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ABSTRACT: Virtual high throughput screening, typically driven by first-principles, density 
functional theory calculations, has emerged as a powerful tool for the discovery of new 
materials. Although the computational materials science community has benefited from open 
source tools for the rapid structure generation, calculation, and analysis of crystalline inorganic 
materials, software and strategies to address the unique challenges of inorganic complex 
discovery have not been as widely available. We present a unified view of our recent 
developments in the open source molSimplify code for inorganic discovery. Building on our 
previous efforts in the automated generation of highly accurate inorganic molecular structures, 
first-principles simulation, and property analysis to accelerate high-throughput screening, we 
have recently incorporated a neural network that both improves structure generation and predicts 
electronic properties prior to first-principles calculation. We also provide an overview of how 
multi-million molecule organic libraries can be leveraged for inorganic discovery alongside 
cheminformatics concepts of molecular diversity in order to efficiently traverse chemical space. 
We demonstrate all of these tools on the discovery of design rules for octahedral Fe(II/III) redox 
couples with nitrogen ligands. Over a search of only approximately 40 new molecules, we obtain  
redox potentials relative to the Fc/Fc+ couple ranging from -1 to 4.5 V in aqueous solution. Our 
new automated correlation analysis reveals heteroatom identity and the degree of structural 
branching to be key ligand descriptors in determining redox potential. This inorganic discovery 
toolkit provides a promising approach to advancing transition metal complex design. 
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1. Introduction 

Over the past few years, virtual high-throughput screening (VHTS) with first-principles 

simulation (e.g., density functional theory, DFT) has dramatically advanced the discovery of 

heterogeneous catalysts and materials.1-8 VHTS discovery efforts have particularly excelled where 

i) the chemical space to be explored is well-defined and low-dimensional and ii) codes are 

available for the rapid generation and management of geometric structures and inputs to first-

principles calculations2, 9-10. Examples of low-dimensional chemical space exploration have 

included: variation of binary alloys to discover new heterogeneous catalysts1, 11, discovery of 

metal-organic frameworks12-16 through enumeration based on a small set of building blocks17, and 

definition of a narrow pool of organic components for evolutionary design of organic light 

emitting diodes18-19.  

Screening efforts within the solid-state community have particularly benefited from open-

source tools2, 9-10, 20 to automate computational materials design21. These codes leverage low-

dimensional design spaces by retrieving and permuting crystal structures from freely available 

databases and automate the calculation of properties with DFT. Open-source tools for crystal 

structure prediction using optimization strategies have also been developed.22-25 For heterogeneous 

catalysis in particular, the Atomic Simulation Environment (ASE)26 enables the generation of 

periodic slabs with adsorbates and interfaces to a number of electronic structure codes.  

 In the context of molecular discovery, fewer tools for discovery and optimization have 

been developed for the broader community wishing to carry out high-throughput, first-principles-

based screening. Instead, ad hoc screening approaches are typically built on top of 

cheminformatics-oriented toolkits such as Open Babel or RDKit and their Python wrappers27-28, 

the Java-based chemical discovery kit (CDK)29, or their commercial equivalents. Successful 

demonstrations of the value of VHTS have included the discovery of new electrolyte materials30-31, 

organic light-emitting diodes18-19, and photovoltaics32-33. Advanced molecular design strategies have 

included application of evolutionary algorithms to organic molecule optimization18, 34-35 or 

optimization in the descriptor space of a surrogate (i.e., artificial neural network) model and 
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subsequent decoding back to molecular representations19. Each of these first-principles efforts has 

in common a reliance on cheminformatics-derived tools; these discovery workflows harness 

machine-readable molecular representations (e.g., SMILES strings36) to carry out efficient 

molecule generation and characterization. These structure generation tools work quite well for 

building organic molecules, but they are known to perform poorly for inorganic complex 

generation.37  

The difficulties of inorganic structure generation have created a situation where, despite 

the critical problems that may be addressed by transition metal complexes, e.g. new spin-

crossover complexes38-40, dye-sensitizers in solar cells41, or highly-reactive, open-shell catalysts42, 

fewer strategies have been developed for discovery in inorganic chemistry and almost none are 

available as open-source codes. Rather, inorganic molecular design efforts are usually 

customized with in-house codes, as was the case for electrolyte complexation with Li in the 

electrolyte genome project30. Transition metal complex optimization has been pursued through 

the linear combination of atomic potentials (LCAP) method43-45, introduced by Yang and Beratan 

to make the molecular optimization problem continuous. Challenges here for molecular design 

are in the mapping of the continuous representation back to a real molecule. Alternative 

approaches have been focused on constructing complexes by optimizing the number and position 

of charges46 or in a shellwise manner47 for iterative construction of transition metal complexes. As 

first-principles simulation with density functional theory can be computationally expensive for 

evolutionary algorithm-based optimization, Jensen and coworkers have demonstrated catalyst 

design using a heuristic structure-property relationship to define the fitness function.48  

 One method to overcome challenges associated with variable and difficult-to-define 

coordination environments in transition-metal chemistry is to draw upon existing knowledge in 

the form of proprietary databases of crystal structures (e.g., the Cambridge Structural Database49). 

