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Abstract

Time-dependent dynamic shortest path algorithms are one of the building blocks in
developing routing and control strategies in Advanced Vehicle- Highway Systems (IVHS).
We examine modifications of existing shortest path algorithms and examine their
suitability for dynamic networks. We conclude that such algorithms do not offer the
computaiional efficiency required for real-time applications. Consequently we develop a
Dynamic Distributed Shortest Path algorithm, which is based on network decomposition.
The algorithm successfully utilizes characteristics of urban transportation networks and
performs well with large networks decomposed into subnetworks with few cutset nodes.
The performance of the algorithm also depends on the number of destination nodes. We
also examine the construction of dynamic routing tables (which facilitate transriission of
time-dependent path information to users). Finally, in order to provide the information
required for routing recommendations efficiently we suggest and analyze different
strategies that combine routing table generation and dynamic shortest path calculations.
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Chapter 1 Introduction

Ever since the beginning of the automobile age, the number of vehicles on our
roads has been increasing dramatically. In the world in general and in the United States
and Europe in particular existing facilities are at cr soon approaching capacity. The
concept of Intelligent Vehicle-Highway Systerns or IVHS has been suggested for
improving the operations of the transportation system.

IVHS was introduced in the late 1980's as a collection of advanced technologies to
provide a solution to the congestion problem [Muku92, Stra92, BBHK92]. The basic
goal is *o incorporate a wide range of technologies to improve the transportation system
by better use of existing facilities in a safe, more energy efficient and environmentally
friendly manner.

A wide array of technologies makes up IVHS [Stra92]. Among those are traffic
engineering, computer science, computer hardware and software, control, electronics and
communications. Five main functional areas were defined [Stra92, Muku92]:

e Advanced Traffic Management Systems (ATMS) which deal with traffic management
problems such as traffic control, incident detection, route guidance, congestion
pricing, etc.

e Advanced Traveler Information Systems (ATIS) which provide various types of
inforration for drivers, using different road-side and on-board technologies. The
provided information can be about shortest or alternate paths to destination, actual
traffic conditions, nearest hotels, etc.

o Advanced Vehicle Control Systems (AVCS) which apply on-board advanced
technologies to make the travel safer, more comfortable, and energy efficient.
Examples of such technologies include cruise control, automatic breaking, night-vision
sensors, etc. Eventually they lead to automated highways.

o Commescial Vehicle Operations (CVO) mainly apply ATIS and ATMS technologies
and services to commercial vehicles, assisting in optimal routing, delivering and more
efficient and safe operation.

e Advanced Public Transportation Systems (APTS) use ATMS, ATIS and CVO
technologies to improve the operation of transit transportation.

The main building blocks of IVHS are ATMS and ATIS, which provide area-wide,
real-time, adaptive traffic control and route guidance reflecting dynamic traffic conditions.



ATMS and ATIS operate in real-time. The route guidance and traffic control measures
that are part of the ATMS/ATIS should be based on predicted traffic conditions
[Muku92]. Hence ATMS/ATIS needs traffic models to predict future travel times in the
network. One of the approaches used for traific prediction is based on the Dynamic
Traffic Assignment (DTA) Problem. Central in the algorithm for the s’blution of the DTA
problem is the dynamic shortest path problem.

Since ATMS and ATIS operate in real time, efficient algorithms for the solution of
the dynamic shortest path problem are required. Generation of shortest paths is indeed the
bottleneck operation in generating optimal traffic control and routing strategies. This
implies that if the shortest path problem can not be solved efficiently, then the
effectiveness of the overall system is also jeopardized. It is hence important to understand
the key issues associated with the time-dependent shortest path problem, and develop
approaches that solve the problem efficiently.

1.1 Research Objectives

The main objective of this research is to develop and evaluate different time-
dependent shortest path algorithms for real-time IVHS applications (time-dependent and
dynamic will be used interchangeably from now on in the thesis). The research also
suggests approaches for efficient construction and storage of routing tables (which
facilitate transmission of information to users).

The shortest path problem has been the subject of extensive research over the
years. However, the vast majority of the research deals with static networks. Research on
dynamic shortest path problems for transportation applications is limited (e.g., [KaSm92],
[KoXu], [ZiMa92]). These publications mainly focus on the theoretical issues and
assumptions of the problem and only one paper [ZiMa92] provides a new algorithm for
transportation applications. The performance of the algorithm though, is still not good
enough for real-time applications.

Hence, the main part of the thesis focuses on different dynamic shortest
path algorithms and the modifications that are required so that they can be used with
dynamic networks. In order to achieve running time improvements different strategies,
such as distributed algorithms, are examined. Since ATMS and ATIS systems may
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operate under different strategies and different network types, it is important to
understand the performance of the various algorithms under different circumstances.

The thesis also examines the construction of dynamic routing tables. Routing
tables provide the information which node (or link) should the driver visit (or traverse)
next in order to travel on the shortest path towards its destination. The type and amount
of information vary depending on the different architecture and implementations. The basis
for the construction of routing tables is the shortest path trees. The research is based on
the assumption that shortest path calculations are obtained centrally {or in distributed
computational structure but not on-board) and only the routing information is transmitted
to the vehicles. The system under consideration can be described as following:

e Information is updated in the system every dr minute.

+ Routing information is provided to the vehicle at each node. The routing
information can be transmitted to the vehicle through communications between the
node computer (beacon) and the vehicle on-board computer.

o The information that is transmitted to the vehicle holds routing instructions for all
possible destination nodes. This feature is assumed because of privacy issues. The
relevant information is selected by the on-board computer.

¢ Information is provided in the form of advising the vehicle which node to visit (or
link to traverse) next in order to travel on the shortest path to the desired
destination.

Once shortest path results are obtained the information has to be stored and in an
efficient format and transmitted to the vehicle on-board computer. Because of the time-
dependent environment, the information that is provided has to be time-dependent as well.
This implies the use of dynamic routing tables. Dynamic Routing Tables are complex
because of their time dimension. Shortest paths may change over time, thus routing tables
should have the capability to provide time-dependent information. In other words routing
tables should be able to give routing information from each node to every destination for
all instances in time. There is a need to design and to analyze approaches to store
efficiently the large amount of information that is generated by the shortest path
calculations for different time intervals.

Finally once the shortest path algorithms and routing table generation approaches
are developed, it is important to understand how combinations of these two approaches
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may be used to further enhance the performance and efficiency of shortest path
calculations.

1.2 Literature Review

The shortest path problem has been the subject of extensive research since the late
50's. Because shortest path problems are the major analytical components of numerous
network flow models, a number of algorithms were developed to find the shortest paths
between the nodes of the network. Even though there are many different algorithms in the
literature, the algorithms can be categorized by a handful of general methods [DGKK79].
The literature typically classifies the algorithms into two groups: label setting and label
correcting algorithms. The approaches vary in the method they use to update and
converge to the final node labels, (labels represent the shortest path distances from the
origin node). Label setting algorithms are more efficient with respect to worst-case
complexity, while label correcting algorithms apply to more general cases and offer much
more algebraic flexibility [AMOr93].

The first label setting algorithm was suggested by Dijkstra in 1959 [Dijk59]. Dial
suggested two better implementations of the Dijkstra's algorithm [Dial69], [DGKK79],
storing distance labels in so-called buckets. The algorithm is based on the property that
the distance labels that the label setting algorithms assign as permanent, are non-
decreasing. Dial's algorithm solves the problem in pseudo-polynomial time O(m+nC),
(where n is the number of nodes, m is the number of arcs, and C is the maximum arc cost
in the network) and performs well in practice [DGKK79]. Later development and
experience showed that another label setting algorithm, the binary-heap heap
implementation of the Dijkstra's algorithm, solves the shortest path problem in sparse
networks very efficiently. The binary-heap algorithm uses binary heap data structures to
maintain the temporary labelled nodes. The binary-heap implementation of the Dijkstra's
algorithm runs in O(m log n) time [AMOTr93]. In sparse networks this implementation
solves the shortest path problem faster than other label setting algorithms. A detailed
description of the algorithm is provided in Chapter 2.

Label correcting algorithms iteratively update the labels associated with each node
until the distance labels satisfy the shortest path optimality conditions. The first label
correcting algorithm was presented by Ford in 1956 [Ford56]. Bellman presented his
FIFO algorithm in 1958 [Bell58]. This algorithm is still thc best known polynomial time
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algorithm in the literature with running time O(nm). Pape, based on an idea due to
D'Esopo, developed a new algorithm that uses a dequeue as a sequence list for uprated
nodes [Pape74], [Pape80]. The interesting characteristic of this algorithm is that its
worst-case complexity is exponential, however in practice, is very efficient [GaPa88].
This is especiaily true in the case of sparse networks. Dial et. al. showed that in sparse
networks the dequeue implementation is the best among all available algorithms
[DGKK79]. According to Ahuja et. al. the dequeue implementation has possibly linear
running time in practice [AMOr93]. In chapter Z we discuss the dequeue implementation
in detail.

Because transportation networks are usually sparse networks, the binary-heap
implementation of Dijkstra's label setting algorithm and Pape's dequeue implementation of
the label correcting algorithm receive serious attention in this research.

Shortest path problems with time-dependent costs were first considered by Cooke
and Halsey in 1966 [CoHa66]. They have developed a function that uses the enhanced
version of Bellman's principle of optimality [Bell57] to obtain time-dependent shortest
paths from source nodes to a destination node. The algorithm assumes that the arc costs,
that are  discretized multiples of 4, are known for each
T={t,,t, +dt,ty +2*dt,....t, + K*dt) discrete time intervals. The time complexity of the
algorithm is O(n’K).

Dreyfus [Drey69] suggested a modification of Dijkstra's algorithm [Dijk59]
eliminating the restrictions of discretized time intervals and proving that the time-
dependent shortest path problem can be solved by the same worst case complexity,
O(n?), as that of the Dijkstra's algorithm in static networks. Hall [Hall87] considers
networks with randomly generated time-dependent networks and shows that in general
static algorithms cannot be applied for the time-dependent cases.

The introduction of dynamic travel times generates two questions:

a) Under what conditions can static shortest path algorithms be used for the dynamic
case?

b) What modifications to the standard algorithm are required?
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To demonstrate potential problems regarding the first question, let us consider the
following example:

1,1,1,11

N 555,11
©) 2
111,11

Figure 1.1: Sample Network for Circulation

d

where the numbers indicate link travel times starting at t=0.

Clearly the shortest path from ] to 3 in this case is the following sequence of nodes
1-2-1-2-3. The motorist is better off either waiiing at node 2 for conditions to improve or
cycling around node /. Recently Kaufman and Smith [KaSm92] and independently
Koutsopoulos and Xu [KoXu93] identified conditions under which the above situation
does not occur.

Let the depa.ture time of a motorist from node i be ¢; and the travel time on link

(i.f), ¢; ;). Then the arrival time at j is given by:
t;=t+c; ()

It is required thar the arrival time ¢; be a monotone increasing function of the departure
time ¢; from node i <o that there is no incentive for motorists to wait at node i. This

condition can be expressed as:

dt; d
—=1+—c, ()20
dar, -dy "’ ®)
which is equivalent to:
d

If all travel times on links in the network satisfy the above condition then no
motorist departing later from the origin can arrive earlier at the destination following the
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same path (we will refer to it as the FIFO condition), i.e., there is no waiting at any node
of the network (for the traffic conditions to change). Under these conditions there is no
benefit to wait in any node in the network and the standard shortest path algorithms (with
modifications) can be used to determine the correct time dependent shortest path.

Kaufman and Smith [KaSm92] proved that if the FIFO assumption holds, then
both label correcting and label setting algorithms for static networks, after modification,
can be used for solving the time-dependent problem correctly. They also proved that the
worst-case running time bound of the dynamic algorithm is identical to that of the static
one. The required modifications are introduced in Chapter 2 of the thesis.

Halpern discusses a time-dependent shortest path problem for a general case where
waiting at nodes is possible [Halp77]. Orda and Rom in [OrRo90] address the problem of
time-dependent shortest path considering three types of networks. In the first type, delay
is possible at any node; in the second, delays are permissible only at the origin node; and in
the third, vehicles are not permitted to delay anywhere. In [OrRo91] they suggest
improved algorithms and formulate the criterion that guarantees the existence of finite
optimal path. For IVHS applications only the second and third network types are useful.
The second type of network condition may be applicable in advanced ATMS systems,
where information may be provided, to commuters at their work place, to wait for better
conditions. The third type of network represents the general problem of time-dependent
shortest path calculations in urban transportation networks.

