
MIT Open Access Articles

Hybrid Risk-Aware Conditional Planning
with Applications in Autonomous Vehicles

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: X. Huang, A. Jasour, M. Deyo, A. Hofmann and B. C. Williams, "Hybrid Risk-Aware
Conditional Planning with Applications in Autonomous Vehicles," 2018 IEEE Conference on
Decision and Control (CDC), Miami Beach, FL, 2018, pp. 3608-3614.

As Published: http://dx.doi.org/10.1109/cdc.2018.8619771

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/123989

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/123989
http://creativecommons.org/licenses/by-nc-sa/4.0/

Hybrid Risk-Aware Conditional Planning
with Applications in Autonomous Vehicles

Xin Huang∗, Ashkan Jasour∗, Matthew Deyo, Andreas Hofmann and Brian C. Williams

Abstract— In this paper, we address the problem of risk-
aware conditional planning where the goal is generating risk
bounded motion policies in the presence of uncertainty. The
problem is modeled as a chance-constrained Partially Ob-
servable Markov Decision Process (CC-POMDP) with one
controllable agent and multiple uncontrollable agents, each of
which can choose from a set of maneuver actions. The risk
is defined as the probability of the controllable agent violating
safety constraints. Off-line computations include generating a li-
brary of probabilistic maneuvers for the controllable agent and
planning an initial motion policy to execute. During runtime, the
conditional planner can quickly look up maneuver sequences to
ensure risk bounds as the world around our agent evolves. We
introduce the iterative RAO* heuristic search algorithm, which
iteratively generates risk bounded conditional plans over a
finite horizon. We demonstrate the performance of the provided
approach on two planning problems of autonomous vehicles.

I. INTRODUCTION

An important challenge in enabling safe motion planning
for intelligent robotic systems is to assess risks under un-
certainties and account for them in planning. This challenge
is seen in the development of autonomous vehicles, which
need to deal with uncertainties in road surface conditions,
pedestrian behavior, and other drivers on the road. Consider,
for example, the scenario where a vehicle enters a busy
intersection with the intention of turning right (see Fig. 1),
while another vehicle is turning ahead and pedestrians are
crossing. The autonomous system must be aware of these
other agents and the changing environment, be able to predict
possible outcomes, and consider the risks before making
decisions.

The Markov Decision Process (MDP) is one of the most
widely used frameworks for decision making in situations
with uncertainties. A number of extensions to MDP have
been proposed to achieve the goal of generating optimal
plans while bounding risks under uncertainties. For example,
[1] and [2] modeled the risk in a constrained POMDP
(CPOMDP) framework by assigning unit costs to states
considered too risky. Another extension is proposed in [3],
where a more flexible definition of risk allocation is used
in a chance-constrained POMDP (CC-POMDP) framework.
The framework has been studied in various problem domains

This work was partially supported by the Toyota Research Institute (TRI).
However, this article solely reflects the opinions and conclusions of its
authors and not TRI or any other Toyota entity.

*These authors contributed equally to the paper.
1Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA
{huangxin,jasour,mdeyo,williams}@mit.edu,
hofma@csail.mit.edu

Fig. 1: A motivating vehicle driving scenario.

[4], [5], [6], [7] and proved to be useful when dealing with
uncertainties. In this paper, we focus on this framework,
which allows us to bound the probability of violating chance
constraints across a conditional plan.

Motion planning for autonomous vehicles requires a con-
tinuous representation for maneuver actions based on the
dynamical system of the vehicle. Our approach takes advan-
tage of a probabilistic representation for vehicle maneuvers,
which allows us to model the vehicle trajectories accurately
and determine the chance constraints such as collisions
efficiently.

Another challenge of our work is to model the behaviors
of multiple agents in the planning procedure. Many investi-
gations [8], [9] have focused on coordination between agents
to achieve the maximum joint utility. However, in real world
applications such as autonomous vehicles, we only have
control over our own vehicle and there is no communication
between vehicles. In addition, a multi-POMDP model [10]
is used to represent each vehicle’s behavior as individual
decision components, where each uncontrollable component
only produces one deterministic action. Such an approach
is not robust if the vehicle can take multiple actions with
similar likelihoods. In order to address these limitations, we
develop a multi-agent model that takes all possible actions of
uncontrollable agents into consideration. Using our approach,
each agent can be modeled independently according to their
specific configurations and driving styles.

