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Abstract

The ability to characterize and predict extreme events is a vital topic in fields ranging
from finance to ocean engineering. Typically, the most-extreme events are also the
most-rare, and it is this property that makes data collection and direct simulation
challenging. In this thesis, I will develop a data-driven objective, alpha-star, appro-
priate for optimizing extreme event predictor schemes. This objective is constructed

from the same principles as Reciever Operating Characteristic Curves, and exhibits a
geometric connection to scale separation. Additionally, I will demonstrate the appli-
cation of alpha-star to the advance prediction of intermittent extreme events in the
Majda-McLaughlin-Tabak model of a dispersive fluid.
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Chapter 1

Introduction

Many phenomena in a wide range of physical domains and engineering applications

have observable properties that are normally distributed, that is, they obey Gaussian

statistics. Gaussian-distributed random variables and processes are particularly easy

to manipulate algebraically, and there is a rich literature using their properties in

widely varying areas of probability and statistics, from Bayesian regression [131 to

stochastic differential equations [281.

In some applications, however, random variables have significant non-Gaussian

character. Frequently, the 'long-tails' of their distribution, which contain extreme,

but rare events, are particularly important for a complete understanding of the phe-

nomena in question. Examples of this behavior occur in ocean waves [21] and finance

[34] [52], but similar phenomana can help explain beahvior in fields as far afoot as

cell dynamics [5] and mechanical part failure [68].

There are many approaches to modeling nonlinear (non-Gaussian) distributions,

both parametric (bespoke distribution) and non-parametric (kernel methods). One

well-studied method is the Gaussian Mixture Model, and that method provides ap-

proximate analytic values for various statistical and information theoretic quantities

[1].

Unfortunately, while these approaches can capture the non-Gaussian nature of

the distribution near the median, they don't extend gracefully to the long tails or

extreme events. A typical naive Monte Carlo approach to sampling a distribution

17



with a long tail will require samples proportional to the reciprocal of the probability

of an extreme event occurring, which quickly becomes prohibitive for rare events.

More successful approaches to characterizing the long tail, such as large deviation

theory [23] and probabilistic decomposition 1421 instead take advantage of governing

equations. In many physical situations, we can create a full set of equations describing

the time evolution of a state vector, and leveraging these equations leads to effective

solutions to questions about extreme event statistics and precursor [67].

In other situations, we have approximate models that require nonlinear copulae

('closures') in order to capture extreme event dynamics well. In these scenarios, a

hybrid approach that combines equations and machine learning in order to determine

the copulae can be successful [64].

Finally, in other situations, either our approximate linear models break down dur-

ing extreme events, or we do not have approximate models at all. Instead, all we have

are observations ('Big Data') and we want to characterize systems and in particular

their extreme events in various ways. In thesis, I will discuss various mathematical

tools appropriate for the question of identifying extreme events precursors from data.

I will then construct a machine learning approach to find optimal precursors ('pre-

dictors'), and show how to apply it to two model systems that display intermittent

behavior.
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Chapter 2

Prior Literature

2.1 Binary Classification

2.1.1 Technique

Description

Binary classification is a supervised machine learning tool used in such fields as med-

ical testing, information retrieval, and signal detection in which data points can be

cleanly divided into two categories.

In supervised learning, data is provided that has been previously indicated as

belonging to one of two categories, positive and negative. Some fraction of the data,

the training set, it used to develop an algorithm which will predict which category a

given data point will belong to. Then, the remainder of the data is used to validate the

algorithm. The question arises, what metrics are best used to measure the goodness

of the classification of the validation data?

A typical binary classifier will assign each data point a prediction score between

0 and 1. The data points scored closer to 1 are points the classifier believes most

strongly to be positively scored. A threshold between 0 and 1 is introduced, based on

desired features such as sensitivity or specificity. By varying the threshold, different

balances between under-counting and over-counting true positives and negatives may

be struct.
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The literature for evaluating binary classification is voluminous. Kumari and

Srivastava ([31]) have reviewed 21 studies sock puppet detecting, demonstrating over

twenty different metrics for measuring the quality of binary classifications. Diettrich

([18]) has compared five statistical tests based on their ability to distinguish between

classification algorithms.

2.1.2 Evaluation

Basic Quantities

0
... .......

CLI

AO
Truth

Figure 2-1: Schematic diagram of the confusion matrix, representing false positives
and false negatives (type I and II errors), as well as true positives and true negatives.

A binary classification scheme produces four primitive quadrant counts, corre-

sponding to

TP True Positives

FP False Positives

FN False Negatives

20



TN True Negatives

The basic evaluation metrics for a binary classification scheme are the True Pos-

itive Rate (TPR, also called Sensitivity) and the True Negative Rate (TNR, also

called Specificity). These can be expressed as

T P
TPR = TP

T P + FN
T N

TNR = TN
T N + FP*

As the binary classifier approaches perfect classification, both quantities approach

1.

Another way to characterize the basic evaluation metrics is Precision (q) and

Recall (r), given by

TP
q TP + FP

TP
r = .(2.1)

TP+FN

Finally, an important characteristic of the underlying distribution is the Event

Rate, given by

TP+ FN
TP+FN +FP+ TN°

Together, q, r, and s (along with an overall scaling factor, the number of total

counts n = TP + FP + FN + TN) completely describe the binary classification and

are enough to reconstruct the primitive counts.

Precision-Recall Trade-off

In the medical diagnostic community, this trade-off is represented graphically in the

Receiver Operating Characteristic Curve (ROC) [62]. The x-axis is chosen to be

21



Sensitivity-Specificity ROC curve

0 02 04 0. 0.8
false positive rate

Figure 2-2: Sample Receiver Operating Characteristic Curve (ROC).

one minus the specificity, while the y-axis is chosen to be the sensitivity. The point

(0, 1) then represents perfect classification and the diagonal line from (0, 0) to (1, 1)

represents a completely random classifier.

A candidate classifier, applied to evaluation data, produces a classification with

some sensitivity and specificity. Typically, the sensitivity may be varied, for instance

by adjusting the pass threshold of the algorithm. The set of all such points (along

with some joining rule) is the ROC.

One popular metric to evaluate the ROC is the Area Under the Curve (AUC,

sometimes AUROC). Intuitively, a perfect classifier connects the points (0,0), (0,1),

and (1, 1) and has an integral of 1, while a random classifier connects (0, 0) to (1, 1)

and has an integral of 0.5.

Another use of the ROC plot is to determine the best choice of threshold. In a

review of threshold setting rules by Freeman and Moison ([19]), the authors noted.

that maximizing Youden's J statistic (sensitivity + specificity - 1) is equivalent to

finding the point on the ROC curve where the tangent slope is equal to 1. Another

threshold choice rule they compared was the ROC distance rule: choose the point on

the ROC curve closest to the point (0, 1).

One variant of the ROC relevant to rare event detection is the Concentrated ROC

(CROC), developed by Swamidass et al. ([48]). The CROC is a nonlinear rescaling

22



of the ROC which emphasizes early retrieval, that is, the data points most certain to

be classified as true positives.

Another variant is the Precision Recall Plot (PRC), which replaces the two axes

of the ROC with precision and recall. Various reviews have shown that the PRC

is better able to discriminate between classifiers when the data is wildly unbalanced

([27], [54]).

F-score

One commonly used metric that balances between precision and recall is the F-score,

given by

Fp= (1 + 32) 2 r (2.2)

where q is the precision and r is the recall. This is equivalent to a (weighted) harmonic

mean, where the choice of # weighs more heavily precision (false positives) or recall

(false negatives). Common choices for/ #include 0.5, 1, and 2.

One advantage of the F-score over other scalar metrics (such as Balanced Accuracy,

B = 1(TPR + TNR)) is that equation 2.2 may be calculated without reference to

the True Negative count. This is especially relevant in situations with unbalanced

data (see subsection 2.1.2).

Algorithms

Today, the most common approach to performing binary classification is called Sup-

port Vector Machine (SVM). SVM is a staple technique in Machine Learning, and its

theory and implementation can be found in many standard textbooks [51].

In SVM, the algorithm seeks to find a hyperplane through the input space that

best separates the data by maximizing a quantity called the geometric margin. When

the data is not exactly separable, the size of the geometric margin trades between

minimizing classification errors while maximizing classification confidence.

There is a tremendous literature on different implementations of SVM. The Pega-
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sos algorithm in particular, is designed for in-line computation {50]. Further, Vapnik

and Chervonenkis developed a rich theory of approximation error [61.

The objective function of SVM (usually log Hinge loss [37]) is usually augmented

by a regularization term [29]. This helps to control for overfitting to noise, while also

implicitly encoding a Bayesian-style prior.

Standard SVM is limited to a class of non-parametric linear hypotheses-the name-

sake separating hyperplane. A standard extension to linear prediction problems is to

augment the data vector with additional features: nonlinear functions of the other

input data. This extension allows a linear algorithm to take advantage of particular

nonlinear patterns in the data. Another extension, kernel-SVM, makes use of the

kernel trick in order to construct nonlinear, non-parametric predictors using implicit

nonlinear features.

One drawback of the non-parametric form is that physical interpretations of the

SVM predictor functions are difficult. The SVM predictor is, in some sense, an

explicit function of the training data-indeed, in the popular dual formulation of SVM

the prediction is a linear combination of every data point in the margin (the "support

vectors").

Unbalanced Data

In the extreme event context, one encounters the issue of unbalanced data. There

are far fewer extreme events than non-extreme events, and the unbalanced training

data sets cause problems for many of the more common techniques used. Solutions

include balance independent metrics ([54]) and data resampling (53]).

Sokolova and Lapalme [38] have shown that some but not all metrics may be in-

variant under certain changes in the confusion matrix, such as those that correspond

to unbalanced data. In particular, they note that precision and recall (but not speci-

ficity/true negative rate) are invariant under the number of true negatives counts, an

important property in the context of unbalanced data.
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2.1.3 Problems in the Extreme Event Context

The major difficulty with posing the problem of extreme event prediction in the

language of binary classification is reducing the nature of the extreme event to two

categories. An extreme event is merely some event on the long tail of a probability

distribution: there is rarely separation in the Rayleigh criterion sense. As a result,

the question of threshold, not for predictor but for indicator, arises.

One way to bull through this issue is to collapse the distinction between 'barely

extreme' events and 'very extreme' events. Another is to replace the binary classifica-

tion scheme with a scheme that contains bins for many different classes, though many

important algorithmic advantages are lost by the switch to multi-class classification

([56]).

2.2 Dimensionality Reduction

2.2.1 Main Theme

The application of dimensionality reduction techniques is as follows: suppose we have

a large number of data points of the form (ai, bi). If the shape of the distribution

is very nearly one dimensional, then knowing bi is very nearly 'as good as' knowing

ai. However, if the distribution cannot be reduced to one dimension without losing a

great deal of information (quantified, perhaps, as variance), then knowing bi alone is

not enough to recover ai accurately.

2.2.2 Principal Component Analysis

Algorithm

Principal Component Analysis (PCA) is a well-studied technique first developed by

Pearson [46] in order to decompose a set of (linearly) correlated data points into

uncorrelated variables. Each principal component has an associated variance, the

fraction of the total variance explained away by that component. These components
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can easily be used both for feature extraction and dimensionality reduction.

Given a zero-mean data matrix X with covariance matrix XTX, the transforma-

tion proceeds by identifying the loading vector w 1 that maximizes its share of the

data variance:

TXTXw1
w i argmax . (2.3)

Put another way, wi chosen so that after subtracting the wi components, the data

residuals have the least variance remaining.

This procedure is repeated until all of the data variance has been explained away,

producing an orthogonal basis T = {wi, w 2 , ... w}. The variances associated with

each basis vector are equal to the eigenvectors of the covariance matrix, XTX.

Application to Prediction

In two dimensions (one predictor, one indicator), PCA is a slight remapping of linear

least squares regression.

Limitations

PCA is a linear technique, with all the associated advantages and disadvantages. This

assumption readily breaks down in both model and real nonlinear systems.

In particular, PCA assumes that the relationship between predictor and indicator

is the same in all regions of the data space, even for extreme values. Even when the

real relation can be effectively linearized, this linearization is often valid only for the

'typical regime' and it breaks down for extreme events.

Because the PCA algorithm works by diagonalizing the covariance matrix, it is

sensitive to scaling issues. In particular, when different data axes have different

physical units, there is no meaningful choice of relative scale. This is particularly

acute in the case of constructed predictor functions, which may have no meaningful

scale.

One common choice to diagonalize the correlation matrix rather than the covari-
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ance matrix-in effect this choice normalizes for unit variance along each axis. See

Leznik and Tofallis [41] for a more detailed description of this issue.

