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Abstract: This paper presents a hybrid methodology to analyze the commercial measures of changing
stator windings and adjusting air gap length to upgrade efficiency of typical three-phase direct-on-line
induction motors with die-cast copper rotor (DCR). The calculation is carried out through combining
the time-stepping and time-harmonic finite element analysis (FEA) and the circuit equivalent circuit
model. Typical full-load performance of stator windings with different air gap lengths are computed
by MATLAB invoking the 2D transient and eddy current field analysis in ANSYS/MAXWELL. Then,
MATLAB scripts about post-processing of the FEA results are used to obtain the full-load running
performance including the loss distribution and circulating current. The MATLAB scripts of circuit
model built based on the FEA results is used to compare the overload and starting performance.
After that, four stators with the four windings and three DCRs with different air gap of an 11 kW motor
are fabricated and tested to validate the calculations. By comparing results from both calculations
and measurements, it is shown that the factors of stator windings and air gap length can effectively
improve the efficiency of the 11 kW DCR induction motor without the addition of extra materials.
The motor with the 11/12 pitch Y-∆ series winding and 0.6 mm air gap has the best performance,
in terms of efficiency, overloading capability and starting performance. Its efficiency can increase
from 90% to the highest 92.35% by sole adjustment of stator winding and air gap length.

Keywords: air gap length; die-cast copper rotor; energy efficiency; induction motors; stator windings;
loss analysis

1. Introduction

Energy issues have caused motor designers, manufacturers and users to pay more attention
to efficiency when applying electric motors to production and daily life, as they consume roughly
two-thirds of all the electrical energy used by industrial or commercial applications in industrialized
countries [1]. Three-phase squirrel-cage induction motors are one of the most widely used motor
types in various fields [2–4], therefore it is extremely meaningful to increase the efficiency of this kind
of motor.
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Many technical measures have been investigated for improving the efficiency of induction
motors. The higher efficiency can usually be achieved by increasing the active materials, such as
increasing the stack length [5,6], in induction motors. Another measure of upgrading materials such as
premium electrical grade lamination steel is used for decreasing core losses and Ohmic losses [6–8].
The efficiency can also be improved by enhancing the performance of cooling and bearing systems
to reduce the mechanical losses [7] and improving cooling performance to make Ohmic losses less
significant [9]. These methods either rise the raw material cost or increase manufacturing complexity.
Although geometry optimization techniques [10–16] can be used to increase the efficiency of induction
motors without increasing the active materials, this technique ends up producing a different design
from the original one. Consequently, a new stator and rotor punching mold is required and additional
cost results. It can be seen that in practice these measures can only be used to design a new motor,
therefore many manufacturers have paid more attention to ways of increasing the efficiency of their
induction motors with the least cost. That means the techniques should change construction or
parameters of the existing motors as little as possible. Die-cast copper rotor (DCR) technology that
involves the development of heated nickel-base alloy dies presents a potential route to design high
efficiency induction motors [5,6,17]. Therefore, cast aluminum rotors of typical existing induction
motors are replaced with DCRs without changing any rotor parameters. Besides, it is convenient to
adjust the air gap length of the rotor. Another useful technique is to change the stator winding [18–22],
such as Y-∆ hybrid windings [18–20], concentric single-double layer windings [21] or adjust the
parameters of single layer and double layer windings [22], to increase motors efficiency. Therefore,
techniques for changing the type of stator windings and the air gap length are investigated in this paper.

Many calculation methods have been developed to predict the running performance of induction
motors [2,21,23–28]. The steady-state performance of induction motors, including losses distribution,
can be obtained by improving algorithms in FEM [2,23–25], but this method usually need researchers
to write their own FEM program, which may be too complex to realize by other researchers and
manufacturers. The steady-state and transient-state of induction motors can be carried out through
circuit models [2,21,26–28]. Researchers have used FEM to determine the parameters of the equivalent
circuit model which considers the impacts of stray losses and harmonic torques [26]. The equivalent
circuit is able to calculate the stray load losses of induction motors through modifying its structure based
on motor power balance [27]. Based on the manufacturer’s data, the parameters of the equivalent circuit
model are optimized to improve its precision of calculating starting and full-load performance [28].
The transient-state performance of induction motors, such as starting and overload performance,
is always determined through circuit models with inductances [2,21]. Although these methods can
calculate the transient-state and steady-state performance, it is not easy to calculate the full-load,
starting and overload performance of induction motors at the same time.

This paper aims to develop a hybrid methodology using the commercial software MATLAB
to invoke ANSYS/MAXWELL to compute the effect of commercial measures, such as changing
the type of stator windings and the air gap length, to increase the efficiency of an 11 kW
direct-on-line induction motor with a DCR. The calculation method, which consists of the combined 2D
time-stepping finite element method (FEM), 2D eddy current field and analytical formulas, is applied
to evaluate the influence of the measures on the full-load performance including losses distribution,
circulating zero-order current in the stator windings. Additionally, characteristics of the overload and
starting performance are investigated. Finally, an experimental setup is established to validate the
proposed ideas.

2. Hybrid Methodology

2.1. Program Structure

The aim of this paper is to develop a hybrid methodology to analyze the influence of commercial
measures to comprehensively increase the efficiency of induction motors on full-load, performance
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while their overload and starting performance does not degenerate. Note that 2D finite element models
are used in this paper because the commercial measures concerned, such as changing the type of stator
windings and the air gap length, have no important influence on end-winding field. If some other
measures that change the end-winding field were to be implemented, 3D models should be used
instead of 2D ones. Figure 1 shows the detailed structure of the calculation method. The calculation is
realized based on the commercial software MATLAB and ANSYS/MAXWELL. Specifically, a MATLAB
program is written to assign values to the dimension of an induction motor and the settings in
ANSYS/MAXWELL. Therefore, it is convenient to change the parameters of the induction motor.
Then the program invokes ANSYS/MAXWELL to build 2D finite element model of the induction motor.
After that, the MATLAB program activates the 2D transient field analysis to conduct time-stepping
finite element analysis (FEA) at no-load and full-load condition. Then, the results of time-stepping
FEA will be processed to obtain the results of no-load and full-load fluxes, currents and losses by the
MATLAB program. Based on the full-load results, the MATLAB will invoke the eddy current field
analysis to conduct the full-load FEA to get the fundamental losses. Finally, some analytical formulas
and the FEA results are used to calculate the leakage reactance in order to analyze the starting and
overload performance of induction motors through the MATLAB program. It should be noticed that
the MATLAB program also conduct post-processing, such as FFT analysis and mathematical operations,
to obtain power factor, efficiency, harmonic current and so on. In order to be more understandable
about the hybrid methodology, a substantial portion of the MATLAB codes for invoking and dealing
with the no-load simulation are presented in the Appendix A.
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Figure 1. Program structure of hybrid methodology.

