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ABSTRACT: Machine learning (ML) of quantum mechanical properties shows promise for 
accelerating chemical discovery. For transition metal chemistry where accurate calculations are 
computationally costly and available training data sets are small, the molecular representation 
becomes a critical ingredient in ML model predictive accuracy. We introduce a series of revised 
autocorrelation functions (RACs) that encode relationships between the heuristic atomic 
properties (e.g., size, connectivity, and electronegativity) on a molecular graph. We alter the 
starting point, scope, and nature of the quantities evaluated in standard ACs to make these RACs 
amenable to inorganic chemistry. On an organic molecule set, we first demonstrate superior 
standard AC performance to other presently-available topological descriptors for ML model 
training, with mean unsigned errors (MUEs) for atomization energies on set-aside test molecules 
as low as 6 kcal/mol. For inorganic chemistry, our RACs yield 1 kcal/mol ML MUEs on set-
aside test molecules in spin-state splitting in comparison to 15-20x higher errors from feature 
sets that encode whole-molecule structural information. Systematic feature selection methods 
including univariate filtering, recursive feature elimination, and direct optimization (e.g., random 
forest and LASSO) are compared. Random-forest- or LASSO-selected subsets 4-5x smaller than 
the full RAC set produce sub- to 1-kcal/mol spin-splitting MUEs, with good transferability to 
metal-ligand bond length prediction (0.004-5 Å MUE) and redox potential on a smaller data set 
(0.2-0.3 eV MUE). Evaluation of feature selection results across property sets reveals the relative 
importance of local, electronic descriptors (e.g., electronegativity, atomic number) in spin-
splitting and distal, steric effects in redox potential and bond lengths.  
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1. Introduction 

Computational high-throughput screening is key in chemical and materials discovery1-11, 

but high computational cost has limited chemical space exploration to a small fraction of feasible 

compounds12-13. Machine-learning (ML) models have emerged as alternative approaches especially 

for efficient evaluation of new candidate materials14 or potential energy surface fitting and 

exploration through sophisticated force field models15-22. Examples of recent ML applications in 

computational chemistry include exchange-correlation functional development23-24, general 

solutions to the Schrödinger equation25, orbital free density functional theory26-27, many body 

expansions28, acceleration of dynamics29-31, band-gap prediction32-33, and molecular34-35 or 

heterogeneous catalyst36-37 and materials38-41 discovery, to name a few.  

Essential challenges for ML models to augment or replace first-principles screening are 

model selection and transferable feature set identification. For modest sized data sets, descriptor 

set selection is especially critical42-44 for successful ML modeling. Good feature sets should43 be 

cheap to compute, as low dimensional as possible, and preserve target similarity (i.e. materials 

with similar should properties have similar feature representations). Within organic chemistry, 

structural descriptors such as a Coulomb matrix45 or local descriptions of the chemical 

environment and bonding44, 46 have been useful to enable predictions of energetics as long as a 

relatively narrow range of elements  (e.g., C, H, N, O, F) is considered. These observations are 

consistent with previous successes in evaluating molecular similarity47, force field development48, 

quantitative structure-activity relationships49, and group additivity50 theories on organic molecules.  

Descriptors that work well for organic molecules have proven unsuitable for inorganic 

materials51 or molecules52. This lack of transferability can be readily rationalized: it is well-

known52-55 that some electronic properties of transition metal complexes (e.g., spin state splitting) 

are much more sensitive to direct ligand atom identity that dominates ligand field strength56-57. 

Unlike organic molecules, few force fields have been established that can capture the full range 

of inorganic chemical bonding58. The spin-state- and coordination-environment-dependence of 

bonding59 produces a higher-dimensional space that must be captured by sophisticated descriptors 
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or functions. In spite of these challenges, suitable data-driven models for inorganic chemistry 

will be crucial in the efficient discovery of new functional materials60-61, for solar energy62, and for 

catalyst discovery63-64.  

With the unique challenges of inorganic chemistry65 in mind, we recently trained a neural 

network to predict transition metal complex quantum mechanical properties52. From several 

candidate descriptor sets, we demonstrated good performance, i.e., 3 kcal/mol root mean squared 

error for spin-splitting and 0.02-0.03 Å for metal-ligand bond lengths, of heuristic, topological-

only near-sighted descriptors. These descriptors required no precise three-dimensional 

information and outperformed established organic chemistry ML descriptors that encode more 

whole-complex information.  

In this work, we introduce systematic, adaptable-resolution heuristic and topological 

descriptors that can be tuned to encode molecular characteristics ranging from local to global. As 

these descriptors require no structural information, rapid ML model prediction without prior 

first-principles calculation is possible, and such ML models can improve structure generation66 

through bond length prediction52, 67. We apply this adaptable descriptor set to both organic and 

inorganic test sets, demonstrating excellent transferability. We use rigorous feature selection 

tools to quantitatively identify optimal locality and composition in machine learning feature sets 

for predicting electronic (i.e., spin-state and redox potential) and geometric (i.e., bond length) 

properties. The outline of the rest of this work is as follows. In Sec. 2, we review our new 

descriptors, methods for subset selection, and the ML models trained in this work. In Sec. 3, we 

provide the Computational Details of first-principles data sets and associated simulation 

methodology. In Sec. 4, we present Results and Discussion on the trained ML models for spin-

state splitting, bond-lengths, and ionization/redox potentials. Finally, in Sec. 5, we provide our 

Conclusions. 

2. Approach to Feature Construction and Selection 

2a. Autocorrelation Functions as Descriptors.  

Autocorrelation functions68 (ACs) are a class of molecular descriptors that have been used 
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in quantitative structure-activity relationships for organic chemistry and drug design69-71. ACs are 

defined in terms of the molecular graph, with vertices for atoms and unweighted (i.e., no bond 

length or order information) edges for bonds. Standard ACs68 are defined as: 

 Pd= Pi
j
∑ Pjδ dij ,d( )

i
∑   (1)  

where Pd is the AC for property P at depth d, δ is the Dirac delta function, and dij is the bond-wise 

path distance between atoms i and j. Alternatives to the eqn. 1 AC sums are motivated and 

discussed in Sec. 2b. The AC depth d thus encodes relationships between properties of atoms 

separated by d bonds; it is zero if d is larger than the longest molecular path, and 0-depth ACs 

are just sums over squared properties. The five atomic, heuristic properties used in our ACs are: 

i) nuclear charge, Z, as is used in Coulomb matrices72; ii) Pauling electronegativity, χ, motivated 

by our previous work67; iii) topology, T, which is the atom’s coordination number; iv) identity, I, 

that is 1 for any atom, as suggested in Ref. 12; and v) covalent atomic radius, S. Although i, ii, and 

v are expected to be interrelated, the S quantity uniquely imparts knowledge of spatial extent, 

and covalent radii follow different trends than Z or χ (e.g. the covalent radius of Co is larger than 

Fe and Ni). 

ACs are compact descriptors, with d+1 dimensions per physical property encoded at 

maximum depth d, that depend only on connectivity and do not require Cartesian or internal 

coordinate information. Although inclusion of geometric information improves predictive 

capabilities of machine learning models in organic chemistry73, reliance on structural information 

requires explicit calculation or knowledge of it prior to ML prediction, which is not practical for 

transition metal complexes. AC sets also are vectorial descriptors that are invariant with respect 

to system size and composition, unlike frequently-used symmetry functions19, bag-of-bonds74, and 

Coulomb matrices72, 75.  

Despite their promise in therapeutic drug design69-71 or in revealing inorganic complex 

structure-property relationships67, ACs have not yet been tested as features in machine learning 

models that predict quantum mechanical properties. We first apply ACs to the QM9 database76 of 
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134k organic (C, H, O, N, and F elements) molecules consisting of up to nine heavy atoms. This 

database contains B3LYP/6-31G-calculated properties, including atomization energies and 

HOMO-LUMO gaps, making it a frequent test set for machine learning models and descriptor 

sets44, 73, 77-78. The QM9 test set allows us to both identify if there is an optimal maximum depth for 

ACs and to determine the baseline predictive capability of ACs in comparison to established 

descriptors72, 74-75. Throughout this work, we score feature sets by training Kernel ridge regression 

(KRR) models79 with a Gaussian kernel. KRR is a widely-employed72, 74-75 ML model, that has 

produced sub-kcal/mol out-of-sample property prediction error on large organic databases and 

crystals78, 80-81. We have selected KRR for the i) ease of retraining, ii) transparency of differences in 

KRR models79, as predictions are related to arrangement of data points in feature space, and iii) 

wide use of KRR in computational chemistry72, 74-75, 80-81 (Supporting Information Text S1). 