2.2.3 Diffusion Map

Overview

Diffusion Maps is a kernel-based nonlinear dimensionality reduction method devel-

oped by Coifman and Lafon [47]. It has been applied to spectral clustering (11],

dynamical systems forecasting [58], and feature identification [591.

Diffusion Maps is motivated by the physical metaphor of heat diffusion, and using

the rate of diffusion between two data points as a global distance metric.

Algorithm

The diffusion map procedure makes use of a heat kernel K given by

K(x, y) = exp(-D(x, y)) exp( D(x, y)) D,(x, y) < 3 (2.4)
0 D(x, y) > 3

and a 'bare Euclidean distance' given by

D(x, y) = ,i 1 (2.5)

where J is free parameter much larger than the typical inter-point spacing. The

distance function has an artificial cutoff much larger than 6 for pairs for which K «1
(here set arbitrarily at 36). This simplifies matrix math later, and is equivalent to a

K-neighbors or E-ball decimation.

The diffusion kernel K is symmetric by construction. For the diffusion map pro-

cedure K is weighted by the following process
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D(x) = L K(x, y) (2.6)
y

= D-cKD~" (2.7)

D(") = diag(D) (2.8)

M - D(a)-L(a). (2.9)

When a = 1, the procedure is ostensibly independent of the data sampling.

Find the eigenvalues and eigenvectors of the matrix M. The first eigenvalue

(A 1 = 1) and eigenvector (uniform) are discarded. Then consider the next n largest

eigenvalues and their associated eigenvectors A and #j.

Index the data points by i. Then j-th diffusion coordinate of the i-th data point

is given by

Xjj = At#j(i), (2.10)

where t is a scale parameter. Increasing values of t cause the least important diffusion

coordinates to contribute less and less.

Limitations

Distributions with rare events typically feature diffuse borders, where the probability

density drops away but only reaches zero after a great distance. In between, there

is a region where p(x) ~ N-1 , and data points are very spread out. The diffusion

map kernel size suitable for the dense center of the distribution may be too small

to reach these distant islands, and as a result they each 'live' in a separate diffusion

coordinate.

One solution, proposed by Berry and Harlim ([60]) is to borrow the technique of

variable bandwidth kernels. In this technique, the characteristic diffusion length is

increased where the density of points is lowest. This has the advantage of eliminating

spurious islands. It has the disadvantage of both reducing discrimination amongst
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the extreme events, and introducing additional tuning parameters.

2.3 Information Theoretic Quantities

One way to talk about how well B predicts A is to ask how much information does an

observation of B give us about A? If each observation of B gives us no information

about A, then B cannot possibly be a better predictor for A than mere guesswork.

Conversely, if observations of B give a great deal of information about the state of A,

we should be able to leverage that information to make good predictions.

2.3.1 Preliminary Quantities

Probability Distribution

For a continuous random variable A, we define the probability density function p(A)

such that:

P(a1 < A < a2 ) = p(A)dA

p(A) > 0 VA

p(A)dA = 1.

A fuller treatment of continuous distributions may be found in any elementary

textbook on information theory, such as Cover and Thomas [57]. For our purposes,

we will also need to define the joint distribution of two random variables, given by

p(A, B) = p(A) n p(B), (2.11)

and the conditional distribution, given by

P(AIB) p(A, B)
pPA = (2.12)
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Entropy

The entropy of a continuous distribution is given by

H(A)= - p(A) logp(A)dA. (2.13)

By a quirk of math, the entropy of a continuous distribution is not bounded below

by zero. Nonetheless, distributional entropies can be compared: H(A) < H(B) can be

interpreted as the statement that the distribution of A is narrower or more localized

than the distribution of B.

This interpretation is easy to confirm in the case where # is a Guassian random

variable with covariance matrix E, in which case the entropy is given by

1
H() -log(27reIE 2). (2.14)

2

where IE Iis the determinant of the covariance matrix [32].

Relative Entropy

The relative entropy, sometimes called the Kullback Leibler divergence, is given by

DKL (A; B)= p(A) log dA.

Mutual Information

The mutual information between two probability distributions is given by

I(A, B))= J A B A , o dAdB, (2.15)
p( A)p(B)

or in terms of entropies as

I(A, B) = H(A)+ H(B) - H(A, B) = H(A) - H(AIB). (2.16)

The mutual information is the first quantity that might characterize the relation-

ship between A and B for prediction purposes. Mutual Information is more general
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than linear correlation [35], and in principal captures all of the relationship between

A and B available from the data.

2.3.2 Calculation from Data

General Notes on Calculation

In general, calculating mutual information from data involves all of the typical prob-

lems of deriving non-parametric distributions from data.

Binning Method

One way to calculate these quantities is to replace integrals over continuous probabil-

ity density functions with discrete sums over coarse-grained probability histograms.

This replaces the problem of estimating the distribution with one of discretization.

Fraser and Swinney [22] describe the general partitioning technique: define a

sequence of partitions Go, G1 of the d dimensional space, where each partition consists

of boxes. For each partition, the discrete mutual information can be expressed as

Id(Ad, Bd) = Ep(a , bq) logp(aj, b .) (2.17)
p (aj p(bi

At each step, one box (bo) is chosen according to some rule. Then, that box is

partitioned into 2 d sub-boxes (bk, k E [1, ... 2 d]) according to another rule, typically

one that attempts to match the counts of each sub-box.

If random variables along each axis are (approximately) independent over the

box bo, then the histogram counts of each sub box b' should be (approximately)

factorizeable. If this is the case, then box bo needs no further partitioning. If, however,

the histogram reveals deeper structure at the level of b , then define the next partition

as the previous partition, with the refinement b kin place of bo. Continue with this

process until for each box either there is no further substructure, or there are too few

data counts for meaningful statistics on sub-boxes.

This procedure is readily generalizable to calculating entropy by simply replacing

equation 2.17 with the expression for the entropy of a discrete distribution.
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Partitioning techniques have a number of drawbacks, particularly related to di-

mensionality of the probability space. Adaptive schemes, such as the one developed

by Darballay and Vajda [15], only partially address this limitation. Furthermore,

Paninski [45] demonstrations particular convergence difficulties for finite data, and

various bias correction schemes.

Coarse Graining

The binning methods in the previous subsubsection are designed to accurately esti-

mate the continuous entropy that would be achieved in the limit of infinitely small

bins. As an alternate approach, one could replace the limiting or convergence process

above with a target finite bin size.

Mutual information (and all these information theoretic quantities) is better be-

haved with discrete variables. Coarse graining is a commonly employed technique to

deliberately decimate the data at some scale in order to take advantage of these sim-

plifications. See, for instance, Katsoulakis and Plechi (2013) [30] for an application

of coarse grained information quantities in molecular systems.

Further, coarse graining is intimately tied to the physical thermodynamic inter-

pretation of entropy, in which observable macrostates are composed of many unique

but similar microstates.

Nearest Neighbor Method

A different starting point for the estimation of mutual information is to make use

of local topological properties of the data. Kraskov et al. [7] draw upon a rich

literature of k-nearest neighbor methods for calculating the entropy of one dimensional

distributions. The simplest entropy estimator is given by

H(X) =N- 1 i1 log(Xi+1 - X) + 4(1) - V@(N), (2.18)

where xz+1 - x are the intervals between successive data points and 4 is the digamma

function.
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Kraskov et al.'s extension of this technique to the calculation Mutual Information

is involved and attention is directed to their 2004 Physical Review E paper [7] for

implementation details. In sketch, their method is based on comparisons between E

balls in the joint space and each of the marginal spaces.

First, they interpret the definition of entropy (equation 2.13) as a sample space

average of logp(xi). This quantity is then expressed in terms of the number density

of data points inside of a certain E ball centered at xi. The size of this c ball is

defined by the distance to the k-nearest neighbor, under the infinity norm. Finally,

the authors judiciously choose different values of k for each of H(A), H(B), and

H(A, B) in order that certain statistical and systematic errors might approximately

cancel when combined into I(A, B).

The final estimator from Kraskov et al. [7] is given by

I(2 ) (A, B) = $(k) - - + O(N)- < (na)+ @(nb) >, (2.19)
k

where N is the number of data points, k « N is an algorithm choice, and na and nb

are the average data densities corresponding to the A and B marginal E balls.

Like all methods of calculating mutual information numerically from data, rigor-

ous error statistics for non-Gaussian distributions are difficult to create. However,

Kraskov et al. show better systematic error properties for multidimensional dis-

tributions using k-nearest neighbors compared to Darballay and Vajda's adaptive

partitioning method [15].

2.4 Causal Formulations

2.4.1 Random Processes

To define the following quantities, we take A and B to be stationary zero-mean

random processes.

Let A(t) be the value of the the random process A at time t. Then the p time

lags of A may be expressed as A(t - 1), A(t - 2), ... A(t - p). Let A()(t) be the 1 x p
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concatenated vector of lagged values, constructed as

A(P)(t) = (A(t - 1), A(t - 2), ... A(t - p)). (2.20)

Let A-(t) = lim,_,+o A(P)(t) be the concatenated limit of all lagged values. Due to

the stationarity assumption, explicit references to time t will hereafter be dropped.

2.4.2 Shannon Entropy Rate

The Shannon entropy rate for a discrete-time stochastic process is defined by

h = lim H(A(n- 1 ) - H(A(n)) = limH(A ()). (2.21)
n-0oo n-+oo n

This equation may be justified from block entropy constructions, and various

methods exist to use block entropies to estimate this quantity from sample processes

([8], [33]).

The entropy rate represents how much new information a source is generating over

time. This is relevant to many information sciences areas, such as data compression.

Here, the entropy rate serves as a link between quantities defined between distribu-

tions (such as Kullbeck-Leibler divergence and mutual information), and quantities

defined for processes (such as transfer entropy and Granger Causality, discussed be-

low).

2.4.3 Granger Causality

Granger causality was introduced by Wiener {66] and formalized by Granger 126] in

the context of econometric models.

Let Pt(AIB-) be the optimal predictor of A given access to the information con-

tained in the past time lags of B, and let a 2 (AB-) be the variance of the residual

errors. B Granger causes A iff 2 (AIA- D B-) < a2 (AIA-). Put another way, B

Granger causes A if past knowledge of B improves the prediction quality of A above

and beyond past knowledge of A itself.
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We borrow the final expression from Barnett et al. [36]: the Granger causality of

B onto A is given by

FB-,A = log( 02 A -), (2.22)
o 2(A|A- ID B-)

and takes values on [0, oo) that increase with causal strength.

In Granger's original paper, the author was careful to define all quantities relative

to a background set D of all other relevant information in order to ferret out potential

spurious third causes. In the context of prediction, this 'universe of potential causes'

is restricted to the data available to potential predictors. In a practical scenario, it

may well be the case that both buoy readings and wave heights are efficiently caused

by some third quantity. Nonetheless, if the buoy readings Granger cause wave heights

measurements then they satisfy the requirements for a good predictor.

There are two important approximations to be made to equation 2.22 in order to

practically calculate it. First, instead of using the full time histories A- and B- as

predictor inputs, the truncated lag sequences A() and B(P) are used instead. Second,

instead of the optimal unbiased predictor Pt and associated residual variance oa,

Granger suggested the use of the optimal linear predictor and its residuals.

Under these approximations, computation of the Granger Causality of B on A is

reduced to a set of linear regression problems. While this is appropriate for many

kinds of prediction, extreme events are frequently marked by a large degree of non-

linearity.

2.4.4 Transfer Entropy

Transfer entropy ([3]) is a quantity that measures the directed transfer of information

from one process to another. It may be defined in terms of mutual information as

T(A, A() B() = I(A, A() e B() - I(A, A() = I(A, B() IA()). (2.23)

35



This quantity is motivated as the additional information about the transition

probability of A that past knowledge of B provides above and beyond past knowledge

of A.

For Gaussian processes, the entropy calculations in equation 2.23 can be simplified

via covariance matrices (identity 2.23). Under this assumption, Barnett et al. showed

that transfer entropy and Granger causality are equivalent [36].

Unfortunately, intermittent systems are rarely Gaussian and this correspondence

will not apply to the prediction of rare events. Unlike Granger causality, transfer

entropy inherits the invariance under nonlinear transformations characteristic of in-

formation theoretic quantities. This invariance may be compared to the practical

decision of Granger to use optimal linear regression instead of the more general opti-

mal predictor Pt (see, for instance, [35] for a comparison of mutual information with

linear correlation).

2.4.5 Comments on Prediction

All of these quantities have difficulties in the context of predicting extreme events

that can be summarized as 'nonconstructive.'

The Granger causality is defined in terms of an optimal predictor and its associated

residual variance, but gives no suggestions on how to calculate it. Indeed, Granger's

suggestion is to search the class of linear predictors, and assume that the optimal

linear predictor is good enough.

