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Abstract:   

Because collecting precise and accurate chemistry data is often challenging, chemistry datasets usually 

only span a small region of chemical space, which limits the performance and the scope of applicability 

of data-driven models.  To address this issue, we integrated an active learning machine with automatic 

ab initio calculations to form a self-evolving model that can continuously adapt to new species appointed 

by the users.  In the present work, we demonstrate the self-evolving concept by modeling the formation 

enthalpies of stable closed-shell polycyclic species calculated at the B3LYP/6-31G(2df,p) level of theory.  

By combining a molecular graph convolutional neural network with a dropout training strategy, the 

model we developed can predict DFT enthalpies for a broad range of polycyclic species and assess the 

quality of each predicted value.  For the species which the current model is uncertain about, the automatic 

ab initio calculations provide additional training data to improve the performance of the model.  For a 

test set composed of 2,858 cyclic and polycyclic hydrocarbons and oxygenates, the enthalpies predicted 

by the model agree with the reference DFT values with a root-mean-square error of 2.62 kcal/mol.  We 

found that a model originally trained on hydrocarbons and oxygenates can broaden its prediction 

coverage to nitrogen-containing species via an active learning process, suggesting that the continuous 

learning strategy is not only able to improve the model accuracy but is also capable of expanding the 

predictive capacity of a model to unseen species domains. 

 

  



3 

 

Introduction: 

Although recent advances in the field of ab initio quantum chemistry methods have facilitated 

quantitative understanding of challenging chemical problems1–5 and accurate calculations of molecular 

thermochemistry,6–16 large-scale theoretical studies are often still limited, at least initially, to the use of 

empirical methods to rapidly screen out unimportant species, so that only the important species are the 

subject of CPU-time intensive quantum chemistry calculations.  Among the empirical methods developed 

in the past decades, the Benson group additivity scheme17 is one of the quickest and most convenient 

methods to determine thermodynamic properties of molecules without requiring 3D molecular structures.  

It has achieved great success for accurate prediction of thermochemistry of simple molecules and has 

been adopted in modeling software for on-the-fly prediction of thermodynamic parameters.18  However, 

the performance and the scope of applicability of an empirical model are often limited by the coverage 

of the chemistry dataset employed when the model was developed.  For example, because the additivity 

scheme was designed for simple organic species, it only uses the properties of individual chemical groups 

independently to calculate the composite property for a molecule, and thus the contribution of the overall 

molecular structure to the property is usually not taken into account.17,19,20  This problem manifests itself 

for strained structures and can cause significant errors for polycyclic molecules with fused rings.21  

Therefore, application of the additivity method is often restricted to simple chemical systems without the 

presence of polycyclic species. 

It is not an easy task to develop correction schemes for the additivity method to accurately 

estimate thermochemistry of polycyclic species.  The major challenge is that each ring cluster structure 

has its own specific ring correction and it is impossible to prepare a list of corrections for all polycyclic 

structures because the number of possible fused ring clusters is exceedingly large.  Han et al. developed 

two algorithms, similarity match and bicyclic decomposition, to ameliorate this problem.21  Ring strain 

corrections of small cyclic structures were calculated using ab initio methods and organized into a 
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functional group tree that can find similar matches for any new small cyclics in the similarity match 

approach.  The bicyclic decomposition algorithm can estimate large polycyclic ring strain corrections by 

decomposing them into smaller ones and adding up the contributions from the fragments.  By combining 

the bicyclic decomposition method with the similarity match approach, one can easily predict ring strains 

of highly complex polycyclic clusters using the pre-calculated ring strains of simple one-ring and two-

ring clusters.  This correction scheme successfully reduced the heat of formation error of polycyclic 

species calculated with the group additivity method from over 60 kcal/mol to about 5 kcal/mol.21   

However, since the underlying assumption of the bicyclic decomposition scheme is that the 

contributions of bicyclic ring strain are independent and additive, which is not always accurate, one needs 

to add more terms to describe the interactions between the decomposed bicyclics to further reduce the 

error.21  This is a tedious task because the number of corrections grows exponentially as higher order 

terms are included and one has to collect more thermodynamic data to determine the values of these 

higher order corrections.  In addition, some applications of the additivity scheme would require 

considering heteroatomic polycyclic species, which further increases the complexity of the model 

because the presence of heteroatoms will not only require defining additional groups but also new sets 

of ring strain corrections.  Therefore, even though the group additivity approach is very effective for 

estimating molecular thermochemistry of simple organic molecules, its prediction accuracy rapidly drops 

as the species of interest become more and more complicated.  

