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Sharing is Caring: Socially-Compliant Autonomous Intersection
Negotiation

Noam Buckman1, Alyssa Pierson1, Wilko Schwarting1, Sertac Karaman2, and Daniela Rus1

Abstract— Current methods for autonomous management
use strict first-come, first-serve (FCFS) ordering to manage
incoming autonomous vehicles at an intersection. In this work,
we present a coordination policy that swaps agent ordering to
increase the system-wide performance while ensuring that the
swaps are socially compliant. By considering an agent’s Social
Value Orientation (SVO), a social psychology metric for their
willingness to help another vehicle, the central coordinator can
reduce system delays while ensuring each individual vehicle
increases their own utility. The FCFS-SVO algorithm is both
computationally tractable and accounts for a variety of real-
world agent types, such as human drivers and a variety of
social orientations. Simulation results show that average vehicle
delays decrease with swapping by enabling cooperation between
agents. In addition, we show that the proportion of human
drivers, as well as, the distribution of prosocial and egoistic
vehicles in the system can have a prominent effect on the
performance of the system.

I. INTRODUCTION

A major challenge in autonomous driving is interact-
ing with human drivers. For roads with both human and
autonomous vehicles, it is important to design socially-
compliant autonomous policies. As autonomous vehicles pro-
liferate, we can take advantage of greater communication and
cooperation among vehicles. Inter-vehicle coordination can
reduce congestion and wait times at intersections. Smarter
intersections can improve optimization and scheduling of
vehicles.

This paper considers smart intersection coordination for
both human and autonomous vehicles. We start from a
standard First-Come, First-Served (FCFS) policy that assigns
intersection reservations to vehicles, then locally optimize
based on the social preferences of the vehicles. As vehicles
queue in the intersection, we perform reservation swapping
to improve system performance, but only if it is seen as a
benefit to both vehicles. Each vehicle has different social
preferences, which manifests as varying tolerances to accept
delays at the intersection to help others. We leverage com-
munication with vehicles to determine their intent, but do
not require communication for scheduling.

At intersections, human drivers engage in socially-
compliant behavior, where drivers coordinate their actions
for safe and efficient joint maneuvers. We classify these
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Fig. 1: (a) We coordinate cars to safely pass through intersec-
tion by assigning reservations for intersection use. (b) Cars
may signal their intended direction and reserve a single path
(blue and black cars), or may have an unknown intention
(green car), and reserve all possible paths.

interactions as social dilemmas, where the group interests do
not necessarily align with the private interests. For example,
at intersections, the group interests are to reduce congestion,
while the individual interests are to reduce personal delays.
We define socially-compliant driving as behavior during
this sequence of social dilemmas that complies with the
social expectations of the group. Our goal is to design
autonomous system policies that conform to the socially-
compliant driving expected by the human drivers, which is
fundamentally important for the safety of all passengers.

In this work, we design a central coordinator to assign
reservations and manage traffic through the intersection. The
central coordinator first assigns reservations using FCFS,
then swaps reservations between cars based on their social
preferences. If cars are able to communicate their intent,
the coordinator reserves that path through the intersection. If
the car cannot communicate its intent, then the coordinator
reserves all possible paths through the intersection, as shown
in Figure 1. We model each vehicle’s social preferences
through the Social Value Orientation (SVO), a common
metric from social psychology that measures how individuals
weigh personal rewards against rewards to others. While
the SVO concept encompasses a broad range of social
interactions, we focus on a range of egoistic to prosocial
preferences. Here, the SVO intuitively correlates to how an
individual will tolerate an additional time delay to reduce
the wait time of another vehicle. An egoistic vehicle will
not tolerate any swapping that increases its wait time, while
a prosocial car will be more inclined to take a minor increase



in wait time if it improves the overall system efficiency.
For autonomous vehicles [1], we design the SVO preference
of the vehicle to best interact with the human drivers. Our
results show that both individual wait times and system-wide
average wait times decrease as the percentage of prosocial
cars increase in the system.

The main contribution of this work is incorporating the
SVO behavior-based utility functions as both a heuristic for
improved system-performance and as an encoding of user-
level acceptability in deviating from the naive approach of
FCFS. In addition, a tractable and flexible utility swapping
framework which accounts for varied agent personalities and
vehicle capabilities.