2.2. Full-Load Performance Calculation

Since the main purpose of the hybrid methodology is to analyze the efficiency of commercial
measures on full-load condition, loss calculation is an important part in the calculation. The eddy
current loss of rotor end-rings is assumed to be same to simplify the loss calculation. The total losses
PLoad

l of the induction motor at full-load condition can be defined by:
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Pl
Load = PLoad

1copper + PNoLoad
iron + PLoad

2cageF + PLoad
s + Pm (1)

where PLoad
1copper is the copper loss of the stator windings under full-load conditions, PNoLoad

iron is the no-load

core loss, PLoad
2cageF is the fundamental eddy current loss of the rotor squirrel cage under full-load, PLoad

s is
the full-load stray loss and Pm is the mechanical loss. The mechanical loss Pm can be calculated by an
empirical equation [21].

In the calculation, the mechanical loss Pm is calculated based on the steady-state speed under
full-load conditions. The electromagnetic losses consist of PLoad

1copper, PNoLoad
iron , PLoad

2cageF and PLoad
s , colored in

Figure 2.
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Figure 2. Flowchart of the loss calculations.

Figure 2 shows that 2D time-stepping and time-harmonic FEM are combined to calculate all these
magnetic losses through ANSYS/MAXWELL 2D. Figure 3a shows the 2D model and its mesh. The half
model is used because of electromagnetic symmetry, and its total number of mesh elements is roughly
16,000 whose results are almost the same as the results of the roughly 26,000 elements obtained by
mesh refinement.
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Figure 3. FEA model and BH magnetization curve: (a) FEA model and mesh; (b) BH magnetization
curve of electrical steel lamination DW470-50.

The grade of electrical steel laminations used in the induction motor is DW470-50 whose curve of
flux density B versus magnetic field strength H is shown in Figure 3b. The calculation process is as
described below.
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Firstly, the no-load and full-load performance of the induction motor is computed by the classical
field-circuit coupled 2D time-stepping FEM coupled with the primary voltage equation, in which the
resistance and end-winding leakage inductance of the stator winding and rotor cage are calculated
by the analytical formulas [21]. For a 2D XY problem, the vectors have only one component in the
z-direction. The 2D time-dependent magnetic equation [29] of an induction motor is expressed as:

∇× υ∇×A = JS − σ
dA
dt

(2)

where υ is the reluctivity, A is the magnetic vector potential, σ is the conductivity, t is the time, Js is the
source current density that is given by [29]:

JS = d f
N f i f

S f a·p
(3)

where d f is the polarity (+1 or −1) to represent forward or return paths of stator windings, N f is the
total conductor number of the filaments in the winding, S f is the total area of the cross-section of the
region occupied by the winding, a is the number of parallel branches in the winding, p is the ratio of
the original full model to the field domain to be solved, i f is the total terminal current flowing into a
filament winding which is calculated by:

uS = d f
N f L

S f a

x dA
dt
·dΩ + (Rdc + Rend + Rext)·i f + (lend + lext)·

di f

dt
(4)

where L is the axial length, Rdc is the total DC resistance of the straight portion of the stator windings,
Rend is the end-turn resistance of the stator windings, Lend is the end-turn inductance of the stator
windings, us is the source voltage of the stator windings, Ω is the cross-section of the conductors.

The magnetic vector potential A and current is obtained through Equations (2)–(4), then other
parameters, such as the magnetic flux, electromagnetic torque, etc., are calculated. The input of the
time-stepping FEM is the voltage source of stator windings and the rotor rotating speed. The no-load
speed is set at the synchronous speed ns (unit: rpm). The full-load simulation proceeds as follows.
Note that searching the input of the full-load speed is realized by a MATLAB script with the
secant method:

(1) Assuming rotating speeds n1 and n2 (n1 , n2, unit: rpm) that are a little less than the synchronous
speed as the input speeds, calculate their output torques T1 and T2 by the time-stepping FEM
and the empirical equation [21], respectively. Note that output torque Tj is calculated by:

T j = Tem −
(3/p)3

·(D1out)
4

πn j/30
× 104, j = 1, 2, 3, · · · (5)

In Equation (5), p denotes the number of pole pairs, D1out denotes the stator outer diameter and
its unit is m, Tem denotes the electromagnetic torque computed by the time-stepping FEM. If:

|T1 − Tn| ≤ εor|T2 − Tn| ≤ ε (6)

then the speed fulfilling Equation (6) is the full-load speed and the algorithm goes to Step 4;
otherwise, subscript i = 3 and the algorithm goes to Step 2. In Equation (6), Tn denotes the
full-load torque 70.8 Nm corresponding to 11 kW output power and ε denotes the allowable error.

(2) Calculate the speed ni by:

ni = ni−1 −
Ti−1 − Tn

Ti−1 − Ti−2
(ni−1 − ni−2), i = 3, 4, 5, · · · (7)
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then calculate the output torque Ti (i = 3, 4, 5, . . . ) by the time-stepping FEM and (5).
(3) If:

|Ti − Tn| ≤ ε (8)

then ni is the full-load speed and the algorithm proceeds to Step 4; otherwise i = i + 1 and the
algorithm goes to Step 2.

(4) Using the full-load speed calculate the full-load results. By solving the electromagnetic equations
coupled to the primary voltage equation, they are obtained that the stator current I1m at each phase
m (m = A, B, C.), and the current density of the rotor bar Jr. Then the copper loss of stator windings
PLoad

1copper and the total eddy current loss of the rotor squirrel cage PLoad
2cage on full-load condition can

be calculated. The full-load core loss PLoad
iron and no-load core loss PNoLoad

iron are computed based on
the magnetic flux.

Then the classical 2D time-harmonic FEA is applied to compute the fundamental eddy current
loss of the rotor squirrel cage PLoad

2cageF. Similarly, the phasors in 2D time-harmonic FEA have only one
component in the z-direction. Its equation is:

∇× υ∇×A = JS − jωσA (9)

I =
x

Ω

(JS − jωσA)dΩ (10)

whereω is the fundamental frequency, I is the stator winding current. The input of the 2D time-harmonic
FEA is the fundamental component of FFT analysis of stator winding current from the 2D time-stepping
FEM results. Note that the rotor bar conductivity should be multiplied by full-load slip obtained from
the 2D time-stepping FEM results rather than setting the rotor rotating speed. The fundamental eddy
current loss of the rotor squirrel cage PLoad

2cageF can be calculated based on the results of the fundamental
current density of rotor bar JrF.