The inherent drawback of the additivity scheme is that the accuracy of the model is dependent on 

the groups (and ring corrections) chosen by humans.  If the list of groups does not cover all the important 

features of a molecule, e.g., heteroatoms or polycyclic structures, the additivity scheme is unlikely to 

perform well because the model does not have all the relevant information needed to make good 

predictions.  To address this problem, He et al. developed an automatic and adaptive distance-based 

group contribution method (DBGC) to avoid manual selection of groups.22 In DBGC, the intramolecular 
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interaction between two groups is described by an exponential decay function of the number of bonds 

between the interacting units. This method performs well for the cases where group interactions cannot 

be ignored, e.g., highly branched large hydrocarbons. However, DBGC does not explicitly take into 

account the contribution of global molecular structure, which is important for accurate prediction of 

thermochemistry of polycyclic species. Since the descriptors of additivity methods were defined to 

describe a specific chemistry dataset, the molecular structural information that can be perceived by the 

model is limited by the chemistry dataset considered when the model was developed.  Therefore, in 

addition to collecting new chemistry data, one often needs to redesign the architecture of the model, i.e., 

define new groups, interactions, or corrections to improve the performance and expand the scope of 

applicability of the additivity scheme.  This process is labor-intensive and time-consuming, and very 

challenging for non-experts.      

To resolve this problem, we adopt a machine learning model that is capable of directly learning 

structural information that is useful for thermochemistry predictions.23,24  Over the past ten years, several 

methods have been proposed including coulomb matrices,25 symmetry function transformations,26–28 

extended-connectivity fingerprints (ECFPs),29 and molecular graph convolutions,30,31 to transform 

molecules into a fixed-length representation that is suitable for conventional machine learning algorithms.  

In this work, we adopt the molecular graph convolution method, which has been shown to perform well 

on a broad range of applications.32  Therefore, unlike the additivity scheme that requires human input to 

define chemical groups, the model presented in this work simply uses the “2-D” connectivity structure 

of a molecule as the input and automatically extracts useful features from the structure to predict 

molecular properties.   

As pointed out by Simm and Reiher,33 to ensure accurate parameterization of a data-driven model, 

the training set needs to be representative for the system of interest.  However, since it is difficult to 

include every relevant molecular structure of a chemical system under consideration, one should consider 
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a continuous refinement scheme, in which new data are constantly added to the training set when 

necessary.33,34  Following this line of thought, we developed an ensemble approach to measure the quality 

of predicted thermochemistry by combining the idea of bootstrap sampling35 with dropout training in 

neural networks.36  Bootstrapping is a sampling method that has been shown to be reliable for 

determining systematic errors and estimating uncertainties.37  This feature enables identification of 

species for which the thermochemical properties are potentially associated with significant uncertainty 

as judged by the current model, and thus allows for strategic collection of new chemistry data to enhance 

the performance of the model.  Providing new training data for uncertain samples is known as an active 

learning strategy,38 and has been shown to be very effective for improving the accuracies of machine 

learning potential energy surfaces through the application of Gaussian processes34 or ensemble 

approaches.39,40 By combining the active learning scheme with automatic ab initio calculations, the 

machine learning model can effectively identify the species for which the predictions might be inaccurate 

and automatically derive thermodynamic data by initiating first principles calculations to improve the 

performance of the model.  In the present work, we demonstrate the “self-evolving” feature by modeling 

the formation enthalpies of polycyclic species derived from density functional theory (DFT).      

 

Methods: 

Thermochemistry estimator.  To ensure effective molecular feature extraction for the species 

of interest, we implemented a convolutional neural network that operates directly on graphs of arbitrary 

size and shape following the procedures proposed previously.23,24,31  As shown in Scheme 1, an input 

molecule of the molecular convolutional neural network is represented by a molecular matrix Ar=0 

composed of atomic feature vectors.  These feature vectors contain information of the local chemical 

environment of an atom, including atom types, hybridization types, valence structure, and the number of 

rings of each size containing the atom (see Text S1 and Table S1 in the Supporting Information for the 
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complete list of features we used).  The convolution process gradually merges information of distant 

atoms by combining feature vectors of connected atoms and the corresponding chemical bond 

information, which includes bond orders and aromaticity indicators, to generate the molecular matrices 

with a larger radius (Ar=1 and Ar=2) and the corresponding molecular fingerprints.  We note that the 

inclusion of bond order features does not significantly improve model accuracy, and hence such features 

could be removed to avoid complications when multiple resonance structures are possible.  The 

molecular fingerprints are then combined and passed to a standard neural network with one hidden layer 

to predict the property of the input molecule.  An expanded discussion of the model and an example of 

input molecular matrix can be found in the work of Coley et al.24 Interested readers are referred to the 

detailed description of the convolutional neural network algorithm documented in Section I of the 

Supporting Information of Coley et al.24 and the implementation of the model in our Github repository.41 

The major differences between our implementation and previous molecular graph convolution 

models23,24,31 are the inclusion of more detailed ring information in the initial molecular matrix (as 

described in Text S1) and the incorporation of dropout masks to generate ensemble predictions for 

measuring prediction quality, which will be discussed in detail in the following subsection.  