Fragment-based strategies have enabled catalyst or transition metal complex structure building 

by generating a library from such databases and then using rules for the construction of transition 

metal complexes50-52. However, these tools rely on access to proprietary databases, proper curation 
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of the fragment library to enable structure generation, and they are not currently available as 

open-source tools for researchers to apply to their own molecular design problems. We will thus 

describe our recently-introduced37 open-source tools for structure generation and discovery in 

inorganic chemistry in the following section. 

2. Approach 

 Structure and input generation. We recently introduced molSimplify37, an 

automated, open source toolkit for the first-principles screening and discovery of new inorganic 

molecules and intermolecular complexes. To aid structure building in inorganic chemistry, we 

developed a divide-and-conquer approach to the generation of inorganic complexes that 

separately treats metal-proximal and metal-distant components. Ligands obtained as SMILES 

strings36 or in Cartesian coordinates are preoptimized with a class II force field (MMFF94)53 that 

has been parameterized to yield highly accurate bond lengths and angles for organic molecules, 

as implemented in Open Babel27-28. A database of DFT-trained metal-ligand bond lengths is then 

used to set the coordination distance of organic components to a metal “core”, with alignment 

also minimizing steric repulsion between adjacent ligands (Figure 1). The code supports a variety 

of coordination numbers and orientations as well as the possibility to distort structures from ideal 

coordination geometries. For an arbitrary complex, a database of discrete training values is used 

to provide an initial metal-ligand bond length. Each database entry has an associated series of 

keys, including ligand identity, metal identity, oxidation state, spin state, exchange-correlation 

functional, and coordination number. The code attempts to match the most relevant keys (i.e., 

metal, full ligand identity) to the complex being studied to the database in order to assign the 

trained metal-ligand bond length. If no minimum database match can be found (i.e., metal and 

connecting atom identity), then the sums of covalent radii of the metal and connecting ligand 

atom are used to assign bonds.  
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Figure 1. Schematic of molSimplify structure building: (top) the user selects a metal and 
coordination environment as well as ligands from a database that are force field preoptimized; 
(bottom) the ligand is aligned to the metal coordination site and the metal-ligand bond distance 
(dM-L) is set from a database of values or from an ANN.  
 

Over a test set of 150 molecules, we found37 trained metal-ligand bond lengths and force-

field preoptimization to improve structure generation by reducing initial gradients and relative 

energies of starting structures with respect to structures built using sums of covalent radii for the 

metal-ligand bond. These generated structures also substantially outperformed the Universal 

Force Field (UFF)54, a force field developed for inorganic complexes, 75% of the time, as 

assessed by relative energies of the generated structures. UFF outperformed molSimplify37 only 

for bidentate structures in which ligand rigidity prevented satisfying desired coordination 

geometries. Examining monodentate structures reveals molSimplify37 is superior to UFF in 95% 

of 21 cases. An additional advantage of this structure generation approach is that it greatly 

simplifies VHTS efforts in inorganic chemistry by automating both the generation of 

coordination complexes as well as intermolecular complexes, e.g. for binding energies55, or 

adsorbate placement on surfaces with our supercell builder56. At runtime, electronic structure 

input files are generated as well as a molSimplify input file that can exactly regenerate the 
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structure at some later point in time. The code comes with numerous built-in ligands in a 

prepopulated database, and the code interfaces to alternate databases, as we will discuss shortly. 

Neural network predictions. Although generally superior to UFF, one shortcoming 

of our first-generation structure-building toolkit was the requirement that sufficient data be 

prepopulated in a DFT-trained metal-ligand bond length database. If a structure is not present in 

that database, then covalent radii are used to guess the initial metal-ligand bond length. 

Transition metal complexes often have multiple oxidation and spin states that further increase the 

specificity requirements for such a database. In order to overcome some of these limitations, we 

have recently incorporated an artificial neural network (ANN) for the prediction of transition 

metal complex properties57 in molSimplify37. This ANN predicts a number of properties, including 

metal-ligand bond lengths for structure generation. The metal-ligand bond lengths are predicted 

to within 0.02-Å accuracy in a spin-state- and oxidation-state dependent manner for molecules 

well-represented by the training data. The initial training of the ANN was based on around 2700 

structures57, and we continue to update the ANN in the public release of molSimplify as more 

training data is acquired.  

Feature selection for the neural network included metal identity, charge, and oxidation 

state as well as topology of the ligands (Figure 2). Specifically, we focus on the direct connecting 

atom of the ligand, electronegativity differences and bond order of atoms around the connecting 

atom, and the truncated Kier shape index58 to measure topology of the ligand. Importantly, all of 

these properties are heuristics that are readily calculated by molSimplify and require no first-

principles calculations. Regularized multiple linear regression (i.e., LASSO) was used to select 

these key features, and future refinement will focus on improving the balance between metal-

focused and ligand-focused descriptors. The use of topological and chemical heuristics allows us 

to predict geometric properties for structure generation.  
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Figure 2. Schematic of descriptors that go into an ANN prediction of octahedral transition 
metal complex properties: metal identity and oxidation state, connecting atom identity, ligand 
charge, electronegativity differences of atoms surrounding the connecting atom, and the 
truncated Kier shape index, all depicted on a representative transition metal complex.  

 

In order to provide a measure of reliability of the ANN bond length predictions, the code 

computes the Euclidean distance of the heuristic features of the generated molecule of interest to 

the original training data, where large values indicate low robustness of the ANN prediction. In 

addition to a new approach to provide credible intervals on ANN predictions59, we have found 

this simple metric to be useful to identify when the ANN predictions are likely to be robust. 