Our contributions are four-fold. First, we propose a sys-
tematic definition of planning with multiple agents in CC-
POMDP domains. We also develop a novel representation
for continuous actions. Our third contribution is an online
risk-aware planner that takes a receding horizon approach
to conditional planning and makes iterative updates to the

policy during execution. Lastly, we verify our algorithms in a
Unity simulator that accurately models the vehicle dynamics
as well as the road environment.

II. RELATED WORK

A. POMDP Planning

Several approaches exist for solving POMDP planning
problems. For instance, [11] partitions the action space and
solves for a sequence of POMDP policies using a hierar-
chical algorithm. Point-based methods [12], [13] are proven
successful in scaling to large problems by approximating
the value function. Recently, an anytime approach [14], [15]
is proposed for online POMDP problems by searching for
approximately optimal policy while maintaining a balance
between the policy size and the value estimation accuracy.
Despite the success of these algorithms, they fail to deal
with uncertainties and risk constraints in many real world
problems such as autonomous driving.

B. Risk-bounded AO*

Chance-constrained POMDP can be solved using ap-
proaches such as linear programming and value iteration
[16], [17], [1], [2]. In this paper, we focus on augmenting
a conditional planner called Risk-bounded AO* (RAO*) [3]
that finds optimal policies with maximum expected reward
over a finite horizon while satisfying all chance constraints.
Similar to the AO* algorithm [18], RAO* utilizes a value
heuristic to guide the search towards optimal policies. It also
uses a risk heuristic to prune the search space, removing
high-risk branches that violate the chance constraints. RAO*
has proven useful in challenging domains like power supply
restoration and autonomous science agents. In this paper,
we are identifying and addressing four limitations with the
existing RAO* planner.

As an offline conditional planner, RAO* is limited in
its ability to handle the size of long planning horizons.
Conditional planning and probabilistic domains are both
known for their search space complexity. Pruning the search
space using risk is domain dependent and less effective in
safer planning scenarios. The tractability of the search space
quickly becomes an issue when trying to reason through
driving scenarios where nearby vehicles each have complex
driver models to consider.

Secondly, using an offline planner requires more a pri-
ori knowledge of the world and confidence in the models
used. This limitation is quickly encountered when trying to
model driving scenarios in probabilistic domains. In order
to generate a finite horizon policy offline, we need to make
assumptions about driver models for many different vehicles,
which could prove wrong after additional observations are
made.

Thirdly, the way that execution risk is calculated can allow
low-probability high-risk actions to be included in our policy,
essentially discounting future risk in search spaces with high
branching factors. This side effect can be illustrated with the
simple example shown in Figure 2. A robot must navigate to
the goal, two cells to the right, while avoiding the fire in the

lower cell. Actions available to the robot are to move right,
climb up a row, or descend down a row. Unfortunately, icy
conditions in the two blue cells make moving right have
nondeterministic results shown by the red arrows, where
there is some probability of transitioning to a cell above or
below instead of to the right.

Fig. 2: Execution risk with slippery navigation.

Using RAO* to solve this problem, there are
transition probabilities and chance constraints that
result in a policy of moving right twice for the
most likely outcomes. For example, if the relevant
transition probabilities are Pr(center|start,moveRight)
= Pr(goal|center,moveRight) = 0.8 and
Pr(fire|center,moveRight) = 0.1, and the chance
constraint on reaching the fire state is 0.09, then RAO*
will result in a policy to move right twice (regardless of
whether we have uniform action costs or make climbing
more costly). While offline, the execution risk of reaching
the fire state is less than the chance constraint, sitting at
0.08. However, after executing the first action of moveRight,
the most likely next state is center, where the offline
policy wants us to moveRight again though execution risk
is now 0.1. This disconnect between offline execution
risk calculations and real risks during execution only gets
worse as the branching and depth of the policy increases,
sometimes resulting in a 100% probability of violating a
constraint when the system moves down the most likely
path. While those edge cases might only occur with the low
probability associated with their offline execution risk, it
requires us to depend entirely on our a priori probabilistic
models being accurate.

Finally, the original RAO* algorithm solves for problems
with discrete domains, thus an extension was necessary
for our objective of planning for autonomous vehicles with
continuous states and actions.