First, we test the effect of increasing the maximum AC depth to incorporate increasingly 

nonlocal ACs on AE prediction test set errors using a 1,000 molecule training set repeated five 

times (Figure 1). We evaluate prediction test set mean unsigned error (MUE) on the remaining 

133k molecules in the QM9 set. Test set MUEs first decrease with increasing depth from 18 

kcal/mol MUE at zero-depth (i.e., only sums of constituent atom properties) and reach a 

minimum of 8.8 kcal/mol MUE at maximum three-depth ACs. Without any further feature 

reduction, maximum three-depth ACs (3d-ACs) correspond to a 20-dimensional feature set (i.e., 

4 length scales x 5 properties). Increasing the maximum depth beyond three increases test errors 

slightly up to 9.2 kcal/mol for maximum six-depth ACs (Figure 1). Minimum train/test MUEs 

with 3d-ACs emphasizes the length scale of chemically relevant effects, in line with previous 

observations52-53, 73, and increasing train/test MUEs due to the addition of more poorly correlating 

non-local descriptors emphasizes the importance of careful feature selection (Sec. 2c). 

Regardless of maximum depth chosen, AC-derived prediction accuracy is impressive since the 

KRR model is trained with < 1% of the QM9 data set, which has a large overall AE mean 

absolute deviation of 188 kcal/mol. 
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Figure 1. Train (black line) and test (red line) MUEs (in kcal/mol) for QM976 AEs predicted by 
KRR models trained on AC feature sets with increasing maximum depth. Each model is trained 
on 1,000 molecules and tested on the 133k remaining molecules. Error bars on test set error 
correspond to standard deviations from training the KRR model on five different samples, and 
the red circles correspond to the mean test error. The lowest MUE maximum-depth, 3, is 
indicated with an asterisk. An example of a term in a 3-depth AC is shown on butane in inset. 

  

We now compare 3d-AC performance and learning rates (i.e., over increasingly large 

training sets) to i) the Coulomb matrix eigenspectrum72 (CM-ES) representation, which is an easy 

to implement 3D-derived descriptor75; ii) the recently-developed73 2B descriptor that, like ACs, 

does not require explicit 3D information and encodes connectivity and bond order information 

for atom pairs; and iii) and more complex73 12NP3B4B descriptors. The 12NP3B4B descriptors, which 

encode a continuous, normal distribution of bond distances for each bond-type in a system-size 

invariant manner, require 3D information but have demonstrated performance similar to the best 

results reported80, 82 QM9 AEs.73 We trained the CM-ES KRR model using the recommended75 

Laplacian kernel, but we selected a Gaussian kernel for 3d-ACs after confirming it produced 

lower MUEs (Supporting Information Text S2). For our ultimate goal of inorganic complex 

property prediction (sec. 3), 3D information, even from semi-empirical geometries, is not readily 

achievable from currently available semi-empirical theories. However, we compare our two 

trained KRRs to reported performance of 2B and 12NP3B4B descriptors from the literature, which we 

select as the best-reported 3D-structure-free descriptor and as a high-accuracy,  3D-structure-

dependent descriptor, respectively.73  
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For the largest 16,000 molecule training set, the 3d-AC test set MUEs are 68% and 43% 

lower than CM-ES and 2B descriptors, respectively. The 3d-AC descriptors are only 

outperformed by 12NP3B4B by 74% or 4.5 kcal/mol, owing to the bond distance information 

encoded in this set (Figure 2 and Supporting Information Table S1). This improved performance 

of 12NP3B4B and other comparably-performing73 descriptors (e.g., superposition of atomic densities46 

or the many-body tensor representation80) comes at a severe cost of requiring accurate geometries 

before predictions can be made, whereas 3d-AC significantly outperforms the previous best-in-

class topology-only descriptors set 2B. Learning rates (i.e., training-set size test set MUE 

dependence) are comparable among 3d-AC, 2B, and 12NP3B4B descriptors but slightly steeper for 

the poorer performing CM-ES representation (Figure 2). For dipole moment prediction, 3d-AC 

performs nearly as well as 12NP3B4B: the 3d-AC test MUE at 1,000 training points is only 2% 

higher than 12NP3B4B and 19% higher at 16,000 training points (Supporting Information Table S2). 

Thus, ACs are promising size-invariant, connectivity-only descriptors for machine learning of 

molecular properties. However, we have previously observed limited transferability of organic 

representations for inorganic complexes52, and we next identify the transferability of our present 

descriptors as well as beneficial inorganic chemistry adaptations.  

 
Figure 2. Training set size dependence of test set MUEs (in kcal/mol) for KRR model 
prediction of QM976 AEs for four feature sets. In all cases, the test set consists of the remainder of 
the 134k molecule set not in the training set. For the maximum 3-depth autocorrelation (3d-AC, 
gray circles) and Coulomb matrix eigenspectrum72 (CM-ES, red circles) trained in this work, 
standard deviations (error bars) and mean test errors are reported from training results on five 
samples selected for each training set size. The 2B (green open square) and 12NP3B4B (blue open 
square) KRR test set MUEs from literature73 are provided for comparison.  
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2b. Revised Autocorrelations for Transition Metal Complexes.  

We previously proposed52 a mixed continuous (e.g., electronegativity differences) and 

discrete (e.g., metal and connecting atom identity) set of empirical, topological descriptors 

(referred to in this work as MCDL-25) that emphasized metal-proximal properties for predictive 

modeling of transition metal complexes with an artificial neural network. The MCDL-25 set is 

metal-focused in nature with the longest range effects only up to two bonds through a truncated 

Kier shape index83. This imparted good accuracy (i.e., root mean squared error, RMSE, of 3 

kcal/mol) for spin-state splitting predictions and superior transferability to test set molecules with 

respect to commonly-employed descriptors72 used in machine learning for organic chemistry that 

encode complete, 3D information. 

In addition to standard ACs (eqn. 1 in Sec. 2a), we now introduce revised ACs (RACs) 

inspired by descriptors in the metal-focused MCDL-25 set. In these RACs, we both restrict 

where the sums in eqn. 1 start (i.e., to account for potentially greater importance of the metal and 

inner coordination sphere) and which other atoms are in the scope (Figure 3). In the extended 

notation of the broader AC set, the standard ACs starts on the full molecule (f) and has all atoms 

in the scope (all), i.e.,  all
f Pd . As in ref. 67, we compute restricted-scope ACs that separately 

evaluate axial or equatorial ligand properties:  

 
  
ax/eq

f Pd =
1

ax/eq ligands i

nax/eq

∑
j

nax/eq

∑Pi Pjδ dij ,d( )   (2)  

where nax/eq is the number of atoms in the corresponding axial or equatorial ligand and properties 

are averaged within the ligand subtype. We introduce restricted-scope, metal-centered (mc) 

descriptors, in which one of the atoms, i, in the i,j pair is a metal center: 
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all
mcPd = Pi

j

all

∑ Pjδ dij ,d( )
i

mc

∑   (3) 

For the complexes in this work there is only one metal-center, which simplifies the sum, but 

there is no inherent restriction to a single metal center (see green arrows in Figure 3).   

 
Figure 3. Schematic of ACs in the equatorial plane of an iron octahedral complex with two eq. 
oxalate ligands shown in ball and stick representation (iron is brown, oxygen is red, and carbon 
is gray). Regions of the molecule used to classify descriptors are designated as proximal (metal 
and first coordination shell, in red), middle (second coordination shell, in green) and distal (third 
shell and beyond, in blue) throughout the text. Light green circles and arrows depict terms in a 2-
depth mc RAC (e.g.,   eq

mcZ2 ), and the light blue circles and arrows depict terms in a 1-depth lc 

RAC (e.g.,   ax
lcZ1 ). 

 

A second restricted-scope, metal-proximal AC definition is the ligand-centered (lc) sum 

in which one of the atoms, i, in the i,j pair is the metal-coordinating atom of the ligand: 

 
  
ax/eq

lcPd =
1

ax/eq ligands
1
lc j

nax/eq

∑
i

lc

∑ Pi Pjδ dij ,d( )   (4) 

We average the ACs over all lc atoms and over all ligands in order to treat ligands of differing 

denticity on equal footing (see light blue arrows in Figure 3). 

