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There is a growing interest today in blockchain technology as a possible foundation for the

future global financial ecosystem. However, in order for this future financial ecosystem to

be truly global, with a high degree of interoperability and stability, several challenges need

to be addressed related to infrastructure security. One key aspect concerns the security

and survivability of the systems that participate in the blockchain peer-to-peer networks.

In this paper we discuss the notion of the decentralized trusted computing base as an

extension of the TCB concept in trusted computing. We explore how a decentralized TCB

can be useful to (i) harden individual nodes and systems in the blockchain infrastructure,

and (ii) be the basis for secure group-oriented computations within the P2P network of

nodes. We explore the application of the decentralized TCB for blockchain interoperability

via blockchain gateways. Similar to border gateways in classical IP routing, blockchain

gateways may provide several potential benefits in use-cases involving the transferal of

virtual assets across different blockchain autonomous systems.

Keywords: trusted computing base, blockchain technology, infrastructure security, cryptography, survivability

1. INTRODUCTION

There is a growing interest today in blockchain technology as a possible foundation for the future
global financial ecosystem. Significant media attention has been placed this new field, and various
future visions for the “blockchain economy” has been put forward by various authors. The Bitcoin
system proposed by Nakamoto (2008) is now over 10 years old, and the BTC currency remains one
of the most popular speculative crypto-currencies.

One revolutionary aspect of the Bitcoin system is its openness for any entity to participate in
the act of “mining.” Any entity can independently and anonymously participate in the Bitcoin
network by computing the “proof of work” (PoW) as part of establishing consensus regarding the
state of shared ledger. As such, the membership in the Bitcoin network is not defined by geographic
location. This in itself is a radical departure from traditional enterprise IP networks consisting of all
known and authenticated entities. This independence and anonymity of the mining nodes means
that it is difficult or even impossible to know which nodes participated in a given proof of work
computation instance. This in turn leads to the possibility of anonymous mining pools amassing
CPU power (hash power), which can be unleashed at the opportune moment in order to influence
the network.

If the global financial industry is to employ blockchain technology for their future
infrastructures, then several deficiencies of the current blockchain systems paradigm need to be
addressed before blockchains can be used as a fundamental building block for financial technology.
We believe that a crucial aspect of any financial IT infrastructure in their resiliency and survivability
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in the face of possible cyber-attacks. A core requirement for
survivability is the interoperability of blockchain systems both
at the mechanical (technical) level and at the value (economic)
level. In fact, in the design of the architecture of the Internet
the DARPA view at the time was that there are seven goals of
the Internet architecture, with the first three being fundamental
to the design, and the remaining four being second level goals.
The first three goals were Internet communications survivability,
the support for a variety of services types, and the support for
a variety of networks (see Cerf and Khan, 1974; Clark, 1988).
Therefore, chief among these goals was survivability, and in order
to create survivable networks there must be a high degree of
interoperability across these networks (see Hardjono et al., 2019).

In this paper we explore how the decentralized trusted
computing base (DTCB) model can be useful to (i) harden
individual nodes and systems in the blockchain infrastructure,
(ii) to support cross-blockchain interoperability, and (iii) to
enable secure group-oriented computations and interactions
within blockchain networks. One underlying motivation for
exploring the notion of the DTCB is to see if trustworthy
interoperability can be achieved using the constructs of trusted
computing. Thus, in this paper we also explore the idea
of trustworthy interoperability using blockchain gateways that
maybe implemented following the DTCB model.

In the next section we briefly review a number of challenges
facing the nascent area of blockchain technology. In section 3
we review the history of the notion of the trusted computing
base that emerged in the 1980s from the DoD Orange Book.
We propose a number of desirable features of the DTCB in
section 4, building on the existing industry experience in trusted
computing. Similar to other infrastructure technologies that have
moved to the cloud, parts of the blockchain infrastructure may
also end up moving to the cloud environment. We discuss
the role of the TCB in the context of virtualized and cloud
environments in section 5, paying close attention how the
roots of trust can be extended into these virtualized containers.
In section 6 we discuss an important use-case of the DTCB
related to the interoperability and survivability of blockchain
infrastructure, namely the construction of a secure gateway that
interconnects blockchain systems. We close the paper with some
future considerations.

2. CHALLENGES IN BLOCKCHAIN
SYSTEMS

The emergence of the Bitcoin system has provided the first
working example of a “permissionless” blockchain system
pertaining to digital currency. The term “permissionless” and
“trustless” today is used typically to convey the fact that anyone
(end-users and mining nodes) are free to join or leave the
P2P network at any time. As such, the “membership” of a
permissionless blockchain system is dynamic and the perimeter
is elastic.

However, there are a number of limitations to the
permissionless blockchain design:

• Anonymity of nodes may lead to concentrations of hash-power:
In some permissionless blockchain networks, any entity

can take the role of a mining node and be identified on
the blockchain solely by their public-key (i.e., “address”).
Although this anonymity may be considered as a virtue
in some blockchain networks (e.g., Bitcoin), there may be
some disadvantages to this approach. One disadvantage is
the potential for the amassing (centralization) of hashing
power by a handful of anonymous nodes or entities, which
goes against the proposition of decentralization of the
blockchain paradigm. Such entities could conceivably use
this concentration of hash-power to skew or manipulate the
network over time.

• The trustless model may only achieve limited trust: The trustless
model based on anonymous nodes independently completing
the proof-of-work achieves only limited trust (technical-trust).
The lack of measurable security quality or of strong proofs of
security may have a negative impact of the ability to forecast
the reliability of services built atop the trustless network of
nodes. This may in turn affect the ability to establish service
level agreements or contracts.

• Limitations in technical-trust impacts business-trust: The
limitations in measurable technical-trust and security quality
inherent in the trustless model as employed in some
blockchains impacts business in the sense that businesses are
unable to count on the availability, resilience or performance
of a given trustless blockchain. This is in contrast to the
Internet today, which is composed of a set of ISPs (e.g.,
local, metro, and backbone), and which operate based on
peering agreements and SLAs. Without service agreements or
contracts, there is only a very limited amount of risk that
businesses are willing to take on (see Lipton et al., 2018).

Currently blockchain systems follow one of the following general
approaches to the membership of nodes:

• Pre-identified participation: Nodes must be identified and
authenticated prior to joining the community. This does not
imply, however, that a node will participate in every instance
of a consensus computation. Examples of these are some
deployments of Hyperledger Fabric (see Androulaki et al.,
2018).

