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Abstract

An analytical methodology was developed by Allen (1992) for identifying track
anomalies that can cause significant fatigue loads and estimating a freight car’s dynamic
response to those anomalies. The motivation for the studies described in Allen (1992)
and in this report is the desire to predict freight car fatigue loading while the car is still in
the design stage. The methodology finds all the track geometry anomalies that could
cause significant fatigue loads, extracts these anomalies from the track data, uses them as
the wrack input in computer simulations of the car response, and then determines the
resulting fatigue loads. Mechanically, the methodology consists of six steps: vehicle
modelling, track data analysis, threshold amplitude analysis, anomaly extraction,
dynamic simulation, and fatigue load analysis. Studies were conducted with the purpose
of evaluating and further developing the methodology. The work performed in these
studies improves upon the second through fourth steps; track data analysis, threshold
analysis, and anomaly extraction.

The ability to detect anomalies in a large set of track geometry data and the adeauacy of
the aromaly extraction technique were demonstrated. Detailed analysis was performed
on three sets of track geometry data, totalling 328 miles. Case studies were performed
utlizing two rail car models, a 70-ton hox car called the paintspotter car and a
three-platform articulated flat car.

These investigations identified several weaknesses in the original methodology. First, the
technique for extracting the anomalies from the track data (called the threshold extension
factor technique) did not guarantee that the anomaly segments were long enough to
ensure accurate vehicle dynamic simulations. Second, the original methodology lacked a
rational technique for determining the minimum anoinaly amplitude that can cause
significant fatigue loads. Third, the computer programs which embody the methodology
were not adequate for processing large data sets. And, finally, the documentation of the
methodology was incomplete.

As a result of these findings, several improvements were made to the methodology and
computer programs. The anomaly extraction technique was changed to allow the user to
prescribe the exact length of adjacent track to add to the anomaly segment. The
technique also will .atomatically lengthen the anomaly, if necessary, to ensure that the
geometry deviations at the end points of an anomaly segment are less than a specified




maximum. This technique guarantees that the dynamic simulation is not contaminated by
fictitious transients. A rationale and a methodology was developed for determining the
minimum anomaly amplitude that can cause significant fatigue loads. All the computer
programs were modified to make them compatible with large scale data processing. And
finally, the documentation was enhanced, including an update to the PFILT computer
programs user’s guide and a description of the filter used to determine the locations of the
peaks in the track data, which was mentioned but not described in Allen (1992).

The methodology was found to have potential applications for track surface maintenance.
Using the anomaly identification capability along with the ability to find the track
location of the anomalies, a track maintenance schedule can be developed which
guarantees that nowhere on the track does the car or track experience a load above a
prescribed limit. Since only the anomalous length of track needs to be resurfaced, the
cost savings over current resurfacing practice is potentially large. The technical benefiis
of this method are also potentially great since the larger loads which cause fast track and
car component degradation are eliminated. Thus track maintenance scheduling cycles
become longer.
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1 Introduction

Freight cars must be designed to withstanél the forces generated under normal
operating conditions. Fatigue loads in freight cars are generated by the response of the
cars to track irregularities and by train control actions. Large fatigue loads can cause
component failure and possibly derailments, and well as rapid track deterioration. Field
tests have shown that car and component fatigue lives are strongly influenced by a small
number of discrete events which generate severe fatigue loads (Kalaycioglu a..d
Tajaddini, 1988). This finding provides opportunities for prediction of car and
component fatigue life, for better design of components, and for improvements in

maintenance of track geometry.

An analytical methodology was developed by Allen (1992) for identifying track
geometry anomalies that can cause significant fatigue loads and estimating a freight car’s
dynamic response to those irregularities. The motivation for the studies described in
Allen (1992) and in this report is the desire to predict freight car fatigue loading while the
car is still in the design stage. The methodology finds all the track geometry anomalies
that could cause significant fatigue loads, extracts these anomalies from the track data,
uses them as the track input in computer simulatidns of the car response, and then
determines the resulting fatigue loads. The methodology is capable of detecting lateral
and vertical track geometry anomalies. Using a mathematical model of a 70-ton box car,
referred to as the paintspotter car in Kalaycioglu and Tajaddini, (1988), the methodology

was verified by Allen (1992) over a small set of carefully chosen track anomalies.
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Mechanically, the methodology can be broken up into six steps: vehicle modelling,
track data analysis, threshold analysis, anomaly extraction, simulation, and fatigue load
analysis. The work performed in this study focused on the second through fourth steps:

track data analysis, threshold analysis, and anomaly extraction.

The methodology was implemented in PC-based computer programs. The
NUCARS program (Blader and Klauser, 1989) is used to model the freight cars, to
perform dynamic simulations of the vehicle-track interaction, and to predict fatigue loads.
The three steps of the methodology focused upon in the research documented in this
report are embodied in three computer programs, collectively called the PFILT programs

(pronounced ‘pea-filt’).

A systematic method for identifying and extracting anomalies from a set of track
data is presented in Allen (1992). The routine for identifying track geometry anomalies
which can cause significant fatigue loads is referred to as threshold-based anomaly
identification. The procedure searches through the data seeking the peaks which are
associated with large variations of track geometry, then the data around the peaks are

extracted. The extracted data is called an anomaly segment.

In Hamid, et al (1983) a track geometry anomaly is described as a displacement in
track geometry lasting between 20 and 100 feet. But it is clear that not all of these
variations are anomalies. To be an anomaly, a variation must deviate markedly from the
common value, i.e. it must be a rare occurrence. Unfortunately this definition is loose
since there is no agreement on what is rare and what is merely uncommon. Usually, the
parameter which is measured and thus used as a criterion is the amplitude of the

geometric variation of the track surface because it is casiest to measure and most obvious.
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Indeed, other methods of attempting to classify, such as the shape functions proposed by
Hamid, Owings, and Kenworthy (1982) or families proposed by Allen (1992), have
proven too limited or cumbersome when attempting to apply the techniques to large

numbers of anomalies taken from actual track data.

Considering the effects of vehicle dynamics, an anomaly has sometimes been
defined as the smallest amplitude variation that can cause significant fatigue loads. This,
of course, only substitutes the subjective "rare" for the just-as-subjective "significant."
All track surface variations greater than this ampliiude are then called anomalies, and
those of lesser amplitude are just harmless irregularities. However, because the dynamic
response of any one vehicle does not determine the boundary between "rare” and "not

rare” for all vehicles, the track data analysis should be independent of vehicle dynamics.

Hence, there is no clear line betweer: an anomaly and irregularity. In this report the
term anomaly is applied to all the track surface variations that exceed a specified
amplitude threshold, for simplicity and to indicate the type of variation we are looking
for, i.e. the rare one. The value of the threshold is based upon the best judgement of the

analysi.

The purpose of the research described in this report is to evaluate and enhance the
overall fatigue load methodology. The ability of the methodology to adequately identify
and extract anomalies frem an extensive set of track data was demonstrated. The PFILT
programs were evaluated and improved to allow the methodology to be applied to large

volumes of track data.

Two major improvements to the methodology were realized: 1) A new anomaly

extraction technique was developed and 2) a rational methodology for determining the

12



minimum anomaly amplitude that can cause significant fatigue loads was developed .
These improvements were demonstrated in the analysis of 328 miles of track surface
profile data and three case study applications of the methodology utilizing two sets of
vehicle characteristics. This report alco contains a complete description of the
threshold-based anomaly identification methodology with detailed documentation of the
discrete-time differentiating filter. This is an integral part of the threshold-based anomaly

identification routine mentioned, but not documented, in Allen (1992).

There are components of the methodology which can be used to improve current
track surface maintenance practices. Currently, railroads use statistical track surface
roughness indexes to determine the condition of the track. These indexes typically
measure the variance of track surface from the mean over a short segment of track of
arbitrarily chosen length. The value of the variance is called the track quality index
(TQI) (Roney and Mclveen, 1991). When the TQI of a segment of track exceeds some
limit determined by experience, the track surface has degraded. But, only when the TQI
of a number of contiguous segments exceed the limit is the track resurfaced. The track
segments are typically 500 ft long. Special track features such as switches, bridges and
grade crossings are taken out of the data. There are limitations inherent in the current
practice and costly surface maintenance practice is required to cornpensate for it. Track
surface maintenance planning based on anomaly identification offers the possibility of

improved track conditions at lower cost.

The new anomaly extraction technique and the rational methodology for
determining the minimum ancmaly amplitude that can cause significant fatigue loads are
presented in Chapter 2. In Chapter 3, improvements to the PFILT programs are

documented. These improvements include new abilities in data processing and reporting,
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and implementation of the new anomaly extraction technique. The three track data
analyses are presented in Chapter 4, and the three case study applications of the overall
methodolog - are in Chapter 5. Conclusions and discussion follow in Chapter 6. Also in
Chapter 6 is a discussion of the limitations of current maintenance practice and the
applications and benefits of track surface maintenance based upon anomaly

identification.

The work presented in Chapters 4 and 5 led to the developments presented in
Chapters 2 and 3. The initial efforts were to apply the original methodology to a limited
set of track data. Then, from the results of this study, the methodology was improved.
Subsequent efforts used the improved methodology on a larger set of data. This cycle
was repeated three times. Thus, the analyses and methodology evolved together. It was
decided to present all the improvements to the methodology and the PFILT programs
prior to presentation of the data analyses and case studies that led to these improvements

so that the reader is familiar with the entire set of tools referred to in these chapters.
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2 Improvements to the methodology

Significant improvements to the overall methodology were made in two areas: The

development of a threshold amplitude analysis and a new technique for auginentation and

extraction of anomalies.

The threshold amplitude analysis is the third step in the methodology, following the
vehicle modelling and track data analysis. Threshold amplitude is defined as the smallest
amplirude anomaly on the track that can cause significant fatigue loading in the rail car.
Thus, the threshold amplitude is an essential relation between the vehicle and the track.
Accurately determining its value is critical to finding all the anomalies that can cause
significant fatigue loads, without including a great many anomalies that can not cause
significant fatigue loads. In the Section 2.1 a methodology is presented for determining
the threshold amplitude. Ii is a gereral procedure that ties together a specific vehicle

~

traversing a specified track segment.

A new technique for augmenting and extracting anomalies was developed which
replaces the previous technique. The new technique ensures that extracted anomalies are
of sufficient length such that the transients associated with the start of a simulation settle
down before the simulation reaches the anomalous track variation. The new technique is

presented in Section 2.2.

2.1 A rational methodology for determining the threshold amplitude

The threshold amplitude is the critical link between the track data and the vehicle
model. Threshold amplitude is defined as the smallest amplitude track anomaly that can

cause a significant fatigue load. The threshold amplitude is neither a vehicle parameter
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nar a track parameter, but a vehicle-track interaction parameter. To determine its value
requires knowledge of the track anomalies, vehicle parameters, and the nature of the
interaction between them. Finding the threshold amplitude is critical; a value too large
and some anomalies that could cause significant fatigue loads may be missed; and an
amplitude (0o conservative requires a large number of simulations over anomalies with
no potential of causing significant fatigue loads. But amplitude of geometric variation is
not the only concern. A factor which must be considered is the potential for repeated
geometric variations within an anomaly. The stumbling block has always been
measuring the repetitiveness, or potential repetitiveness, of the anomaly. The new

methodology determines this potential.

2.1.1 Other methodologies proposed for determining the threshold

amplitude

In Allen (1992), the threshold amplitude was chosen iteratively, i.e. by running
simulations over a number of anomalies and finding the amplitude corresponding to the
first occurrence of a significant fatigue load, or alternatively, by choosing a conservative
value of threshold amplitude. Though the first approach requires many simulations and
consumes much time and effort to identify a threshold value, it does not guarantee that
anomalies of lesser amplitude will not cause significant fatigue loads. The second
approach, choosing a conservative threshold amplitude, can guarantee that no anomalies
which can cause significant loadings are missed, but the price of using this method is alsc

high. For each 0.1 inch the chosen threshold amplitude is less than the maximum
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allowable value, the number of anomalies increases by a factor of two. Given the time
and effort required to extract anomalies and to run NUCARS, there is a strong incentive

to select the threshold amplitude carefully.

Allen (1992) proposed a third methodology, whereby anomalies were arranged by
family shape functions in an attempt to classify them. With vehicle response histories
due to each family of anomalies known a priori, anomalies from new track anomalies
could be classified by family shape, thus revealing the potential response. Unfortunately
this method did not work, primarily because the shape of an anomaly depends heavily on
the location of the end points. Many anomalies looked similar in the middle but different
near the ends, and it was not possible to generalize the significance of these differences.
Furthermore, many anomalies are similar in gross shape with small variations
superposed. Again, it was not possible to measure the significance of these differences.
This method of anomaly classification also requires that every anomaly be reviewed and
classified, which becomes a lengthy procedure as the data sets increase in length. For

these reasons, the family of anomalies classification system is not used.

2.1.2 The methodology for determining the threshold amplitude

A general methodology is presented below to determine the minimum anomaly
amplitude that can cause fatigue loads in a car component to exceed a defined limit. The
goal of applying this methodology is to reduce the number of anomalies that must be
used in simulations to only those that could cause significant fatigue loads. The
methodology eliminates the need to analyze 90 percent or more of all the anomalies and

still ensures conservative results. The seven steps of the methodology are:

1)  Identify the fatigue loads on the component.
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2)
3)

4)

5)

6)

7)

Determine the car actions that cause fatigue loads.

Determine the worst-case scenario for the car actions, i.e. those situations that
lead to the largest car actions and, hence, largest fatigue loads.

Identify and determine the values of the car and track parameters that put the
car in the worst-case scenario.

Set up a parametric study of the worst-case scenario as a function of anomaly
amplitude.

Run simulations on worst case scenarios to determine the peak fatigue load on
the component until the results predict that the defined load limit was
exceeded.

Define the threshold amplitude as that anomaly amplitude that first caused the

load to exceed the defined limit.

Steps 1-4 are presented in order. Then an explanation of the rationale for steps 5-7

is presented. The remainder of the threshold amplitude analysis, steps 5-7, then

continues with an example application.

STEP 1: The first step is to determine the type of fatigue loading that occurs on the

component in revenue service. For example, a bolster transmits vertical loads between

the car body centerplate and the truck spring groups. It carries no appreciable lateral or

longitudinal loads nor any torques. It is susceptible to fatigue due to large vertical loads.

STEP 2: The next step is to identify the car actions which lead to fatigue loads.

Continuing with our example, vertical loads on the bolster are caused primarily by

bounce and pitch motions of the car body.

18



STEP 3: Sinusoidal track inputs produce harmonic bounce and pitch motions of the
car body (Hartog, 1984). Increasingly large fatigue loads on the bolster occur as the

response to a sinusoid grows at resonance. This is the worst-case scenario.

STEP 4(car): Next, the car body and truck parameters that most significantly affect
the response are identified. In this case, the parameters which must be determined are the

bounce and pitch natural frequencies and the truck center spacing.

STEP 4(track): The track parameters must be identified which most directly
indicate that the track can cause the car responses that lead to significant fatigue loads. In
this case, it is the amplitude of the anomaly and the repetitiveness of the geometric
variation within the anomaly which are the primary variables. Improvements in the track
anomaly analysis capabilities make it possible to determine these parameters (see Section

3.3).

Continuing with step 4(track), Allen (1992) identified anomalies by performing a
window analysis at each peak in the track data. Multiple peak anomalies were found by
connecting anomalies that occur at sequential peaks. The amplitude of a multiple peak
anomaly is the amplitude of the largest single peak anomaly within the group. The
greatest possible number of repetitions of track geometry variation within the anomaly
corresponds to the number of peaks in an anomaly. For example, an anomaly with one or
two peaks can have at most one cycle, i.e. no repetitions of variation. Anomalies with

three or four peaks can have at most one repetition of variation, and so on by the relation

N = int[( number of peaks+1)/2] eq. 2.1-1
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Where N is the maximum possible number of cycles of geometric variation within the
anomaly. Although nothing is known about the actual number of repetitions of variation

with this analysis, the limits of an anomaly’s repetitiveness is known.

The distribution of the number of peaks versus anomaly amplitude is produced by
grouping the anomalies together that fall within defined ranges of amplitude and
determining the number of peaks in every anomaly within the group. Each group of
anomalies has associated with it one anomaly with the maximum potential number of
cycles variation. The envelope of the potential number of cycles is the distribution of the
maximum potential number of cycles over all the groups. It is not possibie for any
anomaly on the track to be more repetitive in geometry than the limits defined by this

envelope, but this is too conservative an estimate to be used in the threshold analysis.

Track énomaly classification by amplitude and number of peaks was performed on
305 miles of track profile data. Table 2.1.2-1 lists the number of anomalies in each
amplitude range, further divided by the number of peaks and potential cycles. The
threshold value used to identify all the anomalies in this study was 0.5 inch.' This tends
to maximize the number of peaks in anomalies, thereby making the interpretation of

potential cycles conservative.

1 A 0.5 inch peak to peak amplitude variation is the smallest amplitude variation
associated with spring bottoming or centerplate separation in 70-ton rail cars due to
continuous repeated profile anomalies in analytical studies conducted by Schwarz, et al
(1988).

Another approach considered to create the distribution of anomaly amplitude versus
number of peaks was to perform an anomaly identification analysis at the lower bound of
each amplitude group and extract only those anomalies within the group amplitude. As
shown in Section 4.3, this approach does not work because the resulting distributions
have few multiple peak anomalies.
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Max | Amplitude groups (inclusive on lower limit)

Peaks |Cycles |(inch)
S5-6 |.6-7 |.7-.8 |.8-9 }.9-1 1-1.1 |>1.1

1 1 319 |63 14 2 2
2 1 _187 82 43 17 8 1
3 2 3 14 15 11 4 2
4 2 2 7 13 8 3 2
5 3 1 2 \_1i15 4 1 1 1
6 3 1 1 3 N\ |3 2 2 1
7 4 2 \ 1 1 1
8 4 1 1
9 5 \
10 5 1 1 1
total # 413 172 |93 46 23 9 4
% included 98% |97% (97% |98% |96% |100% |100%
# excluded 7 6 3 1 1 0 0
Table 2.1.2-1 Distribution of number of peaks and cycles of
anomalies in 305 miles of track data

The line traversing the table marks the limit of the distribution encompassing the
vast majority of anomalies. A general goal for this distribution is to include 90% to 95%
of all the anomalies, thereby leaving less than 10% of the total anomalies to be
considered individually. The cutlier anomalies, those outside the limits of the
distribution, are extracted and simulations are run over each one individually. The
distribution in the Table 2.1.2-1 was developed by applying the following simple criteria
to each group of anomalies: The line at each group is the largest number of peaks for
which there are four or more anomalies, or 5% or more of the total anomalies. The rows
of data at the bottom of the table show the percent of anomalies encompassed and the
total number of anomalies exogenous to the distribution in each group. Of the 760
anomalies, 98% are included within the distribution (only 18 anomalies are outliers). The
resulting characterization of the track by this distribution of the anomalies is given in

Table 2.1.2-2
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Anomaly Amplitude Max. Potential
Range (inch) Number of Cycles
05<A <06 1
06<A<0.7 2
0.7<A <038 3

0.8<A4 <09 3

09<A <10 4

10<A <11 4
A>11 5

Table 2.1.2-2. Characterization of 98% of
anomalies in 305 miles of track data.

The threshold analysis is a tool designed to characterize the vast majority (90-95%)
of the track anomalies for the ultimate purpose of allowing the analyst to identify all the
anomalies that could cause significant fatigue loads and, very importantly, to ignore the
great percentage of anomalies which have no potential of causing significant fatigue
loads. Outlier anomalies are extracted from the track data for individual car-track

interaction simulations.?

STEP 4(car & track): The two parts are put together: the worst-case input
parameters from the vehicle and the worst-case amplitude and potential number of cycles
from the track anomaly analyses. A sinusoidal track input produces the worst-case
harmonic response (step 3), and the maximum number of cycles of variation versus

anomaly amplitude is known (step 4-track).

The correct car speed and sinusoid wavelength are chosen to march the bounce and
pitch natural frequencies of the car (step 4-car) to put it in a resonant condition (step 3).

Speed (V), wavelength (1), and natural frequency (f,) are related by V = f,A. over a

2 Outlier anomalies are rare in amplitude of variation and number of peaks, and very
lonely.
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sinusoidal track input. The bounce and pitch natural frequencies can be determined from
the vehicle model and the wavelength is related to the truck center spacing, thus the car
speed for the simulations is determined. All the track segments and car parameters have

been defined and analytic simulations can now be run to determine the threshold

amplitude (steps 5-7).

" Before continuing with the threshold analysis, the rationale supporting steps 5-7 of
the methodology for determining the threshold amplitude is shown. The methodology
puts the car in the worst case conditions and the track is assumed to provide the
worst-case input at each the amplitude considered. Therefore, as soon as the idealized
track input can produce a significant fatigue load, the anomaly amplitude associated with
that track input is the threshold amplitude. To demonstrate the rationale, the following
analysis was performed for a 70-ton articulated flat car (defined in Appendix B) in the

worst case scenario on the track defined above.

First, the minimum peak-to-peak amblitude of a sinusoidal track profile variation to
cause a significant fatigue load on the bolster is determined. Results are found for
traversal of one, two, three, and four cycles of sinusoidal input. A significant load factor
was defined as a dynamic-to-static load ratio of 1.5 or greater. The results of this study

are given in Table 2.1.2-3
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Number of Cycles Amplitude to cause
of sinusoidal track profile |significant fatigue
variations load (inch)

1 1.14

2 0.69

3 0.57

4 0.52
Table 2.1.2-3.

Peak-to-peak amplitude of a sinusoidal track
profile variation to cause significant fatigue
loading on thie articulated flat car.

Next, the characterization of the track anomalies (Table 2.1.2-2), and results giving
the amplitude of sinusoidal variation to cause a significant fatigue load (Table 2.1.2-3),
are cross plotted in Figure 2.1.2-1. The curve descending from left to right is the
boundary defining the minimum amplitude sinusoid to cause a significant fatigue load
versus the number of cycles of the sinusoidal variation. All points below this curve are of

track that cannot cause significant fatigue loads.