C. Continuous Maneuver Modeling

It is important to use a continuous representation for
maneuver actions of autonomous vehicles. One way to model
continuous maneuver actions is with Probabilistic Flow
Tubes (PFT) [19], [20], which represent a set of continuous
trajectories with common characteristics defined over a time
interval [t0, tg]. It is characterized as a set of cross-sectional
regions, where each cross section si stores the mean and
covariance of the associated common trajectories at time

ti (0 ≤ i ≤ g). PFTs are generated from demonstrated
trajectories to model realistic human motions. Although PFT
allows us to model maneuver actions probabilistically, the
method to generate PFTs in [19] only considers the spatial
states of the human-generated trajectories and ignores the
underlying control inputs, which makes it hard to replicate
the motions. We address this limitation by designing a set
of PFTs that capture the system dynamics and a set of
controllers for the vehicle to follow the desired motions.

Another widely-used approach is with funnels (or regions
of finite-time invariance) in [21], but they are not applica-
ble to calculate the collision probability between vehicles
because they do not model probabilistic variances of the
motions.

III. PROBLEM FORMULATION

In this work, we consider a planning problem in a multi-
agent modeling framework with a controllable agent R0

and a set of n uncontrollable agents R1, . . . ,Rn with no
communication between each other. Each agent can choose
from a library of actions modeled with preconditions and
effects, as defined in Definition 1.

Definition 1. (Action Model) An action model is a tuple
A = 〈Pre,Eff, c,PFT〉, where
• Pre: is a set of preconditions.
• Eff is a set of effects.
• c is the cost associated with the action.
• PFT is a probabilistic model representing the continu-

ous evolution of the action with uncertainties (with more
details in Section IV-A).

The action model is combined with belief states to repre-
sent each agent. The preconditions and effects are dependent
on factors internal and external to each agent, allowing us to
model different driver types and behaviors. The agent model
is defined as:

Definition 2. (Agent Model) An agent model is a tupleM =
〈x, xD,D,A, b0, pmf〉, where
• x is a set of continuous state variables.
• xD is a set of discrete state variables.
• D is the domain for xD.
• A is a set of action models that the agent can choose

from.
• b0 is an initial belief state over the state variables.
• pmf is a probability mass function calculating the like-

lihood that uncontrollable agents will execute an action
in their library given external and internal factors.

Once we have defined all agent models, an extended
version of a POMDP is used to define our problem of
planning with multiple agents, called a Chance-Constrained
Partially Observable Markov Decision Process with Multiple
Agents (CC-POMDP-MA):

Definition 3. (CC-POMDP-MA) A CC-POMDP-MA is a
tuple 〈M,S,A,O, T,O,C,B0, h, C,∆〉, inspired by CC-
POMDP [3]:

• M = [M0, . . . ,Mn] is a set of n + 1 agent models
defined in Definition 2.

• S is a set of composite-states including the states of all
agents from M.

• A is the set of actions for the controllable agent model
derived from M0.

• O is a set of observations.
• T : S×A×S → R is a state transition function between

composite-states according to M.
• O : S ×O → R is an observation function.
• C : S ×A → R is a cost function.
• B0 is the initial belief state over composite-states.
• h is the finite execution horizon.
• C = [C1, . . . , Cq] is a set of q constraints over composite

states S.
• ∆ = [∆1, . . . ,∆q] is a vector of probabilities for q

constraints that bound the chance constraints.

We define the execution risk of a policy π measured from
a belief state Bk to horizon h as:

er(Bk, C|π) = 1− Pr(
h∧
i=k

Safei(C)|Bk, π), (1)

where Safek is a Bernoulli random variable indicating
whether the system has not violated constraint C at time k.
So the chance constraints for the entire system starting with
an initial belief state are defined as follows.

er(B0, Ci|π) ≤ ∆i, Ci ∈ 2|C|, i = 1, 2, . . . , q. (2)

The goal is to find an optimal, deterministic, and chance-
constrained policy π∗ given a CC-POMDP-MA tuple, such
that

π∗ = arg min
π

E

[
h∑
t=0

C(st, at)
∣∣∣π]. (3)

Using the three definitions within a multi-agent frame-
work, we successfully represent a motion planning problem,
where the autonomous controllable vehicle drives in an
environment with agents that have uncertain motions and
partially observable states such as positions and velocities.

IV. APPROACH

A. Probabilistic Flow Tube with Feedback Control

For each action model, we need to represent the contin-
uous dynamics of the maneuver action with uncertainties.
In the following section, we introduce an extension to
probabilistic flow tubes (PFT) [19] such that it is able to
incorporate vehicle dynamics.