Another key determinant of bond length is exchange-correlation functional choice, especially 

through variation of the percent of exact exchange60. The ANN predicts bond length variation 

with functional choice to further improve initial structure generation in VHTS of inorganic 

complexes. Importantly, the inorganic complex heuristics used in ANN training and prediction of 

structural properties are highly transferable to other quantities of interest, including prediction of 

results from first-principles simulation, as we will show shortly. 

Predicting energetics and exchange-correlation sensitivity from structure. 

The importance of exchange-correlation functional sensitivity has been increasingly recognized61-

64 as a key challenge in screening efforts that rely on DFT. Energetic predictions are highly-

sensitive to the choice of exchange-correlation functional, but the optimal choice is often system-

dependent and seldom known for an arbitrary system of interest. Both non-self-consistent64 

functional families and variation of functional choice61-62 have been incorporated into select 



 

8 

 

catalyst studies to identify how quantified uncertainty in DFT model choice propagates to 

predictions in catalysis. However, a non-self-consistent approach is insufficient when the density 

changes dramatically with change in functional choice65, and uncertainty quantification in 

inorganic complexes66 has only been applied to a model catalyst. We have taken a different 

approach to generalizing functional sensitivity by focusing on how chemical/structural properties 

of inorganic complexes correlate to underlying sensitivity to exchange correlation choice.   

We have identified60 a strong relationship between the nature of the direct connecting 

atom of a ligand to the metal and the degree to which exchange alters the spin-state ordering in 

inorganic complexes. More generally, we have found ligand field arguments to explain both 

exact exchange sensitivity as well as the effect of incorporating meta-GGA exchange67 and the 

degree to which exchange-correlation functional tuning alters the electron density65. We have 

encapsulated57 these observations in a trained ANN using the same descriptors as were used for 

bond length training (see Figure 2). The ANN predicts both absolute DFT-derived spin-state 

splitting at an arbitrary amount of HF exchange57 and also predicts HF exchange sensitivity of 

spin-state splitting60, 68-70. Spin-state splittings for molecules well-represented by training set data 

are predicted with 3 kcal/mol average errors57. Larger errors in direct ANN prediction of 

molecules not well-represented in the training set motivates the use of the HF exchange 

sensitivity ANN model, e.g. in extrapolation from one fraction of exact exchange to another with 

on average 4 kcal/mol error over a 20% exchange variation interval.  

ANN-predicted high functional sensitivity can in turn be verified straightforwardly with a 

handful of calculations, as electronic and energetic properties vary linearly with HF exchange 

mixing60, 68-73. High functional sensitivity can also be used to identify when beyond-DFT assessment 

is necessary. We are in the process of extending the ANN that predicts spin-state splitting and its 

exchange sensitivity to key catalytic properties of interest, including redox potential and catalytic 

barriers. Preliminary results on these properties have indicated good transferability of our curated 

descriptor set.  

Repurposing cheminformatics tools for discovery and iterative design. We 
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have thus far introduced an approach to efficient structure generation for VHTS of inorganic 

complexes. When paired with a trained ANN, this approach also enables us to predict some 

energetic properties, such as the ground state spin of a molecule, without requiring a first-

principles calculation. However, since inorganic chemical space is vast, a key challenge is in 

identifying which portions of inorganic chemical space should be explored to maximize new 

knowledge.  Evolutionary algorithms (EA) provide one strategy74 to molecular property 

optimization and have occasionally been employed for the design of inorganic complexes48 when 

paired with a heuristic model for the fitness function. However, even when an EA is employed, a 

critical question is how to select the initial pool of ligand properties, as EAs generally solve a 

local but not global optimization problem.  

We have taken a complementary approach to screening, where we focus on maximizing 

the information from initial screens in a strategy that is tailored to inorganic complex building. 

We hold fixed or select few variations for the chemistry directly proximal to the metal, such as 

the direct connecting ligand atom and its nearest neighbors as well as the coordination 

environment55, 75. We address the question of how to vary the rest of the ligand by leveraging 

freely available multi-million molecule libraries of organic compounds76. These libraries are most 

commonly employed to identify synthetically accessible and biologically active molecules, e.g. 

for therapeutic drug design. However, by repurposing organic ligand libraries in inorganic 

chemistry, we both increase the likelihood of computationally designed compounds being 

synthetically accessible and the chances of discovering new compounds that have not been used 

before. In parallel with our computational work75, recent experimental efforts have shown the 

value of this approach in catalyst discovery as well77.  

For our computational design strategy, we search a database for compounds that have a 

substructure (i.e., SMARTS pattern) match to the desired direct ligand connecting atom and its 

environment, while we also filter for ligand size, charge, and elemental composition (Figure 3). 

The general database search and interface to large-molecule databases is implemented in Open 

Babel27-28, and we use these tools along with additional filtering steps implemented in molSimplify 
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for inorganic ligand screening. We then also maximize diversity78-79 in the resultant search using a 

molecular fingerprint80 of each ligand result to ensure broad search of chemical space. Molecular 

similarity metrics and diversity are well-defined on the ligands themselves but would be 

ambiguous for the whole-complex, thus our divide and conquer approach again enables us to 

leverage cheminformatics strategies where they are already successful but impart knowledge of 

inorganic chemistry where necessary. All of the described database search and filtering 

approaches described are implemented in molSimplify.  