 Inspired by our previous success52, 84 in employing electronegativity differences between 
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atoms to predict electronic properties, we also modify the AC definition, P’, to property 

differences rather than products for a minimum depth, d, of 1: 

 
  
ax/eq/all

lc/mcP 'd =
i

lc  or mc

∑
j

scope

∑ Pi − Pj( )δ dij ,d( )   (5) 

where scope can be axial, equatorial, or all ligands, the start must be lc or mc because a sum of 

differences over all will be zero, and these ACs are not symmetric so the ordering of indices i,j is 

enforced for consistency.  

We combine all six types of AC or RAC start/scope definitions (f/all; mc/all; lc/ax; lc/eq, 

f/ax; and f/eq, eqns. 1-5) with both products and differences of the five atomic properties for 

depths from zero, where applicable, to maximum depth d. There are 6d+6 descriptors for six 

product AC/RACs (eqns. 1-4) with each of the five atomic properties (i.e., a total of 30d+30 

product AC/RACs). For difference RACs (eqn. 5), there are no zero-depth descriptors, and three 

non-trivial start/scope definitions (mc/all; lc/ax; and lc/eq), producing 3d descriptors for all of the 

atomic properties excluding I, giving 12d difference descriptors for a total of 42d+30 product or 

difference RACs. These ACs represent a continuous vector space that is increasingly nonlocal 

with increased maximum d and dimension invariant with respect to system size. This descriptor 

set also does not depend on any 3D information, which is valuable for structure prediction52, 67.  

We classify relative locality of ACs into three categories (see Figure 3): 1) proximal: 

depends only on atom types and connectivity in first coordination shell; 2) middle: depends on 

information from two coordination shells; and 3) distal: all remaining descriptors based on the 

molecular graph. This broad AC set naturally recovers well-known quantities: i)   all
mc I1  is the metal 

coordination number and ii)   all
f I0  is the total number of atoms. We also recover continuous 

descriptor analogues to the variables in MCDL-2552: i)   all
mcZ0  is the metal identity, ii)   ax/eq

lcZ0  is 
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the coordinating atom identity, and iii)   ax/eq
lcχ '1  is Δχ. Some ACs are redundant (e.g.,   all

mc I1  and 

  all
mcT0  are the same). Before model training, all ACs are normalized to have zero-mean and unit 

variance based on training data, and any constant features in training data are filtered out.  

2c. Feature Selection Methods.  

Feature reduction from a large descriptor space improves the ratio of training points to 

the dimension of the feature space, decreasing training time and complexity85 for non-linear 

models (e.g., neural networks) or improving predictions in kernel-based methods with isotopic 

kernels by eliminating uninformative features. In linear models, feature reduction increases 

stability, transferability, and out-of-sample performance85. Reducing feature space, without 

impact on model performance85, is also useful86 for providing insight into which characteristics are 

most important for determining materials properties. Starting from n observations (e.g., spin-

state splitting, bond length, or redox potential) of 
 
ydata xi( )  and molecular descriptors m

ix ∈ °  in 

an m-dimensional feature space,   Xm , we use established86 feature selection techniques to obtain a 

lower-dimensional representation of the data,   Xd ∈Xm , that maximizes out-of-sample model 

performance while having the smallest possible dimension.   

Feature selection techniques may be broadly classified86 as (Figure 4): 1) simple filters, 2) 

wrapper methods, and 3) direct optimization or shrinkage methods79. Type 1 univariate filtering 

(UVF) acts on each descriptor individually, discarding those that fail a statistical test (here, the p-

value for a linear model being above a cutoff of 0.05). UVF is amenable to very high-

dimensional problems86 but neglects interactions between descriptors that may occur85, and the 

significance test in a linear model may not relate well to the final machine learning model. 
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Figure 4. Schematic of three main types of feature selection approaches with retained and input 
features represented by dark blue circles. Type 1 (top) univariate filters evaluate features one at a 
time; type 2 (middle) wrapper methods train a model (e.g., KRR or MLR) and use a cross 
validation score to recursively eliminate features; and type 3 (bottom) shrinkage or direct 
optimization models such as LASSO and random forests (randF) carry out one-shot feature 
selection and regularization or model training, respectively.   

 

Type 2 wrapper methods require multiple steps85-86: iterative feature subset choice along 

with model training and scoring (Figure 4). Combinatorial testing of every possible subset is 

only feasible for small feature sets (e.g., < 40 variables with simple predictive models79). The 

model used in training and scoring is flexible, but the repeated model training time may become 

prohibitive. Stepwise search85, with greedy recursive feature addition or elimination (i.e., RFA or 
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RFE) on most improvement or least penalty, respectively, or randomized searches less prone to 

local minima86, are employed for larger feature sets. Cross-validation (CV) scoring, which is 

unaffected by feature space size changes, will usually produce a minimum for an optimal number 

of features85. We recently used67 RFE with an embedded linear model to select variables to use in 

multiple linear regression (MLR) to identify four key RACs from a larger 28-dimensional space 

for redox potential prediction. In this work, we primarily employ RFE-MLR to select features to 

be used for KRR training, despite potentially eroded model transferability between MLR and 

KRR. The fine hyperparameter grid search needed to produce a robust KRR model at each RFE 

iteration would take around 30 days in parallel on a 4-core Intel 3.70 GHz Core i7-4820K when 

starting from a large (ca. 150) descriptor set, making some initial reduction in feature space 

necessary for practical RFE-KRR (Supporting Information Text S3).  

Type 3 shrinkage or direct optimization methods use regularization (e.g., elastic net or 

L1-regularized linear regression, LASSO87) or a model (e.g. random forests) that determines 

variable importance in one shot during training, making Type 3 methods much more 

computationally efficient than Type 2. However, it remains uncertain if the typically lower 

complexity of the combined feature-selection and fitting model (e.g, L1 regularized regression in 

LASSO) produces results that are transferable to the subsequent ML model to be trained (e.g., 

KRR). In this work, we use an elastic net, a generalization of LASSO that we previously used to 

select descriptors for machine learning models52, in which a blend of L2 and L1 regularization is 

applied88, giving the loss function as: 

 
  
L(W ) = xW − ydata (x)

2

2
−λ α W

1
+ (1−α) W

2

2( )   (6) 

Here, W are the regression coefficients, λ is the regularization strength, and α ∈ [0,1]  

interpolates between ridge (α=0) and LASSO (α=1) regression. Higher α aggressively reduces 

the feature space, and the best α is selected by cross-validation with λ, with intermediate α often 

favored for balancing prediction with feature reduction79.  

Random forests89, which are based on an ensemble of sequential binary decision trees, are 
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another Type 3 method (Figure 4). Each tree is trained on a bootstrapped data sample and uses a 

random input variable set. Integrated feature selection is achieved by comparing tree 

performance when descriptors are randomly permuted90 to yield an importance score for each 

descriptor and discard those below a threshold value. Here, we use 1,000 trees and discard 

descriptors with an increase of < 1% (or higher, where specified) in normalized MSE on out-of-

model samples upon removal (see convergence details in Supporting Information Figures S1-

S4). 

We now compare feature selection methods on our transition metal complex data sets, as 

judged by performance on 60%-40% and 80%-20% train-test partitions for the larger spin-

splitting and smaller redox data set (see Sec. 3a), respectively. Feature selection is only carried 

out on the training data, and KRR models are used for judging performance of a feature set using 

identical cross-validation for hyperparameter estimation. All analysis is conducted in R version 

3.2.391. We use the kernlab92 package for KR regression, CVST93 for cross-validation, glmnet94 for 

elastic net regression, caret95 for feature selection wrapper functions and randomForest96 for 

random forests. All kernel hyperparameter values are provided in Supporting Information Tables 

S3-S6. 

3. Computational Details 

3a. Organization of data sets.  