Ensemble predictions.  The neural network literature contains a large amount of work on 

uncertainty estimation based on parametric Bayesian inference.42,43  However, we estimate uncertainty 

differently, using a non-parametric ensemble approach motivated by bootstrap sampling.35 The bootstrap 

principle is to approximate a population distribution by a sample distribution.  In its most common form, 

bootstrap generates k sets of samples 𝐷0…𝐷𝑘 from a given data set D by resampling uniformly with 

replacement.35  Each bootstrap data set 𝐷𝑖 is expected to have a fraction of the unique samples of D and 

the rest being duplicates.  If the original data set is a good approximation of the population of interest, 

one can derive the sampling distribution of a particular statistic from the collection of its values arising 

from the k data sets generated by bootstrapping.35  Similarly, one can train a committee of k models using 
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the bootstrap data sets and derive ensemble predictions, which is known as bagging or bootstrap 

aggregating.44  Since the diversity of the predictions reflects the quality of the models, one can use the 

standard deviation of the predictions (ensemble spread) to estimate the potential benefits of obtaining 

new training data to improve the model prediction for a given query.  

In this work, the ensemble models were implemented using dropout training with neural networks.  

That is, instead of building multiple models, we trained one single neural network with multiple dropout 

masks.  Recent work of Gal and Ghahramani shows that one can approximate Bayesian inference using 

dropout training in neural networks.43  However, unlike the framework developed by Gal and 

Ghahramani and the standard dropout procedure in which the mask is generated randomly during each 

iteration of training, we randomly generated a set of masks before training and saved them along with 

the weights of the network as part of the model.  Since applying dropout masks removes non-output units 

from a fully-connected network,36 a standard neural net with k dropout masks can be viewed as a 

collection of k sub-networks that share weights.  For each training step, one of the sub-networks was 

randomly selected and optimized with one example (mini-batch of size one).  Therefore, each of the sub-

networks is expected to see some duplicated examples and only a fraction of the training data just as 

training ensemble models with bootstrap data sets.  The ensemble prediction and ensemble spread were 

derived by averaging and calculating the standard deviation of the sub-network outputs. Our code for 

training the ensemble model with a graph convolutional neural network is available online.41  

Reference Data Sets.  The enthalpies of 29,474 cyclic and polycyclic hydrocarbons and 

oxygenates were used to train and test the model.  The ratio between the numbers of training and testing 

examples was 4:1.  A data set consisting of 39,981 nitrogen-containing cyclic and polycyclic molecules 

was used to examine the self-learning process, the details of which can be found in the subsection entitled 

Active Learning Process.  All of the data were calculated at the B3LYP/6-31G(2df,p) level of theory 

using the rigid rotor-harmonic oscillator approximation (RRHO) and were extracted from the work of 
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Ramakrishnan et al45 unless noted otherwise (see Text S2 in Supporting Information for detailed 

descriptions of how the enthalpies were calculated).  

Since the reference data were calculated at the B3LYP/6-31G(2df,p) level of theory, the 

enthalpies predicted by the models are the DFT values instead of the (unknown) true enthalpies.  The 

errors reported below only reflect the performance of the neural network in modeling DFT results and 

should not be interpreted as the accuracy of predicting true enthalpies, because the DFT calculations are 

themselves associated with errors.33,46–48  For the same reason, the spreads of ensemble predictions 

represent the expected model departures from the reference DFT values instead of the true enthalpies. A 

detailed discussion of the errors associated with the B3LYP/6-31G(2df,p) data and their influence on the 

performance of the machine learning model can be found the subsection entitled Comparisons with High 

Level of Theory and Group Additivity method.   

Generation of New Data.  We also designed and implemented an automatic quantum mechanical 

calculation package to continuously provide training data for future improvements of the 

thermochemistry estimator.  Similar to previous work such as Chemoton49 and PACT50, this package 

uses RDKit51 to generate initial 3-D geometries for given molecules and calls the quantum chemistry 

software Q-Chem52 to conduct geometry optimization, frequency, and single point calculations at various 

levels of theory.  The automatically generated quantum chemistry data were calculated at the B3LYP/6-

31G(2df,p) level of theory using the RRHO approximation in order to be consistent with the data 

extracted from the work of Ramakrishnan et al.45  Q-Chem’s default settings for convergence tolerances 

were used for all the calculations.  The package automatically parses the output files of quantum 

mechanical calculations and stores the processed data in a non-relational database under the framework 

of MongoDB.53  Features such as communicating with the system scheduler to monitor job status and 

analyzing convergence failure are implemented in the package to handle large scale quantum mechanical 

calculations.  Advanced functionalities for accurate thermochemistry calculations such as sampling 
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conformers and rotors are work in progress and are not included in the present work.  The prototype of 

this package can be found in our GitHub repository.54  

 

Results and Discussion: 

Enthalpy Predictions.  As shown in Fig. 1 and Fig. 2, we divided the 5,892 test molecules into 

six groups based on the constituent elements and the complexity of the ring structures.  The simplest test 

species are small cyclic hydrocarbons containing single or double rings.  Just like linear or branched 

hydrocarbons, the enthalpy of a cyclic hydrocarbon molecule is mainly determined by very basic 

molecular features, e.g., the types of bonds and the size of the ring in the molecule.  Since the 

convolutional neural network is well capable of extracting these basic features,24 the enthalpies of the 

cyclic hydrocarbons predicted by the model agree well with the reference DFT values (Fig. 1a and 2a).  

