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ABSTRACT

A monetized tornado benefit model is developed for arbitrary weather radar network configurations.

Geospatial regression analyses indicate that improvement of two key radar parameters—fraction of vertical

space observed and cross-range horizontal resolution—leads to better tornado warning performance as

characterized by tornado detection probability and false-alarm ratio. Previous experimental results showing

faster volume scan rates yielding greater warning performance are also incorporated into the model. En-

hanced tornado warning performance, in turn, reduces casualty rates. In addition, lower false-alarm ratios

save costs by cutting down on work and personal time lost while taking shelter. The model is run on the

existing contiguous U.S. weather radar network as well as hypothetical future configurations. Results show

that the current radars provide a tornado-based benefit of;$490million (M) yr21. The remaining benefit pool

is about $260Myr21, split roughly evenly between coverage- and rapid-scanning-related gaps.

1. Introduction

Excessive heat, tornadoes, and floods are the top

three weather causes of fatalities in the United States.

In the last 10 years (2008–17) tornadoes have been the

number-1 killer (NOAA 2018). Tornado warnings issued

by the National Weather Service (NWS) are part of a

strategy to reduce casualties by providing people with a

chance to shelter in advance (Simmons and Sutter 2011).

Forecasters issuing these warnings utilize multiple data

sources, with Doppler weather radar serving as the most

essential component (Brotzge andDonner 2013). Indeed,

the nationwide deployment of the Weather Surveillance

Radar-1988 Doppler (WSR-88D) improved tornado

warning statistics (Bieringer and Ray 1996) that led to

an estimated casualty rate reduction of;40% (Simmons

and Sutter 2005).

Decreasing tornado casualties is just one of many

weather radar benefits to society. These radars, however,

are expensive to operate and maintain, and even more so

to replace. As the WSR-88Ds approach the end of their

original (and upgraded) life spans (NRC 2002), careful

consideration must be given to defining requirements for

their replacements or further refurbishments to optimize

return on investment. Spatial coverage, measurement

resolution, update rates, and sensitivity are all important

performance metrics that should be maximized, but

there is a cost associated with each. Benefit quantifi-

cation based on radar performance and network layout

can help with difficult decisions and enable objective

trade-offs.

This paper presents a geospatial model for monetizing

tornado-related benefits of a generic weather radar net-

work. A similar analysis will soon be performed for flash

flood warnings for which weather radars also play a key

role. These studies support the National Oceanic and

Atmospheric Administration (NOAA) as it plans the

future of weather radar beyond the WSR-88D. In

contemplating advanced technologies such as active

phased array radars (e.g., Weber et al. 2007) and/or a

denser network of smaller radars (McLaughlin et al.

2009), potential benefits versus costs must be weighed

carefully.

The goal of this study was to take as input an arbitrary

network of weather radars over a given area, and output

a monetized benefit that the radars provide to the area

populace with respect to tornadoes. Given that this is a

complex problem involving many factors, we endeavored

to simplify the model components to only the essentials

needed to objectively quantify the radar effects. Statisti-

cally insignificant variables were not used. In cases of

uncertainty, we took a conservative approach. Because

the overwhelming majority of tornadoes in the nation are

within the contiguous United States (CONUS), that wasCorresponding author: John Y. N. Cho, jync@ll.mit.edu
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our geographic scope. The model can easily be expanded

to include the rest of theUnited States, but the increase in

benefit should be marginal, since we calculated that his-

torically only 0.09% of U.S. tornadoes occur outside

the CONUS.

Tornadoes are relatively rare occurrences, and casual-

ties (especially fatalities) are sparser. To achieve statisti-

cally significant results, we had to use as many data as we

could, which meant including as many years of historical

data as possible. However, this imperative was counter-

acted by the need to maintain a uniform condition set for

fair regression results. This issue will be addressed in the

individual analysis subsections.

2. Radar coverage and performance metrics

In the CONUS, there are 143 operational WSR-88Ds.

There are also 44 FederalAviationAdministration (FAA)

Terminal Doppler Weather Radars (TDWRs; Michelson

et al. 1990) in the CONUS. The TDWRs’ primary mission

is providing hazardous wind shear alerts for aircraft land-

ing and taking off at airports. However, their data are also

available to forecasters and the public. Relative to the

WSR-88D, they provide faster low-level updates (ev-

ery minute during hazardous weather conditions) and

better vertical resolution. However, the TDWR’s op-

eration is more negatively impacted by rain attenuation

and range–velocity ambiguity issues (Cho and Weber

2010)becauseof theutilizationofCband rather thanSband

like the WSR-88D.

In areas with TDWR coverage, do meteorologists

make use of this additional radar data formaking tornado

warning decisions? To answer this question, we con-

ducted a small survey that targeted NWS offices with

TDWR coverage, including both tornado-intensive and

tornado-sparse locations. We received responses from

eight forecast offices (Tampa Bay, Florida; Peachtree

City, Georgia; Wilmington, Ohio; Norman, Oklahoma;

Fort Worth, Texas; Philadelphia, Pennsylvania; Topeka,

Kansas; and Milwaukee, Wisconsin) plus the Storm Pre-

diction Center (SPC). The responses unanimously sup-

ported the TDWR as a useful data source for tornado

warning decisions. Although the reliance ratio on data

fromWSR-88Ds and TDWRs varied depending on their

relative coverages, one office (Wilmington) asserted that

they issuedmore tornado warnings based onTDWRdata

than on WSR-88D data. Consequently, we decided to

include TDWRs as part of our analysis.

Past studies of tornado warning performance depen-

dence onweather radar have used distance from radar as

the key parameter (Brotzge and Erickson 2009; Brotzge

et al. 2011; Brotzge et al. 2013). This makes sense be-

cause sensitivity, spatial resolution, and low-level coverage

degrade with range. Tornadoes exist within a limited

height above the surface and their rotational signature

requires fine horizontal resolution to detect. Our initial

investigation into the relationship between radar cov-

erage and tornado warning performance, however, ex-

posed some unexpected behavior at close range. We

hypothesized that this was due to not taking into account

near-radar degraded coverage caused by the ‘‘cone of

silence’’ (e.g., Fabry 2015). Weather radars do not scan

all the way to zenith angle, which leaves an overhead

cone of unobserved space. Some of this gap can be

covered if there is another radar close enough, but the

spatial resolution is degraded. Even if a radar did scan

to zenith, it would not be able to measure horizontal

velocity as the angle would be too steep.

Why is radar coverage aloft important for tornado

warning decisions even though tornadoes occur at the

surface? The ultimate goal is to issue a warning before a

tornado touches down with as much lead time as possi-

ble, and forecasters look for features at both low- and

midlevels. For supercell storms, these include a strong

mesocyclone, a bounded weak echo region or a hook

echo in conjunction with big peakmidlevel reflectivities,

and a midlevel overhang (Lemon and Doswell 1979;

Falk 1997). Virtually all strong or violent tornadoes are

associatedwithmesocyclones (Burgess andLemon 1990).

