic stroke have reported

sensitivity of up to 80%, and 75% positive predictive value [42] when validated by physician

review, we feel that automated extraction from radiographic text provide more sensitive patient

capture.

Results from our empirical study indicate not only that NLP methods perform well at ex-

tracting featurized information from radiology reports, but that interpretable classifiers paired

with simple featurization like logistic regression with BOW can be nearly as strong as highly

complex, black-box techniques like RNN paired with the uninterpretable GloVe embeddings.

Given the immense overhead needed to train GloVe and deep neural networks, both in terms

of time and computing resources, clinicians may want to consider the simpler machine learn-

ing approach superior when it comes to clinical implementation, and practitioners should give

renewed attention to potential novel interpretable NLP techniques.

4.4.1 Limitations

There are several important limitations to our work. Similar to [72], our radiology corpus

consisted of reports from two hospitals, which may affect our generalizability in other systems.
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Also, the use of both computed tomography and magnetic resonance imaging reports increases

heterogeneity for model development—however given that reporting language details a finite

number of ways in which it describes stroke characteristics regardless of the imaging modality,

we sought to test a method that could be widely applied to radiographic text.

4.5 Conclusion

Automated machine learning methods can be employed to extract diagnosis, location and acuity

of stroke with high accuracy. Simpler statistical techniques like logistic regression paired with

NLP methods like Bag of Words perform comparably to more sophisticated word-embedding

GloVe techniques paired with deep learning classification. While these results require external

validation, they provide a framework for expeditiously identifying salient stroke features from

radiology text that can improve triaging high-risk scans for clinical workflow, identification of

populations of interest for research and quality improvement efforts.
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Chapter 5

Interpretable NLP

5.1 Introduction

Natural language processing (NLP) refers to the subfield of artificial intelligence that aims

to allow machines to parse and analyze unstructured text data on par with human ability.

NLP first became a problem of interest around the 1950s, spurred by work done by prominent

linguists [57]. Notably, it was around this time that Chomsky put forth his theoretical analysis

of language grammars [22] that soon led to the creation of a “context-free” grammar, used

today to represent programming syntax. His work on grammars eventually became the basis

of regular expressions, one of the most basic examples of machine-automated text analysis.

It wasn’t until the 1980s that NLP evolved beyond such rule-based analysis, when statistical

NLP gained popularity. These probabilistic techniques focused on using simple but rigorous

mathematical approximations, and large corpora of annotated text were increasingly available

for machine learning algorithms to be trained. Since this reorientation over three decades ago,

work in NLP has largely continued in this direction. However, motivated by particular challenges

and failure modes of popular NLP techniques in specific medical applications, we propose in

this chapter a set of methods that bring together statistical and rule-based NLP approaches,

learning jointly from linguistic experts and from large amounts of real data, and further doing

so in an interpretable way.

Typically, machine learning method for NLP rely on a corpus to train on and therefore

generate a model that varies depending on the application. This makes sense for classical

problems, where the samples represent different data and covariates from potentially differing

populations. However, word senses in the English language have fixed meaning, and follow a

highly structured pattern in all data. In this chapter, we aim to develop methods that utilize

this known structure in language to their advantage. Our ideas involve utilizing WordNet,

the best resource for a canonical representation of the English language, for this purpose [56].

WordNet is a human-curated graph whose nodes are synsets, groups of lemmas that share the

same meaning, and whose (directed) edges are their relationships to one another. There are 16

types of word relations, with some only possible between certain types of word pairs. The main

way words are related is that of hyper/hyponymy, which is the “X is a kind of Y” relation.

Figure 5.1 illustrates this concept by displaying a segment of WordNet.

Popular NLP problems include document classification, document summarization, sentiment
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entity

entity, physical thing

object, physical object

natural object

plant part

plant root

carrot radish

artifact

surface

skin

Figure 5.1: “is a” relation example in WordNet.

analysis, word sense disambiguation, named entity recognition (NER), question answering, and

translation, among many others. These problems vary both in difficulty and in scope, with some

as necessary obstacles on the way to tackling others. As the focus of this thesis is ultimately

to improve outcomes for patients in the medical domain, we concentrate on just a few of these

NLP tasks necessary to make predictions based on unstructured text data. To process a text

document and develop better predictive models, our algorithm will need to go through three

main steps:

1. Word sense disambiguation: figure out the meaning of each word and discriminate between

different senses

2. Generate interpretable embeddings: featurize the word meanings into a structured, nu-

meric representation

3. Calculate document distances: go from a variable collection of words to document simi-

larity

In the following sections, we first discuss our proposed approach to each task and how it differs

from current approaches. We then describe our work in progress, including some challenges and

implementations so far. We finally conclude with potential next directions in which to take this

work.

