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Abstract

The objective of this thesis is to develop and apply efficient three-dimensional (3D)
direct simulation capabilities for underwater sound field predictions in shallow water
environments. Despite the large number of theoretical and experimental studies,
direct numerical simulation of the shallow water acoustic field is still challenging due
to environmental complexities and large computation cost involved.

In this thesis, we develop a highly efficient O(NlogN) multi-layer boundary-element
method, PFFT-BEM, for direct numerical simulation of acoustic propagation and
scattering in shallow water environment. This method utilizes a Pre-corrected Fast
Fourier Transform (PFFT) approach to accelerate the boundary-element method and
reduce the computational efforts from O(N2 ~3 ) to O(NlogN) where N is the total
number of boundary unknowns. PFFT-BEM is capable of accounting for complex
topography, inhomogeneity of water properties, and dynamic environments associated
with realistic coastal conditions. With the O(NlogN) efficiency and linear scalability
on massively parallel high-performance computing platforms, we first conduct multi-
layer 3D simulations benchmarking low-mid frequency acoustics over kilometer ranges
against available theoretical results and field experiments. We then apply large-
scale PFFT-BEM simulations to investigate two underwater acoustics problems which
are of scientific interest and practical importance: (1) 3D sound scattering from
rough ocean surface; (2) 3D sound propagation and scattering around underwater
seamount(s).

For the 3D rough surface scattering problem, several approximation models have
been proposed such as the perturbation theory and Kirchhoff approximation. These
approximation models provide fast predictions of statistics for the acoustics scatter-
ing necessary for predicting the scattering effects and reverberations from the rough
surfaces. The validities of these models need to be assessed by direct numerical meth-
ods. However, most existing direct numerical studies regarding the validity regions
of the approximation models are limited to the 2D rough surface scattering problem.
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We apply direct PFFT-BEM computations to study the 3D rough surface scatter-
ing problem with a Gaussian roughness spectrum. We examine the accuracy of the
approximation model results through comparisons with direct numerical simulation
results by 3D PFFT-BEM with a Monte Carlo technique. We identify and quan-
tify the 3D validity regions of the approximation models as a function of the surface
roughness and correlation length. We characterize and quantify the importance of 3D
scattering effects on the validities of different approximation models. Moreover, we
find that both perturbation theory and Kirchhoff approximation become inaccurate
for 3D scattering problems with low grazing angles.

For the problem of 3D sound propagation/scattering around underwater seamount(s),
we investigate the effects of seamount geometry and sound source frequencies on the
sound scatterings by the seamount using 3D PFFT-BEM simulations. In particular,
we investigate the backscattering, blocking and 3D scattering effects due to the pres-
ence of the seamount. We find that the acoustics scattering effects by the seamount
have a strong dependence on the source frequency, and small variations in seamount
geometry (such as seamount height and cross section shape) can induce significant
changes in the acoustics scattering field.

Thesis Supervisor: Yuming Liu
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Motivation

Prediction of 3D underwater sound field in range-dependent shallow water environ-

ments is a challenging research area due to the complexities associated with the

domain geometry and water environments. Over the years, a number theoretical

models have been proposed. Notable among these are the ray tracing model, the cou-

pled mode model and the parabolic equation(PE) model. Ray tracing models have

been used to study underwater acoustic propagation problems [Jones et al., 1986,

Dushaw and Colosi, 1998, Porter, 2011J, which are generally not valid for low-mid

frequencies because of the underlying high-frequency assumption. In addition, as

pointed out by Jensen et al. [2011], 3D ray tracing model are not widely than the

two-dimensional (2D) versions due to the high computational cost.

The coupled mode method has been used successfully in 3D for specialized geome-

tries, such as an axisymmetric seamount [Luo and Schmidt, 2009]. When environmen-

tal properties are invariant along a spatial coordinate, the 2D coupled mode method

could be combined with a wavenumber integration method to obtain 3D acoustic

fields [Schmidt, 1988, Shmelev et al., 2014]. For slowly varying spatial environments

in two directions, a simplified coupled mode model, the adiabatic-mode model, has

been applied in various studies (e.g. Badiey et al. [20051, Ballard [2012], Lynch et al.