Detection of tornado debris signatures aloft after touch-

down is also used for detection and confirmation, with

violent tornadoes sending debris to over 18 000 ft

(;5.5 km) above ground level (AGL) (Schultz et al.

2012; Gibbs 2016). The cone of silence cuts off these

critical measurements.

Thus, we developed a new radar coverage metric,

fraction of vertical volume observed (FVO), with the

floor at Earth’s surface and ceiling at 20 kft AGL

(1 kft 5 304.8m). The top panel of Fig. 1 shows the

vertical observation limits versus range for a WSR-88D

on a smooth Earth. The bottom plot shows FVO with

range, illustrating that this metric combines the cone of

silence and Earth curvature effects. In the actual calcu-

lation, we included surface elevation data to account for

blockage and height AGL variations. We used level-1

Shuttle Radar Tomography Mission (SRTM) data, which

includes both natural terrain and surface structures/features,

as the primary source of digital elevation, supplemented

by level-1 Digital Terrain Elevation Data where SRTM

had gaps (Cho 2015). Our model computation grid

matched the horizontal resolution (30 arc s in latitude

and longitude) of these datasets, while the vertical grid

spacing was 200 ft (;60m). We employed a 4/3-Earth-

radius model for radar frequency propagation path

calculations. The minimum elevation coverage angle was

taken to be 08 (roughly corresponding to the bottom side
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of themain lobe) for bothWSR-88DandTDWRwhile the

maximum angle was set to 208 for WSR-88D and 608 for
TDWR (topside of the main lobe). These are approxi-

mations, since the minimum and maximum angles vary

from site to site (especially for TDWRs) and for dif-

ferent scan strategies (especially for WSR-88Ds).

Figure 2 shows the resulting FVO over the CONUS

for the combined WSR-88D and TDWR networks. The

20-kft value for the FVO ceiling was chosen as a com-

promise between weighting the near-surface obser-

vations too much and placing equal weighting on all

observable altitudes. Although 20 kft is somewhat

arbitrary, the fact that FVO is a fractional metric

ameliorates hard cutoff effects.We also tried varying the

ceiling height to probe the model sensitivity to this

value. The annual tornado casualty estimate for today’s

weather radar network (discussed in section 4) turned

out to be lower by 0.3% with a 10-kft FVO ceiling and

lower by 0.01% with a 30-kft FVO ceiling when com-

pared with the 20-kft-FVO-ceiling case. Thus, the model

sensitivity to this parameter appeared to be very small

above 20 kft. In any case, all three casualty estimates were

within the error bars of the actual average annual tornado

casualties.

We also considered the cross-radial horizontal reso-

lution (CHR). This parameter is important for detection

of tornadic velocity couplets (Wood and Brown 1997;

Brown et al. 2002; Brown and Wood 2012b). Along-

range horizontal resolution is also a factor but is not

an interesting metric, because it is a constant value ev-

erywhere for monostatic radars. In rough terms, CHR

is angular resolution (in radians) multiplied by range.

Angular resolution is dependent on the antenna

beamwidth and the dwell size (Zrnic and Doviak 1976).

Although the TDWR’s beamwidth is about one-half

that of theWSR-88D’s (0.558 vs 18), because its sampling

interval is 18, the effective angular resolution of the two

systems are not very different. Currently, the WSR-88D

has a so-called superresolution mode that outputs data

at overlapping 0.58 intervals, but the effective angular

resolution is still ;18 based on the data window and the

beamwidth (Torres and Curtis 2006). Therefore, we

approximated the angular resolution of both systems

as 18. The resulting CHR is, thus, functionally the same

as the distance-from-radar metric for the current radars.

Future radars, however, could have very different angular

resolutions, for example, a dense network of broad-beam

FIG. 1. (Top) WSR-88D vertical coverage limits vs range from

radar as delineated by the bottom of the lowest-elevation scan (0)

and the top of the highest-elevation scan (20 kft). The 4/3-Earth-

radius propagation model is used. (Bottom) Corresponding frac-

tion of vertical volume observed between 0 and 20 kft AGL.

FIG. 2. Fraction of vertical volume observed between 0 and 20 kft AGL by current CONUS

WSR-88Ds and TDWRs.
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systems (Brotzge et al. 2010), or even angle-dependent

resolution for fixed planar phased arrays (Brown and

Wood 2012a), which may make CHR a more meaningful

performance yardstick.

3. Model development

Tornado warnings are expected to benefit society by

allowing people to shelter in advance of impact, thereby

reducing casualties. This intuitive causal chain has been

proven empirically, at least for the case of injuries

(Simmons and Sutter 2008); fatalities are such rare

events that it is difficult to achieve statistically signifi-

cant results for them. Little can be done to protect

property at warning time scales, so we only considered

casualty reduction in our model. At the same time,

there is a cost incurred for those taking shelter based on

the loss of work and personal time. If false alarms can

be decreased, some of this cost could be recouped

(section 3g).

Better Doppler weather radar coverage should con-

tribute to tornado casualty reduction by improving tornado

warning performance. It may also lower sheltering

cost by decreasing false alarms. Our benefit model

combined all of these effects to output a monetized

cost given an arbitrary weather radar network as input

(Fig. 3).

a. Detection probability dependence on radar
coverage

A 5-yr (2000–04) study (Brotzge and Erickson 2010)

showed that the fraction of tornadoes without warning

increased with distance from radar, which implies that

better radar coverage improves tornado warning per-

formance. We performed our own analysis using NWS

tornado warning data, extending the analysis period.

National deployment of operational WSR-88Ds was

completed in late 1997. Therefore, we set the analysis pe-

riod to be between 1 January 1998 and 31December 2017.

However, after 1998, two new WSR-88D sites were

added—Evansville, Indiana (operational January 2003),

and LangleyHill,Washington (installed September 2011).

Furthermore, the TDWR Supplemental Product Gener-

ator (SPG) deployment (Istok et al. 2009), which enabled

TDWR data access by NWS forecasters, was finished in

late 2008. Thus, to account for these radar network

changes, we generated four sets of FVO and CHR

maps: 1) prior to the Evansville WSR-88D installation,

2) after the Evansville addition but before the TDWR

SPG deployment, 3) after TDWR SPG but before the

Langley Hill WSR-88D installation, and 4) after the

Langley Hill deployment. We did not discriminate

between the periods before and after the WSR-88D

dual-polarization upgrade, since overall tornado warning

statistics did not improve postupgrade in our analysis.