Each action is modeled with a discrete-time continuous-
state time varying dynamical system modeling the continu-
ous changes of the action:

xk+1 = Akxk +Bwk wk +Bkuk (4)

where x ∈ Rnx is the continuous state, u ∈ Rnu is the
continuous control input, and w ∈ Rnw is the uncertainty
of the controllable agent at discretized time that models
disturbances, uncertain system model parameters, and sensor

noises. We assume that w is a Gaussian processN (mw
k ,Σ

w
k)

and the initial state x0 is a Gaussian random variable
N (m0,Σ0).

Library of Maneuver Trajectories LT : We start by
designing a library of maneuvers for the vehicle agent.
This library consists of open loop trajectories and associated
open loop control inputs that the agent could choose during
runtime. Fig. 3 shows the library of maneuvers used for
the highway driving problem in Sec. V. This library was
generated with spline polynomials and includes maneuvers
for merging left, right, and moving forward with different
velocities. Although the demonstrated maneuvers are tailored
to highway scenario, our approach can design and choose
arbitrary maneuvers depending on the problem domain and
the driving environment.

Fig. 3: Library of maneuvers for vehicle.

Library of PFTs LPFT : For a given dynamical system
in Eq. (4) and control input uk, PFTs are defined as prob-
abilistic predictions on the states over the finite horizon.
Due to the Gaussian uncertainties x0 and w, the state of
the dynamical system at each time k is Gaussian random
variable xk ∼ N (mk,Σk). The evolution of the mean and
covariance of states is governed by:

mk+1 = Akmk +Bwk mw
k +Bkuk (5)

Σk+1 = AkΣkA
′
k +Bwk Σw

kB
′w
k (6)

Hence, each PFT over finite horizon N is defined as
a tuple of 〈m̄, Σ̄〉, where m̄ = [m1, ...,mN]′ and Σ̄ =
[Σ1, ...,ΣN]′. Given the control input, m̄ and Σ̄ of a PFT
are as follows:

m̄ = Gxxm0 +Gxww̄ +Gxuū (7)

Σ̄ = GxxΣ0G
′
xx +GxwΣ̄wG′xw (8)

where, Gxx, Gxw, and Gxu are matrices calculated by
repeated multiplication of the system matrices in (5) and (6)
[22], [23].

Once we generate a library of PFTs, we can calculate
the collision risks between vehicles using the intersection of
cross-sectional Gaussians.

Library of Controllers LC : For each trajectory in this
library, we design a controller for the controllable agent to

follow the trajectory while also minimizing the size of the
uncertainty. One can use the LQR technique to design a
closed loop controller to follow the open loop trajectories
in the library. In the presence of uncertainty wk, the mk

follows the open loop trajectories. However, the uncertainties
(e.g., Σk) increase while tracking. To minimize the rate of
uncertainty growth, and to follow the open loop trajectories
better, we instead use a covariance minimization technique.

In the covariance control we look for feedback matrices
Gk ∈ Rnu×nx so that control input uk = Gkxk minimizes
the covariance of joint Gaussian distribution over the trajec-
tory X = {x1, ...,xN} as follows:

min
{Gk}N−1

1

Cov(X)

s.t {Gk}N−1
1 ∈ G

(9)

where G is a convex set representing the constraints on the
feedback. To solve (9), we implement the approach provided
in [24], [25], where a stabilizing controller for uncertain
linear dynamical systems via covariance minimization is
designed using the convex optimization method:

min
{Mk}

N−1
1 ,{Gk}

N−1
1

λmax(M)

s.t

M =

S1 +M1 −Ã′1S1 0 . . . 0

−S1Ã1 S2 +M2 −Ã′2S2 . . . 0

0 S2Ã2 S3 +M3 . . . 0
...

...
... . . .

...
0 0 0 . . . SN−1 +MN−1

[
S−1
k Ã′k
Ãk Mk

]
� 0, k = 1, ..., N − 1

Ãk = Ak +BkGk,

{Gk}N−1
1 ∈ G

(10)

where λmax is the largest eigenvalue and Sk = Σ
′w
k . Hence,

the controllers associated with each maneuver in the library
can be computed as follows:

uk = Gkxk + uoj (11)

where uoj is open loop controller to follow the j-th trajectory
in the library, and Gk is the solution of optimization in (10).