A. Related Work

Safe control of multiple autonomous vehicles has been
explored in a number of centralized and decentralized ap-
proaches. If the intent of all vehicles is known, the global
solution is known to be NP-hard and quickly becomes
intractable with large numbers of vehicles. Thus, many
approaches look to find locally-optimal solutions, using
control policies that guarantee safe passage [2], [3], [4], [5],
[6], game theoretic approaches [7], learning-based control
methods [8], [9], and decentralized algorithms [10], [11]. In
this paper, we use a central coordinator to manage human
and autonomous vehicles using intersection reservations. We
start from a common FCFS policy that introduces pairwise
socially-complaint swapping. Other centralized approaches
include market-based auction systems, as well as system-
wide optimization.

System-wide optimization approaches focus on optimizing
all vehicles simultaneously to achieve the system optimum.
In [12], the authors formulate an integer-program using
specific regions of the intersection known as conflict-points
to reduce the decision variables. Heuristics can be used
to achieve improved performance [13], but rely on pre-
determined trajectories to obtain conflict-points, which may
not be possible in the case of unknown dynamics or multi-
lane systems. Finally, [14] showed that in systems with a
mixture of compliant and selfish vehicles, the system-wide
equilibrium (that of all compliant vehicles) and the user
equilibrium (that achieved of selfish agents) may be very
different from one another. Thus, in considering only the
system-wide delays and not the agent-specific utility, current
optimization methods are at odds with the agent-centered
optimization that occurs by each vehicle in the system.

Market-based approaches coordinate vehicles by allowing
each vehicle to enter an auction for time in the intersection
given some budget. The Intersection Time-Slot Auction
(ITSA) [15] allows agents to bid in the auction based on
their own budget and wait-time. Agents in the same lane
can cooperate by pooling resources to bid on the intersec-
tion. However, auctions are limited in that they rely on an
actual budget constraint for each vehicle and cooperation is
limited to within a given lane. In [16], three budgets are
proposed, however, they represent extreme scenarios such
as infinite budget, zero budget, or a ”fair” budget based

on distance traveled. In general, market-based systems pose
the fundamental issue that the coordinator may bias towards
“wealthier” agents.

Reservation-based systems often rely on a First-Come,
First-Serve (FCFS) policy that provide a tractable method
for allocating agents safely within an intersection. In [17],
the authors introduce a tile-based reservation (TBR) policy
which discretizes the intersection into tiles so the intersec-
tion coordinator can reserve portions of the intersection for
vehicles as they arrive. While these methods perform best in
systems with only connected vehicles, [18], [19] accounted
for the uncertainty in human intentions by reserving all
trajectories in the intersection. Alternatively, [20] propose
a priority-preserving control law that ensures even human
drivers only enter the intersection according to their FCFS
ordering. A common result in these approaches is that human
drivers lead to large inefficiencies in the system, compared
to the autonomous vehicles which can share the intersection.
A major drawback of current reservation-based systems is
that they rely on a simple FCFS policy for ordering the
vehicles. While FCFS provides a tractable solution to an oth-
erwise NP-Hard scheduling problem, [21] highlights major
limitations in the system’s ability to effectively coordinate
vehicles. In [22], the authors analyze the intersection problem
as a polling problem. By using a fixed polling policy which
cycles through the lanes, they are able to provide analytic
guarantees on safety and wait time. However, polling policies
require that entire intersections are reserved for every vehicle
and still rely on fixed ordering policies such as FCFS or
k−limited.

The remainder of the paper is organized as follows:
Section II provides an SVO primer. In Section III, we
present our problem definition and formulation. Section
IV introduces our socially-compliant reservation swapping
algorithm. Analysis of simulation results is presented in
Section V, and we present our conclusions in Section VI.

II. SOCIAL VALUE ORIENTATION

In a social dilemma game, the reward for an individual
agent is often at odds with the reward of the other agents.
Similarly, in our setting the wait time of one agent is at odds
with the wait time of another agent. A key insight of this
paper is that an agent’s utility function is not only a function
of their own wait time but also, depending on the agent’s
personality, the wait times of other agents in the system.
We use the Social Value Orientation (SVO), a common
metric from social psychology [24], to quantify human
personalities. The SVO indicates how an individual weights
personal rewards against rewards to others, allowing them
to be classified as prosocial, individualistic, competitive, and
altruistic among others. The corresponding mapping in Fig. 2
relates the reward to self against the reward to other in a
social dilemma game.

