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Combining retrosynthesis and mixed-integer
optimization for minimizing the chemical
inventory needed to realize a WHO essential
medicines list†

Hanyu Gao, a Connor W. Coley, a Thomas J. Struble, a Linyan Li,b Yujie Qian,c

William H. Green a and Klavs F. Jensen *a

The access to essential medicines remains a problem in many low-income countries for logistic and

expiration limits, among other factors. Enabling flexible replenishment and easier supply chain management

by on demand manufacturing from stored starting materials provides a solution to this challenge. Recent

developments in computer-aided chemical synthesis planning have benefited from machine learning in

different aspects. In this manuscript, we use those techniques to perform a combined analysis of a WHO

essential medicines list to identify synthetic routes that minimize chemical inventory that would be required

to synthesize the all the active pharmaceutical ingredients. We use a synthesis planning tool to perform

retrosynthetic analyses for 99 targets and solve a mixed-integer programming problem to select a

combination of pathways that uses the minimal number of chemicals. This work demonstrates the

technical feasibility of reducing storage of active pharmaceutical ingredients to a minimal inventory of

starting materials.

Introduction

The WHO Model List of Essential Medicines (EML), created
in 1977, contains medicines that are needed to satisfy the
highest priority healthcare needs and that should be available
in sufficient quantities at all times.1 However, access to
essential medicines is still problematic for about one-third of
the world's population.2 Prices for some medicines make
them unaffordable in less developed areas,3 and the fragility
of global supply chains and manufacturing has led to
frequent and extended drug shortages.4 No single solution
can currently address this complicated problem, though there
have been approaches proposed from policy perspective
to improve access, including forming public-private
partnerships, developing appropriate pricing models, and
intellectual property access strategies.5

The expiration of stockpiles of pharmaceuticals is one
significant contributor to drug shortages,6 in particular in low-
income countries, where drug donations can include drugs that

are either expired or close to expiration.7 Another reason for
expired stockpiles is poor forecasts of future demands8 or
stockpiling for emergencies that fortunately do not occur. Drug
expiration often results from the final formulated drug having
a much shorter storage life than the chemical starting
materials. Thus, it is of potential interest to identify the
minimum number of starting materials needed to produce a
desired set of medicines, and store the starting materials
instead of the final drug products. Recent advances in
computer-aided synthesis enable fast planning of large
numbers of possible pathways to individual targets.9–14 Tools
have also been developed to evaluate proposed pathways and
identify which pathway suggestions are likely to be
feasible.15–23 This progress makes it possible to combine
synthesis planning for multiple targets. Molga et al. performed
retrosynthetic analysis for multiple targets on the same graph
and penalized new reaction types that appeared during the
search, to promote the use of common intermediates.36 In this
application, we explicitly consider the criteria of maximizing
the overlap in the chemicals needed to realize a set of
molecules. An approach of different syntheses sharing
chemicals would have the advantage of allowing more flexible
replenishment since starting materials tend to have more
sources and be easier to obtain than the final drug products.
Additionally, minimizing the total number of chemicals also
promotes sharing common reaction conditions such as
solvents and catalysts. It then becomes more likely to have
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reactions that share the same or similar conditions and thus
the possibility of using common reactors, which facilitates
modular process development. On the other hand, minimizing
the number of chemicals may lead to pathways that are
suboptimal for each molecular target individually. It increases
the risk of choosing more practically challenging reactions or
longer synthetic pathways, which are both undesirable.

We develop a framework to discover and select an optimal
combination of pathways for molecules in the WHO essential
medicines list accessible by chemical synthesis (more specific
criteria in the Methods section). A machine learning based
retrosynthesis platform24 is used to find candidate synthetic
routes for all the targets, and then a multi-objective mixed-
integer programming problem is solved25 to minimize the
number of chemicals used in all the syntheses (including
those used as solvents, reagents and catalysts), while
maximizing the perceived chemical feasibility of the pathways.
It is worth noting that this is a hypothetical study focusing on
the conceptual feasibility of the problem. Building such a
system for producing the WHO EML requires many other
considerations, including the quantity and demand for
different drugs, the expertise for conducting chemical
synthesis and developing chemical processes, and cost
associated with separation and purification of the product.