For IVHS applications, to the best of our knowledge, only one paper has been
published.  Ziliaskopoulos and Mahmassani [ZiMA92] introduce a time-dependent
algorithm that calculates the time-dependent shortest paths from all nodes to a destination
node. The algorithm is based on the Bellman's principle of optimality and, starting from
the destination nodes, it calculates the shortest paths operating backwards. The algorithm
assumes that travel times on each arc are given in the form
S={t,,t, +dt,ty+2%dt,....,t,+ K*dt}, where dr is very small; ¢; is the earliest departure
time from any origin node in the network and K is a large integer such that the time
interval covers the period of interest (the whole peak period for instance). The algorithm,
using dequeue data structures, iteratively expands the network backwards from the
destination node, while calculating shortest paths from all nodes to the destination node,
for all time intervals in S. The article claims that one of the advantages of the algorithm is
that it calculates the shortest paths not only for one but for all time intervals. However,
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for IVHS applications, the system only needs shortest paths for the time periods between
information updates (this interval is much smaller than the entire time horizon, which is
required by the algorithm in order to operate correctly). If K is large (as long as the
longest expected travel time in the network), then the number of shortest paths to be
solved from all nodes to the destination node is prohibitively large. For instant the article
reports that to calcualte shortest paths from all nodes to a destination node on a Cray
Y/MP-8 supercomputer, in a random network with 1000 nodes and 2500 arcs and K=240,
tukes 73.28 milliseconds, while in a random network of 2500 nodes, 8000 arcs and K=240
it takes 235.04 milliseconds. The shortest paths that the [ZiMA92] algorithm calculates
between the new update time and f,+K*dr have no use and only consume computer

resources. An additional disadvantage of the algorithm is that if the number of origin
nodes is small it needs to calculate almost from all nodes the shortest paths for all K time
intervals. The advantage of the algorithm is that it calculates shortest paths only to
destination nodes, however if the number of destination nodes is large it may loose its
advantage.

In the field of distributed algorithms the literature mentions two types of
decomposition based algorithms for solving the shortest path problem: linear
decomposition [Hul969] and tree decomposition [BIHu77] algorithms. For IVHS
applications Habbal [AIHA91] developed a network decomposition algorithm that solves
that static shortest path problem on a SIMD fine grained, massively parallel computer, the
Connection Machine. He compares the running times on different architectures and draws
conclusions on appropriate network decomposition strategies.

Though there are relatively many distributed parallel shortest path algorithms
developed, according to our knowledge, there is no time-dependent shortest path
algorithm developed.

The literature on routing tables deals exclusively with communication networks.
Most of them deal with the trade-offs between space and efficiency [PeUp89],[Sega77].
Many applications use different hierarchical routing techniques [K1Ka77],[PeUp89]. In
general the algorithms and assumptions of routing strategies developed for communication
networks can be used for IVHS applications only to a very limited extend. A main
difference is that in communication networks routing instructions are transmitted over the
same network as the messages. Furthermore, in transportation networks, the trade-off
between routing and space efficiency is more limited. Drivers expect correct travel
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information and if we want them to comply with the instructions, the provided information
should be reliable. Rerouting and longer paths due to storage optimization considerations
are not acceptable.

1.3 Thesis Organization

The remaining of the thesis is organized as follows. Chapter 2 introduces the time-
dependent transportation network environment and discuses the basic assumptions of the
problem. It compares different dynamic serial algorithms and introduces a new
Distributed Dynamic Shortest Path algorithm (DDSP). Chapter 3 analyses the effects of
the number of cutset nodes in the network and introduces some heuristics. It also
discusses the advantage of the DDSP algorithm in networks with special characteristics.
Chapter 4 deals with routing tables and the associated special issues due to the dynamic
nature of the problem. Finally Chapter 5 concludes the thesis by summarizing the results
and making suggestions for further research.
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Chapter 2 Dynamic Shortest Path Algorithms

2.1 Time Dependent Transportation Networks

Following the literature review and discussion of the dynamic shortest path
problem in Chapter 1 in this section we introduce the required modifications of the static
shortest path algorithms for the soiution of the dynamic shortest path problem. Since
transportation networks are sparse the algorithms of interest are the dequeue
implementation of the label setting algorithm and the binary-heap implementation of the
label setting algorithm.

2.1.1 Dynamic Travel Times Representation

Dynamic travel times, generated by a traffic prediction algorithm, are inputs to the
problem. These inputs are presented in a discrete form, i.e., for each time interval there is
an associated travel time. The form and representation of the data are important issues.
Ideally travel times should be represented by appropriate units so that all values are
integers and the discretization of time intervals should have the same resolution as the
travel time units. Then travel times can be stored in an array and the travel time on arc
(ij) at time ¢, wouid be easily found by looking up the ¢, -th entry of the cost-array of arc

(ij). Representing travel times in this form however has some drawbacks. In urban
networks link travel times may be represented in units of seconds and the size of the time
herizon should at least be equal to the travel time of an average longest-path in the
network. In large networks the time horizon could be in the order of 30 minutes. The
representation of 30 minutes in the network with seconds as time-units would require an
array of size 1800 elements for each arc. If we take into account that urban networks
contain many thousands of arcs and each integer value requires at least two bytes, then the
memory requirements (36 Mbytes) become very high.

To reduce the memory requirements we need to compress the data. A simple
approach is through aggregation. Time for example is discretized in half-minute, minute
or n-minute time intervals with the corresponding average travel time predictions assigned
in each interval. This aggregation however, may generate some complications and
inconsistency in the shortest path calculations, which should be resolved.
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If data is aggregated, i.e., time intervals are longer than the time unit of the system,
the FIFO property, which the original data satisfies, may be violated. Let us assume that
travel times are given in units of seconds and stored for each one minute interval, i.e.,
travel time is given at {¢,,t, + 1 min,z, +2*1min,...}. Since travel times are in seconds it

is likely that during the iterations of the shortest path algorithm we would need the travel
on a link at time ¢, with 1, + k <t <1, +(k+1) (see Figure 2.1.)

Cost

ﬂl

v

b t to+1 t+2 ty+3 time
t

Figure 2.1: Aggregation of travel times

One (naive) way to proceed in this case is to assume that travel time does not
change during a time interval, i.e., travel time remains constant for the entire interval. As
Figure 2.2 shows, this approach would easily create instances where the FIFO assumption
is violated, thus producing the incorrect shortest path results. The slope of the change in
travel times between times ¢, and ¢, for example, is smaller than -1. Thus, the FIFO

assumption is violated.
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Figure 2.2: Demonstration of the FIFO assumption violation under the constant travel
time aggregation strategy

One way to overcome the problem is to interpolate between the given cosi values
(see Figure 2.3). It can be easily proved that if discrete travel costs are consistent and the
FIFO assumption holds, i.e., the change in travel times between two intervals is not grater
than the interval size, then, with linear interpolation, the FIFO assumption always holds for
the interpolated values.

Cost
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v

to' 1 b 2 4 to+'3 time
t‘ t

Figure 2.3: Interpolation based travel time aggregation scheme
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2.2 Time-Dependent Shortest Path Algorithms

Assuming that the FIFO conditions are satisfied we now present two algorithms
(label-correcting and binary-heap label setting) and the needed modifications for the
solution of the dynamic one-to-all shortest path problem.

The general label updating function in the case of dynamic networks becomes:
d; = min(d; +c;(4;))

where, d; is the shortest path travel time from the origin node to node j (leaving at time
t,), and ¢; () is the cost function of link (i,j). The argument in the cost function ¢; () is the
arrival time at node i, which is given by d;. The optimality condition for the Dynamic

Shortest Path problem then becomes:
d(s, jto) < d(s,k,ty) +d(k, j,1,), forVj,keN

where s is the source node and d(k,/,t) represents the distance label (travel time) from node
k to node [ leaving k at time ¢.

2.2.1 Dynamic Label Setting Algorithm

Due to its efficiency for sparse networks, a binary-heap implementation of
Dijkstra's algorithm was chosen. The binary heap data structure requires O(log ») time to
perform every heap operation. Consequently the binary heap version of Dijkstra's
algorithm runs in O(m log n) time (where n is the number of nodes and m the number of
arcs). The binary heap implementation is slower than the original Dijkstra's algorithm for
completely dense networks, but it is faster for sparse networks [AMOr93]. Since
transportation networks are usuallv sparse the use of the binary heap implementation
provides a good alternative for testing.

The heap is a data structure that allows the following operations to be pertormed
efficiently on a collection H of objects, each with an associated number called its key
[AMOr93].
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create-heap(H): Creates an empty heap.
find-mini(H): Finds and returns an object i of minimum key.
insert(i,H): Inserts as new object i with a predefined key.

decrease-key(value,i,H): Reduces the key of an object i from its current value to "value",
which must be smaller than the key it is replacing.

delete-mini(i,H): Deletes object i with minimum key.

In the implementation of Dijkstra's algorithm the heap H is the set of nodes that
currently have finite temporary distance labels and the key of a node is its distance label.
With this modification the binary heap implementation of Dijkstra's algorithm is the
following:

algorithm Dynamic binary-heap ;
begin
create-heap(H);
d(j,zo):=INF for all j e N;
d(s,t,):=t, and pred(s):=-1
insert(s,H);
while H = & do
begin
find-mini(H); /*find node iin H with minimum distance label */
delete-mini(i,H); /*delete that node from the heap */
for each i,j € A(i) do
begin

value:= d(i,,) + ;;(d(i.t,))
if d(j.z,) > value then
if d(j,z,)=INF then
d(j.z, ):=value, pred(j):=i and insert(j,H)

else setd(j,z,):= value, pred(j):=i, and decrease-key(value j,H);
end;
end;
end;

A(i) is the vector of arcs emanating from node i, node s is the starting node, N is the set
of nodes in the network, dfi,z,) is the arrival time at i starting from node s at r,; pred(i)

holds the predecessor node to node i on the shortest path.

After termination of the dynamic binary-heap shortest path algorithm the labels d(j,¢,)

indicate the arrival time at node j and d(},z, )-, is the travel time on the shortest path from
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node s to j. By tracing back the predecessor list pred(j) it is easy to identify the shortest
path between s and each node j in the network.

2.2.2 Dynamic Label Correcting Algorithm

The Label Correcting Algorithm we tested, is a modified version of the general
Label Correcting Algorithm using a sequence list. The Generic Label Correcting
Algorithm's has worse case running time O(n*mC) while the Dequeue implementation has
a O(min(nmC, m2")) running time (where C represents the maximum cost value on links)

[AMOr93]. In practice, especially with sparse transportation networks the Dequeue
implementation has superior performance [DGKK?79].

In the Dequeue implementation (Pape's Algorithm) the sequence list is a dequeue.
The dequeue is a data structure that permits to store a list so that one can add or delete
elements from the front as well as the rear of the list [Pape74]. The dequeue
implementation always selects nodes from the front of the dequeue, but adds nodes either
in the front or in the rear. If the node has been in the List earlier, then the algorithm adds
it in the front; otherwise it adds it to the rear. This heuristic has the following intuitive
justification: if node i has previously appeared in the list, then some nodes, say /,2,..,k,
may have node i as its predecessor. Suppose further that the List contains the nodes
1,2,..,k when algorithm updates d(s,i,t) again. It is then advantageous to update the
distance labels of nodes I, 2,..,k from node i as soon as possible. Adding node i to the
front of the List tends to correct the distance labels of nodes /,2,..,k quickly and reduces
the need to re-examine nodes.

The modified dequeue implementation of the label correcting algorithm is the
following:
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begin
d(s,ty):= t,, pred(s)= -1;

d(j,z,):= INF for each je N - {S};

LIST := {s};

while LIST # @ do

begin
remove element i from beginning of LIST;
for each (i,j) € A(i) do
if d(j,z,) > d(i,t,)+c; ,-{d(i.to)} then
‘begin

d(ivto):= d(i'to )+Ci,j{d(i't0)};
pred(j):= i;
if j e LIST then

if j was on the LIST before then

add j to the front of LIST;
else
add j to the rear of LIST;
end;
end;

end;

2.2.3 Computational Results

In this section we evaluate the computational results of the two algorithms
calculating shortest paths from all nodes to all nodes for time r,. We run the dynamic

one-to-all algorithms sequentially from all nodes. The algorithms were tested on two real
networks (the Sudbury network with 205 nodes and 578 links, and the Boston network
with 4922 nodes and 11647 links) and three randomly generated grid networks with
20x20, 40x40, and 70x70 nodes. Each node has arcs adjacent to its neighbor nodes. For
every arc the dynamic travel costs are stored in an array of size 40. The time horizon was
longer than the longest expected travel time between any two nodes of the network. In the
Sudbury network each time interval represented 20 seconds, while in the Boston and the
grid networks each time interval corresponded to a 1 minute period. The travel costs of
Sudbury network were based on the output of a traffic simulation model under
development at MIT [Muku92]. The link travel times for the Boston network were based
on the free flow travel times and were randomly increased to incorporate dynamic
characteristics. The link travel times for the grid networks were randomly assigned and
they satisfy the FIFO assumption. Table 2.1 shows the computational results of the
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algorithms on a SUN-4 workstation. The code was written in C++ and was compiled
using the AT&T C++ compiler version 2.1.

average # of links/node Binary Heap Dequeue
Sudbury Network 2.81 3.8 sec 2.3 sec
(205 nodes, 578 links)
Grid Network 20x20 3.80 143 sec 8.8 sec
(400 nodes, 1520 links)
" Grid Network 40x40 3.90 244.0 sec 160.0 sec I
(1600 nodes, 6240 links)
Grid Network 70x70 3.94 1982.0 sec 1194.3 sec I
J (4900 nodes, 19320 links) Il
Boston Network 2.36 1866.0 sec 1086.4 sec

(4922 nodes, 11647 links)

Table 2.1: Computational results of dynamic binary heap and dequeue algorithms

The empirical results show that:

» Both dynamic shortest path algorithms solve the time-dependent shortest path problem

correctly.