According to the definition in the IEEE standard 112-method B [30], the stray loss is calculated by:

PLoad
s = (PLoad

2cage − PLoad
2cageF) + (PLoad

iron − PNoLoad
iron ) (11)

Finally, all the losses colored in Figure 2 are calculated through the FEA of ANSYS/MAXWELL
and its results processed by MATLAB. The efficiency η can be obtained by losses and output power.
Power factor cosφ is calculated based on the fundamental angle between the phase voltage and the
phase current which is computed by FFT analysis. Additionally, circulating currents in ∆ windings can
be separated from the fundamental currents.

2.3. Overload and Starting Performance Calculation

The overload and starting performance is evaluated based on the T equivalent circuit model.
The calculation is shown in the part of “Analytical Formulas” in Figure 1.

The overload performance of an induction motor is determined by its peak torque Tmax.

Since R2
1 � (X σ1+X′σ2

)2
, the peak torque Tmax can approximately be:

Tmax ≈
mpU2

Nϕ

4π f (Xσ1 + X′σ2)
∝

1
(Xσ1 + X′σ2)

(12)

where UNϕ is the rated phase voltage, R1 is the phase resistance of the stator winding, Xσ1 is the
total steady-state stator leakage reactance, X′σ2 is the total steady-state rotor cage leakage reactance
(reported to the stator). Equation (12) shows the peak torque of induction motors is inversely
proportional to the total stator and rotor leakage reactances.
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Because the induction motor studied in this paper is direct-on-line starting, it is necessary to
analyze the starting performance. The starting torque Tst can be calculated by:

Tst =
mpU2

NϕR′
2(st)

2π f Z2
st

∝
1

Z2
st

(13)

where R′
2(st) is the rotor cage resistance (reported to the stator) at starting stage and Zst is the magnitude

of total impedance at start. It should be noticed R′
2(st) is calculated based on skin effect [21].

During starting stage, magnetizing current can be neglected because the voltage drop of stator
impedance is much higher than those at the steady-state stage. Therefore, the total starting impedance
Zst can be calculated approximately by the T model:

Zst ≈

√
(R1 + R′

2(st)
)2 + (Xσ1(st) + X′

σ2(st)
)2 (14)

where R1 is the phase resistance of the stator winding, Xσ1(st) is the total stator leakage reactance at
starting stage and X′

σ2(st) is the total rotor leakage reactance at start (reported to the stator).

3. Specific Commercial Measures for Efficiency Improvement

This paper investigates commercial measures, such as changing the type of stator windings and
the air gap length, to further raise the efficiency of an 11 kW three-phase squirrel-cage induction motor
with a DCR. The main characteristics are shown in Table 1. It should be noticed that the parameters
of die-cast copper rotor are the same as typical cast aluminum rotor of an 11 kW induction motor to
reduce manufacturing cost. The distinction between two of them comes from the fact that its rotor
squirrel cage has been changed to copper and its outer diameter is adjusted for different air gap lengths.

Table 1. Characteristics and parameters of the induction motor.

Parameter Value

Number of phases, m 3
Electrical output power, Pout (kW) 11

Rated line voltage, UN (V) 380
Frequency, f (Hz) 50

Synchronous speed, n (rpm) 1500
Number of pole pairs, p 2

Number of stator slots, Ns 48
Stator outer diameter, D1out (mm) 260
Stator inner diameter, D1in (mm) 180

Axial length, L (mm) 170
Service S1

Two types of stator windings, namely ∆ winding and Y-∆ series winding, are studied. The ∆
winding is the single-double-layer (S.D.L.) winding. As shown in Figure 4a, the single-double-layer
∆ winding, which evolves from the conventional double-layer winding Figure 4b, is generally short
pitched. Owning to the change, the end-winding of the single-double-layer winding is shorter than the
double-layer winding. Thus, the single-double-layer winding has a smaller phase stator resistance
than the overlap winding.

Y-∆ series windings, which are formed in outer-Y-inner-∆ hybrid connection, are shown in
Figure 5a. Its loop current in the inner-∆ windings is relatively smaller than the outer-∆-inner-Y
windings. The basic principles of three-phase ∆-Y series windings are shown:

(1) Current density of inner-∆ winding must be equal to the outer-Y.
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(2) Number of turns in series of inner-∆ winding equal to square root of three times as
outer-Y windings.
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Figure 4. ∆ windings and phasors: (a) Single-double-layer winding; (b) Double-layer winding;
(c) Effective ∆ phasor arrangement.
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Three typical Y-∆ series windings, namely single-layer Y-∆ series winding, double-layer Y-∆ series
winding with a 2/3 pitch and an 11/12 pitch are studied. The winding coefficients of the Y-∆ series
windings are higher because of their narrow phase belt.

Table 2 shows the specific parameters of the stator windings, where nstr is number of wires per
conductor, and dw is the wire diameter, q is the number of slots per pole per phase, α is the electric
angle between two stator slots, y is the coil span in terms of stator slots, and τ is pole pitch in terms
of stator slots, p is the number of pole pairs, R1sm is the phase resistance of stator windings, N is the
number of turns in series per phase. The four windings are numbered to simplify the introduction in
Table 2. As the number of turns in series per phase N must be an integer number and the four types
of windings are designed to keep the same fundamental magnetomotive force (MMF), N∆/NY of Y-∆
series windings are close to

√
3. The cross-sectional area per conductor of the outer-Y winding must be

approximately
√

3 times larger than those of the inner-∆ winding in order to make the current density
to be the same. The number of parallel branches of these four stator windings is 1.
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Table 2. Main Parameters of the four types of windings.