Methods
Dataset processing

The WHO essential medicines list has more than 600 entries
categorized based on their therapeutic area. Some drugs
appear multiple times because they are effective for different
diseases. After consolidating these duplicates, 420 entries
remained. We then used the NIH chemical identifier resolver
tool (https://cactus.nci.nih.gov/chemical/structure) to resolve
the chemical names to SMILES notation,26 which produced
330 molecular targets. The unresolved names were
predominantly biomolecules or vaccines that did not have
SMILES representation. Additional filters further narrowed
the list down according to the Lipinski's rule of 5, which is
commonly used in the pharmaceutical industry for coarsely
examining “drug likeliness” of a molecule. The list was
restricted by the following criteria:

1) Molecular weight not greater than 500;
2) No fewer than 10 carbon atoms;
3) No greater than 5 hydrogen donors;
4) No greater than 10 hydrogen acceptors;
5) Estimated octanol–water partition coefficient, log P ≤ 5.
6) No more than three chiral centers.
The final list of 127 targets used in our analysis is

provided in the Table S1,† along with the full list of the 420
molecules and information about what filters caused the
exclusion of particular targets.

Retrosynthesis analysis

Retrosynthetic analysis was performed for these 127 targets.
Retrosynthetic templates were recursively applied to the

target molecule (and the generated intermediates) until
stopping criteria (defined as molecules that are smaller than 10
carbon atoms, three nitrogen atoms and five oxygen atoms in
this context) were met, or specified maximal search depth (10)
or time (100 seconds) were exceeded. A maximum of 10000
trees were returned for each target. We use a template-based
upper confidence bound tree search (UCB) framework similar
to the work by Segler et al.12 The methodology for
retrosynthesis is the same as described in reference27 (with
some parameters set as above). Here we provide brief
recapitulations of some key elements in the methodology, and
the readers are encouraged to refer to ref. 27 and the open
source implementation at https://github.com/connorcoley/
ASKCOS for more details. Note that we did not explicitly search
known reactions. The first reason is that known reactions/
routes may not be able to provide the benefit of sharing
chemicals and minimizing the chemical inventory, e.g.
published reactions might report only one out of many
equivalent leaving groups that could provide the desired
reactivity. Second, we would like the framework to generalize to
new molecules, for which literature lookup would not suffice.

Template relevance. Reaction templates are a generalized
representation that summarize multiple reactions with the
same bond changes and molecular context within a specified
range. We extracted reaction templates from 12.5 million
reactions from Reaxys,28 which were filtered by a minimal
frequency of 10 (five if a chiral template), which results in
160 thousand templates. A neural network was trained on
product-template pairs to predict the most relevant templates
to breakdown the target molecule. Performance on the test
set reached 41.4%, 67.2%, 74.9%, 80.8%, 86.6%, and 89.8%
for top-1, top-5, top-10, top-20, top-50, and top-100
accuracies, respectively.

In-scope filter. Not all templates that are applicable to the
product molecules are chemically feasible. To filter out some
unrealistic reaction suggestions, we trained a neural network
to differentiate between true and false reactions. As all the
reactions in the Reaxys database represent successful reactions
(although a small fraction might not due to human errors in
data entry), negative data was artificially generated by trying to
apply all reaction templates to the reactant molecules. Among
all the potential product that result from applying templates,
all of them were considered negative data except when the
product matched the recorded product. 22 million true
reactions and 92 million generated negative data were used to
train a feed forward neural network for classifying true and
false reactions. The area under curve for the receiver operating
characteristic (ROC) curve was 0.99, When a threshold of 0.5 is
used for defining positive and negative predictions, the
precision on the test set was 0.94, and recall was 0.90.