Feature selection and model training is carried out on two data sets of single-site octahedral 

transition metal complexes, which were generated from extension of data collected in previous 

work52, 67 (Figure 5). These data sets are derived from around 3,300 DFT geometry optimizations 

of molecules up to over 150 atoms in size, which is a smaller number of training points than has 

been feasible in machine learning on small (i.e., up to 9 heavy atoms) organic molecules76 but 

slightly larger than has successfully been used in bulk catalysis36. For both sets, the complexes 

contain Cr2+/3+, Mn2+/3+, Fe2+/3+, Co2+/3+, or Ni2+ first row transition metals. High-spin (H) and low-spin (L) 

multiplicities were selected for each metal from those of the isolated ion in National Institute of 
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Standards and Technology atomic spectra database97: triplet-singlet for Ni2+, quartet-doublet for 

Co2+ and Cr3+, quintet-singlet for Fe2+ and Co3+, quintet-triplet for Cr2+ and Mn3+ (due to the fact that 

there is no data available for Mn3+ singlets97), and sextet-doublet for Mn2+ and Fe3+. For all data sets, 

the molSimplify66 code was used to generate starting geometries from the above metals and a 

ligand list (ligands provided in Supporting Information Table S7). Incompatible ligand 

combinations are disabled (e.g., equatorial porphyrin ligands can occur once and only with 

monodentate axial ligands).  

 

Figure 5. (top) Schematic of octahedral transition metal complex illustrating possible unique 
ligands (one equatorial ligand type, Leq, and up to two axial ligand types, Lax1 and Lax2) in the spin-
splitting and redox data sets. (bottom) Characteristics of each data set: metal identity, number of 
ligand types (L types), connecting atom identity of the ligand to the metal (L CA), range of 
denticities (L denticity), ligand symmetry corresponding to the schematic complex 
representation, and associated quantum mechanical properties. Spin-splitting and redox Fe-N sets 
were previously published52, 67, but the “new” subset of the redox data set was generated in this 
work.  
 

The spin-state splitting data set52 consists of 1345 unique homoleptic or heteroleptic 

complexes with up to one unique axial and equatorial ligand type with ligands selected from 16 

common ligands of variable ligand field strength, connecting atom identity, and denticity (Figure 
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5). For this data set, the structures were evaluated using hybrid density functional theory (DFT) 

at 7 percentages of Hartee-Fock (HF) exchange from 0 to 30% in 5% increments. This set was 

previously used to train models that predict i) the adiabatic, electronic spin-state splitting energy, 

ΔEH-L, ii) the exchange sensitivity of the spin-state splitting, and iii) the spin-state dependent 

minimum metal-ligand bond lengths (e.g., min(RL) or min(RH)) that differ from the average 

metal-ligand bond length only for distorted homoleptics or heteroleptic complexes. In this work, 

we only train and test models on ΔEH-L and min(RL).  

 The redox data set (226 unique structures) is comprised of 41 previously studied67 Fe-

nitrogen monodentate and bidentate homoleptic complexes and 185 newly generated structures 

(Figure 5 and Supporting Information Table S8). The new complexes were obtained by 

generating combinations of metals (Cr, Mn, Fe, Co) and five small, neutral monodentate ligands 

(CO, pyridine, water, furan, and methyl isocyanate) with up to two axial ligand types and one 

equatorial ligand type. Axial ligand disengagement occurred during optimization in several of 

the 300 theoretically possible cases, reducing the final data set (Supporting Information).  

In all cases, we calculate the M(II/III) redox couple starting from the adiabatic ionization 

energy of the reduced complex’s ground state spin: 

   ΔEIII−II = EIII − EII   (7) 

At minimum, this ionization energy requires M(II) low-spin and high-spin geometry 

optimizations as well as the selected lowest energy M(III) state that differs by a single electron 

detachment (Supporting Information Table S9).  

To compute the redox potential, we also include solvent and thermodynamic (i.e. 

vibrational enthalpy and zero point vibrational energy) corrections in a widely adopted 

thermodynamic cycle approach98-100. We estimate the M(II/III) redox potential in aqueous solution 

at 300 K, ΔGsolv: 

 
  
ΔGsolv =Ggas ( M (III))−Ggas ( M (II))+ΔGs ( M (III))−ΔGs ( M (II))   (8) 
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where Ggas is the gas phase energy with thermodynamic corrections and ΔGs is the solvation free 

energy of the gas phase structure. We then compute the redox potential: 

 
  
E0 = −

ΔGsolv

nF
  (9) 

where the number of electrons transferred is n=1 and F is Faraday’s constant.  

3b. First-principles Simulation Methodology. 

Our simulation methodology was the same for all generated data sets. All DFT 

calculations employ the B3LYP hybrid functional101-103 with 20% HF exchange (aHF = 0.20), except 

for cases where HF exchange is varied53 while holding the semi-local DFT exchange ratio 

constant. In inorganic complexes, the optimal amount of HF exchange is highly system 

dependent53, 55, 57, 104-105, motivating our earlier training of an ANN to predict spin-state ordering and 

bond length in an HF exchange dependent manner as well as the sensitivity of properties to HF 

exchange fraction52, 67. Exchange-sensitivity is not the focus of the present work, as our prior work 

demonstrated52 that ANN accuracy was not sensitive to functional choice. We use the LANL2DZ 

effective core potential106 for all transition metals, bromine, and iodine and the 6-31G* basis for 

the remaining atoms. The use of a modest basis set is motivated by our previous observations67 

that extended basis sets did not substantially alter trends in redox or spin-state properties. Gas 

phase geometry optimizations were conducted using the L-BFGS algorithm implemented in the 

DL-FIND107 (for the spin-splitting data set) or in translation rotation internal coordinates108 (for the 

redox data set) interfaces to TeraChem109-110 to the default tolerances of 4.5x10-4 hartree/bohr for the 

maximum gradient and 1x10-6 hartree for the change in self-consistent field (SCF) energy 

between steps. All calculations were spin-unrestricted with virtual and open-shell orbitals level-

shifted111 by 1.0 eV and 0.1 eV, respectively, to aid SCF convergence to an unrestricted solution. 

Deviations of <S2> from the expected value by more than 1 µB led to exclusion of that data point 

from our data set. The aqueous solvent environment, where applicable, was modeled using an 

implicit polarizable continuum model (PCM) with the conductor-like solvation model 
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(COSMO112-113) and ε=78.39. The solute cavity was built using Bondi’s van der Waals radii114 for 

available elements and 2.05 Å for iron, both scaled by a factor of 1.2. Vibrational entropy and 

zero-point corrections were calculated from a numerical Hessian obtained with built-in routines 

in TeraChem109-110. 

4. Results and Discussion 

4a. Spin Splitting Energy .  

We evaluate our RACs (i.e., both standard ACs and the modified start, scope, and 

difference ACs defined in Sec. 2b) for KRR training on the spin-splitting data set and compare to 

both previous MCDL-25 descriptors52 and widely-employed72, 75 Coulomb-matrix-derived 

descriptors. Based on our results for organic molecules (Sec. 2a), we use a maximum depth of 3 

in the 42d+30 RACs, producing 156 potential descriptors, which reduce to 151 after discarding 5 

descriptors that are constant (e.g.,   ax
lc I0 and   all

mcT0 ) due to unchanged octahedral coordination in the 

data sets in this work (Supporting Information Tables S10). We add four variables (i.e., oxidation 

state, HF exchange and axial/equatorial ligand denticity) from our MCDL-25 set52 to produce a 

final 155-variable set (RAC-155). The RAC-155 set is transferable to inorganic chemistry, with 

already good MCDL-25/KRR (Gaussian kernel) test set RMSE and MUE of 3.88 and 2.52 

kcal/mol reduced to 1.80 and 1.00 kcal/mol with RAC-155 (Table 1). This performance is also 

superior to Coulomb matrix (CM)-based descriptors computed on high-spin geometries. Using 

either i) an L1 matrix difference kernel on sorted Coulomb matrices72, 81 (CM-L1) or ii) 

eigenvalues72 and a Laplacian kernel, as recommended in Ref.75 (CM-ES), we obtain 10-30x 

higher RMSE and MUEs than for RAC-155 or MCDL-25 (Table 1, learning rates for RAC-155 

in Supporting Information Figure S5).  