Parameter
5/6

Single-Layer Y-∆
11/12 2/3

S.D.L. ∆ Y-∆ Y-∆

No. #1 #2 #3 #4
y/τ 5/6 1 11/12 2/3
p 2 2 2 2
q qsd = 4 qY1 = q∆1 = 2 qY2 = q∆2 = 2 qY3 = q∆3 = 2
α 15◦ 15◦ 15◦ 15◦

N Nsd = 176 NY1 = 48 NY2 = 48 NY3 = 56
N∆1 = 84 N∆2 = 80 N∆3 = 96

nstr nstr-sd = 5 nstr-Y1 = 10 nstr-Y2 = 10 nstr-Y3 = 5
nstr-∆1 = 6 nstr-∆2 = 6 nstr-∆3 = 5

dw (mm) dw-sd = 0.8 dw-Y1 = 0.77 dw-Y2 = 0.77 dw-Y3 = 1.12
dw-∆1 = 0.77 dw-∆2 = 0.77 dw-∆3 = 0.77

R1sm(at 77 ◦C, Ω) R1∆ = 1.059 R2∆ = 0.476 R3∆ = 0.461 R4∆ = 0.498
R2Y = 0.164 R3Y = 0.166 R4Y = 0.173

3.1. Harmonic Analysis of Stator Windings

The γ-th harmonic amplitude of the MMF for the single-double-layer winding is [18]:

Fϕγsd =
3
√

2
π

NsdIsd
psdqsd

1
γ

sin γqsdαsd
2

sin γαsd
2

sin(
π
2
γysd

τsd
) (15)

and the γ-th harmonic amplitude of the MMF for the Y-∆ series windings is [18]:

FϕγY−∆ = FϕγY + (−1) k
·Fϕγ∆ (16)

FϕγY =
3
√

2
π

NYIY
pYqY

1
γ

sin γqYαY
2

sin γαY
2

sin(
π
2
γyY

τY
) (17)

Fϕγ∆ =
3
√

2
π

N∆I∆

p∆q∆

1
γ

sin γq∆α∆
2

sin γα∆
2

sin(
π
2
γy∆

τ∆
) (18)

In Equations (15)–(18), the definition of N, p, q, y, τ, α is the same as Table 2. γ = 6k ± 1, k = 0, 1, 2,
. . . because the (3k)th harmonics counteract in the three-phase windings. The subscript sd denotes the
single-double-layer winding, and Y-∆ denotes the Y-∆ series hybrid winding. I is the root-mean-square
(RMS) value of the phase-current in the stator winding.

Figure 6 shows the MMF distribution of the four types of windings calculated by
Equations (15)–(18), where harmonic content is defined by the MMF ratio of the specific harmonic to
the fundamental harmonic. The winding #1 contains (6k ± 1) th (k = 1, 2, 3, . . . .) harmonics where the
5th and 7th harmonics are reduced by the 5/6 pitch. From the Equation (16), it can be found that the
MMF of the Y-∆ series windings is zero if the MMF of the inner Y winding is equivalent to the outer ∆
winding and k is an odd number. Therefore, the windings #2 and #4 approximately contain (6k ± 1)th
harmonics where k = 2, 4, 6, . . . because the harmonic content of k = 1, 3, 5, . . . are nearly suppressed.
The winding #3 contains the least harmonics that are approximately (12k ± 1)th harmonics where k = 2,
4, 6, . . .
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Figure 6. Comparison of harmonic MMF of the four stator windings.

3.2. Air Gap Length

The air gap length should always be small to decrease the no-load current of induction motors.
There is mechanical minimum limitation for the air gap length to prevent the possible contact between
stator and rotor. Reference [21] offers the following equation for estimation of the air gap length g:

g = 0.3× (0.4 + 7
√

D1inL) × 10−3 (19)

where the unit is meters, D1in is the stator inner diameter, L is the axial length.
The stator differential leakage reactance Xd1 can be calculated by [21]:

Xd1 =
12
π

f ·µ0·

(
N2

p

)
·
τ·L

kcksatg
·

 ∞∑
γ=5

(
kwγ

γ

)2 (20)

ksat =
Fδ + Ft1 + Ft2

Fδ
(21)

where µ0 is the magnetic constant, τ is the pole pitch in terms of length, kc is the Carter coefficient,
ksat is the saturation factor, Fδ is the air gap MMF drop, Ft1 is the stator tooth MMF drop, Ft2 is the
rotor tooth MMF drop, and kwγ is the winding factor of the γth harmonic.

Equation (20) shows that harmonic leakage reactance is inversely proportional to air gap length.
Therefore, air gap should be somewhat large enough to make sure harmonic leakage reactance is small
so as its stray loss. According to Equation (19), air gap g of the 11 kW induction motor is approximately
0.5 mm. Therefore, the 11 kW induction motor with air gap varying around 0.5 mm is analyzed.

4. Calculation Results and Evaluation

Through the calculation above, the full-load, overload and starting performance of the 11 kW
induction motor with a DCR are computed and compared with each other for the commercial measures
that changing types of stator windings and air gap length.

4.1. Full-Load Performance

Figures 7–14 show the calculation results of the 11 kW induction motor with the four stator
windings and the different air gap lengths based on the method indicated in Figures 1 and 2. In the
simulation, the input phase voltage is set as 220 V/50 Hz. The output torque is kept with the value
of 70.8 Nm at full load. The full-load temperature of the motors is assumed as 77 ◦C based on a
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preliminarily thermal analysis which is not presented in this paper. The no-load condition is set at
the synchronous speed of 1500 rpm. The no-load temperature is assumed as the room temperature of
15 ◦C.
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Figure 7. Calculation results of output power versus air gap length for the four stator windings.
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Figure 8. Calculation results of losses versus air gap length: (a) winding #1; (b) winding #2; (c) winding
#3; (d) winding #4.
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Figure 9. Calculation results of line currents versus air gap length for the four stator windings.
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Figure 10. Calculation results of efficiency versus air gap length for the four stator windings.
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Figure 11. Calculation results of power factor versus air gap length for the four stator windings.
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Figure 12. Phase current of ∆ winding versus time with 0.3 mm air gap.
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Figure 13. 3rd harmonic current amplitude of phase current of ∆ winding versus air gap length for the
four stator windings.
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Figure 14. Copper loss generated by 3rd harmonic current versus air gap length for the four
stator windings.
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Figure 7 shows the output power of the 11 kW induction motors with the four types of stator
windings with various air gap lengths. Since the rotating speed of the motors decrease slightly with the
increased air gap lengths for each stator winding, the maximum reduction of the output power of the
motor with each stator winding is less than 4 W by increasing the air gap length. Therefore, the output
powers for the motors with stator winding #1, #2, #3 and #4 are approximately 10.98, 11.02, 11.04
and 11.03 kW. Figure 8 compares the losses of the induction motor with stator windings and various
air gap lengths. As shown, the mechanical losses of the motor with the four windings are almost
constant because the speed for each stator winding is roughly constant. The full-load fundamental
rotor cage losses and no-load core losses reduce slightly with the increased air gap lengths. However,
the full-load copper loss and stray loss change greatly with the increased air gap lengths. As seen in
Figure 9, the line current of the motor raises with the increased air gap lengths so as copper losses.
The copper losses of the winding #1 and #4 are greater than those in #2 and #3 because the fundamental
winding factors of the #1 and #4 are relatively lesser. Although the proportion of the stray loss is not
high in the total losses, it decreases significantly with the increased air gap lengths. As a consequence
of low harmonics, the stray loss of the #3 winding is least in the four types of windings regardless
of any air gap length. Furthermore, the total losses of the motor with the four windings reach the
minimum value with air gap is set between 0.5 mm and 0.6 mm. Based on the results, the efficiency of
the windings can be obtained as shown in Figure 10. Obviously, the efficiency of the #3 is the highest
among all these windings. The efficiency of #2 is only slightly lower than the #3, while #4 is the lowest.
Besides, when air gap length is 0.6 mm, the efficiencies of #1, #2 and #3 reach highest while #4 can
reach highest when its air gap length is set as 0.5 mm.