Incorporating oxygen atoms in the molecules slightly increases the diversity in chemical bonds.  However, 

it does not affect the accuracy of prediction since the enthalpies of oxygenated cyclic species can also be 

well described by the model (Fig. 1b and 2b).  As listed in Table 1, there is no significant difference 

between the RMSEs of the cyclic hydrocarbons and the cyclic oxygenates (2.15 and 1.93 kcal/mol), 

suggesting that the convolutional neural network is capable of adapting to more complex chemical units.  

Further examination of the model was carried out for larger linear polycyclics and fused 

polycyclics containing more than two rings.  The former refers to those polycyclic species that have no 

atoms residing in more than two rings; and the latter refers to those polycyclic species that have at least 

one atom shared by three or more rings.  Because the ring strain of a polycyclic molecule is very sensitive 

to the configuration of the ring structure, polycyclic ring strain is often not additive, i.e., it does not equal 

the summation of the expected strain energies of individual rings.21  Therefore, the convolutional neural 

network has to extract non-local geometry features to correctly predict the enthalpies of polycyclic 

species. This is possible with our architecture because we specify the number of rings of each size 
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containing a given atom.  Fig. 1 and Fig. 2 show that most of the enthalpies of polycyclic molecules 

predicted by the model agree with the DFT reference values, with the best RMSE of 2.91 kcal/mol 

obtained for oxygenated large linear polycyclics (Table 1), suggesting that the convolutional neural 

network is capable of encoding non-local geometry information into molecular fingerprints.  However, 

since the number of possible polycyclic structures is extremely large (especially when considering 

heteroatoms), the training samples encompass only a small fraction of all possible polycyclic 

configurations.  A few outliers exist for the four polycyclic test sets considered here because roughly one 

fourth of the test molecules include polycyclic cores that are not present in the training set (Table 2), 

which highlights the necessity for a self-evolving strategy to ensure a model that is accurate for general 

use, since it is impossible to prepare a comprehensive training set covering the entire chemical space.  

Although the enthalpies predicted by the model in general agree with the reference DFT values, 

they have not yet achieved the level of chemical accuracy, which is in thermochemistry understood as a 

95% confidence limit of ± 1 kcal/mol.55 As listed in Table 1, the 95% confidence interval of the overall 

test set is about 5 kcal/mol, suggesting that the current convolutional neural network model would not be 

able to achieve chemical accuracy in predicting actual enthalpy values even if the training data were 

exact. Since the inherent error associated with the DFT training data also affects the performance of the 

model on predicting actual enthalpies (as discussed in details in the subsection below), the present 

machine learning model should be viewed as a low-cost alternative to DFT for rapid screening of 

unimportant species in large-scale theoretical studies.  For the key species in a chemical system, it is still 

recommended to resort to high-level quantum chemistry methods to derive the best possible enthalpy 

values.     

Measure of Prediction Quality.  The standard deviation of the ensemble predictions lie within 

the range of 0 to 3.75 kcal/mol for most test species, which is in line with the test set mean absolute error 

(MAE) of 1.74 kcal/mol as shown in Fig. 3a.  The ensemble spread can be viewed as a descriptor of the 
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error distribution to which the prediction belongs.  As shown in Fig. 3b, there is a clear positive 

correlation between the ensemble spread and the standard deviation of the error distribution; therefore, 

if the spread of ensemble prediction is small, the error distribution that the prediction belongs to should 

be narrow, which means there is a low probability for that prediction to have a large error.  Moreover, 

because the ensemble spreads correlate with the standard deviations of the error distributions, one can 

divide the actual errors by the associated ensemble spreads to obtain a “standardized” error distribution 

as shown in Fig. 4.  Although the standardized error distribution is not strictly normal (more weight in 

the tails compared to a normal distribution), Fig. 4 shows that assuming a normal distribution based on 

the ensemble spread is not too unreasonable.  For instance, if the ensemble spread is 1 kcal/mol, there is 

a <5% chance that the error in the prediction is larger than 3 kcal/mol.   

The underlying assumption of bootstrapping is that population statistics can be obtained from 

sample data by resampling the data set,35 which is valid if the data set constitutes a good representation 

of the entire population.  However, chemical space is extremely large so collecting a data set that 

represents the entirety of chemical space well is extraordinarily difficult.  A practical issue is that users 

might extrapolate the model to an ill-represented molecule domain where both the model prediction and 

the prediction quality measured by ensemble spread are unreliable.  To illustrate this point, we computed 

model statistics using a model trained using only CxHyOz molecules but a test set composed of 9,995 

nitrogen-containing species and found the MAE to be 19.6 kcal/mol, which is much higher than the 