• Anonymous participation: In this approach the nodes are not
identified or authenticated as a member of the community.
Thus, any entity with computing resources can operate a node
within the community, and the node can “come and go” as it
pleases. This approach is exemplified by the Bitcoin system.

• Anonymous-verifiable participation (hybrid): In this approach
a node is able to cryptographically prove it is a member of
a blockchain system without revealing its full identity (for
example, see the scheme proposed in Hardjono and Smith,
2016 based on the EPID standard ISO/IEC, 2013).

3. THE TCB MODEL: A SHORT HISTORY
OF TRUSTED COMPUTING

3.1. Orange Book Trust
In December of 1985 the U.S. Department of Defense published
the Trusted Computer System Evaluation Criteria (TCSEC) that
defined Trusted Computing Base (TCB) as “the security-relevant
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portions of a system.” All subsequent expressions of trustworthy
computing and security policy is described in terms of impact and
relevance to the TCB. The TCSEC notion of TCB is most easily
understood if it behaves as a centralized trusted entity. Indeed,
those systems that achieve the highest-level security certification
and accreditation have a very centralized system design. Security
Enhanced Linux (SELinux1) embodies this thinking in its design
for Linux Security Modules (LSM) where security relevant
operating system events must satisfy LSM imposed security
policies. This approach is made feasible largely due to the Linux
architecture that regards everything in the system as either a
subject or an object. Subjects operate on objects and objects
expose resources. The LSM sits at the confluence of subject-
object interactionmandated by kernel system calls. Using TCSEC
conventions, a Linux LSM is the primary TCB component of the
operating system.

The TCSEC embraces the notion of peer trusted nodes
describing them asmembers of a... “Network Trusted Computing
Base (NTCB) [which] is the totality of protection mechanisms
within a network system—including hardware, firmware, and
software—the combination of which is responsible for enforcing
a security policy [...] An NTCB Partition is the totality of
mechanisms within a single network subsystem...”. The TCSEC
NTCB criteria, however, does not include the concept of
attestation where trustworthiness properties can be automated
and dynamically evaluated.

3.2. The Trusted Computing Group
The TCSEC criteria focused mostly on operating system security.
However, the operating system is not the sole TCB component in
a platform. The hardware also plays a significant role as memory
page isolation is central to the idea of kernel-mode (namely ring-
0) and application-mode (namely ring-3) security context. From
the operating system perspective the hardware is trusted because
it has no alternative way to test and verify that the hardware
is behaving correctly. This does not mean that hardware is not
susceptible to compromise, as indicated by recent exploits such
as Spectre2 and Meltdown3.

The threat of hardware vulnerability motivated the computing
industry to form the Trusted Computing Group4 (TCG) where
the notion of a hardware root-of-trust was used to distinguish
the security relevant portions of a hardware platform. The
TCG defines trusted computing5 more organically building upon
granular components that are described as shielded locations and
protected capabilities. Shielded locations are “A place (memory,
register, etc.) where it is safe to operate on sensitive data; data
locations that can be accessed only by protected capabilities.”
Protected capabilities are “The set of commands with exclusive
permission to access shielded locations.”

Using these concepts, the TCG breaks down trusted hardware
functionality into three components, otherwise referred to as
“roots-of-trust.” There is a Root-of-trust for Measurement (RTM)

1https://github.com/SELinuxProject
2https://spectreattack.com/spectre.pdf
3https://meltdownattack.com/meltdown.pdf
4https://trustedcomputinggroup.org
5https://trustedcomputinggroup.org/resource-directory/glossary/

whose primary role is to ensure the rest of the platform
initializes and boots correctly. The Root-of-trust for Storage (RTS)
ensures saved security relevant state, cryptography objects (e.g.,
keys) are persistently available for inspection and use regardless
of whether the surrounding platform firmware and software
has been compromised. The third root is called Root-of-trust
for Reporting (RTR) that contains cryptographic algorithms,
protocols and access to RTS protected keys so that peer nodes can
assess trustworthiness properties dynamically. This assessment is
referred to as attestation.

3.3. The Trusted Platform Module
According to the TCG, a Trusted Platform Module (TPM)
is formed by combining an RTS and RTR, but the TPM
specification does not clearly delineate which features are
ascribed to RTS vs. RTR. Generally speaking, a TPM provides
four security capabilities:

1. Cryptographic libraries including a true random number
generator (TRNG), key generations and key storage;

2. Platform Configuration Registers (PCR) containing firmware
and software digest values supplied by an RTM or other code
loaded by the RTM. The RTM is supposed to be securely
connected to the TPM;

3. Sealing and binding where data encrypted using TPM keys
are locked to the platform containing the TPM. Sealing
expects the PCRs will have a prescribed value as an additional
constraint upon decryption;

4. Remote attestation uses TPM keys to sign PCR values that are
delivered to a remote entity for evaluation. Attestation keys
are protected by the TPM; which contains an endorsement key
that is provisioned at TPMmanufacturing and certified by the
manufacturer’s certificate authority (CA). The endorsement
certificate establishes TPM provenance and a platform
attribute certificate issued by the platform OEM establishes
platform provenance.

The first successful version was TPMv1.1b followed by TPMv1.2
which was widely distributed. TPMv1.2 supported a “one-size-
fits-all” approach that primarily targeted the PC market. It
defined a single storage hierarchy protected using a single
storage root key (SRK). Authorization could be asserted using an
HMAC, PCR value, locality, or assertion of physical presence. It
supported unstructured Non-Volatile RAM storage and a variety
of cryptographic algorithms including SHA-1, RSA, AES, 3DES,
MGF1 mask generation, and Direct Anonymous Attestation
(DAA), added to TPMv1.2, is a zero-knowledge algorithm. It
mandated 24 PCRs that use SHA-1 hash computations.

A second generation TPM v2.0 was a library specification
and is not backward compatible with TPMv1.2. It expanded
trusted computing features to better support vertical markets.
The TCG introduced platform specific profiles that were designed
to use optional or excluded functionality specific to PCs,
smart phones and automotive IoT platforms. Platform-specific
profiles allow TPM vendors flexibility in implementing TPM
features that accommodates a specific market. Additionally,
TPMv2.0 supports four key hierarchies; storage, platform,
and endorsement as well as a hierarchy for ephemeral keys.
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Each hierarchy can support multiple keys and cryptographic
algorithms. Password-based authorization was added and
greater flexibility for policy-controlled use of the other
authorization mechanisms. NV-RAM expanded to support
monotonic counters, bitmaps and “extend” operations in
addition to unstructured data storage. Support for stronger
cryptographic algorithms was added including SHA256 for
hashing and ECC using Barreto-Naehrig 256-bit curve and NIST
P-256 curve. The 128-bit AES key size became mandatory.
TPMv2.0 also expanded the number of hash algorithms used to
compute PCR values. For example, both SHA-1 and SHA256 hash
values can accompany the same PCR register for added security
and interoperability.