5.2 Proposed Methods

5.2.1 Word Sense Disambiguation

To address the problem of word sense disambiguation, which precedes the embedding problem,

we can utilize WordNet. Take a sentence, for example “I went fishing for bass”. The word

“bass” is one of many homographs, words with various meanings spelled identically, in the

English language. On its own, it is unclear which WordNet synset the token matches to: the
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lowest musical range, the stringed instrument, or the fish. However, by using the surrounding

context, we can make an informed guess that it refers to the fish. This method is promising

not only because it approximates how humans naturally would decipher senses from words, but

because it is very interpretable, as the set of candidate synsets and their distances can be easily

examined.

Formally, suppose a sentence is comprised of words w1, . . . wn. Each word wi can correspond

to any number of synsets si1 . . . s
i
mi . We then choose the n corresponding synsets s1 . . . sn, one for

each word, that in a sense span the smallest subset of the WordNet graph. One way of doing so

is to select s1 . . . sn that has the minimum maximum shortest path between each pair of synsets

– that is, the distance between the two most unrelated words is minimized. In cases where

sentences may contain two extremely distant words that dominate this metric, other alternative

objectives can also be considered, for example minimizing the total sum of the shortest paths

between every pair of synsets.

5.2.2 Interpretable word embedding, word relations

Word2vec and GloVe, the two state-of-the-art techniques for word embeddings, map words to

a d-dimensional space, for some arbitrary d. The representations themselves have no mean-

ing; only the vector relationships between pairs of words in the universe do. The same vector

representations could be translated or scaled by a fixed amount without changing their ap-

plication. For example, the vector operation paris − france should result in a vector that is

“closest” by some similarity measure, like cosine similarity or Euclidean distance, as that of

berlin− germany.

By using inherent relations between words, as represented by WordNet, we aim to create

interpretable word embeddings, where each dimension represents the level of the word in the

hierarchy of that relation type. For example, imagine our universe consists of the words {animal,

mammal, dog, poodle}. By WordNet’s hierarchy, each word is a hyponym and child of its

previous word (a poodle is a type-of dog, a dog is a type-of mammal). Then, we want

animal = (a1, . . . , a16)

mammal = (m1, . . . ,m16)

dog = (d1, . . . , d16)

poodle = (p1, . . . , p16)

such that

a1 > m1

m1 > d1

d1 > p1

where we have let the 1st dimension correspond to the “is a kind of” relationship. An alternative
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formulation could be specifying a,m, d, p such that

a1 −m1 = αa − αm
m1 − d1 = αm − αd
d1 − p1 = αd − αp

where αa is the rank of a in our corpus of words, according to WordNet. In this case, αa =

1, αm = 2, αd = 3, αp = 4.

In this way, the vector embeddings we construct will both be interpretable, and capture

more exact relationships between word pairs. So, animal−dog will result in a vector whose 1st

entry has the largest absolute magnitude, and fruit− apple will be nearly identical.

Another approach to interpretable word embeddings is to instead of having the dimensions

represent word relationships, have dimensions corresponding to different clusters the synsets

belong to. Since the WordNet graph is hierarchical for certain word relations, we can find

key nodes or clusters of nodes that other synsets filter up to, and vectorize words with binary

markers which they belong to or distance to the node.

5.2.3 Document Distance with Ordering

Documents are commonly represented as a bag-of-words (BOW), which as a simply word fre-

quency count fails to capture word ordering which can be key in certain domains. The same is

true of term frequency-inverse document frequency (tf-idf) representation, which is essentially

a re-weighted version of a BOW representation. Even with more sophisticated featurization

techniques like word embeddings, a common approach is to simply sum or average the vector

representations of each word to get a document vector of the same dimension, which again

ignores the structure of the text.

Only sequence models such as recurrent neural networks take into account the ordering of

the words, but as they are deep, uninterpretable methods, we aim to construct an alternative

approach using document similarity. Combined with a classifier like k-nearest neighbors (kNN),

which has a certificate of interpretability, document similarity can capture the effects of ordering

when going from word to document representations.

