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Abstract

The objective of this research is to lower the cost of solar-powered drip irrigation systems
and thus make them more accessible to smallholder farmers, who operate farms that are less
than 2 ha and normally located in rural communities. Current solar-powered drip irrigation
systems that are conventionally sized are expensive due to their oversized pumps and many
solar panels. These systems are generally not utilized by smallholder farmers because they are
cost prohibitive. Although other irrigation technologies can be less expensive to the farmer,
drip irrigation has been shown to reduce water waste and increase yields more than other
irrigation methods, two benefits that could impact the livelihood of smallholder farmers,
who manage 475 million farms worldwide.

Previous work has been conducted to lower the cost of these systems including developing
low pressure drip irrigation emitters and cost optimizing a model of the system. The work
presented combines the use of low pressure emitters with a unique system-level model and
optimization to lower the cost even further. The necessary components that make up a solar-
powered drip irrigation system were explored and a model was created that predicts life cycle
cost and performance of the system. It was found that the components that make up the
system could be grouped into modules, and that these modules were highly interdependent.
Thus, the modules were detailed extensively so that a holistic and flexible model could be
created.

The model was then optimized and a sensitivity analysis was conducted to investigate
the key parameters that affected the system's cost and design for a baseline case of a 1 ha
olive orchard in Morocco. The optimization was built to either minimize the system cost or
to maximize the farmer's profit. For the same sample case this optimization was shown to
reduce the life cycle cost by 62% compared to a conventionally sized system. The results of
the analysis demonstrated that for smallholder farms direct-drive systems, or systems that
do not use energy storage options, were cost optimal. Additionally, a reliability metric could
be imposed that allowed for a 7-13% reduction in cost for 10% reduction in reliability. This
reduction in reliability led to negligible reduction in yield for the water stress resistant crop
of olives that was used. The designs that were built to maximize profits for the smallholder
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farms each had a reliability between 0-10% due to this reduction in cost. Additionally, the
robustness of the model was tested by ensuring the repeatability of the convergence and
executing the optimization for various weather conditions.

The system model was validated through field trials that took place over a year with
one solar-powered drip irrigation system set up on an olive orchard in Morocco and another
on a citrus orchard in Jordan. For the trials the systems were oversized to ensure that
the irrigation demand was met with 100% reliability for unforeseeable weather variations.
The measured results of the system's delivered water as well as the operational pressure,
flow, and power were similar to those predicted in simulation. The differences between what
was measured and what was simulated were mostly due to unaccounted pressure and flow
variations in the system as well as a mismatch between the simulated crop water demand
and the irrigation delivered, which was calculated by local research staff and then input
into the pump controller. Further testing will need to be conducted in order to validate the
optimization of the model.

Thesis Supervisor: Amos G. Winter, V.
Title: Associate Professor of Mechanical Engineering
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Introduction

This thesis explores an approach to design a holistic, flexible, and robust solar-powered

drip irrigation system that is cost optimized for smallholder farmers. First, a model was

developed that incorporates multiple interdependent modules as well as ultra-low pressure

drip emitters. Then the model's cost sensitivity to various parameters was explored, and a

method to substantially reduce cost for small reductions in reliability is found. Two solar-

powered drip irrigation systems were installed in Jordan and Morocco, and helped to validate

the model. Contributions of this thesis include:

" Demonstration of a solar-powered, ultra-low pressure drip irrigation system

* Presentation of solar-powered drip irrigation system model that is holistic, flexible, and

robust

" Investigation of cost reductions with sensitivity analysis and reliability metric

" Validation of model through installation of solar-powered drip irrigation systems and

subsequent field trials

1.1 Motivation

Agriculture uses the majority of the world's water; in fact it is said to make up 70% of all

water use, and by 2050 there is estimated to be a 19% increase in water consumption due

to irrigation in agriculture [1], [2]. Moreover, only 10% of agricultural land is irrigated

[3]. Additionally, 84% of the farms worldwide are smallholder farms, or farms that are

smaller than 2 ha, and they operate 12% of the global agricultural land, but for low-income

countries this number increases with smallholders operating up to 40% of the country's
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agricultural land 14]. Many smallholder farmers live in poverty and many do not use irrigation

technologies, relying instead on rainfed agriculture, which can be an inefficient and unreliable

method [5].

Drip irrigation is proven to be an efficient irrigation method, as it delivers water and

nutrients directly to the root zone of a crop and thus reduces water use up to 70% and

increases yields from 20-90% compared to other irrigation methods that are discussed in

the next section [6]-[10]. This accountability for water is important, as water scarcity is

a global issue with approximately four billion people, representing nearly two-thirds of the

world population, experiencing severe water scarcity during at least one month of the year

[11]. Moreover, drip irrigation emitters can be pressure compensating (PC), meaning that

they distribute the same amount of water to each crop once an activation pressure is reached

meaning that they distribute the same amount of water to each crop once an activation

pressure is reached. This ensures more consistency in the health of all produce in a given

field.

Although drip irrigation technology has existed for many years, it has not been adopted

by smallholder farmers due to its large capital cost. Many smallholder farmers live in remote

areas without access to electricity, and therefore would need alternative energy sources, such

as solar panels, to power pumps for irrigation [5]. A drip irrigation system is comprised

of a pump, filters, fertilizer unit, network of pipes, and emitters, and it can become costly,

especially with the addition of an off-grid power system.

Therefore, the cost of solar-powered drip irrigation systems needs to be lowered in order

to allow for its widespread adoption. Multiple ways to lower the cost of these systems have

been explored, such as (1) lowering the cost of individual components that make up the

system, (2) minimizing the operational energy required by the system and thus reducing the

size of the solar panels and pump, or (3) modeling the entire system and optimizing with

the objective to lower cost. This thesis focuses on (3) by defining a systems-level model that

simulates and designs for cost optimal solar-powered drip irrigation systems.
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1.2 Irrigation Methods Background

Traditional irrigation methods include flood, furrow, and canal irrigation. Flood irrigation

involves flooding the entire field with water (Figure 1.iB). Most of the water is absorbed

into the ground away from the crop roots or evaporates, making this an inefficient form of

irrigation. In furrow irrigation, channels are cut into the ground alongside the crop rows

(Figure 1.ID). These channels are filled with water, and although the absorption is more

localized, the water can still be lost to evaporation and absorption where the furrows have

not yet reached the crop rows. Canal irrigation improves on this slightly with concrete lined

channels that carry the water to unlined channels along the crop rows. This reduces the

amount of water lost to absorption, but evaporation is still an issue (Figure 1.LA). In all

three of these methods, the water is exposed to atmospheric pressure, so the distribution of

the water to the crops is highly dependent on the field topology, and some sections of the

field may routinely receive more water than others.

A sprinkler system is a pressurized method of irrigation that delivers water through a

pipe network to sprinklers in the field, which spray water over the crops (Figure 1.IF). Due

to the pipe network, no water is lost to absorption as it travels to the field, but the water

can still evaporate from the sprinklers and wind can blow the water droplets away from the

crops. This is a more efficient form of irrigation, but typically more expensive due to the

pipe network and sprinklers. In any of these irrigation methods the water may be pumped

or may be gravity-fed. Gravity-fed irrigation involves water stored at a height, which could

be in the form of an elevated water tank or an entire dam, depending on the size of the field

(Figure 1.1E).

Drip irrigation is similar to sprinklers in that it requires a pipe network, but instead

of spraying the water over the crops, drip emitters placed along the pipes at each crop

release a controlled volume of water directly to the root zone of the crop (Figure 1.1C).

This significantly reduces the amount of water lost to evaporation and absorption away from
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Figure 1.1: Examples of various irrigation methods.
More traditional methods such as canal (A), flood (B) and furrow (D) irrigation lose water to
evaporation and absorption. Methods with a pressurized pipe network include sprinklers (F), which
can still lose water to evaporation, and drip (C), which minimizes water loss. Any of these methods
can be gravity-fed (E) with an elevated tank or dam.

the crop. Fertilizer is typically introduced into the water source and distributed through

the irrigation system in a process called fertigation. This means drip irrigation systems

can deliver an exact amount of nutrients directly to the crops, without runoff or uneven

distribution.

Although drip irrigation is a more efficient and controlled irrigation method, it only

makes up 6% of the global irrigated area [12]. Drip is not widely adopted among smallholder

farmers because of the high initial investment and additional maintenance costs [13], [14].

PC drip emitters introduce a large pressure drop into the system, due to their activation

pressure as well as the pipe network needed to place them near crops, which requires a pump

and power source. The activation pressure is the minimum pressure that the PC emitter

needs to reach to deliver its rated flow. A PC emitter will deliver constant flow for a range

of pressures at or above its activation pressure. Typically the pressure required for a drip

system with existing emitter designs is too high to be gravity-fed, because the large pressures

needed would require very large height differentials that do not always naturally occur near

fields. Many smallholder farmers have intermittent or no access to electricity, so the power

system must be off-grid for reliable irrigation [5]. Drip systems also have added maintenance
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compared to other irrigation methods. Emitters have small internal flow paths, so the water

typically needs to be filtered and emitters need to be routinely checked for clogging. All this

amounts to an irrigation system that has a high capital cost and additional maintenance and

labor costs. Reducing the capital cost and designing for reliable off-grid applications would

make drip systems accessible to more farmers

1.3 Previous Work on Drip Emitter and Solar-Powered

Pumping Systems Design

Shamshery (2018) presents a low-pressure, online PC drip emitter design with an activation

pressure one seventh that of existing commercial products [151. These emitters have been

manufactured and tested in the field, as shown in [16], and are used exclusively in the systems-

level model presented in this thesis. Their low activation pressure significantly reduces the

operating pressure required to operate the drip system, allowing for smaller pumps and power

system capacities in the design. Ultimately, the use of low-pressure emitters in the model

allows for lower cost solar-powered drip irrigation systems to be designed.

Bakelli (2011), Muhsen (2018), Kelley (2010), Deveci et al (2015), and L6pez-Luque

(2015) all consider the design and optimization of solar-powered pumping systems, some

of which were used for irrigation, but impose limitations on their models [17]-[21]. Bakelli

(2011) defines a demand-based reliability constraint and an economics model for calculating

the system life cycle cost (LCC), which are useful for framing the optimization problem. The

hydraulic behavior of the system is estimated using a polynomial fit to data, rather than

fluid mechanics, and the optimization method is a simple minimum point search. This limits

the scope of cases the model could design for and the system design space. Muhsen (2017)

proposes a multiobjective optimization scheme that minimizes LCC, a reliability metric

called the loss of load probability (LLP), and excess water volume. While the optimization

algorithm is more advanced, the three minimization criteria are weighted subjectively. The
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paper also defines the system components a priori, rather than selecting the components

within the optimization scheme, and only optimizes for the number of panels and tank

capacity. Kelley (2010) assesses the feasibility of solar-powered irrigation, assuming a system

with a well source, and using average irradiance and maximum crop water requirement for

five cases studies. The system designs are not optimized, but local economic data are used

to link designs to their locations. This is a concise, first-order assessment that is a useful

benchmark for a more detailed sensitivity analysis. Deveci (2015) discusses the design of a

low-cost, solar-powered drip irrigation system for small farms using a systems-level approach.

The study assumes a system that includes batteries and a tank, assumes the irrigation time

required and only considers component capital cost. The systems-level approach is useful

for framing the problem, but the system description is over-simplified by its assumptions.

L6pez-Luque (2015) discusses the optimal design for a solar-powered irrigation system using

an olive orchard case study. The paper uses various sub-models to simulate the system while

implementing a deficit irrigation scheme and optimizing for profitability. This study shows

that with deficit irrigation the cost of the solar-powered pump is able to be reduced, but

the model is limited with a very specific system design that does not include energy storage

options and only considers non-pressure compensating emitters.

Other studies focus on specific aspects of this design problem. Almeida (2018) produces

a pump selection method for solar-powered irrigation systems, with the goal of pumping as

much water as possible [22]. The method suggests pairing a variable frequency drive (VFD)

with a pump to ensure a wide potential operating range. The method becomes useful in

the context of this study when selecting pumps that must pump to the PC drip network as

well as to a water storage tank. Villalva (2009) presents a comprehensive and instructional

approach to accurately model photovoltaic (PV) array operation under various temperature

and irradiance conditions [23]. Several studies have explored how to model the life cycle

cost of these systems. Lai (2017) and Muhsen (2017) both propose detailed cost models that

consider initial investment, maintenance, replacement, interest, and inflation over the lifetime
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of the system. The cost equations used in this study are based off of these definitions [18],

[24].

This study builds upon previous work on solar-powered drip irrigation systems by adding

resolution and flexibility to the model. Local hourly weather data are used to simulate the

PV array behavior and calculate a daily water demand based on crop properties and growth.

The behavior of the hydraulic network is simulated using fluid mechanics equations to allow

for any pipe network configuration. The custom ultra-low pressure PC emitters are used

in the model, shifting the system operating point into a lower pressure regime compared to

systems that use conventional PC emitters. The pump selection and power system design

are optimized in a particle swarm optimization (PSO). Local economic data are used in a life

cycle cost objective function and a limit on the LLP constrains the optimization. By using

high resolution datasets and simulating the behavior of the individual system components,

this holistic model offers a broader design space to explore and optimizes for a solution that

is intrinsically linked to a given location and crop type.

1.4 Stakeholder Analysis

The target users of these systems are smallholder farmers who may lack access to the capital

and technical knowledge to purchase and maintain drip irrigation systems on their own.

Smallholder farmers work less than 2 ha of land, growing crops for either subsistence or

profit. In Jordan and Morocco, the two countries considered in this study, there are programs

to encourage adoption of more efficient irrigation methods by educating farmers about these

technologies and offering subsidies. However, farmers often lack the capital to purchase such

systems and have difficulty obtaining loans from banks. Depending on the specifications of

the program, this can make it difficult for farmers to take advantage of the subsidies [131,

[14].

The key stakeholders in this process are the company that produces the drip systems, an
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Figure 1.2: An example stakeholder map.
This map is an example of how solar-powered drip irrigation systems could be developed and
distributed

organizational body that coordinates distribution and subsidies for farmers, and the farmers

themselves. The main priorities of each stakeholder have been identified through conversa-

tions with two agricultural research organizations: Methods for Irrigation and Agriculture

(MIRRA) in Jordan and the International Center for Agricultural Research in the Dry Ar-

eas (ICARDA) in Morocco. Jain Irrigation Ltd., the second largest irrigation company in

the world, and local smallholder farmers in Jordan and Morocco were also consulted. An

example stakeholder map that shows how these groups might interact is given in Figure 1.2.