3.4. Intel SGX Root of Trust
The Intel Software Guard Extensions (SGX) (see Mckeen et al.,
2013) offers another perspective on trusted computing base
where a trusted environment exists within a user process called
an Enclave. The SGX TCB consists of hardware isolated memory
pages, CPU instructions for creating, extending, initializing,
entering, exiting, and attesting the enclave and privileged CPU
modes for controlling access to enclave memory. SGX takes
a layered approach to TCG design where CPU hardware and
microcode make up the bottom layer consisting of Enclave Page
Cache (EPC), EPC Map (EPCM), and protected mode operation
logic. We refer to this as the CPU TCB.

A second layer TCB consists of SGX runtime code that
includes a user or ISV supplied SGX runtime. We refer to this
as the ISV TCB. Finally, enclave runtimes may dynamically load
third layer code and configuration data that further specializes
enclave behavior. We refer to this as the application APP TCB.
Intuitively, from the application’s point of view, application
functionality within the enclave is the subset that the application
developer designates as trusted. For example, it may contain
sensitive application data, algorithms and cryptographic keys off
limits to other processes and enclaves.

The three TCB components (CPU TCB, ISV TCB, APP
TCBt), together, make up the subset of all processes that are
trusted, collectively known as the PLATFORM TCB. There is
a trust dependency within the PLATFORM TCB, as APP TCB
functionality must trust ISV TCB and ISV TCB must trust
CPU TCB. However, in the broader context, all SGX TCB
elements do not need to trust external ring-3, ring-0, and VMX
root functionality.

SGX architecture supports helper enclaves known as
Architectural Enclaves that perform various trusted computing
services common to most all application enclaves. These service
enclaves include: the Platform Configuration Enclave (PCE) that
facilitates provisioning certificates for identity and attestation;
the Quoting Enclave (QE) for performing enclave-to-enclave
attestation as well as remote attestation and the Platform Services
Enclave (PSE) for interacting with IP blocks that exist outside the
CPU IP complex. Application enclaves may include and exclude
architectural enclaves as needed to satisfy application objectives.
In this sense, the PLATFORM TCB is dynamic, at least from the
application developer’s perspective.

A second generation SGX (see McKeen et al., 2016) added
support for dynamic memory management where enclave
runtimes could dynamically increase or decrease the number of
enclave pages. This is a second form of TCB dynamism where
if we consider the identity of a TCB to be a function of the
code or logic executing within the TCB (e.g., cryptographic hash),
dynamically loaded or unloaded pages also changes the TCB
identity. Trust decisions that anticipate a particular TCB could
become confused by dynamic memory management. There are
at least two ways to address this. One approach requires all
the pages that could be dynamically loaded be included in the
hash computation then unused pages can be evicted when not
needed. Alternatively, a TCB identity not tied to a hash function
is used. For example, the vendor could assign a product name
that is verifiable using a certificate. This approach gives vendors
greater flexibility toward code maintenance, but at the cost of
potentially introducing new vulnerabilities. SGX allows both TCB
naming approaches but with one important augmentation. Each
TCB element has a Security Version Number (SVN) that the
TCB vendor uses to track security relevant changes. SVN is a
monotonic value designed to detect and, in many cases, can
be used to prevent version regressions. It requires a level of
discipline on the vendor’s behalf to ensure SVN is managed
correctly. An important benefit of SVN is it reduces the number
of unnecessary TCB re-certifications due to code maintenance
activities having no security consequence.

4. DESIRABLE PROPERTIES OF A
DECENTRALIZED TCB

There are a number of core properties desirable for a
Decentralized TCB (DTCB) model. Individually, each
participating node in a DTCB instance must possess the
fundamental properties of trusted computing, and more
specifically the core aspects of trustworthiness (technical trust).
In this context it is useful to revisit some key architectural designs
of the Trusted Platform Module (TPM) (see Trusted Computing
Group, 2003b) established by the TCG from the late 1990s which
sought to embody (implement) technical trust in hardware.

4.1. Properties for Technical Trust
We say that a node (i.e., system composed of hardware and
software) can be considered to exhibit technical trust if at least
the following properties apply:

• TCB Property P1: Performs a well-defined function. The core
idea here is that the function being executed by the TCB
must not harm the TCB itself and must be computationally
bounded so that it does not consume all available resources.
In the TPM1.2 design, these functions consisted of a set of
primitive operations and some cryptographic functions. In
recent systems such as SGX, there is more freedom for the
user to load arbitrary functions into the trusted execution
environment to be executed, but the property remains true,
namely that a user-defined routine must execute within the
memory space determined by the SGX systems itself.
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FIGURE 1 | Abstract illustration of decentralized TCB.

• TCB Property P2: Operates unhindered and shielded from
external interference. In order for an implementation of a
function to be useful in a TCB, the function must be able to
execute until its completion without being hindered in any
way (e.g., resources locked or made unavailable) or that its
operations are not skewed or influenced in any fashion.

• TCB Property P3: Cryptographic Identity. TCB instances must
be distinguishable from each other. Trust associations between
application layers and TCB nodes will differ in deployment;
unless mirrored for fault-tolerance. Cryptographic identity
ensures each TCB node possesses a unique identity and can
prove that identity to a peer node.

• TCB Property P4: Trustworthy TCB Dynamism. For a TCB
to be practical, it must be able to be updated, expand, and
contract. Few instances of code are 100% error free. Those that
are proven to be error free are highly constrainedmaking them
nearly impractical for interesting use cases. The most relevant
use cases involve establishment of a cryptographic identity and
firmware or microcode update. Beyond these use cases the
TCB needs to be dynamic allowing layers of functionality to
be added (or removed) to account for changing hardware and
workload computational requirements. The authors note that
TCB dynamism is antithetical to a design goal which seeks to
make roots of trust immutable. Often it is necessary to simplify
(i.e., remove features) in order to achieve a higher degree of
immutability. Simpler roots of trust implies there will be TCB
layers that add the necessary functionality back in. The TPM
is a fairly complex root of trust and not surprisingly needed an
interface for updating it in the field.