» The label correcting dequeue implementation of the shortest path algorithm for all
network sizes outperforms the binary heap implementation of Dijkstra's algorithm.

» The computational time for large networks exceeds the acceptable time for real time

implementation.
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2.3 Strategies for improvement

In order to improve the performance of the algorithms so that they satisfy the real-
time requirements the following strategies for running time improvements were examined:

Strategy 1  Since only shortest paths to destination nodes are of interest the Label
Setting Algorithm may terminate when all destination nodes become
permanent.

Strategy 2 The algorithms are implemented in a multiprocessor/distributed
environment.

2.3.1 Strategy 1

In transportation networks the number of destination nodes is much less than the
number of total nodes in the network, and both algorithms give shortest paths to all nodes.
However, the label setting algorithm may terminate when the labels of nodes of interest
become permanent, but this is not true with the label correcting algorithm. Therefore, to
achieve running time improvements, we tested the idea of terminating the label setting
algorithm when all destination nodes are added to the list. Since in label setting algorithms
when a node enters the list it becomes a permanent node, it is possible to stop the one-to-
all shortest path calculation when all the destination nodes become part of the list.
Naturally, the time when all destination nodes are entered the list depends on the
distribution of destination nodes in the network, the actual dynamic characteristics of the
shortest path tree, and other characteristics of the network.

To test the method we run this algorithm on the Sudbury and Boston networks.
The experimental results on the modified binary heap implementation of the Dijkstra's
algorithm showed that a 10% running time improvement can be achieved. However, even
with this reduction the dequeue implementation of the label correctirig algorithm still
outperforms the binary heap implementation.
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2.3.2 Strategy 2

The basic approach in strategy 2 is based on a distributed dynamic shortest path
algorithm, which consists of the following steps (see also [AIHa91]):

1. decompose the network into a few subnctworks;

2. solve the time-dependent shortest path problem parallel in each subnetwork (using a
few processors);

3. organize partial results to gotain global solution;

Given this general approach the correctness of the algorithm requites that the
shortest paths are correctly determined in the following cases:

® both the origins and destinations are in the same subnetwork and the shortest path
belongs in its entity in the subnetwork (Figure 2.4 path a);

® both the origins and destinations are in the same subnetwork but the actual shortest
path loops out of the borders of the subnetwork (Figure 2.4 path b);

® the origin and destination nodes are in different subnetworks (Figure 2.4 path c).

Figure 2.4: Typical shortest paths in decomposed networks

The dynamic nature of the problem provides additional difficulty when combining
the partial results to obtain the global solution. Additional calculations are required to
obtain the correct solution.
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2.3.2.1 Network Decompaosition

The set of nodes C is called a cutset, if by eliminating those C nodes from the
network, the remaining network becomes disconnected {see Figure 2.5).

Cutset nodes

Figure 2.5: Decomposition of a network in four subnetworks with associated cutset nodes

After decomposition we introduce virtual links to the original network. These
virtual links are of three types:

® node-to-cutset virtuai links: link between each node of a subnetwork to all cutset
nodes of the same subnetwork (Figure 2.6a).

® cutset-to-cutset virtual links: a virtual link between each pair of cutset nodes in the
same subnetwork (Figure 2.6b). Note, that because of the double representation of
cutset nodes such virtual links will be defined in more than one subnetworks.

¢ cutset-to-rode virtual links: virtual links between each cutset node to all destination
nodes of the same subnetwork (Figure 2.6c). Note that the number of destination
nodes is less than the total number of nodes in the network. Creating virtual links only
to destination nodes, as we will see later, plays a very significant role in improving the
efficiency of the algorithm.
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c)

Figure 2.6: Types of virtual links

Because of the dynamic characteristics of the problem, virtual links have to be
time-dependent. To assign costs to a virtual link, for example between nodes ¢ and i, (sce
Figure 2.7), we have to solve the time-dependent shortest path problem between these
two nodes. The cost corresponding to ¢, time interval on the virtual link (c,i), is equal to

the travel time on the shortest path from node ¢ to node i leaving at ¢,. Similarly, the cost
corresponding to the r,, time interval on virtual link (c,i) equals to the travel time on the
shortest path leaving ¢ at r,,. Note, that travel times on shortest paths are represented

directly in virtual links even though, as Figure 2.7 shows, the actual shortest paths may be
different.
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Figure 2.7: Calculating costs for virtual links

With the introduction of virtual links we can create a two-level network structure,
where each individual subnetwork with its corresponding nodes and original links is at the
lower level, and all nodes with the virtual links are at the higher level. However, the
cutset-to-cutset virtual links are represented in both the low and high levels.

As Figure 2.8 shows the higher level network is connected with the low level
subnetworks through its virtual links. Note also, that at each level the network
components have to be dynamically changed and updated. This means that through the
different steps of the algorithm different sets of network components are actively
examined. Specifically, as we will see, at one step only the cutset-to-cutset virtual links
are represented, while at another step the node-to-cutset with the cutset-to-destination
node virtual links.
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Figure 2.8: Representation of the two level network structure

This two level network structure is an essential part of our approach to compose
the information obtained at the lower levels via the high level network representation. It is
important to mention that at the virtual link level the links from cutset nodes are pointing
only towards to the destination nodes. This characteristic reduces the required size of the
virtual network and improves its performance.

2.3.2.2 The Distributed Dynamic Shortest Path Algorithm

We now present the Distributed Dynamic Shortest Path Algorithm (DDSP) and its
implementation assuming that there are p2>1 processors available. We assume that the
network is already divided into exactly p (balanced) subnetworks and the virtual links,
discussed earlier, have been generated. Each processor is responsible for one subnetwork.
Each processor has its own memory and the information is exchanged by fast
communication among the processor units, (processor modules). We assume that p is
small number, i.e., the number of processors (computers) remains within the limits of the
transportation project's needs and budget constraints.

31



Distributed Dynamic Shortest Path Algorithm (DDSP)
STEP 1

Calculate shortest paths from cutset nodes to all nodes (including other cutsets) in
each  subnetwork 5; for all time intervals teT, (where

T={tyty +dt,1,+2*dt,...,1y+r*dr}, and r is the number of time intervals in the
time horizon). The network in this step consists only of those original links and
nodes that belong to the actual subnetwork s,, (i.e., virtual links are not part of the

network.) However, the costs are calculated for all cutset-to-destination and
cutset-to-cutset virtual links,

STEP 2

Find the shortest paths among all cutset nodes in the network for all te T, using
only cutset-to-cutset virtual links (see Figure 2.9). Update the new costs on
cutset-to-cutset virtual links, After this step the real shortest paths between cutset
nodes will be available for all subnetworks. Each processor module is responsible
for calculating the shortes: paths from Icl/p cutset nodes, where Icl is the cardinality

of the cutset. A virtual link (i,j)e s; is marked, if for at least one time interval, the
shortest path does not use exclusively links in 5;. All marked arcs then represent
shortest paths that connect cutset nodes through nodes in a subnetwork other than
S

:

dt=60

Figure 2.9: Example of application of Step 2 of the DDSP algorithm
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STEP 3

Find the shortest paths from all nodes to all other nodes in each subnetwork s;, for

t=t,. Each subnetwork consists of the original links and the cutset-to-cutset
virtual links marked in step 3. Update the costs on node-to-cutset virtual links.

STEP 4

On the virtual link network find the shortest paths from all nodes k in each
subnetwork to all destination nodes / such that ke s; and I &s,. Solve only for

1=1,.

In order to understand the algorithm better, Figure 2.10 shows the results of each step
on a small sample network; nodes 2 and 7 are the only destination nodes (dark gray on
Figure). In step 1 we calculate the shortest paths for time re T from node 3 and 4 in both
networks. The calculation of costs for the virtual links (3,4) and (4,3) in both
subnetworks is shown on the figure. As a result of the calculations the costs for the
cutset-to-destination virtual links, (3,2), (4,2), (3,7), and (4,7) are also obtained. Note,
that the costs on the virtual links are equal to the travel times on shortest paths in the
subnetwork for departures at different time intervals.

In step 2 we calculate the shortest paths between cutset nodes based only on the
cutset-to-cutset virtual links. In the case of Figure 2.10 this results in assigning costs to
virtual links (3,4) and (4,3) calculated in the right subnetwork, since for all time intervals
the shortest path between nodes 3 and 4 were smaller there. We also mark the virtual
links (3,4) and (4,3) in the left subnetwork implying that the shortest path between these
nodes went through the other subnetwork for at least one time period. For large networks
this step can be complicated. Suppose that we have a network divided into four
subnetworks. Figure 2.11 shows the cutset-to-cutset virtual links of this network (each
link represents two actual links in both directions.) The number of cutset-to-cutset virtual
links in each subnetwork grows rapidly with the number of cutset nodes in of subnetwork.
If c; is the number of cutset nodes in s;, then the total number of cutset-to-cutset virtual

links equals to c,.". To exploit parallelism we can assign I/p of the cutset nodes to each

processor module and calculate shortest paths from that set of nodes only. In each
processor module the underlying network is the same.
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Figure 2.10: Different steps of the DDSP algorithm in a sample network

34



Figure 2.11: Cutset-to-cutset virtual link network in Step 2

In this step we mark all links, whose costs were updated. If the cost of a virtual link is
updated, it means that the shortest path between the two nodes goes through another
subnetwork. Figure 2.12 explains this situation. As it is shown on the figure the travel
time on the shortest path (sp,) in subnetwork s,, between cutset nodes ¢, and c,, at time

t,, is 15 minutes. This travel ime was calculated in step 1 and the ¢, entry of virtual link
(¢,»c,) was set to 15. In step 2, however, we found that the travel time on the shortest
path (sp,) is 13 minutes and loops out of s,. Hence, the link (¢, ,c,) becomes marked and
the new value of 13 is updated on the ¢, entry of the virtual link. Now the real shortest
path is embedded in the subnetwork s, .

s2

dt=60

Figure 2.12: Update of travel times in cutset-to-cutset virtual links
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In step 3 we calculate the shortest paths between all nodes of the same subnetwork.
Each subnetwork consists of the original nodes and links of that subnetwork and all
corresponding cutset-to-cutset virtual links that were marked in step 2 (see for example
Figure 2.13). The virtual links are added in order to represent that part of the shortest
path that loops around to another subnetwork. Note, that if the shortest path between
node i and j does not loop out, then we do not need to add virtual link (i) to the
network. This observation reduces the average network size and improves the overall
performance of the algorithm.

In our sample network in Figure 2.10, the shortest path from node I to node 2 leaving
at ,, goes through nodes 3 and 4. The shortest path between the cutset nodes 3 and 4
goes through the other subnetwork, but since the virtual link (3,4) is part of the left-hand-
side network, that loop is represented in the virtual link and embedded in the left-hand-
side network. Therefore, the shortest path calculation between nodes / and 2 will result in
the correct path (I-3-4-2 as opposed to /-2). Note, that at this point the algorithm
suggests tnat a vehicle leaving node I at r, should travel to node 3 in order to be on the
shortest path. It is the responsibility of the right-hand-side calculations to guide the
vehicle to the shortest path between nodes 3 and 4. As soon as the vehicle arrives at node
4 the shortest path results suggest that the vehicle should take the path 4-2.

In this step, as a result of the shortest path calculations, we obtain the costs associated
with the node-to-cutset virtual links. Note, that these links have only costs corresponding
to the ¢, time interval.
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Figure 2.13: In Step 3 only marked cutset-to-cutset virtual links are included

In step 4 we calculate the shortest paths from all nodes to all destination nodes that are
not part of the same subnetwork. The calculation is based only on virtual links. See for
example Figure 2.10. The shortest path from node I to node 7 is the virtual path 1-3-7.
This is a high level routing, which indicates the cutset nodes that the shortest path has to
go through. How to travel on the shortest path between the nodes and the cutset nodes is
the responsibility of the lower level routing based on the shortest path calculations in the
previous steps.

There cre two ways to implement this step for a network divided into S subnetworks.
We will demonstrate the ideas with the grid network in Figure 2.14, which is divided into
4 subnetworks.

a) At each iteration we calculate the shortest path from a source node, s, to all
destination nodes, d, such that s and d are not in the same subnetwork. The network
consists of the node-to-cutset virtual links connecting s with its cutset nodes, the
cutset-to-cutset virtual links plus the cutset-to-destination virtual links that are part of
the other subnetworks (see Figure 2.14a).

b) Each subnetwork pair is examined separately. Depending on the relative position of
the subnetworks the virtual link representation may differ (typel and type2 in Figure
4.14b). There are virtual links between all cutsets of the origin subnetwork to all
cutsets of the destination subnetwork. The costs of these virtual links have been
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obtained in step 2. For instance, link (¢, ¢,) should not included in the type 1 network
if the shortest path between these cutset nodes goes entirely through subnetworks s,

and s,. In this case the node-to-cutset virtual links € 5; and the cutset-to-destination

virtual links €5, will have all the information required. These links can be easily
identified and marked in step 2. Using this strategy the network size can be reduced
substantially. This also may reduce the computational time required for this step (this
strategy was not yet implemented in the algorithm whose experiments will be
discussed later). Note that the network in this case is acyclic and therefore by
topological ordering of nodes shortest paths can be calculated very efficiently, (for
detailed discussion of the algorithm refer to [AMOr93]).
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Figure 2.14: Two Implementations of Step 4
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2.3.2.3 Implementation

In the different steps of the DDSP algorithm we use the dequeue implementation of
the label correcting algorithm and the binary heap implementation of Dijkstra's algorithm.
These algorithms and their data structures were discussed in section 2.2. In this section
we discuss the implementation of the overall algorithm.