This method is not perfectly accurate, because we did not

take into account the exact periods of radar down times,

variations in volume-scanning strategies, etc., but the

expansion of the analyzed database to 20 years helped

to suppress the noise level of these minor errors rela-

tive to the desired signal.

Tornado event data were downloaded from the storm

events database (https://www.ncdc.noaa.gov/stormevents/)

of NOAA’s National Center for Environmental In-

formation. Tornado warning data were obtained from

the IowaEnvironmentalMesonetNWSWatch/Warnings

archive (https://mesonet.agron.iastate.edu/request/gis/

watchwarn.phtml). A warning was deemed to be a hit if

any portion of the tornado path was inside the area

enclosed by the warning latitude–longitude coordinates

and if any part of the tornado existence period over-

lapped the warning valid interval; otherwise, the warn-

ing was classified as a false alarm. For a hit, the lead time

was calculated as the tornado start time minus the initial

time of warning issuance. Multiple warnings for one

storm were treated separately. For the remainder of the

paper, we will refer to the fraction of tornadoes with

warning as the probability of detection (POD), which is

FIG. 3. Block diagram of weather radar network benefit model for tornado warnings.
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the more commonly used term. The number of tornadoes

and POD during the analysis period, parsed by enhanced

Fujita scale (EF) number, are given in Table 1.

Note that prior to 1 February 2007, the original Fujita

scale was used to rate tornadoes. With a far greater

number of damage indicators used, the EF is agreed to

be a more accurate and consistent estimator of tornado

strength. Although carefully designed to minimize dis-

continuity in the historical tornado database, there may

still be some small statistical differences between the old

and new scales, such as shifts in the relative distributions

between strength categories (Edwards and Brooks 2010),

which could potentially affect our regression results.

For each tornado event, FVO and CHR at the start-

of-tornado location were recorded. Based on similarities

in POD statistics, and also to increase the number of

samples per category for the high-EF cases, we then

computed POD versus FVO and CHR for EF0–1, EF2,

and EF3–5. For these calculations, FVOwas binned into

the following intervals: [0, 0.3], (0.3, 0.6], (0.6, 0.7], (0.7,

0.8], (0.8, 0.9], and (0.9, 1], while CHR (in meters) was

binned into: [0 500], (500, 1000], (1000, 1500], (1500, 2000],

(2000, 2500], and (2500, ‘).
Figures 4–6 show POD versus FVO for EF0–1, EF2,

and EF3–5. The plotted abscissa values are the means

of the binned FVO data, not the center of the bins. The

horizontal error bars are61.96 times the FVO standard

deviation divided by the square root of the number of

data points. The vertical error bars are 61.96 times the

standard error for proportional data (the computed

PODs) divided by the square root of the number of data

points. These bars indicate the 95% confidence intervals

in both dimensions. A minimum of four data points per

bin were required for inclusion in the plots, which

eliminated low-FVO points with increasing EF number.

POD increases with FVO for all EF categories. This

is a key result, as it associates improvement in tornado

warning performance to better radar coverage. We

modeled these dependencies with least squares straight

line fits to the data with input uncertainty in two di-

mensions using the Numerical Recipes function ‘‘fitexy’’

(Press et al. 1992). Results of the fitting are listed in

Table 2, where a is the y intercept, b is the slope, sa is the

standard deviation of a, sb is the standard deviation of

b, x2 is the final chi-square value, andQ is the goodness-

of-fit probability. The slopes are positive; they remain

positive within the errors except for EF3–5, which has

essentially zero slope. The dashed red line in Fig. 4 will

be explained in section 3e.

We defined a tornado with warning to include those

with zero and negative lead times, because even if a

tornado touches down before the warning issuance time,

as long as the warning is issued before the end of the

event, people farther down the track have a chance to

shelter before impact. Still, we reran the analysis to in-

clude only positive lead times as a sensitivity check. The

main effect of excluding zero and negative lead times

was to lower the POD values (warning performance) as

expected, but POD still clearly increased with FVO for

TABLE 1. CONUS tornadowarning statistics for the analysis period

for the six EF categories.

0 1 2 3 4 5

Tornado count 15 872 8376 2543 780 171 19

Fraction with warning 0.67 0.70 0.84 0.95 0.98 1.0

FIG. 5. Detection probability of EF2 tornadoes vs fraction of

vertical volume covered by radar from surface to 20 kft AGL. The

red line is a least squares linear fit to the data.

FIG. 4. Fraction of EF0 and EF1 tornadoes warned vs fraction of

vertical volume covered by radar from surface to 20 kft AGL. Solid

red lines are least squares linear fits to the data. The dashed red line

corresponds to the rapid-scanning-radar case.
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all EF groups and the linear fits were significant. The

slopes (again, all positive) of the fitted lines agreed with

the case including zero and negative lead times within

their respective uncertainties.

The dependence of POD on CHR was more prob-

lematic, as POD did not decrease monotonically with

increase in CHR. Figure 7 shows the results for all EF

categories combined. Since CHR is proportional to

distance from the nearest radar, the decrease in POD at

close range may be at least partly due to the negative

impact of the cone of silence. This type of cross con-

tamination of effects is undesirable, since future radar

systems could have a significantly smaller cone of si-

lence and a CHR–POD relationship based mostly on

WSR-88D data may not hold. Therefore, we excluded

CHR as a radar performance metric from the POD

dependency model.

b. Dependence of false-alarm ratio on radar coverage

Tornado warning false-alarm ratio (FAR) depends

on many factors, for example, time of day, population

density, and tornado occurrence frequency. An earlier

5-yr study (2000–04) showed FAR to be more or less

constant with distance from radar up to ;150 km, but

then decreasing at farther ranges (Brotzge et al. 2011).

Taken at face value, this meant that improving radar

coverage would not lower FAR, and might even raise

the overall number of false alarms. It is also possible

that lower FAR (and lower POD) might result from

forecasters’ reluctance to issue warnings where they

know radar coverage is poor. Thus, we revisited this

study using the FVO and CHR radar coverage metrics

instead of distance from radar, and expanded the da-

tabase period as we did for the POD dependency

analysis in section 3a.

An important point about the database is that oper-

ational NWS tornado warnings switched from a county-

based to a storm-based polygon area definition on

1 October 2007. This transition made a large difference

in the warning statistics as seen in Table 3, with themean

warning area shrinking to ;40% of the former mean

area. Because the analysis of FAR versus the radar

coverage metrics involved computation of the average

coverage parameters over the warning area, the change

to storm-based warning resulted in much sharper re-

lationships. This was in contrast to the POD analysis of

section 3a, which used the location of the tornado with

the radar coverage values, not the warning area. There-

fore, in this section, we only used the database period

1 October 2007 to 31 December 2017.

For the FAR versus radar coverage calculations, FVO

was binned into the following intervals: [0, 0.3], (0.3, 0.5],

(0.5, 0.7], (0.7, 0.8], (0.8, 0.9], and (0.9, 1], while CHR (in

meters) was binned into: [0 600], (600, 1300], (1300, 2100],

(2100, 3000], (3000, 4000], and (4000, ‘). Limits were

adjusted to spread out the data distribution more

evenly among bins. The results and subsequent linear

fits are plotted in Fig. 8 (FAR vs FVO) and Fig. 9 (FAR

TABLE 2. POD vs FVO linear fit results, categorized by EF

groupings.