We can further say that a node effectively participates in forming
a DTCB if at least the following properties apply (see Figure 1):

• DTCB Property DP1: Group Membership. A DTCB consists
of a group of TCB nodes where group membership criteria
are applied. Membership enforcement ensures a non-TCB
node does not become a member and compromised or
non-compliant TCB nodes are expelled from the group.

For DTCB establishment, the group of TCB nodes must
cooperatively verify potential DTCB member nodes are
authorized as members. The authors point to distributed
consensus algorithms as a possible approach for group
membership enforcement.

• DTCB Property DP2: Truthful Attestation. For a DTCB to
be practical, it must be able to truthfully report the result
of its static and dynamic composition, internal execution or
function and status of its resources (e.g., registers, memory
usage, etc.). Although the industry has defined several
attestation solutions (e.g., FIDO key attestation, see Jones,
2015; Android key attestation, see Android, 2019; Microsoft
TPM key attestation, see Microsoft, 2017; Intel SGX, see Anati
et al., 2013), they do not consider its role in establishing a
DTCB. For DTCB establishment, the group of TCB nodes
must cooperatively verify potential DTCBmember nodes’ TCB
trust properties are aligned with vetted DTCB policies.

4.2. Possible Group-Oriented Features
Based on the above three technical-trust properties, there are
a number of possible features that maybe achieved using the
above properties:

• Anonymous GroupMembership: Following from property DP1
above, the use of hardware to implement the three technical-
trust properties allows a node to employ (reveal) different
degrees of device-identification and ownership-identification,
depending on the type of blockchain network it is participating
in. For example, in the case of permissionless networks where
the anonymity of nodes is desirable, a node may use verifiable
anonymous identities (see Camenisch and Van Herreweghen,
2002; Hardjono and Smith, 2016) to prove it is a legitimate
member of the network without revealing which member
it is.

In strongly permissioned blockchain systems, a node could
reveal the manufacturing details of all its hardware, firmware,
and software to an authorized verifier in order to prove that
the node complies to the minimal operational requirement of
the permissioned blockchain infrastructure.

• Group Reporting: Following from property DP1 above, a
group of DTCB nodes can employ a group-oriented quote
protocol as a counterpart of the single hardware quote protocol
(see Trusted Computing Group, 2003a). Among others, the
group-quote protocol could require each participating node
to perform some internal secret computation, and report its
result using the traditional quote protocol to other members
of the group. A group-shared secret key could additionally be
deployed to protect the transmission of each quote result.

Another more general use of group-reporting is for a
group of nodes to report (to each other) their respective
system manifests, namely a cryptographically signed list of its
hardware, firmware and software installed (for example, see
the TCG signed manifest in Hardjono and Smith, 2006). This
is crucial in cases where nodes are operating different versions
of hardware and software (e.g., version of mining software),
and where a given version of a software may be known to
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possess bugs and/or susceptible to malware attacks which may
dramatically impact the blockchain as a whole.

• Group Computation Participation: The ability for a node to
truthfully report (prove) its internal hardware status (e.g.,
registers) allows the nodes to prove that it actively participated
a given group-consensus computation.

New consensus computation algorithms could be designed which
would embed anonymous-verifiable identification of a given
node as a precondition for the successful outcome of that node’s
proof-of-work (PoW). Similarly, a confirmation broadcasted by a
node could require that the node also anonymously attach proof
of its DTCB-capabilities.

In the next section we discuss the use of DTCBs in virtualized
cloud environments, motivated by the fact that parts of the
blockchain infrastructure (e.g., mining nodes) may operate
in a hosted environment—which faces a number of security
challenges in itself.

5. HARDWARE ROOTED TCBS IN
VIRTUALIZED CLOUD ENVIRONMENTS

This section describes common hosting environments for
containers, another form of distributed system popular among
cloud and network edge service provider networks. It further
illustrates techniques for dynamic establishment of TCB
cryptographic identities and TCB layering. When correctly
applied, container environments can be formed with a hardware
rooted TCB otherwise known as a hardware root of trust (RoT).
Hardware RoT is an essential ingredient in the formation of a
decentralized TCB.

A few typical deployment models consist of decentralized
compute (aka containers) with centralized orchestration
(Figure 2). A more sophisticated model has decentralized,
but federated orchestration with decentralized pools of
containers (Figure 3). Still a third model employs Function-as-
a-Service (FaaS) to decompose workloads into their functional
components, where function execution is distributed across
multiple function provider nodes. Application execution
and workflow logic encapsulates “orchestration” resulting
in decentralized orchestration with decentralized function
execution (Figure 4).

Multi-tenancy is a security challenge facing all deployment
models. Client workloads are presumed to bemutually suspicious
and therefore at risk for digital espionage from among the tenant
community. PaaS, FaaS, and orchestration hosting environments
are expected to provide appropriate tenant isolation to counter
potential attacks.

Additionally, network-based attackers could pose man-in-
the-middle threats that require end-to-end confidentiality and
integrity protection of workload payloads as they propagate
among the various stations. Multi-tenant isolation and end-to-
end cryptography technologies must be effectively used to ensure
comprehensive security. Although these security capabilities
alone are not enough to ensure reliable operations.

PaaS servers may advertise container pools having
equivalent workload hosting capabilities, but they may

indeed differ. Proof of algorithm equivalency is a desirable
property when interchangeable function and workload hosting
environments exist. Ideally, a scheduling routine should check
function equivalence as a precondition of committing the
execution resource.

Federated orchestration may require distributed consensus
at the orchestration level. Workload scheduling involves
management of task queues where tasks may complete early, late,
or on time. Delivering task results incurs latency from server
to client and may require temporary caching due to availability
of both. Task statistics inform regarding resource utilization
and performance optimization. They are also essential to SLA
compliance, accounting, and billing processing. Decentralized
ledger technology can be used to track task scheduling statistics
so that servers accurately report resource utilizations countering
potential accounting and billing fraud. Federated orchestrators
can more conveniently avoid workload server oversubscriptions
using blockchain to track task queue status.

Decentralized orchestration using Service Level Agreements
(SLA) that describe compensation for performing the algorithm
can prove all parties stake is resolved equitably according to the
SLA contract. In a truly decentralized FaaS system, workload
decomposition, and workload scheduling are themselves
functions to be processed by the FaaS fabric. SLA compliance
checking could involve collection, processing and verification
of multiple auditing and accounting logs spread across dozens
or even thousands of compute nodes in a FaaS fabric. Any
one system failing to keep accurate logs potentially disrupts
processing across the entire FaaS system. Blockchain proof
of stake algorithms ensures audit and accounting logging
is performed with redundancy and guards against isolated
cheating. SLAs describing compensation for performing the task
can prove all parties’ stake is resolved equitably according to the
SLA contracts.