Figure 11 shows the power factors of the motors. As seen, the power factors of the motors with
the four types of windings reduce with the increased air gap lengths. In particular, power factor of the
winding #3 is lowest and the power factors of #4, #2 and #1 all increase accordingly.

From the calculated results, it can be shown that winding #3 has the highest efficiency because it
owns the second highest winding factor with the lowest harmonics. Superficially, it seems that the
winding #2 is better than the #3 because the efficiency of the #2 is close to the #3 while its power factor
is a little bit higher than that in #3. In order to keep the fundamental MMF same as the other three
windings, the ratio of the number of turns for the winding #3 in series per phase of the inner ∆ to the
outer Y, N∆/NY, is 1.667. This particular value is not fairly close to

√
3 so that the electromagnetic fields

of the inner ∆ and the outer Y winding are distorted. Therefore, the power factor and the current of
the winding #3 are both deteriorated. If the ratio of the winding #3 is close to

√
3, as similar as its

counterpart does, i.e., #2 and #3 are 1.750 and 1.714, respectively, its power factor and current could be
close to that in #2. Furthermore, the efficiency of the #3 winding would be higher because of it consists
of smaller copper loss.

Although the suggested value by empirical equation is 0.5 mm, it should also be noted the best
air gap lengths of the efficiency should instead be 0.6 mm for the #1, #2 and #3 and 0.5mm for the #4.
The difference is caused possibly by the greater copper loss in the #4 winding. The relatively smaller air
gap in #4 winding results with less current so as copper loss, and hence resulting the highest efficiency.

Besides (3k)th (k = 1, 2, 3, . . . .) harmonics cause circulating zero-order currents in ∆ windings and
it will increase copper loss. The steady-state full-load phase currents of the ∆ winding in the four stator
windings with different air gap lengths can be calculated by 2D FEA. Figure 12 shows the steady-state
phase currents in the ∆ winding of the four stator windings with 0.3 mm air gap. It can be seen that
the current waveforms are distorted because of harmonic current. The waveform distortion of the
winding #2 and #3 is more severe than those in winding #1 and #4. The results imply the winding #2
and #3 contain more current harmonics. The 3rd harmonic current amplitude Ih3 is analyzed by using
FFT because it is the main harmonic content that causes circulating zero-order current whose results
are shown in Figure 13. Then, the stator copper losses caused by 3rd harmonic current are calculated
and shown in Figure 14. Since greater air gap reduces harmonic amplitude, all 3rd harmonic currents
of the four windings decrease with the increased air gap lengths. Furthermore, the 3rd harmonic
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current of the winding #2 is close to the winding #3 and they are much higher than those in winding #1
and #4. The winding #4 contains the lowest 3rd harmonic current because of its 2/3 pitch eliminates
(3k)th (k = 1, 2, 3, . . . .) harmonics. Therefore, copper loss caused by 3rd harmonic current of winding
#4 is close to zero. It is the lowest value among all four windings, although it is also the Y-∆ series
winding. The copper loss of 3rd harmonic current of the winding #1 is a litter higher than the winding
#4, while it is much less than those in winding #2 and #3. They are both Y-∆ series winding whose
inner ∆ winding has remarkable 3rd circulating current.

4.2. Overload Performance

In the Equation (12), the total stator and the total rotor leakage reactances are calculated by:

Xσ1 = Xs1 + Xd1 + Xe1 (22)

X′σ2 = X′s2 + X′d2 + X′e2 (23)

where Xs1 is stator slot leakage reactance, Xd1 is starting stator differential leakage reactance and Xe1

is starting stator end-winding leakage reactance, X′s2 is the rotor slot leakage reactance (reported to
the stator), X′d2 is the rotor differential leakage reactance (reported to the stator) and X′e2 is the rotor
end-winding leakage reactance (reported to the stator).

Equation (20) shows that the stator differential leakage reactance Xd1 is proportional to∑
∞

γ=2 (kγ/γ)2 which is the differential leakage coefficient. The calculated values of the differential
leakage coefficients of single-double layer ∆ winding with q = 4, and Y-∆ series winding with q = 2 for
various pitches are shown in Figure 15. It can be seen that the coefficients of Y-∆ series winding are
much less than those in single-double layer ∆ winding. It is because (6k ± 1)th harmonics, where k is
odd number, are suppressed in the Y-∆ winding.
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Figure 15. Differential leakage coefficient for the four stator windings.

Figures 16 and 17 show the per unit values of the stator differential leakage reactance x̂d1 and
rotor differential leakage reactance x̂′d2 (reported to the stator) of the four stator windings, with air gap
varying from 0.3 mm to 0.8 mm. Obviously, the stator and rotor differential leakage reactances decrease
with increased air gap. The reason is that the differential leakage reactance is inversely proportional
to equivalent air gap length, as described in the Equation (20). Due to minimum number of turns in
series per phase and harmonic contents, winding #3 has the lowest differential leakage reactance.
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Figure 17. Steady-state rotor differential leakage reactance versus different air gap for the four stator 

windings. 
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Figure 17. Steady-state rotor differential leakage reactance versus different air gap for the four
stator windings.