0–1 2 3–5

Low FVO High FVO All FVO All FVO

a 0.00 0.49 0.53 0.85

b 0.96 0.21 0.35 0.12

sa 0.18 0.07 0.19 0.18

sb 0.31 0.09 0.25 0.32

x2 0.56 0.24 0.82 0.22

Q 0.46 0.89 0.84 0.89

FIG. 6. As in Fig. 5, but for EF3, EF4, and EF5 tornadoes.

FIG. 7. Tornado detection probability vs cross-radial horizontal

resolution of radar observations.
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versus CHR); the fitting procedure was the same as for

Figs. 4–6 as explained in section 3a. For Fig. 9, the line fit

excluded the rightmost data point, and the FAR was

capped at 0.76 as shown by the horizontal red line, a

piecewise linear approximation of what appears to be a

saturation curve type of behavior. The dashed red line

will be explained in section 3e.

Curiously, in this case, FAR versus CHR yielded the

better fit. Coefficients and fitting statistics are given in

Table 4. In an attempt to optimally combine CHR and

FVO in the FAR-radar coverage model, we tried

weighted means of the two linear relationships and

compared the resulting errors (mean-squared sums

of the difference between model and data). The smallest

error was achieved with zero weighting on the FVO re-

lationship. Thus, only the FAR–CHR relation was used

in our model.

c. Casualty dependence on tornado warning

Now that we have established models for dependency

of tornado warning performance on radar coverage, we

move on to discuss casualty dependence on tornado

warnings. Tornado casualty rate is positively correlated

with surface dissipation energy, population density,

fraction of mobile homes in housing stock, and FAR

(Simmons and Sutter 2009; Fricker et al. 2017). The

dependence on historical FAR is likely due to ‘‘the boy

who cried wolf’’ effect, where residents used to a high

FAR are less likely to heed warnings seriously and take

shelter. Tornado casualty rate is negatively correlated

with the presence of tornado warnings, as expected;

when a tornado warning is correctly issued, one intuits

that lead time should also be negatively correlated with

casualty, but this has not been established, as the de-

pendence of casualty rate on lead time is not monotonic

(Simmons and Sutter 2008). Time-based variables like

season and time of day were also shown to be significant

predictors of casualty rate, but these are not factors that

we can use in our time-independent cost generation

model, so we did not consider them.

Since casualty is a counting variable and its statisti-

cal distribution is overspread, we followed the earlier

studies in assuming a negative binomial distribution

model,

C;NegBin(m, u), (1)

where C is conditional casualty count, m is the distribu-

tion mean, and u is the dispersion parameter (Simmons

and Sutter 2008; Fricker et al. 2017). Our regression

model is expressed as

lnm5a lnP
T
1b lnS1 gM1 dF

0
1 «W1 k , (2)

where PT is population inside the tornado path, S is

tornado surface dissipation energy density,M is fraction

of PT residing in mobile homes, recreational vehicles,

and vans, F0 is mean historical FAR inside the tornado

path,W is warning presence (0 for absent; 1 for present),

k is the intercept constant, and a, b, g, d, and « are the

TABLE 3. Tornado warning statistics before and after switch to

storm-based warnings.

Period

1 Jan 1998–

30 Sep 2007

1 Oct 2007–

31 Dec 2017

Warning count 33 814 23 717

Mean warning area 2370 km2 967 km2

FAR 0.763 0.722

FIG. 8. Tornado warning false-alarm ratio vs fraction of vertical

volume covered by radar from surface to 20 kft AGL. The red line

is a least squares linear fit to the data.

FIG. 9. Tornado warning false-alarm ratio vs mean cross-radial

horizontal resolution of radar observations. The sloped solid red

line is a least squares linear fit to the first five data points. The

dashed red line corresponds to the rapid-scanning-radar case.
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regression coefficients. The tornado surface dissipation

energy density is (Fricker et al. 2017)

S5 r �
5

m50

w
m
y3m , (3)

where r is the air density (assumed to be 1 kgm23), y is

the midpoint wind speed for each EF value m, and w is

the corresponding fraction of the path area. Because

there is no upper bound speed for EF5, we set a mid-

point of 97m s21 following Fricker et al. (2017). Path

area fractions are not given in the tornado database, so

mean wm values were taken from Table 3-1 of Ramsdell

and Rishel (2007).

In (2) it is not intuitively obvious that population

should be used instead of population density or that

dissipation energy density should be used instead of

dissipation energy; Fricker et al. (2017) opted for

population density and dissipation energy. Both terms

should not be posed as density, since that would omit the

important tornado path area factor. We chose to use the

combination that gave the best regression fit, and that

was dissipation energy density and population.

We did not separate casualties into fatalities and in-

juries at this stage, as the former is merely the extreme

end case of the latter. By combining the two groups, we

avoided the problem of extremely sparse statistics for

fatalities. Only direct casualties were included to tighten

the causal relationship between the tornado and its im-

pact on people. In the monetization stage (section 3d),

we parsed the model results into fatalities and two types

of injuries.

For population data, we obtained gridded pop-

ulation density from the Center for International

Earth Science Information Network (CIESIN 2017).

The latitude–longitude resolution of these data matched

our model grid spacing of 30 arc s. Data were avail-

able for 2000, 2005, 2010, 2015, and 2020 (projected).

For 1998–99 we used the 2000 data, and for other

years we linearly interpolated as needed between the

available years.

Mobile-housing statistics were pulled from the Amer-

ican Community Survey database for 2015 (USCB 2016)

and the Decennial Census for 2000 (Manson et al. 2018).

The population in housing units were broken down

by building structure categories, one of which was

‘‘mobile home.’’ We grouped this together with the

much smaller ‘‘boat, RV, van, etc.’’ category to arrive

at our mobile-housing population. The highest spatial

resolution data available (block group level) were nor-

malized by the total population in each block group to

yield the fraction of population in mobile housing. This

dataset was then sampled and mapped to our latitude–

longitude grid to generate the CONUS maps. In the re-

gression analysis, the 2000 map was used for 1998–2000,

the 2015 map was used for 2015–17, and linearly inter-

polated maps (between 2000 and 2015) were used for

2001–16. Although only 5.8% of the national population

lives in mobile housing, because they are prevalent in

rural regions, disproportionately large areas of the

country have significantly higher fractions.