[45] recently introduced the idea of treating document distances like the earth mover’s

distance, a well-known problem in the optimization and transportation space. Their metric,

called the Word Mover’s Distance (WMD) finds the minimum total distance every word in one

document A must “travel” to reach some other word in document B, where the distance traveled

by the word is their vector similarity. While this captures pairwise word similarity semantically,

we propose to also account for word ordering by incorporating how “far” they need to move

that word, which we will refer to as the lexical distance. For example, “acute stroke, no cancer”

should have a further distance from “acute cancer, no stroke” and instead should be closer to

“acute infarct, no cancer”. Under WMD, the former two would have a distance of exactly zero.

Suppose we have two documents a and b, of length m and n respectively. Let cij be the cosine

similarity between the vector representations of word i in sentence a and word j in sentence b.

Let `ij be the difference in locations of word i and word j in their relative documents. Then,
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we aim to find a Tij flow from sentence a to sentence b that minimizes the cost. There are

at least three different ways we can formulate this problem, all derived from a language-based

perspective of how humans might approach the problem.

Short-to-long distance

In this scenario we have |sentence a| ≤ |sentence b| and let each word have weight/supply 1.

The document distance in this case is simply the minimum cost of moving the shorter sentence

to the longer sentence.

min
T

m∑
i=1

n∑
j=1

Tij(θcij + (1− θ)`ij)

s.t.
∑
i

Tij ≤ 1 ∀j∑
j

Tij = 1 ∀i

Tij ≥ 0 ∀i, j

(5.1)

where θ is a hyperparameter chosen based on the specific application to balance the tradeoff

between semantic distance and lexical distance between words.

Equal weighting

The first formulation assumes that longer sentences may have just fillers and disregards those.

Often, there can be more verbose texts that convey the same meaning as shorter texts. In a

second formulation, we weight each word in a sentence uniformly and find the minimum cost of

moving all of sentence a to sentence b.

min
T

m∑
i=1

n∑
j=1

Tij(θcij + (1− θ)`ij)

s.t.
∑
i

Tij =
1

|sentence b|
∀j

∑
j

Tij =
1

|sentence a|
∀i

Tij ≥ 0 ∀i, j

(5.2)

Variable weighting

Even the second formulation has a shortcoming - it assumes every word is uniformly important

in lending meaning to a sentence. If we are trying to classify whether a patient has a medical

condition, we may want to place more weight on relevant medical terms and less on other words

where small variations may not matter. In this formulation, we let the model choose freely the

weights of the words, but if there is an exact match in words, the model would choose to place

all weight in that word and set everything else to 0. To prevent this, we add a penalty to the
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L2 norm of the weights in our objective. Again, θ and λ are hyperparameters to be tuned on

the data.

min
T,wa,wb

m∑
i=1

n∑
j=1

Tij(θcij + (1− θ)`ij) + λ(||wa||22 + ||wb||22)

s.t.
∑
i

Tij = wbj ∀j∑
j

Tij = wai ∀i

∑
i

wai = 1∑
j

wbj = 1

Tij , w
a
i , w

b
j ≥ 0 ∀i, j

(5.3)

5.3 Implementation and Challenges

5.3.1 Interpretable Embeddings

A number of outstanding questions remain in implementing the formulation. A few of these

include:

1. How many pairs do we need in the constraint? For example, if a is higher in the hierarchy

than b which is higher than c and so on, do we need:

• only consecutive constraints based on word hierarchy? a > b, b > c, c > d, . . .

• all possible pairings between words? a > b, a > c, a > d, . . .

2. How do we decrease the universe we work with? Since WordNet contains over 100,000

synsets, we do not need to solve the optimization problem for all the words in the English

language just to get embeddings for the words in our corpus, especially if we want it to run

efficiently. We could perhaps take an on-the-fly approach, where we only add constraints

and objective terms for the words in our sample, and if any unseen word appears out-of-

sample, we could use a heuristically use its position in WordNet to generate a new vector

embedding.

5.3.2 Word Mover Distance

Currently we have implemented and tested our three approaches against the standard Word

Mover’s Distance as a baseline. We used a dataset of about 250 short impressions from a

radiology dataset for the presence of ischemic stroke and used GloVe vector representations

trained on a custom corpus as described in Chapter 4. For every pair of impression sentences

in the dataset, we calculated our metrics as described in the previous section. After creating

these pairwise-sentence distances, we use the distance matrix in a kNN classification model,

the results of which are reported in Table 5.1. We note that our empirical results are highly

dependent/sensitive to parameter tuning.
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Model AUC

Model 1 0.660
Model 2 0.821
Model 3 0.652
WMD 0.785

Table 5.1: Mean out-of-sample AUCs across five splits of our radiology reports.