B. Risk-bounded Conditional Planner with Iterative Updates

In this section, we present an iterative RAO* (iRAO*)
algorithm that takes a receding horizon approach to con-
ditional planning and makes iterative updates to the policy
during execution. The algorithm is detailed in Algorithm
1 and it calls various parts of the RAO* offline planner
as described by Santana [3], including the RAO*, expand-
policy, and update-policy functions.

Algorithm 1 Iterative RAO*
Input CC-POMDP-MA H , library of PFTs LPFT , library
of controllers Lc
Output Optimal policies at each step through execution.

1: G, π, s0 ← RAO*(H , LPFT)
2: scurrent ← s0

3: action← get-action(π, scurrent)
4: execute(action, Lc)
5: while not at goal do
6: snew ← observations()
7: pnew ← Pr(snew|scurrent, action)
8: G, π ← iterative-step(G, π, snew, pnew)
9: execute(get-action(π, snew), Lc)

10: scurrent ← snew

Algorithm 2 iterative-step
Input Explicit graph G, policy π, state s, probability p.
Output Expanded graph G′, updated policy π′.

1: mark s as new root in G
2: remove previous root and sibling branches of s
3: G′ ← update-risk-pruning(G, p)
4: while π has some leaf shorter than horizon do
5: n,G′ ← expand-policy(G′, π)
6: π ← update-policy(n,G′, π)
7: π′ ← π
8: return G′, π′

Algorithm 3 update-risk-pruning
Input Explicit graph G, probability p.
Output Updated graph G′.

1: G′ ← G, Z ← set containing root of G′

2: while Z 6= ∅ do
3: n← Z.pop()
4: for each action a from n do
5: for each child c of n from a do
6: Multiply execution risk heuristic her by 1/p
7: Compute new execution risk bounds
8: if her of any c violates risk bound then
9: Prune all c for action a from n

10: Add remaining children of n to Z
11: return G′

The observations function in the main algorithm of iRAO*
is domain dependent and not detailed any further in this
paper. The execute function controls the controllable agent by
looking up the specified action in the pre-computed library
of controllers. The iterative-step function in Algorithm 2
updates the root in the policy, removes unused branches,
and expands the planning horizon. The update-risk-pruning
function in Algorithm 3 is a variation on the expand-policy
function, but in this case we do not need access to the
POMDP models. Instead, the update-risk-pruning function
performs a quick update to the execution risk heuristic her

using the transition probability of the new state and an update
to the risk bounds. The equations used to calculate execution
risk bounds are detailed in [3]. While execution risks are
model specific, the risk of collision between the vehicle
agents in the RAO* function is computed with a Monte Carlo
sampling method between maneuver PFTs stored in LPFT .
Pruning is complete after all nodes in the explicit graph G
have had her updated and actions that exceed the chance
constraints have been removed.

The iterative updates to the policy are not bound to a spe-
cific change in the problem or domain. Instead, the updates
can come from belief state updates, observed variations in the
models, or the addition of new models in the world during
execution. This is useful when planning maneuver policies
for autonomous vehicles because of the many uncertainties in
driving conditions. Expansion of the policy uses the previous
search space and execution risk calculations to make efficient
updates and allow for quick replanning. The ability to re-
assess and update the policy during execution ensures that
risky actions are replaced as the likelihood of different
outcomes evolve. This also enables us to have plans that
meet the chance constraints at all times.

V. RESULTS

This section presents two planning problems in the context
of autonomous vehicles in order to compare the performance
of our algorithm with RAO* and show its online planning
capability. Both problems are created in a Unity simulator
where vehicles and road environments are simulated using
physics engines. In the simulations we use the Dubins vehicle
model, where the states include position and velocity xk =
[xk, yk, vxk

, vyk]′. The matrices of the vehicle dynamics in
(4) are:

A =

1 0 ∆T 0
0 1 0 ∆T
0 0 1− ∆Tb

m 0
0 0 0 1− ∆Tb

m

B =

0 0
0 0

∆T
m 0
0 ∆T

m

(12)

where m = 1000kg, b = 250N.s/m, ∆T = 0.5s. The
control inputs are forces uk = [Fxk

, Fyk]′. The uncertainty
parameters are: mw

k = [0, 0, 0, 0]′, Σw
k = 0.005I4×4, and

Bwk = I4×4. Fig. 3 shows the library of maneuvers.
We solve the convex optimization problem (10) using

MATLAB convex programming package CVX [26] with
constraints −1000 ≤ G1 = G2 = ... = GN ≤ 1000
and N = 28 (length of the maneuvers). Obtained feedback

is Gk =

[
−588.0213 0 −999.9998 0

0 0 0 −709.4715

]
,∀k.