From the tornado warning data, we computed CONUS

maps of historical FAR on our model grid for the periods

before and after storm-based warnings. Areas with no

data were dropped from the regression analysis.

We used the function ‘‘glm.nb’’ from the open statis-

tical analysis software package R (https://www.R-project.

org/) for the negative binomial regression analysis. The

results are given in Table 5. All coefficients estimates had

the expected signs; that is, mean casualty per tornado

was positively correlated with population, tornado

dissipation energy, and FAR, and was negatively cor-

related with the presence of tornado warning. The co-

efficient signs were constant within the standard errors,

and the z statistics showed that all coefficient estimates

were significant at a much better than 0.001 level.

Furthermore, comparing models with and without each

variable through degree-of-freedom chi-square tests

TABLE 4. FAR vs radar coverage parameter linear fit results.

Parameter FVO CHR

a 0.80 0.67

b 20.094 2.6 3 1025 m21

sa 0.026 0.015

sb 0.033 7.4 3 1026 m21

x2 4.8 0.22

Q 0.30 0.97

TABLE 5. Tornado casualty model regression results for two data

periods.

Parameter Estimate Std error z Pr(.jzj)
1 Jan 1998–31 Dec 2017

a 0.296 0.0146 20.2 ,2 3 10216

b 6.29 0.159 39.5 ,2 3 10216

g 1.48 0.242 6.10 1 3 1029

d 0.579 0.159 3.63 0.0003

« 20.815 0.0796 210.2 ,2 3 10216

k 270.3 1.71 241.1 ,2 3 10216

u 0.122 0.004 91 — —

1 Oct 2007–31 Dec 2017

a 0.315 0.0219 14.4 ,2 3 10216

b 6.14 0.237 26.0 ,2 3 10216

g 1.31 0.348 3.77 0.0002

d 0.622 0.208 2.99 0.003

« 20.556 0.118 24.70 3 3 1026

k 269.1 2.54 227.2 ,2 3 10216

u 0.115 0.006 94 — —
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indicated that every variable was a statistically signifi-

cant predictor of casualty rate.

Regression analysis was performed on all data as well

as data since the implementation of storm-based warn-

ings. Comparison of Table 5 values shows that the results

were quite robust relative to this data segmentation. Since

the error and significance statistics were better for the full

dataset, we adopted those results in our benefit model.

Application of (2) with the estimated coefficients to the

same input data yielded a casualty count of 14 970 as

compared with the actual count of 15 611, which is a

difference of less than 5%. According to this model,

the presence of a tornado warning reduces casualty

by 55%.

d. Casualty monetization

In benefit studies like this one, the value of a statistical

life (VSL) is often used tomonetize casualties. VSL is an

estimate of one’s willingness to pay for small reductions

in mortality risks. We adopted the U.S. Department of

Transportation’s (DOT) guidance (Moran and Monje

2016), which called for a VSL of $9.6 million (M) in 2015

dollars. To adjust the value to 2018 dollars, we employed

the DOT’s formula,

VSL
T
5VSL

0

CPI
T

CPI
0

�
MUWE

T

MUWE
0

�q

, (4)

where CPI is the consumer price index, MUWE is the

median usual weekly earnings, q is income elasticity, and

the subscripts T and 0 denote updated base year and

original base year, respectively. From the U.S. Bureau

of Labor Statistics (BLS) online database, we ob-

tained CPIT/CPI0 5 1.0606 (https://www.bls.gov/

data/inflation_calculator.htm) and MUWET/MUWE0 5
1.0571 (https://www.bls.gov/cps/cpswktabs.htm) for a

baseline of January 2015 and updated time of January

2018. With the DOT’s estimate of q5 1, we got a 2018

VSL of $10.8M.

As discussed in section 3c, our casualty regression

model did not differentiate between fatalities and in-

juries. To parse the model output into the two types of

casualty, we relied on the strong relationship between

EF category and relative proportions of casualty types

computed from the tornado database. Table 6 gives the

mean fraction of casualties that are fatalities versus

EF number.

Injuries can be monetized as fractions of VSL. To do

this, we referenced a Federal Emergency Management

Administration (FEMA) tornado safe room benefit

study (FEMA 2009). Their formulation specified in-

juries requiring hospitalization as level 4 (severe) and

injuries that led to professional treatment and immedi-

ate release as level 2 (moderate). The latest DOT

guidance sets the level-4 injury cost at 0.2663 VSL and

level-2 injury cost at 0.047 3 VSL (Moran and Monje

2016). In 2018 dollars, these costs are $2.86Mand $0.506M,

respectively. All estimated casualty costs are compiled

by type in Table 7.

The historical tornado database does not differentiate

injuries by severity. Thus, we needed another way to

generate model output for injuries requiring hospitali-

zation versus those that are treated and released. For-

tunately, the FEMA report connected the probability of

injury levels to tornado EF class and building type. We

simplified the building categories to two (mobile housing

and other) to match the gridded fraction of population in

housing data that we obtained for the regression analysis.

For the ‘‘other’’ category, we averaged the FEMA table

values for one- and two-family residences and institutional

buildings (Table 8). The results were used to generate

CONUS maps for the fraction of injuries requiring hos-

pitalization by EF number; an example (for EF3) is pre-

sented in Fig. 10.

e. Rapid-scan benefits

Faster radar measurement updates could improve

tornado warning lead time, POD, and FAR (Heinselman

et al. 2015). However, weather radar volume update rate

is constrained by the need to collect enough samples over

the same space to reduce measurement error and im-

prove clutter filtering, as well as by the limited agility of

the antenna. WSR-88D volume coverage patterns (VCPs)

designed for convective conditions have periods of 4.5–

6min, whereas TDWRhazardmode volume scans have

;2.5-min periods (albeit with sparse sampling in ele-

vation angle) and a 1-min update time for base scans.

In 2011, the automated volume scan evaluation and

TABLE 6. Mean CONUS tornado statistics vs EF number.

EF

Fatality

fraction

Path area

(km2)

Surface dissipation energy

density (GW km22)

0 0.021 0.0274 37.6

1 0.047 0.347 48.2

2 0.053 1.67 64.8

3 0.067 5.86 85.2

4 0.067 11.9 96.8

5 0.15 29.3 114

TABLE 7. Casualty cost by type. Here and below, $M indicates

millions of U.S. dollars.

Casualty type Cost ($M)

Fatality 10.8

Injury (hospitalized) 2.86

Injury (treated and released) 0.506
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termination (AVSET) algorithm was deployed on

WSR-88Ds to adaptively shorten a VCP by skipping

high-elevation cuts with no weather, and in 2014, the

supplemental adaptive intravolume low-level scan

(SAILS) technique was introduced, giving operators the

option to run an additional base scan during the middle

of a VCP (Chrisman 2013). Subsequently, a multiple-

elevation scanoption for supplemental adaptive intravolume

low-level scan (MESO-SAILS) was added in 2016 to

allow the insertion of multiple base scans within a VCP

period (Chrisman 2014).