The per unit value of rotor slot leakage reactance x̂′s2 (reported to the stator) can be calculated
by [21]:

x̂′s2 =
8π fµ0LPout(Nkw1)

2

NrU2
n

·λs2 (24)

where kw1 is the fundamental winding factor, Nr is the number of rotor slots, λs2 is the rotor slot
leakage coefficient which is determined by the rotor slot geometry [21] including the rotor slot bridge.
As shown in Figure 18, the rotor slot leakage reactance x̂′s2 (reported to the stator) also varies with
air gap length. Due to the total length of the air gap and rotor slot bridge keeps constant, the rotor
slot leakage reactance increases at the beginning and then decrease with increased air gap which
causes the length reduction of the rotor slot bridge. The stator and rotor leakage reactance including
stator slot leakage reactance x̂s1, stator end-winding leakage reactance x̂e1 and rotor end-winding
leakage reactance x̂′e2 (reported to the stator), are summarized in Table 3. Furthermore, the reciprocal
of total stator and rotor leakage reactances of the 11 kW induction motors with four stator windings,
with various air gap lengths are calculated and shown in Figure 19. Regarding any air gap lengths,
winding #3 owns the highest value with its peak torque roughly 1.1 times larger than the other three
windings. The peak torque of winding #2 is somewhat greater than winding #4, and peak torque of
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winding #1 is close to the #2. Therefore, the induction motor with winding #3 consists of the better
overload performance than all the other three windings. Additionally, the overload capability can be
enhanced by increasing the air gap length.
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Table 3. Stator and rotor steady-state leakage reactances of the four stator windings.

Parameter (p.u.)
Winding No. #1 #2 #3 #4

x̂s1 0.0103 0.0100 0.0098 0.0099
x̂e1 0.0082 0.0087 0.0078 0.0087
x̂′e2 0.0046 0.0044 0.0041 0.0044

Energies 2019, 12, x FOR PEER REVIEW 17 of 24 

 

winding #1 is close to the #2. Therefore, the induction motor with winding #3 consists of the better 

overload performance than all the other three windings. Additionally, the overload capability can be 

enhanced by increasing the air gap length. 

0.3 0.4 0.5 0.6 0.7 0.8

0.055

0.060

0.065

0.070

0.075

0.080

unit]-per[ˆ '

2sx

Air-gap length g [mm]

 winding #1 

 winding #2

 winding #3

 winding #4

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

0
.0

7
5

0
.0

8
0

u
n
it

]
-

p
er

[
ˆ' 2

sx

A
ir

-g
ap

 l
en

g
th

 g
 [

m
m

]

 w
in

d
in

g
 #

1
 

 w
in

d
in

g
 #

2

 w
in

d
in

g
 #

3

 w
in

d
in

g
 #

4

 

Figure 18. Steady-state rotor slot leakage reactances versus different air gap for the four stator 

windings. 

Table 3. Stator and rotor steady-state leakage reactances of the four stator windings. 

Winding No. 

Parameter (p.u.) 
#1 #2 #3 #4 

 x̂s1  0.0103 0.0100 0.0098 0.0099 

 x̂e1  0.0082 0.0087 0.0078 0.0087 

 x̂e2
'   0.0046 0.0044 0.0041 0.0044 

0.3 0.4 0.5 0.6 0.7 0.8

6.0

6.5

7.0

7.5

8.0

8.5

9.0

]unit-[per  
ˆˆ

1
'

21  xx 

Air-gap length g [mm]

  winding #1

  winding #2

  winding #3

  winding #4

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

]
u
n
it

-
[p

er
  

ˆ
ˆ

1
'

2
1




x
x



A
ir

-g
ap

 l
en

g
th

 g
 [

m
m

]

  
w

in
d

in
g
 #

1

  
w

in
d

in
g
 #

2

  
w

in
d

in
g
 #

3

  
w

in
d

in
g
 #

4

 

Figure 19. Reciprocal of total leakage reactances versus different air gap for the four stator windings. 

4.3. Starting Performance 

In Equation (14), the total stator and the total rotor leakage reactance at starting stage is 

calculated by: 

111

1

)(1

1)(1)(1)(1 edsts

s

sts

estdstsst XXkXXXXX 





 
(25) 

Figure 19. Reciprocal of total leakage reactances versus different air gap for the four stator windings.

4.3. Starting Performance

In Equation (14), the total stator and the total rotor leakage reactance at starting stage is
calculated by:

Xσ1(st) = Xs1(st) + Xd1(st) + Xe1 =
λs1(st)

λs1
Xs1 + kstXd1 + Xe1 (25)
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X′
σ2(st) = X′s2(st) + X′d2(st) + Xe2 =

λs2(st)

λs2
Xs2 + kstXd2 + Xe2 (26)

where kst is the starting leakage flux saturation coefficient which is obtained by looking up the curve of
kst versus the virtual air gap flux density BL for the starting flux leakage [21]. Assuming the stator and
rotor slot MMF drop takes place only in the air gap for the starting flux leakage, the virtual air gap flux
density is calculated by the stator and rotor slot MMF of the starting flux leakage. Besides, the stator
and rotor slot MMF is calculated by the starting stator current Ist1. Note that Ist1 is obtained by iterative
calculation. Specifically, making an assumption of Ist1(0) is to calculate the total starting impedance Zst,
then the starting stator current Ist1(1) is computed based on the results of Zst. This iterative calculation
continues until the value of |Ist1(i+1) − Ist1(i)| (i = 0, 1, 2, . . . ) is less than an allowable error. λs is the
slot leakage coefficient, the subscript 1 denotes the stator, the subscript 2 denotes the rotor and the
subscript (st) denotes the starting parameter. λs1 and λs2 is determined by the stator and the rotor slot
geometry respectively. λs1(st) and λs2(st) is calculated by the stator and the rotor slot geometry and the
coefficient kst.

The results of the coefficient kst of the four stator windings versus air gap length are shown in
Figure 20. The starting stator and the rotor differential leakage reactances Xd1(st) and X′d2(st) can be
obtained by the results of the coefficient kst, Figures 16 and 17. The starting stator and rotor slot
leakage reactances Xs1(st) and X′s2(st) are also calculated through the coefficient kst and the steady-stator
values. Besides, the stator and rotor end-winding leakage reactances are the same as the steady-state
parameters in Table 3.
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Figure 20. Starting saturation coefficients versus different air gap for the four stator windings.