[2010]). For general 3D geometries, a fully coupled mode propagation model is still
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impractical due to the large computing power and memory requirement [Jensen et al.,

2011].

A popular class of propagation models are based on the one-way parabolic equation

(PE) approximation [Tapperter, 1977]. For 3D applications, a number of PE models

have been developed (e.g. Lin et al. [2012, 2013], Sturm [2005]) for problems where

backscattering is not significant. Models that include two-way scattering have been

developed in general 2D [Collins and Evans, 1992, Lingevitch et al., 2002], and for 3D

formulated in cylindrical coordinates [Zhu and Bjorno, 2000] valid within a limited

area. Hybrid normal mode/PE method (e.g. Ballard et al. [2015]) has been developed

to account for outgoing mode-coupling and horizontal refraction effects but is valid

only when backscattering and modal coupling in the azimuthal direction are weak.

Xu et al. [2016] provides a survey of PE approximations highlighting the general

limitations for complex 3D problems.

Since the continued increase in computational power over the past several decades,

there has been a rise in the number of direct computational investigations of shallow

water acoustics which directly solve the wave equation. These techniques typically

implement either the finite difference method (FDM), finite element method (FEM),

finite volume method (FVM), spectral element method (SEM) or boundary element

method (BEM). A review of the different direct numerical methods used in shallow

water acoustics can be found in Jensen et al. [2011]. Most of these methods provide

satisfactory solutions for 2D (range and depth) problems (e.g.Grilli et al. [1998],

Santiago and Wrobel [2000], Pereira et al. [2010], Vendhan et al. [2010], Cristini and

Komatitsch [2012], Bottero et al. [2016]). A longitudinally-invariant FEM has also

been proposed recently [Isakson et al., 2014]. This method can provide a 3D sound

field with the constraint that the geometry of environments must be constant along

one of the three spatial coordinates. Despite the continued development of computing

capabilities, preforming 3D simulations of ocean acoustics in realistic environments

still remains a challenge due to the high computational costs. A 3D SEM is recently

developed at low frequency [Xie et al., 2016]. However, when higher frequencies

or larger computational domains are involved, 2D simulations still remain as only
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option [Cristini and Komatitsch, 2012, Bottero et al., 2016]. This is due to the need

for FEM/FVM/SEM to use fine meshes over the entire volume of the computational

domain.

In boundary element method (BEM), the Helmholtz boundary-value problem for

homogeneous medium can be formulated as a boundary integral equation (BIE) [Bur-

ton and Miller, 1971], for which the unknown pressure or the normal pressure gradient

on the domain boundaries are solved for. After discretizing the boundary into piece-

wise elements and approximating the variables over these boundary elements, we

obtain a system of linear algebraic equations of the form: [A]{x} = {b}, where [A]

is a dense N x N influence coefficient matrix, {x} is the vector of N unknown pres-

sures or/and normal pressure gradient on the boundary, {b} is the vector of N known

quantities and N the total number of unknowns. Since only the domain boundary

is discretized, BEM has an advantage over the volume methods (FDM, FEM, SEM

and FVM) which require meshing the entire volume of the computational domain.

A number of 2D or 2.5D (longitudinally-invariant) BEM shallow water waveguide

acoustic models exist (e.g. Grilli et al. [1998], Godinho et al. [2001], Santiago and

Wrobel [2000], Pereira et al. [2010]), and efficient models have been applied to solve

3D acoustical radiation and scattering problem from rigid bodies (e.g.Keuchel et al.

[2017], Yan and Gao [2013], Qu et al. [2017], Li et al. [2018]).

In this work, we implement a direct solution of the 3D acoustic problem for range-

dependent shallow-water environments with complex boundaries using BEM. To ac-

count for inhomogeneity of the medium properties, we develop a multi-domain (multi-

layer) approach [Pereira et al., 2010] where homogeneous properties is assumed within

each sub-domain. The overall solution is obtained by imposing continuity of pressure

and normal pressure gradient at the interfaces of the sub-domains. While BEM can

handle complex boundaries and domain interfaces, its major drawback is the com-

putation cost associated with the solution system involving dense influence matrices.