Multi-tenancy, task isolation and end-to-end
cryptographically protected workloads, SLAs, accounting,
and telemetry data motivate application of trusted computing
principles across Edge and Cloud computing infrastructures.
The cryptographic identities of the various nodes and their roles
need to resist impersonation attack. Cryptographic keys that
protect the confidentiality and integrity of the data need to resist
attacks while in flight and while cached or stored. Function
executions need to resist attacks on code while it executes.
To achieve these goals, it is essential that the nodes involved
in the decentralized Edge and Cloud computing enterprise
assess trustworthiness properties before placing data, code,
and resources at risk. Attestation procedures applied when
computing resources are placed into operation and periodically
during use ensures expected operational integrity characteristics
are in place as a pre-requisite to decentralized application
executions. The DTCB is primarily tasked with establishment of
trustworthiness pre-requisites.

5.1. TCB Layering
DTCB trustworthiness can be understood in terms of its
roots-of-trust components and its methodology for TCB
layering and update. The Trusted Computing Group has
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FIGURE 2 | Centralized orchestration of container pools.

FIGURE 3 | Federated orchestration of container pools.

FIGURE 4 | Decentralized orchestration with decentralized FaaS.

defined Device Identity Composition Engine (DICE)—
see Trusted Computing Group, 2016—which is a trusted
hardware building block for generating cryptographic device
identities and attestation using the identities. The hardware
implementing DICE is the first layer of a layered TCB
architecture. Subsequent TCB layers can be dynamically
added or removed to fallback to a trusted state. TCB
layers may be added during manufacturing and later at or
during deployment.

The Layered TCB (LTCB) approach seeks to identify the
most essential trusted computing components implementable
in hardware and whose implementation is verifiably correct.
Techniques for dynamic TCB layering are also a consideration
for LTCB design.

The following are some considerations for TCB layering:

• Hardware Root of Trust (ROT): The base layer capabilities

are trusted and implemented in hardware. That is to say
they are immutable or that mutability is highly constrained.

For example, programmable integrated fuses may be set

during manufacturing but remain immutable subsequently.

Algorithms for computing cryptographic one-way functions,
key derivation and key generation functions can have
immutable hardware implementations. Circuit power-on
and bootstrapping control logic can be immutable. Other
TCB logic may be mutable but only under well-defined
conditions. For example, a CPU micro-code may be patched
post manufacture.
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• TCB Layer Identity: Subsequent layered TCB environment is
unambiguously distinguishable. For example, the product ID
of an Intel Core processor with virtualization identifies an
environment where a CPU mode switch causes a hypervisor
to execute in VMX Root. The microcode patch level or
SVN further distinguishes the TCB layer. Many Intel CPUs
have a monotonically increasing Security Version Number
(SVN) that changes whenever a security relevant change
is made to micro-code. The loaded hypervisor image also
distinguishes the TCB layer. Collectively these attributes
identify a hypervisor-based TCB. However, it does not
disambiguate instances of the same TCB. It may be necessary
to establish a cryptographic identity for a TCB layer for
on-boarding, resource management, auditing, accounting,
and telemetry.

• Inspect-ability of Next Layer Software: Because TCB identity
can be a function of the software that is dynamically loaded,
the current layer TCB must be able to inspect the next layer
software. Inspection may simply be to compute a hash value
for computation of a TCB identity or may involve more
rigorous proofs of integrity and expected behavior.

• Layer Sequencing: Depending on the design of the hardware
ROT, layering sequence may be relevant. For example, the
current layer TCB may exclusively depend on the most recent
layer for all of its trusted capabilities. Other architectures
may allow subsequent TCB layers direct access to the
hardware ROT.

• Layer Attestation: TCB layers may provide security
functionality that is unique to a platform or system.
These interactions patterns do not necessarily follow layer
sequencing patters. Therefore, it may be appropriate to
precede inter-layer interactions with layer attestations to
establish a layer’s trustworthiness profile. Layer attestation
primitives also support construction of DTCB as will be
discussed later.

5.2. Examples of TCB Layering
This section discusses several examples of TCB layering
architectures. The first (Figure 5) highlights a DICE architecture
consisting of hardware (Layer −1) containing two trusted
capabilities: (i) the Unique Device Secret (UDS) and (ii)
Compound Device Identifier (CDI) function.

The Unique Device Secret (UDS) is a one-time programmable
globally unique value. Its only use is to seed a Compound Device
Identifier (CDI) function that, combined with an First Mutable
Code (FMC) value, generates a symmetric secret that is specific
to the layer that provided the FMC. The FMC combined with
Layer 0 product ID information identifies the Layer 0 TCB. The
CDI function is a one-way function that uses the UDS to produce
a keyed hash of the FMC called the CDI. The CDI uniquely
identifies the Layer 0 TCB.

The CDI is securely installed into the Layer 0 environment
where it serves two purposes: (i) to seed a one-way function for
creating a Layer 1 symmetric secret, and (ii) to seed a device
identity generation function. For example, f ()DEVID could be
an RSA key generation function where CDI is used to seed its
random number generator. The DeviceIDL0 is an asymmetric

FIGURE 5 | Trusted computing group—Device Identity Composition Engine

(DICE) layered TCB architecture.

unique Layer 0 identifier that may be suitable for a variety of user
defined deployment usages.

The Layer 1 TCB is identified using the Firmware Security
Descriptor (FSD) which is the firmware hash component of the
one-way function [i.e., f ()OWF] found in the Layer 0 TCB that
computes the Layer 1 symmetric secret used to seed the f ()ALIAS
function that generates AliasIDL1 that uniquely identifies the
Layer 1 TCB.

A generalization of the DICE architecture layering (Figure 6)
can be inferred following the naming convention where the Layer
0 TCB identity is known as the Current TCB Context (CTC)
and the Layer 0 unique TCB identity is known as the Previous
TCB Context (PTC) because it captures Layer −1 TCB layering
dependency. Although the hardware (Layer −1) TCB does not
have a previous layer dependency, the UDS provides uniqueness.
Optionally, the one-way function could accept a Layer −1 TCB
identity value CTCL−1 [though not described in the specification
from the Trusted Computing Group (2016)].