 
Figure 3. Schematic of order of ligand candidate retrieval from large chemical databases using 
filtering steps implemented in molSimplify. 

 

In one example, we employed this design strategy for quantum dot precursors, reducing 

the 110,000 carboxylate-containing molecules present in the database to a few hundred ligands 

of reasonable size for rapid DFT calculation (i.e., less than 30 atoms per ligand) and maximizing 

diversity. Computational evaluation of the resulting compounds, with initial structures provided 

by molSimplify, revealed design rules for quantum dot precursors that extended beyond those 

molecules in the initial screen75.  Strategies for continued screening and optimization are also 

essential. We have taken an approach that is inspired by therapeutic drug design to identify a 
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spatial and chemical representation of critical characteristics of an inorganic complex. We 

recently identified55 optimal characteristics of ferrocenium-derived polymer building blocks that 

have been demonstrated to be a promising strategy for electrochemical ion separation61. An initial 

broad screen revealed optimal placement of hydrogen bonding groups and their electronegativity, 

which we transformed into a 3D representation we call the materiaphore55. By screening new 

functionalizations that match this 3D representation, we identified new complexes with 

significantly improved characteristics over the initial screen. Such methods could be used to 

augment traditional fitness functions in EAs, e.g. through multi-objective optimization81-82.  

Taken together, automated structure generation, exchange-correlation sensitivity, 

surrogate prediction of DFT properties, and database-derived compound generation with 

diversity as a driver for efficient discovery provide a new direction to help advance VHTS as a 

tool for inorganic complex design. Although challenges remain, these open source tools are 

already beginning to change how our group discovers new design rules55, 75 in inorganic chemistry. 

The rest of this paper is as follows. In section 3, we provide the Computational Details of the 

demonstration of our inorganic discovery tools for Fe(II/III) redox couples. In section 4, we 

provide the Results and Discussion of our screening approach, including details on the 

application and performance of our strategies as well as demonstration of new tools for 

automated discovery of correlations in data sets. Finally, in section 5 we provide our conclusions 

and outlook on computational screening for inorganic complexes.   

3. Computational Details 

Initial electronic structure calculations, including single point energies and geometry 

optimizations, were carried out using the TeraChem83-84 graphical processing unit (GPU)-

accelerated quantum chemistry package with the B3LYP85-87 hybrid exchange-correlation 

functional. The default definition of B3LYP in TeraChem employs the VWN1-RPA form for the 

LDA VWN88 component of LYP85 correlation. Iron, bromine, and iodine were treated with the 

LANL2DZ effective core potential89, and the 6-31G* basis was used for the remaining atoms. 

Diffuse functions were included for select representative molecules and found to not alter 
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relative redox potentials, the focus of this work (Supporting Information Table S1). Dispersion 

corrections, which are neglected here but potentially important for studying physisorbed 

intermediates in catalysis applications of our toolkit, are not incorporated due to their minimal 

effect on computed redox potentials (Supporting Information Table S1). All structures were 

simulated in low-spin and high-spin states for Fe(II) and Fe(III), which corresponds to a singlet 

and doublet or quintet and sextet, respectively. All calculations were spin-unrestricted with 

virtual and open-shell orbitals level-shifted90 by 1.0 eV and 0.1 eV, respectively, to aid self-

consistent field (SCF) convergence to an unrestricted solution. The aqueous solvent environment 

was modeled using an implicit polarizable continuum model (PCM) with the conductor-like 

solvation model (COSMO91-92) and ε=78.39. The solute cavity was built using Bondi’s van der 

Waals radii93 scaled by a factor of 1.2 for available elements and 2.05 Å for iron.  

Geometry optimizations in the gas phase of molSimplify-generated37 structures were 

carried out using the L-BFGS algorithm in translation and rotation internal coordinates94 as 

implemented in a development version of TeraChem83-84 to the default tolerances of 4.5x10-4 

hartree/bohr for the maximum gradient and 1x10-6 hartree for the change in SCF energy between 

steps.  

 Redox potentials on Fe(II)/Fe(III) redox couples were computed using a standard 

protocol. The absolute redox potential (E0) is related to the Gibbs energy of reaction in 

solution(ΔGsolv): 

 
  
E0 = −

ΔGsolv

nF
  (1) 

where n is the number of electrons transferred in the redox reaction (i.e., 1 for the Fe(II)/Fe(III) 

redox pairs studied in this work) and F is Faraday’s constant. Following common practices95-97, we 

employ a thermodynamic cycle to obtain ΔGsolv (Figure 4). In this approach, thermodynamic (i.e., 

vibrational enthalpy and zero point vibrational energy) corrections at 300 K are obtained on each 

of the gas phase structures. These differences are paired with the differences in the gas-phase-
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optimized geometry solvation free energies to obtain the overall difference in solvated Fe(II) and 

Fe(III) complexes: 

 

 ΔGsolv =Ggas (Fe(III))−Ggas (Fe(II))+ΔGs (Fe(III))−ΔGs (Fe(II))   (2) 

where Ggas is the gas phase energy with thermodynamic corrections and ΔGs is the solvation free 

energy of the gas phase structure. Redox potentials relative to a reference redox couple (RC)95-96 

further minimize systematic errors in approximate DFT. Here, we select the 

ferrocene/ferrocenium (Fc/Fc+) RC as our reference, as has previously been suggested95-96, because 

it undergoes the same transition metal redox reaction (i.e., Fe(II) to Fe(III)) as the species of 

interest. The calculated relative redox potential (  Erel
0 ) is then: 

 
  
Erel

0 = E0 − E0(RC) =
ΔGsolv (RC)−ΔGsolv

nF
  (3) 

where ΔGsolv in both cases is computed from the thermodynamic cycle in Figure 4.  