When using the in-scope filter in the search, the threshold
for filtering out a reaction suggestion was when its score is
below 0.75. In practice, this value helped achieve a good
balance between filtering out false negative reactions and
including false positive reactions, leading to a good number
of reasonable pathways from which to choose.
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Monte Carlo tree search. Starting from the target
molecule, the tree search was prioritized by an upper
confidence bound combining template relevance and how
many times the leaf node has been visited in completed
pathways. The templates were recursively applied to the
current leaf nodes in active pathways until the stopping
criteria was met, or the search exceeded the maximal depth,
which was set to 10, or the maximal time, which was set to
100 seconds in this analysis. The maximum trees to return
for one target was set to 10 000.

For the stopping criteria (or how to determine whether a
chemical is a “starting material”), we defined a molecule that
has no more than 10 carbon atoms, 3 nitrogen atoms and 5
oxygen atoms as a terminal node in the tree search. Different
criteria could be chosen for the retrosynthetic analysis.
Specifically, we did not use the price of the chemicals (which
seems intuitive) for a few reasons: a) many of these essential
medicines, including the intermediates in the syntheses, are
likely to be identified as commercially available at a cheap
price, and b) there lacks a complete catalog that has accurate
price estimates for all commonly used chemicals. In the
meantime, these small molecules as defined here are likely
to be obtained in a sufficiently affordable manner.

Pathway evaluation

The pathway search time for each target was set to 100
seconds (parallelized over 16 cores). After the synthetic
pathways were identified, reaction conditions (including up
to one catalyst, two solvents and two reagents) were
suggested for every reaction, using the exact model described
in reference.23 The reaction conditions were then combined
with the reactants to predict the scores for all potential
outcomes of the reaction, following reference.19 If the
intended product was within the list of potential outcomes,
the forward evaluation score of the intended product was
used as an indication of the likelihood of success of the
reaction. Otherwise the score was zero. The top-five reaction
conditions were tested, and the one with the highest forward
evaluation score was taken as the final condition for the
reaction. Pathways that had two or more steps that had less
than 0.05 forward evaluation scores (which we refer to as low-
score steps) were eliminated from the pool of pathways. Then
we set the probability of all remaining low-score steps to 0.05
as a way to tolerate one low-score step in a pathway. Later, in
the Analysis with stricter quality requirements section, we
explored the scenario where all low-score steps were excluded
from the analysis. The overall pathway score is calculated as
the cumulative probability of all the reaction steps, and we
define the penalty for a pathway as the negative natural
logarithm of the pathway score.

Optimization of pathway selection

The starting materials and all the conditions (chemicals
used as solvents/reagents/catalysts) were extracted from the
found pathways. The problem was defined as minimizing

the total number of chemicals used in all the syntheses,
while maximizing the likelihood of success for all the
pathways. Aligning with the goal of driving the
retrosynthesis towards simpler starting materials, the
chemicals were weighted by their synthetic complexity
scores (SCScore), as developed by Coley et al.29 The SCScore
for solvents/reagents/catalysts were set to 1, which is the
lowest synthetic complexity score based on this definition.
By doing this, in case there were multiple solution with the
same number of chemicals, the solution with simpler
chemicals would be preferred. The mathematical
formulation of the model is as follows:

min
X

k

yk × SCScorek (1)

max
X

i

X

j

xij × qualityð Þij (2)

s:t: if
X

i

X

j

xijPijk ≥ 1 then yk ¼ 1;

otherwise yk ¼ 0; ∀k ∈ 1; 2;…; nf g
(3)

X

i

xij ¼ 1; ∀i ∈ 1; 2;…;mf g (4)

xij, yk ∈ {0, 1} (5)

where xij is a binary variable of whether pathway j for target i
is included in the final selection of pathways. yk indicates
whether chemical k is involved in the final selection of
pathways. Pijk is a fixed parameter that represents whether
pathway j for target i uses chemical k as a starting material or
in the reaction conditions. (quality)ij is the quality of pathway
j for target i, which is a customizable function and can have
different definitions, e.g. length of the pathway, cost of the
starting materials. Here we define it as the perceived
likelihood of success of the pathway, with a more concrete
definition below. The first constraint (3) means that a
chemical is included in the final selection as long as it is in at
least one of the selected pathways. The second constraint (4)
ensures only one pathway is selected for each target.