MAEs of the test hydrocarbons and oxygenates listed in Table 1.  The standard deviations of ensemble 

predictions do not reflect the correct magnitude of the error since the ensemble spreads of the vast 

majority of test species are lower than 5 kcal/mol as shown in Fig. 5.  This is not surprising because the 

model was only trained on molecules composed of C, H, and O atoms so it does not have any information 

about the strength of a chemical bond involving nitrogen, and the ensemble model used to measure the 

prediction qualities is also completely unaware of nitrogen. 
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However, even though there is no way to accurately quantify the error in the prediction of a 

molecule coming from an unseen domain, one can still use the spreads of ensemble prediction to identify 

the “foreign molecules” (at least to some extent).  For example, as shown in Fig. 5, about 1.6% of the 

test hydrocarbons and oxygenates have ensemble spreads higher than 3 kcal/mol; however, roughly 10% 

of the samples in the nitrogen-containing test set exceed this level.  Therefore, if one sets 3 kcal/mol to 

be the threshold of high-ensemble-spread species, the probability of categorizing a nitrogen-containing 

species as a high-ensemble-spread sample is about six times higher than that for a hydrocarbon or 

oxygenate.  Although this ratio varies with the choice of cutoff value, for determining which predictions 

need to be refined, ensemble-spread-based selection should be more (or at least equally) effective 

compared to random selection since the percentage of nitrogen-containing examples above an  level of 

ensemble spread is always greater than (or equal to) that of hydrocarbons and oxygenates.   

Figure 5 also demonstrates that once the model is trained on a few samples of the new nitrogen-

containing species, the model starts to recognize the new types of molecules, and thus begins to measure 

the quality of the predictions more accurately.  If one adds 100 nitrogen-containing molecules to the 

training data, the percentage of the test nitrogen-containing molecules that exceed the 3 kcal/mol 

ensemble spread level increases to 35%, suggesting that the capacity of the model to identify the foreign 

molecules (nitrogen-containing species in this case) is significantly improved.  Therefore, even though 

the underlying assumption of bootstrapping does not hold for species from an unseen domain, the 

ensemble scheme can still be used to select the points that need to be calibrated in an active learning 

scheme.   Of course, including foreign species in the training set will not only facilitate better 

measurement of prediction quality, but will also improve the performance of the model for these 

molecules.  One example of how the prediction accuracy and the spread of ensemble predictions evolve 

with the number of training data points will be discussed in the following subsection. 

Active Learning Process.  To demonstrate how the thermochemistry estimator adapts to a new 
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type of species, we prepared a dataset composed of 39,981 nitrogen-containing molecules to represent 

samples from an unseen molecular domain and examined how a model originally trained on 

hydrocarbons and oxygenates expands its predictive capacity to such unseen species using the active 

learning scheme.  The active learning process starts with calculating the standard deviations of ensemble 

predictions of the nitrogen-containing molecules and then incorporating the high-spread samples in the 

training data to update the model.   Since in practice there are costs associated with obtaining new training 

data, the cutoff between high and low ensemble spreads is a parameter that needs to be chosen to balance 

the costs and the requirements of accuracy in predictions.  For this demonstration, the cutoff was set to 

3 kcal/mol to mimic a setting that balances training efficiency and efforts for deriving new data.  As 

listed in Table 3, 4,365 out of the 39,981 nitrogen-containing molecules were classified as high-spread 

species using Model 1, a model that was only trained on hydrocarbons and oxygenates.  This is consistent 

with what we observed in Fig. 5 where roughly 10% of the estimated uncertainties of nitrogen-containing 

species calculated by a model that has only seen hydrocarbons and oxygenates exceed 3 kcal/mol.   

Incorporating the high-spread species identified by Model 1 into the training set can improve the 

quality of estimated uncertainties.  As listed in Table 3, the model generated by the second round of 

training (Model 2) identifies 7,296 high-spread samples because the prediction qualities of nitrogen-

containing species are now estimated more accurately.  One might expect more high-spread species to 

be found after the third round of training (Model 3).  However, the number of high-spread molecules 

identified by Model 3 is significantly lower than in the previous two models because the accuracy of 

prediction has been improved for the nitrogen-containing species in the training process.  As shown in 

Fig. 6, most of the low-spread species predicted by Model 3 do indeed have small errors (< 6 kcal/mol).  

Moreover, the test set MAE has decreased from 19.6 to 2.79 kcal/mol during this training process (Table 

3), demonstrating that the model has successfully expanded its predictive capacity from hydrocarbons 

and oxygenates to nitrogen-containing molecules.  
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Automatic Generation of New Data. The active learning scheme combined with the 

convolutional neural network, which generalizes molecular feature extraction, provides a convenient 

framework for the development of a thermochemistry estimator that can be continuously and 

automatically improved.  However, the remaining issue that has to be resolved is the procurement of new 

training data.  Conventionally, collecting data for a machine learning model is a data mining problem.  

Lots of efforts have been made to develop tools that can be used to extract information published in 

literature.56–61  However, the data available in the chemical literature is finite; for many molecules there 

are no data in the literature.  To obtain new data, recent studies have tried to develop robotic platforms 

to coordinate many chemical experiments and generate data in real time.62,63  Following the same 

philosophy, we use automatic quantum mechanical calculations for data generation in combination with 

the machine learning model to develop a self-evolving thermochemistry estimator as shown in Fig. 7.  