We note that our second model performs quite well, even outperforming the WMD baseline.

However, our third model, which allows for variable weighting and should be at least as strong

as our second model, surprisingly performs the worst, even worse than the simple first model

which discards parts of a longer text. We hypothesize this may be the result of overfitting to the

training set, or still placing too much weight on overlapping words that may not have medical

significance in an attempt to minimize the distance.

To continue improving model 3, we can try:

• adding a proximal constraint where we penalize divergence from the uniform weighting

• using not the cosine similarity of the GloVe vectors, but some distance between word

synsets based on WordNet

Since the document distance generated is only a step on the way to the end goal of classifying

documents correctly, there is also potential to have a supervised version of the problem where

some empirical error of the predicted outcome is minimized. The document distance would

then be informed by the specific application and likely result in much higher classification

performance.

5.4 Conclusion

Throughout this thesis, we have demonstrated the need for interpretable machine learning

methods as well as their promise. Specifically in the field of NLP, much progress can be made

on this front. As the preliminary work in this chapter shows, there exist optimization-based

methods that can capture linguistic properties of textual data in a way that is complementary to,

rather than opposes, mathematically-based algorithms that learn from data. Further refinement

of the proposed ideas in this chapter could potentially result in improved NLP techniques that

approach the performance of deep black-box methods while maintaining interpretability.
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Chapter 6

Summary

In this thesis, we present a collection of works using interpretable machine learning approaches

to predict characteristics or outcomes of stroke at various hospitals.

At Hartford HealthCare, we demonstrate the power of Optimal Classification Trees as a

technique for predicting in-hospital mortality and mortality within a year from discharge, as

well as the more difficult task of recurrence of stroke within a year, of patients admitted for

ischemic stroke, hemorrhagic stroke, or TIA. We show that it not only attains good out-of-

sample AUCs, either on par with or outperforming other machine learning techniques and

outperforming stroke mortality risk scores, but that the resulting trees are easy to interpret and

align with clinical understanding of stroke. The resultant risk calculators from these algorithms

are an adaptive and interactive way for patients and doctors to understand the non-linearity of

stroke risk factors for mortality.

Our work at Hartford HealthCare showed clear evidence that health outcomes manifest

themselves differently among different parts of the population. In classification tasks, this is

captured by how Optimal Classification Trees splits among certain demographics to arrive at a

prediction or risk score at the leaves. We were inspired to devise a similar approach for regression

problems, where some real-valued outcome depends on a set of features that may differ for

various subpopulations. We present SparClur as a method that achieves this generalizability

on the feature set while still ensuring state of the art accuracy. Using an optimal tree to

segment the population, we then train a separate regression model at each of the leaves but

coordinate the models so they share the same support. We demonstrate on synthetic data that

the method is correct and achieves stronger results, and show on real-world medical datasets

that the increased interpretability of the method comes at a very low cost to the accuracy.

Though many machine learning algorithms have been applied to structured data, the ma-

jority of available data in healthcare is in unstructured form. We examine the task of predicting

presence, location, and acuity of ischemic stroke in patients at Partners HealthCare from the

raw text of radiology reports. Working with text data comes with its own set of challenges,

and we give a rigorous, comprehensive overview of how a combination of popular ML classi-

fiers combined with NLP featurizations perform on a sample of MR and CT scan reports. For

each of our three tasks, deep neural networks (LSTMs) combined with GloVe embeddings had

the highest performance, but methods like logistic regression combined with a BOW document

representation performed comparably. This suggests that when it comes to prediction from
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radiology texts, more interpretable and simpler methods may actually be preferable to deep

black-box methods that require endless parameter tuning as well as complex vector training,

especially when time and resources are limited.

Finally, we conclude by discussing the need for interpretable NLP techniques, and presenting

initial work in this direction. This includes language-based approaches for the NLP problems

of word sense disambiguation, word representation, and classification. We introduce WordNet

and show promising preliminary results indicating that optimization-based approaches to these

problems may be more powerful than traditional approaches on both regular and medical text.

Altogether, this thesis presents a comprehensive overview of interpretable methods in pre-

dicting stroke outcomes, from applications in real-world problems faced by actual clinicians to

demonstrating the importance and promise of interpretable machine learning. We conclude that

the issues of model accuracy and model interpretability in healthcare should not be tackled with

a focus on one and at a cost to the other, but instead in tandem, and present promising novel

methodologies to that end.
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