Fig. 4 shows a library of PFTs under the designed feedback
control in Eq. (11) obtained by Eq. (7) and (8).

A. Lane Changing

In the first scenario as shown in Fig. 5, the controllable
vehicle in yellow is approaching a highway exit while driving
in lane 3. There are two uncontrollable vehicles in red:
the fast vehicle in lane 1 and the slow vehicle in lane 2.
Each vehicle can choose from a set of actions modeled

Fig. 4: Library of maneuver PFTs under the feedback control.
Each PFT is a sequence of Gaussian probability distributions.

using Definition 1. For example, the merging left action
requires the left lane to the vehicle to be open and has a
consequence of the vehicle in the left adjacent lane. The cost
is defined as the execution time, and the means of PFTs are
depicted in dashed arrow lines in Fig. 5. For each agent, the
continuous state variables are the positions and velocities,
and the discrete state is the lane number. The goal of the
controllable vehicle is to continue down the road as soon as
possible and a chance constraint of 1% is used to bound the
risk of collision.

Although all contingencies are considered by the plan-
ner, the important probabilities for calculating risk in this
example are Pr(forwardFast|fastDriver) = 0.6 and
Pr(mergeRight|fastDriver) = 0.02 because of the pos-
sible outcome where the fast vehicle accelerates ahead to
merge into lane 2, shown in the right-most frame of Figure
5.

RAO* generates a policy with the most-likely maneuver
sequence of continuing forward to pass the careful vehicle
before merging left into lane 2 to avoid the highway exit.
The execution risk for this policy is 0.0072, so the chance
constraint is not violated before execution. The policy and
a progression of the most-likely states are shown across the
frames in Figure 5. The offline policy from RAO* violates
the chance constraint after the first action during execution,
where we consider the most-likely state transitions.

Fig. 5: Lane changing scenario with the offline policy.

In contrast, the iRAO* planner is able to maintain the
chance constraint through execution, shown in Fig. 6. After
the first action, the observed state of the aggressive vehicle,
which executed the forwardFast maneuver, indicates an

Fig. 6: iRAO* vs RAO* execution risk during execution

increase in the likelihood of the aggressive vehicle merging
into lane 2. The updated policies from iRAO* have the
autonomous vehicle slowing down after the first maneuver
and then safely merging into lane 2 behind the other vehicles.
This new policy was not selected at first due to action model
costs for maneuvers that are slower than desired velocities.

B. Highway On-Ramp

In the second scenario, the controllable vehicle is driving
in the right lane and there is a slow vehicle on the left. The
goal is to continue down the highway and a chance constraint
of 1% is used to bound the risk of collision. The initial
policy generated by iRAO* is to take forward maneuvers
shown in Fig. 7a. After the controllable vehicle continues
forward according to the policy, an additional vehicle starting
in the on-ramp lane is added to our problem model to test
the capability of our planner during execution. As shown in
Fig. 7b, iRAO* successfully finds a new optimal policy that
has the vehicle merge to the left lane after re-evaluating the
risks in the new environment.

(a) Initial policy for controllable vehicle in yellow.

(b) Updated policy after seeing the on-ramp vehicle.

Fig. 7: Online policy evolution of iRAO*.

VI. CONCLUSIONS

In this paper, we present improvements to the conditional
planner RAO* in a multi-agent environment that is sub-
ject to uncertainties. By modeling our problem in chance-
constrained POMDP domains, and representing continuous
actions using probabilistic flow tubes, our approach is able to
iteratively generate risk-bounded conditional plans over the
receding horizon. We present results from our approach using
a Unity simulator and driving scenarios that model stressful
traffic situations. The results presented show that the planner
is able to generate conditional sequences of probabilistic
flow tubes that ensure chance constraints are met through
execution and can be quickly updated when there are changes
in the models.