Assuming the starting rotor resistances (reported to the stator) keep constant for the different
stator windings and air gap length, their starting torques only vary with the magnitude of total starting
impedance. Thus, the starting torques can be seen to be directly proportional to the reciprocals of
magnitude square of total impedance at starting 1/Z2

st, as described in Equation (13). Figure 21 shows
the calculated per unit results of the parameters 1/ẑ2

st of the motors with different stator windings
and air gap lengths. It can be seen that they decrease with increased air gap lengths, with reduced
amplitudes confined within 5% for all the four windings. Besides, the parameter 1/ẑ2

st of winding
#3 is much higher than the other three windings. The parameters 1/ẑ2

st of the#1, #2 and #4 decrease
when the #4 is close to the #1 because the #4 winding has much greater stator resistance and maximum
number of turns in series per phase. Therefore, the starting performance of the winding #3 is superior
to the other three windings with its starting torque is roughly 1.3 times higher than the others.
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Figure 21. Reciprocal of magnitude square of total impedances at starting time.

5. Experimental Results

The 11 kW induction motor with four types of stator windings and three non-skewed die-cast
copper rotors corresponding to air gap length of 0.4, 0.6 and 0.8 mm are fabricated and tested to
validate the calculation results of the hybrid methodology. These stators and rotors can be assembled
into twelve 11 kW prototypes, respectively. No-load and full-load tests of the prototypes are carried
out in accordance with the standard of IEEE 112-B [30]. At the full-load test, the shaft torque method
is used to obtain data with higher accuracy [31]. Figure 22 shows one of the 11 kW prototypes with
its experimental test bench. It can be seen that a high precision torque-speed transducer is installed
between the prototype and a dynamometer to make sure the output torque is 70.8 Nm on full-load
condition. The experimental devices are summarized in Table 4. The signal of the torque-speed
transducer is used to test the output torque and speed of the motor shaft directly. The signal of three
current transducers and voltage from the output of voltage transformer are input into the high-precision
power analyzer.
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Figure 22. Experimental system.

Table 4. Experimental devices.

No. Name Model Error Quantity

1 Eddy-Current Dynamometer DW160 — 1
2 Three-Phase Transformer TSGC2 — 1
3 Digital Torque-Speed Transducer 500A ±0.2% 1
4 Power Analyzer NORMA 5000/PP64 ±0.03% 1
5 Current Transducer LT 58-S7 ±0.5% 3
6 Two-Arm Bridge QJ57P-1 ±0.05% 1
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The resistances of the stator windings are measured at the room temperature of 3 ◦C. The measured
data are shown in Table 5. It can be seen that the phase resistances at full-load test are smaller than the
calculated values in Table 2. The difference mainly comes from inaccurate calculation of end-winding
lengths which is acceptable.

Table 5. Experimental results of four 11 kW induction motors.

Parameter
Winding No. #1 #2 #3 #4

R1sm (@ 3 ◦C, Ω) R1∆ = 0.853 R2∆ = 0.402 R3∆ = 0.366 R4∆ = 0.474
R2Y = 0.138 R3Y = 0.132 R4Y = 0.131

R1sm (after full-load, Ω) R1∆ = 0.963 R2∆ = 0.428 R3∆ = 0.409 R4∆ = 0.527
R2Y = 0.147 R3Y = 0.147 R4Y = 0.146

Experimental results of efficiency and power factor are shown in Figures 23 and 24, respectively.
As shown, with the air gap length of 0.6 mm, winding #3 consists of the highest efficiency. It somehow
consists of lower power factor than the others, with differences increasing from 90% to 92.35% by
only changing the stator winding and air gap length. Figures 23 and 24 also show the relative errors
comparing the experimental and simulation results. The relative error ε is defined as:

ε =
xe − xs

xe
(27)

where xe is the experimental value, xs is the simulation value. It can be seen that the experimental
efficiency is close to the simulation results that all the relative errors are less than 2%. The relative
errors of the power factor are a little greater than the efficiency, especially for the winding #2, #3 and #4
which are all the Y-∆ series windings. The reason is the imbalance between the outer-Y winding and
the inner-∆ in the Y-∆ series windings in the external circuit model of the Y-∆ series windings coupled
with 2D FEA model, which causes the current distortion leading the current to lag behind the voltage.
That means the power factor is sensitive to the unbalanced end-winding leakage inductances in the
external circuit, in which the end-winding leakage inductances of the inner-∆ winding should be equal
to three times as much as the outer-Y winding. Although the leakage inductances are calculated by
analytical equations in [21], it is difficult to strictly meet this requirement. Therefore, the calculation
of the power factor for the winding #2, #3 and #4 is lower than the experimental value. That is why
the highest power factor in the experiment is the winding #2 rather than the simulation result of
winding #1. Fortunately, the relative errors of the power factor are less than 9% which fulfil the
engineering requirement. Furthermore, the influence of the power factor error is relatively small on
the computational precision of efficiency.

It is expected the efficiency can reach 90% if cast-aluminum rotor is replaced with cast-copper
rotor. Obviously the performance of winding #3 can be further improved by adjusting its ratio of the
number of turns in series per phase of the inner ∆ to the outer Y—N∆/NY. The weight of these four
windings is all around 9 kg which is a standard value for an 11 kW induction motor.
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Figure 23. Experimental results of efficiency versus air gap length for the four stator windings.
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6. Conclusions

The proposed hybrid methodology in this paper is realized by combining FEA and the
circuit equivalent circuit model through commercial software MATLAB and ANSYS/MAXWELL
to analyze the commercial measures (i.e., changing stator windings and adjusting air gap length)
of raising efficiency of induction motors. The methodology is used to compute the starting,
overload and full-load performances of induction motors. As an example, it is investigated that a
direct-on-line 11 kW DCR induction motor with different air gap lengths and four types of stator
windings (i.e., the single-double-layer ∆ winding with 5/6 pitch, the single-layer Y-∆ series winding,
the double-layer Y-∆ series winding with an 11/12 pitch, and the double-layer Y-∆ series winding with
a 2/3 pitch) thoroughly by the proposed hybrid methodology. The results show that the 11 kW DCR
induction motor selecting the double-layer Y-∆ series winding with an 11/12 pitch and 0.6 mm air
gap has the highest efficiency. Furthermore, the calculation results are validated by the experimental
results of fabricated prototypes. In conclusion, the hybrid methodology presented in this paper is
effective to analyze and determine the commercial measures of changing stator winding types and
adjusting air gap length to improve the efficiency of induction motors.
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Appendix A

This appendix presents a substantial portion of the MATLAB codes for the no-load simulation of
the proposed hybrid methodology shown in Figure 1. It is not difficult to write other MATLAB codes
of the proposed hybrid methodology based on the no-load example and the introduction in this paper.