Next, solid circles are drawn at the upper limit of anomaly amplitude versus number
of cycles for each range of amplitude from Table 2.1.2-2. For example, there are solid
circles at (0.6,1), and (0.7,2). Then, open circles are drawn at the points corresponding to
the lower anomaly amplitude and number of cycles for each range of amplitude, i.e.
(0.6,2) and (6.7,3). The lower and upper boundary point of each range is connected by a

solid line and dashed lines are drawn down to zero amplitude.

As shown in the figure, 0.5 to 0.6 inch anomalies on the track have, at most, one
cycle of variation, but 1.14 inch amplitude is necessary to cause a significant bolster load
over one cycle of a sinusoid. Therefore, no anomaly on this track with amplitude less
than 0.6 inch can produce a significant bolster load. The threshold amplitude is found at

the first intersection of two lines. Two solid lines cross at two cycles of variation, where
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Minimum amplitude to cause
1.2+ significant fatigue load
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Threshold amplitude /Possible number of
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*

1 2 3 4 5
Number of cycles of variation

Figure 2.1.2-1. Rationale for the theshold analysis

the minimum amplitude to cause a significant fatigue load is 0.69 inch, and the anomaly
amplitude range between 0.6 and 0.7 inch. The threshold amplitude is the point where
these two solid lines intersect. (An approximate value of 0.7 was used for the threshold
amplitude in the case studies.) If the first intersection is between a solid and a dashed
line, the threshold amplitude is found by tracing upwards from the point of intersection to

the lower amplitude boundary of the range, i.e. the open circle.
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Steps 5-7 of the threshold amplitude analysis for the articulated flat car and the 305
mile long track data set are presented below. The articulated flat car is illustrated and
lists of the mass, spring stiffnesses, and the associated linear system natural frequencies

at each of the trucks are given in Appendix C.

STEP 5: The possible number of cycles at each anomaly amplitude was given in
Table 2.1.1-2. A bounce natural frequency of 2.3 Hz was estimated from the vehicle
parameters. It is not possible to put the car into a pure bounce or pitch mode due to the
different natural frequencies and truck center spacings. However, a 50 foot wavelength
sinusoid is approximately equal to the truck center spacing and, for a natural frequency of
2.3 Hz, the speed corresponding to bounce resonance is 78 mph. These were taken as the

critical values of the parameters in the threshold analysis.

Track segments were created of a sinusoidal profile variation with a 50 foot
wavelength, one segment for each amplitude range in Table 2.1.2-2. The amplitude of
each track segment was equal to the upper bound of amplitude of the range, and number
of cycles of variation was equal to the maximum number of cycles in that amplitude

range.

STEP 6: Simulations were run using the NUCARS program to determine the
bolster load that occurs as the vehicle traverses the track segment. The load ratios were
then calculated and the results presented in Table 2.1.2-4. Only one simulation at each

anomaly amplitude is required. The fatigue loads occurring in each simulation are found.
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STEP 7: The amplitude of the sinuscid for which the fatigue load in the simulation
first exceeds the defined significant value is the threshold anomaly amplitude. The load

ratio first exceeds 1.5 at an anomaly amplitude of 0.7 inch, therefore 0.7 inch is the

threshold amplitude.
Amplitude #icycles Load ratio Threshold Amp
(inch) (inch)
0.5 1 1.10
0.6 1 1.23
0.7 2 1.51 *(0.7 inch)
0.8 3 1.99
0.9 4 (not necessary
1.0 4 to run
1.1 5 simulations)
Table 2.1.2-4. Threshold analysis results for articulated flat car and
305 miles of track data.

No anomalies with amplitude less than 0.7 on this track in the 98 perccntile
distribution can cause significant fatigue loads (>150% of static load) on this vehicle.
The outlier anomalies below the threshold amplitude may be able to cause significant
fatigue loads and therefore, are extracted from the track data for simulations. The result
of this threshold analysis is valid for any vehicle that can be characterized by the same
natural frequency and truck center spacing to track variation wavelength ratio, over any
track with the same anomaly characterization. The overall methodology to determine the
fatigue life of the component can proceed to the next step, extracting all the anomalies
with amplitudes greater than 0.7 inch. Using a threshold amplitude of 0.7 inch, only 161
anomalies are found, which is less than one mile of track in 305 miles. If a more
conservative value of threshold amplitude, such as 0.5 inch had been chosen by a more

conservative approach, a total of 760 anomalies would have to have been considered.
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The analysis to determine threshold amplitude is quite etficient especially when
compared with previous methods suggested. It captures all the anomalies that could
cause significant fatigue loads, while eliminating the vast majority of relatively harmless
anomalies, so that the number of anomalies that need be considered is manageable. In
the example presented in this section, there were originality 760 anomalies to consider,
using a 0.5 inch threshold amplitude. Applying the methodology to determine the
threshold amplitude reduces the number of anomalies to consider to 174 (161 anomalies
greater than 0.7 inch and 13 outlier anomalies less than 0.7 inch). This is a reduction by a
factor of 4.4 in the number of anomalies that need to be considered. On a 486/50-PC a
typical NUCARS simulation takes 13.5 minutes. This reduction saves 132 hours in
NUCARS simulation time if a simulation is performed for every anomaly just once. And
the additional time to set-up and evaluate the simulations has not been considered. The
NUCARS simulation time to determine the threshold amplitude was approximately one

hour to perform four simulations.

Generally, the methodology is straight-forward and logical which tends to
maximize its applicability, however, rail vehicle dynamics are complex and there may be
many situations where worst-case responses, inputs, and scenarios are not readily
identifiable. The efﬁciency and accuracy of this methodology may depend upon the

component that is being studied.’

3 Any methodology of determining the threshold amplitude requires that the car body and
truck parameters that are primary in determining the dynamic response be identified and
calculated, regardless of the ensuing steps. Therefore, the efficiency and accuracy
involved in determining these parameters need not be considered in evaluating this
particular methodology.
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It is the analysis of the track data that complicates the analysis. Track data is
random. There are many of analysis techniques, such as Fourier series approximations,
shape functions, etc, that could be used to attempt to classify the track appropriately, i.e.
finding the potential of the track to produce harmonic inputs to the vehicle. The two
variables that most directly effect harmonic response are the amplitude of the variation

and the number of cycles of input.

The methodology developed takes advantage of the anomaly identification routine
to judge the potential for repeated variation within the anomaly. An anomaly isolated on
the track, having only one or two peaks cannot have a repetitive shape. If the anomaly
has more than two peaks, i.e. a multiple peak anomaly, then there is the potential for
repeated variations. This, of course, does not mean that there are repeated geometry
variations in the anomaly, only that there may be. Since multiple peaks anomalies are put
together with an existing algorithm it was not difficult to add the ability to count the
number of peaks in each anomaly. Thus, all the information necessary to characterize the
potential harmonic content of every anomaly can be found. This approach is quite
efficient compared to the calculation intensive methods such as Fourier series
approximation and labor saving and less ambiguous compared to family shape

classification schemes.

2.2 A new technique for augmenting and extracting anomalies

The anomaly segment is the key section of track to identify, but it does not stand
alone. If simulations were run by placing the front wheels of the lead truck on the end of °
the anomaly and progressing, accurate results could not be expected due to initial

condition transients and because the potential effects of adjacent track variations are
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ignored. The other extreme is to run the simulation over the entire length of track. While
this would assure an accurate simulation over the anomaly, it is unnecessary and the time
required to do so, on a 486-PC, is prohibitive. Thus, a sufficient but not excessive length
of adjacent track data is desired around the anomaly segment. The augmented length of
track around an anomaly should be long enough to ensure that initial condition transients
settle before the model encounters the anomaly segment, and that the effect on the car
response of the neighboring track is considered, but not so long as to result in excessively

long simulations.

Two methods of extending the anomaly have been developed: the threshold
extension factor (Allen, 1992), and the method of adding track lengths. The threshold
extension factor assumes that the track in the neighborhood of an anomaly is significant
to the dynamic response only if it has a geometric variation of at least a defined amount
proportional to the anomaly amplitude. The method of adding track lengths allows the

user to define the precise length of track by which to augment the anomaly.

The threshold extension factor augments anomalies by connecting adjacent sections
of track which exceed a defined percentage of the anomaly amplitude. Essentially, this is
an anomaly identification analysis for a lower amplitude, performed at the ends of the
anomaly. The rationale for this approach is that it allows the inclusion of sections of
track that could make a significant load contribution by looking for large amplitude
variations in the immediate vicinity of the anomaly. But the threshold extension factor is
biased towards a specifically shaped anomaly, namely the sinx/x form presented in

Hamid et al (1983). There is no rationale for seeking this shape of anomaly while
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potentially neglecting all others. Thus, a limitation of the threshold extension factor is
that it does not guarantee inclusion of all sections of adjacent track that could have a

significant effect on the accuracy of the simulation.

Furthermore, the threshold amplitude is defined as the smallest track geometry
variation that can cause a significant fatigue load. And defining the threshold value is
quite difficult (a methodology is presented in Section 2.1.2). It is impractical, perhaps
impossible, to define a useful sub-threshold value that identifies all the neighboring track
that, when appearing with any anomaly, can significantly effect the dynamic response of

the car.

Concern in augmentation is not the amplitude of variation of adjacent track nor the
shape of that track, but to make the state of the simulated vehicle upon entering the
anomaly segment as close to the actual state of the car as it traverses the anomalous track.
This involves eliminating fictitious transients that occur at the initiation of a simulation
and letting the vehicle respond to the actual track data immediately prior and following
the anomaly segment. To do these tasks a more general technique to augment anomalies

is necessary.

A simple and direct technique was developed. The anomaly is augmented based
upon a defined length of track necessary to assure accurate simulations over the
anomalies, accounting for the potential cycles of repeated variation, and for the time
required to run a simulation. The minimum length to augment an anomaly by in order to
ensure that any fictitious transient that occurs in the vehicle due to the initial conditions
of the simulation (including the effects of the spline curves) is approximately equal to

that length for which the impulse response due to the first data point in the augmented
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track has significantly dissipated. For a typical freight car, one cycle of response is
enough to sufficiently dissipate the transient response. The minimum length of the

augmentation segment is determined once the speed of the simulation is set.

Another factor to consider is that the threshold amplitude of the extracted anomalies
is greater than the baseline amplitude used in the threshold amplitude analysis. And, as
the threshold amplitude increases, the number of peaks in an anomaly decreases.
Therefore, number of peaks distributions at larger threshold amplitudes are skewed
towards lower values. In Table 2.2-1 the distributions for the 305 mile set of track data
using 0.5 inch and 0.7 inch threshold values are listed. In each group the number of
cycles has been reduced by one cycle. To compensate for this potential loss of significant

information the ancmaly should be augmented by at least a half-window length of data at

both ends.*

Anomaly Amplitude Number of Cycles Number of cycles

Range (inch) 0.5" threshold 0.7" threshold
07<A <038 3 2
0.8<4 <09 3 2
09<A<1.0 4 3
10A<1.1 4 3
A>1.1 5 4

Table 2.2-1: Comparison of bulk track characterization at 0.5 inch and

0.7 inch threshold of 305 miles of track profile data

4 The half-window length is the parameter that defines the upper bound of length of track
variation of an anomaly in the anomaly identification analysis of Allen (1992). Hamid et
al (1983) define an anomaly as a variation in track geometry with a duration of between
20 and 100 feet. Thus, the half-window length is between 10 and 50 feet. The studies
conducted here and in Allen (1992) use a half-window length of 39 feet.
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Finally, time of simulation must be considered. On a 486/50-PC the NUCARS
simulations progress at 26.3 ft/min. Thus a 40 foot track length addition (80 feet total
length increase to the anomaly) increases simulation time by approximately three
minutes. A typical anomaly with just spline curves attached is about 250 feet in length,
and takes about 9:30 to run. Thus a track length addition of 40 feet represents a one-third
increase in simulation time. The total time to perform all the simulations using this
method is 30 percent of the time to perform simulations over all the anomalies, since the
number of simulations is reduced by a factor of at least 4.4, and the time to execute exch

simulation is increased by a factor of 1.33.

Generally the end points of the augmented segments are non-zero in value.
However, a constraint of the NUCARS simulations is that they must start with zero initial
conditions. Thus, some method must be used to transition from the zero initial conditions
to the end points of the .augmcntcd segments.” The method of spline fits (Appendix A)
provides a good way of making the transition from the zero initial conditions to the end
points of the augmented anomaly segment. To further ensure against inaccurate
simulations, this method was improved upon by controlling the magnitude of the end
points of the augmented segment, thus preventing the occurrence of excessively large end
points relative to the anomaly amplitude. Track data is added, one data point at a time, to
the augmented segment until the magnitude of the end point is less than the specified
maximum or until a specified length of track has been added. The spline fit is then added

to complete the segment.

5 Ramping down at the end of the segment is not required for single anomaly runs, but
there exists the option of connecting two or more segments to condense the number of
simulations and, in this case the ramp down is required.
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A rationale for defining the end point magnitude is necessary. The end point
amplitude should be a magnitude that offers little probability of affecting the response
over the anomalous section, i.e. of causing an appreciable dynamic response. The
magnitude of response is generally proportional to the amplitude of the anomaly. Since
the threshold value is the smallest amplitude of variation that can cause a significant
fatigue load, making the end point amplitude a small percentage of the threshold

amplitude guarantees the criteria is met.
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3 Improvements to the PFILT computer programs

The PFILT programs were updated to perform the tasks required by the updated
methodology and for application to larger sets of track data. A computer program was
created for preprocessing data incompatible with the format required by the PFILT
programs. This program is described in Section 3.1. Section 3.2 describes the changes
made to the PFILT programs to disable the threshold extension factor and to incorporate
the new technique for augmenting and extracting anomalies. In Section 3.3, the changes
made to the programs are described which allow for processing large volumes of data and
to calculate and report anomaly statistics which can be used to derive the distributions of

number of peaks versus amplitude and also to locate the anomalies on the track.

Computer program usage is described in the PFILT users guide in Allen (1992) and
the PFILT user’s guide supplement in Appendix A.

3.1 Preprocessing data with track location information

Three sets of data were acquired. The first two sets were three and twenty miles
long, respectively. And, although the format of the raw data was not compatible with the
PFILT programs, only very simple preprocessor programs were created because of the
short lengths and the goals of the analysis using these data sets required only the profile
data. The preprocessor programs created for theses two data sets merely stripped all the
data except the left and right track profile data from each field leaving two column ASCII

data files.
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The third set of data acquired was also in a format incompatible with the PFILT
programs. The programs require each variable to be in its own column separated by
blank spaces. The raw data violated this format in the milepost and feet fields. Figure
3.1-1a shows a sample of a raw data file. From left to right the columns of data are
locatdon {milepost+feet), left rail profile, right rail profile, track curvature, and
superelevation. It is clear from the figure that the "+" between the milepost and feet data

violates the format conditions required by the PFILT programs.

A computer program was written whose primary function was to convert the raw
data into a compatible format. The program, PREPROS, is a preprocessor which reads
each record, separates the milepost and feet fields, ignoring the "+", and rewrites the data
to a new file with milepost and feet each in their own columns separated by blank spaces,

as shown in Figure 3.1-1b.

Taking advantage of the preprocessor reading every record in the file, other
capabilities were built into the program. Data files can be of any length and can start and
end at any point on the track. It is sometimes useful before beginning the PFILT analyses
to know such information as the beginning and end locations of the data, the length of the
track segment contained within the file, and the number of records in the data file. The
preprocessor automatically performs the necessary calculations and reports this data to
the screen. The start and end locations and number of records are correctly reported. The
length of track in the file is reported but it is not necessarily correct. The program has
been wriiten assuming there is one record for each foot of data. This was done because

all the track analyzed in the following studies were sampled at one foot per sample. To
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add the option to the preprocessor where the user would input the data sample rate
manually, would have slowed the processing of the data unnecessarily. Adding this

option to the preprocessor program is a simple task should the user find it desirable.
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Input Filename: DIAMON.RAW
LOCA.TION LPROF RPROF CURVE SUPER

13+5486 .0513
13+5485 .0738
13+5484 .0863
13+5483 .0987

13+5481

Output Filename:

13 5486 0.0513
0.0738
0.0863
0.0987
0.1112
0.1213
13 5480 0.1238
13 5479 0.1188
0.1188
0.1200
0.1262
0.1400 0.1350

13 5485
13 5484
13 5483
13 5482
13 5481

13 5478
13 5477
13 5476
13 5475

1250 .1700 0.000

.1287 .1700 0.000
.1450 .1800 0.000
.1612 .1800 0.000
13+5482 .1112.
1213
13+5480 .1238 .
13+5479 .1188 .
13+5478 .1188 .
13+5477 .1200 .
13+5476 .1262 .
13+5475 .1400 .

DIAMON.TXT

0.1250 0.1700
0.1287 0.1700
0.1450 0.1800
0.1612 0.1800
0.1700 0.2000
0.1712 0.1800
0.1587 0.2000
0.1387 0.2000
0.1162 0.2000
0.1200 0.2000
0.1325 0.2000
0.1800

INPUT

(RAW DATA)
ASCII file

0.0000
0.0000

OUTPUT from
preprocessor
Same filename as
input file with
.TXT extension
(ASCII text file)

FIGURE 3.1-1: Sample of input and output files for PREPROS.
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3.2 Implementing the improved technique for augmenting and

extracting anomalies

Anomaly augmentation and extraction is the process by which track anomaly
segmerits are properly removed from the track data for use as input to NUCARS
simulations. There are two parts to the process: including adjacent track data and adding

spline fits. Both of these have been changed in the PFILT programs.

In the previous version of the PFILT programs, the first task was given to the
threshold extension factor routine in the PFILT program, and the second task was
automatically performed by the VUTRACK program when the anomaly was extracted.
The threshold extension factor technique, however, is not an anomaly augmentor. The
rationale for its use in PFILT was that it was an anomaly completer, i.e. it looked at the
edges of an anomaly for variations in geometry that competed a particular shape, namely
sinx/x. The practical problems which make using the threshold extension factor difficult
were described in Section 2.2. One of the major limitations of this approach for use as an
anomaly augmentor was that there was no precise control over the ability to add track
data around the anomaly. Because the threshold extension factor led to unpredictable
results it was disabled and the new technique, described in Section 2.2 was added to the

VUTRACK program.

In the new version of VUTRACK, the user is given complete control over the
length of track to add around both sides of an anomaly. When the anomaly is extracted,
track data of the length specified is added to the end points of the anomaly. Then the

spline curves are added from the end points of the augmented anomaly segment.
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The spline fit method of transitioning from zero initial conditions to the end points
of the anomaly is satisfactory, but the magnitude of the end points on some anomalies can
be large (greater than 50%) with respect to the anomaly amplitude. For these reasons,
control was placed on the magnitude of the end points of the augmented segments in the
VUTRACK program. The control scheme is as follows; if the end point of the segment
exceeds the defined allowable magnitude, then the segment is extended by one data point
and the test is performed again until either the data point magnitude meets the criteria or a
specified length of data has been added. Once the test is completed, the spline curve is
added and the anomaly is extracted. The user defines the maximum amplitude of the end
point of the anomaly as a percentage of the anomaly afnplitude and also the length of
track to search and add to the anomaly if the end point does not fall below the specified

minimum.

The updated VUTRACK program performs the complete anomaly augmentation
and extraction: track length addition, end point control, and adding spline fits, before
extracting the anomaly. The user controls the key parameters. Default values are a 39
foot rail length, 1 rail length augmented to each end of the anomély, end point maximum
magnitude is 33% of the threshold value, and up to 1 rail length of data added in the end
point magnitude test.

3.3 Miscellaneous changes to the PFILT family of programs

A number of other changes were made to the programs in response to different
requirements. All the programs were modified to accept command line inputs. This was
done to facilitate batch file executions for processing large amounts of track cGata

efficiently, such as the 305 mile data set in Section 4.3. The previous versions, using
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interactive input, made this task impractical. The ability was added to determine the
milepost and feet location at the start and end of each anomaly. This has very important
implications in verifying the methodology, its implementation, and in maintenance
practice and procedures. An anomaly summary file is created by PFILT which gives a
list of information about cach anonaly found. The graphics in VUTRACK were
improved and control over the anomaly extraction was added. The threshold extension
factor was disabled in PFILT. These changes are described in greater detail in the

following paragraphs.

The primary function of DSTREAM is to find the peaks in the data, its secondary
function is to create a separate binary file for each column of data in the input data file to
facilitate I/O operations in PFILT and VUTRACK. The program was updated to irclude
the option of creating binary data files for the milepost and feet columns in the data so
that it is possible to determine the location of an anomaly. DSTREAM requires entering
seven variables to execute. The previous version of the program allowed only interactive
input to the program which severely inhibited batch file processing of large data sets.

Great benefit was gained by adding the capability of command line inputs to this

program.

PFILT is the heart of the anomaly detection routine. Its primary function is to find
and recoi'd the start and end points of all the anomalies. For each anomaly, the program
now calculates its peak-to-peak amplitude, the number of peaks in the anomaly, the
length (in feet assuming 1 ft/sample), and locates the beginning and end points milepost
and feet locations. Note the threshold extension factor variable in the data structure

utilized by both PFILT and VUTRACK was removed, thus making previous versions of
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PFILT incompatible with the current version of VUTRACK.

The new version of VUTRACK was give‘n the new anomaly augmentation duties as
described in Section 3.2. The graphic display of anomalies was updated. Updated
graphics consist of a display of each component of the extracted anomaly segment. The
spline fits are shown in white, the augmented track segments in yellow, and the anomaly

segment in magenta.
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4 Analysis of track surface profile data

The goal of the data analysis was to detex:minc the character of the track.
Specifically, this meant determining the distribution of anomalies by amplitude and
determining the repetitive nature of anomalies as a function of amplitude. Data was
acquired over the course of the year in three sets, and the analysis capabilities improved
as the year progressed. Thus, the scope of analyses and results differ from the first data

set to the third.