Table 1. Test set KRR model prediction errors (RMSE and MUE) for spin-splitting energy 
(kcal/mol) for the Manhattan norm applied to sorted Coulomb matrices (CM-L1)72, 81, the Coulomb 
matrix eigenspectrum representation with a Laplacian kernel (CM-ES)75, our prior hybrid 
discrete-continuous descriptors (MCDL-25)52 with a Gaussian kernel, and the full RAC-155 set 
introduced in this work with a Gaussian kernel.  
Feature set RMSE 

(kcal/mol) 
MUE 

(kcal/mol) 
CM-L1 30.80 20.84 
CM-ES 19.19 14.96 
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MCDL-25 3.88 2.52 
RAC-155 1.80 1.00 
 

Visualization with principal component analysis (PCA) of the key descriptor space 

dimensions with spin-splitting or molecular size variation overlaid reveals why CM-ES performs 

poorly in comparison to RACs (Figure 6). The first two principal components encode the 

majority of the feature space variation for both sets: 85% of CM-ES and 55% of RAC-155 

(Supporting Information Figures S6-S7). As expected52, 73, CM-ES shows excessive molecule-size-

dependent clustering that is not predictive of how metal electronic properties vary. As an 

example, homoleptic Fe(III) complexes with strong-field t-butylphenylisocyanide (pisc) and 

methylisocyanide (misc) ligands have comparable ΔEH-L of 41 and 38 kcal/mol but differ in size 

substantially at 151 and 37 atoms, respectively (structures in Figure 6 inset). Despite comparable 

spin splitting, these molecules are on opposite ends of PC1 in the CM-ES PCA with no 

intermediate data (Figure 6). More broadly, no clustering is apparent in spin-splitting energies 

with CM-ES in comparison to the strong system size clustering (Figure 6).  
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Figure 6. Projection of spin-splitting data set onto the first two principal components (arbitrary 
units) for the Coulomb matrix eigenspectrum (CM-ES, left), full revised AC set (RAC-155, 
center), and the LASSO-selected subset (LASSO-28, right). The PCA plots are colored by DFT-
calculated spin splitting energy (top, scale bar in kcal/mol at right) and size (bottom, scale bar in 
number of atoms at right). Ball and stick structures of representative complexes Fe(III)(pisc)6 and 
Fe(III)(misc)6 (iron brown, nitrogen blue, carbon gray, and hydrogen white) are inset in the 
bottom left, and the associated data points are highlighted with a blue circle and square, 
respectively, in each plot.  

 

In contrast, RAC-155 distributes data more evenly in the PCA with smaller size-

dependence due to using both metal-centered and ligand-centered ACs in addition to truncating 

the depth of descriptors to three prior to feature selection (Figure 6). Improved RAC 

performance is also due to better representation of molecular similarity with apparent weak-field 

and strong-field groupings, assisting KRR learning75 that relies on nearest neighbor influence for 

property prediction (Figure 6).  

Spin splitting energies are well predicted by KRR with RAC-155, outperforming our 

previous MCDL-25 representation but at the initial cost of an order-of-magnitude increase (from 

25 to 155) in feature space dimension. We thus apply feature selection techniques (Sec. 2c) to 

identify if AC subsets maintain predictive capability with smaller feature space size. Starting 

with Type 3 shrinkage methods we have previously employed52, we carried out feature selection 

with an elastic net. Comparable CV scores were obtained for all α, and so we chose α = 1 (i.e., 

LASSO) (Supporting Information Figure S8). LASSO retained 28 features, eliminating over 

80% of the features in RAC-155 with a 0.2 kcal/mol decrease in test RMSE and the best overall, 

sub-kcal/mol MUE (Table 2 and Supporting Information Table S11). PCA on LASSO-28 reveals 

even weaker size dependence than RAC-155 and closer pisc and misc species in PC space 

(Figure 6).   

Table 2. Train and test set KRR model prediction errors (RMSE for train/test and MUE for 
test) for spin-splitting energy (in kcal/mol) for RAC-155 and down-selected subsets based on 
spin-splitting data using LASSO, univariate filters (UV), recursive feature elimination (RFE) 
based on MLR, and random forest (randF). The last results presented for comparison are the 
common feature subset (RAC-12), a proximal-only subset (PROX-23) of RAC-155, and the full 
RAC-155. 
Feature set train test 

 RMSE 
(kcal/mol) 

RMSE 
(kcal/mol) 

MUE 
(kcal/mol) 
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LASSO-28 0.60 1.65 0.96 
UV-86 0.43 1.78 0.99 
RFE-43 0.41 2.50 1.20 
randF-41 0.40 1.87 1.01 
randF-26 1.18 2.12 1.28 
RAC-12 1.31 2.90 1.86 
PROX-23 5.43 6.03 3.70 
RAC-155 0.55 1.80 1.00 
 

Type 1 feature selection with UV filters (p <= 0.05) retains 86 features (UV-86, 

Supporting Information Table S12) and comparable performance to RAC-155, suggesting 

elimination of descriptors that have weak univariate correlation does not reduce KRR accuracy 

(Table 2 and Supporting Information Figure S9). Type 3 RFE with an embedded MLR model 

produces a flat CV error, with an absolute CV minimum at 43 retained features (i.e., RFE-43, 

Supporting Information Table S13 and Figure S10). The RFE-43 KRR model shows 0.5 

kcal/mol and 0.2 kcal/mol worsened test RMSE and MUE, respectively, compared to RAC-155. 

Improved performance could possibly be obtained with a higher fidelity embedded model but at 

the cost of prohibitive computational time for feature selection (see Sec. 2c). 

In addition to LASSO, we also employed the Type 3 random forest (randF) model, which 

has a suggested 1% MSE cutoff for feature selection, and by varying this cutoff we can vary 

feature set size. The standard 1% cutoff with random forest selects 41 features (randF-41), 

yielding KRR test RMSE/MUE within 0.1 kcal/mol of RAC-155 (Table 2 and Supporting 

Information Figure S11 and Table S14). We also truncate at 2% randF MSE to retain only 26 

variables (randF-26), favorably reducing the feature space but slightly worsening test MUE 

relative to randF-41 or LASSO-28 by 0.2-0.3 kcal/mol, with other cutoffs yielding no KRR test 

error improvement (Table 2 and Supporting Information Tables S15-S16). In addition to average 

errors, error distributions are symmetric, and maximum errors track with RMSE/MUE: LASSO-

28 yields the smallest (< 9 kcal/mol) maximum error (Supporting Information Figure S12).  

The best-performing LASSO-28 set contains some features equivalent to those in 

MCDL-25: i) LASSO-28   all
mcχ '2  and 3'

mc
all χ  are similar to MCDL-25 Δχ, ii) LASSO-28 1'

mc
all S , 
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  all
mcZ1 , and 1

lc
ax χ  encode the size and identity of the ligand connecting atoms also present in 

MCDL-25, and iii) metal-identity, which was a discrete variable in MCDL-25, is represented by 

  all
mcZ0  and   all

mcχ0  in LASSO-28. Our new difference-type RACs are well-represented (10 of 28 in 

LASSO-28), and only 5 of 28 are whole-ligand(4, e.g., 3
f
ax I ) or whole-complex (1, 2

f
all χ ). Thus, 

mc, lc, and difference-derived RACs, all motivated by our prior observations of inorganic 

chemistry, are key to high accuracy predictions.  

It is useful to understand the effect of feature selection method choice by identifying the 

number of common features among the three best-performing selected feature sets, LASSO-28, 

UV-86, and randF-41 (Figure 7). Only 12 features are common to the three subsets, which we 

designate RAC-12 (Supporting Information Table S17). In RAC-12, 7 of the retained descriptors 

are proximal, and 5 of 12 descriptors incorporate χ or Δχ. All four of the retained distal 

properties in RAC-12 (e.g.,   all
mcχ 'd , d=1,2,3 and 1'

mc
all S ) are of the newly introduced difference-

derived AC type. A KRR model trained on RAC-12 produces test set RMSE and MUE 1.1 and 

0.9 kcal/mol above the 13x larger RAC-155 but still significantly lower than the twice as large 

MCDL-25 (see Tables 1 and 2). Broadly, two thirds of all features are selected by at least one of 

the three best feature selection methods (Figure 7). Over 80% of the descriptors in randF-41 are 

also found in the larger UV-86, but fewer (31% of randF-41) are present in the smaller LASSO-

28. Unique descriptors in randF-41 are mc-type, whereas unique LASSO-28 descriptors are non-

local 2-depth or 3-depth standard ACs on ligands.  
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Figure 7. Venn diagram showing common descriptors among the three best performing subsets 
of RAC-155 returned by feature selection algorithms: UV-86, LASSO-28, and randF-41. A total 
of 12 common variables are found among all three sets, and other numbers refer to unique or 
common variables between sets. Example features are indicated, colored by classification 
(proximal in red, middle in green, and distal in blue).  