Subsequent layers each rely on its respective previous TCB
layer to provide a one-way function that inspects the current (to
be instantiated) layer CTCLn and the unique PTCLn−1 identifier
to produce the current layer’s unique identifier PTCLn . The
PTC value propagates both the platform uniqueness property
(inherited from the UDS), layer uniqueness (UDS + CTC) and
layer sequence property; which is the combination of all prior
f ()OWF functions.

A third example (Figure 7) shows Intel SGX layered TCB
architecture. In this architecture each layer has access to the Layer
−1 TCB. The Layer−1 TCB is identified using the CPU product
ID and CPU SVN values. A UDS provides platform uniqueness.
The one-way function is always performed by a hardware RoT
in Layer−1.
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FIGURE 6 | A generalized Device Identity Composition Engine (DICE) layering architecture.

FIGURE 7 | Intel SGX layered TCB architecture.

SGX layers have more flexibility (than the generalized
DICE TCB layering) in that the PTC computation does not
require inclusion of the Layer −1 UDS and CTC. However,
the Layer −1 TCB supplies a local attestation capability that
allows any enclave environment the ability to assess layering
semantics. If layer sequence semantics are important to a user
deployment, the expected layering can be created. Expected
layering semantics can be verified using a combination of local
and remote attestation.

Given a user deployment focus on trustworthy Edge and
Cloud computing, use of trusted computing techniques that
include hardware RoT and TCB layering play a vital role.
Container environments may have widely varied trust properties.
As Edge and Cloud ecosystems become more democratized
and complex, reliance on distributed trust becomes essential.

Attestation is a mechanism whereby verifiers, presumable the
entity fulfilling an SLA contract and the user community they
represent, seek to manage risk associated with automation
complexity and ecosystem diversity.

By incorporating principles of trusted computing into
a decentralized TCB layer, many of the challenges facing
application developers seeking predictable deployment in
Edge and Cloud environments can be modularized for
ubiquitous availability and relied upon for consistent trusted
computing behavior.

6. USE-CASE: GATEWAYS FOR
BLOCKCHAIN INTEROPERABILITY

Given the history of the development of the Internet and
of computer networks in general (e.g., LANs, WANs), it is
unlikely that the world will settle on one global blockchain
system operating universally. The emerging picture will most
likely consist of “islands” of blockchain systems, which—
like autonomous systems that make-up the Internet—must
be “stitched” together in some fashion to make a coherent
unity. Similar to packets of messages traversing different
paths through the stitched islands of the Internet, blockchain
transactions must be free to traverse the stitched islands of
blockchain systems. This freedom of transactions to traverse
or move across blockchain systems is not only needed to
prevent “asset lock-in” to a given platform, but it is crucial
from the point of view survivability of these systems as
a whole.

Following from the first fundamental goal of the Internet
architecture, the lesson learned there was that interoperability is
key to survivability. Thus, interoperability is core to the entire
value-proposition of blockchain technology. Interoperability
across blockchain systems must be a requirement—both at the
mechanical level and at the value level—if blockchain systems and
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technologies are to become the fundamental infrastructure of the
future global commerce (see Lipton and Pentland, 2018; Lipton
et al., 2018).

In this section we discuss the use of the DTCB for the
purpose of addressing some of the security challenges pertaining
to blockchain gateways—a notion put forward by Hardjono et al.
(2019) as a counterpart to routing gateways (e.g., BGP Routers)
in the Internet.

Blockchain gateways provides a number of potential benefits,
notably in use-cases involving the transferal of assets across
different blockchain systems:

• Better control over ledger visibility: The first potential benefit
of gateways in the context of blockchain interoperability
is to provide manageable control over the visibility (i.e.,
read access) of data residing on the ledger within a given
private/permissioned blockchain system. The visibility of local
ledger data is particularly relevant for inter-domain (cross
blockchain) transactions, in cases where one or both of the
blockchain systems are private and where the ledger data
is confidential.

• Trust establishment across distinct blockchain systems: The
second potential benefit of gateways in the context of
blockchain interoperability is to support the establishment
of trust (i.e., technical-trust) across blockchain autonomous
systems. This need for inter-domain trust establishment
maybe necessary for scenarios involving high value
transactions. Although trust establishment is traditionally
performed between two devices, there may be use-cases that
require multiple gateways in one system to simultaneously
establish group-oriented trust with multiple gateways in
another blockchain system.

• Peering-points for service contracts: The third potential benefit
of gateways in the context of blockchain interoperability is
to serve as the peering-points that are recognized (called
out) within peering agreements or contracts. Similar to
peering agreements between ISPs in Internet routing, new
kinds of peering agreements will need to be developed
for blockchain system interoperability in order that these
independent systems can interconnect in a secure and
reliable fashion.

There are several positive benefits of employing the DTCBmodel
for blockchain gateways:

• Provide higher assurance to nodes participating in consensus
protocols: Augment the nodes to employ TCB-related
technologies to allow them not only to operate in a provable
trustworthy manner but also to allow them to convey this trust
in some meaningful way to external entities (e.g., to other peer
nodes, and to wallet systems at the end-users).

• Provide foundations for TCB-capable nodes to dynamically
become Gateways: In order for distinct blockchain systems
to interoperate with each other to achieve service scale
(e.g., for upper layer applications), some (or all) nodes in
one blockchain system must be able to act as gateways to
interact with their corresponding gateways in a different
blockchain system.

• Trust establishment across different blockchain systems using
ROT: Employ the properties P1 to P4, DP1 and DP2 (see
section 4.1) to establish trust between two peer gateways, and
between two groups of gateways (multi-gateways).

Similar to IP packet routing autonomous systems, a blockchain
autonomous system may consists of numerous nodes that
make up the P2P network (Figure 8A). Some of these nodes
we designate as gateways for the purpose of blockchain
interoperability (Figure 8B). Independent of whether the
blockchain is permissionless or permissioned, a number of nodes
(or all of the nodes) in the P2P network must have the capability
to handle transactions that involve foreign blockchain systems.

Ideally, a node could be a “member” of two (or more)
blockchain autonomous systems. In this case, the node would act
as a “bridge” between the two blockchain autonomous systems
(see Figure 8C). Although this bridge model has its own security
challenges, in general we cannot assume that such a node will
exist for all blockchain autonomous systems configurations.

As such, we assume here that the most realistic deployment
configuration—considering private/permissioned blockchains—
is for two gateways to interact, where each gateway represents
its “home” blockchain system. This is akin to two BGP routers
in the Internet belonging to two ISPs respectively, where the
BGP routers are peered in order for them to exchange route
advertisements. Figure 8D illustrates the situation in which
two nodes G1 and G2 are acting as gateways between two
corresponding blockchain autonomous systems BC1 and BC2.