The priorities of the company are to make a profit and continually improve the system de-

sign. The priorities of the government agency or NGO are to expand access to more efficient

forms of irrigation and conserve water resources. The priorities of the users are to increase

yield and income, decrease their use of water, fertilizer and other resources, and avoid a high

capital investment or added maintenance costs. An irrigation company designs, sources, and

assembles drip kits for farmers in a specific location. A government agency or NGO would

handle distribution of these kits to the farmers and coordinate subsidies for the farmers to
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encourage adoption. This agency would also collect user feedback and system performance

data for the company. A training program must be established to install the systems and

provide farmers with initial training and continued technical support. This program would

be organized and funded by the company, potentially with additional funding from the gov-

ernment agency or NGO. This proposed set of stakeholder interactions would ensure that

smallholder farmers have access to low-cost drip irrigation technology as well as the knowl-

edge to maintain and profit from it throughout the system lifetime. Stakeholder priorities

and interactions were considered throughout the research process and design of the system

model.

1.5 Thesis Outline

After the introduction and motivation for this work, the outline of this thesis is as follows:

" Chapter 2: An overview of what a solar-powered drip irrigation system is comprised

of, as well as how the subsystems are connected.

• Chapter 3: A detailed explanation of each module in the solar-powered drip irrigation

system model, as well as a description of how the optimization works.

" Chapter 4: The optimization results for a particular case study, including sensitivity

and robustness analyses.

" Chapter 5: The validation of the solar-powered drip irrigation model comprised of a

year long case study in two different countries.

* Chapter 6: Concluding remarks on the importance of this work and the included

contributions.

" Appendix: Descriptions of the sample case inputs, as well as the local economic data.
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System Components

2.1 Drip System Overview

A drip irrigation system consists of a water source, a pump, a power system, a hydraulic pipe

network, filters, a fertigation unit, and emitters (Figure 2.1). The hydraulic components

are connected by a network of pipes that have progressively smaller diameters. The main

typically has the largest diameter to reduce pressure losses along its length as water flows

to the field. A sand and disk filter are typically placed after the pump to reduce emitter

clogging. This is followed by a fertigation unit that periodically injects fertlizer into the

network. The type, amount and frequency of fertilizer depends on the crop. At the field, the

submain pipe lies along one dimension of the irrigated plot. The submain can be the same or

slightly smaller in diameter than the main. The laterals, which have the smallest diameter,

branch off of the submain and run down the rows of crops, with one or more emitters at

each crop. The spacing of the lateral rows, the spacing of the emitters along the lateral,

and the number of emitters per crop are agronomic parameters that depend on the type of

crop and the soil properties. The emitters exhibit PC behavior, which means that above

the activation pressure, the emitter flow rate is constant. This effectively means the entire

drip system will operate at a fixed flow rate. The emitters considered in this work have been

designed to operate at 0.15 bar, one-seventh the activation pressure of conventional online

PC emitters [15].

Single-speed AC pumps are ubiquitous and about 62% of the global irrigated area draws

from surface water sources [3]. The pressure drop in the hydraulic network will fluctuate

over time as the water filters become dirty, the fertigation unit is used and the emitters clog.

Therefore, the pump must be paired with a variable frequency drive (VFD) to ensure its
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Figure 2.1: A diagram of a solar-powered drip irrigation system.
The relevant components and subsystems are shown.

operating range can accommodate all the states of the system. The pump also requires a

controller that can regulate the pump operation and program the irrigation schedule. The

power system consists of a solar panel array and, in some cases, energy storage in the form

of a battery, a water tank, or both. It is beneficial to have a Maximum Power Point Tracker

(MPPT) attached to the panel array to boost efficiency by ensuring that the panels always

output the maximum possible power for the given weather conditions. The selection and

capacity of these components is highly dependent on the geographical location and the way

the components interact as the system operates, which is discussed further in Section 2.2.

2.2 Subsystems

The drip irrigation system components can be be grouped into four interdependent subsys-

tems that interact in a loop: an agronomy subsystem, a hydraulic subsystem, the pump, and

the power system. The crop type, growth cycle, and water and nutrient needs, as well as the

local weather patterns and soil properties are all agronomic considerations. The local solar

irradiance, temperature, wind speed, and humidity will determine the evapotranspiration
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Figure 2.2: The cyclic relationship of the four interdependent subsystems.
The agronomic requirements of the crop are influenced by local weather patterns, and dictate the
hydraulic load on the pump. This in turn dictates the capacity requirements for the power system,
which is also dependent on the weather throughout the irrigation season.

rate of the crops, and rainfall will offset the amount of water the crop needs from the drip

system. The type of crop and soil properties will determine the spacing requirements of the

drip network, which will in turn dictate the hydraulic behavior of the system. The crop wa-

ter demand, emitter properties, and network layout will determine the hydraulic operating

point, and the selected pump must be able to operate reliably at this point. The characteris-

tics of this pump will determine the power requirement at different head conditions the pump

encounters due to the the filters, fertigation, and emitter clogging. This power requirement

will dictate the capacity of the power system components, namely the solar panels, batteries,

and tank. Given this is a solar-powered system, the irradiance and weather patterns will

determine the power available to the system, thus completing the subsystem loop (Figure

2.2).

This is a dynamic, interdependent system that makes for an interesting optimization

problem. The objective is to reduce the total life cycle cost of the system. Although the

relationships between the subsystems make modeling more complex, these relationships also
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introduce design flexibility and expand the solution space. The model can simulate the

hydraulic behavior of any hydraulic layout which allows for a variety of crops, hydraulic

components, and field shapes and sizes. Calculating the crop water demand using local

weather data links the hydraulic load on the system to the available solar power and ensures

the design is customized for a specific location. Battery and tank storage allow for irrigation

at times of low irradiance or at night. Due to the PC behavior of the emitters, the flow

rate of the drip system is fixed, but the pump could fill a tank quickly at higher flow rates,

making use of excess solar irradiance, or slowly at lower flow rates, making use of times of

low irradiance when there is not enough power to pump directly to the drip system. The

field size, crop water demand, and local weather will together determine the capacities of

the power system components. By exploiting the subsystem relationships in simulation, the

drip system can be cost-optimized for any given location, crop type, and field layout.
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Methods

3.1 Model Formulation

The model optimizes a drip system design for a specific "case," and is divided into modules

that represent the subsystems discussed in Section 3. Each module has a set of inputs,

which can include datasets and outputs from other modules, and a set of outputs which

is passed to other modules as inputs or for evaluation. The modules and their inputs and

outputs are discussed in detail in the following sections. A case is defined by the location,

soil texture characteristics, length and diameter of the main, submains, and laterals, crop

spacing, emitter properties, the pressure drop across the filters and fertigation unit, and the

start date of irrigation.

The architecture of the model can be broadly divided into three phases: simulation, design

and performance (Figure 3.1). In simulation, the agronomic and hydraulic behavior of the

case is established. Information about the local weather and crop properties, such as growth

stages and water requirements, are passed into the agronomy module, which calculates the

parameters necessary for the daily crop water demand. In parallel, the dimensions of the

hydraulic network and the emitter flow properties are passed into the hydraulic module,

which simulates the hydraulic behavior of the network and produces a hydraulic system curve.

This module is not limited to PC emitters - it can also simulate non-pressure compensating

(NPC) emitters, sprinklers, or any other irrigation device that works in a pipe network.

Both the daily crop water demand and the hydraulic system behavior become inputs for the

modules in the design phase. In this phase, a suitable pump is selected based on the pipe

network hydraulic requirements. The pump specifications and the local weather data are

passed into the power module which sizes a solar panel array, a tank, and a battery. The
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solar panels are required, but the tank and battery can be omitted to produce a direct-drive

power system. The power system module also runs a simulation of how this drip system

would operate over the course of one growing season. Up to this point, no optimization

has occurred. This combination of pump and power system components is just one possible

design that must be evaluated in the performance phase. The life cycle cost of the entire drip

system and the reliability with which it meets the crop water demand are calculated and

passed into the crop yield module. This module calculates the yield based on the amount of

water delivered to the crops over the simulated season and the predicted revenue over the

lifetime of the drip system, assuming that season is representative of how the system will

perform every year.

A custom particle swarm optimization (PSO) algorithm is used in MATLAB to generate

possible designs and determine the trajectory of the design vector. The details optimization

is discussed further in Section 3.3. The PSO was modified from an algorithm that was

successfully used to cost-optimize solar-powered village-scale desalination systems [25], [26].

The PSO operates between the design and performance phase, iteratively offering designs

and evaluating their performance until it converges on a solution (Figure 3.1). The objective

of the optimization can either be set to minimize life cycle cost or to maximize the profit

over the lifetime of the system. With the former, the crop yield module is not used in the

optimization. Crop yield is dependent on many variables, which makes it difficult to model

accurately, and data on local crop prices may not always be available. It is useful to estimate

the profit a farmer could make with one of these systems, but being able to remove the yield

module removes a layer of uncertainty and complexity in the design process.

The PSO only optimizes the pump and power system configuration, and notably does not

optimize the hydraulic network or the drip system operation scheme. The hydraulic network,

once simulated, is considered fixed. The purpose of this is twofold. First, the layout of the

hydraulic network is typically left to the discretion of the farmer whose agronomic knowledge

and familiarity with the field will inform these decisions. Furthermore, some farmers will
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Figure 3.1: The system model architecture and its three phases: simulation,
design, and performance.
The modules in the first two phases represent the four subsystems, and the last phases assess the
performance of the proposed system design. A PSO algorithm iteratively proposes designs until the
solution converges on the design with the best performance. The performance can either be defined
as the life cycle cost, or profit from crop yield. Note that the crop yield module is only used for the
profit based optimization.
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already have pipe networks that they use with electric or diesel pumps. Second, the optimum

of the hydraulic network is known. For a given field size and crop type, the layout that

minimizes pipe materials for the lowest operating pressure will be the most cost effective.

In future generations of the model, the hydraulic network can be optimized independent

of the rest of the system and the result can still be used as an input to the design phase

shown here. Similarly, the simulated operation of the drip system for a season in the power

module is predetermined. This means that the operation sequence for powering the pump,

filling the tank, and charging the battery is fixed. This operation scheme has binary checks

based on available solar power and the daily water requirement, but it is not optimized.

Eventually the algorithm should be able to make decisions about when and how to operate

different components such that the system operation parameters become variables within

the optimization.

The first step to using the model is defining a case. For continuity, a sample case has

been selected as an example for the remainder of this chapter. The case is a 1 ha field of

olive trees in Morocco. The trees have a 5 m by 5 m spacing and there are two low-pressure,

PC emitters at each crop. The emitters have a rated flow rate of 8 Lph and an activation

pressure of 0.15 bar. The module outputs shown are the results for this case, but would be

similar in form for any case.

3.2 Subsystem Modules

3.2.1 Agronomy

The agronomy module calculates the crop evapotranspiration, which is necessary to deter-

mine the crop water requirement. This module is particularly detailed and flexible, as it

calculates the parameters on a daily basis and allows for a different location, crop, soil tex-

ture, sow date, and irrigation type to be specified. It is important to calculate the water

demand on a daily basis, rather than use an average or maximum demand, because it varies
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Figure 3.2: The calculated daily water demand varies over the season and is
related to the available solar irradiance.
This illustrates the important link between the local weather patterns, crop water demand, and the
resulting hydraulic load on the drip system.

with the daily weather parameters such as solar irradiance (Figure 3.2). The water demand

calculation does not exactly follow the irradiance, as it is also determined by other weather

and crop parameters. The large spikes in the water demand in April and July are due to

changes in the water uptake in the root zone of the crop. By using a more detailed calcu-

lation, the system design can be more closely tuned to the crop needs. The water demand

calculation is discussed further in Section 3.2.6.

In the current model implementation, crop data from [27] and typical meteorological year

weather files (ASHRAE IWEC2) from [28] are used. These weather files give representative

hourly average weather values based on weather data collected for that location over at least

the past 12 years and up to the past 25 years. The important weather parameters used in

this model are air temperature (T), relative humidity (RH), solar radiation (Gsoar), wind

speed (u), and precipitation (P). Crop tables were made based off of similar tables in [27]

and [29] that include the crop growth stages, root depth, plant height, depletion fraction,

and crop coefficients.

In order to calculate the crop water requirement, it is necessary to compute a water
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balance on the soil (Section 3.2.6). Part of the water balance is the crop evapotranspiration

(ETc), which is calculated from the crop coefficient (Kc) and the reference evapotranspiration

(ETo), shown in Equation 3.1.

ETc = Kc - ETo (3.1)

ETo is the evapotranspiration [mm/day] for a grass reference crop of 0.12 m height. It is

calculated using the meteorological data and the Penman-Monteith equation [27]

900
0.4086(Rnet -G) + y u2 (es - ea)

ETo =   T + 273 (3.2)
6 + i(1 + 0.34U 2 )

Rnet is the net radiation at the crop surface [MJ/m 2 day], G is the soil heat flux density

[MJ/m2 day], T is the daily or hourly average air temperature at 2 m height [°C], u2 is the

wind speed at 2 m height [m/s], e, is the saturation vapor pressure [kPaj at air temperature

T, ea is the actual vapor pressure [kPa], 6 is the slope of vapor pressure curve [kPa/°C]

at air temperature T, y = 0.665 x 10-3 is the psychrometric constant [kPa/°C], and P is

the atmospheric pressure [kPa]. Details of the calculations of specific terms in the Penman-

Monteith equation can be found in 127], Chapter 3. Meteorological variables are extracted

directly from weather data whenever possible. At minimum, temperature, relative humidity,

wind speed, and total solar shortwave radiation must be provided in the weather file.

Hourly weather data are adapted to the daily evapotranspiration calculation (Eq. 3.1) as

follows. Vapor pressure and the slope of the vapor pressure curve are computed using mini-

mum and maximum hourly temperatures and relative humidity levels recorded throughout

the day. Net radiation at the crop surface (Ret) is computed as described in [27], with the

incoming shortwave radiation taken directly from the weather data file. Shortwave radiation

is summed over 24 hours, and wind speed is averaged. The case studies in this thesis use

daily ETo only. K, the crop coefficient, is used to scale ETo to ETc (Eq. 3.1). Kc is a func-
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tion of the crop and the stage of its development. The length of the development stages and

Kc values corresponding to each stage (Kc,ini,Kc,mid,Kc,nd) are pulled from the crop tables.