Transfer entropy calculations require numerical calculations of high dimension

mutual informations, which is a daunting problem. But even this doesn't quite solve

the prediction problem. To say that the process B has a high transfer entropy into A

is merely to say that knowing B should give the experimenter enough information to

predict A well; it does not tell the experiment how to use that information to make

predictions.

It is likely better to conceptualize these quantities as expensive 'goodness mea-

sures' for specific predictors, rather than as appropriate tools for constructing predic-

tors.
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2.5 Delay Embedding Theorems

2.5.1 Overview

In most practical dynamical systems, there is no direct access to measure the state of

the system. Instead, there are a small number of observable functions, the measure-

ment of which produces a set of time series. This restriction is intuitively sensible:

rather than measure Euclidean velocity in the ocean at at every point at all times,

we only have access to measurements at a finite number of buoys (or, depending on

satellite coverage, access to a certain set of measurement restricted to the sea surface).

A delay embedding theorem gives the conditions under which the time series of the

observable may be used to recover the state of the underlying dynamical system.

2.5.2 Taken's Theorem

Floris Takens (1981) [55] proved that, assuming no special symmetries, a sequence of

2m + 1 delays would always suffice to reconstruct and underlying compact manifold

of dimensionm. Formally, the theorem states:

Theorem 1. Let M be a compact manifold of dimension m. For pairs (#, y),#

M - M a smooth diffeomorphism and y : M -+ R a smooth function, it is a generic

property that the map 4p, : M -7 2+1, defined by

<b,,(x) = (y(x), y(#(x)), ... , y(#2",(x))), (2.24)

is an embedding; by "smooth" we mean at least C 2.

Restated in less technical jargon, # defines the time evolution of some discrete-time

dynamical system with state x. That is to say, given x(t), we have #(x(t)) = x(t +r)

Whatever the dimension of the space that x is defined on, the dynamics are

restricted to some m-dimensional manifold M. While we don't have access to the

true state x, we do have access to some scalar observable function y(x).

By measuring the time series of y(x), we can construct a sequence of time lags
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,Y(x) = (y(x), y(4(x)),..., y(#"(x))). This sequence is an embedding of the dynam-

ical manifold M; that is, all of the interesting features of M are preserved in D(x),

and any calculations depending on M should be calculable with just 4,y(x).

Takens's result was proved in the context of strange attractors, where there is

research interest in the dimension and entropy of the attracting surface of some chaotic

system. See, for instance, Arbarbanel (1996) [4] for an in-depth description of how

to apply this type of delay embedding theory to study chaotic systems.

2.5.3 Implementation Challenges

There are a few difficulties in translating this theory into practical applications in

systems featuring extreme event:

• ODE vs PDE systems

* sensitivity to measurement error

" high dimensional computation concerns

First, the theorem is proven for dynamical systems on a compact manifold of

dimension m. That is to say, a system of ordinary differential equations of finite

dimension. Many of systems of interest in extreme events are best defined as partial

differential equations. While there are standard methods of reducing PDE systems to

ODE systems (finite difference, finite volume, finite element, etc), the immutability

of a single dimension m is mortally weakened.

This is doubly so in the case of chaotic PDE systems, which are marked by a

continuous spectra that corresponds to an infinite dimensional manifold. The best

that can be hoped for is some finite truncation of the m most significant eigen-modes.

Second, while Takens's theorem demands that the observable y be smooth, it

makes little claim about the smoothness and sensitivity of the embedding in(x).

This is a problem, because any real measurement of y(x) will be subject to some

measurement error Ay. If the geometry of the recovered embedding depends on

precise relative measurement of two quantities measured some long period apart in
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time (2mr), the effective measurement error may grow like exp(2mrA), where A is

the dynamical system's greatest Lyanpunov exponent.

Attempts to ameliorate this trend, by taking short time delays to that T <,

run into an opposite sort of numerical instability: a set of different vectors 4,,(x)

(for different initial Xk, for instance) will be very nearly collinear in the vector space

7 2 +l. Put equivalently, there is implicitly a linear transformation A, and the matrix

A is very badly conditioned. Thus, small errors in the measurement of y(x) again

propagate and become large errors in the embedding <D,(x).

Third, one immediate use of the recovered embedding is in calculating distribu-

tional entropies. While entropy is a well defined quantity in high dimensional contexts

(see, for instance, Lesne 2014 [33]), numerical calculations quickly become intractable

as the dimension increases.

Unfortunately, systems exhibiting extreme events are invariably high dimensional,

and it is not clear that the tricks used for dimensionality reduction (42], [44]) translate

into this approach.

2.5.4 Convergent Cross Mapping

In order to quantify causality in weakly coupled dynamical systems, Sugihara et al.

([25]) developed a alternative to Granger Causality called Convergent Cross Map-

ping (CCM). This technique compares lagged time series drawn from different scalar

observables to find cross correlations from one to the other. In particular, a certain

difference in directed correlations leads to the inference that one observable is causally

correlated with the other (though see rebuttals, [401 and [14]).

The machinery underlying CCM is centered around a set of trajectory libraries

constructed from training data. To make a forward prediction from a given time

series, one interpolates the best match between other similar trajectories, and makes

the corresponding interpolation between their future path.

In the extreme event case, the CCM technique is caught in a double bind. On

the one hand, causal statements are too strong for a merely predictive context. On

the other, the library look-up procedure for making forward predictions is either a
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too-simplistic solution to the prediction problem, or simply the algorithmic black box

begging to be replaced by any other preferred technique.

2.6 Mixed Methods

2.6.1 Overview

In some models, we have a full and explicit set of equations that model intermittent

or extreme phenomena. In these cases, we can leverage these equations in addition

to sample trajectories to understand how extreme events form, and how to predict

them. Further, we can always use the equations to simulate new trajectories.

This section attempts to summarize, in particular, the work of Cousins and Sapsis

(2014) [67], Farazmand and Sapsis (2017 [20], and Wan and Sapsis (2018) [64].

The basic procedure for mixed methods can be summarized as follows:

1. use the equations to determine a set of trajectories that maximizes some growth

condition

2. use a pool of sample trajectories to determine the probability density of the

previously identified trajectories

3. use problem-domain knowledge to identify a metric that well-classifies trajec-

tories based on observable data

It is the first step that uses the full equations and distinguishes mixed methods

from fully data driven methods. In the remainder of this section, two approaches to

this first step are summarized.

2.6.2 Ansatz Solution

Cousins and Sapsis [67] examine the Majda-Machlaughlin-Tabak (MMT) model, a

one dimensional nonlinear model of dispersive waves that exhibits a Benjamin-Feir

type instability [2]. They give the MMT model as
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Figure 2-3: a) Plot of critical energy density rcrit(L) in the MMT model, as a function

of length scale L. b) Plot of rcrit(L, b) as a function of both length scale L and

background energy density b. Figures taken from Cousins and Sapsis (2014) [67], Fig.

4 and 6.

iut = |82|"a + A I 2| 2(| l |2 2| U) + iDu. (2.25)

In the zero damping limit, they identify a family of scale invariant solutions given

by

1 x: t
WL(X,t) 1U( aI (2.26)

L2 L La

Using this family of solutions, along with a well studied four wave interaction [16],

they identify a critical local energy density rcrit(L), with the same scale invariant

properties. Solutions that exceed this local energy density will initiate a blow-up in

finite time.

In the selectively damped case, the shape of rcrit(L) changes because at small

length scales perturbations are dissipated before they can grow, as shown in figure

2-3.

In general, perturbations are not isolated. Therefore, the critical energy density

rcrit(L) may also -depend on the background energy b. The authors perform both lin-

earized stability analysis and numerical experiments to determine the critical energy

as a function of both length scale and background energy.

Together, these results can be summarized in the following: a solution with local

energy density exceeding rcrit(L, b) will (very likely) exhibit unstable growth, and

this critical energy density rcrit(L, b) can be determined solely by reference to 2.25.
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2.6.3 Variational Approach

Farazmand and Sapsis (2017) [20] develop an alternative framework for using equa-

tions to predict extreme events. This variational approach seeks out an unstable

manifold associated with extreme event progenitors, and then predicts extreme events

based on trajectories entering this manifold.

In the general case, an intermittent set of nonlinear partial differential equations

can be expressed as the following:

tu = N(u)

C(u) = 0

u(., to) = uO(.), (2.27)

where N and A are some (nonlinear) differential operators that represent time evo-

lution and boundary conditions, respectively.

The variational approach is characterized by the following steps:

• define some scalar observable I(u(t))

" look for trajectories uo(t) that maximizes this observable

• subject to feasibility constraints

More formally, we can express this program as the solution to the following prob-

lem:

no = argsupoEX [I(u(to + )) - I(u(to))]

uo(t) satisfies equations 2.27

C(uo) = co. (2.28)
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The first line in equation 2.28 requires that the trajectory correspond to extreme

events, or at least the sort of locally maximal events commonly associated with inter-

mittent behavior. The second line requires that the trajectories be physical, and the

third requires that they be 'realizable,' in problem-specific sense that corresponds to

the requirement that likelihood of the given trajectory be nonvanishing.

The authors apply this approach, along with a functional optimization toolset, to

the Kolmogorov Flow model of 2D incompressible fluid flow.

2.6.4 Closure Models

A different equation based approach is exhibited by Wan and Sapsis (2018) [64] in

the context of particle-in-fluid motion. Here, the authors construct a blended slow

manifold model to approximating the Maxey-Riley equation of motion [39]. This

model combines a leading order perturbative approximation to the velocity term

along with a data-driven closure term:

x(t) = v*(t) + Vd(t)

v*(t) = u(x, t) + E( R - 1) Du(xt)
2 Dt

Vd(t) = G(((t), ((t- T), ((t- 2r),...). (2.29)

The leading order perturbative approximation v*(t) will be inaccurate when either

the parameter c grows or when the flow field advective derivative Du x,t) is large. In

both cases, machine learning techniques-here, a Long Short-Term Memory (LSTM)

Recurrent Neural Network (RNN)-are used to learn the data-model mismatch term

Vd(t).

2.6.5 Point of Departure

The three approaches described above are all linked by requires a set of equations to

describe the system: either a complete set, or at least a leading order approximation.
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Some intermittent systems of interest, however, do not have equations that adequately

describe them. This may be either because the best approximate equations simply do

not reproduce extreme events, such as options pricing and the Black-Scholes model

10, or because the underlying system is poorly understood, such as in biological

systems like cell adaptation [5].

2.7 Optimization Problems

2.7.1 Overview

Optimization Theory is a well-studied branch of mathematics, commonly covered

in both undergraduate and graduate curricula. In this section, we will only briefly

recapitulate the problem formulation, and then examine two approaches.

In an optimization problem, we seek a vector x E Q that extremizes (without loss

of generality, minimizes) the scalar function f(x). That is, we seek

x0 = argminxaf (x). (2.30)

For simple problems, such as the linear function f(x) = wTx, this can be done

by directly solving

Vf(x) = 0, (2.31)

and exhaustively searching through the solutions Xk. If Q is closed, this direct search

may further involve a recursive search through the boundary space 8Q.

In the more general case, however, closed form solutions to 2.31 do not exist. In

those cases, some iterative algorithm is used to select a sequence of trial points {Xk}

that hopefully converges to the global minimum.

The simplest case is when the function f(x) is convex. In this case, any local

minimum is also a global minimum, which greatly facilitates the search. In the more

general, non-convex case, some additional work must to done to ensure that the local

minimum found is also a global minimum.
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There is a wealth of optimization algorithms in the literature, and the choice

between them is problem dependent. Some of the factors relevant to the decision

include:

" Dimension of Q

* 'Size' and 'shape' of Q

* Linearity or non-linearity of f(x)

" Smoothness of f(x)

" Convexity of f(x)

" Ease of calculating f(x)

" Deterministic or stochastic nature of f(x)

" Existence of analytic gradient Vf(x)

" Existence of analytic Hessian Hf(x)

2.7.2 Gradient Methods

The most common family of iterative algorithms uses the local gradient Vxf(xk) to

determine the trial point Xk+1-

The simplest example from this family is the method of steepest descent. In this

method, the iterates are given by

Xk+1 - Xk - YkVf(k), (2.32)

where yk is a step size that may depend on the step count k, the local value of the

function f(xk) (or its gradient Vxf(x), or Hessian H(x)), or something else.

Steepest descent is a slow first order method, and it has well-studied issues such

as a tendency to zig-zag near certain kinds of extrema. Various extensions such as

momentum terms have been proposed. Additionally, convergence can be improved for
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many kinds of problems: for instance, smooth problems with higher order derivatives

(Hessian) can be exploited to converge faster.

The method of steepest descent is guaranteed to converge only to a local minimum.

One way to attempt to achieve global minimization is to repeat the algorithm from

many initial guesses x0 . Each local minima has a different basin of attraction; by

judicious sampling of enough starting points it is likely one sequence will converge to

the global minimum.