While an individualistic, or more colloquially egoistic,
agent only considers its own wait time, other agents prioritize
both their own reward Ri and to some degree, the rewards
of the other agents in the system, R j. This tendency can
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Fig. 2: The Social Value Orientation represented as an angu-
lar preference θ that relates how individuals weight rewards
in a social dilemma. Experimental data from [23] has been
added to represent individual preferences. As shown, most
people fall between individualistic (also known as egoistic)
and prosocial.

be categorized by the Social Value Orientation (SVO) [25]
where the utility for an ego-vehicle (i) includes the other
agent’s reward

ui = Ri cosθi +R j sinθi. (1)

Here θi is the SVO angle of agent i, a representation of agent
i’s amount of consideration for the other agents’ rewards.
Note from (1) that an agent i’s utility is a function of its own
SVO and the rewards of everyone in the system. Figure 2
shows the correspondence of θi to social orientations. While
θi can take any value, in a cooperative setting such as
traffic assignment, realistic values of θi will be in the range
θi ∈ [0,π/4], where the extreme behaviors correspond to an
egoistic (θi = 0) and prosocial (θi = π/4). In reality, we
expect that most users will have at least a minimal level of
interest for their own reward, and thus we limit the SVO of
any given agent to 0≤ θi ≤ π/4. This reasonable argument
is further supported by data from social-dilemma games in
the literature [23], [26], [27].

In general, each agent considers the rewards of all agents
in the system, however, that quickly becomes intractable
for large systems. Instead, the coordinator will consider the
utility of two vehicles (vi, v j) in a pair-wise joint optimization
only,

max
tw,i, tw, j

ui +u j (2)

under the constraint that each agent’s individual utility in-
creases after the swap.

III. PROBLEM FORMULATION

We consider a four-way intersection through which
human-driven and autonomous vehicles traverse. The in-
tersection is signalized, with a traffic light that indi-
cates when vehicles may proceed. A control coordina-

tor negotiates reservations for each vehicle, based on
their arrival lane and if known, desired path through
the intersection. We denote the vehicles vi for i =
{1, ...,N} total vehicles, with state xi and intention ai ∈
{ LEFT, RIGHT, STRAIGHT, UNKNOWN }. The state xi com-
prises its position, orientation, and maximum speed. We
assume that the state xi is known when the vehicles enter
the system, either through direct communication from the
vehicle or some form of tracking system. A simplified, single
integrator dynamic model is used to model vehicle dynamics,
though more complicated dynamics can be used, as in [17].
Intention ai may be communicated by autonomous vehicles
to the central coordinator, but we allow the intent to be
unknown to model both human drivers unable to commu-
nicate intent, as well as autonomous vehicles that would like
to keep their intention private. For the remainder of this
paper, we assume the intention of autonomous vehicles is
always known, and the intention of human-driven vehicles is
always unknown. Each vehicle also has an SVO preference
θi. For human drivers, we assume this is a fixed quantity that
can be observed by the system. For autonomous vehicles,
we design the SVO preference and can leverage this as an
additional optimization parameter. We simulate a wide range
of SVO distributions, and show that choosing prosocial SVO
preferences increase both individual and group performance.

A. Vehicle Arrival

Vehicles arrive into the system at t0,i, at which point
the central coordinator receives their reservation request
for the intersection. The coordinator returns a start time
ts,i, representing when the vehicle is allowed to enter the
intersection. We assume all vehicles are compliant to their
assigned start times, which can be enforced by traffic signals.
In congestion, vehicles may need to wait for some amount of
time tw,i before proceeding. The goal of the central coordi-
nator is to assign reservations to each vehicle so they safely
traverse the intersection while minimizing the average wait
time of each vehicle. The coordinator then performs local
pairwise swapping between vehicles in queue. The swapping
compares the joint utility of the current assignments against
the joint utility of the swapped assignments. When both
utility functions improve, the coordinator swaps the vehicle
assignments. Each agent’s individual utility varies based
on their individual social preferences. Overall, the goal of
our coordination algorithm is to improve the system-wide
performance by minimizing the average wait time, while
maintaining that individual utilities are not increasing.