Initial and mid-season stages have constant coefficients, with a linear change in coefficient

during the crop development stage between Kc,ini and Kc,midand late season between Kc,mid

and Kc,end. When climate conditions are different from the climates used for tabulated Kc

values, such that RHmin,mean # 45% or U2,mean # 2.0m/s, Kc,mid and Kc,end are adjusted

(Eq. 3.3), provided that the tabulated value of Kc,end(Tb) > 0.45:

Kc,mid/end =Kc,mid/end(Tab)+(0.04(U2,mean- 2) - 0.004(RHmin,mean- 45)) (h)3, (3.3)

where Kc,mi/en(Tab) is the tabulated value for Kc,mid or Kc,end, h is the mean plant height

during the mid/late-season stage [m] (tabulated), and values of 2,mean and RHmin,mean are

calculated for the corresponding growth stage. Custom crop coefficients and development

stage lengths can also be entered directly into the crop tables if more accurate local data is

available.

After the daily ETc is calculated for the given crop [mm/day], it is converted to the

volume of water that needs to be delivered to the field [m3 /day]. Equation 3.4 describes how

to convert irrigation (I) in [mm/day] to a volumetric daily water requirement (Virri):

Virri = fw - Afield - 1/1000, (3.4)

where fw is the soil wetted fraction, which is assumed to be 0.3 for drip irrigation and Afield

is the field area that is being irrigated [27]. This calculated daily water demand is the key

parameter that links the subsequent drip system design to a location and crop type.
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3.2.2 Hydraulics

The hydraulics module takes in details about the pipe lengths and inner diameters, as well as

the pipe network geometry (Figure 3.1). The pipe layout is set by the length of the suction

pipe, the length of the main between the pump and the field, and a set of subunits whose

area is defined by the length of the submain and the length of the laterals. The spacing

of the laterals, the spacing of the emitters along each lateral, and the number of emitters

per crop are specified based on agronomic recommendations for the crop. The example case

includes two subunits of 0.375 ha and a third of 0.25 ha, with has a 5 m by 5 m crop and

row spacing and two emitters per olive tree (Figure 3.3). This emitter layout is based on

suggestions from local agronomists during the field trials. The pipe lengths and number of

subunits are somewhat subjective decisions. In all the simulated cases, the laterals were set

to 50 m and the length of the submains were made as long as possible to meet the total

area requirement. Increasing the length of the submain will incur less of a pressure loss

than increasing the length of the laterals because pressure loss in a pipe scales inversely

with the pipe diameter squared, and the laterals have the smallest diameter. Not shown in

this schematic are additional hydraulic components that incur pressure losses in the system,

namely the disk and sand filters, the fertigation unit, elbows, tees, connectors, and valves.

Each hydraulic network will contain different quantities of these additional components, so

the total additional pressure losses are estimated as part of the case definition that is passed

into the hydraulic module.

The final inputs to the hydraulics module are the emitter properties. PC emitters are

flow control devices that operate at a constant flow rate above their activation pressure. A

drip network of PC emitters will have a constant flow rate once the emitter at the end of

the last lateral, which is the furthest from the pump, has reached this activation pressure.

The nominal flow rate, activation pressure, flow coefficient, k, and pressure compensation

exponent, x, of the custom low-pressure, PC emitters are inputs to the hydraulic module 1151.
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Figure 3.3: An example hydraulic network layout for the 1 ha sample field.
Shown are the main pipe (blue), submain pipes (red) and laterals (black). The emitters (not shown)
are spaced along the laterals. The pipe diameter decreases for each type of pipe. The geometry of
the network is subjective, but in this study the laterals are 50 m and the submains are selected to
meet the area requirement.

The module simulates the hydraulic behavior of the defined drip network through an iterative

calculation that determines the flow and pressure at all points in the pipe network. The major

losses in the pipe network are calculated with the Darcy-Weisbach equation (Eq. 3.5) and

the minor losses at the start of the submain are estimated using K= 1 for tee fitting losses

(Eq. 3.6) [30].

APmajor = fd (3.5)
D 2

pV 2
APmajor = K (3.6)

The Darcy friction factor, fd, for turbulent flow in pipes is calculated using the Swamee-

Jain formula (Eq. 3.7), where Re is the Reynolds number, D is the pipe inner diameter and

6 is the pipe roughness [31].
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64 for Re < 2300
f Re (3.7)

0.2[logi( )+ for Re > 2300

The emitter flow behavior is modeled as linear when 0 < P < Pact and as following the

curve Q = kPx when P > Pact. Here, k is the flow coefficient, x is the pressure compensation

exponent, and Pact is the activation pressure. A constant 0.01 bar is added for the pressure

loss due to additional pipe fittings and 0.3 bar is added for the pressure drop across the

filters and fertigation unit. Pressure losses due to flow over the emitters are neglected, and

the simulation only models steady state behavior. The hydraulic calculation is run for a

range of input pressures until the flow rate solution converges to within 1 L/h of the flow

at the entrance of the submain. This iterative flow calculation is discussed in further detail

in [30].

The module outputs the system hydraulic curve, as shown in Figure 3.4. The flow rate

is the drip network flow rate and the pressure head is the input pressure to the system from

the pump. The flow rate increases gradually until the last emitter, the emitter at the end

of the furthest lateral, has reached the activation pressure. As the input pressure increases

beyond this point, the flow rate remains constant, which means the required hydraulic power

must be increasing. Therefore, the ideal system operating point is the minimum power point

where the last emitter has just reached activation and the flow rate becomes constant (Figure

3.4). This operating point becomes the input to the pump module and is used to select a

pump for the system.

3.2.3 Pump and Power System Overview

The pump module is the beginning of the design phase, which selects and sizes the pump,

solar panel array, battery, and tank. The algorithm must select a pump and some non-

zero panel area, but it has the option to select zero capacity for the battery and tank. In

addition to capacity, each of these components has parameters that define its performance.
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Figure 3.4: The hydraulic system curve for the 1 ha sample case.
The curve shows the pressure compensating behavior introduced by the low pressure PC emitters.
The flow rate increases with pressure until the last emitter has reached its activation pressure at
which point the flow remains constant. The ideal, minimum power operating point for the system
is just after this slope change (blue circle).

Panel performance is defined by its efficiency, which changes with the weather conditions.

The weather-dependent panel efficiency is simulated with a single-diode model as described

in Section 3.2.5. A single controller efficiency is also applied to the power from the panel

array to represent the electrical efficiency within the MPPT, charge controller and pump

controller. Optional energy storage options of a battery or a tank can be added to the

system design. The battery is defined by its state of charge (SOC), or the energy it stores

at any given time, and the conversion efficiency when its charging and discharging. Both of

these parameters are also influenced by temperature, but that dependence is not modeled

here. The pump is defined by its hydraulic performance curves and the efficiency with which

it converts electrical power into hydraulic power at the operating flow rate and pressure.

The tank is defined, similar to the battery, by its state of fill (SOF), which is the volume

of water it stores at any given time. When this water is released to the system, it will have

a pressure based on the height of the water stored and a flow rate that is fixed by the PC

behavior of the hydraulic network described in Section 3.2.2.
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Figure 3.5: A diagram of the system design components and their parameters.
The figure shows how the components relate to one another energetically. The battery and tank
are optional energy storage options that may be added to the power system design.

The energetic exchange between these components is shown in Figure 3.5. The panels

generate power from the available solar irradiance, which is electrically regulated by a series

of controllers. This can go to the pump or, if the system has a battery, the excess power

can be stored as energy in the battery. The battery can be discharged to power the pump,

which can pump water directly to the hydraulic network or, if there is a tank, store it to

be released to the system later as a state of irrigation (SOI). As previously mentioned, the

order in which these events occur is predetermined and described in further detail in Section

3.2.5.

3.2.4 Pump Selection and Operation

The pump module takes in the system operating pressure and flow rate from the hydraulics

simulation and selects a pump from a database of pump options. The database contains the

pump performance curves and specifications, which include the maximum power and flow

rate, the motor speed, and the best efficiency (BEP) point. The pumps in the database are
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sourced from Xylem Inc. due to their readily available datasheets, but any pump can easily

be incorporated into the database. Currently, the database is made up of exclusively surface,

centrifugal pumps with AC motors. This is because the field trials in this study use surface

water sources and single speed AC pumps are ubiquitous, which means they are easier to

purchase and repair locally than DC pumps. In the future, the database will be expanded

to include pumps that are submersible, positive displacement, and have DC motors.

Typically, a pump is sized for a system by finding the point where the pump performance

curve intersects with the system hydraulic curve. If this intersection point has a flow rate

between 85-110% of the BEP flow rate of the pump, it is within the preferred operating range

(POR) of the pump. This means the pump will operate to its rated lifetime and efficiency

without degradation due to cavitation [32]. Here, this range is expanded to 65-110% of the

BEP flow rate to provide a wider range of pump options for each simulation case. For a

given case, all of the feasible pumps with performance curves that intersect the hydraulic

system curve within this range are found and become options in the design. To simplify

this process and speed up the optimization, the database contains "representative pumps" of

various sizes such that seven test cases, ranging in field sizes from 0.125 to 2 ha, each have

one or more feasible pumps. All of the pumps are assumed to have a lifetime of five years.

In reality, operating outside the POR decreases the lifetime of the pump, but this effect is

not yet modeled in detail.

The system flow rate will remain constant, but as discussed in Section 3.2.2, the operating

pressure of the pump will fluctuate as the filters get dirty and the fertigation unit is used.

Therefore, it is assumed that these pumps are paired with a VFD in order to shift the

performance curve to meet the system operating point. Changing the motor frequency

changes its rotational speed and the operating speed of the pump. This is modeled using

the affinity laws for centrifugal pumps, shown in Equations 3.8-3.10 [33]:

Q _- N (3.8)
Qref Nref
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The flow rate, Q, scales proportionally with the speed ratio, where the reference speed,

Nef, is the known pump speed and N is the speed of the new operating curve. The pressure

head, H, scales with the square of the speed ratio, and the power, P, scales with the cube

of the speed ratio. The key assumption these laws make is that the pump is running at

approximately the same efficiency at the operating point on the new curve as on the reference

curve. In the model, the pump operating point is calculated as follows. The system flow rate

is fixed at Qsy,. The reference pressure, Hre, is the pressure on the original pump curve

that corresponds to this flow rate. This pressure and the known operating pressure from the

system curve are used in Eq. 3.9 to calculate the speed of the new pump curve. This speed

and the original pump speed are used to calculate the new operating power of the pump.

The required net positive suction head (NPSHr) at the operating point is checked to ensure

that it does not exceed the available NPSH (NPSHa). The NPSHa is calculated based on

local atmospheric conditions, the suction pipe dimensions, and the height of the reservoir

relative to the pump. Figure 3.6 shows an example pump selection where the original pump

curve, calculated operating curve, and system operating point are shown.

The pumps are selected first for the case to ensure they can pump directly to the drip

system, which means the volume of any tank paired with these pumps must be constrained

such that the selected pump can fill it. In the event there is a tank in the power system,

the pump can operate at a range of flow rates and pressures because it is not constrained by

the PC behavior of the hydraulic network. In order to simplify this calculation, the required

head to pump to the tank is assumed to be fixed at half of the tank height. The tank is

assumed to be elevated to a height in meters that is equal to the pressure loss in the hydraulic

network, such that the tank can always pressurize the system. To reduce the height of the

elevation stand, the tank is placed at the end of the main, just before the submain and
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Figure 3.6: Example of the pump selection process
The constant system flow rate, QV,, is used to select a set of feasible pumps from a database such
that the system flow rate is within 65-110% of the pump BEP flow rate. Each pump is assumed to
be paired with a VFD. The system operating point (Qy,, Hy,) is used along with the centrifugal
pump affinity laws to determine the pump operating curve (dotted green line). The operating power,
efficiency, and NPSHr (red stars) can then be determined.
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laterals. This means that the required tank pumping head will always be greater than the

system operating pressure. When the tank is less than halfway full, the fixed tank head is an

overestimate of the pumping head required to pump to the tank, and when the tank is more

than halfway full, the fixed tank head is an underestimate. In reality, the required pumping

head will increase continuously as the tank fills and the flow rate to the tank will decrease, so

this assumption is an average of sorts. This simplifies the calculation of the pump operating

point when it pumps to a tank. As long as the ratio between the system pressure head in

meters and the height of the tank is equal to or greater than two, this simplification results

in, at most, a 15% error from the actual pumping power that is required to pump to the

tank.

The calculation with the affinity laws for pumping to the tank is similar to that for the

system operating point, but now the pumping head is fixed as the "known" value. Equations

3.8-3.10 can be used to parametrically plot the pump power as a function of head. The

power on the original speed curve at Ptank is determined and used as Pref (Figure 3.7a). The

power available to the pump from the solar panels is known and used to determine the actual

pump operating speed, Ntank. The equations are rearranged to calculate the power-head,

power-flow, and pressure-flow pump curves at the actual operating speed. The actual power

is used to determine the flow rate to the tank (Figure 3.7b). Finally, to check the calculation,

the flow rate is used to find the pumping head on the pressure-flow curve at Ntank, which

should be the assumed tank pumping head, Ptank. As shown in Figure 3.7c, that is indeed

the case.

The benefit of doing this simulation for the tank is it allows the selected pump to fill

the tank at a different flow rate from that of the drip system. Since the power consumption

of the pump scales with the flow rate, this means the pump can store energy in the tank

at times when the available power is too low to pump directly to the drip system, or take

advantage of times when the field has been irrigated, but there is an abundance of solar

power. A snapshot of this process is shown in Figure 3.8. The flow rate to the tank (Qan),
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Figure 3.7: Calculation of the tank operation point.
For designs that include a tank, the pump operation when pumping to the tank must be determined.
A constant pumping pressure Ptank is assumed and used with the available power and affinity laws
to determine the operating speed at each time step (red star). This is used to determine the flow
rate to the tank (green star). The calculation can be checked by plotting the corresponding pressure
on the pump pressure-flow curve, which should equal Ptank (blue stars). This simulation allows the
flow rate to vary with available power when pumping to the tank.
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Figure 3.8: Snapshot of the simulated pump operation with a tank.
The snapshot shows that the pump can operate at various flow rates. This enables the system to
store energy at times of low irradiance or after the irrigation demand has been met. The normalized
tank SOF fills with Qtank and drains during irrigation events (SOI).