 

We further classify the degree of locality in each feature set, as designated by the bond-

wise path-length scales of information in the descriptors (i.e., proximal, middle, and distal, 

defined in Sec. 2b). We quantify the fraction of descriptors corresponding to each category in a 

feature set, e.g. the proximal fraction:  

 frac(proximal)= num. of proximal RACs+2
num. RACs+2

  (10) 

where the denominator only contains the RACs that can be assigned to proximal (the two ligand 

denticity variables are also included here), middle, or distal portions of the molecule, not 

oxidation state or HF exchange. Relative to RAC-155, all feature selection methods increase the 

proximal fraction, and we observe lowest MUEs in subsets with higher proximal fractions, i.e., 

over 0.3 in the best-performing LASSO-28 or in randF-41 and increased to nearly 0.5 when a 

higher MSE cutoff is used in random forest (i.e., randF-26, Figure 8). The higher-dimensional 

Type 1 UV-86 subset and Type 2 RFE-43 subset possess the most similar distributions to RAC-

155 with still good performance likely due to relatively large feature set size (Figure 8). Modest 

feature space dimension (< 30) always gives higher proximal fraction than larger subsets.  
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Figure 8. Fraction of selected descriptors that are proximal (red), middle (green) or distal 
(blue), as defined in the main text and depicted in Fig. 3 compared against RAC-155 reference 
fractions (dark red proximal fraction and green middle fraction as horizontal lines) along with 
their performance for spin-splitting prediction with KRR. The normalized relative test set spin-
splitting MUE from a KRR model is shown in dark grey for each set, and the lowest test MUE is 
indicated with an asterisk. Sets are sorted left to right in decreasing distal fraction: RFE with 
MLR (RFE43); UV filter (UV86); LASSO (LS28), random forest with 1% (rF41) or 2% cutoff 
(rF26), common set (C12), and proximal-only (Prx23). HF exchange and oxidation state are not 
shown but are used in all models.   
 

Given the high fraction of retained proximal descriptors in randF-26 and RAC-12, we 

also tested the suitability of a full proximal-only set of RACs and denticity variables along with 

oxidation state and HF exchange (PROX-23) for KRR model training (Supporting Information 

Table S18). This PROX-23 KRR model is the worst performing of all KRR models, including 

MCDL-25, with test RMSE and MUE of 6.0 and 3.7 kcal/mol, emphasizing the importance of 

beyond-proximal information present in both MCDL-25 and the feature sets selected in this work 

(Table 2). The superior performance of the LASSO-28 subset over the similarly-sized randF-26 

also highlights the importance of second-shell and global descriptors, as 78% of the 18 features 

present in LASSO-28 that are absent from randF-26 are distal (e.g.,   all
mcχ '3 , 2'

lc
eqχ , and 3

lc
axT ). 

Comparing randF-26 to the larger randF-41 set, which has a 0.3 kcal/mol lower test MUE, we 

observe that 12 of the 15 features present in randF-41 but omitted in randF-26 are distal. 

4b. Descriptor Transferability to Bond Length Prediction.  

A key advantage of our geometry-free RACs is that they enable bond length prediction52 
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to facilitate accurate structure generation66-67. We first evaluate the predictive performance of our 

full AC set (RAC-155), the proximal subset (PROX-23), and spin-state splitting-selected feature 

sets (LASSO-28, randF-41, and randF-26) as well as the common subset (RAC-12) for training 

KRR models on minimum low-spin metal-ligand bond lengths (i.e., min(RL)) in the low-spin, 

DFT geometry-optimized structures of complexes in the spin-splitting data set. If the complex is 

homoleptic and symmetric, there is only a single metal-ligand bond length in the low-spin 

complex that corresponds exactly to min(RL), otherwise we take the minimum of the equatorial or 

axial metal-ligand bond length in order to predict a single property, as in previous work52. Except 

for PROX-23, all feature subsets yield RMSEs and MUEs around 1.4 and 0.5 and pm (i.e., 0.014 

Å and 0.005 Å), respectively, with RAC-12 performing nearly as well (test RMSE: 1.6 pm, 

MUE: 0.6 pm) (Table 3). The overall best RMSE performance is observed for LASSO-28, better 

than for RAC-155, and all subsets have very slightly degraded (i.e., 0.05 pm worse) MUE 

performance compared to RAC-155 (Table 3). The PROX-23 set yields 2-3x larger errors (test 

RMSE: 2.7 pm and MUE: 1.8 pm), which is significantly worse than the smaller common set 

(RAC-12), indicating the critical importance of middle and distal features (Figure 9). 

Nevertheless, nearly all feature sets yield better prediction with a KRR model than our prior, 

proximally-weighted MCDL-25 set (neural network test RMSE: 2 pm).52  

Table 3. Train and test set KRR model prediction errors (RMSE for train/test and MUE for 
test) for minimum low-spin bond length (in pm) for down-selected subsets of RAC-155 using 
LASSO and random forest (randF) on bond length data (denoted with suffix “B”) shown first, as 
well as original spin-splitting feature sets (LASSO-28, randF-41, and randF-26), shown next. 
The randF-49B contains manually added HF exchange, which is excluded from automatically 
selected randF-48B. The last results presented for comparison are the common feature subset 
(RAC-12), a proximal-only subset (PROX-23) of RAC-155, and the full RAC-155. 
Feature set train test 
 RMSE 

(pm) 
RMSE 
(pm) 

MUE 
(pm) 

LASSO-83B 0.15 1.33 0.42 
randF-48B 1.25 2.06 1.21 
randF-49B 0.18 1.34 0.45 
LASSO-28 0.12 1.28 0.47 
randF-41 0.16 1.38 0.47 
randF-26 0.20 1.37 0.48 
RAC-12 0.16 1.62 0.59 
PROX-23 2.37 2.67 1.76 
RAC-155 0.16 1.33 0.42 
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Figure 9. Fraction of selected descriptors that are proximal (red), middle (green) or distal 
(blue), as defined in the main text and depicted in Fig. 3 compared against RAC-155 reference 
fractions (dark red proximal fraction and green middle fraction as horizontal lines) along with 
their performance for low-spin bond length prediction with KRR. The normalized relative test set 
bond length MUE from a KRR model is shown in dark grey for each set, and the lowest test 
MUE is indicated with an asterisk. Sets are sorted left to right in decreasing distal fraction: 
LASSO on bond length (LS83B) or on spin-splitting data (LS28); random forest on spin-splitting 
(1%, rF41), on bond length data (1%, rF49B), higher cutoff on spin-splitting (or 2%, rF26); the 
spin-splitting-derived common set (C12); and proximal-only (Prx23). HF exchange and 
oxidation state are not shown but are used in all models. 
 

We also carried out feature selection on the bond length data with LASSO and random 

forest to obtain new feature sets (denoted with a “B” suffix). With bond length data, LASSO and 

random forest retain larger feature sets of 83 and 48 RACs, respectively (LASSO-83B and 

randF-48B in Table 3, and Supporting Information Tables S19-S20 and Figures S13-S14). In 

KRR model training, LASSO-83B performs exactly the same as RAC-155 with half the features, 

whereas randF-48B has 2-3x larger errors (test RMSE: 2.1 pm, MUE: 1.2 pm). This degraded 

randF-48B performance occurs because HF exchange has been dropped at the 1% MSE random 

forest cutoff, producing a discontinuous jump in kernel hyperparameters (Table 3 and Supporting 

Information Table S4 and Figure S14). The indirect effect of HF exchange on bond length within 

a single complex is apparent53, but across a wide data set of complexes, the role of HF exchange 

in bond length data is more easily missed by random forest than in the case of spin splitting. 

Manually adding HF exchange to the feature set (randF-49B) makes this set perform comparably 

in KRR model training to the other feature subsets (Table 3).   
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Comparison of random forest feature sets selected on bond lengths (randF-49B) and on 

spin splitting (randF-41) reveals differences in the underlying structure-property relationships. 