In order to reduce the storage requirements and improve the efficiency of the various
operations we store the networks in a forward star representation [AMOr93]. In this
representation we use two arrays; the "first" and the "end" arrays, where first[i] shows
where the first link emanating from node i is stored in the end array, end/k] shows the
node number at the end of link k. The corresponding costs (travel times) are stored in
array costs[][], which is a matrix of size number of links*number of cost_intervals.
Figure 2.15 illustrates the data organization. In our network representation we have four
types of links (original, cutset-to-cutset, node-to-cutset, and cutset-to-cutset). For the
different steps of the algorithm we build the actual first/] and end[] arrays and link them
to the corresponding link costs.

In step 3 we add the cutset-to-cutset links to the network only if that link is marked as
we discussed earlier under step 2. We build the required network by maintaining an
additional array corresponding to each cutset-to-cutset virtual link and mark it if it is part
of the network. When the shortest path algorithm is used we need to check whether the
link under consideration is marked. If it is not marked we ignore it, otherwise we use it in
the calculations. Alternatively we can build dynamically a new network after step 2, based
on the marked links, and solve the shortest path problem on the newly constructed
network.

In step 4, at each step we solve sequentially the shortest path from each node in the
subnetwork to all destination nodes that are not part of the same subnetwork. Note that,
in this case, after each step only the source node and the cost of the links that link the
source to its cutsets change. Note also, that for all source nodes the number of these links
is constant. Therefore, for step 4, we build a generic network. To keep the network size
small, the source node is represented by a dummy node and its corresponding node-to-
cutset virtual links. At each iteration of the algorithm, i.e., calculation of the shortest
paths from different source nodes s, we set the end[] pointers of the dummy node to the
cost-arrays of the node-to-cutset virtual links that corresponds to the actual s source node.
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This is shown in Figure 2.15. This implementation results in small network size and leads
to better running time.

first{i} endfi} costs{] node-to-cutset costs{)
1 — —
—— —vg
—— —
n e
Al ||
dummy
T |
- pointers of dummy
node

Figure 2.15: Forward star representation of the network in Step 4

The various elements of the decomposition approach were coded using the object
oriented programming paradigm and the C++ programming language. The different
subnetwork modules and the associated tasks performed fit naturally into the philosophy
of object oriented languages. Nevertheless, for the core part of the algorithm, i.e., the
dynamic shortest part calculation, we used the low level features of the C language.

2.3.2.4 Issue of Correctness

Comparing the results obtained by the serial and the distributed algorithms we
observed that it is possible that some of the shortest paths obtained from the DDSP
algorithm differ to a certain degree from the results calculated by the standard algorithms.
In our experimental work we found that these inconsistencies are very few.

The problem is caused by the aggregate characteristics of the virtual links. Let us take
a look at Figure 2.16. Let us assume that travel times on the links are given every minute
and that we want to calculate the shortest paths from node I every 5 seconds. The figure
shows for each link and for the virtual link (7,4) the corresponding cost values. Note, that
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the cost values of the virtual link correspond to the travel times from node / to node 4
departing at =0 and r=60. In order to get cost values for time instances between the
minute interval we linearly interpolate between the discrete values. We examine three
cases: in case a) and case b) the costs on links are monotone decreasing and monotone
nondecreasing respectively, and in case three the costs are moving in different directions in
each link segment. Tabie 2.2 shows the calculated travel times for the three cases. The
first column represents the departure time from node /. In the columns that follow for
each case we report: label-a the travel time calculations based on actual links (i.e., finding
travel times by interpolating on each link), label-b the travel time calculations based on the
virtual link (i.e., interpolating between cost values associated with times (=0 and r=60,
i.e., interpolating between shortest path values), and diff the difference of these travel
times .

430,370
\\‘
o O @
90,50 260,259,140 380,320,260,200
a)
190,430
/
30,90 20,80,80 30,90,150,210,270
b)
114,120
T e G 0
30,40 20,50,50 30,50,30,30,30
c)

Figure 2.16: Three networks for demonstrating the correctness issue

The results show that in cases of increasing costs and costs moving in different
directions the travel time calculation on virtual links may give different results. There is
no difference when the costs are monotone nonincreasing.
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a) b) c)

time label-a | label-b | diff. label-a | label-b | diff. label-a | label-b | diff.
0 430 430 0 190 190 0 114 114 0
5 425 425 0 225 210 -15 113 114 1
10 420 420 0 260 230 -30 114 115 1
15 415 415 0 295 250 -45 115 115 0
20 410 410 0 310 270 -40 116 116 0
25 405 405 0 325 290 -35 117 116 -1
30 400 400 0 340 310 -30 117 117 0
35 395 395 0 355 330 -25 115 117 2
40 390 390 0 370 350 -20 116 118 2
45 385 385 0 .| 385 370 -15 117 118 1
50 380 380 0 400 390 -10 118 119 1
55 375 375 0 415 410 -5 119 119 0
60 370 370 0 430 430 0 120 120 0

Table 2.2: Calculated travel times and their differences for three network types

Results with real networks also indicate the differences in travel times are small.
Experiments with the Sudbury network showed that the DDSP algorithm solves the
shortest path problem with a 99.1% correctness (i.e., 99.1% of the shortest paths are
correctly determined). Furthermore, there was only a few seconds difference in the travel
times along the different paths. The average difference was 2.59 seconds (compared with
a 209.49 seconds average travel time in the network). The maximum difference was 10
seconds. It appeared only once and corresponded to an origin destination pair with 186
seconds travel ime. As we mentioned already the running time of the algorithm improves
if, in step 1 and 2, we do not calculate shortest paths for all time intervals but only for
every second or third one and we obtain the missing values by linear interpolation. We
analyzed the correctness of the algorithm for these cases as well. The maximum difference
when shortest paths are calculated every second time interval was 17 seconds. This
appeared only for one OD pair. The shortest paths were correct 98.5% of the time.
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When virtual link costs were calculated every third time interval, the maximum difference
was 20 seconds and it occurred with two OD pairs. The correctness of the DDSP
algorithm in this case was 98%.

The observed small differences are due to the fact that in transportation networks
travel times do not change dramatically in short time periods (as in case b).) If there are no
accidents in the network costs change with small slopes resulting in little or no differences.
Note also that if the differences are small then it is unlikely that the physical paths that
correspond to the two cases differ (only the corresponding travel time).



Chapter 3 Distributed Dynamic Shortest Path
Algorithm Experimental Results

In this chapter we report the experimental results with the Distributed Dynamic
Shortest Path (DDSP) algorithm, and introduce some of its features. We also show that if
the number of cutset nodes is small, then the running time of the algorithm improves
significantly. Eliminating some cutset nodes from the network may be an acceptable
practice given the nature of urban networks. In many large urban networks the
decomposition in subnetworks is driven by natural boundaries, like rivers, and the number
of cutset nodes is automatically reduced to the number of bridges along the river. The
DDSP algorithm is especially suited for such cases.

3.1 Distributed Algorithm Experimental Results

In this section we preser: the computational results obtained using the DDSP
algorithm for different networks. For each case we run the algorithm to find the shortest
path from all nodes to all destination nodes leaving the source nodes at time ¢,. The
algorithms were tested on a real network (Sudbury network, 205 nodes and 578 links) and
three randomly generated standard square grid networks with 40x40, 70x70 (simulating a
urban network with size similar to Boston: 4922 nodes) and 100x100 nodes.

3.1.1 Single Processor Implementation

The serial implementation of the algorithm is faster than the traditional implementation
only when the number of destination nodes is small (1% of total nodes). On a 70x7V
square grid network for example, the running time using the dequeue algorithm was
1194.3 seconds. Using the DDSP algorithm (on one processor) the running time dropped
tc 875 seconds (4 destination nodes). However, when the destination nodes represent a
larger percentage of the nodes the traditional modified shortest path algorithm runs faster
than the distributed-one (with the current implementation).
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3.1.2 Distributed Implementation

We tested the algorithm on the Sudbury network, and on various grid networks using
4 workstations. The networks were divided into 4 subnetworks and each subnetwork was
assigned to a processor. As was noted before, and the results here support it, the number
of destination nodes strongly influences the performance of the algorithm. The
computational results, run on SUN-4 workstations, are shown in Table 3.1.

— e e e s —

destination Serial Dequeue DDSP

nodes Algorithm Algorithm
Sudbury Network 100% 2.3 sec 3.9 sec
(205 nodes 578 links)
Grid Network 40x40 100% 157.0 sec 94.0 sec
(1609 nodes 6240 links)
Grid Network 70x70 8.3% 1194.3 sec 482.6 sec
(4900 nodes 19320 links) 5.0% 1194.3 sec 387.8 sec
Grid Network 100x100 8.3% 4876.1 sec 2305.8 sec
(10000 nodes 39290 linksL___L 5.0% 4876.1 sec 1799.4sec ||

Table 3.1: Computational results for the serial and the DDSP algorithm

We should point out that the DDSP produces better results only with large network
sizes. This was expected, since the running time of the shortest path algorithm increases
more than linearly with n, the number of nodes in the network. The serial algorithm is
superior to the distributed one for small networks (Sudbury network) because of the
relatively longer set-up times. This changes however, as we move towards larger
networks. For large networks the DDSP algorithm outperforms the serial algorithms
(utilizing the computational power of the four processors). The results also show that the
running time depends strongly on the number of destination nodes in the network. As we
can see in Table 3.2, for the 70x70 grid network, if 8.3% of the nodes are destination
nodes, the running time of step 4 is 268.8 seconds, while if 5% of nodes are destinations
the running time becomes 174.0 seconds (for comparison the Boston network (4922
nodes) has 239 destination nodes, or 4.9% of total nodes). These running times result in a
total of 482.6 seconds computational time for the former case and 387.8 seconds for the
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later, as opposed to the 1194.3 seconds running time of the serial algorithm. We can
observe similar trends for the 100x100 network as well.

Grid Network 100x100

| Grid Network 70x70

network size in | running time network size in | running time
each proc. module each proc. module

step 1 1225 nodes 45.0 sec 2500 nodes 147.0 sec
4760 links 9800 links

step 2 139 nodes 44.0 sec 199 nodes 114.0 sec
13024 links 26854 links

step 3 1225 nodes 124.8 sec 2500 nodes 547.8 sec
4979 links 10244 links

step 4 446 nodes 268.8 sec 825 nodes 1497.0 sec
(8.3%dest. node) | 25908 links 71488 links

step 4 323 nodes 174.0 sec 575 nodes 990.6 sec
(5.0%dest. node) 17518 links 46852 links

f

Table 3.2: Computational results for each step of the DDSP algorithm

Table 3.2 also shows that steps 3 and 4 are the most time-consuming parts of the
algorithm. Steps 1 and 2 are relatively fast because of the small number of shortest paths
to be solved (step 1) and the good utilization of the distributed computation efforts. For
instance in the 70x70 grid network the number of nodes in step 1 is 1225 and the number
of links is 4760. At this step we find the shortest paths from the 70 cutset nodes for all dt
time intervals. In step 2 we obtain shortest paths in the cutset-to-cutset virtual link
network. The number of nodes in the network is 139 and the number of links is 13024. In
step 3 we solve the shortest path trees from all the 1225 nodes in each subnetwork. The
computational time increases due to the high arc degrees at cutset nodes. Note that, if we
did not use the virtual link marking technique discussed in 2.4.2 then from each cutset
node 70 links would emanate. Using the marking technique the number of links was
reduced to about 4979 (instead of 9184 links). Since many of the cutset nodes are of high
degree the label setting implementation of the dynamic shortest path algorithm was used.
In step 4 the network becomes dense resulting in long computation time. In this case,
surprisingly, the label correcting algorithm performs better. Note, that step 4 was
implemented using the alternative shown in Figure 2.14a. We believe though, that the
other alternative (Figure 2.14b) may result in running time improvements (if combined
with topological sorting).

47




In our results the costs on each virtual link were calculated for ten time intervals.
Note, that the number of time intervals used affects the running times as well. For
instance, if we calculate the costs for every second time intervals only, and we derive the
missing results by interpolation, then the computational time for step 1 and 2 will be
almost halved. This gain in computational time, however, might result in erroneous
identification of certain shortest paths.

Note, that if we use the four processors in a simple distributed architecture (i.e., where
in each processor module the whole original network is represented and each module
calculates shortest paths from one fourth of the nodes), then the resulting running time is
better than the running times of the DDSP architecture. The running time of this approach
results in almost linear speed-up, hence it is approximately equal to one fourth of the
running time of the serial method (i.e., 1194.3/4=298.56 seconds). However, as we will
show in the next sections, in certain types of transportation networks or by using
reasonable heuristics the DDSP outperforms this simple distributed architecture.

3.2 Effect of Cutset Nodes on DDSP Algorithms Performance

The number of cutset nodes in the network significantly influences the running
time of the DDSP algorithm. In the previous section we have already discussed that the
number of destination nodes influences the running time. The question addressed here is
whether the number of cutset nodes has similar effects.