 
Figure 4. Thermodynamic cycle approach to calculation of redox potentials. The relationship 
between directly calculated quantities (shown in blue) and indirectly calculated quantities 
(shown in gray) is indicated by the arrows.  
 

4. Results and Discussion 

4a. Ligand Curation 

We begin our Fe(II/III) redox couple design by defining the features of the ligand 

environment to be held constant in our screen: here, octahedral coordination with nitrogen ligand 

connecting atoms. This coordination environment was selected due to the prevalence of Fe(II/III) 

nitrogen octahedral complexes in previous theoretical95-96, 98 and experimental99-100 redox studies and 
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the coordination-sensitivity of ground state spin in these complexes, which should give rise to 

differing redox properties. Homoleptic complexes are built either from monodentate or bidentate 

ligands through separate database queries. For monodentate structures, we focus on substructure 

matching direct-connecting N atoms likely to form dative bonds through undercoordination (i.e., 

a nitrogen atom that is connected to at most 1 or 2 other species) that do not carry a net positive 

charge (Figure 5). Hydrogen atoms are kept attached to the nitrogen atoms in these cases, except 

for aromatic and amide nitrogens due to difficulties with SMARTS-based bond order 

assignment. The code searches for these special cases and removes hydrogen atoms where 

necessary to ensure one dative bond from the nitrogen to the metal. This non-restrictive query 

would return much of the database, nearly 1.3M of 1.9M molecules in ChEMBL-2176, but for the 

purpose of illustrating the database search we make further restrictions (see cartoon in Figure 3). 

First, we require a single pattern match, which eliminates the presence of other undercoordinated 

nitrogen groups that would make choosing the connecting atom for coordination ambiguous. We 

also limited the number of atoms in each ligand to 14, a strategy we previously employed 

successfully75 thanks to the fact that inorganic complex properties are most sensitive to the choice 

of immediate environment of the metal. The size and single-match restrictions have the greatest 

effect on our ligand pool, bringing 1.3M candidate nitrogen monodentate ligands down to 563. 

Further filtering steps carried out by molSimplify’s database search module include removing 

counterions, stereoisomers or duplicates (527 matches) and filtering to remove undesired 

elements. Here, we allow organic (H, C, N, O) and halide (F, Cl, Br, I) elements, which may be 

applied in the search either by explicit specification of each element allowed in the filter or by 

keyword, reducing the total number of matches to 355.  
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Figure 5. Representative SMARTS pattern matching for nitrogen-containing monodentate (top) 
or bidentate (bottom) ligands used in database search.  

 

A final concern beyond substructure matching, size, charge, and elemental composition 

in choosing inorganic complexes from a database of individual organic fragments is the matter of 

feasibility of complex construction. That is, even if individual organic ligands match the above 

criteria, interligand distances may still be too low, even after molSimplify routines reduce 

interligand steric repulsion. To avoid this scenario, we have developed an unphysical complex 

detector that excludes a complex if any atom pairwise distances in the complex are less than 70% 

of the sum of covalent radii. The 70% value was determined by trial and error and leads to 

elimination of 44 compounds in the monodentate case to produce 311 candidate structures. This 

filter is necessary to avoid structures that would either be challenging for first-principles 

simulation or would not preserve the ligand structure we intended to simulate: 70% of the sums 

of covalent radii of two adjacent, non-bonding carbon atoms is 0.94 Å, which is 0.6 Å shorter 

than a typical C-C single bond. Although it is feasible to screen all of these complexes, we 

maximize efficiency in computational screening by further reducing this set to 10 molecules 

through a greedy algorithm to maximize fingerprint-based27 molecular diversity (i.e., their 

Tanimoto101 distance) among the matches (select structures shown in Figure 6, full list in 

Supporting Information Figure S1). In this approach, we set a target number of molecules (i.e., 

10) and repeatedly compared Tanimoto distances101, selecting the most dissimilar structures at 

each step until the target number of molecules is obtained. Representative monodentate 

structures range from bulkier groups in which the chelating nitrogen is part of a ring (M1-M2) or 

the nitrogen has varying bond order to its other substituents (M3-M5). 
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Figure 6. Representative monodentate (top) and bidentate (ligands) from database search with 
metal-coordinating sites indicated with dashed lines. Carbon and hydrogen atoms are shown in 
black, nitrogen atoms in blue, oxygen or hydroxyl functional groups in red, and a fluoride is 
shown in brown. 