As a common strategy to solve a multi-objective optimization
problem, we used a weighting parameter, λ, to balance between
the two objectives. The first constraint also needed
reformulation to a pure mathematical form. The final mixed-
integer multi-objective optimization is presented as follows:

minλ
X

k

yk × SCScorek
� �

þ 1 − λð Þ
X

i

X

j

xij × − log scoreij
� �� �� �

(6)

s:t:
X

i

X

j

xijPijk � Mdk;∀k ∈ 1; 2;…; nf g (7)

y ≥ 1 − M(1 − dk) (8)
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X

j

xij ¼ 1; ∀i∈ 1; 2;…;mf g (9)

xij, yk, dk ∈ {0, 1} (10)

where M is a sufficiently large number, chosen to be 106 for
all calculations in this study. dk's are auxiliary binary
variables. scoreij is the product of scores of reactions in
pathway j for target i, with the score of low-score steps reset
to 0.05. This definition implicitly penalizes longer pathways,
as the scores of individual reactions are probabilities between
zero and one. Therefore, longer pathways indicate
multiplying more numbers less than one, which renders the
cumulative score lower.

The optimization problem is solved using the CPLEX
solver with the Python API.25 Note that the optimization
problem is linear, so there is no need to supply an initial
guess and it is guaranteed that the solution found is global
optimal regardless of the starting point.

We changed the value of λ to test the tradeoff between the
two objectives. The value of λ varied from 0 to 1. They
represented two extremes. With λ being one, solving the
optimization problem was essentially trying to find the
minimal number of chemicals required without considering
the feasibility of the pathways. λ being zero indicated that we
were trying to find pathways for individual targets that had
the maximum score without considerations of the overlap of
starting materials.

Results and discussion
Retrosynthesis analysis

The whole process for the 127 targets including
retrosynthesis analysis, condition recommendation, and
forward evaluation required 75 hours on a workstation with a
dual processor Intel® Xeon(R) CPU E6-2690@2.9GHz
processors and 128G RAM. Synthetic pathways were found
for 112 out of 127 targets using the settings described in the
Methods section; the total number of unique pathways found
was 492 860, where each target was limited to at most 10 000
pathways. Fig. S1† lists the drug molecules for which no
pathway was returned in the specified amount of time under
our strict expansion criteria (see Methods). While these
molecules revealed some limitations of the retrosynthesis
capability originating from the limitation of available
reaction data, in the meantime the success rate of the
retrosynthesis analysis was high (88.2%), meaning pathways
were found for a majority of the targets in this set.

As described in the Methods section, we used machine
learning models to predict the top-five most plausible sets of
conditions23 and to assess the probability that the desired
product is the major outcome given the reactants and each of
the five sets of reaction conditions.19 The condition set that
yields the highest reaction evaluation score was retained as
the final condition for each reaction. The pathways with
more than one low-probability (<0.05) step are filtered out,
and targets that include more than one molecules are also

excluded at this stage, resulting in 193 597 pathways for 99
targets. These remaining pathways involved 3340 chemicals
used as starting materials and 570 chemicals used in the
reaction conditions (i.e., as solvents, catalysts or reagents).

Optimal selection of pathways

If the pathways with the highest scores were chosen for each
target, the 99 targets required 236 starting materials and 135
additional chemicals (reagents, catalysts, solvents); we refer
to this as the “separate analysis”. By solving the optimization
problem to minimize the number of chemicals while
maximizing the sum of pathway scores, the number of
starting materials required for these 99 targets was 187, and
the number of additional reagents, catalysts, and solvents
was 99; this is the “combined analysis”. This represented an
approximate reduction in the total number of chemicals by
25%. Note that “combined analysis” and “separate analysis”
essentially represent solving the optimization problem using
two different λ values: 0.5 and 0.