%—————————————————————————————————————————-
%Invoke ANSYS/MAXWELL
AnsoftApp = actxserver(’Ansoft.ElectronicsDesktop’);
Desktop = AnsoftApp.GetAppDesktop();
Desktop.RestoreWindow;
Project = Desktop.OpenProject([FilePath,pro_nm,’.aedt’]);
% FilePath is the save path of MAXWELL file, pro_nm is the project name
%—————————————————————————————————————————-
% Dimension parameters
D1out=260; %mm, stator outer diameter
D1in=180; % mm, stator innerr diameter
. . . . . .

%Setting parameters
nr0=1500; %rpm,no-load speed
StartCvs=’1.4s’; %time starting output results
StopCvs=’1.5s’; %time ending output results
StepCvs=’1e-004s’; %time step
. . . . . .

Design=Project.SetActiveDesign(NoLoad_nm); % NoLoad_nm is the name of no-load simulation
invoke(Design,’ChangeProperty’,{’NAME:AllTabs’,{’NAME:LocalVariableTab’, . . .
{’NAME:PropServers’,’LocalVariables’},{’NAME:ChangedProps’, . . .
{’NAME: D1out’, ’Value:=’, [num2str(D1out),’mm’]}}}}); %Set values of dimension parameters
. . . . . .

Module = Design.GetModule(’ModelSetup’);
invoke(Module,’EditMotionSetup’, ’MotionSetup1’, {’NAME:Data’, ’Move Type:=’, ’Rotate’, ’Coordinate System:=’,...
’Global’, ’Axis:=’, ’Z’, ’Is Positive:=’, true, ’InitPos:=’, ’0’, ’HasRotateLimit:=’,...
false, ’NonCylindrical:=’, false, ’Consider Mechanical Transient:=’, false,...
’Angular Velocity:=’, [num2str(nr0),’rpm’]}); %Set values of setting parameters
Design.Analyze(’Setup1’); %Run no-load simulation
%—————————————————————————————————————————-
% no-load output results
Module=Design.GetModule(’ReportSetup’);
invoke(Module,’CreateReport’, ’Loss Plot 1’, ’Transient’, ’Rectangular Plot’,...
’Setup1: Transient’, {’Domain:=’, ’Sweep’}, {’Time:=’, {’All’}, ’fractions:=’, {...
’Nominal’}, ’nr:=’, nr0}, {’X Component:=’, ’Time’, ’Y Component:=’, {...
’CoreLoss’}}, {}); %no-load core loss
invoke(Module,’ExportUniformPointsToFile’,’Loss Plot 1’,[FilePath,’CoreLossNoLoad.csv’], . . .
StartCvs, StopCvs, StepCvs); %save the no-load core loss results to .csv file
. . . . . .

dt=rdcsv_V4(’CoreLossNoLoad.csv’); % rdcsv_V4 is user-defined function dealing with results
t=dt(:,1);
Pcoreloss_NoLoad=dt(:,2);
tlength=t(length(t))-t(1);
. . . . . .

PcorelossNoLoad_av=trapz(t,Pcoreloss_NoLoad)/tlength;

. . . . . .



Energies 2019, 12, 4497 23 of 24

References

1. Al-Badri, M.; Pillay, P.; Angers, P. A novel algorithm for estimating refurbished three-phase induction motors
efficiency using only no-load tests. IEEE Trans. Energy Convers. 2015, 30, 615–625. [CrossRef]

2. Boldea, I.; Nasar, S.A. The Induction Machines Design Handbook; CRC Press: Boca Raton, FL, USA, 2002;
pp. 413–431.

3. Melfi, M.J.; Evon, S.; McElveen, R. Induction versus permanent magnet motors. IEEE Ind. Appl. Mag. 2009,
15, 28–35. [CrossRef]

4. Gieras, J.F.; Saari, J. Performance Calculation for a High-Speed Solid-Rotor Induction Motor. IEEE Trans.
Ind. Electron. 2012, 59, 2689–2700. [CrossRef]

5. Kirtley, J.; Cowie, J.; Brush, E.; Peters, D.; Kimmich, R. Improving induction motor efficiency with die-cast
copper rotor cages. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa,
FL, USA, 24–28 June 2007; pp. 1–6. [CrossRef]

6. Agamloh, E.B.; Cavagnino, A. High efficiency design of induction machines for industrial applications.
In Proceedings of the 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD),
Paris, France, 11–12 March 2013; pp. 33–46. [CrossRef]

7. Malinowski, J.; McCormick, J.; Dunn, K. Advances in construction techniques of AC induction motors:
Preparation for super-premium efficiency levels. IEEE Trans. Ind. Appl. 2004, 40, 1665–1670. [CrossRef]

8. Parasiliti, F.; Villani, M.; Paris, C.; Walti, O.; Songini, G.; Novello, A.; Rossi, T. Three-phase induction
motor efficiency improvements with die-cast copper rotor cage and premium steel. In Proceedings of the
SPEEDAM’04 Symposium, Capri, Italy, 16–18 June 2004; pp. 338–343.

9. Yoon, M.; Jeon, C.; Kauh, S.K. Efficiency increase of an induction motor by improving cooling performance.
IEEE Trans. Energy Convers. 2002, 17, 1–6. [CrossRef]

10. Li, W.; Wang, P.; Li, D.; Zhang, X.; Cao, J.; Li, J. Multiphysical Field Collaborative Optimization of Premium
Induction Motor Based on GA. IEEE Trans. Ind. Electron. 2018, 65, 1704–1710. [CrossRef]

11. Mallik, S.; Mallik, K.; Barman, A.; Maiti, D.; Biswas, S.K.; Deb, N.K.; Basu, S. Efficiency and Cost Optimized
Design of an Induction Motor Using Genetic Algorithm. IEEE Trans. Ind. Electron. 2017, 64, 9854–9863.
[CrossRef]

12. Bhuvaneswari, R.; Subramanian, S. Optimization of three-phase induction motor design using simulated
annealing algorithm. Electr. Power Compon. Syst. 2005, 33, 947–956. [CrossRef]

13. Chun, Y.D.; Han, P.W.; Choi, J.H.; Koo, D.H. Multiobjective optimization of three-phase induction motor
design based on genetic algorithm. In Proceedings of the 2008 18th International Conference on Electrical
Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–4. [CrossRef]
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