One well-known extension to the gradient descent methods, called Stochastic Gra-

dient Descent (SGD) makes use of a stochastic approximation S[g(x)] = Vf(x). This

procedure arises frequently in the context of machine learning big data, where f is

really a function of some distribution Y but can only be approximated by random

samples {y} E Y, or where f (x) = E<fj(x) for some very large J.

The major limitation of gradient-based methods is that they require a 'smooth

enough' function with an 'easy to calculate' gradient. For a low dimensional space Q,

the gradient can be approximated by a finite difference method. As the dimension of

Q grows, however, this quickly becomes prohibitive.

2.7.3 Interpolation Search

Another way to optimize f(x) without a gradient is to replace f(x) with a surrogate

g(x) with the properties that:

• g(xk) a f(xk) for every point that f(xk) is known

• g(x), Vg(k), etc. are 'easy' to evaluate [6][63]

In surrogate optimization, g(x) can be thought of as an interpolation of the true

response function f(x). There are many approaches to this interpolation, included

Kriging models and support vector regression models. The Matlab software imple-

mentatin uses a global interpolation uses a radial basis function approximation [65].

What all surrogate methods have in common is that they query the surrogate

function g(x) in order to minimize the number of function evaluations of f(x). Be-
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cause this interpolation step adds significant overhead, surrogate search methods are

most appropriate when evaluations of f(x) are expensive.

Surrogate optimization owes its origins to sensitivity analysis and optimal exper-

iment design. Because of this, the algorithm can be seen to balance two competing

goals: exploration and exploitation. Exploration is the desire to globally sample the

space Q to find promising regions. Emphasis on exploration helps to avoid the search

getting trapped in local optima, and is usually formulated in terms of maximally

reducing the global uncertainty of the surrogate g(x). Exploitation is the desire to

search Q near the current best guess for the local optimum. Emphasis on exploitation

is usually formulated as choosing points near the global minimum of g(x), which is

the 'best guess' for the global minimum of f(x).

Surrogate search algorithms are typically divided into two stages. In the first

stage, points are pseudo-randomly sampled across the entire space Q without regard

to the shape of f(x). A common strategies in this stage, especially when Q is high

dimensional, is to sample points according to a Latin hypercube.

In the second adaptive stage, the competing goals of exploration and exploitation

are balanced. In schematic form, the procedure can be expressed as:

• Use the surrogate gk-l(x) to pick a trial point xk

• Use the function f(x) to evaluate f(xk)

" Use the pair (Xk, f(xk)) to update the surrogate gk(x)

To help avoid spurious local minima, surrogate search may employ a 'surrogate

reset' step. After the adaptive phase has converged, all second stage points are dis-

carded, and an additional set of new pseudo-random points are sampled. Afterwards,

a new second stage is begun.

While the surrogate function g(x) is deterministic, there has been some work in

extending this approach to stochastic functions f(x; w), see for instance, Sankaran et

al. (2010) [49].
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2.8 Postmortem: Discarded Attempt

2.8.1 Overview

This section contains a description and post-mortem reflection of a previous attempt

to address the problem of extreme event prediction. Sections 2.8.2, 2.8.3, and 2.8.4

present the absolute discrimination in a context-free setting. Section 2.8.5 examines

the challenges facing this approach, and explains why it turned out to be a dead-end.

2.8.2 Retrospective Stencil

For a more full treatment of this issue, see section 4.3.

Evaluating the goodness a predictor B requires the joint pdf p(A, B) of paired

predictor-indicator values, and with finite data this joint pdf is approximated as a

histogram of (Ak, Bk) pairs.

A large value of B at a certain point (xo, to) normally has a certain amount of

fuzziness associated with it: we would call the prediction good if there were a true

extreme event near (xo, to + T). Further, the paired (Ak, Bk) data may be different

if we take predictions at each point and look for corresponding extreme events, or if

we take events at each point and look for corresponding predictions.

In many applications, we value recall more highly than precision. Therefore, to

construct the retrospective histogram of (Ak, Bk), for every point in the domain we

take the local indicator value, Ak, and pair it with the highest value of the predictor

within a retrospective region, Bk. The retrospective region is the cylinder with height

At and radius Ax centered on the point (Xk, tk- dt).

2.8.3 Absolute Discrimination

The histogram of (Ak, Bk) is a discrete approximation to the joint probability distribu-

tion p(A, B). This joint pdf has both a marginal distribution p(B) and a conditional

distribution p(BIA). The absolute difference between the mean B = f Bp(B)dB
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and the conditional mean pBIA = f Bp(BIA)dB is the local absolute retrospec-

tive discrimination, and is given by

dr(A) = |pBIA - pB| = j Bp(BIA)dB- Bp(B)dB|. (2.33)

The local absolute retrospective discrimination measures the difference in the

mean of the distribution of best predictor values B given knowledge of the asso-

ciated indicator A. This retrospective viewpoint is best suited to emphasize the pairs

(Ak, Bk) that actually correspond to extreme events-and to see if they have extreme

predictions.

The absolute retrospective discrimination, defined as

Dr= Y dr(A) B|A ~ BdA, (2.34)
A

is the area between the curve f(A) = pBIA, the average predictor for events of extreme

value A, and pB, the mean predictor for all events.

D, is maximized when pBIA 5 pB for 'many' values of A. That is to say, for 'many'

values of A, knowledge of A gives additional knowledge about the distribution of B.

This is similar to the statement that relative entropy from p(B) to p(BIA) is positive,

though Dr only tracks the mean and not the higher moments of the distribution.

In practice, the overwhelming number of not-very-extreme-events means that

pBIA pB except when A takes extreme values. If B is a good predictor, then

B will also take extreme values,.

2.8.4 Interpretation

The quantity D, does not correspond directly to the recall of B for A, and it's

absolute magnitude does not have any particular physical interpretation. Rather,

for two potential predictors B() and B(, the relative magnitudes of D and D.

correspond to the relative goodness of each predictor for extreme values of A. In

the examples below, the predictor from a specified class that maximizes Dr will be
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interpreted as the best predictor.

2.8.5 Challenges

The absolute discrimination faces three major types of challenges. First, because it

can be be understood as a type non-parametric regression, it faces all of the associated

challenges. In particular, relatively small extreme event counts leads to imprecise

estimation of pBIA for extreme A.

Second, the explicit computation of quantities like pB cause the precise measure

properties of the training data to become important. As discussed later in section

4.3, this is a complicated issue, and a robust metric ought be less sensitive to the

technical choices in this area.

Third, D, does not have an easy interpretation as anything other than a raw

ranking of different predictor choices. This requires a fallback to other quantities,

like total accuracy, in order to characterize a predictors quality in an absolute sense.

Additionally, Dr and the entire BIA graph fail to offer nuanced information about the

false positive false negative trade-off decision, instead hiding the issue in the choice

of retrospective stencil.

Finally, equations 2.33 and 2.34 are not invariant under rescalings of either the

true indicator function A or the predictor function B. While linear transformations

may be swallowed by normalization conditions, the different choices of amplitude or

energy (JAI or |A 2 ) will lead, in general, to different optimal predictors.
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Chapter 3

Receiver Operating Characteristic

Metrics

3.1 Problem Overview

In order to overcome the problems inherent in applying standard loss function for-

mulations to extreme events, in this report we will develop an alternate methodology.

This methodology, though based on binary classification into quiescent and extreme

bins, will be based on an extension to the concept of receiver operating characteristic

curves. As a result, this method will not depend on particular choice of threshold,

either of the indicator or predictor.

We will start by identifying a set of derived quantities, precision and recall, that

are better suited than the total error rate to the case of extreme events. Next, we will

show how to use these quantities to derive a receiver operating characteristic curve

whose integral has a straightforward interpretation as a performance metric that is

independent of the choice of predictor threshold.

We will then show how to straightforwardly generalize this curve into a surface

containing all possibles choices of threshold for both indicator and predictor. We

will point out features of this surface, including a knuckle that corresponds to scale

separation in the underlying system. Finally, we use will use features of this surface,

including its integral, to construct a collection of metrics that are well suited to
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evaluating predictors.

The last section of this report will demonstrate the application of this methodology

to three test scenarios, including a system with scale separation, and one that is

fundamentally linearly inseparable.

3.2 Groundwork

3.2.1 Basic Quantities

A training data set takes the form of a set of pairsS= {(ai, bi)}, where ai is the

indicator of the ith data point, and bi is the corresponding predictor. The set of these

predictor-indicators pairs together defines a two dimensional joint distribution, with

probability density function (pdf) fab(a, b) and cumulative integral function

Fab(h,)= ai > &, b >b). (3.1)

The function Fab(, b) may be interpreted as the probability that a give pair lies

above both a threshold & along the indicator dimension and b along the predictor

dimension. We use hat notation when the choice of & or b corresponds implicitly to

a threshold in this sense. A value exceeding the threshold is called extreme, and a

value not exceeding it is called quiescent.

The function Fab(&, b)is similar to, but not the same as the cumulative distribution

function (cdf) P(ai < ,b < b). The given form of integrated probability is chosen

for this work, because the prediction problem privileges the 'quadrant' of the pdf

containing true positives, and derivatives of this integral will appear.

The cumulative integral function can be related to the cdf and its marginals by

the formula

P(a > ,, bi > u1 - P(at < e) - P(bi < b) + P(a < t, b < ) (3.2)

Henceforth, we will only refer to the cumulative integral function F,,b(5, b).
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The joint distribution may be constructed from simulations, from empirical mea-

surements, or from analytical models. We will use the term histogram in this report

to refer to the data and its functional representation as a probability distribution.

A fixed choice of & and b defines a binary classification with four possibilities:

• True Positive - an event predicted to be extreme that is actually extreme

" True Negative - an event predicted to be quiescent that is actually quiescent

" False Positive - an event predicted to be extreme that is actually quiescent

" False Negative - an event predicted to be quiescent that is actually extreme

From this classification, we will define the following three important quantities:

Definition 3.2.1 (Derived Quantities). The precision, denoted by s, is the proba-

bility that an event is a true positive, given that is is predicted to be extreme. The

recall (sometimes called specificity), denoted by r, is the probability than an event is

a true positive, given that is is actually extreme. The extreme event rate, denoted

by q, is the probability that an event is actually extreme.

In probabilistic notation, these quantities may be expressed as:

s(a, b) = P(a > ei|b > b).

r(&,b) = P(b > b|a > d)

q(a) = P(a > &). (3.3)

The precision, recall, and extreme event rate may be expressed in terms of the

cumulative integral function (and its marginals) using the following helper functions:

D(e, b; Fa) = Fab(&,b)

E(b; Fab) =Fab(-oo,b)= Fb(b)

F(&;Fab) =Fa(, -oo) F(&). (3.4)
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Using these helper functions, the derived quantities may be written as

D(,; Fab)
s(&, b; Fab) --

E(b; Fb)

D(&, b; Fab)r(et, b; Fa) = F(;,)

q(&; Fab) = F(&; Fa). (3.5)

From hereon, the functional dependence of quantities on the cumulative integral

function Fabwill be suppressed except when relevant.

3.2.2 Basic Properties

By construction, the derived quantities have the following monotonicity properties:

Theorem 2 (Monotonicity). The precision, s(, ), is monotonic in its first argu-

ment, e. The recall, r(&, b), is monotonic in its second argument, b. The ferocity,

q(&), is monotonic in its first argument, &.

Additionally, the choice of precision and recall as binary classification metrics is

motivated by the following three invariances:

Theorem 3 (Invariance-I). Precision, recall, and extreme event rate depend only on

the shape of Fa,b

Theorem 4 (Invariance-II). Let f1(a,b) and f2(a,b) be two histograms with the prop-

erty that, outside of a certain region [-oo,a*|][-oo, b*], f1(a, b)= f2 (a, b) for some

fixed constant 3. That is to say, f1(a,b) and f2(a,b) correspond to histograms that

differ only by some number of points (ai,bi) for which ai < a* and bi < b*.

Then for all & > a* and b > b*, s(d, b; F1 ) = s(e, b; F2) and r(e, b; F1 ) = r(e, b; F2 ).

Theorem 5 (Invariance-III). Let hi(y), h2 (y) : R -+ R be order-preserving mono-

tonic functions. Let Fab be a histogram, and let Fx be the histogram formed from the

data set {(hi(a), h 2 (bi))}. Then
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s(e, b; Fab)= s(hi(e), h2(b); Fy)

r(et, 6; Fb) = r (hi(et),I h2 (b); Fry)

q(&t; Fab) = q(hi(e); Fo). (3.6)

In other words, precision, recall, and extreme event rate are invariant under arbi-

trary nonlinear rescalings of the indicator and predictor.