Existing approaches use (direct or) iterative solvers [Xue et al., 2001, Li and Liu,

2015] which requires O(N 2) operations to construct the influence matrix [A] and (

O(N) or) O(N 2) operations for the solution {x}. The major development here is the
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adaptation of a Pre-corrected Fast Fourier Transform (PFFT) approach to reduce the

overall computational effort from O(N2 ~3 ) to O(N log N). PFFT has been applied

to boundary-value problems using BEM in the field of electrostatic analysis [Phillips

and White, 1997, Masters and Ye, 2004], elastodynamics [Yan et al., 2010a, Xiao

et al., 2012], solid mechanics [Yan et al., 2010b], Hydrodynamics [Yan and Liu, 2011,

Li and Liu, 2018] and rigid body acoustics scattering problem [Yan and Gao, 2013].

Because of the properties of the method, PFFT accelerated BEM (PFFT-BEM) is

particularly suitable for massive parallelization [Yan and Liu, 20111, which we develop

and implement on modern high-performance computing (HPC) platforms.

Due to this method solves the Helmholtz equation exactly (up to the discretiza-

tion error), it can solve the shallow water acoustics problems with low-mid sound

frequencies, general 3D environmental geometries (e.g. with sharper variations in all

three directions, backscattering and reverberations effects) and sound speed/density

inhomogeneous. We then investigate various 3D scattering effects from ocean envi-

ronment by the developed PFFT-BEM methods. More specifically, the major works

of this thesis include:

(I) Development and validation of an efficient and robust 3D direct nu-

merical solver for shallow water acoustics, PFFT-BEM

A highly efficient boundary element method is developed for the numerical simu-

lation of shallow water acoustics problems. The method is based on the framework

of the boundary element method for the boundary integral equation and the PFFT

method which accelerate the performance of BEM solver. The accuracy and efficiency

dependencies of the PFFT-BEM method for the shallow water acoustics problem is

investigated in this thesis by examining the effects of the numerical element(grid)

sizes, the efficiency of different preconditioners and the numerical scalability of the

PFFT-BEM method. By the optimizing the performance of PFFT-BEM, the key

numerical parameters with best numerical efficiency for shallow water acoustic simu-

lations are present. Three canonical numerical benchmark problems are first consid-

ered to benchmark the PFFT-BEM method against available theoretical/numerical

results: the Pekeris waveguide, the ASA wedge and Gaussian Canyon.
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Our ultimate goal of developing PFFT-BEM is to provide an effective and practical

simulation capability for 4D (3D+T) underwater acoustics simulations. Here, 3D+T

refers to time-stepped, frozen-field modeling of underwater sound. Because sound

moves at 1.5km/s in the ocean, pulsed sound traveling hundreds of kilometers could,

in principle, be modeled by updating medium condition over the excursion time of

hundreds of seconds as the sound moves away from the sound sources [Duda, 2017].

Two additional validation cases with time dependence and realistic ocean environment

conditions are presented: (i) prediction of 4D sound scattering by traveling internal

waves [Apel et al., 1997, Headrick et al., 2000, Badiey et al., 20051; (ii) prediction

of 3D sound scattering in the Mouth of the Columbia River [Reeder, 2016]. By

comparison with these theoretical/experimental results, we demonstrate the efficiency

and accuracy of PFFT-BEM for shallow water acoustics problems.