The self-evolving model is composed of three major components: a thermochemistry central database, a 

machine learning engine, and an automatic quantum mechanics calculator.  The central database is 

responsible for hosting the information of all species with thermochemistry data as well as molecules 

without thermochemistry data but of potential interest submitted by users.  The machine learning engine, 

which is the ensemble convolutional neural network discussed above, is responsible for predicting 

thermochemistry and identifying which of the species without data should be computed using quantum 

chemistry, based on the ensemble-spread analysis.  The thermochemistry data generated by the automatic 

ab initio calculations are sent to the central database where they will serve as additional training examples 

for the next update of the machine learning engine.  This effort enables the thermochemistry estimator to 

be improved automatically and continuously without the need for human involvement.  Therefore, unlike 

the conventional group additivity approach, users of this model can apply it to species beyond the original 

training set without worrying about having to refine the model manually. 

To examine the self-evolving scheme in real-life applications, we connected the thermochemistry 
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central database to the Reaction Mechanism Generator (RMG) software package.18  RMG is a reaction 

modeling software that reacts a given set of species in all possible ways based on a set of reaction 

templates, estimates the reaction rates and thermodynamic properties of the reacting species, and 

simulates the time evolution of a batch reactor at the given reaction conditions.  As a user of the 

thermochemistry estimator, RMG automatically sends molecules with high ensemble spread to the 

central database. For this work, RMG submitted many highly unsaturated polycyclics that are potentially 

important in soot formation chemistry, most of which are not well-represented in the original training 

data set of Ramakrishnan et al.45  Therefore, the MAE of the new species as predicted by the base model 

(Model 1) is 24.4 kcal/mol as listed in Table 4.  However, with a small amount of additional data 

generated by the automatic quantum chemistry calculations (~500 data points), MAE is reduced by a 

factor of two. As the automatic quantum chemistry calculations continue to run, making more training 

data available, it is expected that the error will continue to drop to values similar to those in Table 1.  

This exercise again demonstrates the importance of a continuously improving chemistry model since it 

is impossible to prepare a comprehensive training set covering all the species of potential interest.  

Comparisons with High Level of Theory and Group Additivity Method.  As discussed above, 

the reference enthalpies used in this work were calculated at the B3LYP/6-31G(2df,p) level of theory 

with the RRHO approximation, which are themselves associated with errors.  Previous studies have 

shown that B3LYP energies are often associated with significant errors, primarily due to the absence of 

long-range dispersion interaction.33,46–48  Moreover, the RRHO model ignores the effect of rotors and 

floppy motions, which is known to affect the accuracy of thermochemistry calculations.16 The RRHO 

model also fails to describe many features of vibrational spectroscopy for high frequency modes so that 

zero point energies derived from harmonic frequencies are often down-scaled.64,65  These errors are 

inevitably inherited by the models and hence influence the prediction accuracy.   

To examine the performance of the model on predicting true enthalpies, we calculated the 
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enthalpies of 98 randomly selected cyclic and polycyclic molecules at the CCSD(T)-F12/cc-pVTZ-

F12//B3LYP/6-31G(2df,p) level of theory using Molpro.66–68  Though the geometry optimizations and 

frequency calculations were still carried out at the B3LYP/6-31G(2df,p) level of theory with RRHO 

approximations, the zero point energies and the frequencies were scaled by a factor of 0.965 to partially 

include anharmonic effects.69  As listed in Table 5, the enthalpies predicted by the neural network model 

agrees with CCSD(T)-F12/cc-pVTZ-F12 enthalpy values with an RMSE of 3.35 kcal/mol, which is 

slightly larger than that of the values of B3LYP/6-31G(2df,p) (2.77 kcal/mol).  We also benchmarked 

the group additivity method implemented in the RMG software package,18 which includes the polycyclic 

ring strain corrections based on a bicyclic decomposition scheme developed by Han and others.21 As 

listed in Table 5, the RMSE of the group additivity method is about 11 kcal/mol, which is roughly three 

times higher than that of the neural network model.  This finding supports the argument that the 

contributions of bicyclic ring strain are not always independent and additive so that it is important to 

include higher order corrections or to use a nonlinear approach such as the convolutional neural network 

model to better describe the ring strain of polycyclic species.   

 

Conclusions: 

Although machine learning algorithms have tremendous potential for enhancing chemical 

simulations, building a reliable molecule-based model is not an easy task because generating accurate 

chemistry data is often expensive and time-consuming.   Since most chemistry datasets only cover a 

small region of chemical space, data scarcity is often the primary factor limiting the accuracy and the 

scope of applicability of a data-driven model.  To address this issue, we integrated an active learning 

model with automatic ab initio calculations to create a self-evolving machine that can continuously adapt 

to new species of interest.  We implemented a molecular graph convolutional neural network to 

generalize feature extraction for a broad range of species of potential interest.  To enable active learning, 
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a non-parametric ensemble approach was developed by combining the ideas of bootstrap sampling and 

dropout training in neural networks to estimate prediction qualities.  Therefore, the model can easily 

identify molecules for which predictions need to be refined based on the spread of ensemble predictions.  