However, there are still limitations to the work presented.
The first is that actions in our multi-agent model are assumed
to take an equal amount of time to execute, allowing for
synchronized branching on the conditional plans. We plan to
address this limitation with further improvements to RAO*
to handle durative actions. There is also planned work on
improving the probabilistic flow tubes, so that they are able
to represent different classes of uncertainties and continu-
ous dynamical systems. Finally, we have plans to test our
algorithm in more scenarios such as a simulated four-way
intersection or on real vehicles.

REFERENCES

[1] P. Poupart, A. Malhotra, P. Pei, K.-E. Kim, B. Goh, and M. Bowling,
“Approximate linear programming for constrained partially observable
markov decision processes.” in AAAI, 2015, pp. 3342–3348.

[2] A. Undurti and J. P. How, “An online algorithm for constrained
pomdps,” in Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 3966–3973.

[3] P. Santana, S. Thiébaux, and B. Williams, “Rao*: An algorithm
for chance-constrained pomdps,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI16), 2016, pp. 3308–3314.

[4] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles
with uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1,
pp. 51–76, 2013.

[5] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A proba-
bilistic particle-control approximation of chance-constrained stochastic
predictive control,” IEEE transactions on Robotics, vol. 26, no. 3, pp.
502–517, 2010.

[6] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning
applied to control under constraints.” J. Artif. Intell. Res.(JAIR),
vol. 24, pp. 81–108, 2005.

[7] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained
dynamic programming with application to risk-aware robotic space
exploration,” Autonomous Robots, vol. 39, no. 4, pp. 555–571, 2015.

[8] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
mdps,” in Advances in neural information processing systems, 2002,
pp. 1523–1530.

[9] F. Wu, S. Zilberstein, and X. Chen, “Online planning for multi-agent
systems with bounded communication,” Artificial Intelligence, vol.
175, no. 2, pp. 487–511, 2011.

[10] K. H. Wray and S. Zilberstein, “Approximating reachable belief points
in pomdps,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on. IEEE, 2017, pp. 117–122.

[11] J. Pineau, N. Roy, and S. Thrun, “A hierarchical approach to pomdp
planning and execution,” in Workshop on hierarchy and memory in
reinforcement learning (ICML), vol. 65, no. 66, 2001, p. 51.

[12] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.”
in Robotics: Science and systems, vol. 2008. Zurich, Switzerland.,
2008.

[13] J. Pineau and G. J. Gordon, “Pomdp planning for robust robot control,”
in Robotics Research. Springer, 2007, pp. 69–82.

[14] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” in Advances in neural information
processing systems, 2013, pp. 1772–1780.

[15] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 454–460.

[16] J. D. Isom, S. P. Meyn, and R. D. Braatz, “Piecewise linear dynamic
programming for constrained pomdps.” in AAAI, 2008, pp. 291–296.

[17] D. Kim, J. Lee, K.-E. Kim, and P. Poupart, “Point-based value iteration
for constrained pomdps,” in IJCAI, 2011, pp. 1968–1974.

[18] N. J. Nilsson, Principles of artificial intelligence. Morgan Kaufmann,
2014.

[19] S. Dong and B. Williams, “Motion learning in variable environments
using probabilistic flow tubes,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on. IEEE, 2011, pp. 1976–1981.

[20] A. Hofmann and B. Williams, “Exploiting spatial and temporal flexi-
bility for plan execution of hybrid, under-actuated systems,” in AAAI
2006, 2006.

[21] M. M. Tobenkin, I. R. Manchester, and R. Tedrake, “Invariant funnels
around trajectories using sum-of-squares programming,” IFAC Pro-
ceedings Volumes, vol. 44, no. 1, pp. 9218–9223, 2011.

[22] L. Blackmore and M. Ono, “Convex chance constrained predictive
control without sampling,” in Proceedings of the AIAA Guidance,
Navigation and Control Conference, 2009, pp. 7–21.

[23] M. Dahleh, M. A. Dahleh, and G. Verghese, “Lectures on dynamic
systems and control,” A+ A, vol. 4, no. 100, pp. 1–100, 2004.

[24] K. Dvijotham, E. Todorov, and M. Fazel, “Convex control design via
covariance minimization,” in Communication, Control, and Computing
(Allerton), 2013 51st Annual Allerton Conference on. IEEE, 2013,
pp. 93–99.

[25] ——, “Convex structured controller design in finite horizon,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 1, pp. 1–10,
2015.

[26] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined
convex programming,” 2008.