(II) Study on the 3D scattering by rough surface

The first underwater acoustics problem investigated in this thesis is the 3D rough

surface scattering problem. Several approximate models such as the Kirchhoff ap-

proximation model [Thorsos, 1988], small roughness or slope approximation model

[Thorsos and Darrell, 1989, Thorsos and Broschat, 1995] have been proposed to study

the rough surface scattering problems. These approximate models obtain statistics

of the rough surfaces scatterings, which can be used directly by propagation methods

such as Parabolic equation method or Ray tracing method [Williams et al., 2004] to

simulate the rough surface scatterings and reverberations. As a result, the validity

regions of these approximation models are of critical importance for the study of un-

derwater acoustic reverberation and forward scattering problems. By 2D numerical

and analytical methods [Thorsos, 1988, Thorsos and Darrell, 1989, Thorsos et al.,

2000, Isakson et al., 2008], the validity regions of these approximate models for 2D

problems have been studied extensively. Due to the high computational cost, direct

numerical simulations for 3D rough surface scattering problems are still limited to

small cases. For medium grazing angle problem (0g, 450), we show that L needs to

be at least 50A through convergence tests. For low grazing angle (6 ~ 50), L needs

to satisfy L > 200A. For such problems, most existing 3D numerical methods are
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not applicable. The developed PFFT-BEM significantly reduces the computational

and memory cost of conventional numerical methods (from O(N2 ~ 3) to O(N)). This

gives us a good opportunity to study and provide new insight for the 3D rough sur-

face scattering problems. In this thesis, we conduct direct numerical simulations of

3D rough surface scattering problems with different surface roughness and grazing

angles down to 2.50. Through 3D direct numerical simulations, we obtain the validity

regions of different 3D approximate models for a Gaussian roughness surface. We

compare and discuss the differences between the 2D validity and 3D validity regions.

Finally, by 3D direct numerical simulations, we demonstrate and discuss the effects

of grazing angles on the validity regions of these approximate models especially in

the backscattering direction.

(III) Study on acoustics propagation and sacttering by underwater seamount

By the use of 3D PFFT-BEM, we next conduct numerical study of sound scatterings

due to an underwater seamount. Several approximate methods have been proposed

to study this problem. The N x 2D method, which was introduced by Perkins and

Baer [1982], assume the out-of-plane scattering to be insignificant. For the under-

water seamount problem, the azimuthal inhomogeneity and three-dimensional effects

are important and can not be neglected. So the use of N x 2D method is questionable

under such conditions. Another method, which is applied to study the 3D underwater

seamount problem recently, is the coupled mode method. This method provides ac-

curate results in both backscattering and forward scattering directions for cases with

axisymmetric bathymetry [Taroudakis, 1996, Luo and Schmidt, 2009]. In this thesis,

we assess the performance of this method by comparing 3D direct numerical results

of acoustics scattering by seamounts with different cross section shapes. On the other

hand, 3D parabolic equation method [Lee et al., 1990, 1992] can provide approxi-

mate solution by neglecting the backscattering effects from the seamount. However,

as shown in this thesis, the backscattering effects are important for specified moun-

tain geometries. At last, we introduce two benchmark solutions by direct numerical

simulation: New Jersey shelf seamount and double seamount problem. The ocean

environments and the geometry of the seamounts in these cases are closer to the real
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ocean environment.

1.2 Thesis contribution

1. We develop a direct multi-layer numerical boundary element method for 4D

sound wave equations without fundamental approximations.

2. By the use of pre-corrected Fast Fourier Transform (pFFT) approach which

reduced the computational cost of boundary element solver from O(N 2) to

0(N log N), we obtain highly efficient numerical capability to account for:

(a) Inhomogeneity of water properties

(b) Internal and surface waves

(c) Complex topography

(d) Multiple-scale reverberation/scattering by bottom and water surface

3. We optimize the PFFT-BEM with efficient preconditioner and implement the

developed PFFT-BEM code with efficient computational libraries on the mas-

sively parallel HPC platforms, achieving nearly linear code scalability.

4. By comparing with theoretical benchmark solutions and field measurement

data, we prove that PFFT-BEM to be an effective and practical simulation

capability for 4D (3D+T) underwater acoustics simulations.

5. We conduct 3D direct numerical simulation for rough surface scattering with

different surface roughness conditions and sound wave grazing angles. Through

3D direct numerical simulations by PFFT-BEM, we obtain the validity regions

of different approximate models for a Gaussian roughness surface with difference

surface conditions and sound wave grazing angles.