Data set 1 is three miles of data separated into three-one mile sections of very
anomalous track. Data set 2 is a 20 mile section of continuous track data used to help
develop the ability to process large data sets. Data set 3 is 305 miles of track data in

seven continuous sections. The most detailed study is performed on data set 3.

The distribution of anomalies by amplitude gives an indication of the quality of the
track. The first two data sets are relatively short and the anomalies were classified by
range of amplitude. For the third data set, this approach was found impractical and
would become more so with ever larger sets of data. Instead the distribution was formed
by counting the total number of anomalies exceeding a given amplitude. Both methods

produced similar distributions.

The total number of anomalies exceeding each anomaly amplitude was found in all
three data sets. This is important in estimating the time required to perform a fatigue
analysis at a particular threshold value. As will be shown, it also provides a great

incentive to carefully select the threshold value.
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The repetitiveness of anomalies, i.e. number of peaks as a function of amplitude is
found in data set 3. The original motivation for this study was the concern that there
might be small amplitude, multiple-peak anomalies that can cause large dynamic
responses, thus driving down the threshold araplitude. The ability to perform this
analysis was instrumental in the development of the rational threshold amplitude

methedology presented in Section 2.1.

4.1 Data set 1: three-one mile segments of track data

The first data set consists of three miles of track geometry. The set is divided into
three approximately one mile long segments, referred to as the Margo, Montjoli, and
Rivers segments, from disparate locations. As will be shown in the analysis that follows,
it appears that each segment was chosen because it is particularly anomalous track in
three ranges of traffic (light, medium, and heavy). Annual traffic on the Montjoli,
Margo, and Rivers segments are 3MGT, 10MGT, and 35MGT, respectively.

Data included in each file consists of left rail profile, right rail profile, milepost and

feet. The data is from track sampled at one foot per sample.

The data came in a form different from the format compatible with the PFILT
programs so a simple preprocessor program was created and used to adjust the data
format. Then the three data files (one for each segment) were analyzed for anomalies
using DSTREAM and a number of PFILT executions. DSTREAM need only be mn
once for each file as it finds all the peaks in the data with no criteria for amplitude.
PFILT must be run once for each anomaly amplitude, thus it was run seven times for

each file to obtain the following results.
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Figure 4.1-1 shows the distribution of anomalies from 0.5 inch peak-to-peak
through values greater than 1.1 inches peak-to-peak.

DATA SET 1

13

10

NUMBER OF ANOMALIES

o i M
0.5 0.6 0.7 0.8 0.9 1.0 >1.1
-6.6 =-0.7 -0.8 -0.9 ~-1.0 ~-1.1

FIGURE 4.1-1. Anomalies identified
on three mile long
data set.

The figure shows the number of anomalies within each 0.1 inch range of
amplitude. A total of 45 anomalies were found. Table 4.1-1 lists the cumulative number

of anomalies exceeding each amplitude.
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Maximum amplitude of anomalies (inch)
0.6 0.7 0.8 . 0.9 1.0 1.1 >1.1

Cumulative number |45 25 12 7 2 2 1
of anomalies

Table 4.1-1. Cumulative distribution of anomalies in data set 1.

Notice that for each 0.1 inch increase in amplitude the total number of anomalies
decreases by approximately one-half. Using the first two data points (45, 25) one finds
the exponential n = 15exp[—5.9(a —0.5)] to reasonably approximate the distribution of
anomalies. The coefficient of 15 is the total number of anomalies (45) divided by the

length of the track data (3 miles), i.e. the average number of anomalies per mile of track.

Comparing the segments to each other one finds that 24 of the 45 anomalies occur
on the Montjoli segment, 19 on the Margo segment, and 2 on the Rivers segment.

Complete tables of anomaly amplitude are given in Appendix C.

The largest amplitude anomaly occurs on the Margo section (1.115 inches). The
next five largest anomalies all occur on either the Rivers or Montjoli segment, see Table
4.1-2. This table lists the largest 12 anomalies, i.e. all anomalies with amplitudes greater
than 0.7 inch. Of this anomaly subset, the Montjoli segment has only 4 anomalies (1/6 of
the total greater than 0.5 inch), whereas the Margo segment has 6 anomalies (1/3 of the
total), and both Rivers segment anomalies are greater than 0.7 inch. Thus, Rivers retains
the highest proportion of anomalies as anomaly amplitude increases and Montjoli retains
the lowest proportion of anomalies. Simply put - the low MGT track is dominated by
low amplitude anomalies and the high MGT track is dominated by large amplitude
anomalies. Why should the proportions (distributions) of anomalies be so different?

What sort of natural process or maintenance practice causes or creates such distributions?
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The number of peaks for each anomaly and the resulting distribution of number of

peaks versus amplitude was not determined for this set of data.

Anomaly

Amplitude
Anomaly name (inches p/p)
Montj4 0.712
Margol 0.722
Margo6 0.725
Margo4 0.755
Margo5 0.770
Margo2 0.817
Riverl 0.848
Montjl 0.850
Montj2 0.850
Montj3 0.897
River2 1.020
Margo3 1.115

Table 4.1-2: Anomaly

Amplitudes on data set 1 with a 0.7 inch
threshold

4.2 Data set 2: 20 continuous miles of track data

Data set 2 consists of approximately 20 continuous miles of data contained in 20
data files. Each record within the files contains the left rail profile, right rail profile,
milepost, feet and superelevation. The data sample rate is one foot per sample. Previous
to this data set, data was analyzed on a piece-meal basis, with short track segments being
selected based upon some knowledge of the existing track conditions. This set of data
was chosen to test the methodology and tools on a larger set of data than had been

attempted before.

The data was in a form incompatible with that necessary to run DSTREAM and

also different than the format of data set 1, so the original preprocessor was modified to
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allow reformatting of the data set. The analysis then proceeded exactly like the analysis
of the previous set; namely one run of DSTREAM for each data file and then 7 runs of
PFILT for each file at increasing anomaly amplitudes, a total of 140 PFILT runs.

Figure 4.2-1 shows the distribution of anomalies for amplitudes greater than 0.5
inch peak-to-peak. The figure shows the number of anomalies within each 0.1 inch range

of amplitude.

DATA SET 2

NUMBER OF ANOMALIES

7 0.8 0.9 1.0 >1.1
8

0.5 0.
-0.6 -0.7 -0. -0.9 -1.0 ~-1.1

FIGURE 4.2-1. Anomalies identified on
20 mile long data set.

A total of six anomalies were found. Table 4.2-1 lists the number cumulative

number of anomalies exceeding each amplitude.
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Even though the number of data points is very low, the exponentially decaying

occurrence of anomalies is again suggested by this data set.

The number of peaks for each anomaly and the resulting distribution of number of

peaks versus amplitude was not determined for this set of data.

Maximum amplitude of anomalies (inch)

0.6 0.7 0.8 0.9 1.0 1.1 >1.1

Cumulative number |6 2 2 2 0 0 0
of anomalies

Tabie 4.2-1. Cumulative distribution of anomalies in data set 2.

4.3 Data set 3: 305 miles of data

The purpose of analyzing a set of data as large as this was to put the methodology
and tools to a full scale test of its effectiveness and efficiency. And this it did; many
improvements to the methodology (Chapter 2) and changes to the programs (Chapter 3)
and were made, in response to the needs generated by aftempting to analyze this set of

data.

The data came in ASCII format in 65 data files. A typical data file contained
approximately 5 continuous miles of track data, totalling 305 miles. The set was divided
into 5 segments of continuous track data. The five segments KTNGRL, STHCIN,
DRMVRL, DIAMON, and MTMGM were 130 miles, 31 miles, 95 miles, 14 miles, 33
miles long, respectively. The segments were not analyzed separately from each other;
they were treated as a single continuous stream of data. Each data record consisted of
milepost and feet location, left and right profile, curvature and superelevation. Data

formats in all the files were identical and incompatible with DSTREAM data format
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requirements. A preprocessor program was created to convert the data (Section 3.1). The
DSTREAM analysis required 65 runs and the PFILT analysis required 9 runs for each

file, a total of 585 executions, to complete the data analysis.

Before proceeding with the results of the analysis, a discussion of the data is
necessary. A check of the data was performed after noticing that there were several
instances of impossibly large amplitude anomalies (300+ inches) and also that sequences
of anomaly amplitudes repeated themselves in some files. A careful study was
undertaken to find all the "bad" and repeated cata in the entire set of data. The search
found invalid data in five files; KTNGRL13, KTNGRL14, KTNGRL15, DIAMONQ2
and DIAMONQO3. Table 4.3-1 lists the sections of the files that were found to be

erroneous.
File from record # to record #
KTNGRL13 20157 23494
KTNGRL14 16230 28251
KTNGRL15 2559 8765
DIAMONO2 23292 26335
DIAMONO3 1622 8606
Table 4.3-1. Files with erroneous data

Proceeding with the results of the data analysis, Figure 4.3-1 shows the distribution
of anomalies as a function of anomaly amplitude for amplitudes greater than 0.3 inch
peak-to-peak. Each bar in the graph gives the number of anomalies that exceed that

amplitude.
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FIGURE 4.3-1. Anomalies identified on 305 miles
of track data. Percentage of
track length anomalous.

Table 4.3-2 gives the numbers corresponding to the graph, the cumulative length
of the anomalies exceeding the referent amplitude, and the percentage of the total length
of track which is part of an anomalous geometry variation. A total of 3,540 anomalies
were found. The number of anornalies drops by approximately one-half for each 0.1 inch
increase in anomaly amplitude. These findings provide a great incentive to find and use
the largest possible threshold amplitude in the fatigue load analysis, since for every 0.1
inch the value is less than the maximum, the number of anomalies that must be

considered doubles.
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Anomaly Threshold Amplitude (inches)
03 |04 [05.(0.6 (0.7 |08 (09 |[1.0 |IL.1

num. anomalies 3540|1521 {760 366 (161 |77 28 13 4
Cumulative length (mi) 37.8 |13.5 |5.7 |25 |09 |04 |02 |00 1}0.0
% of track anomalous 124 144 (19 |08 |03 0.1 (0.1 |00 }0.0

Table 4.3-2. Summary of 305 miles of mainline track profile data

Using the data at 0.5 and 0.7 inch, the exponential function
n =2.52exp[—7.8(a - 0.5)] closely approximates the behavior of the distribution. The
coefficient of 2.52 in front of the exponential is the total number of anomalies exceeding
0.5 inch (760) divided by the length of the track data (305 miles). This track data has
one-sixth the anomalies per mile than the three mile track segment in data set 1 (Section

4.1).

Finally, an analysis of the relationship between anomaly amplitude and number of
peaks per anomaly was performed. The number of peaks is a measure of the potential
repetitiveness of variation of the anomaly. Figure 4.3.-2 shows the distribution of peaks
that occurred in all anomalies with amplitudes between 0.5 and 0.6 inch. The vast
majority of anomalies within this range contain only one peak, and only 7 in 413 (1.7%)
had between three and six peaks. An anomaly with six peaks can, at most, have three
cycles of repeated geometry variation. This study shows that small amplitude,
multiple-peak anomalies that could cause large dynamic responses do not regularly

occur on this track.

The distributions have been found for the entire range of anomaly amplitudes and
are shown in Figure 4.3-3a-c for amplitude ranges 0.6 to 0.7 inch, 0.7 to 0.8 inch, 0.8 to

0.9 inch, and in Figure 4.3-4a-c for the ranges 0.9 to 1.0 inch, 1.0 to 1.1 inches, and
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greater than 1.1 inches. The data used to develop these figures is given in the Table
4.3-3. As seen in the graphs, the maximum number of peaks within an anomaly

amplitude range tends to increase with anomaly amplitude.

peak distribution for anomalles between 0.5 and 0.6 inches

3 4 S 6 7 3 g 10
num.ber of peaks

FIGURE 4.3-2: Distribution of the number of anomalies

vs. the number of peaks in the anomaly

for anomaly amplitudes between 0.5
and 0.6 inch, inclusive.
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By 0.7 inch there is an anomaly with the potential of three cycles of repetition, by 0.8
inch an anomaly with the potential for five cycles of variation has appeared. However,
the most frequent number of peaks per anomaly for anomalies between 0.6 and 1.0 inch

is two peaks, indicating that the most common anomalies do not have 2 repetitive shape.

Amplitude groups (inclusive on lower limit)
Peaks |Cycles
S-6 [.6-7 |.7-8 |.&9 |91 |I-1.1 |>1.1
1 1 319 |63 14 2 2
2 1 87 82 43 17 8 1
3 2 3 14 15 11 4 2
4 2 2 7 13 8 3 2
5 3 1 2 5 4 1 1 1
6 3 1 1 3 3 2 2 1
7 4 2 1 1 1
8 4 1 1
9 5
10 5 1 1 1
total # 413 |172 |93 46 23 9 4
Table 4.3-3 Distribution of number of peaks and cycles of anomalies
in 305 miles of track data

The distribution has become quite spread out by 0.9 inch showing that multiple
peak anomalies are quite common at this amplitude range. By 1.0 inch the distribution is
essentially uniform. The anomalies range between two and seven peaks with no clear
shape to the distribution evident. Four anomalies with amplitude greater than 1.1 inches
were found, all are multiple peak anomalies. The anomalies have the potential for
repetitions of between three and five cycles. Also notice that there are no anomalies

which are not multiple peak.
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aumber of ananalies
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Peak diiibulion for anamolies beiween 0.7 and 0.8 inchas

nums of enceclies
cud3alRBERBA

Pecit diskihuiion for onomalies betwaeen 0.8 and 0.9 nches

aurber of anomolies
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FIGURE 4.3-3: Number of anomalies
vs. peaks
0.6 to 0.9 inch anomalies
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(c)

FIGURE 4.3-4: Number of anomalies
vs. peaks
. anomalies g.t. 0.9 inch
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Another approach considered to create the distribution of anomaly amplitude versus
number of peaks was to perform an anomaly identification analysis using the lower
bound of each group as the threshold value. Then the anomalies whose amplitudes were
within the 0.1 inch range from the threshold values were considered as the anomalies that
fell into that range. All the other anomalies identified at that threshold were ignored.
This procedure produced the distribution given in Table 4.3-4. This representation of the
distribution would indicate that there is a decrease in the potential for repeated variations
of geometry as anomaly amplitude increases. This is known not to be the case.

Therefore, this technique for characterizing the track is not correct.

Amplitude groups (inclusive on lower limit)
Peaks |Cycles

J-6 |.6-7 [.7-8 [.8.9 |91 |1-1.1 [>1.1

1 1 319 [157 |72 |41 [18 |4 1
2 1 87 |40 |11 |16 |4

3 2 3 3 2 |4 1

4 2 2

5 3 1

6 3 1

total # 413 [200 84 [61 |23 |4 1

Table 4.3-4 Distribution of number of peaks and cycles of anomalies
in 305 miles of track data using a moving threshold amplitude.

57



5 Three case studies: two vehicles, three sets of track data

Three case studies were performed. In each case study, one of the three track data
sets from the previous chapter was used in conjunction with either the paintspotter car
model or the three platform articulated flat car model. The case studies were of dynamic
simulations of the cars negotiating anomalies extracted from the track data. Fatigue loads
on the car bolsters were predicted. Dynamic simulations are the fourth step of the
methodology: following anomaly identification, vehicle modelling, and threshold

analysis.

The purpose of these studies was to determine the relationship between anomaly
amplitude and fatigue loads. Another goal was to determine if the overall methodology
captures all the anomalies that cause significant fatigue loads. A 1.8 dynamic load factor
is used in car body structural design (Kalaycioglu and Tajaddini, 1988). If the peak
bolster load exceeds 1.5 times the static bolster load, it is deemed a significant fatigue

load level (Singh, 1992).

The first case study, in Section 5.1, used the paint spotter 70-ton car with three
miles of track data. The goal of this study was to evaluate the ability of the methodology
to find and extract anomalies for use in NUCARS simulations. From this study the
changes to the methodology were made that replaced the threshold extension factor and
added the anomaly extraction controls described in Section 2.2. The second case study,
described in Section 5.2, used the paintspotter car with 20 miles of continuous track data.
This study tested the ability to apply the methodology and tools to a larger set of track
data. The third case study, in Section 5.3, used a three platform articulated flat car with

305 miles of data. The goal of this study was to develop the programs for application to
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very large sets of track data, and demonstrate the overall methodology. An approach for
evaluating a sub-set of the set of anomalies to estimate fatigue loads is presented. Peak
load predictions from the case studies are given in Appendix D. All the dynamic

simulations and bolster load predictions were done with the NUCARS program.

5.1 Case Study 1: Paint spoiter car with three miles of track data

The motivation for this study was to evaluate the efficacy of the anomaly extraction
routine. This case study analyzed the movement of the paintspotter vehicle over the three
miles of track data described in Section 4.1. The data came in three, one-mile long
secticns, named the Margo, Montjoli, and Rivers sections. Because the methodology for
determining the threshold amplitude described in Section 2.1 was not yet created, the
threshold was determined iteratively. Also not yet developed, was the ability to add
lengths of rail to the end of the anomaly segments, nor to control the magnitude of the

anomaly end points.

Two criteria were used to identify and extract anomalies. In the first, Criteria A,
the threshold amplitude was 0.7 inch peak-to-peak. The threshold extension factor was
71% (corresponding to 0.5 inch peak-to-peak) and a 39 foot half-window length was
used. The threshold amplitude of 0.7 inch was chosen because this corresponds to the

smallest amplitude variation associated with significant bolster loads in Allen (1992).

Using Criteria A (0.7, 71%, 39) on the data set yielded 12 anomalies. The Montjoli
segment had 4 anomalies covering approximately 4.6% of total track length. The Margo

segment had 6 anomalies covering 7.1% of the total track length. And the Rivers
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segment had 2 anomalies covering 2.6% of the track length. Later studies of track data,
specifically data sets 2 and 3, showed that set 1.had the highest proportion of anomalous
data.

Another set of analyses was performed using a second criteria, Criteria B. A 0.5
inch threshold amplitude, a 100% threshold extension factor and a 39 foot half-window
length were chosen. This threshold was chosen because 0.5 inch is the smallest
amplitude associated with significant response in the vehicle due to continuous repetitive
profile variations in analytical studies conducted by Schwarz, et al (1988). A threshold
extension factor of 100% means that no augmentation of lower amplitude variations takes

place.

Finally, a 39 foot half-window was chosen in both criteria because the truck center
spacing is 40 feet, and profile anomalies are dominated by the 39 foot bolted rail length
(Hamid, et al, 1983). A 78 foot window ensures capture of long wavelength
perturbations without making the window so long as to increase computing time

excessively.

Using Criteria B (0.5, 100%, 39) a total of 45 anomalies were found, approximately
four times as many as Criteria A. There were 24 anomalies on the Montjoli segment,
23% of total length, 19 on the Margo segment, 14% of total length, and still only 2 on the

Rivers segment, 4% of total length.

Because the threshold extension factor in both criteria was set to capture any
variation greater than 0.5 inch peak-to-peak around the ends of an anomaly, one would

expect that any anomaly identified by Criteria A would be the same length as that



identified by Criteria B. This, however, was not the case. Evidence of this is found
immediately upon looking at the total track length that is anomalous on the Rivers
section, where 2.6% of the track is anomalous by Criteria A and 4.0% is anomalous by
Criteria B. Only two anomalies were found in both cases, but the anomalies are shorter
using Criteria A. This should not be. Investigation of all 12 anomalies identified by both
criteria showed that anomalies identified by Criteria A tended to be shorter than the
anomalies identified by Criteria B. This brought to question the applicability of the shape
function characterization of anomalies and raised questions about the original extraction
technique’s ability to capture all the track information surrounding an anomaly which
could significantly effect the dynamic response of the car. Since anomaly length tends to
get shorter as anomaly amplitude increases, this could force the use of lower threshold

amplitudes to ensure capturing all the significant adjacent track data.

A comparison of the peak loads predicted on the same track anomaly extracted by
the two criteria was performed. The findings of this study are illustrated in Figures
5.1-1a-b, 5.1-2a-b, and 5.1-3a-b. In each of these figures the top plot is of a track
anomaly extracted from the track segment using Criteria A (0.7, 71%, 39), and the
bottom plot is of the same anomalous track extracted using Criteria B (0.5, 100%, 39). In
each case the anomaly extracted using Criteria B includes significantly more track data

around the anomaly peaks.

Note: The anomalies identified by Criteria A are given five letter prefixes
corresponding to the first five letters of the section name from which they came, the
anomalies identified by Criteria B are given two letter prefixes corresponding to the first

two letters of the section name from which they came.
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The Margo3, MA16 anomaly, which caused the most severe fatigue load
predictions in this set of anomalies, is shown in Figure 5.1-1. The anomaly identified by
Criteria A is a three peak anomaly with an amplitude of 1.115 inches. Using Criteria B,
the same anomaly is extended at both ends to include an extra 20 feet of track data. This
effected the peak bolster load predictions. On the Margo3 anomaly a peak bolster load of
181.1 kips is predicted, but on the MA 16 anomaly the peak bolster load predicted is
173.2 kips, a difference of approximately 5%. Figure 5.1-2 shows the Montj3, MO17
anomaly. The track geometry in MO17 from 50 feet to 190 feet encompasses the entire
Montj3 anomaly segment. The remaining 100 feet of MC17 is identified by Criteria B
only. It appeared that Criteria B may have identified a multiple-peak anomaly of a
substantial length that Criteria A did not, and if so, the peak load predicted over MG17
will potentially be much grcater than over Montj2. At 80 mph the peak load prediction
were 125.5 kips and 145.9 kips, a 15% difference.

Figure 5.1-3 shows the Riverl, RI1 anomaly. This is a dip anomaly with a 0.848
inch amplitude. Criteria A identifies just the dip portion of the track variation. Criteria B
finds a series of track variations on the tail end of the dip, which extends the anomaly
approximately 100 feet from the end of the dip. The peak load prediction on these two
anomalies were 135.4 kips and 136.6 kips on Riverl and RI1, respectively. Thus Criteria
B extended the anomaly a significant length, but it was not track that significantly

effected the response of the car.
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In the first example, the peak load predicted using Criteria A was greater than that
predicted by Criteria B. In the second example, the peak load predicted using Criteria B
was greater than that predicted by Criteria A. In the third example the two Criteria
produced significantly different anomalies that produced the same peak bolster load
predictions.