 

We repeat the same procedure on bidentate nitrogen ligands using two related filters (one 

shown in Figure 5). In the first, we search for undercoordinated nitrogen atoms connected by two 

aliphatic carbons. The focus on aliphatic carbons increases the likelihood that the bond is 

rotatable and allows for a cis orientation of the two chelating nitrogen atoms (e.g., 

ethylenediamine). In future work, a more general search could encompass nitrogen atoms 

separated by a variable number of carbon atoms. A second bidentate search aims to identify 

aromatic compounds with at least one nitrogen participating in a six-membered ring, common to 

many77 polycyclic chelating ligands, such as bipyridine and phenanthroline. The same procedure 

for database filtering in the monodentate case is then applied here.  A large pool of nearly 90,000 

compounds is reduced by single-match and size-based (here, 22 atoms) filters to only 189 

candidates. Further filtering of duplicates reduces this number to 158, and limiting elements to 

the organohalide set produces 115 total molecules. In order to ensure the correct bidentate 

orientation is generated, we have implemented a rotatable bond search to identify optimal 

coordinating conformers for bidentate ligands. Using both this approach and the unphysical 

structure filter, a final set of 80 bidentate homoleptic complexes are generated. These structures 

are then reduced to a 31-molecule subset after maximizing diversity (representative structures in 

Figure 6, full list in Supporting Information Figure S2 and summary of filtering in Supporting 

Information Table S2). Representative examples include both nitrogen on aromatic rings with 
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various heteroatom substitutions (B1-B3) as well as cases where the aliphatic carbon substitution 

varies alongside functional groups on the nitrogen atoms themselves (B4-B5). 

4b. Structure Building and Pre-screening with an ANN 

 In order to accelerate VHTS, it is essential to generate high-quality structures. As 

mentioned in Sec. 2, our molSimplify toolkit37 initially generated high-quality starting structures 

by matching metal-ligand bond lengths from a DFT-trained database (DB). These structures 

were shown to be superior to the best closest alternative for high-throughput studies, 

optimization with the UFF force field54, particularly for monodentate structures. To compare the 

utility of these approaches to our recently introduced ANN57, we generated starting structures 

across a set of representative bidentate and monodentate (five each) octahedral complexes in 

each oxidation state (Fe2+ or Fe3+) and both high- and low-spin states (see Figure 6). UFF 

parameters are only available for select coordination environments and oxidation states for each 

metal, and this information must be fed to an optimization program in order for UFF structure 

generation to be successful. Thus, UFF optimizations will predict bond lengths for fixed spin and 

oxidation state only. Some effort has been made to expand supported coordination environments 

in UFF to address common motifs in solid-state metal-organic frameworks based on new semi-

local DFT training data102. However, two key factors that determine bond length are the i) strong 

spin-state dependence, which could only be improved through incorporation of an advanced but 

not widely-available or parameterized ligand field molecular mechanics model103 and ii) 

functional dependence that is only present in a force field by virtue of a specific training recipe. 

In theory, our metal-ligand DB supports variable spin and oxidation state, but that relies on a 

database entry that is a close match for each spin. In the case of nitrogen complexes, our metal-

ligand DB contained only high-spin data.  

The shortcomings of the two original approaches (UFF and DB) become apparent when 

comparing average unsigned errors in bond lengths versus optimized DFT geometries for UFF, 

the DB, and ANN (Figure 7 and Supporting Information Table S3).  As in previous work37, the 

UFF is observed to produce small errors for bidentate structures, particularly in the low-spin 
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state where errors are lower than those with the DB. In all other categories, the metal-ligand DB 

outperforms the UFF approach. Finally, the ANN produces the smallest errors of all 3 methods, 

particularly for low-spin bidentate structures (Figure 7). The improvements of the ANN over the 

DB are likely due to successful generalization of ANN training data coming from bidentate 

structures (e.g., bipyridine), and incorporated spin- and oxidation-state dependence. Some errors 

as high as 0.08 Å in the HS monodentate structures by the ANN are larger than the 0.02-0.03 Å 

average we observed previously during ANN training, suggesting future improvement of the 

ANN through descriptor refinement or enriching training data. 

 
Figure 7. Unsigned average error in bond length prediction (in Å) compared against a DFT 
B3LYP optimized structure over representative bidentate (5) and representative monodentate (5) 
octahedral Fe(II) and Fe(III) low-spin and high-spin complexes from the UFF (red bars), metal-
ligand database (grey bars), and an ANN (blue bars).  

 

A second question in screening open-shell transition metal complexes is the qualitative 

(e.g., ground state) and quantitative spin-state ordering. For redox processes, knowledge of the 

ground state spin of the reduced system is essential to determine the spin state from which the 

oxidation process occurs. Since spin-state ordering is highly-sensitive to fraction of exact 

exchange incorporated in the functional60, 68-69, 104-105, we demonstrate our ANN trained to predict 

exchange-sensitivity of spin-state ordering on a select group of representative bidentate and 

monodentate complexes (see Figure 6). The high-spin/low-spin, gas phase, adiabatic splitting  

(ΔEH-L) of these bidentate and monodentate structures for 20% HF exchange (black circles in 

Figure 8) varies primarily by oxidation state: four out of five bidentate Fe(II) complexes and all 
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five Fe(II) monodentate complexes have high-spin ground states (Figure 8 and Supporting 

Information Table S4). Conversely, Fe(III) complexes are predominantly low spin (four out of 

five bidentate and three out of five monodentate) at 20% HF exchange. Incorporation of the 

ANN exchange sensitivity extrapolated in either direction from the 20% value provides a range 

of possible spin-state splittings: four of the bidentate cases and six of the monodentate cases are 

projected to change ground state spin between 0% and 20% exchange (Figure 8). Comparison of 

explicit calculation of 0% HF exchange spin-state ordering to the ANN-projected value 

demonstrates good correspondence in all cases except for M2 in either oxidation state. For M2, 

the ANN model sufficiently overestimates exchange sensitivity to predict that 0% exchange 

results should produce a low-spin Fe(III) complex where the calculated ground state is instead 

high-spin.  