Both sets have 34 features in common, with an increased proximal fraction relative to RAC-155, 

but there is a slight bias toward middle features for the bond-length selected set (15 middle in 

randF-49B instead of 9 in randF-41) (Figure 9). The 15 unique features present in randF-49B but 

absent from randF-41 are weighted toward topological, size-derived effects with 5 T-type (e.g., 

all
mcT1 ), 2 I-type (e.g., ax

lc I1 ), and 4 S-type (e.g., 0
lc
eq S ) RACs. Conversely, four of the seven features 

in randF-41 but absent from randF-49B are middle/distal and χ-/Z-type (e.g., 3'
mc
all Z and 1'

lc
eqχ ). 

Comparable KRR bond length prediction accuracy with both feature sets is due to similar data 

clustering: the ten nearest complexes to Fe(III)(pisc)6 are largely unchanged between randF-49B 

and randF-41, but would differ substantially for RAC-12 and PROX-23 (Supporting Information 

Table S21). Thus evaluation of random forest feature set selection reveals structure-property-

error relationships that may not be apparent from evaluating KRR model errors alone.  
4c. Descriptor Transferability to Redox Data. 

We now test the transferability of RAC descriptor sets to our redox data set for the 

prediction of M(II/III) gas phase ionization potentials (IPs) and aqueous redox potentials (see 

Figure 5). Here, all calculations are with B3LYP (20% exchange), and the oxidation state is no 

longer a fixed variable. Therefore, all feature sets have two fewer variables, but we retain the 

sets’ original names. It might be expected that direct gas phase IPs are easier to learn than redox 

potentials, which incorporate composite and potentially opposing solvent and thermodynamic 

effects. However, we observe qualitatively similar KRR model performance and feature 

selection trends, and we thus summarize gas phase IP results briefly (Supporting Information 

Text S4, Tables S22-24, and Figures S15-S16). After removal of a single outlier molecule, RAC-

155 yields test set RMSE and MUE values of 0.46 and 0.35 eV, respectively, or a 3% or 2% 

error relative to the 14.4 eV data set mean, and spin-splitting-selected subsets randF-41 or 

LASSO-28 produce the next lowest but slightly larger errors (Supporting Information Table S24 
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and Figures S17-S19).  

Redox potentials (i.e., including thermodynamic and aqueous implicit solvent 

corrections) in the full redox data set range from 3.3 to 10.4 eV with a mean of 6.7 eV, and the 

gas phase IP outlier is not a redox potential outlier (Supporting Information Figure S18). The full 

RAC-155 set produces lower absolute errors with respect to gas phase IP (test: RMSE 0.40 eV, 

6% error and MUE: 0.32 eV, 5% error) but higher relative errors due to the lower data set mean 

(Table 4). Feature selection on redox potentials from the redox data set retains 19 variables with 

LASSO (LASSO-19G), comparable to the size selected on gas phase IP but smaller than feature 

sets selected by LASSO on spin-splitting or bond length (Supporting Information Figure S20 and 

Table S25). LASSO-19G improves very slightly over RAC-155 (test RMSE: 0.38 eV and MUE: 

0.31 eV), despite being 12% of the size of the full set (Table 4). Random forest on redox 

potential retains 38 features (randF-38G), improving over both LASSO-19G and RAC-155 (test 

RMSE: 0.31 eV, 5% error and MUE: 0.26 eV, 4% error) (Table 4 and Supporting Information 

Figure S21 and Table S26). Thus, comparable or reduced absolute errors and only slightly 

increased relative errors indicates that the combination of ionization potential, solvent, and 

thermodynamic corrections is only slightly more challenging to capture than IP alone.  

Table 4. Train and test set KRR model prediction errors (RMSE for train/test and MUE for 
test) for redox potential (in eV) for down-selected subsets of RAC-155 using LASSO and 
random forest (randF) on redox data (denoted with suffix “G”) shown first, as well as original 
spin-splitting feature sets (LASSO-28, randF-41, and randF-26), shown next. The last results 
presented for comparison are the common feature subset (RAC-12) from all methods, a 
proximal-only subset (PROX-23) of RAC-155, and the full RAC-155. 
 
Feature set train test 
 RMSE 

(eV) 
RMSE 
(eV) 

MUE 
(eV) 

LASSO-19G 0.17 0.38 0.31 
randF-38G 0.16 0.33 0.26 
LASSO-28 0.10 0.46 0.35 
randF-41 0.32 0.31 0.26 
randF-26 0.35 0.29 0.23 
RAC-12 0.38 0.37 0.32 
PROX-23 0.87 0.91 0.78 
RAC-155 0.17 0.40 0.32 

 

Evaluating the spin-splitting-selected feature subsets (LASSO-28, randF-41, and randF-
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26) and the common set (RAC-12) on the redox data set for redox potential prediction produces 

some of the lowest test errors of all sets (Table 4). The spin-splitting-selected randF-26 performs 

best (test RMSE: 0.29 eV, 4% error and MUE: 0.23 eV, 3% error), with the larger randF-41 

performing nearly as well, whereas LASSO-28 has larger errors (e.g., test MUE of 0.35 eV) 

more comparable to RAC-155. The RAC-12 set exhibits its best relative performance for any 

property prediction so far (test RMSE: 0.37 eV and MUE: 0.32 eV), equivalent to the 13x larger 

full RAC-155 and substantially better than the proximal-only PROX-23 (test MUE: 0.78 eV, 

Table 4). The better performance of spin-splitting-selected sets on redox data could be due to i) 

the larger, more diverse data in the spin-splitting training set or ii) that our redox calculation 

implicitly requires knowledge of spin, as the redox potential is always evaluated from the ground 

state of the reduced species. However, separate prediction of high- or low-spin redox potentials 

yields similar accuracy, suggesting combined ground state and redox potential prediction does 

not increasing the difficulty of the learning task (Supporting Information Table S27). 

Within the redox potential prediction subsets, a relationship between the prediction 

accuracy and fraction of descriptor type (i.e., proximal vs. distal) is less clear than for spin 

splitting or bond length (Figure 10). Simultaneously comparing locality and test set MUE across 

feature sets shows comparable performance for i) randF-38G with a proximal fraction below that 

of RAC-155, ii) the relatively high proximal and middle fractions in randF-26, and iii) and even 

relatively good performance in the RAC-12 minimal, proximal-heavy subset (Figure 10). 

Comparing the poorer performing spin-splitting-selected LASSO-28 to the redox-selected 

LASSO-19G reveals missing middle/distal S- or I-type RACs (e.g., / 3
lc

ax eq I ,   ax/eq
lcS '1 ) in the former.  
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Figure 10. Fraction of selected descriptors that are proximal (red), middle (green) or distal 
(blue), as defined in the main text and depicted in Fig. 3 compared against RAC-155 reference 
fractions (dark red proximal fraction and green middle fraction as horizontal lines) along with 
their performance for redox potential prediction with KRR. The normalized relative test set 
redox potential MUE from a KRR model is shown in dark grey for each set, and the lowest test 
MUE is indicated with an asterisk. Sets are sorted left to right in decreasing distal fraction: 
random forest on redox potential (rF38G); LASSO on redox potential (LS19G) or spin-splitting 
(LS28); random forest on spin-splitting (1%, rF41 or 2%, rF26); spin-splitting common set 
(C12); and proximal-only (Prx23). HF exchange and oxidation state are not used in any models.  

 

Examining descriptors in the better-performing, redox-selected randF-38G that are absent 

from similarly-sized spin-splitting-selected randF-41 reveals 10 T-type and 3 I-type RACs, seven 

lc 3-depth RACs, and two whole-ligand 1
f
eq χ  and 0

f
eqχ  RACs, indicating a preference for whole-

complex-derived, and, in particular, connectivity information, consistent with observations of the 

importance of whole-ligand RACs in redox potentials67. Comparing instead the 17 common 

features in randF-38G and randF-41 reveals mostly mc RACs (e.g.,   all
mcZ0  and   all

mcχ '1 ,) similar to 

the metal and connecting atom information in MCDL-2552.  

4d. Overall Comparison of Best Descriptor Subsets. 