It must be assumed that the longer anomalies lead to more accurate simulations.
This is problematic for the extraction technique since the shorter anomalies at larger
amplitudes do not necessarily lead to conservative results. These examples raised
concerns about whether anomalies extracted with larger thresholds have long enough lead
and tail sections to allow initial condition transients to die or of including all the track
adjacent to the anomaly which can significantly effect the dynamic response of the car.
To compensate for this concern, an extraction amplitude less than the threshold amplitude
could be used, and those anomalies below the threshold amplitude discarded. A better
anomaly extraction technique would avoid this problem. A technique has been

developed and is presented in Section 2.2.

Another potential problem identified was that the end points of the anomalies were
large with respect to anomaly amplitude. Two examples of this are shown in Figure
5.1-4a-b where the MO5 and MO4 anomalies are plotted. The spline fits on the MO5
anomaly are greater than 0.3 inch in amplitude on an anomaly of 0.6 inch. On the MO4
anomaly, Figure 5.1-4b, the end point of the leading spline fit has a magnitude greater
than 0.4 inch on an anomaly of just over 0.6 inch, and it ends right at the start of the

anomaly. This brought forward questions about artificial transients and inaccurate
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simulation caused by the car encountering the anomaly too soon after reaching the real
track data at a large magnitude relative to the anomaly amplitude. This problem has been

solved using a new technique for extracting anomalies, described in Section 2.2.

NUCARS simulation runs at 60 mph and 80 mph, were made over all the anomalies
identified by both criteria. A speed of 60 mph was used because it is ciose to the vehicle
bounce natural frequency on 39 foot wavelength anomalies (62 mph) and it corresponds
to the maximum speed on Class 4 track (Track Safety Standards, 1992). All three miles
of track met the FRA Class 5 track specifications for track profile variations, so a speed

of 80 mph was used because it corresponds to the maximum speed on Class 3 track.

Figures 5.1-5a-c show typical lead and trailing bolster loads predicted by NUCARS
for the paintspotter car, over three anomalies identified by Criteria A: Margo3, Margo5,
and Margo6. The car response to the Margo3 anomaly was a combined bounce and pitch
motion. A peak bolster load of 181.1 kips occurred at 60 mph on the trailing bolster of
the car at 180 feet into the anomaly. Over the Margo5 anomaly at 60 mph the motion
was almost pure bounce. Margo5 had an amplitude of 0.770 inch and the resulting peak
bolster load was 129 kips. On the Margo6 anomaly, the car response is close to pure

pitch at 60 mph. The peak bolster load due to the 0.725 inch anomaly is 127 kips.

Figure 5.1-6 shows the dynamic-to-static load ratio versus anomaly amplitude that
resulted from the simulations at 60 mph, for anomalies identified using Criteria B. The
trend generally can be described as linear growth in load ratio with anomaly amplitude.
The peak load ratio in response to anomaly amplitudes less than 0.7 inch is 1.35, the

average load ratio is 1.17.
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Figure 5.1-6: Analysis of 3 miles of track profile data.
Simulations over all anomalies at 60 mph.

A comparison cf the responses at 60 mph and 80 mph was done. In Figure 5.1-7
the load ratio versus anomaly amplitude for simulations at 60 mph and 80 mph over the
Margo segment are plotted. The peak bolster loads at 80 mph are generally greater than
those at 60 mph for all anomalies except the largest. The MA 16 anomaly, which is the
largest amplitude and produces the largest bolster load, is repetitive in shape. Figure
5.1-8 shows the load ratio versus amplitude at 60 mph and 80 mph over the Montjoli

anomalies. Here there is no tendency for either speed to produce a larger peak load.
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Figure 5.1-7: Analysis of 3 miles of track profile data.
Simulations over Margo anomalies at 60 and 80 mph.

The results from simulations at both speeds over all the anomalies (including Rivers
segment anomalies) are plotted in Figure 5.1-9. There is no single amplitude where it is
evident that the loads at 60 mph or 80 mph produce the larger response. Instead it
appears that, as amplitude grows there is more of a tendency for the peak loads at 60 mph
to be greater than the loads at 80 mph. This could indicate a growing tendency towards
multiple peak repetitive variation anomalies near 39 feet long with larger amplitude

anomalies.
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Figure 5.1-8: Analysis of 3 miles of track profile data.
Simulations over Montjoli all anomalies at 60 and 80 mph.

These results show that a threshold amplitude of 0.7 inch is satisfactory, i.e. there
are no significant fatigue loads due to anomalies with amplitudes below 0.7 inch. The
problem is that there is no justification to use 0.7 inch a priori: no independent criteria
for finding the threshold amplitude. While using 0.5 inch was justified by independent
analysis, it is too conservative a value since it identifies four times as many ancmalies as
the 0.7 inch threshcld. These results motivated the development of a rational
methodology to determine threshold amplitude. The methodology developed is described

in Section 2.1.
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Figure 5.1-9: Analysis of 3 miles of track profile data.
Simulations over all anomalies at 60 and 80 mph.

5.2 Case Study 2: Paint spotter car with 20 continuous miles of track

data

Having shown the ability of the methodology to find and extract anomalies on short
segments of track that contain numerous anomalies, the next step was to test the
methodology on a longer set of data. A set of data was ob:ained, consisting of 20 miles
of continuous track geometry. Again, the methodology to determine the threshold

amplitude described in Section 2.1 was not yet developed. Nor was the track length
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addition and end point control capabilities so that one again sees the threshold extension
factor. The purpose of this study was to evaluate the ability of the methodology and
programs to perform anomaly detection, extraction, and dynamic simulations on a larger

set of data.

Only Criteria B, was used to identify anomalies because there were so few
anomalies on this track segment. Using this criteria on the data set yielded only six
anomalies, four between 0.5 and 0.6 inch, one anomaly with an amplitude of 0.710 inch

and one anomaly with an amplitude of 0.877 inch.

The anomalies were extracted and used as input in NUCARS simulations. The
paint spotter vehicle model was used and simulations were run at 60 mph and 80 mph.
The resulting peak bolster loads are given in Table 5.2-1. A slightly larger load is
predicted at 60 mph than at 80 mph on the largest anomaly. On all the anomalies except

the largest, the predicted fatigue loads are larger at 80 mph than at 60 mph.

The results showed that the methodology was applicable on a longer data set with
few anomalies, i.e. the anomalies were identified and extracted efficiently and the

simulations could progress without requiring modification to the programs.

Table 5.2-1: Results of case study two: The paintspotter car and
20 miles of continuous data.
Anomaly Amplitude Peak bolster Peak bolster
number (inches p/p) load (kips) load (kips)
at 60mph at 80mph
1 0.538 117.7 120.4
2 0.582 108.0 109.4
3 0.597 113.9 122.7
4 0.598 110.2 113.1
5 0.710 120.2 129.1
6 0.877 120.1 118.8
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5.3 Case Study 3: Articulated fiat car with 305 miles of track data

The third case study modeis the movement of an articulated flat car over the
anomalies extracted from the third data set. This study combined the complexity of a

three-platform articulated flat car with the a track data set 15 times longer than data set 2.

One of the major goals of this case study was to determine the validity of the
threshold amplitude analysis of Section 2.1, which suggested a 0.7 inch threshold
anomaly amplitude. If 0.7 inches is a valid threshold, then no anomaly on this track with
amplitude less than 0.7 should be able to cause a significant fatigue load. Verifying this
by running simulations over every anomaly below 0.7 inch would be prohibitively time
consuming. Another way to judge was necessary. In Section 2.1, the outlier anomalies
were identified and separated from the other 98% of anomalies. Thirteen of the outlier
anomalies had amplitudes between 0.5 and 0.7 inch. These anomalies must be treated
individually, i.e. simulations must be run over these anomalies to determine if they can
cause significant fatigue loads. Hypothesizing that the outliers are the most probable of
the anomalies below 0.7 inch amplitude of causing significant fatigue loads, it was
concluded that, if there were no outliers that could cause significant fatigue loads, then
none of the anomalies below the threshold amplitude could. If it was found that one or
more of the outliers could cause significant fatigue loads, then anomalies from the 98%
distribution would have to be sampled and simulations run to determine if 0.7 inch is a

valid threshold amplitude.
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The 13 outlier anomalies were identified, extracted, and put into a format
compatible with NUCARS. Runs were made at 78, 60, and 40 mph over each of the
anomalies. Table 5.3-1 lists the maximum, minimum, and average peak load factors

occurring over the outliers at each speed.

Load factor 78 mph 60mph 40mph
maximum 1.37 1.34 1.24
average 1.30 1.27 1.19
minimum 1.24 1.19 1.17
Table 5.3-1: Peak load factors on the outlier
anomalies.

The largest values of maximum, average, and minimum occurred at 78 mph. The
largest peak load factor was 1.37. The lowest values occurred at 40 mph. Figure 5.3-1 is
a plot of the peak load factors predicted over all the outliers versus anomaly amplitude.
The significant result of this study is that no simulation produced a peak load factor

above 1.50.

Figure 5.3-2 is a plot of the peak load factor versus number of peaks in the anomaly
predicted at 78 mph over the 13 outliers. There is a minor trend towards increasing peak
load factor with increasing number of peaks. Note that there is also a positive correlation
between anomaly amplitude and number of peaks. Thus, it is expected that a similar
trend will occur for peak load factor versus amplitude. The data is plotted versus
amplitude if in Figure 5.3-3, but there the correlation between amplitude and peak load

factor is not as clear in this figure.
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Figure 5.3-1. Peak load factor over outlier anomalies

versus anomaly amplitude

This analysis showed that there were no outliers that could cause significant fatigue
loads on this track. Since the outliers were most likely to cause significant fatigue loads,
it follows that there was no chance that there were any other anomalies of less than 0.7
inch amplitude that could cause significant fatigue loads. Therefore, the methodology to

determine the threshold amplitude finds a valid conservative value of the threshold.
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Once the threshold amplitude was verified, analysis of the anomalies with
amplitudes greater than 0.7 inch could proceed. An anomaly identification analysis was
performed using a 0.7 inch threshold amplitude and the resulting distribution of
anomalies by number of peaks and amplitude range is presented in Table 5.3-2. A total

of 161 anomalies were identified, 45% of them are one peak anomalies with amplitudes

between 0.7 and 0.8 inch.
number of peaks [0.7-0.8 0.8-0.9 09-1.0 1.0-1.1 >1.1
1 72 32 11 2
2 11 13 5 3
3 2 1 1 2
4 1 2 1
5 1
6 1
Total 85 46 19 8 3
# reduced 8 0 4 1 1
% reduction 9% 0% 17% 11% 25%
Table 5.3-2: Distribution of anomalies by amplitude and number of peaks for
305 miles of track with a 0.7 inch threshold.

Note that using a 0.5 inch threshold a total of 175 anomalies were identified with
amplitudes greater than 0.7 inch (Table 2.1.2-1). The discrepancy is caused by the
routine in VUTRACK that calculates anomaly amplitude. The program calculates
anomaly amplitude by taking the difference between the maximum and minimum values
of the data over the entire anomaly. Thus, if the anomaly has multiple peaks, the
amplitude over this anomaly can be the maximum from one single peak anomaly and the
minimum from another single peak anomaly, giving a larger amplitude than any single
peak variation within the anomaly. An anomaly with many peaks has a high likelihood
of having its reported amplitude be incorrect. As threshold amplitude increases the

number of peaks in multiple peak anomalies decreases. This reduces the number of
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anomalies whose amplitudes are erroneously determined using the current method. This
is the reason there is a 9% reduction in total number of anomalies identified with
amplitude greater than 0.7 inch, but none of the anomalies eliminated really have
amplitudes greater than 0.7 inch. It is likely that there were multiple peak anomalies in
the distribution of anomalies using a 0.7 inch threshold that had reported amplitudes

greater than the maximum single peak anomaly amplitude.

A goal of this case study was to develop an approach for selecting the anomalies
that exceed the threshold value. With the current set of tools, a 486-PC and NUCARS,
161 simulations, one per anomaly, takes about 36 hours of computer time. The initial
setup for this number of runs, identifying and extracting anomalies and creating the input
files for NUCARS, would take about 24 hours of labor. The time to perform a simple
peak load determination study would be about 19 hours of labor. Thus, the first set of
runs would take at least a calender week. Subsequent setup times would be about 2 hours
to change the value of simulation speed in every input file. Assuming that 10-161 run
simulations are necessary for a fatigue load study, there would be a total of 360 hours of
simulation time. If all the simulations could be done in one large batch file, it would take
15 days of continuous computer time to perform. Total time for setup and peak load
determination would be 232 labor hours, about one and one-half months of labor. Thus,
the total time from start to finish would be about two months. This is a long period of

time. An approach to reduce the number of simulations necessary has been developed.

The line traversing Table 5.3-2 divides the groups of anomalies with more than 5%
of the total number of anomalies from those groups with less. It was assumed that the

groups of greater than 5% can be represented by a random sampling of one-third of the
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members within the group. Of the 139 anomalies within the these groups only 47 of the
anomalies are used for simulations. All of the 22 anomalies in groups of less than 5% are
used in simulations. The number of anomalies used in simulations is reduced to 69, or

43% of the original set of 161.

The 47 anomalies were chosen randomly and these plus the 22 others were
extracted. Simulations were made with the articulated flat car at 78 mph over the
anomalies and the peak load factor was calculated for each simulation. Figure 5.3-4 is a
plot of the peak load factor predicted over each anomaly versus anomaly amplitude.
There were 10 exceedences of the 1.5 load limit ratio. Seven of the exceedences
occurred on anomalies that were in the groups of less than 5% of the anomalies. The
other three all occurred in the 0.8-0.9 inch, 2 peak ancmaly group. Table 5.3-3 lists the

anomalies that caused exceedences.

Amplitude Number of | Amplitude |Load
range Peaks Factor
0.8-0.9 2 0.874 1.54
2 0.832 1.50
2 0.833 1.58
Emm——-_—_—#m
0.7-0.8 3 0.798 1.51
0.9-1.0 2 0.924 1.63
1.0-1.1 1 1.046 1.57
2 1.024 1.60
4 1.086 1.55
>1.1 3 1.238 1.74
3 1.248 1.61
Table 5.3-3: Anomalies that caused significant
fatigue loads.
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Figure 5.3-4. Peak load factor over 69 anomalies with

amplitude greater than 0.7 inch versus amplitude

Not shown in Table 5.3-3 are the results of one simulation over a 1 peak, 0.758 inch
anomaly where load ratio of 1.54 was predicted. This anomaly is in the group of 72
single peak, 0.7-0.8 inch anomalies. Observation of the anomaly revealed that an
anomaly with amplitude of about 0.6 inches directly preceded this anomaly. This
variation was picked up by the anomaly augmentation routine. Preceding the smaller
anomaly was another variation with about 0.5 inch amplitude which was not included in
the original anomaly. This geometry variation was unlike any of the other 23 anomalies
in this group. It was decided to re-extract and simulate the anomaly using two track

lengths of augmentation to include all the variations around the anomaly. The resulting
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peak load ratio was 1.48, 4% lower than the original prediction. It must be assumed that
extracting more track data around the anomaly results in a more accurate load prediction.
Therefore, it was concluded that the original value was erroneous and was caused by

fictitious transients occurring because the lead-in track was not long enough.

Another anomaly in this group of 72 (also not shown in the table) came close to
exceeding the 1.5 limit. The predicted peak load ratio over this anomaly was 1.49.
Observation of this anomaly revealed no large amplitude variations in the vicinity like the
previous anomaly. The anomaly was re-extracted using two track lengths of
augmentation and a simulation was performed. The new predicted peak load ratio over
this anomaly was 1.46, a reduction of 2% from the original prediction. This and the
results from the previous anomaly in this group suggest that the parameters used for the
anomaly augmentation and extraction produce slightly conservative p..ik load

predictions.

These results prompted the investigation of the 0.798 inch, 3 peak anomaly that
caused a 1.51 load ratio, shown in Table 5.3-3. This was the only anomaly remaining
with an amplitude less than 0.800 inch for which the first simulation predicted an
exceedence. The anomaly was extracted with two rail lengths of augmented track data
and the simulation was rerun. The resulting peak load factor was 1.51, exactly the same

as the original prediction. Thus, this anomaly does cause an exceedence.

The maximum predicted peak load ratio within each group of anomalies is shown in
Table 5.3-4. Those groups where significant fatigue loads are predicted are indicated in
boldface. Notice that only in one group with 10 or more anomalies were significant

bolster loads predicted. This is the 2 peak, 0.8-0.9 inch group, which contains 13
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anomalies. Because three of five anomalies in this group were predicted to cause
significant fatigue loads, the remaining anomalies were also extracted and simulations
run to determine the peak bolster loads they caused. Three more anomalies in this group
were found to cause significant fatigue loads. Six of the thirteen anomalies in this group
cause significant bolster loads! The anomaly parameters and the peak load ratios for

these anomalies are listed in Table 5.3-5.

number of peaks |0.7-0.8 0.8-0.9 0.9-1.0 1.0-1.1 >1.1

1 1.48 1.46 147 | |157

2 144  []1.58 1.63 1.60

3 1.51 1.40 1.43 1.74

4 1.33 1.47 1.55

5 1.44

6 1.44
Table 5.3-4: Peak load ratio predicted in each group for 305 miles of track
with a 0.7 inch threshold.

Note that no anomaly in either the 1 peak, 0.8-0.9 inch, or the 1 peak, 0.9-1.0 inch
amplitude group caused significant bolster loads even though the amplitudes are equal or
larger. And no anomaly in the 0.7-0.8 inch, 2 peak group cause significant bolster loads
either. This demonstrates how the number of peaks and the amplitude of an anomaly are
both significant measures of its potential of causing significant bolster loads. Of the 10
significant anomalies, one anomaly had only one peak, five had two peaks, three had
three peaks, and one had four peaks. One of the anomalies had an amplitude less than 0.8
inches, three had amplitudes between 0.8 and 0.9 inch, one had an amplitude of 0.924

inch and five of the had amplitudes greater than one inch.

84



Anomaly Pen'
Amplitude loau
(inch) ratio
0.832 1.50
0.833 1.58
0.868 1.57
0.874 1.54
0.876 1.63
0.856 1.53

Table 5.3-5: Anomalies in the

2 peak, 0.8-0.9 inch group that

caused significant fatigue loads.

A study was done to determine the effect of increasing number of peaks in
anomalies. The peak load ratio versus the number of peaks in the anomaly is plotted in
Figure 5.3-5 for the original 69 anomalies. The figure shows that there is a correlation
between ir.creasing peak load factors and number of peaks in an anomaly up to three
peaks. For four peak anomalies the range and maximum peak load ratios decrease. And
for the five and six peak anomalies there is no peak load ratio above 1.5. Nine of the 10
anomalies which caused significant fatigue loads had one, two, or three peaks. Only one
had four peaks. Investigation of the largest amplitude anornaly which had six peaks
revealed that the reported amplitude of the anomaly is errcneous. The anomaly shape is a
large dip of about a 0.7 inch followed by a relatively flat portion of track then a large
spike of about 0.7 inch. The anomaly amplitude calculation routine reported the
difference between these two disconnected extremes in track geometry (1.355 inches).
The reason this multiple peak anomaly had six peaks was because there were a number of
small peaks between the two large variations that were counted. These findings suggest
that maintenance practices prevent anomalies from developing more than three peaks if
the anomaly could cause significant fatigue loading. Perhaps this is because anomalies

become quite visible when the number of peaks and amplitude becomes large.
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With the result of this preliminary study of the anomalies greater than (.7 inch, the
threshold can now be defined as a function of the number of peaks in the anomaly and the
amplitude of the anomaly. The threshold for this data set is 3 peaks, 0.7-0.8 inch; 2 peaks
0.8-0.9 inch; 2 peaks 0.9-1.0 inch; 1 peak 1.0 inch or larger. The line traversing Table
5.3-4 shows the boundary of the threshold. In general, only those anomalies outside the
threshold boundary need. to be considered in the fatigue load analysis. But, in this case
study all of the anomalies outside the threshold boundary have been individually used in

simulations, therefore, all the anomalies that can cause significant fatigue loads have been

86



identified. Instead of 35 anomalies, only 13 anomalies need to be used in simulations.

Combining the advantages of the threshold amplitude determination and the
grouping of anomalies, there is a reduction by a factor of 15 in the number of anomalies
that need to be considered! Validation of the threshold amplitude allowed a reduction in
the number of anomalies that must be considered, from 760 to 161, since it was known
with confidence that anomalies with amplitudes between 0.5 and 0.7 inch cannot cause
significant fatigue loads. And, of the 161 anomalies greater than 0.7 inch amplitude, only
13 anomalies need to be considered in order to find the anomalies that could cause the

largest fatigue loads.

Finally, the time to perform a simple fatigue load study is determined. For 13
anomalies, one simulation per anomaly would take about 3 hours of computer time. The
initial setup for this number of runs, identifying and extracting anomalies and creating the
input files for NUCARS, would take about 2 hours of labor. The time to perform a
simple peak load determination study is av.at 1 hours of labor. The time to perform 130
fatigue load determinations would be about 3 days. The amount of time to find the
thirteen anomalies that are used in the fatigue load study would be about 2 days. Thus,

the whole study could be performed in about one week.
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6 Conclusions and discussion

The primary goals of this two year MIT research effort were to develop a
methodology to compute freight car fatigue loads from track-vehicle models, to
demonstrate the methodology on an extensive set of track data, and to evaluate the ability

of the methodology to accurately predict fatigue loads in rail cars due to track anomalies.