These new VCP algorithms allow better update rates

in the elevation angles targeted for specific weather

phenomena such as potentially tornadic storms. The

scan rates are still ultimately limited by the radar re-

source. In the future, significantly faster updates could

be enabled by operational deployment of electronically

scanned phased array radars (e.g., Weber et al. 2007;

Heinselman et al. 2008). Since we wish to apply our

model to potential future radar networks, we need to

quantify added benefits from rapid scanning.

Although lengthening tornado warning lead times

should help lower casualties, this connection has not

been clearly established (Simmons and Sutter 2008).

Our analysis also did not yield a statistically meaningful

result to support this position. Thus, we did not pursue

this path for modeling rapid-scanning benefits. How-

ever, we showed that improvements in tornado warning

POD and FAR can reduce casualty rates. Furthermore,

previous studies have indicated that faster radar scan-

ning can raise POD and lower FAR (Heinselman et al.

2015; Wilson et al. 2017). Therefore, combining the two

dependencies, we were able to model the casualty-

reduction benefits of rapid-scan radars.

The National Weather Radar Testbed (NWRT)

(Heinselman and Torres 2011) was used in a series of

phased array radar innovative sensing experiments

(PARISE) to study the effects of faster scanning on

weather forecasters making severe storm warning de-

cisions. Tornadoes resulting from three storm types

(squall line, supercell cluster, and supercell) were stud-

ied in the 2015 PARISE (Wilson et al. 2017), with sur-

veillance volume update periods of 61–76 s. The radar

data were sampled to generate full- (;1min), half-

(;2min), and quarter- (;5min) speed outputs. Each

temporal resolution set was given to a separate group of

10 NWS forecasters for warning guidance. The quarter-

speed case is representative of most of the weather radar

data used in our regression analyses and thus can be

considered to be the baseline condition.

The supercell case yielded no difference among the

three groups, with a perfect score of POD 5 1 and

FAR 5 0 across the board. The squall line case also

showed little variation with update rate, with FAR 5 1

TABLE 8. Injury-type fraction vs EF number and building type.

Building type EF

Treat and

release Hospitalize

Manufactured (mobile homes) 0 0.89 0.11

1 0.65 0.35

2 0.35 0.65

3 0.25 0.75

4 0.25 0.75

5 0.25 0.75

Others 0 1.00 0.00

1 0.67 0.33

2 0.65 0.35

3 0.55 0.45

4 0.43 0.57

5 0.29 0.71

FIG. 10. Modeled fraction of EF3 tornado injuries that require hospitalization.
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for all groups, POD 5 0.1 for the full- and half-speed

groups, and POD 5 0 for the quarter-speed group. The

supercell cluster case generated the only notable re-

sponse with POD increasing—0.1, 0.6, and 0.8—and

FAR decreasing—0.50, 0.53, and 0.33—for the quarter-,

half-, and full-speed groups, respectively.

Since these results were based on a very small sample

size (30 forecasters working on one null storm case and

three storms that spawned five tornado events in total),

we applied them conservatively. PARISE was con-

ducted under fairly ideal radar coverage, so looking at

Figs. 4–6, we only considered changing the POD ver-

sus FVO relationship close to FVO 5 1. Since the

maximum POD enhancement of 0.8 (at full scan rate)

only exceeded the model values at FVO 5 1 for the

EF0–1 case, that was the only modeled relationship

modified for the rapid-scan case. In other words, the

POD performance of the EF2 and EF3–5 cases were

already too good for a rapid-scan capability to add

value. For 1-min update scans, we enhanced the POD-

versus-FVO relationship as indicated by the dashed

line in Fig. 4. The new value of POD at FVO 5 1 is

given by 0.8u 1 (a 1 b)(1 2 u), where a and b are

taken from the EF0–1 high-FVO column in Table 2,

and u5 0.316 is the fraction of CONUS tornadic storms

that are of cluster type (Smith et al. 2012). This equa-

tion conservatively assumes that the POD enhance-

ment due to rapid scanning is only effective on cluster

storms.

Likewise, for FAR reduction, a similar logic was ap-

plied to arrive at the dashed line shown in Fig. 9. The

corresponding equation for 1-min-scan FAR at CHR5
0 is 0.33u1 a(12 u), where a is taken from Table 4. The

resulting changes to the curves in Figs. 4 and 9 were

applied in computing model results for rapid-scan

scenarios.

f. CONUS grid computation

We now combine the development presented in the

previous sections to produce model estimates of the

mean annual casualty cost due to tornadoes over

the CONUS. The modeled tornado casualty rate (per

year, per grid cell) is given by

RF,H,R
ijm 5 �

5

m50

[r
ijm
(1)B

ijm

1 r
ijm
(0)(12B

ijm
)]O

ijm
YF,H,R

ijm , (5)

where B is the probability of warning per tornado, O is

the tornado occurrence rate, i and j are the latitude and

longitude grid indices, m is the EF number, and the su-

perscriptsF,H, andR denote fatal, injured—hospitalized,

and injured—treated and released, respectively. The ca-

sualty type fractions are parsed as

YF
ijm 5 f

m
, (6)

YH
ijm 5 (12 f

m
)h

ijm
, and (7)

YR
ijm 5 (12 f

m
)(12 h

ijm
) , (8)

where f is the fatality fraction given by Table 6 and

h is the fraction of injured that are hospitalized (e.g.,

Fig. 10). From (2),

r
ijm
(W)5 exp[a ln(D

ij
A

0m
)1b lnS

m
1 gM

ij

1 dF
ij
1 «W1 k] (9)

is the casualty rate per tornadowith (W5 1) andwithout

(W 5 0) warning. F is the gridded FAR computed from

ourmodel viaCHRand the relationship depicted inFig. 9.

The coefficients are given in the upper rows of Table 5;

D is the population density, A0 is the mean tornado path

area, and S is the mean tornado surface dissipation

energy density (Table 6). To include as many years as

possible, the tornado occurrence rate maps were gen-

erated from the 1950–2016 tornado database down-

loaded from the NWS SPC’s ‘‘SVRGIS’’ page (http://

www.spc.noaa.gov/gis/svrgis/). Data from 1950 to 1953

were excluded because of suspected quality issues

(Ashley and Strader 2016). Tornadoes were sorted into

EF number and 18 3 18 latitude–longitude bins, and

then the annual occurrence rates were bilinearly in-

terpolated to our model grid.