SOF and the state of irrigation (SOI) are normalized for the sake of visualization. At the

beginning of the month, an irrigation event occurs, shown by the SOI, followed by the pump

filling the tank at a low flow rate. A similar pattern occurs on March 7th, but the pump

fills the tank at a higher flow rate. The tank is able to fill and drain over a continuous range

depending on the demand, available power, and its previous SOF. The details of the energy

distribution throughout the power system are discussed in the following section.

3.2.5 Power System Design and Operation

The power system module determines how much water a given system can deliver to the

crops. It takes inputs from the agronomy, hydraulics, and pump modules, and it determines

the solar panel area, battery capacity and tank volume. The power system module computes

an energy balance at each time step, At, to determine if there is enough power to run the

system and deliver water to the crops. The default At is hourly, but can be modified

based on the resolution of the weather data. The power system components each have
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associated operating limits, state vectors, and efficiencies. The battery cannot be drained

past its maximum depth of discharge, which is set to 50% of its total capacity. The state

vectors, SOC for the battery, SOF for the tank, and state of irrigation (SOI) in units of

m3, are defined at each At. The efficiency of the battery is assumed to be bat = 85%,

and the controller efficiency,ismadeupoftheconverterefficiency, 77con = 95%, and

the MPPT efficiency, MPPT = 98%. The solar panel efficiency varies with temperature and

solar radiation, and can be computed in two ways in the model: an efficiency equation or a

single diode model. Both assume a specific panel defined by datasheet parameters provided

by the solar panel manufacturer. The panel used in this study was a Canadian Solar 270

Wp polycrystalline panel (Model number CS6P-270). The efficiency equation is simple and

accounts for changes in temperature and solar radiation. Hourly irradiance and temperature

data as well as constants from the panel datasheet are used to calculate the efficiency of the

solar panels at each time interval, Tpv(t) [34]:

IPV (t) = PVnom * (1 + aP - (Tamb(t)+ k - Gsolar (t)- Tstd)) (3.11)

wherer7PV,nomis the nominal efficiency of the panels, ap is the temperature coefficient [%/°C1,

and Ttd is the standard testing temperature [°C]. The ambient temperature, Tamb(t), [°C],

and the solar radiation, Gsolar(t), [W/m 2 ], are taken from the local weather data. The Ross

coefficient, k, relates irradiance to the PV module temperature (k = 0.025°Cm2/W). The

PV power [W] at each time interval, Ppv(t), is calculated in Equation 3.12, where Apv is

the panel area [m 2] for a given design.

PPV(t) 7pv(t). ApV Gsolar (t) (3.12)

The single-diode model, which is more exact and more computationally heavy compared

to the efficiency equation (Eq. 3.11), is described in [23]. In this model, a PV cell is repre-

sented by a single-diode equivalent circuit. The current-voltage curves are calculated from
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Figure 3.9: Examples of modeling the solar panel power and efficiency.
The single diode model is consistently more accurate in determining the power output of a PV
panel at various irradiance levels (a) and temperatures (b) than the efficiency equation. However,
the single diode model is more computationally expensive. Either may be used in the system model
to predict the power output of the solar panels.

the model using parameters from the panel datasheet provided by the panel manufacturer.

The maximum power point (MPP) can be found from the current-voltage curve. The curve

and MPP change with solar radiation and temperature, so the calculation is repeated at

each time step to produce the vector Ppv(t).

Figure 3.9 shows that the single-diode calculation of the MPP is more accurate, with a

maximum error 7.1% from the datasheet curve, compared to the efficiency equation MPP,

which has a maximum error 14.6%. After Ppv(t) is calculated, it is used to determine if

there is enough power available at each time step to deliver water through the hydraulic

system to the crops.

For each proposed power system design the system model simulates its operation over

the course of a growing season. There are four different energy pathways that can be taken

to deliver water to the crops and two pathways to store energy. These six pathways are

considered in a loop within the power system module and are illustrated in Figure 3.10.

The controller efficiency is applied to PPV(t) to determine the actual power available to

the drip system,
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Figure 3.10: The system operation simulation and its six possible pathways.
Four pathways power the system and two store energy. (1) fills the tank and delivers water to
the field. (2) pumps directly to the field and (3) drains the tank to the field. Pathways (1)-(3)
also charge the battery when there is enough power. (4) charges the battery and uses it to power
pumping directly to the field. (5) charges the battery and fills the tank, and (6) just charges the
battery. These pathways are tested in sequence to determine which can be used, and multiple
pathways may be used in a given time step. This sequence is fixed and prioritizes irrigating over
storing energy.
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(3.13)

The power system loop starts by calculating the irrigation demand, Idem (Section 3.2.6),

and comparing this to what has already been delivered for the day, (de). This simulation

has the flexibility to run multiple pathways in a single time step. It does this by keeping

track of the time it takes to achieve certain tasks during a time step in the loop. For example,

before the irrigation demand is met, the time remaining to irrigate, trj, is calculated (Eq.

3.14). This ensures that the amount of water delivered will not exceed the daily demand and

that, if the demand is met within the current time step, the remaining time can be spent in

a different pathway.

tri = min Idem - Idel, At (3.14)

If Idem is greater than what has been delivered so far for the day, then the power system

loop checks if it can deliver water through Pathway 1, as shown in Figure 3.10. Pathway 1

fills the tank and delivers water at the same time. During this pathway, the time to fill the

tank, ttf, is calculated by Equation 3.15.

Ctank - SOF(t - 1)
tty = min , tri (3.15)

Qtank (t) - Q ,YS

The ttf calculation ensures that the tank will not exceed its capacity, Ctank, and that

other pathways can be run once the tank is full. For Pathway 1 there must be enough power

to pump to the tank (Pc > Ptank) and the tank should be filling (Qank > Qsys). The state

vector equations for this pathway are Equations 3.16-3.18. Figure 3.11 shows an example of

the power system operation over two days with the sequence of pathways from Figure 3.10

labeled. Pathway 1 occurs during day two, hour ten, when SOI is greater than zero, SOF

increases, and SOC is at its maximum.
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Figure 3.11: An example of how the logic flow determines the system state over
two days.
The available solar power (orange) is shown for reference. On March 30th, the system irrigates by
first draining the tank, then powering the pump with the battery (3,4). The battery is charged,
drained and charged over the course of an irrigation event (6,4,6). The tank is filled using excess
power (5). March 31st begins like the previous day, but after sunrise, it fills both the tank and
battery and irrigates using direct-drive (1,2) because there is more power available on this day.

SOI(t) = Q 7. - ji

SOF(t) = SOF(t - 1) + (Qank(t) - Qsys) ttf

SOC(t) = SOC(t - 1) + (Pc(t) - Ptank(t)) ttf

(3.16)

(3.17)

(3.18)

If there is not enough power to complete Pathway 1, the loop checks if there is enough

power to deliver water through Pathway 2 (Figure3.10). This pathway delivers water directly

from the pump, so there must be enough power to run the pump (PC > Pmp). The state

vector equations for this pathway are Equations 3.16, 3.19 and, 3.20. This is shown in Figure

3.11 on day two, hour 12, with an SOI greater than zero, a constant SOF, and SOC at its
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maximum.

SOF(t) = SOF(t - 1) (3.19)

SOC(t) = SOC(t - 1) + (Pc(t) - Pptmp) - tri (3.20)

If there is not enough power for Pathway 1 or 2, there is not enough power from the

panels to directly deliver water, so the loop checks if there is enough energy storage to power

irrigation. The two storage options are the tank and the battery, so it calculates how long it

would take to first drain the tank and then drain the battery with Equations 3.21 and 3.22.

Note that if the tank or battery are already at their minimum then ttd and ttdb are zero.

ttd min(0 - SOF(t - 1) 1ti(.1
(Qtank(t ) - QSYS

= Mtn 0.5 - Cbatt - SOC(t - 1)tri (3.22)
Pt) - Pump/rlbatt

The power system loop then uses Pathway 3 to drain the tank and irrigate through

the pipe network. Using the ttd calculation ensures that the tank is not drained past its

minimum, which is physically impossible. The state vector equations for this pathway are

Equations 3.23-3.25. This is shown in Figure 3.11 on hour zero of days one and two, with a

SOI greater than zero and a SOF drained to zero.

SOI(t) = Qsys ttd (3.23)

SOF(t) = SOF(t - 1) - Qsys ttd (3.24)

SOC(t) = SOC(t - 1) + Pe(t) - ttd (3.25)

If Pathways 1 to 3 have been fulfilled for a time step, the power system loop checks if

water can be delivered through Pathway 4. This pathway powers irrigation with the energy

stored in the battery, so using the ttdb calculation (Eq. 3.22), ensures that the battery is not
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drained past its set depth of discharge, 50%. The state vector equations for this pathway

are Equations 3.26, 3.19 and 3.27. This is shown in Figure 3.11 at hour zero of days one

and two and hour nine of day one with an SOI greater than zero and drained SOC. Hour

nine of day one has a smaller draining of SOC compared to hour zero for the same irrigation

amount. This is because solar power is available in hour nine, so the battery is charging and

draining at the same time.

SOI(t) = Qsys - ttdb (3.26)

SOC(t) = SOC(t - 1) + (Pe(t) - Pump/ibatt) - ttdb (3.27)

Next, if there is not enough power or energy storage to run the other pathways, or the

irrigation demand for the day has been met, the SOI is set to zero. Then, the loop checks

if the tank and battery are full, and if not, it tries to fill them using Pathways 5 and 6. For

Pathway 5, the ttf is updated by setting Qy, to zero with Equation 3.28. The SOF and

SOC are calculated with Equations 3.29 and 3.30. Pathway 5 is shown in Figure 3.11 at day

one hour 12, after the demand has been met, with SOI at zero and SOF full.

Ctank - SOF(t - 1)
ttf = M tn k t ),At) (3.28)

SOF(t) = SOF(t - 1) + Qtank - ttf (3.29)

SOC(t) = SOC(t - 1) + (Pe(t) - Ptank) - tt5 (3.30)

Finally, after trying to fill the tank, the system uses any remaining power to charge the

battery through Pathway 6. The state vector equations are Equations 3.19 and 3.31.

SOC(t) = SOC(t - 1) + Pc(t) - At (3.31)

Note that a time to charge the battery is not calculated because any extra power is
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always used to charge the battery. The battery is always set to have a maximum limit of

0 batt when it is charging. If there is any extra power after the battery is fully charged, it is

unused. Pathway 6 is shown in Figure 3.11 on day one, hour eight and ten, and on day two,

hour eight with SOI at zero and SOF increasing or full. This pathway happens when the

demand has not been met, but there is very little PV power, or after the demand is met.

At the end of each time step, the total daily water that was delivered to the field, (dec), is

calculated by summing the SOI vector. The vector of daily water delivered is saved to later

be compared to the daily demand, Idem.

There are a few additional aspects of Figure 3.11 that are interesting to note. The tank

and battery are filled by the end of the day, but immediately drained at the start of the

next day. This is because the power system model is set to try to reach the water demand

starting at hour zero of each day by default. Pathway 3 and 4 also occur at the same time

at hour zero of each day. This is because the tank was not set to be large enough to deliver

water for the entire At by itself. Finally, the SOI in day one is only greater than zero for

two time steps, but the SOI in day two is greater than zero for much longer. This is because

the water demand in day one is less than the demand in day two.

The simulation of the energy flow through the power system allows for an accurate

assessment of the performance of a particular design. Although the operation scheme is

fixed by the predetermined sequence of the pathways, it is a reasonable model of how a

system could operate in the field. Future work could be done to find the optimum operation

scheme. The most important output of the power system module is the water delivered

throughout the season, which is directly used to determine the reliability of the system

design.

3.2.6 Crop Yield

The crop yield module takes the weather data, crop parameters, soil properties, and water

delivered by the given system design as inputs, and uses these to calculate the crop yield
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Figure 3.12: The soil water balance at the root zone of a crop.
The water balance depends on the evapotranspiration (ET), irrigation (I), precipitation (P), and
root zone depletion (Dr), which is dictated by the readily available water (RAW) and total avail-
able water (TAW). Accounting for these parameters on a daily basis allows for a more accurate
calculation of the irrigation demand and thus a more finely tuned system design.

for the season. In literature, it has been shown that irrigating less, or practicing deficit

irrigation, can lead to water savings with low impact on, or even benefits to, yield production

[35]. Simulating the impact of deficit irrigation on crops can allow for smaller, less expensive

systems that meet less of the crop water demand [21].

The crop water demand is calculated using the soil water balance method for water stress

conditions [27]. Figure 3.12 illustrates the water balance of the root zone. The field capacity

(FC) is the total amount of water that the soil can hold. The wilting point (WP) is the

amount of water in the soil that will cause the plant to permanently wilt. The FC and WP

are determined by the soil texture, which is based off of the soil texture triangle [36]. The

precipitation, P, comes from the weather data. The total available water (TAW) in the

root zone of the plant is the difference between the FC and WP. The TAW is the amount

of water that the plant can extract from the soil. This depends on the depth of the roots,

which is taken from the crop database. The readily available water (RAW) is the amount of

water in the root zone that the plant can uptake most efficiently. The RAW is the threshold

below which the plant begins to feel water stress. The TAW is multiplied by a depletion

fraction, p, to get the RAW. The factor p depends on the crop and is adjusted for ETc
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p(t)= Pconst + 0.04 - (5 - ETc(t)), (3.32)

where Pconst is the constant crop dependant depletion fraction. p is then averaged over the

growth stages of the crop.

The root zone depletion, Dr, is the water lost in the root zone of the plant. When D,

goes below RAW, the plant begins to feel water stress. The D, is calculated using the soil

water balance in Equation 3.33. It should be noted that for this balance it is assumed that

the groundwater table is sufficiently far enough away from the root zone that there is no

capillary rise. Furthermore, there are limits on D, (Eq. 3.34), such that if over irrigation or

a heavy rain occurs, water is lost due to deep percolation and D, becomes zero. If the crops

receive no water, the maximum D, is TAW.

Dr(t) = Dr(t - 1) - P(t) + RO(t) - Idel(t) + ETc,adj (3.33)

0 < Dr(t) < TAW (3.34)

In the above equations, P is the precipitation in mm. The runoff, RO, in mm, is a

fraction of P based off of the soil texture [37]. Idel is calculated in the power system module

and converted to mm using Equation 3.4. The crop evapotranspiration adjusted for water

stress, ETc,adj, is

ETc,ad(t) = Ks(t) -ETc(t). (3.35)

The water stress coefficient, K, is determined by D,. If D, is less than or equal to RAW,

then K, is one. If the Dr is greater than RAW, then K, is described by

Ks (t) - TAW - Dr(t) (3.36)
(I - p(t))TAW

In the power system module, the irrigation demand is calculated at the start of a day
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by first rearranging Equation 3.33 to solve for Idel and then setting ETc, djto ETc and D,

to RAW, as seen in Equation 3.37. This assumes that the depletion is at RAW and water

stress does not occur. Note the initial D, is set to RAW.