The methodology that was developed finds all the track geometry variations that
could cause significant fatigue loads, uses these actual geometric variations as the track
input in computer simulations of the vehicle-track interaction, and then determines the
resulting fatigue loads. The methodology was implemented in a six step process: vehicle
modelling, track data analysis, threshold analysis, anomaly extraction, simulation, anc

fatigue load analysis.

Computer programs were developed to perform specific steps of the methodology.
These programs are able to process large volumes of track data, identify and extract all
significant anomalies, find the precise location on the i *~k of each anomaly, and produce
important information about each anomaly such as its amplitude, length, and the number
of peaks. The extracted anomalies are then used as the track geometry input to the

NUCARS program to determine vehicle response and the resulting fatigue loads.

The methodology currently is fully developed and provides the tools necessary to
predict the fatigue life of a new car at the design stage. To reach this capability, a large
volume of track data was acquired, processed, and analyzed. Long lengths of track were
characterized by a relatively small number of anomalies of different amplitudes and
number of peaks. The anomalies were classified under two headings: amplitude and

number of peaks. This produced a data base from which anomalies were pulled for the
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determination of fatigue loads. Anomaly amplitude was shown to be the primary factor
influencing car fatigue loads. The number of peaks (a measure of the potential number of
cycles of repeated variations) is the second most important factor influencing vehicle

respornse.

The ultimate use of the methodology is to predict the fatigue life of a rail car at the
design stage. This is accomplished by modelling the car in NUCARS and selecting a set
of anomalies representative of the track the car will traverse over its life. Then a
threshold analysis is performed, and the anomalies with amplitudes greater than the
threshold amplitude are extracted. NUCARS simulations for each anomaly over a range
of car operating speeds are performed, and the fatigue load histories are extracted.
Finally, a rainflow analysis is performed, and the fatigue life of the car or component is
predicted. To perform this analysis a very large data base of anomalies, representing the

track the car will see in revenue service, must be created.

The efforts reported in this, the second report, are aimed at evaluating and
furthering the methodology and giving it the capability of processing large volumes of
track data. Thus, the work performed in this study focused on the second through fourth
steps: track data analysis, threshold analysis, and anomaly extraction. To this end, an
improved technique was developed for extracting anomalies, which replaces the
threshold extension factor technique. This new technique allows the addition of any
desired length of data to the end of an anomaly, and will lengthen an anomaly segment, if
necessary, to ensure that the amplitude at the end points of the segment are not greater
than a specified maximum. This technique guarantees that a sufficient buffer of track can

be added to allow the transients caused by the initial conditions of the simulation to settle.
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A significant advance to the overall methodology is the development of a rational
methodology for determining the threshold amplitude. This method of finding the
minimum anomaly amplitude that can cause significant fatigue loading ties together the

interactions between the vehicle and track which produce fatigue loads.

Severe dynamic response is theoretically possible for certain cars at resonance on
track geometry variations as small as 0.5 inches. However, a large number of repeated
variations are necessary. A study of 305 miles of track data was performed to determine
if this condition occurred. This study showed that there is very little probability for
repetitive geometric variations (so called multiple-hit anomalies) in anomalies with
amplitudes less than 0.6 inch peak-to-peak. A threshold amplitude analysis for a car of
this type showed that anomalies of at least 0.7 inch are necessary on this track to have the
potential of causing bolster loads in excess of 150% of static. These results provided the
reason for using a anomaly threshold of 0.7 inch, which reduced by a factor of four the

number of ancmalies that had to be considered in the fatigue load analysis.

The PFILT computer programs, which embody the anomaly identification and
extraction parts of the methodology, have been improved in a variety of ways.
Improvements in data reporting include: reporting of the amplitude, length, number of

peaks, and track locution of every anomaly.

All the programs were updated to allow for the processing of large volumes of track
data. The most significant improvement in this regard is the ability to enter all the input
to the programs on the command line, thus allowing simple and extensive batch file

processing necessary for large data sets.
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To achieve the above results and conclusions, 328 miles of track data were
analyzed, and three case studies of the methodology were performed. The track data
consisted of three sets of data from distinct locations, and the case studies utilized two

sets of vehicle characteristics: the paintspotter car and a three platform articulated flat car.

And finally, the documentation was enhanced, including an update to the PFILT
user’s guide and documentation of the discrete-time differentiating filter originally

presented in Allen (1992).

The research described herein focused on finding the track geometry anomalies that
cause large fatigue loads so that cars could be better designed to withstand the fatigue
environment that exists on the track. There are also poiential benefits to be derived from

this research in track maintenance practices.

Currently, railroads use statistical track surface roughness indexes to determine the
condition of the track. These indexes typically measure the variance of track surface
from the mean over a short segment of track. The value of the variance is called the track
quality index (TQI) (Roney and Mclveen, 1991). When the TQI of a segment of track
exceeds some limit determined by experience, the track surface has degraded. But, only
when the TQI of a number of contiguous segments exceed the limit is the track
resurfaced. The track segments are typically 500 ft long. Special track features such as

switches, bridges and grade crossings are taken out of the data.

There are limitations inherent in the current practice and costly surface maintenance
practice is required to compensate for it. The variance is a statistical measure of the
difference from the mean value of the geometry of the whole track segment, but

anomalies have geometries which are by definition outside the norm. A large TQI
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indicates a track segment with the potential of causing severe dynamic response of cars,
but not necessary a track segment with an anomaly on it. Since anomalies occur only
rarely and the peaks are isolated. it is not guaranteed that a large TQI will occur on a
segment with an anomaly on it, i.e. whether the variance is sensitive enough to pick up a
track segment that contains an anomaly. Thus, large sections of track with no anomalies
may be resurfaced at considerable cost. At the same time, anomalies that may be missed

by the TQI remain on the track causing severe car and track loads.

Another limitation of the TQI is the removal of special track features. Anomalies
are likely to occur at these points since the subgrade and rail stiffnesses can change
significantly over these points. These tend to cause vehicle responses that put dynamic
loads on the track which leads to geometry degradation. Neglecting these locations in
track surface maintenance scheduling may leave anomalies on the track with cause severe

car and track loads.

Track surface maintenance planning based on anomaly identification offers the
possibility of improved track conditions at lower cost. Using the methodology presented
in this report, all the anomalies in the track data can be identified and classified. The
potential loads that each anomaly can cause can be estimated and the anomalies listed in
order of the severity. The anomalies can be located on the track and repair of the track
surface at just the anomaly can be performed. The resurfacing of several segments of
track which may or may not have an anomaly is eliminated. This approach also
guarantees that there are no locations on the track where the load exceed a prescribed

limit.
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Using anomaly detection, time and money is saved in track surfacing costs since
anomalies typicaily are about 100 feet in length while the TQI requires resurfacing of a
number of contignous 560 foot track segments. The approach should also lead to longer
car life and longer track maintenance cycles since the large loads which lead to rapid

component fatigue and track deterioration are eliminated.

These are the potential benefits of an anomaly detection approach to track surface
maintenance. Research should be conducted to determine the viability of this approach,
the benefits and lirnitations of its use. A technical and economic comparison of the two

methods should also be conducted.
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Appendix A:
Threshold-based anomaly detection:

Documentation of the methodology including
detailed presentation of discrete-time differentiating filter
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Al Threshold-Based Anomaly Identification

A systematic method for identifying and extracting anomalies from a set of track
profile data is proposed in Allen (1992). The method developed is actually a modified
application of a feature-based extraction method used in Fu (1977) which was also based
on data peaks. The procedure searches through the data seeking the peak characteristics
which are associated with anomalies, and extracts them accordingly.

In Hamid et al (1983), an anomaly was described as a displacement in the track
geometry, lasting between 20 and 100 feet. Of the various features characterizing a
discrete anomaly, the magnitude most influences the dynamic response of the vehicle.
Thus, an anomaly should have some minimum magnitude (define as a peak-to-peak rail
displacement over some maximum interval) for consideration as a significant anomaly.
The precise magnitude of an anomaly which makes it a significant anomaly is vehicle
dependent and must be determined through experimental characterization of the dynamic
load response.

Anomalies are always associated with some form of peaking in the data. Give this
fact, it is reasonable to assume that windows about all peaks will capture all
displacements which exceed a defined magnitude threshold. It follows, then, that it
should only be necessary to do window analysis at each data peak rather than each data
sample. The detection and extraction procedure involves moving a window of fixed
length to each peak within the data, and calculating the maximum profile displacement
within the window. The computational cost saved by peak-to-peak analysis are
significant, especially when one considers that a few miles of track can have many
thousands of samples, depending on the sampling rate.

A2 Preprocessing

The anomaly detection and extraction strategy presented is best illustrated using the
example depicted in Figure Al. Figure Al(a) shows the preprocessing stage in which the
profile data are passed through a digital differentiating filter (Oppenheim, 1689) to
identify locations of the data peaks.
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(@ (b)

© (d)

FIGURE Al: Threshold-based anomaly detection
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This is the first step in the anomaly detection method. The input data is a sequence
of numbers, i.e. a discrete representation of the track surface profile. The output desired
is the derivadve of the data. The method employed to determine the derivative is to use a
discrete-time differentiating filter. This linear time-invarient system determines the
derivative of the data by convolving the input sequence with the impulse response of the
differentiating filter system, as explained below'. Note, in the following discussion the
independent variable is referred to as time, not distance or location along the track. This
is for brevity and in keeping with the nomenclature used by practitioners of discrete-time
filtenng.

A2.1 Input Sequence Representation

Any sequence of numbers can be represented as a sum of scaled, delayed impulses.
Consider the 40 point data stream presented in Figure A4. Given the first three points
samples of this sequence x[0] = 0.1620, x[1] = 0.1540, and x[2] = 0.1450, the sequence
can be expressed

x[n] = 0.16208(n) + 0.15408(n-1) + 0.14508(n—-2)+...

where 0 n# k}

is the discrete-time impulse.

The significant property of the unit impulse is that it has a value of zero for all time
except where its argument is zero, when its value is equal to one. The sequence is not
zero between integer values, but simply undefined.

More generally, the data sequence, x[n], can be represented as a sum of scaled,
delayed impulses in the form:

xlnj =, ;_“x[k] 8[n —k] eq. Al

1 The explanation of the discrete-time differentiating filter is included for the sake of
completeness. Utilizing the filter to determine the derivative does not necessitate
understanding how the filter works, just as driving a car does not require the driver to
know how an internal combustion engine works.
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“his representation of the input sequence is very important as will become clear in the
following section.

A2.2 Linear time-invarient systems

The desired output from the filter is the derivative of the input sequence. The filter
can be thought of as a system that transforms the input sequence, x[n], into the derivative,
y[n}, symbolically shown in Equation A2.

y[n] =T{x[n]} eq. A2
where T{} is the symbolic representation of the system which operates on the input
sequence to produce the output.

By inserting the series representation of the input sequence into Equation A2 the
output the system can be expressed

ylnl = T{k i x[k]8[n —k]} eq. A3la

The operation of differentiation is linear and time-invarient, and it follows that a
discrete-time differentiating filter is also a linear time-invarient system. The property of
linearity allows important simplifications to take place. The first property of linearity is
superposition, i.e. the response of the system to the series, is the sum of individual
responses of the system to each member of the series. This is shown in Equation A3b.

yln = 5 T{x(K8[n - KT} eq. A3b

The second property of linearity is the scalar property. This property says that any
multiple of a unit input causes the unit response scaled by the same multiple. Since the
amplitudes of the input series are merely constants, it follows that Equation A3b can be
further simplified

ylnl =, =i_mx[k]r{a[n — K} eq. Alc

99




The last term in the above equation, T {8[n — ]}, is the response of the system to a
unit impulse at n=k. Like a hammer striking a bell, the impulse is nonzero at only one
time, namely at n=k, whereas response of the system to that impulse can be of infinite
length. A causal system, like a bell, will have no response at any time before n=k. If the
impulse is shifted by a certain amount of time, say T, then the response of a time-invarient
system is also shifted by the same t. With this, Equation A3c is written in final form as

yinl = 3 xlklhln-4] eq. A4

Where h[n —k] is the response of the linear-time invarient system to a unit impulse at
=k.

Thus, the output of the system at any time n is the sum of all the impulse responses
due to all the impulses occurring before n, properly weighted by the input sequence
amplitudes and superposed in time. The above equation has a special form called a
convolution sum and the equation says: the derivative at n is the convolution of the input
sequence with the impulse response.

A2.3 Impulse response of a linear-time invarient system

The purpose of this section is to present the impulse response of the discrete-time
differentiator. However, before entering the realm of the discrete, the impulse response
of a continuous-time filter is bresented. The procedure and results for the discrete-time
system are analogous.

First, we desire the impulse response of the continuous-time differentiator. This
system is schematically illustrated in the Figure A2. A sequence of impulses come into
the system and the system operates upon them to produce the impulse response.

__gﬁﬁ_;., 'Ti.} - d/d,t h(t)

FIGURE A2. Continuous-time differentiator
system.
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The time domain equation asscciated with this system for a single impulse is
d
kil =T{8[1} = ZS[:] eq. A5

First, to determine the impulse response, the Fourier transformation of the system is
determined. This transforms the system from the time domain to the complex frequency
domain. Let 8(/' ®) be the Fourier transformation of the function 8(¢). Recall the
following property of Fourier transformations, which relates the Fourier transform of the
derivative of the unit impulse to the Fourier transform of the unit impulse function.

(w)= jo d(w) eq. A6
where jisV—-1 and® is circular frequency.

Generally, the impulse response equation in the frequency domain has the following

form

H(jo)=S(n)A(jw) eq. A7
which equates the impulse response, H (jw), to the system frequency response, S (jw),
multiplied by the input frequency response, A(jw).

The frequency response of the derivative is the system in Figure A2. Mapping Equation
A6 into Equation A7, the system frequency response is  j.

Next, the Fourier transformation in the frequency domain of a unit impulse is
determined’. The Fourier transformation of a unit impulse is identically one (1), i.e. an
impulse has equal proportions of all frequencies within it. Thus, the impulse response in

2 The Fourier transformation of a continuous function is o .
X(jw)= Jx(t)e-’wdt

—ca

And the inverse Fourier transformation equation is -
x(t)= fX(jm)e""‘dm

The following is the definition of the unit impulseT O(e)f(2)dr = f(0)
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the frequency domain, Equation A7, is identically the system frequency response.
Hjo)=jo —co < () < 00 eq. A8

To find the impulse response of the system in the time domain, the inverse Fourier
transformation formula is applied. However, the frequency response of this system is
infinitely long, making the inverse Fourier transformation computationally impossible.

The system we desire the impulse response to is the discrete-time differentiator.
This system is

h[m] =T{8[rm]} =£n—8[m] eq. A9

Analogous relationships exist for the system frequency response of discrete and
continuous time systems. Since we are considering discretized input, the input sequence
is limited to a frequency band bounded by the sampling rate. Thus, we need only to
define the system response over the same range of frequencies as the input sequence.
This is accomplished by normalizing the frequency response by the sampling rate, T.
The resulting discrete time system has frequency response

H(e"“’):j%o —T<O<T eq. A10

Here the argument of the frequency response is ¢’® to indicate that it is periodic

with period 2. Unlike the continuous-time system, the inverse Fourier transformation of
this system can be realized because the limits on the frequency range. Applying the
inverse discrete Fourier transform equation

h[m] =§%fH(ej‘°)ej°”"d(o eq. All
—“

the impulse response of the differentiator is

h[mlznmcosm—smnm reo< < oo eq. A2

m?T
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Thus, if a discrete-time system with this impulse response were used, the output for
any band-limited input would be the derive of the input. However, the impulse response
of this filter is infinitely long making the calculation computational unrealizable. The
simplest way to obtain a finite length impulse response is to truncate it. If we define
h,[m] as a new system with impulse response given by

< <
iiml 05 <

0 otherwise

h,[m] ={

The new system is a "windowed" impulse response with a window length of M+1

samples.

This introduces a linear phase shift in the system response equal to M/2 samples,
i.e. half the window length. The Fourier transformation of an input time delay of M/2
samples is e 7", Thus, the impulse frequency response of this system is
o

H(ej“‘)=J—0—)e

-T< W< . Al4
T W< eq

And the corresponding impulse response is:

1 )(cos n(m —M/2) sinm(m —MI2)

h[m]=(T YY) Yy J —o<m < oo eq. AlS

A2.4 Derivative of the Input Sequence

We now have all the results necessary to determine the derivative of the input
sequence. We need only to define the window length of the filter to proceed. The
window is a low pass filter where the cutoff frequency is determined by the window
length. If the window length is one, then every data point is a peak. If the window length
is infinite, then there are no peaks because the impulse response is zero. Generally, the
longer the window the more prominent a peak must be in order to be identified by the
filter. A window length of ten was chosen. Thus, all peaks surrounded by variations of
less than ten samples are filtered out. For a filter with M equal to 10, the impulse
response of the system is given by:
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0 m=M/2
cosnt(m—MI/2)
m-M/2

0 otherwise

Osm<M eq. Al6

h,[m] =

This produces the antisymmetric impulse response sequence listed below and
plotted in Figure A3.

him] ={0.2, -0.25, 033, -0.5, 1.0, 0, -10, 0.5, —0.33, 0.25, -0.2}

oS- -

Impuise response
'
]

05~ -

15 1 1

FIGURE A3. Impulse response of an 11 point
discrete-time differentiator.

With this we can now realize the derivative of the input sequence. Because the
derivative lags the input sequence by 5 samples, Equation A4 is rewritten

y[n -5 = f_’,wx[k]hw[lo-(k—n)] eq. Al7

k=n-

Equation A17 tells us that the derivative at sample n is the convolution of the 11
data points centered on sample n with the impulse response of the discrete-time filter.

104



Consider the 40 sample sequence shown in Figure A4. The amplitude of the
sequence and the derivative computed by the above formula are shown at each integer.
The line connecting the points is merely for illustrative purposes and does not imply
either sequence takes on values between samples.

02

0.15

0.1

0.05 1

Ampliwude and Derivative

-0.03

A 1

0.1
0 10 30 40

20
Sample number

—m— Data Samples —o— Derivative at sample

FIGURE A4. Data stream and its derivative.

The calculation of derivative of the first and last five points of the sequence require
data outside the range of the sequence. To enable calculation of the derivative, zeros are
padded to the ends of the sequence. Since non-real, zero inputs are used at the ends of -
the sequence the first and last five points are only approximate. This is not a problem
since actual input sequences tend to be many thousands of samples thus the lost accuracy
due to approximating with zero padding is negligible.

A3 Processing

Peaks are detected by noting the indices where the sign of the derivative changes.
When peaks are located in the data, they are represented by the discrete-time series index.
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This index is then signed according to the orientation of the peak. For example, a
concave downward peak located at sample 613 in the data would be marked at n = -613.
(This notation assumes that the series stars at nSO.) The preprocessing stage creates a list
of these indices which locate each sequential peak and its orientation

A window of track data about each peak is then analyzed as seen in Figure 1(b). If
the location of a data peak is:

|1, |= peaklocation
and S =sgn(l,)) =signofpeak
then the window, W, centered about that peak with length 2M+1 is:

W={Zn}  (I|-M)<n<(I|+M) eq. AlS

where Z[n] is the value at sample n.

The profile transition from the peak to any point inside the window is defined as:
AZ=S( Z[n]-Z[11,] ) eq. Al9
Thus, the maximum transition distance is:

AZ ,=max{S( W-Z[|]] )} eq. A20

If AZ . >T, the threshold, then peak I, is categorized as a significant peak. This

analysis is conducted for all of the peaks, which will reduce the criginal peak list to a
shorter list consisting of only significant peaks.

In Figure 1(b), a 78 foot window is used. If the threshold were 0.5 inches, the peak
of the window to the left would be considered a significant anomaly peak while the other
windowed peak to the right would not.

One the analysis at each peak is completed, any neighboring significant peaks (
those which lie within a half-window length, M, form each other) are connected, as
depicted in Figure 1(c). this stage capture the actual profile transitions which
characterize all anomalies. Beginning with the first, significant peak, peaks are grouped
as follows:
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Let I =1, the location of the first peak
if -t <M
thenif I l- /<M
thenif I 5l-1I,,l<M
and soonuntil I, /- .l <M

The first anomaly would thus consist of the set of samples from I, to I, :

A ={Z[nl}, Il Isn<l,,] eq. A2l

The start of the next anomaly would then begin with I, =/, , .., and the above

iterations repeated. This completes anomaly identification.
A4 Anomaly Extraction

Anomaly extraction is use dependent on the use of the anomaly information. If one
desires only to know where on the track the anomaly is and the shape of the anomaly then
the extraction process is simply to copy the exact start and end points of the anomaly and
the track data to a file. If, however, the anomaly is to be nsed for input to a dynamic
simulation then the data needs to be augmented to assure that the simulation is accurate.
The following section describes two techniques to augment and extract anomalies with
the goal of assuring accurate prediction of vehicle dynamic response. These techniques
allow some of the anomalies to be more fully formed and allows inclusion of sections of
track that would make a significant dynamic load contribution. It also changes initial
conditions for simulations by more accurately representing the track in the neighborhood
of the anomaly.

A4.1 Threshold extension factor

The anomalies are augmented by connecting sections which do not exceed the
threshold but are above some defined percentage of it. For example, the highlighted
anomaly on the left in Figure 1(d) develops another section of track on the end with this
segment augmentation. Using anomaly A, from Equation A21, the maximum transition
from the significant peak I, to a point in the section of track to the left of it would be:

AZ =max{S(W[n] -Z[I/, 1D} | |-M<n<|]| A22
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and if
AZ  >oT O<asl - eq. A23

then the section of track up to the location ofAZ,,,,, is augmented to the anomaly.

The above steps are then repeated for the section to the right of the anomaly by analyzing
over the interval |/, |<n <[/, .. | +M.

A4.2 Track length addition

Here anomalies are augmented by extending additional lengths of track data of the
adjacent track. This techniques allows all the anomalies to be more fully formed.

A4.3 Hermite cubic fits

When the anomalies are reconstructed from the data, the resulting end-points often
leave a sharp discontinuity from the nominal track level to the actual ends of the
anomaly definition. In Figure AS, the sharp discontinuity can be readily seen. Some
smoothing is necessary, so that the dynamic simulation is not adversely affected by these
sharp jumps. The following method uses a cubic polynomia! to the end point to smooth
these drop offs over the length of one window.