In three out of the four steps of the DDSP algorithm the cutset nodes have direct
influence on the running time. In step 1 we calculate shortest paths from cutset nodes to
all other nodes in each subnetwork. If the number of cutsct nodes is reduced, it results in
linear speed up in the calculations. In step 2 the algorithm calculates the shortest paths
from all cutset nodes to all other cutset nodes in the network. The network in this step is
based on the cutsei-to-cutset virtual links (see Figure 2.11). Therefore, the number of
nodes and the number of virtual links in the network at this step depend on the number of
cutset nodes. In step 3 we calculate shortest paths from all nodes to all nodes of the
subnetwork. The number of cutset nodes has indirect effect on the network size, since all
cutset-to-cutset virtual links that were marked in step 2 are included in the network. In
step 4 we calculate shortest paths based on cutset-to-destination virtual links only.
Therefore, in step 4 as well, the size of the network depends on the number of cutset
nodes.
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The above discussion shows that the number of cutset nodes in many ways affects
the performance of the algorithm. Network decomposition then becomes a key issue,
since determines the number of cutset nodes. To demonstrate the above argument, take a
look at a trivial example shown in Figure 3.1. It is possible to divide the network into two
balanced subnetworks in two different ways, (along axes p/ and p2). However, dividing
the network along the p! line defines less cutset nodes than the division along the p2 line.
Therefore, this decomposition is more advantageous for the DDSP algorithm.

p1

Figure 3.1: Number of cutset nodes and the decomposition

Many of the large cities in the world are divided naturally into subnetworks by
rivers and other barriers. This is especially true for the vast majority of European cities
(e.g., London, Paris, Budapest, Moscow, Berlin, etc.) but also for many U.S. (e.g.,
Boston, N.Y. City etc.) and Asian cities (e.g., Tokyo, Bangkok and Sanghai).
Consequently natural barriers can be used to guide the network decomposition. In such
cases the number of cutset nodes is small since it becomes equal for example, to the
number of bridges along the river.

We tested the DDSP algorithm in a grid network, which consists of two 70x35
subnetworks connected by a number of arcs (bridges). Figure 3.2 illustrates the network,
which is naturally decomposed into two subnetworks.
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35 35

70 70

Figure 3.2: Two 70x35 grid networks connected by bridges

We used four processors such that in each subnetwork the computational efforts were
shared by two processors (i.e., if n shortest paths were to be solved n/2 shortest path trees
were calculated by one processor). We tested the algorithm with 18 and 10 bridges and
5% destination nodes. Table 3.3 shows the running time for the two cases. The problem
in step 2 becomes very simple to solve. In this case we just pairwise compare the cutset-
to-cutset virtual links and mark the nodes for step 3. For this reason the running time of
this step is incorporated in the running time of step 1. Note, that the running time of the
serial algorithm is not very sensitive to the number of bridges and it is 1142 seconds in the
18 bridge case and 1135 seconds in the 10 bridge case.
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il DDSP DDSP

| Number of Bridges 18 10 ji
step 1 12.25 sec 7.28 sec |
step 3 161.66 sec 153.96 sec |
step 4 34.26 sec 21.67 sec |
Total 208.42 sec 182.91 sec

Table 3.3: Detailed results of DDSP algorithm in networks connected by bridges

The results show the DDSP algorithm performs well with networks exhibiting the
above structure (natural boundaries with limited access links). The running time
improvements are substantial. Calculating shortest paths by the simple distributed
architecture in the 18 bridge network, the running time is 285 seconds, while calculating
by the DDSP algorithm is 208.42 seconds. The improvement is even better in the 10
bridge network, where the simple distributed architecture runs in 283 seconds, while the
DDSP runs in 182.91 seconds. The results show that in networks with limited access links
the DDSP algorithm is superior.

The results also suggest that the decomposition strategy in general, should try to identify
subnetworks with the minimum number of cutset nodes.

3.3 Heuristics

Given the importance of the number of cutset nodes in determining the running
time of the DDSP algorithm we will examine heuristics that ignore some of the cutset
nodes in the network. Furthermore we claim that in transportation networks it is possible
to ignore cutset nodes and still obtain acceptable results. By ignoring a cutset node ¢ we
mean that no virtual link will be incident to or from node ¢. In practice ignoring node ¢
from the cutset will result in no inter-subnetwork routing through node ¢. Hence no
shortest path between node i and j, such that i € s, and j &s,, where s, is a subnetworks

of the network, will go through node ¢ (however, for intra-subnetwork routings node ¢
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can be part of shortest paths). As a result the DDSP algorithm may not find the correct
shortest path. It finds shortest paths given the reduced set of cutset nodes.

3.3.1 Experimental Results

We tested the DDSP algorithm with reduced set of cutset nodes, on the three grid
networks of size 40x40, 70x70 and 100x100 nodes, each divided in 4 subnetworks. For
all networks we assumed that 5% of the nodes are destination nodes, as is the case with
the Boston network. For each network we tested the algorithm with various size subsets
of cutset nodes. For example when 87.5% of the cutset nodes were included every 8th
cutset node was ignored (i.e., treated as a normal node in the network). Table 3.4
summarizes the results for different scenarios.

% cutsets included 70x70 Grid 100x100 Grid
100% 387.8 sec 1799.4 sec

i 87.5% 351.5 sec 1585.4 sec #
75% 309.0 sec 1420.0 sec

| 50% 243.1 sec 1097.2 sec 1
33% 205.0 sec 926.13 sec
25% 187.3 sec 833.86 sec

12.5% 161.9 sec 716.86 sec u

Table 3.4: Running time as a function of the number of cutset nodes

These results clearly show that as the number of the cutset nodes decreases the
running time of the algorithm also decreases. Hence, using these heuristics the
computational requirements have been reduced. The running time with 50% of the cutset
nodes included, for the 70x70 grid network, is 243.1 seconds. This is a 37% improvement
compared to the case when all nodes are included (100% case.) The running times for the
50% and 100% cases in the 100x100 network are 1097.2 and 1799.4 seconds
respectively, which corresponds to a 39% improvement. For the cases where only every
3rd and 4th cutset node is included (33% and 25%) the running times of the DDSP
algorithm, in the 70x70 grid network, are 205.0 and 187.3 seconds respectively. This
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corresponds to a 47% and a 51% running time improvement with respect to the case
where 100% of the cutset nodes are included in the network.

Table 3.5 shows the running times in detail for each step of the DDSP algorithms.
As we argued, the running times in the different steps dropped significantly. The largest
reduction was achieved in step 4 where, for example in the 50% case, the reduction is 84.2
seconds in the 70x70 network and 525 seconds in the 100x100 grid network. This is due
to the reduced network size in this step. The number of links for example in the 70x70
network when 25% of the cutset nodes are included, is 3618, while in the case when
100% are included, it is 17518. In step 2 for both the 70x70 and 100x100 networks, the
new running time represents an 84% improvement.

70x70 Grid 100x100 Grid |
Bewtsets | 100% | 0% | 25% | 100% | 0% | 25% |
included
step 1 45.0sec | 21.3sec | 11.5sec 47.0 sec 65.1 sec | 34.6 sec
step 2 44 0sec | 7.15sec 1.6 sec | 114.0 sec 19.2 sec 4.4 sec
step 3 124.8 sec | 124.8 sec | 124.8 sec | 547.0 sec | 547.0 sec | 547.0 sec l
_ step 4 _ 174.0 sec 89.8 sec | 49.3 sec 999_.6 sec ﬁﬁ sec | 247.7 sec

Table 3.5: Detailed running times for different networks

The running time for the serial implementation (serial) for the two networks are
1194.3 and 4876.1 seconds respectively. When the 4 processors are used to solve 1/4 of
the shortest paths the times become 298.6 and 1219 seconds. The DDSP algorithm
outperforms this implementation when 50% or less cutset nodes are included. Note,
however, that the grid network of the type generated for this analysis present a worst case
scenario in terms of number of cutset nodes. Actual transportation networks will have
much less cutset nodes (as will be discussed in the following section).

Summarizing, the DDSP algorithm performs very well in the case of low number
of cutset nodes. It takes advantage of the network structure by solving shortest paths only
towards the destination nodes and utilizing a small number of cutset nodes.
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3.3.2 Discussion

Eliminating some cutset nodes from the network will result in no inter-subnetwork
routing through those nodes. At first glance this seems to be a negative consequence. We
claim however, that in urban networks this can be acceptable and may even be considered
to be a positive aspect.

Assume that the urban network under consideration is a grid network. We have
chosen this network type because this is the worst network structure regarding the
number of cutset nodes after decomposition. Nevertheless, many cities, especially in the
United States, have grid network structures. Note, however that in most cases the streets
in such networks are one way streets (e.g., Manhattan). In our network terminology it
would mean that most of the cutset nodes will have virtual links only in one direction. The
situation is shown in Figure 3.3. Note that if we assume that all streets are one way
streets then, from the perspective of a subnetwork, this is equivalent to the case where
every second cutset node is ignored. Half of the boundary nodes have links leading out
and half of the nodes have links leading in the subnetwork.

*Q

Figure 3.3: Representation of one-way streets in networks
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Figure 3.4 shows that with networks exhibiting the structure of Figure 3.3. there
are computational benefits at all steps of the DDSP algorithm. At step 1 we need to solve
the shortest paths only from the cutset nodes that have links pointing inward the
subnetwork. In step 2 the number of cutset-to-cutset virtual links is reduced also. We
connect a cutset node | with a cutset node j of a subnetwork by a virtual link only if i is an
outbound node and j is an inbound. This constraint reduces the number of links in the
network by a factor of 2. Consequently in step 3 the maximum number of the marked and
included cutset-to-cutset virtual links in each subnetwork is also halved. We include
node-to-zutset virtual links only between the original nodes and the cutset nodes that have
outward arcs. Similarly cutset-to-destination virtual links are only defined between the
cutset nodes having inward arcs and the destination nodes. Hence, in step 4, when we
calculate shortest paths from each node of a subnetwork to all destination nodes in other
subnetwork, only half of the nodes and arcs are represented.
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Step 1

Step 2

Step 3

Step 4

Figure 3.4: Network configurations for each step in case of one way streets
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However, even if the grid network does not have a large number of one-way
streets, social, political and other considerations, may dictate that only a small subset of
the actual cutset can be used effectively. Consider for example the network in Figure 3.5,
which consists of main roads, arteries side streets and residential roads with low
capacities. In many cases the small streets only serve local traffic and they cannot be used
for routing decisions. The goal of a fair transportation management and information
system can not be routing inter-subnetwork traffic flows through these streets. The inter-
subnetwork traffic (traffic between different parts of the city) should be routed through the
main roads and the main arteries of the urban network. This suggests that in urban
networks it is acceptable (and desirable) to ignore cutset nodes that correspond to side
streets or residential area streets.

~CcuTt

Figure 3.5: Urban network decomposed along main and side streets

In some ATIS demonstration projects (like LISB in Berlin, Germany [Hoff91]) this
problem was solved by not representing all streets in the network at all. The heuristic that
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we assume here however is better, since it does not ignore any link segments or nodes
from the subnetwork calculations (hence shortest path from all those nodes to all other

nodes is possible), and, at the same time prohibits inter-subnetwork traffic through these
nodes.

The above discussion implies that for urban transportation networks because of
sociopolitical, environmental and traffic engineering reasons it is acceptable and sometimes
even advisable to prevent some streets (cutset nodes) from being used. Therefore the
assumptions behind the DDSP heuristics are reasonable.
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Chapter 4 Routing Tables

Once time-dependent shortest paths have been determined and proper control
strategies have been generated this information should be properly stored and transmitted
to the drivers. The basis for the construction of routing tables is the shortest path trees
generated in the shortest path calculations. In general routing tables provide the
information which node (or link) should the driver visit (or traverse) next in order to travel
on the shortest path towards its destination. The type and amount of information vary
depending on the different architecture and implementations. In this chapter we analyze
the special characteristics and problems of constructing the time dependent routing tables
and suggest different algorithms and approaches to construct these tabies. For the
purpose of this discussion we assume that the system operates in a way similar to the one
described in Chapter 1.

4.1 Dynamic Routing Tables

Dynamic Routing Tables are complex because of their time dimension. Shortest
paihs may change over time, thus routing tables should have the capability to provide
time-dependent information. In other words routing tables should be able to give routing
information from each node to every destination for all instances in time. Hence (between
two information-updates), at each node the dynamic routing table should be represented
by a matrix, where each column corresponds to a destination and each row to a time
interval. Each entry holds information on which node should be visited next in order to
travel along the shortest path. The information is thus dependent on the destination node
(column) and the time the vehicle arrives at the node. The size of the matrix is specified by
the number of destination nodes in the network and the number of time intervals incladed
in the matrix. Figure 4.1 shows a time dependent dynamic routing table.
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destinations

. 1 2 3 4 5 6 7 8 9 10 M n
time

s 211 21224 1|1 ][a]a]|a]as

t,+dt 2 1 2 1 1 4 1 4 4 4 1 4

tt2dt | 2 1 2 1 1 4 1 4 4 4 1 4

Figure 4.1: Time-dependent dynamic routing table

The information required to complete a routing table may be obtained by solving
the shortest path problem for each dr time interval, where dr corresponds to the size of the
time interval. However, the computation time needed to solve the S*’ problem for each dr
interval, especially for large networks, may exceed the length of the planed update time.
Information is available at ¢, and #,= £, + 1,4, time intervals. Therefore, in order to
satisfy the real-time requirements of the systems, different approaches have to be
examined and developed in order to re.luce the computational requirements (in addition to
developing fast dynamic shortest path algorithms).