Proof. The proof of 3 follows directly from the definitions of q, r, and s in 3.3, where

they are expressed in terms of conditional probabilities.

The proof of 4 follows from the restatement of definition 3.3 in the form of the

helper functions in equations 3.4 and 3.5. The cif Fab may be expressed as a definite

integral of the pdf fab, with limits as given in the statement of the theorem. Therefor,

any differences in the histogram outside of the limits of integration cannot impact the

value of the definite integral.

Because s and r are ratios of definite integrals, each of which is linear in its

integrand, they are invariant under the linear rescaling #. Note that this is not true

for q, which is not defined as a ratio.

Finally, the proof of 5 follows from the familiar u-substitution rule of ordinary

calculus, restricted to a class of particularly well behaved substitutions. LI

The invariance in theorem 3 justifies the ambivalence we will display between pdf

formulation and histogram formulations in the discussion to come.

The invariance of theorem 4 is directly aimed at the preference for extreme events.

A predictor designed to predict extreme events should not be sensitive to very qui-

escent training data events. This invariance may justify pruning the data, such as a

resampling technique that preferentially discards quiescent events.

Note that while precision and recall are invariant, the extreme event rate is not.

That is to say, by removing quiescent events from the data set, the apparent fraction

of extreme events will increase.
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Figure 3-1: Plot of a) a sample pdf and b) the corresponding precision recall (SR)
curve. Each circle corresponds to a (&, b) pair: the curve is generated by fixing & and
letting b vary.

The final invariance (5), minimizes the issue of scale in the choice of the indicator

and predictor functions. For instance, an indicator for extreme waves may be wave

height (x) or energy (~ X2). However, because of the monotonic relationship

between height and energy, the choice won't effect derived quantities further down

the line. This is particularly useful in limiting the hypothesis space of potential

predictors.

3.3 QRS Surface

3.3.1 Precision Recall Curve

Precision, recall, and extreme event rate are dependent on the choice of & and b,

together the choice of thresholds define a set of possible s-q-r tuples.

Definition 3.3.1 (Precision Recall Curve). For a fixed e, the precision recall curve

(SR curve) is the parametric curve defined by

(3.7)p(b; ) (r(h, b), s(
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Because r(&, b) is invertible in its second argument (theorem 2), this curve can

also be interpretted to express precision as a unique function of recall and the extreme

event rate:

s = s(r; q). (3.8)

An example SR curve (for fixed q) is exhibited in figure 3-1. A few features

stand out. First, smaller values of recall correspond to larger values of precision, and

vice versa. This is intuitive: in order to be sure to catch every extreme event (high

recall), the predictor will have to let through many false positive quiescent events

(low precision).

Second, this SR curve is monotonic. This feature is riot guaranteed by construc-

tion. However, it is a typical feature because for a good predictor P(a > &b) is

'mostly' monotonic increasing in b. Any SR curve p1 that is not monotonic can be

transformed into a new SR curve P2 such P2 is monotonic and P2 dominates p1 (see

appendix 3.7).

Third, the precision doesn't fall to 0 with increasing r, even when the predictor

threshold (b) is arbitrarily small. Instead, the following limit obtains:

Theorem 6 (Extreme Event Rate Correspondence). Let Fab be a histogram with SR

curve p corresponding to extreme event rate q. Then

lim s(r; q) = q. (3.9)
r-+1

3.3.2 Precision Recall Curve Metric

The SR curve can be used to measure the quality of a predictor independently of the

choice of predictor threshold 6. The ideal predictor's SR curve would run from (0, 1)

to (1, 1), and then down from (1, 1) to (q, 1).

One way measure the predictor quality would be to take the distance of closest

approach between the curve and the point (1, 1). This method, which sees some use

in evaluating precision recall curves, is difficult to generalize to the 3D context of
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variable extreme event rate.

Another way to evaluate the SR curve is given below:

Definition 3.3.2 (Area Under the Curve). The Area Under the Curve (a) is the

area under the SR curve corresponding to indicator threshold e (alternatively q(a)),

and may be expressed as

a(j) = s(r)dr

= f s(b)| I|rdb. (3.10)- MOO Ab

For two predictor histograms fi and f2, with corresponding SR curves pi and P2,

if Vr E [0, 1] si(r) >-s 2 (r), then ai a 2 , with strict inequality if s1 (r) > s 2 (r) over

some interval of finite measure. However, the converse is not true: a SR curve p1 may

exceed P2 over some intervals but not others, and vice versa.

3.3.3 Precision Recall Rate Surface

The area under the curve a evaluates a predictor without making an explicit choice

of b. We can take this process one step further to remove dependence on a.

Definition 3.3.3 (QRS Surface). The precision recall rate surface (QRS surface)

is the parametric surface defined by

o-(6, b) = (r(&, b), s(,b),q(e)). (3.11)

Like the SR curve, q and r may be inverted sequentially to expressed the surface

as a function given by

s = s(r(d, b), q(e)). (3.12)
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Figure 3-2: Plot of a sample Precision Recall Extreme Event Rate (QRS) Surface.
The surface is generated by varying & and b.

3.3.4 Precision Recall Rate Surface Metric

By analogy with the a functional on the SR curve, we can define an enclosed volume

functional for the QRS surface as well. And, like the a, this volume under the surface

also partially orders predictors by quality.

Definition 3.3.4 (Volume Under the Surface). The Volume Under the Surface

(V) is the volume under the precision recall rate surface, and may be expressed as

V= jj s(r, q)drdq/1 1o

(3.13)

Equation 3.13 can be rewritten in terms of thresholds and the helper functions

from equation 3.4 as

(3.14)/° °D 1 OD OFdadb
_- _-'. J. E F Ob ae&
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qrs plot: coinflip predictor

0
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Figure 3-3: Plot of the QRS Surface for the coinflip predictor. V= 0.5.

3.4 QRS Features

3.4.1 Coinflip Predictor

The coinflip predictor is the naive predictor that is completely independent of the

indicator. Its characteristic triangular shape, shown in 3-3, has the minimum value

of the Volume Under the Surface: V = 0.5.

Any predictor for which V < 0.5 must contain some nonzero mutual information

between predictor and indicator, but is such that a simple thresholding classification

fails. Further, when the QRS surface for some predictor dips below the coinflip, it

implies that the relationship between indicator and predictor is not monotonic.

The most simple explanation for such failure is that the predictor is inverted: that

is, the binary classification assumes that large B predict extreme events, while in fact

small B better predict extreme events. Section 3.6.3 exhibits one such histogram,

and explains how a better predictor might be constructed.

3.4.2 Knuckle

Figure 3-2 exhibits one type of feature that may be present on the QRS surface: the

knuckle.

In figure 3-2, the knuckle is the ridge of low q and high s. Figure 3-4 exhibits a

fixed r slice of the QRS surface-the QS curve. On this curve, the knuckle is visible

as a local maximum/minimum pair.
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qs plot: knuckle

0.8.

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 3-4: Precision-Rate slice of the QRS plot in figure 3-2, where r 0.5. The
knuckle is captured as the non-decreasing interval just past q = 0.1.

As a preliminary matter, we will recapitulate several results that limit the possible

shapes of the QS curve.

1. 0 < < 1

2. s(q = 0) = 0

3. s(q = 1) = 1

4. j2s-(q =0) > 04.q

5. j(q= 1) > 0

Property 1 is a simple consequence of the definition of precision as a conditional

probability. Properties 2 and 3 require somewhat more machinery.

Theorem 7 (Ferocity Limit Theorem). Let Fab be a histogram such that fab is con-

tinuous and has finite support. Then V r, s(r, q = 0) = 0 and s(r, q = 1) = 1.

Proof. Consider the q = 1 case.

Following equation 3.5, s = and q = F(5). Because q = 1, F(d) = 1, & must
E(b)

be less than the smallest value of a associated with the support of fab.

Because fab has no support for a < e, all integrals of the form f may be replaced

by f° without change in value.

This means we may expand D(&, b) to rewrite s asE( = 1.
E(b)

The q= 0 case proceeds similarly, with flipped inequality of support. ED
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Properties 4 and 5 follow directly from the continuity requirement that s reach its

values in properties 2 and 3 without exceeding the bounds set by property 1.

Together, these condition restrict the possible shapes of the QS curve s(q). There

can be no knuckles when ' has zero roots. The partial derivative 2 must have at

least one root, in order for 2 to become negative.

Second Derivative: Identically Zero

Precision Ferocity Plot

-... Pre

0.51

0

-_1

ra

~-0.5

0 0.2 0.4 0.6 0.8 1
Ferocity

Figure 3-5: Sample PF plot when the second derivative a vanishes.

D 2

The first case is when the partial derivative 2 vanishes. Because the Precision

is fixed at r = 0 and r = 1, there is only one possible curve: s = r. This is simply

the coinflip predictor.

Second Derivative: Zero Roots

When the second derivative has zero roots, there are two possible shapes:

First, 9 is always positive. In this case, the PF curve is always concave

upwards. Because it is everywhere concave upwards, it lies below the coinflip line

(magenta dash-dot). If this shape obtains for all values of recall, then VUS < 0.5.

Even if > 0 only obtains for some values of the recall, there must still be points

(probably along the always concave PF curve) at which s < r.

Together, these results imply that no good predictor may have I > 0 along an

entire PF curve.
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Figure 3-6: Sample PF plot when the second derivative i2 is a) always positive and
&r2

b) always negative.

2 < 0 Second, 9 is always negative. In this case, the PF curve is concave down,

and it is the case that s > rVr.

This is a characteristic shape for a good predictor.

Second Derivative: One Root

When the second derivative has one root, there are three possible shapes:

a crosses from positive to negative First, the second derivative may cross

from positive to negative.

a28
2 crosses from negative to positive, 2 ;> 0 Vr Second, the second derivative

may cross from negative to positive, but the first derivative is always positive.

crosses from positive to negative -r | < 0 Finally, the second derivative

may cross from negative to positive, and the first derivative has sign changes. This

is that case that leads to local extrema, and a knuckle point on the PF curve.

Second Derivative: Multiple Roots

Because one root is enough to give rise to a knuckle, we won't consider more compli-

cated PF curves in detail. We will only mention that multiple roots may give rise to

multiple knuckles centered on different values of the Ferocity.
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Precision Ferocity Plot
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Figure 3-7: Sample PF plot when the second derivative 2 has one root. a) is

decreasing. b) 2 is increasing, and the first derivative is always positive. c) is
increasing, and the first derivative changes sign.

3.4.3 Histogram Correspondance

In order to express the previous derivative conditions in terms of the predictor-

indicator histogram, we need to express the derivatives in terms of the histogram

Fab and thresholds & andb.

From definition 3.3.3

o-(, b) = (r(d, b), s(&, b), q(5)).

Through parametric differentiation, the total derivatives are given by
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ds Os dr Os dq

d- Ord& Oqd&
ds Osdr

db Or db'
(3.15)

But via definition 3.2.1 (re-expressed in equation 3.5), the total derivatives are

also given by

ds 1OD
d& E Oa

ds E - DDa

db E2
dr FOD -Da-

d& F 2

dr 1 OD
F ab

dq OF

da O8a

Putting together equations 3.15 and 3.16, we get

Os 1 ds

ds

dt

!kd&

Os dr

or d6,
d- ds

db

ob
OFOD F OE

+ E& DO]
a& ab ah ab

Note that each partial is negative, but in the final line the partials always appear

in pairs.
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In order to create a knuckle, there must be a (a pair of) sign changes in !. But

by equation 3.17, that partial derivative can only change sign at a root of the square

bracketted quantity, and none of the 'raw quantities' may change sign.

The square bracketted quantity is symmetric under the exchange s - r and -+ b.

Written out long form, the bracketted quantity from equation 3.17 is given by

Q(,) = Jjffab(a, b)dadb fab(6, b)db fab(a,b)da

+jfab(ajb)dadbJ fab(,b)db fab(a,b)da

- fab(a, b)dadb fab(, b)db fab(a, b)da, (3.18)

or in terms of probability and marginal pdfs,

Q(e, b) =P(a > d)P(b= b)P(a = 6, b > b)

+P(b 2 b)P(a = )P(a > &,b = b)

-P(a > e, b > b)P(a = )P(b = b). (3.19)

Typically,the prefactor 2 F F D will be positive, and the first two terms of Q will

be large and positive. That implies that Q can only change sign when the third term

grows large enough in magnitude to dominate the other two terms. This growth can

only occur in situations where the following three conditions all hold:

1. P(a = e, b >) is small compared to P(a = e)

2. P(a > h, b )is small compared to P(b= b)

3. P(a 2 a, b > b) is not small compared to both P(a > &) and P(b 2 b)

These conditions are met whenfab exhibits scale separation, as in figure 3-8. In

the figure, the thresholds & and b that correspond to negative values in equation 3.17

are sketched out.
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Figure 3-8: Sample pdf exhibiting scale separation. This demo is explored in section

3.6.1.