B. FCFS Tile-Based Reservation

Vehicles automatically request a reservation when they
enter the system, and may additionally communicate their
intent at that time. The preliminary assignment of reser-
vations is determined by an FCFS tile-based reservation
(TBR) system. First proposed in [17], a TBR system accepts
reservation requests ri from each agent as they enter the
control region. Each agent’s request includes the the arrival
time into the system and its predicted time to arrive at the
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Fig. 3: Example of assignment swapping. Initially, Car 2
(blue) is making a left turn before Car 3 (green). However,
since Car 2 is blocked by Car 1 (black), the assignments
swap so Car 3 can move simultaneously with Car 1.

intersection. The system arrival time t0,i is used to maintain
a FCFS queue Q of requests such that an agent arriving first
to the intersection is also first to enter the intersection, or
ts,i < ts, j if t0,i < t0, j. Once a request is received, the central
coordinator internally simulates the trajectory of the vehicle
(using the vehicle’s communicated state and dynamics) and
reserves the tiles within the intersection to ensure collision
free reservations. The reservation start time ts,i is returned
to each agent, and a predicted vehicle wait time can be
calculated based on start time and vehicle dynamics.

IV. SVO-BASED RESERVATION SWAPS

In this section, we describe our main contribution, the
FCFS-SVO policy which includes a two-agent priority swap
to allow each agent to delay their own priority in the queue to
allow for joint optimization of utilities based on the agents’
SVOs. Our FCFS-SVO policy builds from the preliminary
FCFS assignments presented in the previous section. We
also describe some implementation details that allow for
increased cooperation between the agents towards system-
level improvement.

A. Pairwise SVO Swapping

A main limitation of TBR methods is that the reserva-
tions are required to follow the FCFS queue ordering. Our
approach, FCFS-SVO, allows the coordinator to consider
pairwise swapping of two sequential agents within the queue.
More specifically, if agent vi is located at position n within
the queue and agent v j is located at position n + 1 (im-
mediately afterwards), then the coordinator may consider
swapping positions and reserving v j first. Implicit in this
procedure is that agent vi is willing to forgo its earlier
position in the queue. Since agents can readily observe (and
are aware) of the FCFS ordering of agents, a socially “fair”
swap must ensure that both agents benefit from such a
swap. The realization that each agent has their own Social
Value Orientation allows the coordinator to swap the agents.
Theoretically, the coordinator could consider every possible
re-ordering of agents within the queue, however, to maintain

a tractable solution (similar to that of FCFS), we limit swap
to single, sequential swaps through the queue.

First, the coordinator reserves the intersection with FCFS,
assigning agent vi its reservation rn

i before assigning v j its
reservation rn+1

j . From the initial assignments, the coordina-
tor computes the utility in (1) of each agent based on their
SVO and wait times,

ui =−tw,i cosθi− tw, j sinθi,

u j =−tw, j cosθ j− tw,i sinθ j.

Here, we define the reward for each agent as the inverse of
their wait time, Ri = −tw,i and R j = −tw, j. The coordinator
then computes the reservations r̂n+1

i and r̂n
j as if the queue

order was swapped, and then determines the corresponding
utilities,

ûi =−t̂w,i cosθi− t̂w, j sinθi,

û j =−t̂w, j cosθ j− t̂w,i sinθ j,

where ûi, û j are the utilities of agents i and j when the order
of reservations are swapped, and t̂w,i, t̂w, j are the respective
wait time in the swapped configurations. If both agents’
SVO-utilities are higher after the swap

ûi > ui

û j > u j,
(3)

then the order is swapped. Equation (3) becomes the decision
equation to determine the ordering of agents vi and v j. The
reservation is returned to the agent and the process contin-
ues for the remaining positions in the queue. Algorithm 1
presents our swapping algorithm.