One possible approach consists of calculating the time dependent shortest paths
only for each i, interval, assuming that dynamic shortest paths do not change
significantly during this time. Hence, it would be enough to calculate shortest paths only at
I¥(t,,4u) instances, where /=0,1,2,... . This approach overcomes the problems of long

computation times but it ignores any variabilny in travel times that may exist between
updates.

In what follows we will discuss approaches that assume that shortest path

calculations take place every ¢

wpaate intETVals only. We will describe the problems arising

and introduce two approaches, the Postorder Numbering Approach and the Rolling
Horizon Approach, that we have developed for the construction of routing tables.
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4.2 Construction of Routing Tables

4.2.1 A Special Characteristic of Dynamic Routing Tables

Dynamic networks differ from the static ones by having one more dimension in
their representation. This extra dimension makes not only the shortest path problem but
also the routing table construction problem more complex than it is for the static case.

On the basis of the observations mentioned above, the simplest and most
straightforward approach would be, if at each node we would provide an array of routing
information updated at each t,,,,, interval. This approach leads to the correct solution of

the problem in the case of static networks. However, as we will show, this simple
approach cannot be used in the case of time-dependent neiworks.

Let next_node[i] indicate the next node on the shortest path to destination . See
for example Figure 4.2. At the origin the value of next_node[6] is 2 indicating that the
next node to visit is 2. At node 2 we obtain the value of next_node[6] stored there and
we proceed following the recommendations until we arrive, on the shortest path, to node
6.

destinaonnode: 123456
next node[] 1-3433

() ()

2 O
destinaticnnode: 123456
next_nodef] -22222

destinationnode: 123456
next_node] 223--33

2

®

Flgure 4.2: Sample network - static case

The above approach is correct for static networks. Let us now examine what
happens if the network is dynamic, which is the case in most IVHS applications. Let us
consider the same network but with time-dependent link costs (see Figure 4.3). Following
the approach discussed earlier we solve the SP problem from every node to all
destinations for time ¢,. Then for every node we have the next_node[] vector based on its
shortest path solution. The information contained in each entry though, is correct only if
the vehicle departs the corresponding node at time f,. However, the vehicle departing

node / at time ¢, will arrive at node i at time 1, +11, where 1t is the travel time from / to ..
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Consequently, the information provided at ncde i is not consistent with the arrival time of
the vehicle (whose origin is another node).

spi

—

@3'3'3,3.3’3'3'3'3f§€'4'5'6'6'6'6'%
O

&
>

2,3,1,1,11

®

Figurs 4.3: Sample network - dynamic case

If for example we calculate the shortest path from node / to node 6 at ¢,, the path
spl, goes through nodes 1-2-3-5-6. However, if we calculate the shortest path from node
2 at ¢, the path sp2, goes through nodes 2-4-3-5-6 (note that if we had calculated the
shortest path from node 2 at a time equal to the sum of f, and the travel time between

nodes ] and 2, this path would be the same as sp!). Consequently, if a vehicle departs
from node I at r,, when it arrives at node 2 the following routing information will be

provided (based on sp2, the shortest path from 2 to 6 at time ¢,)

12345667
Ll 1 141515151

instead of the correct (based on spl)

123 45667
L1 1 141o(414]

Correct treatment of the problem, under the assumption that SPs are calculated
every t,,., interval, would require that at each node we store as many arrays as origin

nodes. This naive approach would require at each node a matrix of size
number of origin*number of destination. In case of large networks this naive method
would require a large amount of information t¢ be stored. Furthermore, this method
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stores information in a redundant and inefficient way that, as we will show, can be
avoided.

One way to overcome this problem would be to store the shortest path tree only at
the origin node and transmit it to the vehicle at departure time. This method however
prevents the vehicle from obtaining updated information while it is en-route. The way to
overcome this inadequacy is again to store and to transmit all shortest path trees to the
vehicles at every node (since we do not know its origin node). But this is what we want
to avoid. Note, that the amount of information to be transmitted becomes very large.

4.3 Routing with Postorder Numbering

In this section we present an implementation of routing tables that minimize the
amount of storage and information transmission that is required. It is based on an
approach that uses postorder numbering.

Postorder numbering results from numbering the nodes according to the order in
which they are visited in postorder traversal. For the general tree shown below,

Root

N LN N

Postorder traversal is defined by the following recursive function:

Postorder(Root)
{
Postorder(T;);

Postorder(T;);
Postorder(T,);

visit Root;

}
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Before introducing the Postorder Numbering Approach (PNA), let us take a look at
Figure 4.4. This figure shows a SP tree with its root as origin node and each node with its
node-number. Each node in the shortest path tree has been also assigned a number,
besides its original number, that corresponds to the order in which the node is visited in
postorder traversal of the SP tree.

Figure 4.4: Shortest path tree with postorder numbers and intervals

Note now that it is possible to assign an interval to each link g emanating from
node i so that the postorder numbers of the nodes that are downstream (descendants) of
node i and can be reached through link g all belong in this interval. Note also that because
of the characteristics of the postorder visiting method, all postorder numbers that fall
between the bounds of the interval are all assigned to the nodes that are descendants of the
particular link. Consequently, the link that leads to a particular destination can be easily
identified. Assuming for example that our destination is a node with postorder number £,
then we just have to look up among the intervals {[i, j,,[i, j1;,...[i, jl;us ), associated with
each link emanating from that node, and choose link m such that £ € [i, j],,, namely the
link m for which i, <k <j_. i, and j_ are the lower and upper bounds respectively of the

interval assigned to link m (see for example, Figure 4.5)



Figure 4.5: Postorder intervals

Let us now consider the example on Figure 4.4. If the postorder number of the
destination node is 6, then, when located at node 3, link with interval [5,9] will correctly
lead to the destination. At node 2 we take the link with interval [6,8], and at node 5 the
‘interval with [6,6].

We store the postorder number information in a “postorder assignment array”,
paall, of size n=ldestination nodes!. The i-th entry of the array, paa[i], is the postorder
number that was assigned to destination node i. We need one such array for every origin
node. The intervals assigned to a given link may be different for different origin nodes
(since the SP trees are also different). To store interval information as a function of the
origin node, at each node k we use a "pointer interval array", piall, of size n=lorigin
nodesl. The i-th entry, pia[i], points to the intervals ([i,j1,,[i, /1. -[is fliniss}
corresponding to node i as origin. The intervals are stored as structures with a maximum
size links, fields in each structure (links, is the number of links emanating from node ).
Note that it is possible that no interval is assigned to a link, since all links by definition can
not be part of a shortest path tree. Figure 4.6 summarizes the implementation with paal]
and pia[] for a particular node. ‘
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Figure 4.6: Implementation of Postorder Numbering

pia[]

Storing information in the above way results in a very compressed representation
of routing information. Note that at each node k we store a paa[] array of size
ldestination_nodes|, and a pia[] array with the size of lorigin_nodes|. Each member of the
array pia[] points to a linked list with maximum size equal to links,. Thus, the maximum

amount of information that we have to store and transmit at each node £ is:
destination_ nodes + origin_nodes * links,

Recall that the amount of information that we have to store and transmit at each node £
for the naive approach discussed in section 4.2.1 is:

destination_ nodes * origin_ nodes .

Since links, << destination_nodes and links, << origin_nodes the routing table

construction with the postorder numbering approach requires much less memory than the
naive approach. Consequently the amount of information to be transmitted is also
substantially less.

66



4.3.1 Discussion

On the basis of the approach presented above the routing operations take place as
follows:

o A vehicle, entering the system at origin node o, obtains and stores through the on-
board computer the postorder number that was assigned to its destination from the
paa[] array that is transmitted.

o At each node, the piaf] array corresponding to that node, is transmitted to the vehicle
as well. The on-board computer, based on the postorder intervals assigned to each
link that correspond to its origin node, chooses the link with the interval where the
postorder destination number belongs. This process is repeated at each node until the
vehicle reaches its destination.

There are several situations during the operation of such a system in which vehicles
may not receive the correct information. For example, vehicles exiting the system for a
short period and entering later on; information updating takes place before the vehicle
reaches its destination; vehicles entering the system at time other than ¢, or fo+k*s, 4., (

k=1.2,...).

We will demonstrate how these problems can be treated best, using the case of
information updating as an example. Let us assume that a vehicle departed its origin at
time #,. It is possible, that the travel time to its destination is bigger than the ¢, ,,, time.

It is also possible that the SP tree of the vehicle's origin node changes, thus resulting in

new postorder assignment. If at time z,+¢ this new information (the new postorder

update
assignments) is provided by the system, the new information can be inconsistent with the
postorder values that the vehicle obtained at the origin. The vehicle has to be informed of
the change. Subsequently the vehicle proceeds as if it were entering the system at the
current node and follow the steps given earlier, i.e., look up the new postorder number
from the paa[] at the current node, and follow the interval recommendations as if the
vehicle's origin node were the current node. This procedure is also the solution to the
problem of drivers ¢xiting and reentering the system. Thus if the vehicle finds inconsistent
interval values in the piaf] table, it has to reenter the system, i.e., it has to follow its travel
as if it started its journey at the current node. The can be an easy process, since the paa[]
arrays are transmitted to the vehicle at each node anyway.

The problem of vehicles entering the system at times between information updates
is the most serious of all. Especially, if the update time is large, then it is very possible
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that vehicles will enter the system at times in the interval (1, +1,,4,,.). For example

when:

o new vehicles enter into the system at any time, i.e., between the update times.

 vehicles leaving a node at z, might diverse from the assumed system travel speed, thus

they may arrive at the next node earlier or later than it was anticipated in the
calculations.

e vehicles in the system might get lost despite the routing information and get back to
the proper node, or to a new node, at time when information is not provided. Also in
some cases, drivers might not obey the routing recommendations and detour from the
advised path later deciding to rejoin the system, again.

Although these problems may be alleviated somehow by frequent information
updates in the next section we discuss approaches that can correct the problem, at least
partially, at modest computational costs.
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4.4 The Reolling Herizon Approach

In this section we introduce the Rolling Horizon Approach (RHA), that overcomes
many of the problems and difficulties outlined in the previous sections. The main idea in
RHA is that it tries to fill as many cells in the tiine-dependent routing tables as possible,
(see Figure 4.1), based solely on information obtained from the shortest paths solved at
time ¢,. This method also overcomes the problemis mentioned under the PNA method,

such as inflexibility, lack of information for motorists entering the system at time other
than ¢, and inconsistency due to slower or faster drivers.

Before introducing the method let us take a look at Figure 4.1 again. Note that
shortest path calculations take place only at ¢, and t, +1,,4, times. This means that routing

information could be inserted directly into the rows of ¢, and # +¢,,4,.. The cells between

these two rows are empty. QOur goal is to fill these entries based on the available
information, without calculating shortest paths for the dr intervals between the update
times.

Figure 4.7 shows part of the shortest path tree associated with node / as origin.
For each node we also show the associated label values, i.e., the shortest travel times from
the origin node to the particular node.

label ;=0

label ,=2

label 6=1 0

label =10 |ab9| ~8 / label ;=13

o C/ P

Figure 4.7: Shortest path tree with associated label values

In addition to the shortest travel time the label provides the following information
as well: at node i, at time ¢, + label,, the shortest paths between the node i and the nodes

that are descendent of i follow the same subtree. This is quite evident for the case where
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node i is the origin node. However, note that the above interpretation is valid for any
node i of the same shortest path tree; and it is independent of which origin node the SP
tree was calculated from. Hence, while we only calculate SP trees for time f,, as a
byproduct we also obtain SP subtrees for the descendent nodes of i for times equal to
t, +label;. As is shown on Figure 4.8 the SP tree of node I (SPT)) calculated at ¢, also
includes part of the SP tree for node 2 for time interval ¢, +label,. This subtree, with

node 2 as root, is a subset of the shortest path tree that would result if we had explicitly
calculated the shortest paths from node 2 at time ¢, + label,.

labei,=0

1ab9|3='-3\‘® Iabel6=‘l 0
9/ lab6|5=1 3
abel =1

7

Figure 4.8: Identical subtrees In different shortes path trees

This observation implies that in order to complete the entries of the routing table
we may not have to calculate shortest paths from every node to every other node for all dr
time intervals. We may obtain useful information from the shortest path calculations at ¢,,.

The following lemma formalizes the above discussion:

Lemma 1: Let G(N,A) be a time-dependent network and SPT,(z,) the time dependent
shortest path tree calculated from the origin node i at time f,. For any node k., k €

SPT,(t, ), the subtree with node  as its root is a subset of SPT, (1, + label, ).

The proof of the lemma follows directly from the previous discussion.
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4.4.1 Implementation

For the implementation of the routing table for this approach we construct a matrix

with number of rows equal to t,,4, / dt, and number of columns equal to the number of

destination nodes. One such table is developed for each node (see for example Figure
4.9).