End point max discontinuity needs also to be controlled. The values of the end
point are made a percentage of the threshold magnitude to assure that the smooth
transition to the real data is not controlling the response of the vehicle by the time it hits
the actual anomaly.
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(b) With cubic spline smoothing

FIGURE A5: Polynomial smoothing at
anomaly ends.
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The polynomial is the Hermite cubic (Strang, 1986) whose general form is:
y=a(kx-1P22x+1)+b(x - 1)’ +cx’(3—2x) +dx*(x - 1) eq. A24

The linear coefficients are determined simply by the displacement and slopes at the
ends of the smoothing curves. Thus for the smoothing polynomial on the left of the
anomaly, a is the displacement at the beginning of the polynomiai, and b is the slope at
the beginning. Similarly, c is the displacement at the end of the polynomial, where it
connects with the anomaly, and d is the slope at that point. The coefficients a, b, and ¢
are determined directly: a and b are both zero, since we want the smoothing curve to
approach y=0 with a slope of 0; c is simply the edge displacement of the anomaly. The
final slope coefficient, d, is calculated by finding the slope of the least-squares linear fit
of the ten data samples leading up to the anomaly edge.
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PFILT Users Guide Supplement
Brandon Schwarz
Carl Martland
May §, 1993

A Users Guide to the PFILT family of programs was included as Appendix A of John
Allen’s thesis, which was completed in January of 1992. Since that time, a number of
improvements have been made to the programs, which require some changes in running
the model. This document identifies the changes necessary to run the PFILT family of
programs. It is intended to supplement, not replace, uie original Users Guide.

The major changes are as follows:

1. A preprocessor (PREPROS) was added to convert raw data to the format required
for DSTREAM.

2. The mile-post and feet were added to each of the input data records, which changes
the format of many of the intermediate files. DSTREAM now creates six binary
files: the left, right, average, and cross level profiles, and the mile-post and feet.

Running the Programs

This section explains how to use the PFILT programs. The sample input file, which is

called DIAMON.RAW, was provided. The format of this file is shown at the top of

Figure 1.

Each program can be run in two modes:

1. Interactive mode: the user enters the name of the program, hits return, and answers
the questions

2. Command mode: the user enters the name of the program followed by the
appropriate parameters, then hits return

PREPROS

Notice that the location of each record in DIAMON.RAW is shown as the mile-post plus

feet, e.g. "13+5486." PREPROS removes the "+" from each record and creates a new file

with the proper input for DSTREAM. This file will have the same name as the original
file plus an extension .TXT (in this case DIAMON.TXT). This is a standard ASCII text

file, as shown in the bottom of Figure 1.

In the interactive mode, PREPROS asks 2 questions:

1. What is the input data file (the name can be up to 6 characters)? DIAMON.RAW
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2. How many leading rows are there in the input data set before the first line of
geometry data? 2
For the command mode, simply enter
PREPROS DIAMON.RAW 2
When the program is done, it displays the screen shown in Figure 2. Note that the length
of the segment is calculated assuming that there is one record for every foot of track,
which is the sampling interval for the data shown. The distance is not calculated by
subtracting the beginning mile post plus feet from the ending mile post plus feet. If the
sampling rate is not one record per foot, then the distance will not be calculated correctly
in this version of the program. Also note that the distance between two successive mile
posts does not always equal 5280 feet (for example, in figure 1, the first record begins at
mile post 13 plus 5486 feet.)
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DSTREAM
DSTREAM.EXE has two functions. Since binary data can be processed much faster than

ASCII data, DSTREAM converts DIAMON.TXT into six separate binary files, one for
each variable. The program also identifies the location of all of the peaks in the data base

and produces separate binary files with an index of peaks for each of the geometry
measurements. A peak is record where the measurement is higher (lower) than the
measurement for both the preceding and following records. The following files are

created:
DIAMON_L.DAT
DIAMON_R.DAT
DIAMON_A.DAT
DIAMON_X.DAT
DIAMON_S.DAT
DIAMON_M.DAT
DIAMON_F.DAT

DIAMON_L.PKS
DIAMON_R.PKS
DIAMON_A PKS
DIAMON_X.PKS
DIAMON_S.PKS

Left rail measurement

Right rail measurement

Surface profile measurement
Cross level profile measurement
Curvature at this point in the track
Milepost

Feet

Left rail index of peak locations

Right rail index of peak locations
Surface profile index of peak locations
Cross level index of peak locations
Curvature index of peak locations

To run the program in interactive mode, enter DSTREAM and then hit return. The

following information must be provided (sample responses are shown in bold type):

File name: DIAMON.TXT

Output header (this will be the first six letters of the name of each of the output files):

DIAMON

The type of profile measurement in the input file (xxxxxxxx.TXT), which can be: «i:her

"L/R measurement” or "TGM format" is entered next. Some data sets, like the <zimple
data, give thw profile for the left and for the right rails. If this is the case, enter 1. Other
data sets, such as :c:2 used in the xxxxxxxx. TGM files used by NUCARS, give the
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average profile and the cross level. If this is the case, enter 2, and DSTREAM will
estimate the left and right profiles as the average profile plus (or minus) half of the cross
level. '
The geometry measure being studied, either vertical (enter 1) or lateral (enter 2). (Note
that the program is designed to detect either vertical or lateral anomalies, but it has only
been tested for vertical anomalies.)
The number of columns in the input data: 6
The number of the column containing the left profile: 3
The number of the column containing the right profile: 4
The number of the column containing the curvature: 5
The number of the column containing the mile post: 1
The number of the columi containing the feet: 2
Scale factor: if the measurements of profile and cross level are given in inches, enter 1.
If the measurements are not given in inches (scruetimes they are given in volts), enter the
scale factor that must be used to convert the measurements to inches.
To run the model in the command mode for the sample data set, enter the following
command:

DSTREAM DIAMON.TXT DIAMON116345121
When the program has been run, a screen shows the program parameters and lists the
files that were created (Figure 3).

PFILT

PFILT.EXE will look at any of the xxxxxx_y.PKS files that are produced by
DSTREAM.EXE. However, the program has only been tested for the mean profile, i.e.
for xxxxxx_A.PKS. PFILT identifies the location of anomalies and creates an index file
(xxxxxx_y.ANO) that contains the number of the record for the peak value of each
anomaly.

To run PFILT in the interactive mode, enter PFILT and hit return. The program asks for
the following information:

Name of the data file: DIAMON_A

The threshold for an anomaly, in inches: 0.7

The sampling rate, in feet, in the original data: 1
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Half of the length of the window (in feet) that will be used to select data fo: the anomaly
(i.e. this length of data will be searched on each side of the peak location): 39
In command mode, enter the following for the sample data:

PFILT DIAMON_A .7139
The output from PFILT includes a list of the anomalies along with the threshold
parameters and the total length of the anomalcus data (as shown in Figure 4).
NOTE: On some computers there is a bug so that PFILT will run only in the command
mode, but not in the interactive mode.
VUTRACK
Using VUTRACK is the same as described in the original User’s Guide with one
addition. Options have been added to control the anomaly augmentation parameters; to
set the length of leading and trailing track data added to the anomaly, and to controi the
maximum magnitude of the end data points of the spline fits.
On the first occurrence of either pressing <F5> or <F6> (save current anomaly or save all
anomalies), the program will display the default augmentation parameters and prompt for
keeping or changing the values (as shown in Figure 5). Pressing "D" for default will
return the program to the save procedure. Press "C" for change and thc program will
prompt the user with three questions (as shown in Figure 6). When all three responses
have been entered the program will echo the results. Pressing "C" to continue will return
the program to the save procedure with the new parameters saved.
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Input Filename: DIAMON.RAW .
LOCATION LPROF RPROF CURVE SUPER

13+5486 .0513 .
13+5485 .0738 .
13+5484 .0863 .
13+5483 .0987 .

13+5482
13+5481
13+5480
13+5479
13+5478
13+5477
13+5476
13+5475

1112
1213
1238
.1188
.1188
.1200
1262
.1400 .

1250 .1700 0.000
1287 .1700 0.000
1450 .1800 0.000
1612 .1800 0.000

.1700 .2000 0.000
.1712 .1800 0.000
.1587 .2000 0.000
.1387 .2000 0.600
.1162 .2000 0.000
.1200 .2000 0.000
.1325 .2000 0.000

1350 .1800 0.000

Output Filename: DIAMON.TXT

0.0513 0.1250 0.1700
0.0738 0.1287 0.1700
0.0863 0.1450 0.1800
0.0987 0.1612 0.1800
0.1112 0.1700 0.2000
0.1213 0.1712 0.1800
13 5480 0.1238 0.1587 0.2000
0.1188 0.1387 0.2000
0.1188 0.1162 0.2000
0.1200 0.1200 0.2000
13 5476 0.1262 0.1325 0.2000
0.1400 0.1350 0.1800

13 5486
13 5485
13 5484
13 5483
13 5482
13 5481

13 5479
13 5478
13 5477

13 5475

INPUT

(RAW DATA)
ASCII file

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

OUTPUT from
preprocessor
Same filename as
input file with
TXT extension
(ASCII text file)

FIGURE 1: Sample of input and output file for PREPROS.
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Input data file name:== diamon.raw
Ouput data file name:== diamon.txt

Number text rows at beginning of input file ;== 2
Rows of data in file :== 26526

Starting Milepost and Feet :== 13 5486
Ending Milepost and Feet == 9 1
Length of data (miles) ;== 5.02

" Length is rows/5280, i.e. assuming one foot data sampling
interval. This does account for the differences in length of
"miles"(between mileposts), if the sample rate is 1/foot. The
program could be modified to input the sampling interval.
(Note this message is not part of the PREPROS screen display)

FIGURE 2: Screen display at completion of PREPROS
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filename == diamon.txt

output header == diamon (a)

L/R measured (1), TGM format (2) == 1 (b)
Vertical (1) or Lateral (2) == 1 (¢)
Num cols == 6 (d)

Left==3(e)

Right ==

Milepost ==

Feet==2

Super col == 5

Scale factor 1.000000 ()

The following data files are being produced:

(a) Six characters maximum

(b) The input data has left and right

profiles, but scme data might have

mean profile and crosslevel (which

is the . TGM format used for

NUCARS). If TGM, you add half

the crosslevel to one profile and

subtrack half from the other.

(c) This has only been used for
vertical data, so enter 1.

(@) Number of columns of data

(e) Column number of left profile

(f) Scale factor to convert from volts

to inches

diamon_L.DAT, diamon_L.PKS: Left Rail measured data
diamon_R.DAT, diamon_R.PKS: Right Rail measured data
diamon_A.DAT, diamon_A.PKS: Surface Frofile data
diamon_X.DAT, diamon_X.PKS: Cross Level data
diamon_S.DAT, diamon_S.PKS: Curvature data

diamon_M.DAT: Milepost data
diamon_F.DAT: Feet data

FIGURE 3: DSTREAM user supplied input: This screen appears after
you answer the last input questions and run the DSTREAM

program.
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Created: Thu Apr 29 23:09:09 1993
Anomaly Filename :== diamon_a.dat

Threshold value: 0.70 inches
Half-window length: 39.00 feet
Original data sampling period: 1.000 feet

Anomalies detected: 7
Cumulative length of anomalies: 248.0 (0.93%)

Total data length 26526.0 ft (5.02 miles)
Starting Milepost and Feet :== 13 5486

Ending Milepost and Feet == 9 1
Anomaly Amplitude Num Length Start End
Number (inches) of (feet)
Peaks MP + feet MP + feet
1 0.833 30.00 12 277 12 247
2 0.785 2 20.00 11 3138 11 3118
3 1.238 1 81.00 11 1170 11 1089
4 0.725 3 14.00 10 5024 10 5009
5 0.706 1 13.00 9 5210 9 5197
6 0.876 1 33.00 9 4890 9 4857
7 0.924 2 57.00 9 999 9 941
2

PFILT produces a summary file, DIAMON_A.STA, shown here. PFILT also create a
binary file, DIAMON_A.ANO which tells VUTRACK the start and end of the
anomalies.

FIGURE 4: Output from PFILT.
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Anomaly Extraction Farameters
Default values:

The ends of each anomaly will be extended 1 rail length(s).
The default rail length is 39.0 feet.

Maximum amplitude of anomaly endpoints is 0.231 inches.

Based upon the threshold of 0.700 inches.
And extension percentage of 33.0%.

Press D for default values, C to change them:

FIGURE 5: Prompt in VUTRACK for option to
change anomaly augmentation and
extraction parameters.
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Press D for default values, C to change them:c
Enter new value of number of track lenghts to extend :==2
Enter new value-rail length :==40

Enter new value of extension percentage (as a decimal) :==.25

The ends of each ancmaly will be esxtended 2 rail length(s).
The rail length is 40.0 feet.

Maximum amplitude of ancmaly endpoints is 0.175 inches.

Based upon the threshold of 0.700 inches.
And extension percentage of 25.0%.

Press C to continue:

FIGURE 6: VUTRACK screen display after anomaly
augmentation and extraction parameters
were changed.
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Appendix C:
NUCARS definitions of the

paintspotter car and the
three platform articulated flat car
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-SYSTEM FILE (.SYS) for the program NUCARS Version 1.0
N.B. Parameters are in 1b., in. & sec. unless otherwise stated.
-Enter a title up to 80 characters long between the lines,

70 TON LOADED PAINT SPOTTER USING 89 ft TTX Car TRUCKS (FOR PS3)

-FOR THE BODIES
-Provide the number of heavy bodies including axles (IMM), and the number
of input or light bodies (IBIN, used for input degrees of freedom )
IMM IBIN
11 8
-List the number, name, in single quotes up to 15 characters long, and position
of each body, (and axle body), relative to a datum on the system center,
in inches, followed by the number of degrees of freedom required,
followed by a list of the degrees of freedom for each, in turn,
from 1=x, 2=y, 3=z, 4=phi, S=theta, 6=psi, 7=epsx, 8=epsy, 9=epsz.
The 4 degrees of freedom required for each axle are 2346

Body # ’ 15 CHAR NAME ’ Posnin X, Y & Z No. & list of DoF’s
1 *89-ftTTX Car’ -280.0 0.0 980 5 23456
2 ’Leading Bolster’ -34.0 0.0 165 4 2346
3 ’Trailng Bolster’ -526.0 0.0 16.5 4 23 4 6
4 ’Lead Lft Sframe’ -34.0 39.0 165 5 12356
5 ’Lead Rgt Sframe’ -34.0-39.0 165 5 12356
6 ’Trail Lt Sframe’ -526.0 39.0 165 5 12356
7 ’Trail Rt Sframe’ -526.0-39.0 165 5 12356
8 ’Axlenumberl1’ 0.0 00165 4 2346
9 ’"Axlenumber2’ -68.0 0.0 165 4 2346
10 ’ Axlenumber3’ -492.0 00165 4 2346

11 ’ Axle number4’ -560.0 0.0 165 4 23 46

continue the body list with the number and position of each input body,

relative to the same datum, in inches, followed by the number of input

degrees of freedom required, followed by a list of the degrees of freedom,

from 1=x, 2=y, 3=z, 4=phi, 5=theta, 6=psi, the number of the input history

for each degree of freedom, in turn, followed by a choice of input phase lag

for the input to this body, 0 = no, 1 = yes.

Body # ’ 15 CHAR NAME ’ Posnin X, Y & Z No. & DoF list Input list Lag
12 °LftRailAxlel” 00297500 2 23 13 \

13 °RgtRailAxlel” 00-297500 2 23 24 1
14 °LftRail Axle2’ -68.0 29.7500 2 23 13 1
15 ’RgtRail Axle2’ -68.0-29.7500 2 23 24 1
16 ’LftRail Axle 3’ -492.0 267500 2 23 13 1

17 ’RgtRail Axle 3’ -492.0-29.75 00 2 23 24 1
18 °’LftRail Axle 4’ -560.0 29.75 00 2 23 13 1
19 °RgtRail Axle4’ -560.0-29.75 00 2 23 24 1
-For all heavy bodies with flexible modes, give the position of each body
geometric center, in the X direction from the datum, backward is -ve, its
length in inches, the natural frequencies, in Hz., and the damping ratios
in twist, vertical & lateral bending, as required.
Body # X-Posn X-Length NatFrequencies(Hz.)  Damping Ratios
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-List the mass, roll, pitch and yaw inertias, in order,
for each heavy body, including axles,
518.23 1.50E06 1.38E07 1.37EQ7
3.78 2.76E03 0.0 2.76E03
3.78 2.76E03 0.0 2.76E03

285 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31E03

6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
-FOR THE CONNECTIONS (including suspensions )
Identify the following parameters,
-Number of connections:
IALLC
68
-Complete the following tables for each connection, identifying:
a name, in single quotes up to 20 characters long;
its position relative to the chosen datuminx, y, z inches;
the number of the body at each end, O for an ‘earth in local track coords.;
a number indicating the degree(s) of freedom, translational 1,2,3 or
rotational 4,5,6; in x,y,z resp., including 2 for lateral wheel motion;
the type 1 - parallel pair of spring and damper characteristics
2 - series pair of spring and damper characteristics
3 - device with hysteresis between 2 PWL characteristics,
e.g. carriage spring or load sensitive suspension
4 - lateral/longitudinal suspension of the wheel on rail
in the track plane
5 - connection force as a history of the distance moved
and the identification number for each of type 1, 2 and 3;
axle number for type 4; input function number for type 5.
Note - single characteristics are treated as parallel pairs with the
missing characteristic set to zero in the subsequent table.
-Complete for all connections in turn,
Conn # ’ 20 CHARACTER NAME ’ Posnin X, Y & Z Rody1 Body2 DoF. Type

Number
1 *Ax1LftLongConn.” 00390165 4 8 1 1 2
2 *Ax1RgtLongConn.” 0.0-390165 5 8 1 1 2
3 *Ax2LftLong Conn.” -68.0 39.0 165 4 9 1 1 2
4 ’Ax2RgtLongConn.’ -68.0-39.0165 5 9 1 1 2
5 *Ax3LftLongConn.”-492.0 390165 6 10 1 1 2
6 ’Ax3RgtLongConn.’-492.0-39.0 165 7 10 1 1 2
7 ’Ax4LftLong Conn.’-560.0 39.0 165 6 11 1 1 2
8 ’Ax4RgtLong Conn -560.0-39.0 165 7 11 1 1 2
9 ’Car-Bolster Y-sprg’ -340 00255 1 2 2 1 2
10 . Car-Bolster Y-sprg’-526.0 00255 1t 3 2 1 2
11 ’L.Bolst-s.f Y-Susp’ -34.0 39.0 165 2 4 2 1 4
12 ’ L. Bolst-s.f Y- Susp -340-390165 2 5 2 1 4
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> T. Bolst-s.f Y-Susp’-526.0 390 165 3 6 2 1 4
> T. Bolst-s.f Y-Susp’ -526.0-390 165 3 7 2 1 4
>Ax 1LftLat. Conn.” 00 390165 4 8 2 1 2
>Ax 1 RgtLat. Conn.” 00-390165 5 8 2 1 2
>Ax2LftLat. Conn.” -68.0 39.0 165 4 9 2 1 2
> Ax 2 RgtLat. Conn.” -68.0-390 165 5 9 2 1 2
*Ax 3 LftLat. Conn.’-492.0 39.0 165 6 10 2 1 2
> Ax 3 RgtLat. Conn.” -492.0-39.0 165 7 10 2 1 2
*Ax 4 LftLat. Conn.” -560.0 39.0 165 6 11 2 1 2
" Ax 4 RgtLat. Conn.’ -5600-39.0 165 7 11 2 1 2
>Leadc.p. Vert. Sup’ -340 70255 1 2 3 1 1
’ Lead c.p. Vert. Sup -340-70255 1 2 3 1 1
"Trail c.p. Vert. Sup’ -526.0 70255 1 3 3 1 1
"Trail c.p. Vert. Sup’-526.0 -70255 1 3 3 1 1
> Lead c.p. Yaw Sup -340 00255 1 2 6 1 7
"Trail c.p. Yaw Sup’-526.0 00255 1 3 6 1 7
’Lead Lf s.b Z-suspen” -340 298 255 1 2 3 1 3
’Lead Rt s.b Z-suspen’ -34.0-29.8 255 1 2 3 1 3
"Trail Lf s.b Z-suspn -526.0 298255 1 3 3 1 3
'Trail Rt s.b Z-suspn’ -526.0-29.8 255 1 3 3 1 3
’Lead Lf s.f Z-suspen’ -340 390165 2 4 3 1 8
"Lead Rt s.f Z—suspen -340-390165 2 5 3 1 8
"Trail Lf s.f Z-suspn’ -526.0 39.0 165 3 6 3 1 8
"Trail Rt s.f Z-suspn’ -526.0-39.0 165 3 7 3 1 8
'Ldbol. sf YAWLFT ’ -340 390165 2 4 6 1 10
’Ld bol. st YAWRGT * -340-39.0165 2 5 6 1 10
"Trail s.b Yaw Suspen’ -526.0 39.0 165 3 6 6 1 10
"Trail s.b Yaw Suspcn -526.0-390 165 3 7 6 1 10
>Ax 1LftVertConn.” 0.0 390165 4 8 3 1 5
Ax1RgtVertCcnn.” 00-390165 5 8 3 1 5
2 Lft Vert Conn.” -68.0 39.0 165 4 9 3 1 5
2 Rgt Vert Conn.” -68.0-390 165 5 9 3 1 5
3 Lft Vert Conn.” -492.0 390165 6 10 3 1 5
3 Rgt Vert Conn.’ -492.0-39.0 165 7 10 3 1 5
4 Lft Vert Conn.” -560.0 39.0 165 6 11 3 1 5
4 Rgt Vert Conn.” -560.0-39.0 165 7 11 3 1 5§
LftLat Wh/RL.” 0.0 29.75 00 8 12 2 4 1
RgtLat Wh/RL’ 0.0-2975 0.0 8 13 2 4 1
LftLat Wh/RL.’ -68.0 29.75 00 9 14 2 4 2
RgtLat Wh/RlL.” -68.0-29.75 00 9 15 2 4 2
Lft Lat Wh/RI1.’ -492.0 29.75 0.0 10 16 2 4 3

3
’
?
?
b
’
?
3
1
?
»
3
’
’
’
3
’
?
’
»
’

11331 I A 1311

1
1
2
2
x3
3
4
4
1
x1
2
2
3
3

Rgt Lat Wh/RL.’ -492.0 -29.75 0.
0.