Algorithm 1 FCFS-SVO: Two-Agent Swap

1: i = Q[0]
2: for n = 1...|Q|−1 do
3: ASSIGN j = Q[n]
4: ui,u j, ti, t j = ATTEMPTRESERVATION(vi, v j)
5: û j, ûi, t̂ j, t̂i = ATTEMPTRESERVATION(v j, vi)
6: if ûi > ui and û j > u j then
7: RESERVE( j, t̂ j)
8: else
9: RESERVE(i, ti)

10: i← j
11: end if
12: end for

From Algorithm 1, we see that swapping occurs in a
pairwise fashion, iterating through the queue of agents, with
a runtime of O(|Q|). To better illustrate the behavior of
our swapping algorithm, Proposition 1 shows the swapping
behavior if a vehicle is egoistic, and Proposition 2 details
how swapping may lead to an increase in wait time for non-
egoistic vehicles.

Proposition 1. An egoistic vehicle vi will only swap reser-
vations if their wait time decreases, t̂w,i < tw,i.



Proof. For θi = 0, the utility function ui reduces to

ui = Ri =− tw,i.

By design, a swap only occurs if the utility function of both
agents increases. For ûi > ui to be true, we see that t̂w,i < tw,i,
thus showing that vehicle vi will only swap its reservation if
their wait time decreases.

While egoistic agents are not incentivized to swap, increas-
ingly prosocial agents will swap positions even if it incurs
some time delay penalty. This is due to their social utility
function also encoding the reward (or in this case, delay)
of the other agents. As a result, an increase in prosocial
agents leads to a reduction in overall system wait time at the
potential expense of their own wait time.

Proposition 2. A non-egoistic vehicle vi (θi > 0) may incur
an increase in wait time ∆ti due to a reservation swap.

Proof. Consider the case where the next agent in the queue
v j is egoistic (θ j = 0) and a potential swap would lead to
delay ∆ti to vi and a reduction in wait time ∆t j for v j. A
swap will occur if ûi > ui and û j > u j. In this scenario, the
initial FCFS utility and swapped utilities for each vehicle are

ui =−tw,i cosθi− tw, j sinθi

u j =−tw, j
ûi =−(tw,i +∆ti)cosθi− (tw, j−∆t j)sinθi

û j =−(tw, j−∆t j)

The utilities for the swapped configurations ûi, û j can be
rewritten in terms of the FCFS utilities ui,u j to arrive at a
more convenient form

ûi = ui−∆ti cosθi +∆t j sinθi

û j = u j +∆t j

For any ∆t j > 0, the utility of v j increases from the
swap since the egoistic vehicle benefits purely from its own
decrease in wait time. Thus, the only remaining condition for
a swap in this case is for ∆t j sinθi > ∆ti cosθi. Equivalently,
a swap will occur if the social benefit to vi, from reducing
the wait time to v j, is greater than social cost of delaying
itself by ∆ti. This occurs, for example, if agent i is prosocial
(θi = π/4) thus simplifying the swap condition to ∆t j > ∆ti,
i.e., if the decrease in delay to v j is greater than the increase
in delay to vi. In this case, both utilities increase, leading to
swap in priorities, even though vi incurs a delay ∆ti > 0.

B. Batched Reservations

In [17], the coordinator constantly processes requests and
returns reservations. In FCFS-SVO, the coordinator pro-
cesses requests in batches. This encourages collaboration
by allowing for multiple swaps. If too few agents are in
the queue, then swaps would not be possible, and only one
agent is considered at a time. To ensure that agents are not
waiting at the intersection line for additional agents to enter
the queue, the coordinator triggers a batch of reservations
if an agent is waiting at the entrance without a reservation.

Fig. 4: Snapshot of traffic simulation with agents approaching
intersection. All agents request the intersection as they enter
the control region (grey). Autonomous vehicles send their
intended direction while human vehicles do not communicate
directions. Social Value Orientations are shown for each
agent, along with their initial FCFS queue ordering.

In addition, after a batch of swapping is performed, the last
vehicle in the queue is returned without a reservation. In
the next batch, it will enter at the front of the queue. This
allows additional swapping for the agent with vehicles that
make requests later.