6.1. Blockchain Autonomous Systems
Similar to a routing autonomous system (routing AS) being
composed of one or more routing domains, we propose viewing
a blockchain system as an autonomous system (blockchain AS).

Thus, just as routers in a routing-domain operate one or more
routing protocols to achieve best routes through that domain,
nodes in a blockchain AS contribute to maintaining a shared
ledger by running one or more ledger management protocols (e.g.,
consensus algorithms, membership management) to achieve
stability and fast convergence (i.e., confirmation throughput)
of the ledger in that AS. The division also maps readily into
permissioned and permissionless/public blockchains, where each
type of community (and each instance) could be viewed as a
separate blockchain AS.

Nodes could therefore be classified from the perspective of
ledger management as operating either intra-domain or inter-
domain (across autonomous systems):

• Intra-domain nodes: These are nodes and other entities whose
main task is maintaining ledger information and conducting
transactions within one blockchain AS. Examples includes
nodes which participate in consensus computations (e.g., full
mining nodes in Bitcoin), nodes that “orchestrate” consensus
computations (e.g., Orderers and Endorsers in Hyperledger
Fabric, see Androulaki et al., 2018), and nodes which perform
validations only (e.g., Validators in Ripple, see Schwartz et al.,
2014).

• Inter-domain gateways: These are nodes and other entities
whose main task is dealing with transactions involving
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FIGURE 8 | Illustration of (A) blockchain nodes in P2P network; (B) Some nodes as Gateways; (C) Node G1 acting as a Bridge; (D) Nodes G1 and G2 as Gateways.

different blockchain autonomous systems. We refer to these
nodes as inter-domain gateways (or simply “gateways”).

Nodes which are gateways must implement very stringent
security requirements because they interact with other gateways
belonging to different blockchain autonomous systems, and thus
different administrative jurisdictions, and potentially different
legal jurisdictions.

6.2. Gateways Between Blockchain
Systems
To illustrate, we sketch a simple example shown in Figure 9

in which an asset recorded in the shared ledger in BC1 is to

be transferred to blockchain system BC2. In Figure 9, a user

U1 with Application A has his or her asset ownership (e.g.,
land title deed) recorded on the shared-ledger inside blockchain
BC1. The user U1 wishes to transfer legal ownership of the
asset to a different user U2 running Application B, and to have
the asset recoded authoritatively on the shared-ledger inside
blockchain BC2. We assume both BC1 and BC2 are private/
permissioned systems.

In this scenario, the set of gateways in blockchain system BC1
have agreed to allow G1 to “speak on behalf” of BC1. That is,

they have delegated authority to a single gateway G1. Similarly,
G2 has been delegated authority to speak on behalf of blockchain
system BC2.

The sketch is as follows (Figure 9):

1. The user U1 of Application A initiates the transfer to
user U2 running Application B. This consists of the user
U1 transmitting a new (inter-domain) transaction within
blockchain system BC1, addressed to user U2 whose identity
(public-key) is present in BC2. Since the destination of
this transaction is a public-key located outside BC1 (e.g.,
BC2/PubKeyU2), this transaction can only be processed
by nodes in BC1 that have the capability of being a
gateway (namely G1).

2. Gateway G1 notices the pending (unprocessed) transaction
destined for a foreign blockchain BC2. Gateway G1 begins
trust establishment with gateway G2 in blockchain
system BC2. Because blockchain system BC1 is a
private/permissioned system, data in its ledger is not
visible from outside the blockchain. As such, gateway G1 has
to create a new public transaction-identifier TxID1 for the
asset that masks the original transaction-identifier recorded
on the private shared ledger in BC1. That is, G1 has to “mask”
the original transaction-identifier.
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FIGURE 9 | Transactions crossing blockchain autonomous systems.

3. After pairwise technical-trust has been established between
gateways G1 and G2, the gateway G2 proceeds to introduce a
new registration-transaction for the asset into the local ledger
of blockchain systems BC2. This act is essentially “registering”
the soon-to-arrive asset in the shared ledger of BC2. This asset
is “locked” (e.g., using 2-Phase Commit or similar construct)
by G2 until G1 settles the transaction in BC1. While this asset
is in locked status in BC2, user U2 is prevented from making
use of the asset.

4. After a confirmation has been achieved in the ledger of BC2,
the gateway G2 performs two things. First, it creates new
public transaction-identifier TxID2 that masks the private
transaction-identifier of the asset in BC2; (ii) Secondly, G2
issues a signed assertion to G1 to the effect that the asset
labeled TxID2 has been recognized and temporarily registered
in the ledger of BC2.

5. Upon receiving the signed assertion from G2, the gateway G1
proceeds to introduce an “invalidation” transaction into the
ledger of BC1. In effect, this invalidation transaction marks
in the ledger in BC1 that the asset no longer resides in BC1.
The invalidation transaction in BC1 records both TxID1 and
TxID2 for future redirections. This allows for future queriers
looking for TxID1 to be redirected to BC2 to obtain TxID2.

6. After the invalidation-transaction is confirmed on the ledger
of BC1, the gateway G1 issues a signed assertion (to G2)
stating that local invalidation-transaction has been confirmed
on BC1. The signed assertion uses the TxID1 and TxID2
identifiers, which are public transaction identifiers (not the
private identifiers inside BC1 and BC2, respectively).

7. Upon receiving the signed assertion from G1, the gateway G2
releases the lock on the asset in the ledger of BC1, thereby
allowing its new owner U2 to use the asset.

Several variations of the above example can be devised,
improving the efficiency of the messages and transaction
throughput. The goal of this example, however, is to illustrate
(i) the crucial role that gateways G1 and G2 play in cross-AS
transactions; (ii) the relevance of the DTCB model in securing
G1 and G2; and (iii) the potential use of the DTCB model

FIGURE 10 | Group-oriented features of the DTCB for gateways.

in supporting group-oriented computations that makes use of
several gateways in BC1 simultaneously for increased resiliency
(in contrast to the example using one gateway G1 only).

6.3. Applications of Features of the DTCB
for Gateways and Multi-Gateways
In section 4.1, we discussed a number of properties that
support the decentralized TCB model. In this section we briefly
review the application of those properties to the blockchain
gateways use-case.