When comparing the chemicals used in the above two
scenarios, it was found that 106 chemicals were present in both

Fig. 1 Examples of chemicals that were shared by more targets in the
combined analysis compared to the separate analysis. A) 1-Bromo-4-
chlorobenzene; B) di-tert-butyl dicarbonate; C) dimethylamine. The
arrows in black represent that the starting material was used for the
target only in the combined analysis but not the separate analysis. The
arrows in blue represent that the starting materials was used for the
target both in the combined and separate analysis. The arrows in red
represent that the starting material was used for the target only in the
separate analysis but not the combined analysis.
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scenarios. 130 chemicals were used only in the separate
analysis and 81 chemicals were used only in the combined
analysis. As exemplified in Fig. 1, a starting material was
shared by different targets in the combined analysis but was
used for fewer targets in the separate analysis. In the combined
analysis, 1-bromo-4-chlorobenzene was shared by three
different targets (pyrimethamine, halopericol and
chloropromazine), whereas in the separate analysis only
halopericol used it as a starting material (Fig. 1A). Di-tert-butyl
dicarbonate was shared by three different targets as a
protecting agent in the combined analysis, while only one
target used it in the separate analysis (Fig. 1B). Dimethylamine
was another example that was used by more syntheses in the
combined analysis than in the separate analysis (4 vs. 2,
Fig. 1C). The full list pathways for all the targets in the
combined and separate analyses are in the ESI† (Fig. S2 and
S3). We manually examined the first fifty targets in both
analyses, and pointed out potential problematic reactions.
Common issues include missing reaction conditions (e.g.,
solvents and bases), or ambiguous selectivity. These topics are
further discussed later in the Limitations section.

The entire list of chemicals along with the number of
times each chemical was used by all the syntheses are
provided in ESI† (Fig. S4, S5 and S6). The chemicals were
generally shared by more syntheses in the combined analysis,
with the most frequent chemical (methanol) used for 10
different targets. We also found that, by visual inspection, in
the separate analysis, chemicals that are small variations of
each other are used in different synthesis, which indicates
some redundancy, and in the combined analysis, we found
fewer similarly-structured chemicals.

To further examine how the reduction in the number of
chemicals was achieved, we counted the number of
chemicals used in each synthesis for both the combined
analysis and separate analysis. Then when we calculated the
average number of chemicals used in each synthesis.
Interestingly enough, the combined analysis and separate
analysis were very close (8.28 vs. 8.41). This indicated that the
combined analysis was not mainly selecting syntheses that
used fewer chemicals, but identifying pathways that had
overlap in the chemicals they used.

For some pairs of targets, we found that their syntheses
shared more common chemicals in the combined analysis. For
example, the combined analysis recommended performing the
syntheses of both propyliodone and probenecid in one step
(Fig. 2). Whereas the targets were structurally different, the
analysis find commonalities in their syntheses: both used
1-bromopropane to introduce the propyl group and both
reactions happened in dimethylformamide (DMF). The
recommended pathways in the separate analysis syntheses did
not share any common chemicals. The scores given in the
combined analysis, although slightly lower than the separate
analysis, still indicated that the reactions were likely to occur.

For probenecid, the combined analysis proposed alkylation
of a sulfonamide in the presence of a carboxylic acid using
sodium hydroxide. However, multiple evidence in the literature

has shown reactivity in the reverse order – the carboxylic acid
was more reactive than the sulfonamide.29,30 To ameliorate the
side reactivity, either the acid was protected,31 or it was
alkylated and later hydrolyzed back to the acid (in the reaction
workup).32 It is worth noting here that the model-suggested
reactions are not necessarily single step operations. There
might be some human bias in the practice of recording
reactions in the database – some workup steps might be
omitted and only the desired overall transformation is
recorded. For this reaction (and likely many other similar
reactions), alkylation of the sulfonamide is the desired outcome
over alkylation of the carboxylic acid, but due to cross-reactivity
in basic conditions, a workup is sometimes used to hydrolyze
the resulting ester back to the carboxylic acid. However, the
recorded reaction (in most datasets) does not typically indicate
a separate workup step and the carboxylic acid would appear
unchanged. This example illustrates that the previously
developed data-driven models used to make condition and
reactivity predictions (before solving the optimization problem)
can have bias based on reaction datasets.