C. Benefits of SVO

Without SVO, central coordinators are restricted to FCFS
policies to remain tractable as more agents enter the intersec-
tion. In addition, FCFS maintains a level of fairness across
the intersection, in that agents that arrive at the intersection
first enter the intersection first. If, for example, an arbitrary
optimization over vehicles was allowed, individual agents
would not necessarily benefit, and more importantly, would
incur socially-unacceptable delays as later vehicles would
enter the intersection before them. By incorporating the SVO
utility in determining the order of the vehicles, we ensure that
any re-optimization over FCFS remains socially-compliant
by each agent in the intersection. Even in scenarios with
mostly egoistic vehicles, FCFS-SVO swapping can allow
for reduced wait times because some re-orderings will cost
a higher-priority vehicle no delays. In real-world systems,
humans have shown to act in a more prosocial manner not
only caring about their own delays but also about delays of
others, as shown in Fig. 2, and thus we expect that a SVO-
based reservation system can provide additional gains over
FCFS. Finally, by including both an agent’s arrival priority
and the impact on later vehicles in SVO utility, we attempt to
bridge the gap between FCFS policies, which only account
for arrival priority, and auction policies, which consider the
cost of a reservation on an agent in determining the final
ordering.
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Fig. 5: Vehicle wait times for different SVO distributions. When all agents are egoistic, marginal improvement occurs over
FCFS. Wait time reduction occurs as agents become increasingly prosocial, with the minimal wait time occurring when all
agents are prosocial.

V. RESULTS

We implement the FCFS reservation and SVO swapping
policies in a traffic simulator to validate the efficacy of
the FCFS-SVO framework. Figure 4 shows our simulated
four-way intersection. In addition, we evaluate the impact of
varying vehicle SVOs and the proportion of human drivers
in the system under the impact of our method on different
agents.

A. Intersection Simulations

Each simulation consists of an episode of 12 vehicles
arriving into the system according to a Poisson process.
Simulated vehicles are randomly assigned a turning direction
with probability ple f t = 0.3, pright = 0.3, pstraight = 0.4 and
randomly assigned one of four incoming lanes to enter the
system. Agents are assigned to be a human driver with
probability phuman. Human drivers do not communicate their
intended direction to the coordinator, and thus effectively
reserve all three possible directions. In addition, an SVO
preference θi is assigned to each agent and their utility
is computed according to (1). In prosocial and egoistic
simulations, all agents are assigned θi = π/4 and θi =
0, respectively. In mixed simulations, agents are randomly
chosen to have SVOs where θi ∈ {0,π/6,π/4} with equal
probability.

Each of the 25 simulations are re-run with different types
of coordinators. The baseline, Strict FCFS, requires agents
only enter the intersection according to the order in which
they arrive at the intersection. We then add our socially-
compliant swapping, denoted FCFS-SVO. We vary both the
percent of human drivers and different SVO distributions.

B. Effect of SVO on Vehicle Wait Time

The performance of FCFS-SVO is directly impacted by
the distribution of SVO personalities within the system.
Figure 5 compares the wait time distributions when we vary
the SVO distributions in the group, compared to a strict FCFS
baseline. In Fig. 5, simulations with all ego vehicles lead to
less improvement compared to all prosocial or even a mix
of SVO personalities. The mean wait times corresponding to
Fig. 5 are recorded in Table I. The wait time in the system
is calculated as the time from when the vehicle enters the
system to when the vehicle passes through the intersection.

Fig. 6: Changes in wait time change compared to FCFS for
different Social Value Orientation preferences.

This wait time includes any time the vehicle spends in its
lane queue waiting for preceding vehicles. As we increase the
percentage of prosocial agents in the system, the mean wait
time decreases. Furthermore, we notice the overall variation
in wait times is reduced, seemingly creating a more equitable
distribution of delays across the system.

As noted in Proposition 1, egoistic agents will only swap
positions if their time delay decreases, however, Proposi-
tion 2 shows that prosocial agents may swap even if it
includes an increase in wait time. Figure 6 illustrates the
distribution of changes in individual wait time categorized
by their SVO preference. While egoistic agents benefit more,
the distributions show that prosocial agents are not greatly
disadvantaged by this system.

TABLE I: Mean Wait Times for Vehicles

Policy tw
FCFS 5.25 s

All Egoistic 4.94 s
Mixed SVO 4.43 s

All Prosocial 4.07 s



Fig. 7: Average vehicle wait time at the intersection for
varying amount of human drivers in the system. All three
types of SVO see improvement over the FCFS policy, with
the largest decrease of delays occurring when all agents are
prosocial.