Our self-evolving machine automatically launches ab initio calculations to obtain accurate properties for 

such molecules to improve the machine learning model. 

We examined the idea of a self-evolving machine by modeling the formation enthalpies of 

polycyclic species.  Because the ring strain of a polycyclic molecule is often not additive and very 

sensitive to details of the fused ring structure, it is difficult to estimate the enthalpy of a polycyclic 

molecule using local chemical features, such as the types of bonds around each atom.  Convolutional 

fingerprint and convolution methods based on local and near-neighbor properties are unable to give 

accurate predictions.  However, we demonstrate here that if ring information is included as an atom 

property, the convolutional neural network approach works well.  We found that for a test set composed 

of 5,892 cyclic and polycyclic molecules, the enthalpies determined from our neural network model agree 

to within an RMSE of 2.62 kcal/mol with reference values.  This suggests potential application of 

molecular graph convolutions including ring information to challenging chemistry tasks that require 

detailed descriptions of molecular structures.   

The reliability of the dropout ensemble approach on measuring prediction quality depends on the 

validity of the assumption of bootstrap sampling.  For molecules drawn from the same domain as the 

training species, the spread of ensemble predictions can be interpreted as a descriptor for the probability 

distribution of the prediction error.  On the other hand, for examples drawn from a completely unseen 

domain, there is no rigorous way to correctly quantify the error in a prediction.  However, we found that 

with a properly chosen cutoff criterion, the ensemble-model-based active learning approach is still more 

effective than random selection for new types of molecules.  We demonstrated that an active learning 

scheme can broaden the applicability of a model originally trained on hydrocarbons and oxygenates to 
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nitrogen-containing species, suggesting that the self-evolving strategy presented in this work is not only 

able to improve prediction accuracy but is also capable of expanding the scope of applicability to 

completely unseen species domains.  Here, we demonstrated the effectiveness of combining machine 

learning with automatic quantum chemistry for predicting enthalpies of formation and the uncertainties 

in those predictions.  We expect this approach will also be effective for automatically constructing models 

for predicting many other molecular properties which can be computed using quantum chemistry. 

The DFT data used here as reference values were calculated at the B3LYP/6-31G(2df,p) level of 

theory and are themselves associated with significant uncertainty. As a result, the fidelity of the model 

is affected by the inaccuracies in the DFT data.  However, despite the uncertainty in training data, the 

convolutional neural network model outperforms the group additivity method on enthalpy predictions 

for polycyclic species (Table 5) due to a better description of the configuration of the ring structure.  To 

overcome the limitation of data accuracy, future work will involve incorporating the best available 

experimental results, employing more accurate quantum chemistry methods to generate high-quality data, 

and improving the model accuracy using a transfer learning approach.  Another useful extension would 

be to broaden prediction coverage to radicals and other open-shell species, which are not currently 

considered in the model. 
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Table 1.  Statistical errors of enthalpies shown in Fig. 1. 

 MSE (kcal/mol)a MAE (kcal/mol)a RMSE (kcal/mol)a u95% (kcal/mol)a 

 CxHy CxHyOz CxHy CxHyOz CxHy CxHyOz CxHy CxHyOz 

Small 

Cyclics 
-0.15 -0.09 1.40 1.41 2.15 1.93 4.29 3.85 

Large Linear 

Polycyclics 
-0.93 -0.45 3.65 2.08 5.57 2.91 11.05 5.75 

Large Fused 

Polycyclics 
-0.05 -0.56 2.73 2.77 3.75 4.08 7.51 8.10 

Overall -0.21 1.74 2.62 5.22 

a MSE: mean signed error, MAE: mean absolute error, RMSE: root mean square error, u95%: 95% 

confidence limit (two standard deviations of the error distribution)55. 
 

 

Table 2.  Percentage of test molecules containing ring core structures that are not present in the training 

set. 

 Hydrocarbon Oxygenates 

Small Cyclics 3.3% 1.8% 

Large Linear 

Polycyclics 
27.7% 21.8% 

Large Fused 

Polycyclics 
27.8% 28.2% 
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Table 3. Active learning of a thermochemistry estimator. 