Lft Lat Wh/RL’ -560.0 29.75 0.0 11 18 2 4
Rgt Lat Wh/RL’ -560.0-29.75 0.0 11 19 2 4 4
Lft Ver Wh/RL’ 0.0 297500 8 12 3 1

Rgt Ver Wh/RL' 0.0-29.75 00 8 13 3 1

Lft Ver Wh/RL’ -68.0 2975 0.0 9 14 3 1

Rt Ver WhRL’ -68.0-29.75 0.0 9 15 3 1
Lft Ver Wh/RL’ -492.0 29.75 0.0 10 16 3 1
Rgt Ver Wh/RL.’ -492.0 -29.75 0.0 10 17 3

1
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63 ’Ax4LftVer Wh/RL’-560.0 29.75 0.0 11 18 3 1 6
64 ’ Ax4RgtVer Wh/RL.’-560.0-29.75 00 11 19 3 1 6
65 ’'LdiftbolsfLong’ -34.0 390165 2 4 1 1 11
66 'LdRgtBolSfLong’ -34.0-39.0 165 2 5 1 | 11
. 67 ’TrlLftBol SfLong’-526.0 39.0 165 3 6 1 1 11
68 ’TrlRgtBol SfLong’-526.0-39.0 165 3 7 1 1 11
-List for each pair of type 1 - parallel connections, its number, followed by
the identification numbers of the piecewise linear characteristics
for the stiffness and damping respectively, zero if absent, and
the combined force or moment limit in extn & compn, 1b or 1b-in.,
0.0 in extension at the vertical rail/wheel conn. allows valid wheel lift.
(If no limit exists, set the F-values outside the expected range.)
Pair# Stff PWL Damp PWL  F-extn. F-compn.

1 1 2 1.0OEO8  -1.0E08
2 3 4 1.0EO8  -1.0E08
3 7 8 0.0EO8  -1.0E08
4 9 14 1.0E08  -1.0E08
5 11 12 1.0E08 -1.0E08
6 15 16 0.0EO8  -1.0E08
7 8 6 1.0E08  -1.0E08
8 5 13 1.0OE0O8  -1.0E08
9 8 14 1.0E08 -1.0E08

10 17 18 1.0E08 -1.0E08
11 i9 20 1.0E08 -1.0E08
-List for each pair of type 2 - series connections, its number, followed by
the identification numbers of the piecewise linear characteristics
for the stiffness and damping respectively, and the stroke limit
in extension & compression for the pair, in or rad, and the stiffness
of the stop at the limit in 1b/in or Ib-in/rad.
(If no limit exists, set the S-values outside the expected range.)
Pair# Sdff PWL Damp PWL S-extn. S-compn. Stop K

-List the type 3 - hysteresis loop characteristics, giving to each a number,
the identification numbers of the piecewise linear characteristics and a
linear viscous bandwidth and force limits during extn and compn.

Loop# ExmPWL CompPWL LVBwidth F-extn F-compn

-List the type 4 - axle to track characteristics, the general lateral rail
stiffness and damping coefficient, and, for each axle, IAX, an identification
number, IBDAX, its general body number, WRAD, the nominal wheel radius and
INDWH, a wheel rotation index, 1 for solid, 2 for independent wheels, and
ITRQ, traction torque input nos. for left and right wheels, O for none.

Lateral Rail Stiffness Ib/in  Lateral Rail Damping Ib-sec/in
0.5E05 1.0E03
IAX IBDAX WRAD INDWH ITRQ-L ITRQ-R
1 8§ 165 1 0 0 0

2 9 165 1 0 0
3 10 165 1 0 0
4 11 165 1 0 0
-How many different piecewise linear, (PWL), characteristics are required

0

00
00
00
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20
-List the data required for the connection characteristics,
PWL, the piece-wise linear function no., IBP, the no. of Break Points in each
PWL, Ordinate, !b or 1b-in, over abscissa, in or rad, at each Break Point
N.B. (1) Extension is assumed to be positive for both ordinate and abscissa

(2) 0.0 for the first break point indicates symmetry about the origin

PWL IBP Ordinates over Abscissae

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

3 -1.00E06 0.00E00 0.00E00 (platform-bolster vert. stiff)
-1.00000 0.0000 1.00000

2 -1.00E03 1.00EC3 (platform-bolster vert. dampn)
-1.0 1.0

2 -1.00E06 1.00E06 (primary -long & lat. stiffne)
-1.0 1.0

2 -1.00E03 1.00E03 (primary -long & lat. damping)

-1.0 1.0
4 -1.50E05 -1.00EGC5 0.0 0.0 (secondary vert. stitf)

-35 -345 00 1.0
4 -5.0E04 -5.0E04 5.0E04 5.0E04 (center plate yaw damp)
-1.0 -001 001 1.0
4 -1.33E05 -5.20E03 -2.80E03 -2.80E03 (side bearing vert. stif)
-1.3125 -0.3125 0.0 1.0

4 -0.00ECO -0.00E00 0.00E00 0.00E00

-1.0 -04 04 1.0

4 -8.83E03 -3.83E03 3.83E03 8.83E03 (second. lat. stiffness)
-0.38 -0375 0.375 0.38

2 -1.62E03 1.62E03 (second. lat. damping )
-10 1.0

3 -1.00E06 0.00E06 0.00E06 (primary vert. stiffnes)
-10 00 1.0

2 -(1).OOE03 1.00E03 (primary vert. damping )
-1. 1.0

4 -2.40E03 -2.40E03 2.40E03 2.40EO03 (second. ver. damping )
-1.0 -001 001 1.0

4 -1.60E03 -1.60E03 1.60E03 1.60E03

-1.0 -001 001 10

2 0 8.0 1.00E05 (track vert. stiffness )
. 1.0
2 00 1.00E03 (track vert. damping )
00 1.0

4 -1.78E06 -8.92E05 8.92E05 1.78E06 (second. yaw stiffness)
-0.057 -0.052 0.052 0.057
4 -0.30E04 -0.30E04 0.30E04 0.30E04 (second. yaw damping )
-1.0 -0.1 0.1 1.0

2 00 1.0E06

00 1.0

2 00 1.0E03

00 1.0
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-SYSTEM FILE (.SYS) for the program NUCARS Version 1.0
N.B. Parameters are in lb., in. & sec. unless otherwise stated.
-Enter a title up to 80 characters long between the lines,

Articulated Flt Cars, Loaded, Three Platforms

-FOR THE BODIES
-Provide the number of heavy bodies including axles (IMM), and the number

of input or light bodies (IBIN, used for input degrees of freedom )
IMM IBIN

23 16
-List the number, name, in single quotes up to 15 characters long, and position

of each body, (and axle body), relative to a datum on the system center,
in inches, followed by the number of degrees of freedom required,
followed by a list of the degrees of freedom for each, in turn,
from 1=x, 2=y, 3=z, 4=phi, 5=theta, 6=psi, 7=epsx, 8=epsy, 9=epsz.
The 4 degrees of freedom required for each axle are 2346
Body # * 15 CHAR NAME ’ Posnin X, Y & Z No. & list of CoF’s
1 ’First Platform * -327.3 0.0 360 5 2
2 ’second Platform’ -917.5 0.0 36.
3 ’Third Platform ’ -1535.5 0.0
4 ’lstBolster ’ -34.0 0.0 16.
5 ’2nd Bolster ’ -612.5 16.
6 16.
7 16.
8
9

0.0
’3rd Bolster ' -1230.5 0.0
’4th Bolster ’-1848.5 0.0
"Ist Lft Sframe’ -34.0 39.0 1
’Ist Rgt Sframe’ -34.0-39.

10 ’2nd Lft Sframe’ -612.5 39.
11 ’2nd Rgt Sframe’ -612.5
12 ’3rd Lft Sframe’ -1230.5
13 ’3rd Rgt Sframe’ -1230.5
14 ’4th Lft Sframe’ -1848.
15 ’4th Rgt Sframe’ -1848.
16 ’Axlenumberl ’ 0.0 0.0 16.5
17 ’Axle number2 ' -68.0 0.0 16.5
18 ’Axle number 3 ’* -578.5 0.0
19 ’Axle number4 ' -646.5 0.0
s

UILII

20 ’Axle number 5 ’-1196.5 0.
21 ’Axle number 6 ’-1264.5 0
22 ’Axle number 7 ’-1814.5 0.0 16.5
23 ’Axle number 8 ’-1882.5 0.0 165 4 2346
continue the body list with the number and position of each i input body,

relative to the same datum, in inches, followed by the number of input

degrees of freedom required, followed by a list of the degrees of freedom,

from 1=x, 2=y, 3=z, 4=phi, 5=theta, 6=psi, the number of the input history

for each degree of freedom, in turn, followed by a choice of input phase lag

for the input to this body, 0= no, 1 =yes.

Body # * 15 CHAR NAME ’ Posnin X, Y & Z No. & DoF list Input list Lag
24 ’LftRailAxlel’ 00297500 2 23 13 1
25 ’RgtRailAxlel” 0.0-297500 2 23 24 1
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26 ‘’LftRail Axle2’ -68.029.7500 2 23 13

27 ’RgtRail Axle2’ -68.0-29.7500 2 23 24

28 ’LftRail Axle 3’ -578.5 29.75 00. 2 23 13

29 ’'RgtRail Axie 3’ -578.5-29.7500 2 23 24
30 ’LftRail Axle4’ -646.5 297500 2 23 13

31 °’RgtRail Axle4’ -646.5-29.7500 2 23 24
32 ’LftRail Axle5’-1196.5 29.7500 2 23 13
33 ’RgtRail Axle 5’ -1196.5-29.7500 2 23 24
34 ’LftRail Axle 6’-12645 29.75 00 2 23 13
35 °’RgtRail Axle 6°-1264.5-29.7500 2 23 24
36 ’'LftRail Axle7°-18145 297500 2 23 13
37 ’RgtRail Axle7°-18145-29.7500 2 23 24
38 ’LftRail Axle 8’-1882529.7500 2 23 13
39 ’RgtRail Axle 8’-1882.5-29.75 00 2 23 24

-For all heavy bodies with flexible modes, give the position of each body
geometric center, in the X direction from the datum, backward is -ve, its
length in inches, the natural frequencies, in Hz., and the damping ratios

in twist, vertical & lateral bending, as required.
Body # X-Posn X-Length NatFrequencies(Hz.)

-List the mass, roll, pitch and yaw inertias, in order,
for each heavy body, including axles,
229.00 1.17E05 7.99E06 8.03E06
218.22 1.09E05 6.85E06 6.90E06
218.22 1.09E05 6.85E06 6.90E06
3.78 2.76E03 0.0 2.76E03
3.78 2.76E03 0.0 2.76E03
3.78 2.76E03 0.0 2.76E03
3.78 2.76E03 0.0 2.76E03

285 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31EQ3
2.85 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31E03
2.85 0.0 1.31E03 1.31E03
2.85 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31E03
285 0.0 1.31E03 1.31E03

6.47 493E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E(03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
6.47 4.93E03 1.26E03 4.93E03
-FOR THE CONNECTIONS (including suspensions )
Identify the following parameters,
-Number of connections:
IALLC
170
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-Complete the following tables for each connection, identifying:
a name, in single quotes up to 20 characters long;
its position relative to the chosen datum in x, y, z inches;
the number of the body at each end, O for an earth in local track coords.;
a number indicating the degree(s) of freedom, translational 1,2,3 or
rotational 4,5,6; in x,y,z resp., including 2 for lateral wheel motion;
the type 1 - parallel pair of spring and damper characteristics
2 - series pair of spring and damper characteristics
3 - device with hysteresis between 2 PWL characteristics,
e.g. carriage spring or load sensitive suspension
4 - lateral/longitudinal suspension of the wheel on rail
in the track plane
5 - connection force as a history of the distance moved
and the identification number for each of type 1, 2 and 3;
axle number for type 4; input function number for type 5.
Note - single characteristics are treated as parallel pairs with the
missing characteristic set to zero in the subsequent table.
-Complete for all connections in turn,
Conn # * 20 CHARACTER NAME °’ Posnin X, Y & Z Body1 Body2 DoF. Type
Number
’Axl 1 & Sfm Lft LON’ 0.0 390 165 816112
’Ax]'1 & Sfm RgtLON’ 0.0 -39.0 165 916 1 1 2
’Ax12 & Smf Lft LON’ -68.0 390 165 8 1711 2
’Ax]12 & Smf Rgt LON’ -68.0 -39.0 165 91711 2
’Ax] 3 & Sfm LftLON’ -578.5 39.0 16510 18 1 1 2
’Ax] 3 & Sfm Rgt LON’ -578.5 -39.0 16.5 11 18 1 1
’Ax1 4 & Sfm Lft LON’ -646.5 39.0 16510 19 1 1 2
’Ax1 4 & Sfm Rgt LON’ -646.5 -39.0 165 11 19 1 1
’Ax]15 & Sfm Lft LON’-1196.5 39.0 165 12 20 1 1
10 ’Axl5 & Sfm Rgt LON’ -1196.5 -39.0 165 1320 1 1 2
11 ’Axl16 & Sfm Lft LON’-1264.5 39.0 16.5 1221 1 1 2
12 ’Axl 6 & Sfm Rgt LON’ -1264.5 -39.0 165 1321 11 2
13 ’Axl7 & Sfm Lft LON’-1814.5 39.0 16.5 14 22 1 1 2
14 ’Axl7 & Sfm Rgt LON’ -1814.5 -39.0 165 1522 11 2
15 ’Ax18 & Sfm Lft LON’-1882.5 39.0 165 1423 112
16 ’Ax]8 & Sfm Rgt LON’ -1882.5 -39.0 165 1523 11 2
17 ’istCem.Plt. Lat’ -340 00255 1 4212
18 ’2nd Cen.Plt. Lat’ -6125 00255 1 5212
19 ’Artcld 1-2 Ptfm Lat” -612.5 0.0 335 2 5212
20 ’3rd Cen.Plt. Lat’-1230.5 0.0255 2 621 2
21 ’Artcld 2-3 Pltfm Lat’ -1230.5 0.0 335 3 621 2
22 ’4thCen.Plt. Lat’-18485 0.0 255 3 7212
23 ’lstBlst Sfm Lft Lat” -34.0 39.0 16.5 4
24 ’lst Blst Sfm Rgt Lat’ -34.0 -39.0 16.5 4
25 ’2nd Blst Sfm LftLat’ -612.5 39.0 16.5 5 2
26 ’2nd Blst Sfm Rgt Lat’ -612.5 -39.0 16.5 5 2
27 ’3rd Blst Sfm Lft Lat’ -1230.5 39.0 16.5 6 12 2 1
6
2

VOO~ L W -
Pt

28 ’3rd Blst Sfm Rgt Lat’ -1230.5 -39.0 16.5 2
29 ’4th Blst Sfm Lft Lat’ -1848.5 39.0 16.5 7 14
30 ’4th Blst Sfm RgtLat’ -1848.5 -39.0 16.5 7 152 1 4
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'Axl 1 & Sfm LftLat” 0.0 39.0 16.5
’Axl 1 & Sfm RgtLat’ 0.0 -39.0 16.5 62
'Axl 2 & Sfm LftLat’ -68.0 39.0.16.5 72
'Axl 2 & Sfm RgtLat’ -68.0 -39.0 16.5 9 17 2
’Ax] 3 & Sfm LftLat’ -578.5 39.0 16.5 10 18 2
Axl 3 & Sfm Rgt Lat’ -578.5 -39.0 16.5 11 18 2 1
’Axl 4 & Sfm LftLat’ -646.5 39.0 165 10 19 2 1
’Axl 4 & Smf RgtLat’ -646.5 -39.0 16.5 11 19 2
'Axl 5 & Sfm LftLat’ -1196.5 39.0 16.5 12 20 2
’Ax] 5 & Sfm RgtLat’ -1196.5 -39.0 165 13202 1 2
’Axl 6 & Sfm LftLat’ -1264.5 39.0 165 12 21 21 2
’Axl 6 & Sfm Rgt Lat’ -1264.5 -39.0 165 1321 21 2
'Ax]l 7 & Sfm LftLat’ -1814.5 39.0 165 1422 21 2
'Axl 7 & Sfm Rgt Lat’ -1814.5 -39.0 165 1522 2 1 2
'Ax]1 8 & Sfm LftLat’-1882.5 39.0 165 1423 21 2
’Ax] 8 & Sfm Rgt Lat’ -1882.5 -39.0 16.5 1523 2 1 2
’Carl CenPlItl Lft Ver’ -340 7.0255 1 4311
’Carl CenPIt] Rgt Ver’ -34.0 -7.0 255 1

’Carl CenPIt2 Lft Ver’ -612.5 7.0 255 1

8
9
8

—

"Carl CenPIt2 Rgt Ver’ -612.5 -7.0 25.5 1 1
"Carl & Car 2 Mdl Ver’ -612.5 0.0 33.5 2 15
"Car2 CenPlt3 Lft Ver’ -1230.5 7.0 25.5 11

*Car2 CenPlt3 Rgt Ver’ -1230.5 -7.0
*Car2 & Car 3 Mdl Ver’ -1230.5 0.0
*Car3 CenPltd Lft Ver’ -1848.5 7.0 2

’Car4 CenPIt4 Rgt Ver’ -1848.5 -7.0 25 7311
'Ptfm]l & CenPlIt 1 Yaw’ -34.0 0.0 25.5 4617
’Ptfm1 & CenPlt 2 Yaw’ -612.5 00255 1 561 11
'Pfm 1 & Ptfm2 Yaw’ -612.5 00335 1 261 14
'Ptfm2 & CenPlt 3 Yaw’ -1230.5 0.0 255 2 6 6 1 12
'Ptfm 2 & Pfm 3 Yaw’-12305 0.0 335 2 361 14
'Ptfm3 & CenPlt 4 Yaw’ -1848.5 0.0 255 3 761 13
*1st Sdbr Lft Ver’ -34.0 298 255 1 431 3

’Ist Sdbr Rgt Ver’ -34.0 -298 255 1 431 3
’2nd inr Sdbr Lft Ver’ -612.5 20.0 255 2 531 3
’2nd inr Sdbr Rgt Ver’ -612.5 -20.0 255 2 531 3
*2nd otr Sdbr Lft Ver’ -612.5 298 255 1| 5§31 3
’2nd otr Sdbr Rgt Ver’ -612.5 -298 255 1 5313
’3rd inr Sdbr Lft Ver’ -1230.5 20.0 255 3 631 3
’3rd inr Sdbr Rgt Ver’ -1230.5 -20.0 25.5 3 63 1 3
*3rd otr Sdbr Lft Ver’ -1230.5 298 255 2 631 3
’3rd otr Sdbr Rgt Ver’ -1230.5 -29.8 255 2 6 3 1 3
’4th Sdbr Lft Ver’ -1848.5 298 255 3 731 3
’4th Sdbr Rgt Ver’ -1848.5 -26.8 255 3 731 3
*1st Blst Sfm Lft Ver’ -34.0 39.0 165 4 83 1 8
’1st Blst Sfm Rgt Ver’ -34.0 -39.0 165 4 93 1 8
’2nd Blst Sfm Lft Ver’ -612.5 39.0 165 51031 8
’2nd Blst Sfm Rgt Ver’ -612.5 -39.0 16.5 511 3 1 8
"3rd Blst Sfm Lft Ver’ -1230.5 39.0 165 6 12 3 1 8
*3rd Blst Sfm Rgt Ver’ -1230.5 -39.0 165 6 13 3 1 8
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81
82
83
84
85
86
87
88
89

91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

’4th Blst Sfm Lft Ver’ -1848.5 39.0 16.5 7
*4th Blst Sfm Rgt Ver’ -1848.5 -39.0 16.5
’1st Blst Sfm Lft Yaw’ -34.0 39.0 16.5 4

’1st Blst Sfm Rgt Yaw’ -34.0 -39.0 165 4
*2nd Blst Sfm Lft Yaw’ -612.5 39.0 16.5 5
’2nd Blst Sfm Rgt Yaw’ -612.5 -39.0 16.5
"3rd Blst Sfm Lft Yaw’ -1230.5 39.0 16.5

*3rd Blst Sfm Rgt Yaw’

’4th Blst Sfm Lft Yaw’ -1848.5 39.0 16.5

’4th Blst Sfm Rgt Yaw’
’Ax! 1 & Sfm Lft Ver’
’Axl 1 & Sfm Rgt Ver’
’Ax] 2 & Sfm Lft Ver’
’Ax] 2 & Sfm Rgt Ver’

-1230.5 -39.0 16.5

-1848.5 -39.0 16.5
0.0 39.0 16.5 8
0.0 -39.0 16.5

-68.0 39.0 16.5

’Ax] 3 & Sfm Lft Ver’ -578.5

’Ax1 4 & Sfin Lft Ver’ -646.5
"Ax
Ax] 5 & Sfm Lft Ver’ -1196.5

’Axl 5 & Sfm Rgt Ver’ -1196.5
Ax]l 6 & Sfm Lft Ver’ -1264.5
Ax]1 6 & Sfm Rgt Ver’ -1264.5
'Ax17 & Sfm Lft Ver’ -1814.5
’Ax17 & Sfm Rgt Ver’ -1814.5
’Ax] 8 & Sfm Lft Ver’ -1882.5
’Axl 8 & Sfm Rgt Ver’ -1882.5

-68.0 -39.0 16.5 3

16 3
Axl 3 & Sfm Rgt Ver’ -578.5 -39.0 16.5 11 1833
t & Sfm Rgt Ver’ -646.5 -39.0 3

39.