Summing (5) across all grid indices and EF num-

bers yielded the predicted CONUS tornado casualty

rate per year parsed by casualty type. The results

were multiplied by the corresponding costs in Table 7

and summed to arrive at the total estimated annual

CONUS tornado casualty costs.

g. False-alarm and sheltering cost reduction

As demonstrated, tornado warnings save lives.

However, they can also exact a cost due to time spent

sheltering by people who responded to the warnings.

In strict terms, time spent sheltering when a tornado

does not hit your building is time wasted. Since very

few buildings are actually damaged by tornadoes,

that adds up to a lot of lost time.

For a more nuanced take on this issue, we posit that

C
S
5C

W
1C

P
, (10)

where CS is false-alarm sheltering cost, CW is cost

of lost work time, and CP is cost of lost personal time
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(all in units of dollars per hour). The CW is actually in-

dependent of whether a tornado warning is correct or a

false alarm—the cost to society from loss of work time

does not depend on the outcome of the warning. How-

ever, we argue that CP becomes zero if the tornado

warning was not a false alarm. That is, if one took shelter

on awarning and a tornado touched down in the warning

area, then one is likely to say that time spent sheltering

was worthwhile from a personal perspective. Thus, tor-

nado warning FAR reduction can also generate benefits

via decreasing sheltering costs.

The mean per-person cost of work time lost while

sheltering can be computed as

C
W
5F

E
F
W
V

W
, (11)

where FE is the fraction of the population that is em-

ployed, FW is fraction of time spent working by those

who are employed, and VW is the mean wage per hour.

The mean per-person cost of personal time lost while

sheltering can be calculated as

C
P
5F

E
(12F

W
)V

P
1 (12F

E
)V

P
, (12)

whereVP is the value of personal time per unit time. We

followed Sutter and Erickson (2010) in valuing personal

time as 1/3 of themeanwage (VW/3), after Cesario (1976).

The latest available (May 2018) total private sector

employment numbers were taken from the BLS (https://

www.bls.gov/ces/) to get FE5 0.627, FW5 (34.5h week21)/

(168hweek21)5 0.205,VW5 $26.9h21, andVP5VW/35
$8.97h21. Plugging these values into (10), (11), and (12),

we get CS 5 $11.28 h21.

The total annual added cost of sheltering due to tor-

nado false alarms is given by

C
F
5HTC

S �
CONUS

i,j
I
ij
P

ij
F
ij
, (13)

whereH is the shelter response rate, T is the mean time

spent sheltering, I is the tornado warning issuance rate

per year, P is population, and F is the modeled false-

alarm ratio for tornado warnings. Again, following

Sutter and Erickson (2010), we assumed H 5 0.4. We

approximated the mean time spent sheltering by the

mean tornado warning valid period computed over the

storm-based warning era, which yielded T 5 0.559 h.

The CONUS map of I for the storm-based warning era

is shown in Fig. 11. The CIESIN 2015 and 2020 gridded

population data were interpolated to get current

(2018) values.

4. Example results

We computed modeled tornado casualty and false-

alarm costs for five CONUS radar network configura-

tions: 1) no radar coverage; 2) WSR-88Ds; 3) WSR-88Ds

and TDWRs; 4) WSR-88Ds, TDWRs, and a future

weather radar at select locations; and 5) perfect radar

coverage. Configuration 3 is the current baseline. Con-

figuration 1 allows an estimate of the benefit added by

any radars. We computed this case by setting FVO 5 0

and CHR 5 ‘ everywhere. Configuration 2 yields the

incremental benefit of TDWRs for tornadoes. Config-

uration 5 allows an estimate of the remaining benefit

FIG. 11. Mean annual tornado warning issuance rate over the storm-based warning era

(October 2007–December 2017).
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pool over the current baseline. This case was handled

by setting FVO 5 1 and CHR 5 0 everywhere. Rapid-

scanning capability was added to the baseline and

perfect coverage configurations for a total of seven

cases.

For configuration 4, we tried a scenario in which the

current airport surveillance radars (ASRs) are replaced

by a multimission radar that we dub ASR1 that is ca-

pable of high-quality weather observation. This is one

potential future outcome under the ongoing Spectrum

Efficient National Surveillance Radar (SENSR) pro-

gram (FAA 2016). For this radar, we assumed a 28 an-
tenna beamwidth and maximum elevation angle of 608.
Figure 12 shows the locations of all radar types. We also

computed costs for all radars upgraded with rapid-

scanning (1-min volume update) capability.

Table 9 gives the tornado casualty estimates for all

scenarios, as well as the actual average annual casu-

alty rates. (The anomalous April 2011 tornado su-

per outbreak that produced over 3000 casualties

skews the means high.) There is excellent agreement

between the baseline model results and the actual

casualty rates. Table 10 lists the corresponding tornado

casualty costs, and Table 11 adds the estimated costs due

to time spent sheltering on false alarms. All costs are in

2018 dollars.

Cost differences from the current baseline (WSR-88D

and TDWR) are listed in the ‘‘delta baseline’’ columns

of Tables 9–11. Relative to a CONUS without weather

radars, the current baseline provides nearly half a billion

dollars in tornado benefits annually. The incremental

benefit of TDWRs is modest at about $8Myr21, which is

not surprising since they mostly cover the same areas as

the WSR-88Ds. Adding rapid-scanning capability ach-

ieves far greater cost reduction than improving radar

coverage—just upgrading the existing radars with rapid

scanning yields about the same benefit (;$100Myr21)

as blanketing the CONUS with perfect radar coverage.

Most of the rapid-scan benefit derives from tornado

warning FAR reduction—this can be seen by comparing

the differences between the solid and dashed lines in

Figs. 4 and 9. In Fig. 4, the increase in POD due to rapid

scanning is very small, and it is only for EF0–1 torna-

does, which generate little casualty cost. In Fig. 9, the

TABLE 9. Annual CONUS tornado casualty estimates. Actual average injured counts are totals and are not broken out by injury type.

Scenario Fatal

Injured

(hospitalized)

Injured (treated

and released) Total Delta baseline

No radar coverage 81.0 545.3 495.6 1122.0 206.7

WSR-88D 67.4 452.5 398.0 917.8 2.5

WSR-88D and TDWR 67.2 451.3 396.8 915.3 —

WSR-88D, TDWR, and rapid scan 64.6 434.3 381.5 880.4 234.9

WSR-88D, TDWR, and ASR1 66.8 448.4 393.9 909.0 26.3

WSR-88D, TDWR,ASR1, and rapid scan 64.1 430.6 377.9 872.6 242.7

Perfect coverage 64.5 432.9 375.9 873.3 242.0

Perfect coverage and rapid scan 60.9 408.9 358.4 828.2 287.1

Actual mean (1998–2017) 82 6 26 1105 6 257 1187 6 283 —

Actual median (1998–2017) 50 6 11 788 6 126 850 6 135 —

FIG. 12. Locations of radars included in this study.
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reduction in FAR due to rapid scanning is much more

significant. Tornado warning FAR is high (;0.72) rela-

tive to other severe weather warnings. For example, in

the mid-2000s, NWS warning FARs were 0.46 for flash

floods, 0.31 for winter storms, 0.31 for high winds, and

0.48 for severe thunderstorms (Barnes et al. 2007). There

has been a slowdecrease inFAR in recent years as a result

of an apparent increased focus on this issue (Brooks and

Correia 2018), but there is still room for improvement

(although POD should not be sacrificed for this purpose).