Idem(t) = Dr(t - 1) - P(t) + RO(t) - RAW(t) + ETc(t) (3.37)

Then, in the power system module, Ide and D, are calculated at the end of the day, such

that Dr can be used to solve for the irrigation demand at the start of the next day. Since

ETc,djdepends on Dr through K, Equation 3.33 must be combined with equations 3.35

and 3.36 to solve directly for D, with Equations 3.38 and 3.39.

Dr(t) = Dr(t - 1) - P(t) + RO(t) - Ide(t)TAW - Dr(t) ETc(t) (3.38)
(1 - p(t))TAW

Dr(t - 1) - P(t) + RO(t) - Idel(t) + TAWET(t)
Dr(t) 1 + ETc(t) (1-p(t))TAW (3.39)

(1-p(t))TAW

It should be noted that currently the factor p is computed as an average for each growth

stage of the crop. This is the reason for the spikes in water demand in Figure 3.2, as between

growth stages there is a sudden change in p, which leads to a sudden change in water demand.

After the ETc,dj is calculated, the actual yield (Ya) can be calculated by relating a

reduction in evapotranspiration to a reduction in yield,

Ya ET ad(t)
1- " = K (t) - - E"I'(t) (3.40)

Ymax *ETc (t)

where Ymax is the maximum yield and Ky is the crop yield response factor [29].

This is a linear approximation of change in yield to change in evapotranspiration. In

reality, the actual yield calculation is much more complex, but this is a good first approxi-

mation. K. varies by crop and can also change depending on the development stage of the

crop, similar to Kc. In the yield module, Ky is an empirically determined value from the crop

database [29]. Ymax is calculated assuming the crop experiences no water stress, no fertilizer
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Figure 3.13: The linear and data fit yield curves for olives.
The curves show the percent change in yield as a function of the change in crop evapotranspiration
(ET), which is related to crop water demand. The fit curve more accurately characterizes the
resistance of olives to water stress for low changes in ET. Below 50% ET it is assumed the yield
falls to zero.

stress, negligible soil salinity and acidity, and no pest conditions. Ymax is calculated using

code based on the agro-ecological zone method [29]. In this method the gross dry matter

for a standard crop is calculated for given local weather data. Then this is multiplied by

correction factors for species and temperature, crop development, net dry matter production,

and the harvested part of the plant. The yield calculated from this process, Ymax, can be

seen as a potential yield that gives an indication of the agricultural production efficiency,

but is not necessarily the exact yield that would be measured in the field.

A large problem with the linear crop yield approximation is its dependence on an empir-

ically derived factor. Ky has been shown to vary widely between studies, even for the same

crop variety [35]. Therefore, the yield module was built with the capability to use the linear

yield approximation or a crop specific change in evapotranspiration versus change in yield

data fitted curve to calculate the actual yield, Ya. The data fit curve for olives was obtained

from [351. The difference between the two curves is shown in Figure 3.13 for olives.

In Figure 3.13 it can be seen that the nonlinear curve more accurately depicts the drought
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resistant nature of the olive crop as it stays at or above 100% yield for greater than 85%

evapotranspiration. The linear yield model is more conservative and assumes 100% yield

is only possible with 100% evapotranspiration. The nonlinear curve does not have data for

evapotranspiration below 50%, therefore when using the nonlinear curve to predict yield in

the system model, it is assumed that the yield is zero below 50% evapotranspiration. Because

many studies have shown that declines in yield are not noticeable for small reductions in

evapotranspiration for olives, the nonlinear curve is used for the olive yield calculation in

this model. Additionally, the evapotranspiration is assumed to be equal to the crop water

demand, which is a good first approximation, solely for the purpose of determining the limit

for a reliability metric that is discussed in Section 3.3.3. An important feature of the yield

module is that it allows for the performance of a design to be evaluated based on its generated

crop revenue.

3.3 Model Functionality

3.3.1 Optimization Formulation

As described in Section 3.1, the PSO algorithm generates possible designs for the drip irri-

gation system, specifically the pump, panel size, and tank and battery capacities, and sets

the trajectory of the design vector. The objective of the optimization can either minimize

life cycle cost or maximize profit. In addition, a reliability constraint is imposed on the opti-

mization to ensure some amount of water delivery and therefore crop yield. A PSO randomly

generates an initial set of solutions to the optimization problem, which is called the initial

swarm. These solution vectors are permutations of the design variable values. Each solution

is run through the model, and the performance of each solution vector is determined by the

objective function value it produces, in this case either a system cost or profit. Depending

on the problem formulation, whichever solution minimizes or maximizes the objective func-

tion value is identified as the best performing solution of its swarm. The PSO then updates
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the swarm using parameters that determine the "velocity" of the particles within the design

space. The process of establishing a swarm, testing each solution in the model, selecting

the best solution and then shifting the swarm within the design space based on the result

is repeated until the algorithm converges on a solution [38]. The swarm velocity parameters

and convergence criterion can be altered to change the speed and accuracy with which the

optimization converges on an optimum. There is no way to guarantee that a heuristic opti-

mization method has reached a global optimum, but repeated runs of the same problem that

converge to the same solution are a good indication that the solution is an optimum [38].

The PSO method was chosen because it is a heuristic method that allows for discrete

variables and discontinuous functions. It also tends to be less computationally expensive than

genetic algorithms 38]. In this model, the continuous design variables are the capacities of

the panel array, the tank, and the battery. The only discontinuous design variable is the

pump, but the pump variable vector is arranged in order of increasing maximum operating

power, so that there is some directionality to the pump selection. To ensure that the selected

pumps can operate as described in Section 3.2.4, the maximum allowable tank volume is

constrained by the selected pump performance capabilities. The main constraint imposed

on the optimization is a reliability requirement, which forces the system to meet at least

85% of its hydraulic load on average over the course of the growing season. The modules

described in the proceeding sections that simulate the system behavior contain a number of

functions that are non-linear with respect to the optimization design variables. Therefore,

this is a constrained, non-linear optimization problem with discrete variables.

3.3.2 Objective Function

The objective function is based on the system cost. There are several examples in literature

of life cycle cost equations for solar-powered pumping and irrigation systems. Oclan (2015),

Campana (2015), Campana (2016), and Lopez (2015) use interest rate for their net present

value life cycle cost calculations, while Mohammadi (2015), Niajalili (2017), and Muhsen
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(2017) include inflation as well as interest rate 118], [21], 139]-[43]. The calculations for

the maintenance and replacement costs of components in the system are included, either

by calculating separate cost numbers [18], [39], [41], [42] or by lumping them together [40].

Many calculated a reliability factor, called the loss of load probability (LLP), either as a

function of energy used [39], or as a function of water delivered [18], [42]. Most of the

cost equations used in this study are modified from [18], as it was found to be the most

comprehensive model that incorporated maintenance, replacement, and initial capital cost

with net present value calculations that included inflation and interest rates.

The two possible objectives for the optimization are to minimize life cycle cost, LCC, or

to maximize profit, as shown in Equation 3.41. The two different objectives allow the user

to either optimize for the lowest cost system with a minimum reliability constraint, or to

optimize with no reliability constraint, and to instead include a measure of system reliability

in the objective itself by calculating the yield. Profit is calculated as the revenue earned

from crop yield over the lifetime of the system minus the LCC. The present value of the

revenue earned from the crop yield is calculated in Equation 3.42. The unit crop prices (kc)

were found from producer prices based on the specified country and the most current year

available [44]. In equation 3.42, the present value is calculated with inf as the inflation rate,

i as the interest rate, and LT as the lifetime of the system. Note that inf and i will change

based on the country and year being analyzed.

min(LCC)

F = or (3.41)

max(Prof it) = max(Rev - LCC)

Ya-Afield/|10000- ke _"( 1 -in I_ i f+n T i /if
Rev =fYa A I f lO(n )i 1+i (3.42)

Ya Af5e|10000 -/kcl - LT if i inf
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The life cycle cost is a sum of the initial cost (IC), the maintenance cost (MC), and the

replacement cost (RC) for the lifetime of the system:

LCC = IC + MC + RC. (3.43)

The IC is calculated as the sum of the initial capital costs (IC,) of each component in the

system plus the installation cost (ICI).

N

IC = Z ICn + ICI (3.44)
n=1

There are five component costs considered in the system: the pump, the hydraulic net-

work, the panels, the battery, and the tank. In the current model the controller cost is not

included, but it will be incorporated in future iterations of the model. The pump capital

cost is taken from the pump database. For the cases that the pump cost was unknown, the

capital cost was assumed to scale with the maximum power of the pump,

ICpump - UC,«m, - Cpump, (3.45)

where UCpump is the assumed pump unit cost inUSD and Cpump is the pump capacity in

kW. The hydraulic network capital cost is calculated based on a unit cost for a hydraulic

system(UChyd), that is scaled with the field area, then added to the online emitter cost.

IChyd = UChyd Afield +UCemit - Nemit (3.46)

UCemt is the unit cost of the emitters and Nemit is the total number of emitters in the

system. The PV panel, battery, and tank capital costs are calculated based on a unit cost,

UC, and then scaled based on their respective capacities, C,.

IC = UC - C. (3.47)
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It should be noted that the unit cost of the PV panels includes the cost of their frames

and stands and the unit cost of the tank also incorporates a stand. The ICI is assumed to

be a fraction, ki, of the total initial capital cost of the system.

N

ICI = ki E ICZ (3.48)
n=1

The MC is calculated as the sum of the maintenance costs each component MCn. The

MC, is calculated as a present value:

N

MC = MC (3.49)
n=1

MCon _+n z

MC =n) (+) (3.50)

MCon - LT if i = inf

where MCon is the maintenance cost of the nth component for the first year. The MCon is

assumed to be a fraction (km) of the initial capital cost of the nth component.

MCon = km . ICn (3.51)

The replacement cost is calculated as a present value with

RN= I+ 1 nfL TJ (3.52)R~k - ~k E i - inf
j=1

where RCk is the replacement cost of the components that need to be replaced k times

over the lifetime of the system, and IC is the initial capital cost of the components that

need to be replaced. The sum of all the individual component replacement costs is the total

replacement cost
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k

where N, is the number of replacements that a component will need over the lifetime of the

system, which depends on the components lifetime, LT.

N, = floor( 2 'Jj-1 (3.54)
(2 LTn

A caveat to this is that two system components only have a partial replacement over the

system's lifetime. First, only 10% of the panels are "replaced" every ten years to represent

panel degradation over time. Additionally, for the hydraulics system, only the laterals and

emitters need to be replaced every ten years.

It should be noted that all of the economic data used was calculated based on values found

while conducting field trials in Morocco and Jordan (Section 5). Each of the values were

based on prices from local contractors and economic reports conducted by local agricultural

research institutions [13], [14]. The raw data were converted to a unit price and scaled based

on the system size being analyzed. Appendix A.2 shows the values used for each country.

3.3.3 Reliability Metric and Objective Flexibility

The main constraint in this optimization problem is the reliability metric. This metric exists

in different forms for the cost-minimization and profit-maximization versions of the problem.

When the objective is to minimize the life cycle cost of the system, the loss of load probability

(LLP) is constrained. The LLP is defined in Equation 3.55 as the difference between the

total water demand over the irrigation season, Qdemand, and the total water delivered by the

system, Qdelivered, divided by the total water demand. This number represents the average

probability that the daily water requirement will not be met. The larger the LLP, the lower

the reliability of the drip system design. For the cost optimization problem, a maximum

LLP of 15% is set, ensuring that every design must on average meet the water demand 85%
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of the time. This is a maximum, so some designs may be more reliable, with a lower LLP,

if the lowest cost system can meet more of the demand. This LLP limit is set based on

the nonlinear olive yield curve, which shows that at 85% evapotranspiration, 100% yield is

achievable (Section 3.2.6).

Z Qdemand - Qdelivered (3.55)
E Qdemand

When the objective is to maximize the lifetime profit of the system, the crop yield module

becomes a part of the model. This module calculates the crop yield based on the water

delivered during the season, and the yield translates directly to revenue. Although LLP

is not capped, the reliability of the system is constrained because the crop yield creates a

relationship between the water delivered by the system and the profit. The more reliable

the system, the higher the profits.

Having the option to optimize for profit or cost is important because the profit tends

to be at least an order of magnitude larger than the system cost for the pertinent field size

range. This means that the cost optimization is more sensitive to small changes in the design

variable capacities because the component costs are closer in magnitude to the value of the

objective function. However, optimizing for profit allows for the use of the crop yield module,

which acts as a more generalizable constraint on the system reliability.
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Simulation Results

4.1 Simulation Sample Case

The sensitivity and robustness of the optimization is explored in a series of simulated exper-

iments with various parameters. The sample case used in these simulations is an olive grove

in Morocco with low-pressure, online PC emitters. The trees have a 5 m by 5 m spacing and

there are two emitters at each crop. Unless otherwise stated, the field is 1 ha and the emitters

have a rated flow rate of 8 Lph and an activation pressure of 0.15 bar. These simulations are

used to explore the design space, identify the limitations of the model in its current config-

uration, and justify the selection of optimization parameters and constraint values. For the

sample case, it is shown that the optimization produces a direct-drive system, or a system

with only panels, that is 62% cheaper than the solution produced by the conventional design

method for drip irrigation systems.

The conventional way to size a drip irrigation system involves a set of calculations based

on average weather data and simplifying assumptions about the selected components. This

method is based on conversations with irrigation engineers in Jordan and Morocco and the

Lorentz Compass tool, a commercially available software that sizes solar-powered pumping

systems. The system operating point produced by the hydraulic module for the sample case

can be used to start: 6.9 ms/h at 5 m head. Equation 4.1 can be used to calculate the

hydraulic power to be 0.096 kW. If a pump efficiency of 40% is assumed, the power the

pump requires from the panel array is 0.24 kW. If the controller electronics are assumed to

have a combined efficiency of 95% and the panel efficiency is assumed to be a constant 16%,

then the total power required by the panels is 1.6 kW (Eq. 4.2). It should be noted that the

assumed efficiencies are generous, and in the case of the panels, the efficiency is assumed to
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be independent of available irradiance and temperature.