16.5 10 19
165 11 19
39.0 165 12 20 3
-39.0 165 13 203 1 5
3901651221315
-39.0 1651321315
390 1651422315
-390 1651522315
39.0 1651423315
-39.0 165 1523315

39.

'AxI 1 W/R LftLat” 0.0 29.75 0.0 16 24 2 4 1
’AxI 1 W/R Rgtlat’ 0.0 -29.7500 16 252 4 1
'AxI2 W/R LftLat’ -68.0 29.75 0.0 17 26 2 4 2
’AxI2 W/R RgtLat’ -68.0 -29.75 0.0 17 27 2 4 2
’Ax13W/R LftLat’ -578.5 29.75 0.0 18 28 2 4 3
’AxI3 W/R  RgtLat’ -578.5 -29.75 0.0 18 29 2 4 3
’Ax14 W/R LftLat’ -646.5 29.75 0.0 19 30 2 4 4
’AxlI4 W/R RgtLat’ -646.5 -29.75 0.0 19 31 2 4 4
’AxI5 W/R  LftLat’ -1196.5 29.75 0.0 20 32 2 4 5
"Ax15 W/R RgtLat’ -1196.5 -29.75 0.0 20 33 2 4 5
’Ax16 W/R LftLat’ -1264.5 29.75 0.0 21 34 2 4 6
"Ax1 6 W/R RgtLat’ -1264.5 -29.75 0.0 21 35 2 4 6
’Ax17 W/R  LftLat’ -1814.5 29.75 0.0 22 36 2 4 7
’Ax17 W/R RgtLat’ -1814.5 -29.75 0.0 22 37 2 4 7
’Ax1 8 W/R LftLat’-1882.5 29.75 0.0 23 38 2 4 8
’AxI 8 W/R RgtLat’ -1882.5 -29.75 0.0 23 39 2 4 8
"AxI1 W/R LftVer’ 0.0 29.75 0.0 16 24 3 1 6
’Axl1 W/R RgtVer’ 00 -29.75 00 16 253 1 6
"Axl2 W/R LftVer’ -68.0 29.75 00 17 26 31 6
’Ax12 W/R Rgt Ver’ -68.0 -29.75 0.0 17 27 31 6
’Axl 3 W/R Lft Ver’ -578.5 29.75 0.0 18 28 3 1 6
’Axl13 W/R Rgt Ver’ -578.5 -29.75 00 18 29 3 1 6
’Ax14 W/R Lft Ver’ -646.5 29.75 0.0 19 30 3 1 6
’Ax14 W/R Rgt Ver’ -646.5 -29.75 00 19 31 31 6
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131 ’AxI5 W/R Lft Ver’-1196.5 29.75 0.0 20 32 3 1 6
132 "Axl5W/R RgtVer’ -1196.5 -29.75 0.0 2033 3 1 6
133 "AxI6 W/R Lft Ver'-1264.5 2975 00 21 34 3 1 6
134 ’Ax16 W/R Rgt Ver’ -1264.5 -29.75 0.0 21 353 1 6
135 ’Axl7 W/R Lft Ver’-1814.5 29.75 0.0 22 36 3 1 6
136 Axl7 W/R Rgt Ver’ -1814.5 -29.75 0.0 22 373 1 6
137 ’AxI8 W/R Lft Ver’-1882.5 29.75 0.0 23 383 1 6
138 'AxI8 W/R Rgt Ver’ -1882.5 -29.75 0.0 23 39 3 1 6
139 ’1stBlst SfmLft Lon’ -34.0 39.0 165 4 8 1 110
140 ’l1st Blst Sfm RgtLon’ -34.0 -39.0 165 4 91 110
141 ’2nd Blst Sfm Lft Lon’ -612.5 39.0 165 5 10 1 110
142 ’2nd Blst Sfm Rgt Lon’ -612.5 -39.0 165 5 111 110
143 ’3rd Blst Sfm Lft Lon’ -1230.5 39.0 165 6 12 1 110
144 ’3rd Blst Sfm Rgt Lon’ -1230.5 -39.0 165 6 131 110
145 ’4th Blst Sfm Lft Lon’ -1848.5 39.0 165 7 141 110
146 ’4th Blst Sfm Rgt Lon’ -1848.5 -39.0 165 7 151 110
147 ’1stSdbr LftLat’ -34.0 29.8 255 1 42 1 16
148 ’1stSdbr RgtLat’ -34.0 -29.8 255 1 421 16
149 ’2nd inr Sdbr Lft Lat’ -612.5 20.0 255 2 521 16
150 ’2nd inr Sdbr Rgt Lat’ -612.5 -20.0 255 2 52 1 16
151 ’2ndotr Sdbr Lft Lat’ -612.5 29.8 255 1 52 1 16
152 ’2nd otr Sdbr Rgt Lat” -612.5 -29.8 255 1 52 1 16
153 ’3rd inr Sdbr Lft Lat’ -1230.5 20.0 255 3 62 1 16
154 ’3rd inr Sdbr Rgt Lat’ -1230.5 -20.0 255 3 6 2 1 16
155 ’3rd otr Sdbr Lft Lat’ -1230.5 29.8 255 2 6 2 1 16
156 ’3rd otr Sdbr Rgt Lat’ -1230.5 -29.8 255 2 6 2 1 16
157 ’4th Sdbr LftLat’-1848.5 29.8 255 3 721 16
158 ’4th Sdbr RgtLat’ -1848.5 -29.8 255 3 721 16
159 ’1stSdbr LftLon’ -34.0 29.8 255 1 411 16
160 ’1stSdbr RgtLon’ -34.0 -298 255 1 411 16
161 ’2ndinr Sdbr Lft Lon’ -612.5 20.0 255 2 511 16
162 ’2ndinr Sdbr Rgt Lon’ -612.5 -20.0 25,5 2 511 16
163 ’2nd otr Sdbr Lft Lon’ -612.5 29.8 255 1 511 16
164 ’2nd otr Sdbr Rgt Lon’ -612.5 -29.8 255 1 511 16
165 ’3rd inr Sdbr Lft Lon’ -1230.5 200 255 3 6 1 1 16
166 ’3rd inr Sdbr Rgt Lon’ -1230.5 -20.0 255 3 6 11 16
167 ’3rd otr Sdbr Lft Lon’ -1230.5 29.8 255 2 6 1 1 16
168 ’3rd otr Sdbr Rgt Lon’ -1230.5 -29.8 255 2 6 1 1 16
169 °’4thSdbr LftLon’-1848.5 298 255 3 711 16
170 ’4th Sdbr RgtLon’-1848.5 -29.8 255 3 711 16
-List for each pair of type 1 - parallel connections, its number followed by
the identification numbers of the piecewise linear characteristics
for the stiffness and damping respectively, zero if absent, and
the combined force or moment limit in extn & compn, Ib or lb-in.,
0.0 in extension at the vertical rail/wheel conn. allows valid wheel lift.
(If no limit exists, set the F-values outside the expected range.)
Pair# Stiff PWL Damp PWL  F-extn. F-compn.

1 1 2 1.0E08  -1.0E08
2 3 4 1.0EO8  -1.0E08
3 7 8 0.0E08  -1.0E08
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4 9 10 1.0EO8  -1.0E08

5 11 12 1.0E08 -1.0E08
6 14 15 0.0EO8  -1.0E08
7 8 6 1.0E08  -1.0E08

8 5 13 1.0EO8 -1.0E08

9 16 17 1.0E08 -1.0E(8
10 18 19 1.0E08 -1.0E08
11 8 20 1.0E08  -1.0E08
12 8 21 1.0E08 -1.0E08
13 8 22 1.0E08 -1.0E08
14 8 23 1.0E08 -1.0E08
15 24 2 1.0E08 -1.0E08
16 8 25 1.0E0O8 -1.0E08

-List for each pair of type 2 - series connections, its number, followed by

the identification num

bers of the piecewise linear characteristics
for the stiffness and damping respectively, and the stroke limit
in extension & compression for the pair, in or rad, and the stiffness

of the stop at the limit in Ib/in or lb-in/rad.
(If no limit exists, set the S-values outside the expected range.)
Pair # Stff PWL Damp PWL S-extn. S-compn. Stop K

-List the type 3 - hysteresis loop characteristics, giving to each a number,
the identification numbers of the piecewise linear characteristics and a
linear viscous bandwidth and force limits during extn and compn.

Loop# ExtnPWL Comp PWL LVB width F-extn F-compn

-List the type 4 - axle to track characteristics, the general lateral rail
stiffness and damping coefficient, and, for each axle, IAX, an identification
number, IBDAX, its general body number, WRAD, the nominal wheel radius and
INDWH, a wheel rotation index, 1 for solid, 2 for independent wheels, and
ITRQ, traction torque input nos. for left and right wheels, O for none.

Lateral Rail Stiffness 1b/in

Lateral Rail Damping lb-sec/in

0.3E05 1.0E03
IAX IBDAX WRAD INDWH ITRQ-L ITRQ-R
1 16 165 1 0 000
2 17 165 1 0 000
3 18 165 1 0 000
4 19 165 1 0 000
b] 20 165 1 0 000
6 21 165 1 0 000
7 22 165 | 0 000
8 23 165 1 0 000

-H(g many different piecewise linear, (PWL), characteristics are required
-List the data required for the connection characteristics,
PWL, the piece-wise linear function no., IBP, the no. of Break Points in each
PWL, Ordinate, 1b or 1b-in, over abscissa, in or rad, at each Break Point
N.B. (1) Extension is assumed to be positive for both ordinate and abscissa
(2) 0.0 for the first break point indicates symmetry about the origin
PWL IBP Ordinates over Abscissae
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1 3 -1.00E06 0.00 0.00
-1.0 00 1.0

2 2 -1.00E03 1.00E03
-1.0 1.0

3 2 -1.00E06 1.00E06
-1.0 1.0

4 2 -1.00E03 1.00E03
-1.0 1.0

5 4 -1.33E05 -8.27E04 0.0 0.0
-3.7375 -3.6875 00 1.0

6 4 -8220.0 -8220.0 8220.0 8220.0
-1.0 -0.001 0001 1.0

7 5 -2.50E05 -5.20E03 -2.80E03 0.0 0.0
-1.3125 -0.3125 0.0 0.001 2.0

8 2 00 00
00 10.0

9 4 -8.83E03 -3.83E03 3.83E03 8.83E03
-0.38 -0.375 0375 038

10 2 -1.62E03 1.62E03

-1.0 1.0

11 3 -1.00E06 0.00E0CO 0.00ECO
-1.0 000 1.0

12 2 -1.00E03 1.00E03
-1.0 1.0

13' 4 -3.32E03 -3.32E03 3.32E03 3.32E03 (see note at end
-1.0 001 001 1.0 atend ofsection)
14 2 00 1.00E05

00 1.0
15 2 00 1.00E03
00 1.0

16 4 -1.78E06 -8.92E05 8.92E05 1.78E06
-0.057 -0.052 0.052 0.057

17 4 -0.30E04 -0.30E04 0.30E04 0.30E04
-10 01 01 1.0

18 2 0.0 1.00E06

00 10
19 2 00 1.00E03
00 10

20 4 -14982.0 -14982.0 14982.0 14982.0
-1.0 -0.001 0001 1.0

21 4 -13524.0 -13524.0 13524.0 13524.0
-1.0 -0.001 0001 1.0

22 4 -6762.0 -6762.0 6762.0 6762.0
-1.0 -0.001 0001 1.0

23 4 -4830.0 -4830.0 4830.0 4830.0
-i.0 -0.001 0.001 1.0

24 3 -1.00E06 0.00 0.00
-1.0 00 1.0

25 4 -900.00 -960.0 960.00 900.0
-10. -0.001 0.001 10.0
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1 The connection characteristic for the damping elements in the secondary
suspensions of the articulated flat car were originially defined:
-3.32E03 3.32E03
-1.0 1.0
but this is an overdamped system. The damping ratio for the second and third truck
suspension was 1.47 and for the first and fourth 2.1. Two alternatives were
considered:
The first was to define an equivalent viscous damping constant. From Den Hartog
(1934), an equivalent damping constant can be defined

4f
€= Tax
Where fis the colomb friction constant (3,320 lbs), @ is the frequency of oscillation,
and X is the amplitude of oscillation. Letting w equal the natural frequency (19.79
1/sec) and X equal one-half the suspension spring travel (1.844 in), C,, is 232
1b-in/sec. This gives a damping ratio of 0.05 on the middle two trucks and 0.07 on the
end trucks.
The other definition of damping considered was to represent the damping as a
piece-wise linear element similar in form as the definition in the paintspotter car
model.
Results from NUCARS runs using the two forms showed that a larger time step could
be used with the linearized damping constant, but that the results between the two
runs were quite different. Simulating the car traversing one inch amplitude sinusoids
at a speed corresponding to the bounce natural frequency, the linearized damping
model predicted a peak bolster load of 348 kips. The piece-wise linear model
predicted a peak bolster load of 401 kips. Because the loads predicted by the
paintspotter car model were close to the actual loads recorded on the paintspotter car,
it was decided to use this representation of the damping for the articulated flat car.

Den Hartog, J.P., "Mechanical Vibration," 4th ed., Dover Publications, New York,
1985.
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Appendix D:

Anomaly informaticn and
peak bolster loads predicted in NUCARS simulations
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Table 1: Case study 1: Paintspotter car and three miles of track data.
Anomaly amplitudes and peak bclster load predictions for Criteria A

0.7, 711%, 39)
Anomaly Peak bolster Peak bolster
Amplitude load (kips) lead (kips)
Anomaly name (inches p/p) at 60mph at 80mph
Montj4 0.712 123.4 125.1
Margol 0.722 128.7 146.7
Margo6 0.725 127.1 127.6
Margo4 0.755 134.9 140.7
Margo5 0.770 129.2 137.3
Margo2 0.817 116.8 123.7
Riverl 0.848 135.4 138.7
Montjl 0.850 148.1 139.5
Mont;j2 0.850 131.5 125.5
Mont;j3 0.897 152.6 151.6
River2 1.020 153.4 148.4
Margo3 1.115 181.1 154.9

Table 2: Case study 1: Paintspotter car and three miles of track data. Comparison
of peak bolster loads on track anomalies identified by both criteria at 60 and 80

mph.
Peak Bolster Load Peak Bolster Load
(kips) 60MPH (kips) 80MPH
Criteria A Criteria B Criteria A |Criteria B |Criteria A |Criteria B
(7" (.5
Margotl MA9 128.7 128.7 146.7 146.7
Margo2 MA1l 116.8 116.3 123.7 123.5
Margo3 MA1l6 181.1 173.2 154.9 159.8
Margo4 MA17 134.9 143.1 140.7 140.2
Margo5 MA18 129.2 129.2 137.3 137.1
Margo6 MAI19 127.1 126.9 127.6 127.8
Riverl RI1 1354 136.6
River2 RI2 1534 155.1
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Table 3: Case study 1: Paintspotter car and three miles of track
data. Anomaly Amplitudes and Peak Bolster Loads for Margo
segment with Criteria B (0.5, 100%, 39)
Anomaly Peak bolster Peak bolster
Anomaly Amplitude load (kips) load (kips)
number (inches p/p) at 60mph at 80mph
MA..
6 0.503 108.2 112.1
10 0.517 115.7 118.5
4 0.528 111.1 119.6
15 0.528 1203 121.1
12 0.536 117.4 120.9
5 0.549 113.6 117.6
7 0.562 111.2 111.8
1 0.564 121.6 127.9
8 0.565 117.2 121.1
3 0.601 120.8 122.5
2 0.602 120.6 123.7
14 0.636 128.1 130.7
13 0.678 111.3 119.4
19 (6)° 0.725 126.9 127.8
17 (4) 0.755 134.1 140.2
18 (5) 0.770 129.2 137.1
9() 0.772 128.7 146.7
11(2) 0.817 116.3 123.5
16 (3) 1.115 173.2 159.8

"The numbers appearing in parenthesis are the correspoding Margo() anomaly
anomaly identified by Criteria A on this segment.
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Table 4: Case study 1: Paintspotter car and three miles of track
data. Anomaly amplitudes for Montjoli segmcnt with Criteria B
(0.5, 100%, 39)
Anomaly Peak bolster Peak bolster
Anomaly [Amplitude load (kips) load (kips)
number (inches p/p) at 60mph at 80mph
14 0.501 114.1 115.6
3 0.512 113.1 119.3
6 0.517 109.8 1154
16 0.517 118.8 116.3
15 0.526 113.0 117.6
13 0.544 122.8 122.6
2 0.549 110.8 116.0
7 0.565 114.4 113.6
18 0.566 134.6 125.5
4 0.569 125.1 130.6
8 0.575 110.7 111.9
24 0.603 117.4 118.6
1 0.607 120.3 115.3
5 0.628 123.2 121.0
22 0.630 1225 128.3
23 0.631 127.0 126.9
19 0.633 117.9 119.3
9 0.644 134.6 125.5
11 0.678 129.9 131.6
12 0.683 132.8 129.3
214 0.712 127.2 127.3
10 (1) 0.850 146.0 141.7
17 2) 0.850 1323 1459
20(3) 0.897 152.6 151.4

“The numbers appearing in parenthesis are the corresponding Montj() anomaly
anomaly identified by Criteria A on this segment.
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Table 5: Case study 2: Paintspotter car and 20 miles of track
data using Criteria B (0.5, 100%, 39)
Anomaly |Amplitude Peak bolster Peak bolster
number (inches p/p) load (kips) load (kips)
at 60mph at 80mph
1 0.538 117.7 1204
2 0.582 108.0 109.4
3 0.597 113.9 122.7
4 0.598 110.2 113.1
5 0.710 120.2 126.1
6 0.877 120.1 118.8

Table 6: Case study 3: Articulated flat car and 305 miles of track data.
Outlier anomalies and peak load factors at 78, 60 and 40 mph.

Anomaly Amplitude Number Peak Peak Peak

number (inches p/p) | of load ratio| load ratio| load ratio
Peaks 78miph 60mph 40mph

1 0.548 3 1.27 1.21 1.18

2 0.585 3 1.26 1.21 1.17

3 0.569 3 1.30 1.19 1,18

4 0.591 4 1.32 1.34 1.22

5 0.564 4 1.32 1.29 1.17

6 0.599 5 1.32 1.28 1.24

7 0.582 6 1.29 1.26 1.18

8 0.604 5 1.24 1.27 1.19

9 0.661 5 1.26 1.23 1.19

10 0.640 6 1.35 1.32 1.20

11 0.630 7 1.37 1.29 1.19

12 0.604 7 1.28 1.33 1.20

13 0.651 8 1.28 1.27 1.18
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Table 7: Case study 3: Articulated flat car and 305 miles
of track data. Anomalies 1-28 of the 69 anomalies with
amplitudes greater than 0.7 inch and peak load factors at
78 mph.

Anomalies with 1 or 2 peaks and amplitudes between 0.7
and 0.8 inch

Anomaly Amplitude Number Peak load
number (inches p/p) | of ratio
Peaks

1 0.753 1 1.32

2 0.749 1 1.38

3 0.749 1 1.42

4 0.779 1 1.46 (1.49)

5 0.757 1 1.41

6 0.752 1 1.36

7 0.765 1 1.31

8 0.788 1 1.42

9 0.743 1 1.43
10 0.787 1 1.22
11 0.781 1 1.39
12 0.715 1 1.31
13 0.727 1 1.37
14 0.748 1 1.48 (1.54)
15 0.752 1 1.39
16 0.703 1 1.25
17 0.702 1 1.35
18 0.785 1 1.36
19 0.725 1 1.40
20 0.706 1 1.41
21 0.763 1 1.39
22 0.792 1 1.46
23 0.704 1 1.39
24 0.767 1 1.41
25 0.760 2 1.36
26 0.727 2 1.28
27 0.730 2 1.44
28 0.758 2 1.29
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Table 8: Case study 3: Articulated flat car and 305 miles
of track data. Anomalies 29-43 of the 69 anomalies with
amplitudes greater than 0.7 inch and peak load factors at
78 mph. And the eight additional anomalies extracted
from the 2 peak, 0.8-0.9 inch group

Anomaly Amplitude Number Peak load
number (inches p/p) | of ratio
Peaks

29 0.825 1 1.41
30 0.839 1 1.31
31 0.853 1 1.36
32 0.829 1 1.39
33 0.818 1 1.27
34 0.843 1 1.37
35 0.860 1 1.26
36 0.803 1 1.46
37 0.842 1 1.44
38 0.833 1 1.31
39 0.874 2 1.54
40 0.854 2 1.31
41 0.832 2 1.50
42 0.838 2 1.40
43 0.833 2 1.58
El 0.838 2 1.37
E2 0.868 2 1.5
E3 0.813 2 1.49
E4 0.853 2 1.31
ES5 0.876 2 1.46
E6 0.869 2 1.27
E7 0.896 2 1.53
E8 0.876 2 1.63
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Table 9: Case study 3: Articulated flat car and 305 miles
of track data. Anomalies 44-69 of the 69 anomalies with
amplitudes greater than 0.7 inch and peak load factors at

78 mph
Anomaly Amplitude Number Peak load
number (inches p/p) | of ratio
Peaks
44 0.937 1 1.39
45 0.952 1 1.45
46 0.981 1 1.28
47 0.919 1 1.47
48 0.798 3 1.51
49 0.795 3 1.37
50 0.825 4 1.33
51 0.925 2 1.29
52 0.925 2 1.44
53 0.943 2 1.32
54 0.978 2 1.41
55 0.924 2 1.63
56 0.954 3 1.40
57 0.970 4 1.30
58 0.988 4 1.47
59 1.046 i 1.57
60 1.000 l 1.48
61 1.024 2 1.60
62 1.056 2 1.44
63 1.034 2 1.41
64 1.019 3 1.43
65 1.086 4 L.55
66 1.006 5 1.44
67 1.238 3 1.74
68 1.248 3 1.61
69 1.355 6 1.44
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