3.5 QRS Metrics

In this section, we will motive a collection of metrics to assess the quality of a pre-

dictor.

The first metric is the Volume Under the Surface V, defined in equation 3.13. This

quantity is large when 'many pairs' of (5i, f) lead to a binary classification with both

high precision and high recall. It weighs contributions from different possibilities of

the extreme event rate uniformly in q, and balances precision and recall in a typical

manner for receiver operating characteristic curves.

However, V does not select for QRS surface knuckles. The knuckle is the charac-

teristic feature of histograms with scale separated extreme events. We need a metric

that selects for the special characteristic of a predictor that is suited for predicting

extreme events.

In section 3.4.2, we defined the knuckle in terms of the partial derivative

This suggests a productive avenue: the metric should select for large negative partial

derivatives, which indicate large separation between the local maximum and mini-

mum, which indicate the presence of a knuckle.

The first possibility is to selection the maximum value of L. In order to select for

a knuckle that has large extent along r, we should add up the maxima for different

values of r. Together, this gives the first knuckle metric:

67



Os
1= max -(r, q)dr. (3.20)

Sie l',1] aq

A second possibility is to look for the size of the gap between the maximum and

minimum. The total variation, along q, is defined as

72 = |J1 Idqdr. (3.21)

These two metrics track each other, though r/2 is more robust numerically.

The derivative metrics have two drawbacks. First, while they select for large

knuckles, they don't guarantee a good binary classification on.the knuckle. That is

to say, a large partial derivative doesn't guarantee that the maximum s is close to

1, and a large total variation doesn't guarantee that the variation isn't due to many

tiny squiggles.

Second, both metrics require calculating the partial derivative 2 explicitly. This

is an involved calculation, with many potential sources of numerical error.

To overcome these difficulties, we suggest the Maximum Adjusted Area Under the

Curve (a*) as a choice of metric, given by

a= max (a(q) - q). (3.22)
qE[o,1]

The quantity a(q) - q is a measure, at extreme event rate q, of how much better

a predictor B is than the coinflip predictor. When a(q) - q » 0, the predictor does

an excellent job of predicting extreme events at the threshold & corresponding to the

extreme event rate q. Conversely, when a(q) - q ~ 0 (or even a(q) - q < 0), the

predictor is poor at that extreme event rate.

A good extreme event predictor will be a good predictor not just over possible

choices of threshold (Volume Under the Surface), but at some particular thresholds

that correspond to a rare rate of extreme events.

Correspondingly, the adjusted area under the curve is biased to predictors that

perform well at a low extreme event rate. The precision is bounded above by s < 1,

and the coinflip predictor has s = q. Together, that means that there is more 'room'
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for a predictor to outperform the coinflip predictor at lower q. That is to say, a*

selects not just for predictors that perform well as certain extreme event rates, but

for predictors that perform well when extreme events are rare.

3.6 Test Scenarios

3.6.1 Bimodal Predictor

In order to demonstrate the effects of bimodal data on the derived quantities, we will

construct a bimodal pdf, given by:

fab(a, b; y, p) = - [ exp(-(a2 + b2)p 2) + ± exp(-((a - 1)2 + (b - 1) 2) 2)]. (3.23)

This function is the sum of two Gaussian modes: a quiescent mode centered at

(0, 0) and an extreme mode centered at (1, 1). The pdf is further controlled by two

parameters: y and p.

The parameter -y controls the weight of the extreme mode relative to the quiescent

mode. When a = 0, the extreme mode vanishes, and when = 1, the two modes

contribute equal weight to the total pdf.

The parameter p controls the spacing of the modes, relative to the radius of the

two modes. When p = 1, the standard deviation of each hump is V/2, which is equal

to the center spacing. When p > 1, the modes shrink in radius, increasing the relative

distance between them.

Figure 3-9 shows the pdf for representative values of p.

Figure 3-9 shows the existence of a 'knuckle' in the shape of the QRS surface,

near q = 0.1. This shape is due to the scale separation of the underlying pdf, and q

corresponds to the small value of - (0.05) that controls the mass distribution between

the modes.

Figure3-9 also shows a knuckle, near q ~~ 0.8, though it is less pronounced. Again,

this is due to the underlying scale separation. However, because scale separation
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qrs plot: multi-gaussian (p = 1.70, 0= 0.8)

1.

0

0.5 05
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Figure 3-10: Sample a) pdf plot and b) QRS surface for the multivariate Gaussian

scenario.

happens at a relatively low threshold d, the feature is smaller. Alternatively, because

the coinflip predictor is already fairly precise at q = 0.8, there is little 'room' for a

good extreme event predictor to be better.

The plots in figure 3-9 show the various summary statistics of the bimodal scenario

as a function of y and p. V (figure 3-9 a) is largest when p is large (scale separation)

and y is medium (equal distribution of mass).

Unlike V, the knuckle metrics peak at small 7. This matches intuition from

looking at the QRS plots in figure 3-9: the knuckle is larger when it occurs at low

extreme event rate.

3.6.2 Multivariate Gaussian Predictor

The multivariate guassian scenario is described by a pdf of the form

fa(a, b; p, 6) = exp[-(cos Oa + sin Ob) - (sin 6a - cos 6b) 2 p 2]. (3.24)
P p

where # is a normalization factor, p2 is the ratio of length of the principal axis to the

perpendicular axis, and 6 is the angle between the principal axis and the a axis.

Figure 3-10 a) shows a sample pdf. When 0 = 0 or 0 = 2, there is no linear

(or higher) correlation between the indicator and predictor, and in both cases the
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Figure 3-12: Sample a) pdf plot and b) QRS surface for the donut scenario, R 0.1.

predictor is merely a (monotonically rescaled) coinflip predictor. However, when 0 is

near 4, and p > 1, there is a (linear) correlation between a and b. In this regime, we

see the QRS surface (3-10 b) begin to swell, and the V (3-11 a) increase.

Unlike the bimodal scenario, there is no distinct scale separation. This appears in

the QRS plot (3-10 b) as an absent knuckle. This missing knuckle also 'appears' in

both q2 (3-10 c) and 91(3-10 d) as a noisy constant background caused by numerical

differentiation.

3.6.3 Donut Predictor

The donut scenario is described by a pdf of the form

1 1 - a2 - b(2
fab(a, b; R) = v'a2 + b2 exp(- R2  (3.25)

where # is a normalization factor, and R is the thickness of the donut. The donut is

designed so that there is some kind of significant relationship between a and b, but

that relationship cannot be easily described as a linear correlation.

The shape of the QRS plot for the donut scenario (figure 3-12 b) is worth com-

menting on. For a small extreme event rate (q < 0.5), the precision is actually less

than the extreme event rate. This is because both large and small values of the pre-

dictor correspond non-extreme values of the indicator, while the most extreme events

(a ~ 1) correspond to intermediate values of the predictor.
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Figure 3-13: Sample a) pdf plot and b) QRS plot for the nonomotonically fixed donut

scenario. R = 0.1

That is to say, the conditional probability P(a > |b) decreases with more extreme

values of b in both directions. While there is some value of the predictor that cor-

responds to the most extreme events (and also the most quiescent events), it cannot

'isolated' by some simple monotonic transformation.

This is all to say that, despite the high mutual information between a and b, b

does not predict extreme events well, in the sense described by precision, and recall.

One way to turn the 'bad' predictor b into a better predictor b* is to apply some

kind of a non-monotonic transformation to it. Here, the (negative) absolute value of

b appears to be closely related to the indicator. The resulting binary classification

isn't precise (at least, not for low ferocity) because there is a second 'horn,' but the

predictor has become better than a coinflip for small extreme event rates.

This transformation wasn't enough on its own, however. For large extreme event

rates, b* again has s < q. This is perhaps less important than the same issue for

low extreme event rates, but it still suggests that b* is a poor predictor of 'extreme'

events which are not very extreme at all.

A quick look at the histogram (figure 3-13 a) identifies the problem. When the

threshold for extreme events is very high (& = 0.9, say), all of the extreme events

have large b* values. However, when the threshold for extreme events is very low

(5 = -0.5, say), more of the extreme events have small (more negative) b* values.

Somewhere (around & = 0, corresponding to q = 0.5), the best test for extremity
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swapped from high values of b* to low values.

Often, this phenomenon might be corrected by choosing a better indicator. For

instance, a pdf shaped like figure 3-13 a) might appear in the context of deep water

waves if, instead of measuring the wave height, the signed maximum deviation from

sea level were recorded. In this scenario, extreme events really correspond to both

large and small values of the indicator, for which the QRS procedure is poorly suited.

Note that while the correct non-monotonic transformation was simple to choose

in this case, it does not appear generically out of the QRS procedure. Non-monotonic

rescaling of a potential predictor is too far removed for the 'evaluation' step, and

more correctly belongs in the 'selection' step.

3.7 Appendix

For a predictor that generates a non-monotonic SR curve, the following construction

builds a derivative monotonic SR frontier.

Definition 3.7.1 (Precision Recall Frontier). For a fixed d, the precision recall

frontier (SR frontier) is the monotonic curve defined by

s*(r) = maxr E[r, )(s(ro)). (3.26)

Theorem 8 (Precision Recall Frontier Predictor). The predictor corresponding to

the regions traced out by definition 3.7.1 (the frontier) but not by definition 3.3.1 (the

curve) can be achieved by the following construction.

For each r2 such that s(r2 ) < s(ri) for some r1 > r2 , choose the values of & andb

corresponding to the pair (s(ri),ri). Without loss of generality, assume (s(r1),ri) is a

local maximum of the SR-Curve (equation 3.7). Create a new binary classification with

the following rule: all (a,b) are assigned to the quadrant appropriate to the thresholds

& and b except that predicted extreme events with probability ' are reclassified as

predicted quiescent events, true positives to false negatives and false positives to true

negatives.
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In order to achiever2 with a local maximum at r1 the fraction of events to reclassify

y is given by -y = 1-

Proof. In order to show that the frontier exists and has the necessary properties, it

suffices to show that each point on the frontier can be reached by some (modified)

binary classification.

Precision is given by the ratio of successfully predicted extreme events to all pre-

dicted extreme events. If equal proportions are taken from the true positive quadrant

and the false positive quadrant, the ratio is unchanged.

Recall is given by the ratio of successfully predicted extreme events to true extreme

events, r1 = n". If a fraction y = 1 - of the true positives are reclassified as false

negatives, the new recall is given by

(1- = -)n- r2  n = r2. (3.27)
n+m rin+m

The procedure easily extends to the entire QRS surface simply by constructing

the described frontier for each constant q slice. The algebraic results (for V, or for

) are greatly complicated, however.

76



Chapter 4

Machine Learning Paradigm

4.1 Problem Overview

The prediction problem so far sketched can best be formulated in the following way:

"Given a dynamical system with (1) a particular observable exhibiting extreme events

and (2) a set of other observable features, what function over (2) best predicts (1)?"

This is a search problem-in particular, an optimization problem. Because we can

only just 'best predict' in terms of data (stored trajectories), this problem is a natural

fit for a machine learning approach.

In order to apply machine learning to this problem, we need to make choices in

four components areas. These components are:

• Hypothesis Class

" Training Data

" Objective Function

" Optimization Algorithm

Each choice is only weakly coupled to the others, so we will investigate each in

turn.
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4.2 Hypothesis Class

Extreme event prediction is conceptually similar to binary classification: at some

point (x, t), we want to know if there will be an extreme event near (x, t + T) by

polling a predictor function B(x, t). The goal of the learning task is to pick the best

predictor B, called a hypothesis.

However, the space of all possible functions is prohibitively large. For a practical

problem, we restrict our attention to some set of hypotheses B, called the hypothesis

class.

PAC learnability depends intimately on the choice of hypothesis class. In general,

there are three considerations:

First is the bias/overfitting tradeoff. A very large hypothesis class may better

fit the data, but it may also overfit to the training data noise. Conversely, a small

hypothesis will generalize better, but may not be powerful enough to capture the

important features in the training data.

Second, a larger hypothesis class represents a higher dimensional space, which is

more difficult to search through. Especially in the case of rare events, evaluating the

loss function for a given hypothesis may be time consuming, so exhaustive search

through a large hypothesis class will be quickly overtaken by the curse of dimension-

ality.

Third, the hypothesis class may encode certain prior information about the prob-

lem. We may know a priori that certain kinds of predictors are very unlikely to be any

good. Therefor, if we remove those terrible predictors from the hypothesis class (or

judiciously choose B to avoid them), we might spend less time testing bad hypotheses.

For dynamic systems with a physical interpretation, the choice of hypothesis class

will likely represent the major application of physical intuition and domain knowledge.
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4.3 Training Data

4.3.1 Overview of Issues

Initially, whether is drawn from simulation or observation, it is captured in the form

of trajectories u(t).