C. Effect of Human Drivers

In our simulations, we also varied the number of human
drivers in the system. Figure 7 shows how the average
wait time across vehicles is affected by the total number
of humans. As the number of human drivers increases,
the average wait time also increases, as human drivers do
not communicate their intent and must reserve the entire
intersection. We also note that for all cases, increasing the
total number of prosocial vehicles reduces the average wait
times across the system.

In Fig. 8, we look at the number of swaps that occur
throughout the simulation. We notice that for all egoistic
drivers, the fraction of vehicles that swap reservations is quite
small, and the fraction of swaps increases as the fraction
of prosocial vehicles increases. The fraction of swaps stays
relatively consistent across the number of human drivers
in the system, until there are more human drivers than
autonomous vehicles.

Figure 9 shows the difference in wait times for human
and autonomous vehicles using FCFS-SVO, with all SVO
preferences set to prosocial. This scenario appears to benefit
the autonomous vehicles more than the human vehicles, with
a greater number of the autonomous vehicles reducing their
time delay. Since human drivers reserve the full system,
while autonomous vehicles only reserve their intended path,
swapping tends to favor the autonomous vehicle, due to
the fact that it requires a smaller time reservation of the
intersection.

VI. CONCLUSIONS

In this work, we present a centralized autonomous co-
ordination algorithm that can plan for multiple levels of
cooperation, from fully connected autonomous vehicles to
human vehicles with limited communication, ensuring that

Fig. 8: Fraction of swaps executed by the central coordinator
during FCFS-SVO. Since egoistic agents only swap when it
incurs zero delays, very few swaps occur. In mixed SVO and
prosocial settings, swaps occur 20%-40% reservations.

Fig. 9: Histogram of wait time change compared to FCFS in
simulations where all agents are prosocial. Swapping leads
to increased delays in human drivers, allowing for more
efficient autonomous vehicles to enter the intersection first.

any optimization does not come at a cost to social utility
of each agent. By leveraging SVO preferences among ve-
hicles, we enable socially-compliant navigation through the
intersection that adapts to the level of cooperation. Further-
more, we show that system performance improves with the
percentage of prosocial cars in the system. For autonomous
vehicles, this implies choosing to design prosocial vehicles
can increase cooperation and efficiency on the road. While
our system assumes a central coordinator for the purpose
of reserving the intersection and negotiating swaps, future
research directions include decentralized algorithms that can
safely allow vehicles through an intersection. In such a
system, the pair-wise swapping using SVOs proposed in
this paper can easily be extended to a decentralized system,
where vehicles negotiate directly with each other.
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[15] H. Schepperle and K. Böhm, “Agent-based traffic control using
auctions,” in Cooperative Information Agents XI, LNCS Volume 4676,
2007, vol. 4676, pp. 119–133.

[16] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous
intersection management,” in 16th International IEEE Conference on
Intelligent Transportation Systems (ITSC 2013), Oct 2013, pp. 529–
534.

[17] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research,
vol. 31, pp. 591–656, 2008.

[18] L. C. Bento, R. Parafita, S. Santos, and U. Nunes, “Intelligent traffic
management at intersections: Legacy mode for vehicles not equipped
with V2V and V2I communications,” in 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013), Oct
2013, pp. 726–731.

[19] G. Sharon and P. Stone, “A protocol for mixed autonomous and
human-operated vehicles at intersections,” in Autonomous Agents and
Multiagent Systems, G. Sukthankar and J. A. Rodriguez-Aguilar, Eds.,
vol. 10642 LNAI. Cham: Springer International Publishing, 2017, pp.
151–167.

[20] X. Qian, J. Gregoire, F. Moutarde, and A. De La Fortelle, “Priority-
based coordination of autonomous and legacy vehicles at intersection,”
in 2014 17th IEEE International Conference on Intelligent Transporta-
tion Systems, ITSC 2014, 2014, pp. 1166–1171.

[21] M. W. Levin, H. Fritz, and S. D. Boyles, “On optimizing reservation-
based intersection controls,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 3, pp. 505–515, 2017.

[22] D. Miculescu and S. Karaman, “Polling-systems-based control of high-
performance provably-safe autonomous intersections,” in 53rd IEEE
Conference on Decision and Control, Dec 2014, pp. 1417–1423.

[23] A. Garapin, L. Muller, and B. Rahali, “Does trust mean giving
and not risking? Experimental evidence from the trust game,” Revue
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