Phyd = "-" x H.y. x 1000 x 9.81 (4.1)
3600

PPv Phyd (4.2)
lpumpilPV

Apv = Pv (4.3)
min(Gsun,avg)

The olive irrigation season is the beginning of March to the end of November. The month

with the lowest average irradiance is November, with 300 W/m2 according to TMY weather

data for Morocco [28]. Equation 4.3 can be used to calculate that the system would required

a panel area of 5.3 m2 to operate throughout the growing season. This will be the comparison

point for the optimized sample case system design.

4.2 Sensitivity Analysis

For the sample 1 ha case, the Pareto front of life cycle cost (LCC) and panel area is used to

understand how the composition of the design impacted the cost. The optimal emitter flow

rate is determined for a range of field sizes to explore the possibility of using the model to

inform emitter design. Finally, the model sensitivity to the reliability requirement is explored

by both changing the maximum allowed loss of load probability (LLP) for several field sizes

in the cost optimization and running the profit optimization, which includes the crop yield

module, for a range of field sizes. The result of these simulations justify an LLP limit of

0.15 and show that the optimal design for smallholder farms - farms of 2 ha or less - is a

direct-drive system with an emitter flow rate between 2 to 6 Lph, depending on the size of

the field. The results also show that the initial cost of the system is by far the majority

of the life cycle cost, between 57-74%, indicating subsidy programs that cover the initial
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Figure 4.1: The sensitivity of the optimum life cycle cost to field size.
The systems are direct-drive or have a small energy storage capacity. The bar on the left breaks
down the life cycle cost (LCC) into component costs, showing that the hydraulic network makes
up over 50% of the cost in all cases. The bar on the right breaks down the LCC into initial (ICC),
maintenance (MC), and replacement costs (RC), showing that the initial cost makes up more than
70% of the cost in most cases. The loss of load probability (LLP) hovers between 0.1 and 0.15,
reaching a minimum in the 0.75 ha case.

investment could significantly reduce the adoption barrier for smallholder farmers.

The sensitivity of the life cycle cost to changes in field area with the corresponding cost

breakdown is shown in Figure 4.1. This analysis is conducted by optimizing for the minimum

life cycle cost system design for seven field sizes from 0.125 to 2 ha. All remaining input case

parameters were equivalent to the sample case except the field area. The resulting LCC and

LLP for the optimal designs are plotted against field area. The optimal designs obtained

from this analysis are shown in Table 4.1.

Figure 4.1 plots two representations of LCC per field area. The left side splits the LCC

into its component costs, while the right side splits LCC into initial, maintenance, and

replacement costs. The hydraulic network is the most expensive component in the system

over this range of field areas. In fact, the hydraulics make up more than 50% of the total
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life cycle cost for each field area, and up to 78% of the total LCC for the one hectare case.

The hydraulic network is not currently cost-optimized, but it is important to understand

the relative scale of the component costs. The hydraulic network costs were compared to

contractor prices in Jordan and Morocco for similarly sized systems that were compiled for

the field trials and found to be reasonable.

Additionally on the left side, the panel and the pump costs increase as the field area

increases because the hydraulic load of the system scales with field area. The pump operating

point also changes with the field layout. Table 4.1 shows how the pump power and panel

area increases with field area. The 0.5 ha and 0.75 ha cases have optimal designs with the

same pump, but the larger field has a higher pump power because it has a higher system

operating point. The 0.125 and 0.25 ha cases have optimal designs with different pumps of

the same size, meaning they have optimal designs with the same pump cost (Eq. 3.45) but

different pumps and operating points.

Interestingly, there is very little energy storage for the field sizes analyzed, and most of

the optimal designs can be seen as direct-drive systems. In fact the designs that included

energy storage options, the sizes, and therefore costs, of the energy storage was so small that

it cannot be seen in Figure 4.1. The only design that includes batteries is for the 0.125 ha

field, and it is a small battery, with approximately the same capacity as five rechargeable AA

batteries. Batteries are not optimal for smallholder farms most likely because of their high

replacement cost. The 1 ha case has a tank, but this tank is approximately one gallon and

only makes up 0.01% of the total LCC. Therefore, this tank is an artifact of the optimization,

and realistically the design would not include a tank. Tanks are not an optimum because of

their high unit cost, and because they are limited in size by the pump, they will not become

viable until larger pumps are selected.

Moreover, in the right bar it can be seen that the initial capital cost is the majority

of the total life cycle cost. In fact, the IC makes up over 50% of the total cost and over

70% for many of the cases. Therefore, if the initial capital cost of the system could be
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Table 4.1: Optimum LCC Design for Various Field Sizes

Field Area Pump No. Pump Pwr. PV Area Batt. Cap. Tank Vol.

[ha] [W] [m2] [Wh] [m3]
0.125 1 29 0.10 12.5 0

0.25 2 46 0.46 0 0

0.5 3 74 0.76 0 0

0.75 3 118 1.23 0 0

1 4 180 1.83 0 0.005

1.5 5 295 3.00 0 0

2 6 636 6.47 0 0

reduced through subsidies or other programs, the total LCC would be greatly reduced.

In addition, the maintenance cost is always lower than the replacement cost and initial

cost. The maintenance costs are based off labor costs for the location (Appendix A.2), and

because the labor cost is low in these areas the maintenance cost is low [13], [141. Both

maintenance and replacement costs increase with field area, although there is only a slight

increase in replacement costs from the 0.125 to the 0.25 ha case. These costs are comparable

because the former has batteries whereas the latter does not, and the replacement cost of

batteries is high. The replacement cost is also higher than the maintenance cost for all of

the cases because a portion of the hydraulic network and the panels, which make up some

of the highest component costs, are replaced over the lifetime of the system. For all of the

field areas the LLP is between 0.1 and 0.15, indicating that going to the maximum LLP

minimizes the life cycle cost, as expected. The changes in LLP are due to the mechanics of

the algorithm, the cost benefit gained for an increase in LLP from 0.1 to 0.15 is not large

enough to cause further iterations in the optimization before convergence is reached. The

LLP limit is explored further later in the section and compared back to this analysis.

Analyzing how the life cycle cost of the system changes with field size gives an initial

idea of the economies and diseconomies of scale for solar-powered drip irrigation systems.

This is explored further in Figure 4.2, in which the cost per hectare for the optimum LCC at
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Figure 4.2: The life cycle cost per hectare of the optimal system designs.
This shows economies of scale when expanding up to 1 ha, after which there are diseconomies of

scale. For this case study, the 1 ha field has the optimal LCC per ha design.

each field area is plotted against the field area. The cost per hectare decreases as field area

increases until the 1 ha case, after which the cost per hectare increases with increasing field

area. This means it is most cost effective to install a solar-powered drip irrigation system

on a 1 ha field for this sample case study.

In order to explore when energy storage becomes an option for the sample 1 ha case, a

sensitivity analysis is conducted to see how the optimum life cycle cost and energy storage

of the design changed while changing panel area. Figure 4.3 shows this analysis with the

optimum LCC and LLP plotted. The panel area increases in increments of 0.1 m2 . The

hydraulic component is not included in the bar chart because the field area is held constant,

so the hydraulics cost is also constant. The pump component cost is constant in this study

as well, due to the fact that the system operation point is constant.

The panel cost increases linearly with the panel area, as expected (Eq. 3.47). The

reliability constraint (LLP = 0.15), tank constraint, and battery constraint, ensure there
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is a minimum possible panel area. In this case, the minimum panel area is 0.6 m2 . The

optimum designs sometimes include tanks, but these tanks are very small, and as previously

stated, this is most likely an artifact of the optimization, as tanks this small would not

be realistic in an actual system. The battery cost decreases with increasing panel area.

This is because as panel area increases, less additional energy storage is needed to meet the

reliability constraint on the system. Eventually with a high enough panel area, no energy

storage is needed to meet the constraint. After there is enough panel area to meet the system

reliability constraint, an increase in panel area causes an increase in the total LCC and a

decrease in LLP. This is shown in Figure 4.3 after 1.8 n2 .

The minimum LCC occurs at 1.8 m2 with a very small battery, and is essentially a direct-

drive case, as a battery capacity that small is not realistic. Although the optimal design is

direct-drive, some of the designs with batteries have comparable LCCs to the optimum, such

as the 1.2 m2 case. Although these designs have unrealistically small energy storage options,

energy storage allows for more flexibility in the time of day irrigation could occur, which

could be beneficial in some regions or for some crops. Running this analysis with further

restrictions on irrigation start time or schedule may produce optimal solutions with realistic

energy storage options. In future analyses, the trade-off between using energy storage and

irrigating at different times of the day can be explored further with this model.

The cost-optimization was run for the same set of field sizes as above with emitters rated

for 2, 4, 6, 8 and 10 Lph at each field size. The LLP limit was set to 0.15. The minimum

LCC system was selected for each field size and plotted against the corresponding emitter

flow rate (Figure 4.4). The goal is to find the optimal emitter flow rate for each field size

and demonstrate the capability of the model to inform low-pressure emitter design. At the

lowest flow rate, the system needs to irrigate for longer in order to meet the water demand

reliably, and at the highest flow rate, the system will need to provide the most power to

operate at the high flow rate. The result shows that the 2 Lph emitter system is the lowest

cost for the 0.125 ha field. This implies that it is cost effective to build a system with the
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Figure 4.3: The sensitivity of the system LCC for the 1 ha field case to panel
area.
Each design is an optimum for a given panel area. For small arrays, batteries and very small tanks
are included in the design. The overall minimum cost system is effectively a direct-drive system.
After this optimum, the LLP drops considerably as more capacity is added to the power system.
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required energy capacity to run at a low flow rate. The result also shows that the 8 and 10

Lph emitters are not optimal for any of the field sizes. This is because, at higher flow rates,

the system needs to have a larger pump and a higher power capacity in order to operate a

higher flow rate drip network.

The oscillation between 4 and 6 Lph emitter optimums is an indication of the limitations

of using the model in its current form for selecting an optimal emitter flow rate. Because

the pump selection is discontinuous by nature, the cost difference between pumps could be

driving the cost difference between 2 to 6 Lph emitter systems. This makes it difficult to

say whether these are definitively the optimal emitter flow rates at each field size. A more

thorough method would require some cost relationship that defines the price of the pump

as a function of its characteristic performance. Then cost would be directly linked to the

behavior of the pump and have a more realistic impact on the optimal emitter flow rate

result. With a discrete pump selection, the most that can be concluded from this analysis

are the bounds of the optimal emitter flow rate search. It shows that, for this range of field

sizes, the mid-range flow rates are preferable to those that require a high energy or high

power capacity from the system.

The sensitivity of the cost-optimization to changing the system reliability requirement is

explored by increasing the LLP limit from 0 to 0.5 for 0.125 ha, 1 ha and 2 ha fields. The

average reliability over the season is the inverse of LLP, which is defined in Equation 3.55.

An LLP = 0 corresponds to 100% of the demand being met over the course of the season

and an LLP = 1 corresponds to none of the demand being met. As expected, Figure 4.5

shows that it is most expensive to design a system with an LLP = 0, or 100% reliability. If

the LLP limit is relaxed slightly to 0.1, the system life cycle cost drops by 7%, 9% and 13%

for the 0.125, 1 and 2 ha cases, respectively. Based on the yield curve shown in Figure 3.13,

the olive trees will still have a 100% yield at 85% of their water demand. For this reason,

the LLP limit for all the simulations was set to 0.15, which enables a lifecylce cost reduction

without sacrificing any crop yield. It is important to note that setting the LLP limit does
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Figure 4.4: The cost-optimum emitter flow rate for each field area.
The cost numbers at each point are the total life cycle cost of the optimal design. The 2 Lph emitter
is only cost effective for the smallest field because the larger fields would require energy storage to
meet the reliability requirement at such a low flow rate. The 8 and 10 Lph emitters are never the
optimum because the power system capacity required to run at such a high flow rate is expensive.
The optimal emitter flow rate of the remaining cases oscillates between 4 and 6 Lph, likely because
the discrete pump selection becomes the primary cost driver in the optimization. For these field
sizes, the mid-range flow rates are optimal.
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Figure 4.5: Sensitivity of the cost-optimization to the reliability requirement.
The LLP limit is varied from 0 to 0.5 for the 0.125, 1 and 2 ha fields. An LLP limit of 0 is the
most expensive, but the LCC of the optimal designs drops between 7 and 13% when the LLP limit
is increased to 0.1. A small relaxation of the reliability requirement can significantly reduce the
optimal system cost. An LLP limit of 0.15 was selected for the cost-optimization based on the olive
crop yield curve that shows 100% yield at 85% evapotranspiration, which is a proxy for demand.

not fix the LLP, but sets a maximum loss of load that the system cannot exceed. This can

be seen in the last case for each field size: although the LLP limit is set to 0.5, the actual

LLP of the optimal systems is lower. It is assumed that above an LLP of 0.5, there will be

no crop yield.

The system designs that correspond to the above points are shown in Figure 4.6. Here,

the tank is converted into an equivalent energy capacity and combined with battery capacity

to plot the combined energy storage capacity of the design. It should also be noted that the

pump selection is the same for a given field size, which makes sense because the hydraulic

operating point does not change. The panel area appears to be most sensitive to an LLP

limit of zero, where the panel area is at its largest: 0.67, 4.3 and 15.3 m 2 for the 0.125, 1

and 2 ha cases, respectively. This is more than double the optimal panel area for an LLP
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Figure 4.6: The optimal system designs corresponding to the reliability require-
ment analysis.
The majority of the systems are direct-drive. For an LLP limit of 0, the optimal systems have a
panel area of 0.67, 4.3 and 15.3 m2 for the 0.125, 1 and 2 ha cases, respectively. This is more than
double the optimal panel area for an LLP limit of 0.15 at these field sizes. For the few designs that
do have energy storage options, the capacity is less than that of six AA batteries, so all the designs
are effectively direct-drive.

limit of 0.15 at these field sizes. As the LLP limit increases, the panel area remains relatively

constant for each field size. Three of the designs for the 0.125 ha field and one of the designs

for the 1 ha field have some energy storage capacity, although in these cases, it is less than

the energy storage capacity of six AA batteries. Effectively, these are all direct-drive systems.

At the LLP limit of 0.15, it appears that the optimal system for all field sizes is a direct-

drive system or a system with a very small energy storage capacity. This is confirmed by

the results shown in Figures 4.1 and 4.3.