Another example target pair shown here is neostigmine
and tetracaine (Fig. 3). In the combined analysis, the
synthesis of neostigmine and the second step for tetracaine
synthesis uses a common substrate (dimethylamine) and the
same solvent (benzene). While in the separate analysis, for
both targets pathways with higher perceived likelihood were
chosen, but at the expense of not having any overlapping
starting materials or reaction conditions.

It was, however, not universal to have improved pairwise
similarity for all target pairs. Fig. S7† visualizes the pairwise

Fig. 2 Synthetic pathways suggested for propyliodone and
probenecid in the combined analysis (upper panel) and separate
analysis (lower panel). Chemicals highlighted in blue were shared
between the two target molecules. The last reaction in the combined
analysis for probenecid likely represents a multi-step reaction recorded
as an overall transformation.
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similarity between the syntheses of different targets using a
heatmap. The similarity was calculated as the ratio of the
number of overlapping chemicals to the total number of
unique chemical used in the two syntheses. Mathematically
this is referred to as the Tanimoto similarity, and it is a
common metric to calculate similarity for molecular
fingerprints.33 We calculated this value for each target pair to
create the heatmap. It was not clear that the combined
analysis had improved pairwise similarity over the separate
analysis, and when we calculated the difference, on average
the pairwise similarity was only 0.0006 higher in the
combined analysis than the separate analysis, which was not
a significant margin.

It turned out that for many chemicals, they did not
specifically overlap with another single target, but shared
chemicals with several other targets. Although some targets
needed more starting materials in the combined analysis
than the separate analysis, many of the starting materials
were shared with other targets, so that they would not add
additional requirements to the overall chemical inventory.
Fig. 4 and 5 show the entire pathways for synthesizing
procainamide and ephedrine, together with how the starting
materials can be shared with other targets (only one example
target is shown for a starting material; there can be other
targets that also share the starting material). In the combined
analysis, both syntheses were longer and used more
chemicals than in the separate analysis, but more of the
starting materials were shared with some other targets
(procainamide 5/5 and ephedrine 2/3).

We also explored the tradeoff between the two objectives,
minimizing the number of chemicals and minimizing the

penalty of the pathways, by adjusting the weighting
parameter, λ, between the two goals (eqn. (6)). The results
are shown as Pareto frontiers in Fig. 6, with λ taking values
from an increasing sequence from right to left: 0, 0.01, 0.1,
0.25, 0.33, 0.50, 1. The points on the Pareto curve represent
the states from which one objective cannot be improved
without worsening another objective. As shown in Fig. 6,
reducing the total number of chemicals leads to decreased
average scores of the pathways. Emphasizing the minimum
number of chemicals (λ = 1) without regard to pathway
feasibility led to 175 starting materials and an average
pathway score of 0.230. At the other extreme (λ = 0), when
pathways with the highest scores were chosen for every
individual target, the total number of chemicals needed was
236, more than 30% higher than the other extreme, and the
average pathway score was 0.663. The sharp change in the
Pareto frontiers on the right hand side of Fig. 6 revealed
that the number of chemicals decreased significantly with
only a small decrease in the average pathway score. When
λ = 0.1, the number of starting materials was 199 with an
average pathway score of 0.648. Decreasing λ to 0.5 reduced

Fig. 3 Synthetic pathways suggested for neostigmine and tetracaine
in the combined analysis (upper panel) and separate analysis (lower
panel). Chemicals highlighted in blue were shared between the two
target molecules.