As mentioned above, gateways in Internet routing play
an important role for connecting two or more routing
autonomous systems, allowing both route-advertisements and
datagrams to flow through the network. Blockchain gateways,
however, have the additional task of acting on behalf of
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its blockchain autonomous system in cases of value-carrying
transaction that are inter-domain. This notion of “acting on
behalf” of a blockchain autonomous system introduces several
interesting challenges in both permissionless and permissioned
blockchains (Figure 10):

• Proving DTCB properties by a Gateway locally: In scenarios
where the P2P network of nodes consists of a mix of DTCB-
capable nodes and non-DTCB nodes, the ability to make
use of truthful attestations (Property DP2) allows DTCB-
capable nodes to be distinguished (from non-DTCB nodes) as
potential gateways.

• Dynamic establishment of Multi-Gateways: A given blockchain
autonomous system may operate on the basis of the
identification and selection of DTCB-capable nodes as a group
gateways or multi-gateways. A multi-gateway is a group of
DTCB-capable gateways that must act in unity. All actions to
be taken by any member of the group must be based on some
group-computation.

• Matching DTCB properties between gateways in different
blockchain autonomous systems: As part of technical-trust
negotiation and establishment between gateways G1 in BC1
and gateway G2 in BC2 (see Figure 9), G1 and G2 must
validate each other’s DTCB properties. This may include
mutually validating all of the roots of trust in properties P1,
P2, and P3 in each gateway.

• Proving execution of consensus algorithm under shielded
processing: The property P2 (see section 4.1) allows DTCB-
capable nodes to (i) safely execute consensus algorithms (and
other related computations), and (ii) to prove that these
algorithms were executed under shielding.

• Majority gateway consensus for sensitive transactions:
The set of DTCB-capable gateways may collectively
implement governance rules that require sensitive inter-
domain transactions to be “approved by” the majority
of these gateways. That is, gateways may become a
subcommunity of nodes, whosemajority quorum is needed for
inter-domain transactions.

• Proving membership to gateways subcommunity: Depending
on the specific implementation of properties P3 and DP1 (see
section 4.1), a gateway can prove (a) that it is a DTCB-capable
node and (b) that it belongs to the gateways subcommunity.
This feature maybe useful in the first stages of gateway-to-
gateway trust negotiations, where an honest gateway is not able
to know if its opposite gateway is truly DTCB-capable and that
is has been authorized to act as a gateway by virtue of being a
member of the subcommunity.

• Gateway initial anonymity to external parties: Being a fully
fledged node on the blockchain network, a gateway must
always be in a reachable state either through a well-known
IP connection or through its public-key which can be
found on the blockchain ledger. However, in some cases
nodes may wish to initially hide the fact that it is DTCB-
capable and appear to be a plain non-DTCB node. This
feature may help in reducing possible DDOS attacks on
gateways who are members of the gateways-subcommunity.
In such DDOS attacks the goal of the attacker (i.e.,

fake non-DTCB machines) may simply be to exhaust the
resources of legitimate gateways through opening numerous
fake handshakes.

• DTCB manifest as condition for peering agreements: For
peering between two permissioned/private blockchain
autonomous systems, a manifest of the list of the
minimal set of hardware and software for DTCB-
capable nodes provides a way for organizations to
build Service Level Agreements (SLAs) based on
measurable technical-trust. Property DP2 ensures
that a DTCB-capable node can truthfully report its
manifest to an external entity as part of satisfying the
peering agreement.

• DTCB-assisted multi-party computation: A set of
DTCB-capable gateways can collectively use properties
P1, P2, and DP2 to jointly perform a given multi-
party computation (MPC) (see Lindell, 2003). For
example, a given MPC computation maybe designed
to yield a common cryptographic key KBC1,BC2

shared between two opposing groups of gateways
(e.g., one group in BC1 and the other in BC2).
This would allow any gateways in BC1 holding key
KBC1,BC2 to begin interacting with any gateway in BC2
holding the same key.

6.4. Blockchain Nodes, Gateways, and
Privacy
One issue in using hardware with cryptographic capability, such
as the TPM, for implementing some features of blockchain
gateways is the potential impact on privacy. For example, in the
case of the TPM hardware the key used by a TPM to sign its
attestations could be used by an external entity to correlate across
different circumstances of usage of these attestations. This in turn
could be used to track the platform containing that TPM.

In order to address this potential problem, the Trusted
Computing Group (TCG) adopted the Direct Anonymous
Attestations (DAA) approach based on the work of Camenisch
and Lysyanskaya (2002), Brickell et al. (2004), and Brickell and
Li (2012). Generally, the purpose of the DAA scheme is to allow

the TPM to issue attestations directly (e.g., to a verifying entity)

without the need of a trusted third party, such as a privacy-
supporting certification authority (called the Privacy CA). The

goal is also to prevent the correlation or linking of keys across

different usage instances. The DAA was thus included in the

TPM v1.2 specifications, and it has been carried over more
recently into the TPM v2.0 specifications. Efforts are continuing
to improve the DAA capabilities of the TPM (e.g., see Camenisch
et al., 2016).

7. CONCLUSION AND FURTHER
CONSIDERATIONS

Although there has been significant interest and media attention
given to the area of blockchain technology, there remains a
number of open issues that needs to be addressed. These
range from the problem of the concentration of hash-power,
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anonymity of entities, lack of good key management, to the lack
of measurable technical-trust required for business agreements
and SLAs. As such, there is a strong need for these issues to be
addressed before the blockchain technology can become the basis
for the future global financial infrastructure.

We believe that a decentralized TCB model is the appropriate
technological foundation for providing technical-trust for the
blockchain infrastructure. This includes the hardening of
individual nodes and systems in the blockchain infrastructure,
to providing support for secure group-oriented computations—
including consensus algorithms and multi-party computations—
for nodes that make-up a blockchain system. This paper devoted
considerable attention to the virtualized cloud environments
because it is likely that much of the future blockchain
infrastructure may operate in cloud environments.

Finally, we discussed the role of gateways in blockchain
autonomous systems as the modern counterpart of routing
autonomous systems. Aside from providing controlled visibility
over data recorded in the shared ledger of private/permissioned
blockchains, gateways are needed for the interoperability
of independent blockchain systems. We believe that the
decentralized TCB model provides the basis for developing
solutions that support gateways in establishing technical-trust
with each other. The ability to express security quality in some
measure based on the DTCB allows blockchain infrastructure
owners and operators to develop a common legal framework

for establishing peering connectivity, and therefore scale. This
is how the Internet and IP routing evolved over the past three
decades, and we believe this is how the blockchain infrastructure
will also evolve.
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