Finally, a sensitivity analysis was run to see how a change in reliability affects the system

design when optimized for profit. A change in reliability lowers the amount of water delivered

to the crops and therefore can lead to a reduction in yield. To account for this reduction,

the objective was changed to optimize for profit, and account for the crop revenue earned

over the system lifetime. Figure 4.7 shows the sensitivity of the optimal system profit for
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different field sizes, and is comparable to Figure 4.1. Note that for Figure 4.7 the cost and

profit are normalized by the 1 ha sample case so that they can be easily plotted together.

Table 4.2 shows the corresponding optimal designs. By comparing the two studies it can be

seen that the system costs and optimal designs, whether optimizing for profit or LCC, are

very similar.

As expected, the cases with the same field area have the same hydraulics cost, and all of

the chosen pumps are the same. The panel area, and therefore cost, is slightly larger for all

of the profit optimized cases compared to the LCC optimized cases. This is likely because

the profit-optimization is less sensitive to small changes in component capacities (Section

4.3). The 0.125 ha case is still the only case with battery capacity, although it has a smaller

capacity than one rechargeable AA battery, and all other cases are direct-drive designs. The

LLP is lower for all of the profit optimized cases, which correlates to the higher panel cost.

Because the reliability is not a constraint, the optimum does not go to an LLP of 0.15. The

LLP gets close to 0.1, which has been shown to be where a large reduction in LCC occurs

(Figure 4.5). Olives are also a water stress resistant crop, so a small reduction in applied

water has only a small effect on the yield (Figure 3.13) and therefore revenue.

It should be noted that the revenue and profit are an order of magnitude larger than that

LCC for all the cases. The revenue increases linearly with field area since the LLP is similar

between cases, the yield is similar, and the crop price and interest and inflation are constant

for the same location and crop (Eq. 3.42). The order of magnitude difference means that

profit effectively increases linearly with field area, so the objective will favor maximizing

revenue over minimizing cost. An additional objective could be made in future studies with

a weighting factor that allows for cost to be considered more of a driving factor compared

to revenue.

The insight gained from this sensitivity analysis justify the current construction of the

model and offer a broader context for the design solutions. The optimal system design is

direct-drive in the pertinent field size range, and these systems are most cost effective for
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Figure 4.7: The sensitivity of the optimum profit to field size.
The profit and LCC are normalized to the 1 ha case. The profit-optimization produces direct-drive

designs with slightly larger panel areas than the cost-optimization. The profit is approximately
an order of magnitude larger than the cost, so this optimization scheme is less sensitive to small
changes in component capacity. There is no imposed LLP limit; the crop yield model, which links

the water delivered directly to revenue, acts as the reliability constraint.

Table 4.2: Optimum Profit Design for Various Field Sizes

Field Area Pump No. Pump Pwr. PV Area Batt. Cap.

[ha| [W| [m2] [Wh]

0.125 1 29 0.31 1.5

0.25 2 46 0.52 0

0.5 3 74 0.86 0

0.75 3 118 1.37 0

1 4 180 2.10 0

1.5 5 295 3.45 0

2 6 636 7.04 0
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a field size of 1 ha. The initial cost of the system makes up the majority of the life cycle

cost, indicating that subsidies could be an important step towards increasing adoption of

this technology among smallholder farmers. The hydraulic network is the most expensive

component and could be geometrically optimized to reduce the system cost further. The

most cost effective emitter flow rates for this field size range are between 2 and 6 Lph, which

indicates this model may be able to inform future emitter design. Finally, increasing the

LLP limit slightly, and thereby relaxing the reliability requirement, leads to a significant

drop in the life cycle cost of the optimal system design without significantly reducing the

crop yield.

4.3 Robustness and Objective Function Sensitivity

In addition to assessing the model sensitivity, the optimization was subjected to a set of

simulations designed to assess the robustness of model. The repeateability of the optimiza-

tion algorithm convergence was tested, the sensitivity of the objective function to key cost

equation parameters were explored, and the sensitivity of the solution to changes in weather

input data was analyzed. The optimization was found to converge repeatably and within

a reasonable amount of time for all the tested field sizes with a swarm size of 20 and a

convergence margin of 10 USD. The objective function is most sensitive to the initial cost

factor, ki, and maintenance cost factor, k, for the cost optimization, and most sensitive

to the crop price factor, kc,, for the profit optimization and, as a preliminary estimate, the

weather robustness factor is 1.33 for the 1 ha sample case.

The convergence repeatability of the PSO algorithm was first tested by running the

model for the sample case for different values of two parameters: the swarm size, N, and

the convergence margin, e. The swarm size is the number of potential design solutions

the algorithm tests at one time, and the convergence margin is the maximum amount the

objective value of two solutions can differ for convergence to be declared. Here, the value of
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the objective function is the cost and the convergence margin is in units of USD. Essentially,

these two parameters control how the PSO starts and how it stops. The model is run for

four combinations of swarm size and convergence margin: N = 10 and e = 50, N = 10 and

e = 10, N = 20 and e = 10, and N = 50 and e = 10. Each parameter run is repeated 5

times for a 0.125 ha, 1 ha and 2 ha field, for a total of 60 runs.

In each case, it is expected that the algorithm converges on a single solution, which

means the life cycle cost should be roughly the same for a given field size. This is shown

to be the case in Figure 4.8. In general, as the swarm size increases and the convergence

margin decreases, the time it takes the algorithm to converge on a solution increases, and

the solutions also become more clustered together. This indicates that as the swarm is cast

wider in the solution space and the converge criterion becomes more strict, the likelihood

of converging on the same solution increases. These trends are similar across the field size

range and the optimization runtimes are similar, with the larger field sizes requiring a bit

more time. Based on these results, a swarm size of 20 and a convergence margin of 10 USD

was selected in order to reduce optimization time, while still ensuring a reliable solution

convergence.

The corresponding system designs for these points are shown in Figure 4.9. With the

exception of a few outliers, the runs converge on approximately the same system design for

the 0.125 and 1 ha cases. For the 2 ha case, there seem to be two minimum cost solutions,

with the direct-drive design having a tighter convergence. This is also where four of the

five runs for N = 20 and e = 10 converge. It appears that a swarm size of N = 50 is too

large and worsens the ability of the algorithm to converge on one solution for a convergence

margin of e = 10.

In order to determine the objective function sensitivity to its data-driven cost parameters,

the derivative of the objective function with respect to these variables is analyzed. The

derviates are mostly linear so it is simple to determine the parameters that will have the

most impact if they are inaccurate. When optimizing for cost, the objective is most sensitive
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the optimization to converge.
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Figure 4.9: The corresponding system designs for the PSO repeat runs minimiz-
ing LCC.
Aside from a few outliers, the runs converge on approximately the same system design for the (a)
0.125 and (b) 1 ha cases. For the (c) 2 ha case, there seem to be two minimum cost solutions, with
the direct-drive design having a tighter convergence. A swarm size of N = 50 appears to be too
large and worsen the ability of the algorithm to converge on one solution for a convergence margin
of e = 10. N = 20, e = 10 converged tightly and reliably in a reasonable amount of time, so these
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Table 4.3: Weather Data Averages

Weather Parameter TMY Hist. 2014 Hist. 2016 Meas. 2018

Avg. Irradience [] 250 264 236 227

Avg. Temp. [C] 22.5 22.0 22.1 20.8

Avg. Rel. Hum. [%] 54 55 56 62

Total Rain [mm] 137 97 101 6

Avg. Wind Speed[7] 2.5 1.4 1.0 3.4

Avg. ETO [m] 5.6 4.9 4.3 6.0

to the initial cost fraction, ki, and the maintenance cost fraction, km. It is less sensitive by

an order of magnitude to the panel and tank unit cost, UCpv, and UCtank, and the pump,

panel and tank maintenance fractions, kpum, kpv, and kank. It is the least sensitive to the

battery unit cost and maintenance fraction, UCatt and kbatt, because the typical battery

capacity is much lower than that of the pump, panel, or tank. When optimizing for crop,

the objective is the most sensitive to the crop cost fraction, key, because the revenue is about

an order of magnitude larger than the cost. This means that more data on the initial cost of

the system and the local crop prices must be collected in order to produce an accurate cost

model.

The input weather data is what ties the system design solution to the given location. The

weather determines both the available power to the system as well as crop water demand.

Several of the important weather parameters are shown in Table 4.3. These are averages to

give a sense of scale, but all the datasets used in this study have a resolution that is hourly

or higher. It is assumed that the weather for the entire season is known a priori, which

vastly simplifies the task of modeling the system operation. This is of course not the case

in the real world, especially as the effects of climate change are altering historical weather

patterns. In all the simulations, hourly typical meteorological year (TMY) data are used.

This is a dataset that takes the "most typical" weather from at least 12-25 years of data and

creates an average weather year of sorts.
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In order to determine the robustness of the solution to different weather inputs, the 1 ha

sample case is run with the TMY data and three other sets of weather data from Morocco:

historical data from 2014 and 2016, and measured data from the Moroccan field trial site

in 2018 described in Chapter 5. The 2014 and 2016 data were included because Morocco

experienced a drought in both years [45], [46]. The TMY and historical weather data, sourced

from [28], all have an hourly resolution, and the measured data has five minute resolution.

All of the cost-optimized designs are subject to the same reliability constraint with an LLP

limit of 0.15. The resulting designs for each dataset are shown in Figure 4.10. The hydraulic

network cost is removed for clarity because it is not optimized and therefore is known to

remain constant for the same system. The installation cost is a fraction of the hydraulic cost

and the selected pump is the same, so the cost of both also remain constant.

Interestingly, the case using the TMY data sizes the largest system, with a panel area

of 1.9 M 2 , which indicates that using this conglomerate data may produce an oversized

system for some years. The historical data cases produce slightly smaller 1.6 m2 direct-drive

systems. These were drought years, which means there was more solar power available, but

the temperatures were also higher, which would increase evapotranspiration and crop water

demand. The LLP of the TMY case is 0.1, whereas the 2014 and 2016 cases have LLP values

of 0.14 and 0.15, respectively. It appears that increasing the LLP slightly to compensate

for increased evapotranspiration is enough to balance having a smaller panel area to take

advantage of the higher solar irradiance at the expense of meeting less of the water demand.

The measured data produces the smallest panel area, 0.73 m2 and a battery capacity of

8 Wh, which is equivalent to the capacity of about three AA batteries. Since this energy

storage capacity is so small, its reasonable to say that the optimal design in all four cases is

essentially a direct-drive system.

Although the results were somewhat surprising because even the drought years did not

change the system design by a large amount, this process can be used to define a design

"robustness factor" to account for weather variations. Assuming these are all direct-drive
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systems, the optimal panel capacity is 1.5 ± 0.5 m2 . The standard deviation represents a

±33% change in the panel area. To generalize this, a robustness factor of 1.33 should be

applied to an optimal direct-drive design produced using TMY one weather dataset before

it is actually built. This factor becomes more useful for a larger number of test cases and

datasets, but the method remains the same. Even with this additional factor, the optimized

solution, at 2 m2 , has a significantly smaller panel area than the conventionally designed

system, which is calculated in Section 4.1 with a panel area of 5.3 m2 . This represents a 62%

reduction in the system cost compared to the conventionally designed system, if all other

components are equal.

Another interesting result was that the measured weather data with 5-minute resolution

produced the smallest optimum design. The measured 2018 weather data had the lowest

irradiance and very little precipitation. The latter may be due to a sensor malfunction, but

this low precipitation measurement was used to size the system in simulation. In spite of

this, the optimized system was the cheapest of all four cases. This indicates that having

higher time step resolution when simulating the operation of the drip system allows the

algorithm to take advantage of the component capacities more efficiently, resulting a smaller,

less expensive design. The benefits of higher weather data resolution, as well as expanding

simulated system operation capabilities of the model, should be explored further.
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Figure 4.10: The sensitivity of the cost-optimum result to varying weather con-
ditions for the 1 ha sample case.
The TMY data (hourly) produces the most expensive optimum design. The data from two drought
years (hourly) produces slightly less expensive designs. The LLP is larger in these years indicating
a trade-off between taking advantage of the higher irradiance by reducing panel area and meeting
less of the crop water demand. The measured 2018 weather data (5-minute) produces the least
expensive design, indicating possible further cost reduction using higher resolution weather data.
The design variation suggests a preliminary "weather robustness factor" of 1.33 for direct-drive

optimum designs.
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Field Trial Results

5.1 Field Trial Methods

Field trials are being conducted in Morocco and Jordan to test and analyze drip irrigation

systems. These field trials have been ongoing since 2017 to test the ultra low-pressure emit-

ters [16]. In 2018, two of the systems were retrofitted with solar panels and a solar pump.

One solar-powered system was installed in Sharhabeel, located in the Jordan Valley, and

another was installed in Saada in Marrakesh, Morocco. The purpose of this part of the field

trials was to see if solar-powered pumping systems could be used with the ultra low pres-

sure emitter systems, and to validate the model presented in this thesis as a system design

tool. For both locations, a commercially available solar pump was installed. The pump was

oversized in order to allow for the systems to operate in unknown weather conditions, and

because making a custom system was not within the original scope of the project. Therefore,

the results of these field trials are used to validate the model simulation, but not the opti-

mization. In future trials the optimization model can be used to design a custom system.

The design, implementation, and data collection of the solar-powered drip irrigation systems

associated with the field trials was completed in partnership with research organizations in

Jordan (MIRRA) and in Morocco (ICARDA), with support from Jain Irrigation.

Figure 5.1 shows a diagram of the setup that was used. The setup of the Sharhabeel and

Saada field trials were similar with some key differences. In Sharhabeel, the MIT designed

ultra low-pressure online emitters were tested on a 0.16 hectare field of 64 citrus tree crops.

A Lorentz PS2-600 CS-F4-3 solar surface pump system was installed and connected to two

Jain (JJ-M672-300Wp) solar panels. The reservoir was located 1.5 meters below the inlet

of the pump. In Saada, the testing was completed on a 0.52 hectare field of 90 young olive
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tree crops. A Lorentz PS2-600 CS-F4-3 solar surface pump system was also installed for this

field, but it was connected to two Canadian Solar (CS6P-270Wp) panels. The reservoir for

Saada was located two meters above the inlet of the pump, and provided some positive inlet

pressure.