For instance, one possibility is that stock market data may be captured in the

form of a vector time series, whether each vector component is one member of the

NASDAQ exchange. In other case, the raw data may take the form of a simulation

of fluid in a box, where each element of a time series is a 2D grid of vector fluid

velocities.

In order to train our predictor, we need training data. A typical training data set

D is a list of ordered pairs (b, a) of the form prediction-truth.

However, in order to construct their pairs from trajectory data, we need to answer

three correspondence problems:

When we make a prediction at time tB, we mean that the predictor function may

take as input information about the state at time tB (and possible also at time t < tB).

This prediction, made at time tB, corresponds to a potential extreme event at time

tA. The first question to ask is, how are tBandtA related? A related question is 'given

that extreme events may be spread out in time, how ought predictions be spread out

in time?'

Further, as in the case of the fluid simulation, extreme events may be spatially

located. Similar questions arise as in the temporal case, but with the additional

complication that extreme events and typical predictor functions both have associated

spatial spreads, and their spreads may have quite different scales.

Finally, after the problems of correspondence are worked out, there is the question

of how many training points should be kept. Ought there be one training point for

each true extreme event (and then, some points correspond to quiescent events)? Or,

should there be one training point for each space-time grid point, no matter how 'big'

(in space or in time) the extreme event is?

We can break down the choice of correspondence relationship into three parts:
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Figure 4-1: Cartoon representation of strict time-lag correspondence rule.

" temporal correspondence

" spatial correspondence

" sampling measure

4.3.2 Temporal Correspondence

In our problem, we are interested in forecasting, which means that we would like our

predictor B to make use of only information that is (causally) prior to the extreme

event at x'.

This suggests another simple rule, strict time-lag. Under this rule, for a given

x, x' is chosen so that the spatial coordinate is identical, while the time coordinate

is lagged by some interval T. Under this rule, the question becomes "what observable

measurement B c B best approximates the extremeness-of-event at the same location

Ttime later?"

This is a better rule, but there are two problems associated with its practical

interpretation:

First, a positive prediction at x may not correspond to an extreme eventrlater,
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Figure 4-2: Cartoon representation of space max correspondence rule.

but to one T + 6 later. The strict time-lag rule will call the prediction a false

positive even though there is a real extreme event coming later, and there was a

'forecasted' forewarning.

Second, a positive prediction at x may correspond to a prediction slightly dis-

placed in space.

The following rules for time-matching have been presented:

• identity rule

" strict time-lag

4.3.3 Spatial Correspondence

The requirements for data-matching in space differ slightly from those in time. First,

there is no spatial forecasting: there is no meaningful sense of 'ahead' or 'behind' along

a spatial axis. Second, most reasonable hypothesis classes are spatially distributed,

while it is easy to imagine hypothesis classes that only sample the simulation data at

a single time instant. Third, the spatial spread of predictors is variable (for instance,

wavelets with variable length scale L), while the temporal spread for forecasting is a

mostly-fixedT.
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The simplest rule is the spatial identity rule: that is, a prediction at x can

only correspond to a (later) extreme event exactly at x. This is likely to lead to many

false positives because is likely to be smaller than ! near extreme events.

A slight variation of the identity rule can be imagined if the simulation data

includes a transport velocity u. If a prediction at (x, t) is advected to become a later

extreme event at (x + ur, t + T), then we can use the advection rule to make this

correspondance. Like the identity rule, each prediction at x corresponds to a single

unique extreme event at x', but there is a spatial as well as temporal displacement.

One way to dodge the spatial issue is to somehow 'integrate it out.' In this

approach, forecasting is really a problem about time series, not fields. That means, if

we had a way to recast B(x) as B*(t), then we could avoid the whole issue of asking

about whether a spatially imprecise prediction was correct or not.

The rule space max is simple: B*(t) = max, B(x,t) and A*(t) = max. A(x,t).

This is justified because extreme events are also rare. It is unlikely (in some sense

that depends on the spatial extent of the problem and the true extreme event rate)

that there will be two extreme events close together in time. Thus, a prediction at

time t surely corresponds to a unique extreme event at time t + .

Unlike along the temporal axis, in the spatial domain there is no problem of fore-

casting. For this reason full neighborhood is an excellent strategy for assembling

predictor-indicator pairs. One remaining issue is the size of the neighborhood, while

may depend on L.

The following rules for space-matching have been presented

" identity rule

" advection

" space max

" full neighborhood
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4.3.4 Sampling Measure

Some of the previous correspondence strategies, such as full neighborhood, have

raised the question about how many data points should be selected, and where. For

instance, full neighborhood can be formulated both as "for every prediction, pick

the most extreme event in its neighborhood" as well as"for every event, pick the most

extreme prediction in its neighborhood."

For bijective spatial and temporal correspondences such asidentity rule and

strict time-lag, sampling every such pair preserves the distribution of both a and

b from the simulation data to the training data. This perfect translation is the measure

rule exact-pair.

These two framings naturally lead to two choices or sampling measure rule: every-prediction

and every-event.

In every-prediction, we make one training data point for every x in the sim-

ulation domain. Further, every prediction is represented once. However, different

predictions (made at points xi and x 2 ) may correspond to the same extreme event

(at point x'). This is because there are many different places that a given extreme

event could logically be predicted from.

The every-prediction measure rule is a natural setting for precision and accu-

rately defining false positives, because it samples training data points according to

the measure of the predictions. This rule guarantees that the distribution of b in the

training data accurately represents the distribution of b in the simulation data.

In every-event, in contrast, we pick every event and look for what prediction

ought correspond to it. Under this measure rule, two different (extreme) events may

correspond to the same prediction. However, because extreme events are rare, it is

unlikey that two different extreme events will point to the same prediction (under

full neighborhood, say). Instead, a certain extreme event will point to its best

prediction, but so will all the non-extreme events near to it.

This rule guarantees that the distribution of a in the training data accurately

represents the distribution of a in the simulation data. It is a natural setting for
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recall and accurately defining false negatives.

When combined with a correspondence rule like full neighborhood, there is a

readily apparent problem with these two measure rules. The measure rule every-prediction

guarantees the marginal distribution of b, at the expense of inflating the number of

(a, b) pairs that point to a particular (extreme) a. Conversely, every-event guaran-

tees the marginal distribution of a but over represents extreme b.

The following rules for sampling measure have been presented

• exact-pair

* every-prediction

• every-event

4.3.5 Summary

The choice of how to turn trajectory data time series into training data pairs is not

a straightforward one. In many cases, it is difficult to find a rule that satisfies both

conceptual clarity and technical clarity.

4.4 Objective Function

The Empirical Risk Minimization (ERM) paradigm works by searching the hypothesis

class B for the hypothesis B* that optimizes some loss function L[B] over a given set

of training data D. To this end, we must choose a loss function that closely accords

with our intuition of what describes a good predictor.

The typical binary classification task minimizes the total error rate (T), which

is defined as

# correctly classified (4.1)

# total

This error metric is poorly suited for the extreme event prediction problem for

two reasons:
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First, total error rate is unsuited for unbalanced data. Extreme events are

usually associated with extremely unbalanced data sets. This manifests in two ways.

First, even a naive predictor may achieve > 99% accuracy, simple because always

predicting "not extreme" is usually correct. Second, resampling the data (for instance,

to balance the number of extreme and not-extreme training points) may widely change

the total error rate, which in turn may change the optimal predictor.

Second, this error metric is unsuited for strength-of-confidence measurement. It

has no ability to distinguish between confidently classified points and and unconfi-

dently classified points. This is particularly important if we expect our predictor to

make many mistakes.

The first objection may be resolved by using balanced error metrics, such as the

balanced error rate (the arithmetic mean of the sensitivity and the specificity) or

the F score, given by the harmonic mean of the precision and the recall.

The second objection may be resolved by the use of Receiver Operating Char-

acteristic (ROC) Curves. These curves represent graphically how different predictor

thresholds give different tradeoffs between false positives and false negatives. The

quantities developed in part 3 are designed to be particularly appropriate in the

context of extreme events.

4.5 Optimization Algorithm

4.5.1 Choice of Algorithm

Because B may be a high dimensional space, and because evaluating L[B] may be

costly, it is important to develop an efficient strategy to find the optimal B.

This problem has three core properties that will inform our choice:

First, computing the loss function L[B] is extremely expensive. We should like

a search algorithm that trades more overhead for fewer function calls.

Second, the loss function probably does not have an analytic derivative. This

means that computing a local gradient is expensive, requires 0(d) additional function
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Figure 4-3: Sample learning curve for surrogate optimization. Note the change near
n = 20 from pseudo-random samples to adaptive samples.

calls.

Third, the loss function may be stochastic. Because the training data is generated

from simulation, we always have the choice of simulating more data. If it improves

our optimization, we might choose a different training data set for different function

evaluations.

Because of points one and two, stochastic gradient descent (SGD) may not be a

good fit for this problem. SGD, touched upon in section 2.7.2, is the gold standard

for big data-based optimization, where it leverages the identity

E[VL] = VE[L]. (4.2)

in order to efficiently travel down the gradient in an expected sense [12].

Instead, we will need to use one of gradient-free approaches discussed in section

2.7.3. Surrogate optimization is the best fit for this problem. The per-evaluation over-

head introduced by the surrogate fitting is small compared to the expensive objective

evaluations, and the exploration/exploitation balance is a natural fit for expensive

black-box optimization.

4.5.2 Parametrization of Search Space

Surrogate optimization searches through a rectangular search space corresponding

to the direct product of one bounded interval for each parameter. When the actual
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problem has a different space, this can create a problem. There are three general

possibilities: penalty terms, specialty symmetry solves, and nonlinear rescalings. Each

will be presented briefly.

A penalty term is a term Q added to the objective function L* = L°+Q, defined

as

9(B) = 0 B permissible (4.3)
b otherwise

In regions of the rectangle where the correct solution is disallowed, a large term

is added to the objective to 'force' the optimizer to look elsewhere.

In order to avoid needless and expensive computations, this check should be per-

formed before actual evaluation of the objective, (and b set suitable large) to avoid

extra evaluations.

This method has the advantage of quick and simple implementation, for any

shaped space that can be described by a nonlinear inequality. Its disadvantage is

that the finite size of the radial basis functions causes search to be biased away from

the boundaries of the permissible search space. Especially in high dimensional spaces,

this may cause the optimizer to avoid large parts of the permissible region.

A symmetry solver is a custom implementation of the surrogate search that takes

advantage of certain even symmetries in the search space. If the predictors B1 and B2

are two parametrizations of the same predictor, then time can be freed by not eval-

uating both. Further, the surrogate fit can be improves by enforcing this symmetry

condition on the radial basis function surrogate as well.

The obvious disadvantage of a custom implementation is time to code and debug,

and the absence of proprietary technology in commercially developed optimization

packages.

Finally, a non-rectangular search space may be rescaled so that it fits into a

rectangle. A (unordered) list of sizes L1 , L2 , ... Lk may be expressed as a (sorted)

list of signed differences J1, J2,... 3 k-1 and an initial length LO. This breaks the sym-

metry of the interchange between Li and Lj. A further potential nonlinear rescaling

87



transforms the resulting triangular region into a rectangle.

4.6 Potential Questions

There are two ways to compare the optimal predictor from different ML passes:

First, we can compare the test error. That is, we can compute the optimal

predictor on a new set of testing data, which helps control for overfitting.

Second, we can compare the hypotheses directly, by measuring some kind of

kernel k(B1 , B2 ). If two different ML passes give similar optimal predictors, then we

might say that the optimal predictors is good, because it is not sensitive to algorithm

particulars.
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Chapter 5

Application I-

Majda-McLaughlin-Tabak Model

5.1 Model Overview

The Majda-McLaughlin-Tabak (MMT) model is a 1D nonlinear model of deep water

wave dispersion first introduced by Majda et al in [2], and since studied in the context

of weak turbulence and intermittent extreme events [17], [9], [67].

The governing equation is given by

iut= |2|"au + AIOx (||| 2 4 u)+ iDu, (5.1)

and the Fourier transform

Figure 5-1: Sample plot of one simulated realization of the MMT model near an
extreme event.
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Figure 5-3: Histogram of the number of extreme events per simulation run.
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2L

Figure 5-4: Cartoon representation of Gabor frame.

la u(k)= |k|"u(k).

This work will follow Cousins and Sapsis [67], who simulated the MMT equation

to validate a model for nonlinear wave collapse and extreme event prediction. The

domain has spatial extent 27r, discretized into 8192 points, and temporal extent 150,

discretized into 6000 points for integration purposes. The parameters are chosen so

that A = -4 (focusing case), a = (deep water case), andf#= 0. The operator Du

is a selective Laplacian designed to model dissipation at short scales, i.e., from wave

breaking. The first 1000 points are discarded to avoid transients due to random initial

conditions; no forcing term is included and the simulations represent free decay.