 
Figure 8. Spin-state splitting of five representative bidentate (left) and monodentate (right) at 
20% HF exchange (black filled circles) and 0% HF exchange (red hollow squares) compared to 0 
(filled grey square) to 40% (horizontal line) splitting ranges extrapolated from ANN predicted 
sensitivities (gray line). Each structure is grouped into alternating Fe(II) and Fe(III) results, as 
labeled on the first bidentate structure as +2 or +3 in blue labels. Cases for which the ground 
state spin changes from low-spin at 0% to high-spin at 20% HF exchange are highlighted with 
saturated colors.  

 

Nevertheless, in 90% of the representative cases, the ANN provides a very good guide on 

how sensitive gas phase spin-state splitting is to HF exchange. Overall mean absolute errors are 

around 3.5 kcal/mol for the set, and our previously introduced distance-to-training-data heuristic 

is large for the cases where errors are above 5 kcal/mol (Supporting Information Figure S3 and 
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S4). Notably, our ANN predicts a narrow range of exchange sensitivities from -80 to -91 

kcal/mol from 0 to 100% HF exchange due to the fact that the metal, coordination number, and 

direct ligand atom identity, the main determinants of sensitivity, are all unchanged across the 

representative set. Lower or higher exchange sensitivities are well predicted on representative 

molecules of more variable composition (Supporting Information Table S5). Given observations 

that optimal exchange mixing for iron-nitrogen complexes is around 20-30%67, we use the spin 

state assignment at 20% exchange after inclusion of solvent and entropic effects in this work (ca. 

3-4 kcal/mol for both effects, see Supporting Information Figure S5 and Table S6). However, we 

note that for cases where the spin-state splitting is close to zero and sensitive to HF exchange 

(i.e., several of the bidentate cases in this work), it is likely beneficial to compute redox 

properties from both spin states (see sec. 4c). Our conclusion from this analysis is that the ANN 

exchange sensitivity tool can provide efficient and valuable insight into how sensitive energetic 

predictions are to one of the most commonly adjusted DFT functional parameters. 

 

4c. Redox Potential Tuning Trends 

We now compare redox potentials of Fe(II/III) complexes relative to the Fc/Fc+ couple, as 

evaluated from the ground state spin of each reduced molecule to the closest Fe(III) complex 

with an electron configuration that differs by single electron removal (Supporting Information 

Tables S6-S8). The ground state spin for the reduced species is chosen after incorporation of 

modest combined solvation, zero point energy, and entropic contributions to spin-state ordering 

(ca. 3-4 kcal/mol) that preserve the gas phase spin-state ordering for all but two cases 

(Supporting Information Figure S5 and Table S9).  Over the full data set, a large range of redox 

potentials is observed from slightly below the ferrocenium couple (around -0.8 V) to 

substantially higher at 4.5 V (Figure 9). Bidentate complexes generally span the lower redox 

potentials (up to 2 V), whereas the monodentate species are all at the higher range (1 to 4.5 V). 

The large range sampled is partly enabled by our diversity-oriented screen, which ensures that 

chemically distinct ligands are sampled (see examples in Figure 6). 
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Figure 9. Correlation of redox potential (in V) relative to Fc/Fc+ reference vs. four descriptor 
model with parity line shown (dashed black line), as described in the main text for bidentate 
(blue circles) and monodentate (red circles) structures. Select high and low redox potential 
examples described in the main text are indicated in filled circles, and the remainder are 
indicated as hollow circles.  

 

Having surveyed a diverse set of ligands, we wish to extract key molecular descriptors 

that are well-correlated (e.g., through multiple-linear regression) to redox potential in order to 

reveal potential design rules.  In order to avoid overfitting, we implemented in molSimplify37 a 

recursive feature elimination (RFE)106 approach to automated correlation discovery. Here, we start 

with a large space of possible heuristic descriptors derived from molecular topology/size, 

elemental identity, and electronegativity, to be described next, and remove the worst performing 

ones until an optimal number of descriptors is reached. This greedy fashion of feature removal in 

RFE is not guaranteed to find the best subset, but we have chosen this approach for its ability to 

provide a ranked list of features. Alternative methods for feature selection including LASSO107 

regression or methods based on random forests108 will be pursued in future work. We use the 

leave-one-out cross-validation (LOOCV) error106 on withheld data points as a measure of model 

robustness: descriptors are automatically removed from the feature set until the square of the 

LOOCV error, as evaluated with sklearn109, reaches a minimum.  Out-of-sample error could also 



 

22 

 

be estimated by bootstrapping110-111 but there is evidence112-113 that CV is sufficient for feature 

selection.  

In combination with this approach, we define a descriptor set from which molSimplify 

selects the most significant correlations to redox potential (Supporting Information Table S10). 