Fig. 4 Comparison of syntheses of procainamide in the combined
analysis (blue box) and the separate analysis (red box). The chemicals
in dashed boxes are starting materials used in the syntheses, some
with dashed arrows pointing to another target which this starting
material can be used for.
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the number of starting materials to 187 and the average
pathway score to 0.566. The sharp curvature at the right
end of the figure shows that reductions of the number of
chemicals can be achieved without significantly sacrificing
the predicted quality of the pathways.

Analysis with stricter quality requirements

In the current scheme we allowed each pathway to have at
most one low-probability step, which allows some reactions
that were rejected by the reaction evaluation model to be
included (i.e. predicted score less than 0.05). This was
because some low-scoring reactions could be possible which
exposes limitations in the models rather than fundamental
reactivity issues.

In Fig. 7, we show several representative examples with
different types of problems. Fig. 7a and b can be classified
as false negative predictions by the reaction evaluation
model, as literature precedence of the exact or very similar
reactions can be found.34,35 These reactions usually involve

Fig. 5 Comparison of syntheses of ephedrine in the combined
analysis (blue box) and the separate analysis (red box). The chemicals
in dashed boxes are starting materials used in the syntheses, some
with dashed arrows pointing to another target which this starting
material can be used for.

Fig. 6 Pareto frontiers showing the tradeoff between the number of
chemicals used in all syntheses and the average score of the pathways.
The λ values corresponding to the points from right to left are 0, 0.01,
0.1, 0.25, 0.33 0.50, 1, respectively.

Fig. 7 Examples of low scoring reactions. a) and b) Represent cases
where the reaction evaluation model was not able to recognize
feasible reactions.34,35 c)–e) Represent cases where a necessary
reagent was missing that was supposed to supply atoms to the
product. f) and g) Represent cases where reactivity was problematic.
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many bond changes or even multiple reaction steps (usually
recorded in the database as a single step), which can be out
of scope for the reaction evaluation model. If we can expand
the scope of the reaction evaluation model, or break down
the retrosynthetic templates to reflect the multiple reaction
steps separately, these reactions should be predicted viable.
Fig. 7c–e are examples where the primary issue was reaction
conditions – an atom source is missing so the reaction is
chemically nonsensical. Fig. 7c only predicted a solvent and
base as reagent, and most importantly there is no
methylating agent. Fig. 7d does not provide a carbon source
for the epoxidation. Fig. 7e missed water which is needed
for a workup step and also supply the oxygen. These
reactions cannot be possible as they are presented, but if the
condition recommendation model can be improved to
propose the necessary conditions, these reactions could
become viable suggestions. For example, if methyl iodide is
supplied as an additional reagent, the score of the reaction
in Fig. 7d increases to 0.41, which can make it favorable
than the current scheme presented. Fig. 7f and g represent
examples where there were fundamental reactivity concerns.
These are the true negative reactions that we would like
to be eliminated from the optimization. With further
improvement of the underlying models used before the
optimization, using the reaction score as a filter will help us
more exclusively filter out reactions that have fundamental
reactivity concerns.

We highlighted all low probability steps in Fig. S2 and S3†
to make the pathways more clear to readers. As we explained,
these are not straightforward one-step operations, and
their inclusion can be attributed to limitations of the
retrosynthetic model, condition recommendation model or
reaction evaluation model.

In addition, in order to present a more realistic
collection of pathways, we performed an analysis in which
we filtered out all pathways that have low-probability
reactions. This results in 54 204 pathways for 78 targets. We
ran the same combined (λ = 0.5) and separate analysis (λ =
0) and the total number of chemicals for these two cases
were 250 and 301. The reduction is smaller (17%) since
there are fewer options to choose from, but it still
demonstrates the benefit of planning synthesis in a
combined manner for multiple targets. The full pathways
for this sensitivity analysis are shown in Fig. S8 (combined
analysis) and Fig. S9† (separate analysis). As computer-aided
synthesis planning programs improve, we expect that the
number of targets with pathways found and the quality of
proposed pathways will improve; our optimization
framework for multi-target planning demonstrates the value
even now.