RT of node |
fime Nabec. j kI m. d destinations
vikik|v |k [kik [k |v|k|v]k
ty+eit
tT,
RT of node k
Ny .
label =t, time abc.. j kI m.. d
t0
1+t
t b I 11
tup(‘.!a:o
RT of node |
i abc.. j kI m.. d
ime
tO
tordt
‘k
Y {|m
ttpdalo

Figure 4.9: Construction of RHA routing tables

The first row of the routing table, for every node i, is completely filled. The entries
are obtained from the shortest path tree SPT;(t,). Using the same SP tree and based on
lemma 1, we can fill entries of rows other than the first, in the routing tables of other
nodes. For example, in the routing table of node k we can fill routing information in the
row corresponding to time f, +label, (label, is the travel time on the shortest path from

node i at ¢,) and all the columns that correspond to destination nodes that are descendants
of node k in the SPT;(t,) (see Figure 4.9).
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The process described above should be repeated with all SP trees calculated from
all origin nodes at z,. Remember that the 7, row of each routing table will be totally filled,

assuming that each node is an origin node, and other entries of the tables will be filled
depending on the different subtrees of the SP trees (see Figure 4.10).

RT of node i
time NN abec. j.klm.. d
o |V KIKk|v]jlk|k]|k|Vv]Ik]Vv]]
ttdt | v k| k|k|jlk| [k k|vlj
v viv]v k klv]k
v viv k k k
\Y; k k
t viklk|k|jklk|v]Vv]|k|V]]
update
RT of node j
time\abc j kI m. d
o |dlc |c blb|biclk|n c
t+dt dfc |c clelb|b|lk|n c
dic|bjc]c|c c c
tg dlcic clc kinjc|b
c c c K c
t d{c|{blc|blc|b|lc|klnjc|Db
update

Figure 4.10: RHA Routing Tables after insertions

If dr— 0 then the values that would be entered to the same entry of a routing
table based on different SPT;, (1, )trees will all be the same. We will prove the above claim

with the following lemma, which is an extension of lemma-1 that was presented earlier.

Lemma 2: Let G(N,A) be a time-dependent network with link costs c; (), where ¢; (1) is

the travel time on link (i) departing node i at time ¢. If the label of node i is equal in
SPT; (t,) and SPT, (t,) then for any node / that is descendant of node i in both shortest
path trees:

label™ = label™, for VIl is descendent of i in both SPT.
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To prove the above lemma we have to look at Figure 4.11. Let us assume that the
dynamic costs at ¢, are equal from node j and &, c;(¢)) =c,;(¢,). In this case it is easy to
see that the shortest path calculations, from nodes j and k, at ¢, will result in the same
label values on node i. Consequently, all label values of nodes that are descendants of
node i in SPT;(t,) and SPT, (z,) will have the same label values. This reasoning can be

easily extended to the general case, when:
label; + c;;(label;) = label, + c,;(label, ),

which is a broader definition of the c;(z,) = ¢, (t,) condition.

.

N
L

Figure 4.11: Example for Lemma 2

So far we discussed the case with dr — 0. However, it is reasonable to assume
that dr will usually correspond to intervals one minute or so large. In these cases it is
possible, that based on different shortest path trees, different values enter in the same cell.
In this case however, we know that the difference of label values is at most dr and we
expect that the different shortest paths that go through this node during interval dr will not
differ significantly. Therefore, any value is equally acceptable. In the implementation of
our algorithm we keep the value that was entered from the latest shortest path tree
calculation.

It is easy to show that with the RHA approach a vehicle traveling from its origin
node to its destination node will receive at each node the proper information. If a vehicle
starts from node i at ¢, and destination is node d (see Figure 4.10) , then the next node on

the shortest path is node j; the vehicle arrives there at time ¢,. It receives the routing
information b that has been entered into cell [¢,,d] in the routing table of node j. Hence,

the vehicle actually receives correct information corresponding to time ¢, and not to f,.
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The information entered in the r, row was based on the SP calculation from node { (or
from some other node with the same arrival time at node j). Since the information that
was entered into the cells is based on the shortest path tree SPT;, (1, ), the vehicle following

the recommendations will always receive the correct information.

However, it is possible that a vehicle going to destination d arrives to a node j at
time ¢, for which no entry exists in the column corresponding to the vehicle's destination.

For this case the recommended approach is the following:

if cell [z,,d]= @, then the value of a previous cell [t,d] should be inserted

(or the closest ¢ time interval).

Note that there is always a value in an earlier time interval, because at least at ¢, there

must have been a routing recommendation.

The rolling horizon approach is well suited to address the problems of drivers
arriving at nodes at times other than ¢,, mentioned earlier. If for example a vehicle leaves

the origin at ¢, and drives slower or faster than the predicted speed, then it will arrive at

nodes later or earlier than it was anticipated in the calculations. The same situation can
- happen if a vehicle enters the system at time other than f,. If a vehicle arrives at a node at

time for which information exists, then the vehicle automatically picks up the right
information and follows the right shortest path. If this is not the case, i.e., there was no
information available for that arrival time, then the best possible information should be
provided according to the process discussed earlier. The cases of slower or faster drivers,
drivers getting lost temporary or exiting the system and later rejoining may be resolved in
the similar way. A vehicle approaching a node always can pick up the best available
information corresponding to its arrival at that node.

In general this "memoryless routing" (i.e., routing recommendation independent of
the path the vehicle was traveling to the current node or its origin), provides a lot of
flexibility. Furthermore with this method it is always possible to receive the latest
calculated or modified information even en-route. Suppose, that a vehicle enters the
system at node i at time other than ¢, and recommendation corresponding to time ¢, only

is available. Suppose also that for the actual time of arrival at node i, the corresponding
shortest path has changed (from the one calculated at ;). The vehicle starts its route on

the path corresponding to f,. Since, under the RHA strategy at all nodes the best available
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information is provided, there is a chance that during its travel the vehicle will arrive at a
node k at a time where the correct shortest path information is available. Note also, that if
the path is long or the vehicle entered the origin node at a time close to the next update
then the vehicle may obtain quickly the new updated information at a subsequent node.

4.4.2 Experimental Results with the RHA

The success of the RHA routing method depends on the number of entries filled in
the routing table. Thus the question of coverage becomes crucial in evaluating this
approach. By coverage we mean the number of filled entries in the routing table as a
percentage of the total number of entries. The total number of entries is equal to the
product of the number of destination nodes and the number of time intervals between
travel time updates, (see Figure 4.10).

Different nodes in the network have different coverage. The differences are
attributed to network topology and traffic conditions (travel times). High coverage of a
column 4 in the routing table of node j, implies that many shortest paths from various
origin nodes towards node d go through node j. The more travel times from various
origins to node j differ, the higher the coverage of column 4 will be. This is true since
different label values imply that we can fill routing information in cells of the column d
corresponding to different dr time intervals. This observation can be generalized also for
the node coverage: if node j has high coverage it means that node j is part of many
shortest path trees. This coverage may be higher if the node has label values (representing
calculated travel times) evenly distributed in the different shortest path trees SPT,(z,).

Therefore, the coverage of a node j depends on:

o the number of times node j is part of shortest paths between any two
nodes and

o the shortest path travel time distribution from origin nodes to node ;.

Consequently the following factors are important on determining the coverage:

¢ the length of the update interval (in relation to travel times),
e geographical location of a node j in the network, and

e size of the network.

To address these issues more formally we have examined the performance of the
RHA method on the Sudbury network (205 nodes, 578 links). The dr was set equal to 20
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seconds and ¢, time 5 minutes (therefore the number of dr intervals is 15). The conflicts

filling into the dr intervals are resolved arbitrary (the last value that the algorithm has
inserted).

Figure 4.12 shows the average coverage values for the 15 dt intervals.
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Figure 4.12: Coverage values of dt time intervals

The first interval (z,) has 100% coverage (since the shortest path calculations for
1, from all origins to all destinations are available). Note also that, even though shortest
path calculations are available only for the time interval f,, the time intervals after 1, are

also filled to a certain level providing shortest path recommendations for other time
instances. Therefore, the results shown in Figure 4.12 support out a-priori expectations,
that it is possible to derive information about shortest paths corresponding to time
intervals other than 7, based only on the SPT;(z,) results.

The next step in our analysis is to evaluate the average coverage level for the entire
network. The length of the ¢,,,,, interval affects the average coverage. This is true since

coverage is the number of cells filled as a percentage of the total number of cells in the
routing tables (which is function of drand ¢,,,,,,). In our analysis we varied the r,,,, times

from 1 to 5 minutes while dr remained 20 seconds. Figure 4.13 shows the average
coverage values of all nodes in the network for the different ¢, times (black bars).

76



Figure 4.13 also shows the average coverage when we exclude from the evaluation the
first row (the row corresponding to time ¢,), (white bars).

08 T

1 2 3 4 5
t_update interval (min)

Figure 4.13: Overall coverage (black bar) and coverage for periods other than ¢, as a
function of the length of update interval (white bar)

The results indicate that as ¢,,,,, increases the coverage values diminish. The
coverage (including the first row) assuming 5 minute ¢, time is 31%. It is 44% percent
for the case of 3 minutes and above 70% when r,,,,, is equal to 1 minute. The coverage

values corresponding to the case when the first rows are not included follow similar
trends.

The explanation of the above behavior lies in the fact that travel times affect the
possible range and distribution of the label values of a node i in the SPT(s)'s.

P:.ucularly, if shortest path travel times (at tme r,) do not exceed & minutes then the

RHA method will not produce any recommendations corresponding to time intervals ¢ >
t,+k, either. The average travel time of this network is 3.2 minutes.

In the network the coverage values of nodes also vary. Figure 5.14 shows the
distribution of these coverage values for different ¢,,,,, intervals (1-5 minutes.) The x axis

corresponds to coverage intervals and the y axis shows the percentage of nodes with
coverage into the corresponding interval.
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coverage intervals

Figure 4.14 Distribution of nodes with different coverage values

The figure clearly shows that as we move to lower ¢,,,,, times the higher coverage
intervals become more frequent. For instance, for t,,,, < 3 all nodes have at least a 10-

20% coverage. For these cases we can also see that the relative frequency of the highly
covered nodes substantially increases.

From the results it is clear that if a node j is well covered, then a relatively large
number of shortest paths go through that node. We expect that the well covered nodes
will be clustered around the center part of the network. To examine this hypothesis we
have selected a central node in the network and obtained the travel times from that node
to all other nodes. We grouped the nodes inte 30-second intervals according to their travel
time distances from the central node, i.e., all nodes that were 0 < ¢ < 30 seconds away
from the central node grouped under interval 0-30, etc. Figure 4.15 shows the average

coverage as a function of the distance from the center node (1,4,

is 5 minutes). The
results follow our a-priori expectation: the central nodes have higher coverage values and
the coverage diminishes (exponentially) as the distance from the center increases. Nodes
close to the center have high coverage values (43-66%). The average coverage for nodes

2-2.5 minutes away from the center node was above 30%. For comparison note that the
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Figure 4.15: Average coverage as a function of the distance from the center

In conclusion the RHA method produces high coverage for the nodes in the central
part of the network, where usually the demand for correct and frequent updates might be
higher.

Let us now discuss the implications of the above observations for the RHA
approach. In particular we will discuss the implication of having many or few entries filled
in a column of a routing table. If the routing table of node i has routing values filled only
in the ¢, row, this implies that node | was always a leaf node in all SP trees, i.e. there is no
shortest path that goes through node i (or if it does the corresponding label of node i
belongs to the [1,; 1,+ dt] interval). Let us look for example at node i on Figure 4.16a,

(the arcs with bolded lines represent links that are used by many shortest paths).
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Figure 4.16a: Central node surrounded by nodes with high coverage

If node i is not a cutset node and its routing table is not well covered, then this
would imply that the costs of links incident to i are high relative to the arc costs around
that node. Hence, shortest paths do not use node i and vehicles will not be routed through
node i. Therefore, the demand for routing recommendations at this node may be low, only
consisting of the vehicles that enter the network at node i. Since most of the demand at
this node is generated by vehicles originating their travel at node i, routing
recommendation at ¢, should be adequate. The only problem may arise if vehicles start
their travel at this node at time other than r,. However, these vehicles will soon approach
a node that is part of many shortest path trees, i.e., a node with high coverage value (e.g.
node k or [ on Figure 4.16a). In this case, the vehicle can pick up the correct information
corresponding to its destination and from that node it can continue its travel on the correct
shortest path.

The above argument should be true, in most real situations, when node i is in the
central area. However, for nodes on the periphery the above may not hold. Assume for
example, that a vehicle with destination node d arrives at node i at time ¢, (see Figure

4.16b). If ¢, is much later than f,, most likely there wiil be no entry in the routing table
that corresponds to r,. Thic may be so since, in order to find a value in the row
corresponding to ¢, (reasonably larger than ¢,) node i should have been part of a shortest
path from some other node o to node 4 with label ™ =t,. However, if ¢, is relatively
larger than ¢, the probability to have such a path is very small. Since node i is on the side

of the network, it is not likely that a shortest path that is ¢, units of time away from node {
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goes through node i (unless there is a destination node in the vicinity). Furthermore, given
that most of the vehicles through node i are vehicles originating at i, it is likely that traffic
conditions on the path from i do not change a lot and hence the recommendation at time

may be adequate for at least the first part of the trip. Besides, when a car arrives at a node
or enters the system at time ¢, that is much later than ¢, this also means that the next

update time is close. At that time (next update) the vehicles at all nodes will receive the
correct shortest path recommendations.