Also, if the connection between casualty reduction and

longer lead times can be established, then the benefit es-

timates for rapid scanning will rise even more.

There is a caveat with the rapid-scanning results. Since

there are no operational weather radars conducting

volume scans at a rate of one per minute, our rapid-scan

FAR reduction model was necessarily based on a lim-

ited number of experiments carried out with the NWRT

phased array radar. Other parts of our cost model

were based on large numbers of tornadoes and

warnings (Tables 1 and 3), inspiring a much higher

degree of confidence. Since the overall results indicated

high benefit leverage through rapid scanning, it would

be prudent to gather more statistics on the effects of

faster volume scans on tornado warning performance by

utilizing existing and new radars capable of fine tem-

poral resolution observations (e.g., Kurdzo et al. 2017;

Stailey and Hondl 2016).

Maps of cost density could also be used to analyze

optimal locations for new gap-filling radars (e.g., Kurdzo

and Palmer 2012). Figure 13 shows the cost density dif-

ference between the current baseline and perfect cov-

erage (without rapid scanning), which shows the areas

with the largest remaining benefit pools. Although the

small-scale details are dominated by the high dynamic

range of the population density, and much of the larger-

scale modulation is due to tornado occurrence rate, the

radar coverage deficiencies are also visible, for example,

the honeycomb-like pattern in the Midwest. Of course,

this is only for tornadoes, so similar maps should be

generated for other key cost generators such as

flash floods.

Figure 13 seems to indicate that virtually all of the

CONUS tornado benefit pool exists east of the Rocky

Mountains. To show this explicitly, we computed the

annual tornado casualty and false-alarm cost estimates

for the CONUS east of 1068W longitude (Table 12). The

‘‘delta baseline’’ column is almost identical to the one in

Table 11.

5. Summary discussion

In this study, we developed a geospatial model for

calculating weather radar benefits for tornadoes. We

showed that certain radar performance and coverage

metrics impacted tornado warning statistics (detection

TABLE 11. Annual CONUS tornado casualty and false-alarm cost estimates.

Scenario Casualty ($M)

False-alarm

sheltering ($M) Total ($M)

Delta

baseline ($M)

No radar coverage 2683 288 2971 492

WSR-88D 2221 266 2487 8

WSR-88D and TDWR 2215 264 2479 —

WSR-88D, TDWR, and rapid scan 2131 234 2365 2114

WSR-88D, TDWR, and ASR1 2201 262 2463 216

WSR-88D, TDWR, ASR1, and rapid scan 2113 230 2343 2136

Perfect coverage 2123 255 2378 2101

Perfect coverage and rapid scan 2007 214 2221 2258

TABLE 10. Annual CONUS tornado casualty cost estimates.

Scenario Fatal ($M)

Injured

(hospitalized) ($M)

Injured (treated and

released) ($M) Total ($M)

Delta

baseline ($M)

No radar coverage 872.1 1560.7 250.7 2683.4 468.2

WSR-88D 724.7 1295.0 201.3 2221.0 5.8

WSR-88D and TDWR 722.9 1291.7 200.7 2215.2 —

WSR-88D, TDWR, and rapid scan 695.4 1243.0 192.9 2131.3 283.9

WSR-88D, TDWR, and ASR1 718.3 1283.3 199.2 2200.7 214.5

WSR-88D, TDWR,ASR1, and rapid scan 689.6 1232.5 191.1 2113.2 2102.0

Perfect coverage 693.8 1239.0 190.1 2122.9 292.3

Perfect coverage and rapid scan 655.4 1170.3 181.2 2006.9 2208.3
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probability and false-alarm ratio), which, in turn, af-

fected casualty rate and loss of work and personal time

in sheltering (Fig. 14). The model operates on a high-

resolution spatial grid over the CONUS capable of

revealing regional variances. It can take as input any

hypothetical radar network configuration.

The ‘‘fraction of vertical volume observed’’ measure of

radar network coverage is new to tornado warning per-

formance analysis. It takes into account the near-range

cone of silence, the far-range loss of low-level coverage

due to Earth’s curvature, as well as terrain blockage and

ground height variability. It was instrumental in estab-

lishing an unambiguously positive correlation between

radar coverage and tornado warning performance.

Our model showed that the current weather radar

network provides a benefit of nearly 0.5 billion dollars

per year with respect to tornadoes. There is a remaining

benefit pool of over $250Myr21. This pool is divided

almost equally between improved coverage and faster

scanning. Since perfect coverage (or anything close to it)

would be extremely expensive, upgrading existing siteswith

faster-scanning radars may be a more cost-effective way to

harvest more of those benefits (for tornadoes). However,

we must note that the quantification of rapid-scan effects

was based on a small number of experiments and is less

robust than the other parts of our benefit model.

Tornado warning FAR is positively correlated with

casualty rate and incurs added cost because of work and

personal time lost during sheltering. Reducing the cur-

rent FAR of 0.72 is a worthy goal that taps into this

benefit. However, making progress in this direction is

complicated and involves much more than improving

weather radar data.

As discussed earlier, tornadoes are just one type of

hazardous weather to consider when planning a weather

radar network and executing a business case analysis for

it. We are currently conducting a study that is similar

to this one but for quantitative precipitation estimation

performance, and we will be developing a benefit model

for flash floods.

TABLE 12. Annual tornado casualty and false-alarm cost estimates east of the Rockies.

Scenario Casualty ($M)

False-alarm

sheltering ($M) Total ($M)

Delta

baseline ($M)

No radar coverage 2678 283 2961 490

WSR-88D 2217 262 2479 8

WSR-88D and TDWR 2211 260 2471 —

WSR-88D, TDWR, and rapid scan 2127 230 2357 2114

WSR-88D, TDWR, and ASR1 2197 258 2455 216

WSR-88D, TDWR,ASR1, and rapid scan 2109 227 2336 2135

Perfect coverage 2119 251 2370 2101

Perfect coverage and rapid scan 2003 210 2213 2258

FIG. 13. Modeled annual tornado cost density (casualty plus warning false-alarm costs)

difference between the current weather radar network configuration and perfect radar cov-

erage (no rapid scanning).
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