 Model 1 Model 2 Model 3 

Number of training samples 

Hydrocarbons  

and oxygenates 
23,582 23,582 23,582 

Nitrogen-containing 

species 
0 4,365 11,661 

Number of low and high 

prediction spread samplesa  

High spread  4,365 7,296 1,201 

Low spread 

  
35,616 28,320 27,119 

Statistical errors  

(kcal/mol)b 

MSEc -16.84  1.02  0.39  

MAEc 19.60  4.53  2.79  

RMSEc 25.35  6.03  3.77  

u95%
c 37.88 11.89 7.51 

a Uncertainties of the molecules in a dataset composed of 39,981 nitrogen-containing cyclic and 

polycyclic molecules. Samples with high ensemble prediction spreads detected by a model are removed 

from the dataset and added to the training set to upgrade the model. The cutoff between low and high 

ensemble spread is 3 kcal/mol. 

b Model performance on an independent test set composed of 9,995 nitrogen-containing species 
c MSE: mean signed error, MAE: mean absolute error, RMSE: root mean square error, u95%: 95% 

confidence limit (two standard deviations of the error distribution)55. 
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Table 4. Statistical errors of polycyclic species generated by RMG. 

 Training Samples 
MSE 

(kcal/mol)c 

MAE 

(kcal/mol)c 

RMSE 

(kcal/mol)c 

u95%
 

(kcal/mol)c 

Base Modela Data set of Ramakrishnan et al.b -21.50 24.35 32.25 48.24 

Improved Model 

Data set of Ramakrishnan et al. 

and 501 additional data points 

generated by automatic ab initio 

calculations 

-6.05 12.14 18.04 34.10 

a Model 1 in Table 3. 
b 23,582 cyclic and polycyclic hydrocarbons and oxygenates. 
c Test set is composed of 157 molecules randomly selected from RMG generated polycyclic species. 

MSE: mean signed error, MAE: mean absolute error, RMSE: root mean square error, u95%: 95% 

confidence limit (two standard deviations of the error distribution)55. 
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Table 5.  Statistical errors of enthalpy calculations.a 

 
 

MSE 

(kcal/mol)b 

MAE 

(kcal/mol)b 

RMSE 

(kcal/mol)b 

u95% 

(kcal/mol)b 

B3LYP/6-31G(2df,p)c 0.29  2.21  2.77 5.55 

Conv Neural Networkd 0.18 2.61  3.35 6.72 

Group Additivitye -2.16 6.63  10.83 21.33 

a Benchmark data are the enthalpies of 98 randomly selected cyclic and polycyclic molecules 

calculated at the CCSD(T)-F12/cc-pVTZ-F12 level of theory 
b MSE: mean signed error, MAE: mean absolute error, RMSE: root mean square error, u95%: 95% 

confidence limit (two standard deviations of the error distribution)55. 
c Data extracted from the work of Ramakrishnan et al45 
d Model 1 in Table 3. 
e The group additivity method implemented in the RMG software package18 
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Scheme 1. Architecture of the molecular convolutional neural network.  The input molecular matrix (Ar=0) 

is composed of a list of atomic feature vectors and the molecular matrices with larger radius (Ar=1 and 

Ar=2) are derived by combining feature vectors of connected atoms and the corresponding bond 

information.  The molecular matrices are passed through learned mappings and then are summed over 

atoms to get the one-dimensional molecular fingerprints.  Detailed descriptions of the convolution 

procedure can be found in previous work.23,31 
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Figure 1. Parity plots of the reference formation enthalpies (DFT) and the values predicted by the 

convolutional neural network (NN).  The left and the right panels are the results of hydrocarbon (C, H) 

and oxygenated (C, H, O) test samples, respectively.  An error bar of ±10𝑘𝑐𝑎𝑙 𝑚𝑜𝑙⁄  is shown by the 

dashed lines. 
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Figure 2. Error distributions of the test sets.  The errors are defined as the difference between the 

formation enthalpies predicted by the convolutional neural network and the reference DFT values.  The 

left and the right panels are the results of hydrocarbon (C, H) and oxygenated (C, H, O) test samples, 

respectively.   
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Figure 3. Errors and standard deviations of enthalpies predicted by the ensemble model (ensemble 

spread). The first panel, (a), shows that the predictions with higher ensemble spreads tend to have a 

broader error distribution.  This observation can be confirmed by the second panel, (b), which shows a 

positive correlation between the ensemble spreads and the standard deviations of the error distributions.  
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Figure 4. Distribution of standardized error (actual error/ensemble spread).  About 59%, 87%, and 

96% of the values fall in the range of ±1, ±2, and ±3, respectively.  The black curve is a standardized 

normal distribution for reference. 

 

 
Figure 5.  Cumulative percentage of test molecules predicted to lie above a certain level of ensemble 

spread. The black curve, C+O(0), is the combined result of the hydrocarbon and oxygenate test sets 

listed in Table 1.  The red and blue curves, N(0) and N(100), are results of a test set composed of 9,995 

nitrogen-containing species.  The numbers in the parentheses correspond to the number of nitrogen-

containing species in the training data for each model.   
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Figure 6.  Error distributions of the species estimated by the models to have ensemble spread < 3 

kcal/mol. As the model is improved by adding training data, it both becomes more accurate and more 

reliably identifies which predictions are uncertain. 

 

 
Figure 7.  Schematic of the self-evolving thermochemistry estimator. The program spawns quantum 

calculations for species if identifies as uncertain, then adds the newly computed data to the training set, 

continuously improving the model. 

 

 

  



36 

 

TOC Graphic 

 

 