We chose the truth-indicating function

A(xo, to) = Iu(xo, to)I, (5.2)

which is a measure of wave group amplitude. With this identification, extreme events

are large-amplitude wave groups, with A 1.5 as seen in figure 5-3.
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5.2 Method

5.2.1 Hypothesis Space

For the MMT problem, we expect that energy density at certain length scales might

be related to extreme events. For this reason, we choose as our hypothesis class linear

combinations of k zero-order Gabor coefficients of variable length scales [24].

The Gabor coefficient is given by the inner product of an element of the Gabor

Frame with the data. The Gabor functions are given by

hL (xi; n) = exp( 2L2 ) eXP i2,rnx (5.3)

and the zero-order case is achieved when n = 0. These functions can be conceptualized

as localized wavelets.

The Gaussian kernel 5.3 is taken from Cousins and Sapsis [67], where the n = 0

mode was found to predict energy transfer in the extreme event collapse.

The simplest such hypothesis class, B1 is a one parameter space given by B[L1 ]=

G[L1 ]. More complicated classes can be constructed via linear combinations: the

hypothesis class B contains elements B[ai,..., L 1] = 'akG[Lk], which has 2n - 1

free parameters after an overall scaling constant is removed.

While the many equivalent parametrizations of w = {a, L, L 2 } do not give differ-

ent predictors, they do lead to differently 'shaped' hypothesis spaces B2 . For instance,

swapping Li and L 2 (followed by an appropriate transformation of a) gives an iden-

tical predictor. Searching the space B2 is made easier by proactively removing this

sort of symmetry.

Additionally, another step to regularize the hypothesis class is to replace the wave-

length L, which could conceivably span 3 orders of magnitude, with the log wavelength

log(L). This betters aligns the measure of the parameter space with both the con-

ceptual measure and metric appropriate for a radial basis function approximation of

the parameter space.
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5.2.2 Binning

The MMT model has both spatially and temporally located extreme events. Following

section 4.3, we use the following rules to convert simulation data to training data:

strict time-lag, space max, and exact-pair.

5.2.3 Objective Function

Following 4.4, we will use four objective functions:

" total accuracy, representing a default machine learning metric

* F1 score, representing a standard metric for unbalanced data

" alpha star, which measures scale separation

• VUS, which measures classification across all thresholds

When we compare the ROC metrics to the standard binary classification metrics,

we will use a threshold&= 1.5, which roughly corresponds to the edge of the quiescent

range.

5.2.4 Optimization Loop

We use Matlab's implementation of surrogate search. Except where otherwise noted,

we terminated optimization after 4 hours of runtime on consumer desktop hardware,

which represents ~ 100 function evaluations when calculating from 1 unit of simula-

tion data.

5.3 Results

5.3.1 Features of Optimal Metric

For each objective function, the optimal predictor has a similar form:

e a short length scale component
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Figure 5-5: a) Sample prediction-truth joint pdf for a good MMT predictor. b)
Corresponding ROC surface plot.

" a long length scale component

" a amplitude weighting greatly favoring the short component

This breakdown has a simple physical interpretation: in order for an extreme

event to occur, there must be sufficient background energy to draw up (long length

scale), and also enough localized "seed" energy which will begin the collapse. This

interpretation agrees with previous work by Cousins and Sapsis [67].

The joint prediction-truth pdf (figure 5-5 a) has one major features: the greater

density of events by far is in the lower left corner, the true negatives. Outside of this

region, events seem widely spread, and a straightforward visual inspection is difficult.

The associated ROC surface plot (figure 5-5 b) offers a little more insight. The

knuckle feature near r = 0.05 suggests that there is some scale separation going on;

and that a predictor can do better than chance at predictor which extreme events

will exceed that threshold.

5.3.2 Comparison of Optimal Predictors

Comparison between Objective Functions

The different choices of objective function, of course, lead to different optimal pa-

rameters, as shown in figure 5-6. Three of the objectives, fi, vus, and a* result in
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Figure 5-7: Receiver Operating Characteristic Curve comparisons of optimal pre-

dictors calculated via different objectives. a) precision-recall curve b) sensitivity-

specificity curve.
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similar parameter values, while total accuracy t is quite different-generally, longer

length scales.

A natural question is, how do the predictions (of the different optimal predictors)

differ, and which is better?

Figure 5-7 shows two sets of ROC curves for the different optimal predictors.

In the sensitivity-specificity setting (figure 5-7 b), all predictors are excellent, but

total accuracy is less excellent all around. The precision-recall setting (figure 5-7 a)

is more useful, and shows that the total-accuracy-optimized predictor can achieve

slightly greater precision at very low recall tolerances, but otherwise performs more

poorly.

This can be interpreted as follows: because of the particular balance between false

positives and false negatives that total accuracy makes, and the widely unbalanced

data sets that contain far more quiescent events than extreme events, total accuracy

overvalues precision (avoiding false positives). The other metrics, which are designed

to achieve more balance, sacrifice some precision for more consistent recall (fewer false

negatives).

Other Hypothesis Spaces

For this investigation, we ran numerical experiments on a two-vector Gabor coefficient

space of predictors, which had three adjustable parameters. We can imagine other,

more complicated spaces which might contain better predictors.

Exploratory investigations of three-vector predictors (with five adjustable param-

eters) almost invariably collapsed onto two-vector solutions: that is, given L 1 , L2 ,

and L 3 for the the three-vector optimal predictor, either Li 1 L 2 or L 2  o L 3 . This

suggests that the two length-scale interpretation of the optimal predictors given in

subsection 5.3.2 is not just a necessary artifact of hypothesis space dimension.

Examining optimal predictors shows that they rarely exceed 0.5 precision by a sig-

nificant amount. This 50% accuracy rate reflects an approximate temporal symmetry

of the MMT extreme event mechanism: focusing and defocusing energy distributions

look very similar when the time rate of change is ignored.
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As a result of this symmetry, predictors from the two-vector Gabor space cannot

reliably distinguish between 'before extreme event' progenitors (which will go on to

become extreme events) and 'after extreme event progenitors' (which will not).

A more complicated hypothesis space, perhaps which compared Gabor coefficients

between different time steps, or which uses the Gabor coefficients calculated directed

from data finite differences, would likely be able to make this distinction, leading to

predictors that achieve much higher precision.

5.3.3 Learning Rate

Learning Rate: Time

Figure 5-8 shows the effect of changing run-time on optimal parameters. In each case,

the optimal predictor is highly noisy when the surrogate optimizer is emphasizing

'exploration,' and then converges as the optimizer switches over to 'exploitation.'

In every case, the optimal parameter variance never drops to zero. This remnant

variance represents the contribution from sampling error in the training data; because

there are so few extreme events in each simulation, swapping out between simulations

will result in slightly different optimal predictors.

The total accuracy has relatively high variance in the length scale parameters,

while F1 has high variance in the amplitude ratio parameter. a* has the overall

lowest intrinsic variances.

Learning Rate: Data

In addition to changing the optimization time, the size of the training data set may

be varied. However, unlike time, there is a subtly here.

First, the total optimization time may be kept constant. Increasing the size of the

data set increases the objective evaluation time in direct proportion, so doubly the

size of the training data will halve the number of evaluations.

Second, the number of objective evaluations may be kept constant. Again, because

of objective evaluation time, doubly the size of the training data will cause the total
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optimization run-time to double.

In order to capture this trade-off, figure 5-9 uses the first model, that is, given

fixed run-time, what is the best balance between speed and data? a* generally finds

the optimal balance at 1 simulation unit and consistently shows less variance in the

optimal parameters.

5.3.4 Effects of Time Gap

In the previous numerical experiments, a fixed time gap T = 0.015 has been used to

represent a suitable prediction time scale: long enough for significant wave evolution,

100



short enough that good predictions are better than blind chance.

Figure 5-10 shows the optimal predictor parameters associated with the a* objec-

tive function and other choices of T. Generally, the trend is to weigh the long length

scale component slightly more heavily asTincreases, but overall the trend is small.

Additionally, there appears to be a dramatic feature near r = 0.007, where both

optimal length scales precipitously drop, accompanied by a corresponding change in

the amplitude ratio. This dramatic graph obscures the fact that the predictor pa-

rameters are interdependent-the increase of the amplitude ratio partially counteracts

the effects of the shorter length scales.

Unfortunately, 'predictor parameter values' is not always a good 'predictor sim-

ilarity' metric. A better metric would examine how closely the prediction made by

two candidates across a given data corpus align, but care would have to be taken to

avoid numerous fluctuations in the true negative mode from dominating.
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Chapter 6

Application II - Kolmogorov Flow

Model

6.1 Model Overview

The Kolomogorov flow is a solution to the forced Navier Stokes problem on 2D periodic

domain. Above Re ~ 35, the solution is unstable, and there are intermittent bursts

of energy dissipation.

The Navier stokes equations (pressure-velocity form), defined over some domain

Q, are given by

unnple vorticity in Kolmogorov flow 0.3 nergy dissipation tiue seies pdf of ernergy disipation

20 0.25 101

40 5 .

60 0100
800

80 0.15

0101

1 
00

50 600 420 640 660 680 700 0.1 0.15 0.2 0.25 0.3 0.35 0.4
20 40 60 80 100 120

Figure 6-1: Descriptive plots for the Kolmogorov Flow. a) Sample realization of the
the vorticity. b) Time series of energy dissipation near an extreme event. c) PDF of
the energy dissipation
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&tu= -u-Vu- Vp+vAu+f

V . u = 0, (6.1)

where u is the (vector valued) fluid velocity field, p is the (scalar valued) pressure field,

v is the dimensionless viscosity (inversely related to the famous Reynolds number)

and f is some forcing term.

In the Kolmogorov Flow model, the forcing is a monochromatic time invariant

field given by

f (x) = sin(k, . x)8 1, (6.2)

where ky = (0, 4) is the wavenumber of the forcing field and = (1, 0) is a unit

vector perpendicular to ky.

The intermittent bursting phenomena associated with the Kolmogorov flow for

large enough Reynolds numbers (Re ~> 35) are captured by the energy dissipation

rate, given by

D(u)= jIVu1 2dx. (6.3)

Farazmand and Sapsis [43] studied the Kolmogorov Flow and determined that

extreme values in certain Fourier modes of the flow correspond to increased energy

influx, which predict later bursts of energy dissipation. In particular, the energy input

rate

I(u)= 1& u-fdx (6.4)

reliably reaches a peak shortly before the energy dissipation.
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6.1.1 Method

Hypothesis Space

A natural global set of predictors are the coefficients associated with low-k 2D Fourier

modes, bk. We'll also consider arbitrary linear combinations of these coefficients, that

is, predictors given by

B = E-ykbk. (6.5)

Other Choices

The remaining methodological choices closely track those discussed in-5.2, with the

exception that Fourier predictors are global, so there is no spatial binning of any sort.

6.1.2 Results

Overview

Figure 6-2 shows the prediction quality of the single-coefficient predictors according to

different metrics. By every metric, the Fourier coefficient with wavenumber k = (0, 4)

is an especially good predictor.

Some other Fourier modes are also identified as strong potential predictors: in

particular, modes with ky - k, > 4. That these modes predict bursts of dissipation is

consistent with a theory that describes energy dissipation as resulting from an energy

cascade through smaller and smaller length scales.

Effects of Time Gap

Figure 6-3 plots the six most significant Yk from equation 6.5 in order to show the

effects of changing T on the composition of the optimal predictors.

The most important component from the combined predictor is the (0, 4) mode,

and its weighting factor is always positive. Other Fourier modes, such as (3, 0) have

a negative weighting factor which means they are inversely correlated with bursts of
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extreme dissipation. Due to the consistent downward trend in prediction quality as

T increases, trends in the data past T ~ 15 are less likely to by meaningful.
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Chapter 7

Conclusions and Further Work

7.1 Conclusion

In thesis paper, we have shown a method for optimizing extreme event prediction in

an equation free manner. We have shown how the QRS surface construction allows

for a geometric interpretation of scale separation, and naturally leads to the metric a*

which is well suited to this problem. We compared a* to other metrics in two models

of extreme events, where we showed that a* selects for qualitatively better predictions

than the total accuracy, and has superior optimization properties as compared to F1 .

7.2 Further Work

This thesis examined in depth a way to construct a prediction metric suited to the

problem of extreme event prediction. However, we spent comparably less time on the

questions of selecting good hypothesis classes, and the binning procedure to go from

trajectory data to training pairs. While we believe both these questions are highly

problem dependent, any attempt to apply the machine learning paradigm to a related

problem must address these issues either explicitly or otherwise.
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