Figure 4.16b: Inadequacy of the RHA with nodes in the periphery

4.5 Computational Considerations

The results from the previous section indicate that it is possible to achieve good
coverage with the RHA method. In this section we discuss some approaches that can be
used in order to combine shortest path calculations and the RHA under one common
strategy. The major goal with the RHA method is to fill the entries between update times
using only existing information, i.e., the shortest path results at time 7,. We want to do

that as opposed to calculating shortest paths for every dr time interval.

A possible strategy for combining the shortest path calculations with the RHA
method is to calculate shortest paths only from origin nodes. Since the number of the
origin nodes is smaller than the total number of nodes in the network, shortest path
computation time will be also less. Note, that utilizing the special characteristics of the
RHA method we can fill not only the columns of the origin nodes but also the columns for
all nodes. Figure 4.17 shows for two different strategies the cnverage values of the nodes
that are in the central area of Sudbury network (note that origin/destination nodes are not
included in the selected nodes.) The white bars show the coverage values obtained from
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calculating shortest paths only from 53 origin nodes (strategy-2), and the black bars show
the results obtained calculating shortest paths from all nodes of the network (strategy-1).
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Figure 4.17: Comparison of coverage for Strategy-1 and Strategy-2

The coverage values from strategy-2 are slightly below the coverage values from
strategy-1. Table 4.1 summarizes the results by comparing the average coverage values
for the two strategies corresponding to the 28 central nodes and to all nodes of the
network (the coverage values include the f, row as well).

I strategy-1 strategy-2

I central nodes 45% coverage 29% coverage

|| all nodes 31% coverage 17% coverage

Table 4.1: Node coverage for Strategy 1 and 2

Note that in the case of strategy-2 the computational time for calculating the
shortest paths is about 1/4 of the computation time of strategy-1 (we calculate shortest
path trees from 53 nodes as opposed to 205). The coverage however has been reduced by
only 45%. In the central area, strategy-2 produces 29% coverage as opposed to 45% of

strategy-1.

82




Further analysis of the routing tables shows that the filled entries are not
distributed uniformly within columns. They tend to be clustered around time intervals
closer to 1, (similar to the tendency illustrated in Figure 4.10). However, it is desirable

that the cells of columns are filled more evenly, since vehicles entering the system at time
t, later than ¢,, would have a higher probability to find a correct recommendation.

We therefore introduce strategy-3 that tries to improve the coverage distribution.
In this strategy we calculate shortest paths only from the origin nodes but for times 7, and

to +tpie, /2. Using this method we will have two base times and therefore the route

recommendations will be clustered around two time intervals, improving the overall
coverage distribution. Figure 4.18 shows node average coverage for the 15 dr intervals
resulting from strategy-3.
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Figure 4.18: Node coverage resulting from Strategy-3

Figure 4.19 shows the coverage results on the central nodes for the three different
strategies discussed already.
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Figure 4.19: Selected node coverage for Strategy-1, Strategy-2 and Strategy-3

The above figure shows, as we expected, that strategy-3 always results in better
coverage values than strategy-2, and it is very close to the coverage from strategy-1. For
certain nodes it gives even better coverage than strategy-1 (e.g., nodes 88, 173, 181, etc.).
This is a very promising result since the number of shortest paths trees that were solved
for strategy-3 is about half of the number solved for straiegy-1.

Table 4.2 summarizes the performance of the three different strategies (the
numbers in parenthesis give the average coverage excluding the ¢, row).

strategy-1 strategy-2 strategy-3
average coverage for | 31% (26%) 17% (14%) 29% (24%)
all nodes
average coverage for | 45% 29% 43%
central nodes
number of shortest | 205 53 106
paths solved

Table 4.2: Coverage values for Strategies 1, 2, and 3

The resulis are very interesting. The third method, although it is based on less
shortest path information, than the first one, provides results that are more evenly
distributed in the time horizon. Strategy-3 uses the available information more efficiently
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than strategy-1. Strategy-1 for example, might fill the same entry of a routing table many
times based on different shortest path trees. However, in strategy-3 this redundancy is
minimized since the shortest path calculations are better distributed in time.

Table 4.3 shows the running times for the different strategies including the shortest
path calculations and the RHA routing table generation. Note, that we used a very simple
implementation for constructing RHA tables. It is possible that with a more sophisticated
~ implementation, the running time will be further reduced. We could use for example a
modification of the postorder tree visiting technique that we already discussed. The RHA
method is also very scalable and easily supports parallel implementation.

strategy-1 strategy-2 strategy-3
number of shortest | 203 53 106
paths solved
lLl}unning time 6.8 sec 1.9 sec 3.7 sec

Table 4.3: Computational results for different strategies

The only drawback of strategy-3 (and strategy-2 ) is that the ¢, rows are

guaranteed to be filled only in the routing tables of the origin nodes. Therefore some
columns in the routing tables of other nodes may not have routing information. We have
already discussed in section 4.1.2 the implications of such omissions. It means that
shortest paths do not go through node i. It also means that if vehicles follow shortest
paths they will be never routed through node i, unless this node is their destination. One
way to overcome the problem of no information is to utilize a strategy that combines
strategies 1 and 3. For example strategy-1 is implemented every n-th upgrade and
strategy-3 implemented in all other cycles. Under this strategy, if no information was
available from strategy-3 cycles, the information obtained from the previov. strategy-1
cycle is provided by default. This method therefore can combine the positive
characteristics of strategy-3 and its drawbacks may be corrected by utilizing strategy-1
every n-th cycle.
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In conclusion the RHA method provides flexibility for combining shortest path
calculations with the construction of routing tables. There is a trade-off between running
time and coverage but further research is needed.
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Chapter 5 Conclusion

5.1 Conclusions

This thesis has focused on the solution of the dynamic shortest path problem
approaches for and dynamic routing table generation in large transportation networks. The
static shortest path problem has been studied extensively and a vast amount of literature
already exists. The time-dependent shortest path problem has also been studied in quite
some detail, but only for communications networks. A few differences in the
characteristics of communications and transportation networks prevent these results from
being directly applicable to our problem. So far, not much work has been done in the area
of time dependent shortest path problems for transportation applications. This has been
one of the main motivations for this thesis. The problem of time-dependent shortest path
problem has been studied theoretically by Kaufman and Smith [KaSm92], and
Koutspoulos and Xu [KaXu93]. Ziliaskopoulos and Mahmassani [ZiMa92], presented a
new time-dependent shortest path algorithm for IVHS applications.

Because of storage constraints, there is a need for aggregating link travel times.
Hence, travel time costs for each link should be stored in an array where each entry
contains the aggregated average travel times for a dr time interval. In transportation
networks these time intervals can be 30 seconds, 1 minute or even more. We showed that
with such discretization, even when the FIFO assumption holds for the original data, there
is a need for linear interpolation for obtaining cost values for time ¢ (when ¢ falls between
the time instances of the given discrctized cost values). The FIFO assumption still holds
for the interpolated data.

Different types of algorithms were investigated to solve the dynamic shortest path
problem. Assuming that the FIFO assumption holds we modified the binary-heap
implementation of the Dijkstra's label setting algorithm and the dequeue implementation of
Pape's label correcting algorithms to accommodate the time-dependency of the problem.
These algorithms were chosen due to their efficiency in sparse networks.

The computational results showed that the dynamic dequeue implementation of
Pape's algorithm is superior to the binary-heap implementation of Dijkstra's algorithm for
all network sizes. The results were based on the running times for solving the shortest
path from all nodes to all nodes in two real networks -- Sudbury (205 nodes, 578 links)
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and Boston (4922 nodes, 11647 links) -- and three square grid networks of size 20x20
(400 nodes, 1520 links), 40x40 (1600 nodes, 6240 links) and 70x70 (4900 nodes, 19320
links). The results indicated that:

® Both dynamic shortest path algorithms solve the problem correctly
® The dynamic dequeue implementation outperforms the label setting algorithm

® The computational time of the algorithm in large size network exceeds the
acceptable time requirements of real-time systems

The above conclusions also motivated the investigation of possible improvements.
Two strategies were suggested. The first strategy -- terminate Dijkstra's algorithm when
all destination nodes become permanent -- showed that in average about 10% running
time improvements can be achieved. This was a notable result by itself but the dequeue
implementation of the label correcting algorithm still outperformed this version of
Dijkstra's algorithm.

As a second strategy for improvement, algorithms for distributed/multiprocessor
environment were investigated. The basic approach consisted of the following steps:
decompose the network into few subnetworks, solve the time-dependent shortest path
parallel in each subnetwork, and organize partial re~ults to obtain global solution. Time
dependent virtual links were introduced between the origin nodes, cutset nodes, and
destination nodes of the network. Three different virtual links were defined. Node-to-
cutset virtual links connect each origin node with all cutset nodes of the same
subnetwork. Cutset-to-cutset virtual links connect cutset nodes of the same subnetwork.
Cutset-to-destination virtual links connect the cutset nodes with destination nodes of the
network. The definition of cutset-to-destination virtual links enables the algorithm to find
shortest paths to the destination nodes only. The cost of a virtual link (i,j) for time ¢ was
defined as the travel time on the shortest path from node i to node j, departing at time .

The Distributed Dynamic Shortest Path (DDSP) algorithm proposed, solves the
dynamic shortest path problem maintaining a two-level network structure. The lower
level consists the subnetworks with original nodes and arcs enhanced with cutset-to-cutset
virtual links and the higher level consists of the virtual link representation of the network.
The algorithm solves the problem in four steps maintaining and exchanging shortest path
results between the low subnetwork level and the high virtual link level. Depending on the
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density of the network at each step the dynamic label correcting or the label setting
algorithm was used.

The DDSP algorithm, using one processor, was faster than the serial (dequeue
implementation) algorithm only when the number of destination nodes is very small (less
then one percent). We also tested the distributed implementation (with four processors)
of the DDSP algorithm in a real and various grid networks. Each network was divided
into four subnetworks and one processor was assigned to each subnetwork. The parallel
implementation of the DDSP algorithm was faster then the best serial algorithm. The
computational results showed that the running time of the algorithm is strongly influenced
by the number of destination nodes in the network. Due to the aggregate characteristics
of cost on virtual links the DDSP algorithm may not identify the correct shortest path
between certain nodes. Experimental results showed that this is the case in less than 1%
of all shortest path calculations. The average and maximum differences were a few
seconds, which correspond to about one percent of the average travel time in the network.

However, the DDSP algorithm was slower than the strategy where one fourth of
the origin nodes were assigned to each processor and the serial algorithm was used (by
each processor) to solve the assigned shortest paths. This is due to the fact that in grid
networks the number of cutset nodes is large and the performance of the DDSP algorithm
strongly depends on the number of cutset nodes.

Indeed the experiments clearly demonstrated that when the number of cutset nodes
is small the DDSP algorithm performs better than other implementations, even with the
same number of processors. In practice many cities, due to the existence of physical
boundaries, e.g., rivers, can be naturally decomposed into subnetworks with very few
cutset nodes. In such cases the DDSP algorithm has a lot of advantages.

The thesis also focused on the construction of dynamic routing tables. Taking into
consideration the special characteristics and difficulties of dynamic routing tables two
approaches were presented. The routing with Postorder Numbering Approach (PNA)
minimizes the amount of storage and information transmission. Despite its efficiency this
approach has several problems, for example with vehicles entering the system at times
other than ¢,.
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The Rolling Horizon Approach (RHA) overcomes most of the problems associated
with the PNA method. The basis of RHA is that it uses all the information contained in
shortest path trees at time f, to generate complete routing tables. The important

observation is that time-dependent shortest path trees carry information about subtrees of
shortest path trees corresponding to other origin nodes and other starting times.

In order to evaluate the RHA method the resulting node coverage, i.e., the number
of filled entries in the routing table as a percentage of the total number of entries, was
examined. Coverage ranged from 31% to 71% for one of the transportation networks.
The results also showed that the nodes in the central part of the network have higher
coverage values.

Finally the thesis presented some heuristics that can be used in order to combine
shortest path calculations and the RHA approach under one common strategy. For
example we may calculate shortest paths only from the origin nodes and obtain routing
information for the other nodes using the RHA method. Experiments showed that the
coverage resulting values of this heuristic fell slightly below the coverage obtained from
the initial approach where shortest paths were solved from all nodes. The other heuristic
finds shortest paths from the origin nodes only but for two different time periods. The
resulting coverage was very similar to the one obtained by the initial approach. However,
the number of shortest paths to be solved was substantially reduced and the running time
was about half of the running time required by the first strategy.

5.2 Future Research

The research presented in this thesis could be extended in several directions:

¢ Examine other methods to improve the standard shortest path algorithms -- e.g.,
upper limit on label values between new iterations.

® Examine strategies for network decomposition that optimize the performance of
the DDSP algorithm.

® Examine possible improvements of the DDSP algorithm: new network structure,
dynamic network building technigues, using other type of shortest path algorithms
in different steps, new data structures.

® Investigate new algorithms and implementation a;iproaches for the RHA for
constructing routing tables.
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Study the coverage in transportation networks using probabilistic modeling of
network and travel time characteristics.

Further investigate new strategies that combine the DDSP (or other) shortest path
algorithms and the RHA approach.
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