Overall, Type 3 LASSO or random forest methods have provided the best price-

performance trade-off for feature selection in KRR model training of transition metal complex 

properties on the data sets studied in this work. Although LASSO-28 produced the lowest KRR 

model test MUE of 0.96 kcal/mol, randF-41 (1% cutoff) and randF-26 (2% cutoff) produce 
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similarly good 1.01-1.28 kcal/mol test MUEs on the spin-splitting data set and demonstrate 

somewhat better transferability to redox potential prediction on the redox data set. All three of 

these subsets are accurate for low-spin bond length prediction, with 1.3-1.4 pm test RMSE and 

0.5 pm MUE that is only slightly worse relative to larger, bond-length-selected feature sets, 

randF-49B or LASSO-83B. The best redox potential prediction performance is achieved not with 

redox-selected randF-38G (test MUE: 0.26 eV), LASSO-19G (test MUE: 0.31 eV), or even the 

full RAC-155 (test MUE: 0.33 eV), but with the smaller spin-splitting selected randF-26 (test 

MUE: 0.23 eV). As an overall recommendation, we thus would select randF-26 for broad spin-

splitting, bond length, and gas phase IP/redox potential prediction or LASSO-28 for only spin-

splitting and bond length prediction.  

To explore how feature space topology differs when using spin-splitting-selected features 

(randF-26 or randF-41) versus redox-selected features (randF-38G), we consider the example of 

Fe(II/III) complexes with triazolyl-pyridine ligands from the redox data set. In two cases, these 

homoleptic, bidentate complexes have a methyl group on the carbon adjacent to pyridinyl 

nitrogen (ligand 9, E0 = 6.1 eV and ligand 23, E0 = 6.0 eV), but in one case the methyl group is in 

the meta position with respect to the metal-coordinating pyridinyl nitrogen (ligand 8 with E0 = 

5.5 eV) (Supporting Information Figure S22). Ligands 8 and 9 contain a 1,2,3-triazole, whereas 

ligand 23 contains 1,2,4-triazole. Within randF-26 and randF-41, the high fraction of proximal or 

middle mc descriptors emphasizes differences between 1,2,3-triazole and 1,2,4-triazole rather 

than capturing the importance of the ligand-connecting atom adjacent methyl group. The 

additional distal T-, I- and S-type descriptors in randF-38G increase the relative importance of 

the metal-adjacent methyl groups over the order of ring substituents, correctly identifying the 

nearest neighbor of the ligand 9 complex as the ligand 23 complex (Supporting Information Text 

S5).  

Although we have identified a feature set that is transferable across multiple properties 
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when paired with a KRR model, there are still noteworthy differences in optimal feature sets 

obtained from random forest (i.e., spin-splitting randF-26/41, bond-length randF-49B, and redox 

randF-38G) that can inform our understanding of the degree of locality and nature of features 

needed for differing property prediction. To simplify this analysis, we classify χ- and Z-derived 

RACs as electronic and S-, I-, and T- as topological (Figure 11). We confirm our earlier 

observations52 of locality, especially in spin-splitting with randF-26/41: randF-49B and randF-

38G both have more non-local (to the metal) and topological descriptors than randF-26/41.  

 
Figure 11. Schematic of relative proximity and electronic (blue) or topological (yellow) of 
feature sets on an iron-porphyrin complex. Feature sets are designated by their training data: spin 
splitting (randF-41 and randF-26, top), bond length (randF-49B, bottom left), and redox potential 
(randF-38G, bottom right). Atom sizes are scaled relative to the number of descriptor dimensions 
involving that atom (divided into first shell, second shell and other), scaled, with iron kept the 
same size in all sets. The color bar and absolute percentages of electronic and topological 
descriptors, as defined in the main text, is shown in inset right. 

 

For direct ligand connection atoms, 80% of the descriptors are electronic for randF-26/41, 

but only 52% are electronic for randF-49B and 50% for randF-38G, which reflects the inclusion 

of additional first-shell T- and I-based RACs (Figure 11). Moving to the second shell shows 

increased topological fraction across all feature sets while preserving the first shell trends, with 

second shell descriptors around 65% electronic for the spin-splitting-selected randF-26/41 but 
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only 40% electronic for randF-38G. LASSO-28 has an even stronger electronic, proximal bias 

than randF-26, possibly explaining its poorer performance for redox potential prediction 

(Supporting Information Figure S23). These observations suggest that overall ligand shape and 

size are more useful for prediction of redox potentials and bond lengths compared to spin 

splitting within the random forest model. These locality measures also highlight the features to 

be varied when collecting additional data in future work to enlarge the size of our redox data set 

and reach smaller ML prediction errors (e.g., 0.1 eV MUE) that would be beneficial for 

screening and discovery. 

 Inorganic chemical similarity is less well established than equivalent concepts in organic 

chemistry, so proximity of inorganic complexes in descriptor space can provide valuable 

chemical insight. Princpal component analysis in the randF-38G feature set of the redox data set 

reveals simple, intuitive relationships between homoleptic complexes as well as the heteroleptic 

complexes that arise from interchanging ligands to convert between homoleptic data points 

(Figure 12). The homoleptic Fe(II/III) strong-field methylisocyanide complex with a carbon 

connecting atom is distant in the redox PCA space from either weaker field furan (oxygen 

connecting atom) or pyridine (nitrogen connecting atom) ligands. The higher relative distance 

between carbon and oxygen connecting-atom ligands is also consistent with our expectations 

about ligand field effects (Figure 12). The heteroleptic complexes that are formed by substituting 

select axial or equatorial ligands in any of these homoleptic complexes fall in the PCA space on 

the straight lines that connect between these complexes. Thus, analysis of complex distances in 

the descriptor space represented by the randF-38G feature set reveals intuitive relationships 

between inorganic complexes. In addition to machine learning property prediction, such feature 

sets then provide a path to mapping inorganic chemical space and identifying regions to study in 

order to identify new complexes similar to known complexes with desired properties.  
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Figure S12. Simplified principal component analysis for the redox data set using the randF-
38G feature set. The color map indicates redox potential (in eV, as indicated in inset color bar), 
and the contours represent data density (increasing from gray to black). Representative Fe(II/III) 
redox couples are indicated with triangles, colored according the atomic identity of metal- 
coordinating atoms: nitrogen (blue), oxygen (red), and carbon (gray).  Three reference 
homoleptic Fe complexes, pyridine, methylisocyanide, and furan, are indicated with inset ball 
and stick structures; these structures form the vertices of a triangle in the PCA space (solid black 
lines). Computed heteroleptic combinations colored according to the mixing of ligand identities 
in the PCA space fall along the legs of the triangle, and the location of Fe(furan)2(misc)4 is 
indicated with an arrow and inset.  
 

5. Conclusions 

 We have introduced a new series of revised autocorrelation (RACs) descriptors for 

machine learning of quantum chemical properties that extend prior ACs to incorporate modified 

starting points, scope over the molecule of interest, and incorporate differences of atomic 

properties. We first demonstrated superior performance of standard ACs on a large organic 

molecule test set, both showing the best yet performance for atomization energies based only on 

topological information, particularly when maximum topological distances were truncated at a 

modest maximum 3-bond distance. 

 We confirmed transferability of RACs from organic to inorganic chemistry with KRR 

model test set MUEs for the full RAC-155 set of 1 kcal/mol, in comparison to 15-20x larger 

errors from Coulomb-matrix-derived descriptors and 2-3x larger with our prior MCDL-25 set. 

We attribute this improvement to overestimation of size-dependence in CM descriptors and 
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underestimation of distal effects in MCDL-25. LASSO or random forest feature selection yielded 

smaller subsets (LASSO-28 and randF-41, respectively) with improved or comparable sub- to 1-

kcal/mol test MUEs. Restriction to a common set of descriptors identified by the three best 

feature selection tools yielded half as large spin-splitting errors (test MUE: 1.9 kcal/mol) 

compared to MCDL-25 with a still smaller 12 variable feature set. Both random forest as a 

feature selection tool and the spin-splitting-selected randF-26 showed the best combined 

transferability to bond length (0.005 Å test MUE) and redox potential (0.23 eV test MUE).  

Random forest applied directly on bond length selected more topological features than for 

spin-splitting with equivalent locality bias. Selection based on redox potential data revealed 

redox potential to be both more non-local and more topological in nature than spin-splitting or 

bond lengths. However, invariant data-clustering within the trained KRR model means that no 

improvement in KRR test errors was observed with redox-selected features for redox potentials 

and only modest improvement using bond-length selected features for bond length prediction. 

Overall, this work provides both a prescription for machine learning models capable of making 

accurate predictions of inorganic complex quantum-mechanical properties and provides insight 

into locality in transition metal chemistry structure-property relationships.  
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