Here, we employ heuristic, chemical/topological descriptors of the ligands, in an extension of our 

prior ANN training57, in order to identify quantities that can be employed in subsequent screens of 

large molecule databases without direct first-principles simulation. We employ autocorrelation 

functions114-115 (AC), which are a pairwise sum of a products of given key property over all atoms 

that are a fixed number of bonds, d, away from each other: 

 
  
AC p (d) = Σi, j pi p jδ di, j − d( )   (4) 

In this work, we allow d to vary from 0 up to 5 for autocorrelations of four properties, p: 1) 

Pauling electronegativity, χ; 2) nuclear charge, Z; 3) topology, T, as indicated through the atom’s 

coordination number; and 4) the identity, I, that is 1 for all atoms, as suggested in Ref. 115. Several 

of these autocorrelation functions correspond to recognizable descriptors, e.g., I0 is the number 

of atoms, and T1 is closely related to the Randić index116 used in cheminformatics. A complete list 

of all 26 autocorrelation descriptors after normalization and centering to have a zero mean and 

unit variance is provided in Supporting Information Table S11. 

 The single best descriptor set, as judged by minimum LOOCV error, is revealed to be a 

combination of topological and nuclear charge-dependent properties: atomic T0 and nearest 

neighbor Z1, I1, and T1 (see Supporting Information Text S1, Table S12, and Figures S6-S7). 

These descriptors exhibit a good correlation (R2 = 0.6, see Figure 9) with balanced mean squared 

error on the full data set and on the withheld points (Supporting Information Text S1). In order to 

interpret these descriptors further, we lump together the structural terms weighted and 

normalized by their coefficients, S, into the final expression for the predicted relative redox 

potential: 

 
  
Erel,pred

0 = 3.62Z1 −4.10S +1.51   (5) 
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This expression reveals a balance between increased redox potential with increasing weight of 

substituents (large Z1) and decreased redox potential for branched (large, positive S) structures 

(Supporting Information Figure S8). Quantitative analysis of the distribution of the Z1 and S 

descriptors reveals that redox potential is maximized for ligands with large positive Z1 and 

negative (i.e., relatively low) S best encapsulated by evaluating Z1-S (Supporting Information 

Figure S9). For instance, reviewing representative high redox potential structures reveals a 

monodentate structure with N2O ligands, which has a low Z1 due to the small ligand size but even 

lower S due to the higher bond order in the ligands (structures in Figure 10 and filled circles in 

Figure 9).  In comparison, the low redox potential monodentate structure contains sp3 nitrogen 

ligands with greater branching (Figure 10). Similar analysis captures the trend of higher redox 

potential bidentate structure with rigid, aromatic nitrogen-containing ligands compared to the 

low redox example with both chelating sp3 nitrogen atoms and greater branching (Figure 10). 

Thus, these descriptors represent useful metrics that can be applied in future screens to tailor 

redox potentials of iron complexes.  

 
Figure 10. Representative high (top) and low (bottom) relative redox potential cases for 
bidentate (left) and monodentate (right) transition metal complexes, which were indicated as 
filled circles in Fig. 8. Iron is shown as a brown sphere, and the remaining atoms (blue nitrogen, 
gray carbon, red oxygen, and white hydrogen) are shown as sticks. 
5. Conclusions 

We have introduced and extended our discovery approach for inorganic complexes. 
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Based on an open source toolkit, molSimplify, our computational strategy focuses on a divide-

and-conquer approach to inorganic complex structure building and screening. Here, we leverage 

tools that work in organic chemistry, such as the transformation of simple strings to 3D 

coordinates and concepts of molecular similarity and diversity, for the organic components of 

transition metal complexes. We harness knowledge we have developed from direct simulation 

and established rules in inorganic chemistry, as encapsulated in our databases and machine 

learning models, to define aspects of the metal-ligand coordination environment. Building on our 

initial efforts to automate generation of highly accurate inorganic molecular structures, first-

principles simulation, and property analysis to accelerate high-throughput screening, we have 

recently incorporated an ANN trained only on heuristic descriptors that both improves structure 

generation and predicts electronic properties prior to or in lieu of first-principles simulation. We 

demonstrated the value of some of these machine learning tools in improved bond length 

prediction and exchange-sensitivity of spin state ordering on representative complexes. 

We provided an overview of how multi-million molecule organic libraries can be 

leveraged for inorganic discovery alongside cheminformatics concepts of molecular diversity in 

order to efficiently traverse chemical space. We demonstrated all of these tools on the discovery 

of design rules for Fe(II/III) redox couples with octahedral coordinating nitrogen ligands. Over a 

search of only approximately 40 new molecules, we obtained a variation of redox potential 

relative to the Fc/Fc+ couple from around -1 to 4.5 V in aqueous solution. Our new automated 

correlation analysis reveals heteroatom identity and the degree of structural branching to be key 

ligand descriptors in determining redox potential. The use of leave one out cross validation in our 

approach avoids overfitting and helps identify the four most relevant parameters to redox 

potential prediction from an initial set of 28 ligand descriptors. 

This inorganic discovery toolkit and suite of strategies offers a promising approach to 

advancing inorganic complex design and provides a much needed complement to existing tools 

for high-throughput screening of solid state materials. Ongoing efforts in our lab are focused on 

extending these tools for high-throughput initial guesses for transition states relevant for catalysis 
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as well as the development of general purpose frameworks for both local and global property 

optimization. 
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