Limitations

As mentioned in the Introduction section, this method only
addresses the initial question of what would be the minimal
inventory needed to synthesize the WHO EML, which is the

first step to establish an on-demand synthesis system. Other
practical aspects, including experimental validation, process
development, policy approval, are beyond the scope of this
work. Nevertheless, this work explores the conceptual
feasibility to develop integrated syntheses for the WHO EML,
which can drive further developments.

We understand the current model-suggested pathways are
not perfect and improvements in multiple aspects can be
made. In the ESI† we manually examined the first 50
pathways and made notes about reactions that might be
problematic.

A large fraction of cases can be attributed to missing
reaction conditions, like solvents and bases (e.g. Fig. S2:† T8,
T10-2; Fig. S3:† T7, T8, T10-3). This is largely related to the
quality of the data used to train the condition
recommendation model. Some common solvents/reagents
are omitted in the database (due to human error in data
entry); a typical example is that water is frequently missing
when the model recommends a reagent like NaOH or HCl.
This needs to be addressed in future improvement of data
and model for the condition recommendation model.

Some reactions seem to have ambiguous selectivity (e.g.
Fig. S2 and S3:† T0–1, T14). While the reaction evaluation
score should reflect this aspect, the reactivity/selectivity can
only be confirmed via experiments. Models that are more
focused and robust on selectivity prediction are currently
under development that can improve the confidence in this
task.

Sometimes the pathways seem redundant and circular
(e.g. Fig. S2 and S3:† T5). This either requires improving the
tree retrieval procedure, or the suggestions can be avoided
by changing the optimization objective to favor shorter
pathways.

As mentioned in the previous section, a more serious flaw
is that some reactions are missing an necessary reagent that
contributes atoms (e.g. T41 in Fig. S2 and S3†). The alkylating
agent is recorded as a reactant in some cases and reagents in
others in the training dataset. This type of error occurs when
the retrosynthetic template omits the alkylating agent in the
reactant but the condition recommendation model fails to
predict it as a reagent. Solving this issue requires cleaning
the data to fix the role of the alkylating agent.

These are also common issues with the rest of reactions
shown Fig. S2 and S3,† and will need to be addressed in
future improvements of the dataset quality and model
performance. However, these issues appear similarly in both
the combined and separate analysis, which indicates that the
optimization method can stay useful with improved tools for
retrosynthetic analysis.

We are also limited by retrosynthetic analysis settings, as
we set the maximal number of trees for a target and maximal
depth of the trees. Also, we chose only one set of condition
for every reaction, which limits the ability to further reduce
the number of solvents, reagents, etc. These can be solved by
improved optimization algorithms to optimize on a graph
instead of enumerate distinct tree options.
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Conclusion

In this work we developed a workflow to perform combined
synthesis planning and predict the minimal chemical
inventory needed for multiple small molecule targets in the
WHO essential medicines list. By performing a multi-
objective optimization on the selection of pathways, the
number of chemicals used was reduced by 20–30%. A
considerable reduction (∼20%) in the chemical inventory
could be achieved without substantially decreasing the
quality of proposed pathways to 99 targets on the WHO list.
Even when using stricter requirements of pathway quality,
the combined analysis achieved a 17% reduction in the
number of unique chemicals required to synthesize the
subset of 78 targets. Examples demonstrated that the
reduction was enabled by sharing chemicals between
different syntheses, either increasing pairwise similarity or
sharing with multiple other targets. This work evaluated a
hypothetical solution to the problem of drug expiration by
designing synthetic routes that start from simpler starting
materials that tend to have longer shelf-lives, and minimizing
the inventory of starting materials and reaction conditions
that need to be stored. The methodology used in this work is
sufficiently general that it can be applied to solve other
multi-compound synthesis tasks as well. This work can be
enriched in the future with improvement in the capacity of
the retrosynthetic analysis, and developing other metrics for
pathway evaluation to design pathways based on more
versatile criteria.

The code for running the retrosynthetic analysis and
optimization is available at https://github.com/Coughy1991/
Combined_synthesis_planning.
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