Both field trial setups pulled water from a reservoir and pushed it through a sand and

disk filter, and through a fertigation unit, which was used on an approximately biweekly

schedule. In order to monitor the system operation, a flow sensor (Dwyer WMT2-A-C-07-

10) and a pressure sensor (Lorentz LPS-500) were placed after the outlet of the pump and

an additional pressure sensor was placed after the fertigation unit (SSI P51-15-G-UC-36-

20MA). The difference between the two pressure sensors allows the pressure drop over the

filters and fertigation unit to be analyzed. Additionally, a manual pressure sensor was placed

directly after the last emitter in the field to monitor if the last emitter was at its activation

pressure. If the last emitter in the line was at activation, all other emitters in the system

should be above activation and operating at the rated flow rate. The pump controller was

able to monitor the power to the pump and the total flow delivered, as well as keep track of

times when the pump was on, if there was enough solar irradiance to run the pump, and if the

reservoir was low. A weather station (HOBO U30-NRC) was placed near each solar pumping

system to monitor solar irradiance (HOBO S-LIB-M003), temperature and relative humidity

(HOBO S-THB-MOOx), precipitation (Davis S-RGF-M02), and wind speed and direction

(Davis S-WCF-M03) at five minute intervals. The pressure, flow, and pump controller data

were collected and transmitted at ten minute intervals (Figure 5.1). Additionally, both sites

had local staff calculate and program the system to deliver the crop water demand on a daily

basis. After the water demand was met for a day, the system would turn off automatically.

The pump pressure was actively regulated by the controller. For Sharhabeel, at first the P1

pressure was set by increasing the pressure of the pump until the manometer, M, read the

emitter activation pressure and the emitters were at their rated flow. Then it was noticed

that the pressure drop across the filters and fertigation unit was variable, so P2 was installed
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Figure 5.1: Field trial layout and instrumentation.
Data recorded by two pressure sensors (P1, P2) and a flow meter (F) were transmitted every 10
minutes. A manual pressure gauge (M) was used to verify the last emitter was at activation pressure.
The pump operating pressure was set based on the pump house pressure sensor reading when the
last emitter was operating at its rated flow.

to set the pressure (Figure 5.1). It was assumed that because the pressure losses after P2

were due to pipe losses and losses from the emitters, P2 would be a more stable pressure to

set than P1. For Saada, the P2 pressure was set at the controller from the beginning of the

trial.

5.2 Results and Model Validation

The data from the field trials in Jordan and Morocco were used to assess the validity of the

model presented in this thesis. The installed systems reliably delivered water throughout the

season with an LLP value of zero when compared to the simulated demand. The systems

also operated within a reasonable range of the simulated system operating points in both

locations. The field trials illuminated several phenomena that need to be incorporated into

the model, namely the variable pressure drop across the filter and fertigation unit and the

need for improved control over irrigation scheduling. Additionally, for future field trials, a

pressure sensor should be added to the suction side of the pipe to better characterize the

reservoir height and losses across the pump.

Figure 5.2 shows the water delivered plotted against the simulated demand during the
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Figure 5.2: Measured delivered water plotted against the simulated demand in
Saada, Morocco and Sharhabeel, Jordan.
The season LLP calculated using the data and simulated demand was zero for both sites because
the crops were over watered.

growing season in Morocco and Jordan. The calculated LLP based on the simulated water

demand was zero in both cases because the crops were slightly over watered during the

irrigation season. This is partly because the local research institutions calculated water

demand on a monthly basis and had control over the irrigation schedule. The research staff

would decide how much to irrigate based on recent rainfall, if they had missed a day, or

overwatered the previous day. The installed power systems were also oversized to ensure

reliability for data collection purposes. Although the demand over the season was met, there

were days with a non-zero demand where the system did not deliver water. The system

was likely turned off due to recent precipitation or changes made to the irrigation schedule.

Overall, the model designed two systems that performed reliably for two different crops and

locations.

The field data were also used to determine the validity of the hydraulic network sim-

ulation. The pressure and flow rate were measured over the season and compared to the

simulated operating point (Figure 5.3). Ideally, these points should collapse onto the sim-

ulated operating point, but both the flow rate and pressure have unavoidable fluctuations.
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The PC emitters operate at ±7% of their rated flow rate, which means the system flow rate

is expected to vary by this amount. The iterative flow calculation used in the hydraulic

simulation estimates the flow rate in a pipe network within 15% of the actual value, which

adds an additional error band to the predicted flow rate 131]. The pump operating head

will be lowest when the filters are clean and the fertigation unit is not in use, and highest

when operating with dirty filters during a fertigation event. The ideal operating point, along

with these error bands, are shown in Figure 5.3. Each point is qualified with error bars

showing the sensor measurement errors. In both cases, the majority of the data are within

the expected operating range for flow and pressure. In Saada, the pump tends to operate

at a lower pressure than simulated and in Sharhabeel the pump tends to operate at higher

pressure than simulated, but overall the simulation appears to be accurately predicting the

operating behavior of the hydraulic network.

There are several possible explanations for the data that are outside the expected ranges.

There are some data points that have a higher pressure and higher flow than expected and

some that have a higher pressure and lower flow rate than expected. In both cases, the higher

pressure is mostly likely due to the research staff setting the pump operating pressure slightly

too high. In the cases where the flow rate is also higher than expected, this is either due to

erroneous flow meter readings, or a leak somewhere in the system, which was occasionally

an issue in Sharhabeel. The flow rate being lower than expected indicates that either the

pressure was not high enough for the entire network of emitters to reach activation or part

of the system was closed off during testing. In order to explore this further, the pressure and

flow sensor data were examined independently.

The operating pressure of the pump needed to be set such that the last emitter was at

its activation pressure. As described in Section 5.1, the pump head was increased until the

last emitter was operating at the rated flow. Figure 5.4 shows the simulated pump operating

point, the expected range, and the measurements at P1. In Saada, the pump was frequently

operating below the simulated value, but within the expected range, and in Sharhabeel, the
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Figure 5.3: The pressure and flow rate measured over the season.
The dashed line intersection shows the simulated operating point, and the grey bands show the
expected variation range for pressure and flow. The PC emitters operate at ±7% of their rated
flow, and the hydraulic flow calculation estimates the pipe flow within ±15% of its actual value.
The pressure varies as the filters get dirty and the fertigation unit is used.

pump was operating close to or above the upper end of the expected pressure range. In both

cases, the system should deliver water uniformly, but the system in Sharhabeel appears to

be over-pressurized, meaning it is operating at a higher power than necessary. This indicates

that, in future trials, the pressure setpoint should be better controlled to ensure the system

is operating more closely to its ideal operating point for PC behavior.

The pressure error bands were estimated based on the assumed pressure drop across the

filters and fertigation unit and verified by checking the difference between the measurements

P1 and P2 (Figure 5.5). The maximum pressure difference was 0.40 bar in Saada and 0.25

bar in Sharhabeel. In Saada, the gradual increase in pressure drop from around 0.05 to 0.15

bar is likely the sand and disk filter becoming dirty over the course of the season. Due to

the late installation of the P2 sensor and some equipment malfunctions in Sharhabeel, there

are not enough data points to notice the filter trends, but both graphs show distinct spikes,

which are likely fertigation events.

The majority of the measured flow data are within the hydraulic simulation and emit-
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Figure 5.5: The pressure drop across the filters and fertigation unit.
The maximum pressure difference is0.40 bar inSaada (a) and there isa gradual increase in pressure
drop from around 0.05 to 0.15 bar, which is likely the sand and disk filter becoming dirty over the
season. The maximum pressure difference is0.25 bar in Sharhabeel (b). Both plots show distinct
spikes, which are likely fertigation events.
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Figure 5.6: The measured flow rate, simulated operating flow rate, and expected
range.
The points outside of the expected range correspond to lower pressures. Although these pressures
are within the expected range, they still could be too low for all the emitters to reach activation.
In Sharhabeel (b), the lowest flow rate points correspond to the highest pressure points, indicating
some part of the system was partially closed off during testing or start-up.

ter rated flow error bands (Figure 5.6). The low flow rate points outside of the expected

range correspond to lower pressures (Figure 5.4). Although these pressures were within the

expected range, they still could have been too low for all the emitters to reach activation,

lowering the system flow rate. In Sharhabeel, the lowest flow rate points correspond to

the highest pressure points in Figure 5.4(b), which indicates some part of the system was

partially closed off, likely during testing or start-up.

Figure 5.7 shows the measured and simulated power required by the pump for each

irrigation event at Saada and at Sharhabeel. In both places it can be seen that the the

measured power is higher than the simulated power limits for many of the irrigation events.

The simulated power limits were calculated based on how the pressure and flow were assumed

to vary, as variations in pressure and flow cause fluctuations in power. The higher power

requirement of the measured data is most likely caused by the oversized system. The pump

was not operating within its preferred operating range because it was oversized. Therefore

the efficiency of the pump was assumed to be higher in the simulation than it actually was
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Figure 5.7: The measured input power to the pump, simulated operating input
power to the pump, and expected range.
For both sites, the measured power is frequently higher than the expected range. There is a higher
power requirement than expected because both systems are oversized. The pump is not operating
within its POR, and therefore it is operating at a lower efficiency than simulated. The average
simulated pump efficiency is 36% for Saada and 40% for Sharhabeel, but the average measured
pump efficiency is 27% for both sites.

in the field trials. By further analyzing the data, this was in fact found to be the case, as

the average simulated pump efficiency was 36% for Saada and 40% for Sharhabeel and the

average measured efficiency of the pump was 27% for both Saada and Sharhabeel.

As previously discussed, the system being oversized led to some problems, but it also

ensured that the irrigation demand was met for unknown weather conditions. Figure 5.8

shows and example of good weather conditions, or a "good solar day," in which there was

more than enough solar power available to turn the pump on and meet the demand. The

system is not limited by the available solar power, but the system is oversized for this day. It

also shows a "bad solar day" in which the demand was still met, but the solar power available

was irregular, and so the pump would have to turn off and back on again throughout the

day to meet the demand. In this case the system is limited by the available solar power and

energy storage options could be utilized to meet the demand on these days if they are cost

effective. Overall, these results show that the simulation is capturing the hydraulic behavior
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Figure 5.8: Example of a "good" and "bad" solar day.
The solar power available is the solar panel output and the power to the pump is the pump input
power. On a good solar day, the system operation is not limited by the available solar power. On a

bad solar day, the system operation is limited. A system may appear to be oversized for the former,
but it is sized such that it can reliably operate during the latter.

of the drip network. In the future, having greater control over the irrigation schedule and

pump operating pressure will improve the clarity of the data.
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Conclusion and Future Work

This thesis provides the framework of a model for a cost optimized solar-powered drip irriga-

tion system. It goes on to explore techniques that can be utilized to lower cost even further,

such as reducing the reliability of the system, altering the power requirements of the system

with emitter flow rate, allowing for energy storage options to be considered, and increasing

the resolution of the input data. This provided evidence that the cost of solar-powered drip

irrigation systems can be reduced through a systems-level modeling and optimization ap-

proach. More research still needs to be conducted to understand if the reduction in cost has

been great enough such that these systems are now a more feasible solution for smallholder

farmers.

Additionally, the work done in field trials demonstrated that the model presented in this

thesis simulates solar-powered drip irrigation designs that perform as predicted. The model

was also proven to be robust and flexible as a design was modeled for multiple weather

conditions with various resolutions and could be modeled with or without energy storage

options. A detailed sensitivity analysis of the model showed that for smallholder farms low

cost solar-powered drip irrigation system designs can avoid energy storage options and still

deliver water with 85-90% reliability. Additionally, emitters with lower flow rates can be used

in these systems to provide the crops with the same amount of water over longer periods of

time.

An area for future work is to improve the resolution of the weather data. An initial test

of this in the thesis showed that improving the resolution of the weather data could lead

to further cost reductions of the system, implying that low resolution data leads to over

sizing the system. Another improvement is allowing for flexible operation of the energy flow

instead of providing a fixed scheme. This would require a more detailed optimization scheme
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but could allow for more benefits to be explored such as irrigating during times when the

evaporation from the soil would be low. A model such as this could be used as a tool in

creating a controller that would allow for best irrigation practices to be automated. More

research needs to be conducted on the current irrigation practices of smallholder farmers to

see how beneficial automation would be and how it could be used.

Improvements to the yield module by incorporating more detailed models would allow for

yields, and thus revenues, to be more accurately predicted. Also, optimizing the hydraulic

network layout and geometry could lead to additional cost savings. Implementing a larger

database of pumps or creating a continuous function for the pump module could fix some of

the discontinuities observed in the results of the thesis. Additionally, modeling the pressure

drop across the filters and fertigation unit could cause the model to more accurately predict

how the systems perform. One limitation of the optimization is that it currently sizes very

small and unrealistic energy storage options for some optimal designs. In future iterations

of the model this will be fixed by imposing a realistic lower limit to the battery and tank

capacities. The model and learnings from the past field trials are currently being applied to

inform upcoming field trials designed to test inline low pressure drip emitters.
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Appendix

A.1 Sample Case Inputs

The inputs for the sample case are described in Table A.1. These inputs are for the cases

described and analyzed in Chapters 3 and 4.

A.2 Local Prices

Local prices were used to make up the numbers for the cost parameters in Section 3.3.2. These

numbers were obtained while working with the local partners for the field trials detailed in

Chapter 5. They were converted to unit values when necessary, as seen in Table A.2, so they

could be applied to a variety of smallholder farm sizes.
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Table A.1: Sample Case Inputs

Input Parameter Unit Amount

Location - Marrakesh, Morocco

Sand/ Clay [%% 25/ 35

Crop - Olive

Irrigation Type - Drip

Submain Number 3

Main Length [m] 300

Main Diameter [mmI 83

Submain Length(s) [im] 75/ 75/ 50

Submain Diameter [mm] 59

Lateral Length(s) [ml 50/ 50/ 50

Lateral Diameter [mm] 16

Crop Spacing [mx m] 5x5

Number Emitter [] 2

Emitter Exponent - 0.001

Activation Pressure [bar] 0.15

Added Pressure [m head] 4.6

Irrigation Start [date] 3/1/2019

System Lifetime [years] 20
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Table A.2: Local Economic Parameters

Parameter Unit Morocco Jordan

kepouve - 0.55 2.12

ki - 0.11 0.45

i - 0.035 0.06

inf - 0.02 0.025

km - 0.01 0.01

UCpuump( ] 450 450

UChyd [ UD] 2700 3500

UCemit [USD| 0.2 0.2

ucv USD 113 103

UCbatt [U} ] 355.32 355.32

UCtank USD 110 110
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