6. We conduct 3D direct numerical modeling of acoustic propagation in the pres-

ence of shallow water seamount(s). We investigate numerically the importances
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of seamount geometries and sound source frequencies on the acoustics scatter-

ings. Through these numerical studies, we present the applicability of several

propagation models on studying 3D underwater seamount problem.

1.3 Thesis organization

In the Chapter 2, we describe the multi-layer boundary integral equation for the

shallow water acoustic problems and the formulation of multi-layer boundary element

method. We then demonstrate the formulation of the PFFT algorithm to accelerate

the boundary element method and the key numerical issues in its implementation in

detail. We demonstrate the accuracy and efficiency dependencies of the PFFT-BEM

method by examining the effects of the numerical element(grid) sizes, the efficiency

of different preconditioners and the numerical scalability of the PFFT-BEM method.

In Chapter 3, we systematically investigate the accuracy and efficiency of the

PFFT-BEM algorithm by examining three canonical shallow water acoustic prob-

lems: the Pekeris waveguide [Jensen et al., 20111, the ASA wedge [Deane and Buck-

ingham, 1993] and 3D Gaussian canyon problem [Isakson et al., 20141. In each case,

excellent agreements between the 3D direct numerical simulations and the existing

analytical/numerical solutions are shown. We then further investigate the efficiency

and applicability of the PFFT-BEM method for realistic shallow water environments

by comparing with experimental data of two field measurements: the SWARM 95 in-

ternal wave experiments [Apel et al., 1997, Headrick et al., 2000, Badiey et al., 2005]

and the salt wedge experiments in Mouth of Columbia River [Reeder, 20161.

In Chapter 4, PFFT-BEM is applied to study 3D acoustics scattering from a ran-

domly rough surface with Gaussian roughness spectra satisfying the pressure release

(Dirichlet) boundary conditions. The validity regions of different approximate mod-

els for 3D scattering problems are discussed in detail. We further demonstrate the

influence of sound wave grazing angles on the validity regions of these approximate

models.

In Chapter 5, we study and discuss the 3D scattering problem by an underwater
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seamount. By 3D direct PFFT-BEM numerical simulation, we assess the importance

of 3D scattering, backsacttering and blocking effects by the seamount with different

mountain geometries or sound frequencies. Our goal is to demonstrate the applicabil-

ities of N x 2D approximation, axisymmetric method and parabolic equation methods

for underwater seamount problems.

We finally provide our concluding remarks in Chapter 6.
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Chapter 2

Mathematical formulation and

implementation of pre-corrected

FFT-accelerated boundary element

method for shallow water acoustics

In this section, we first systematically introduce the boundary integral equation for

shallow water acoustic problem and the formulation of the related boundary element

method. Then, we further describe the formulation of the multi-layer PFFT-BEM

algorithm that accelerate the BEM solver by reducing the computation cost from

O(N 2~ 3 ) to O(NlogN). We then investigate the accuracy and efficiency dependencies

of the PFFT-BEM method by examining the effects of the numerical element(grid)

sizes, the efficiency of different preconditioners and the numerical scalability of the

PFFT-BEM method. From this, the optimal PFFT-BEM parameters for shallow

water acoustic simulations are obtained. Using these selected numerical parameters,

the capability of PFFT-BEM method in conducting 3D direct numerical simulation

for shallow water acoustic problems with large scale (i.e. large domain size or higher

frequency) will be demonstrated in the rest chapters of this thesis.
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2.1 Formulation of multi-layer boundary element method

We start with the 3D (spatial) Helmholtz wave equation for a harmonic sound wave

p(z, t)V - (P 7P()) + k2p(F) = 0 - E V (2.1)

where X' (x, y, z), t is time, p(') is the sound pressure, V is the gradient operator,

p(z, t) is the medium density, V is the entire domain volume and k is the medium

wavenumber. The problem is subject to the pressure release boundary condition at

the water surface:

p(Y) = 0 SF (2.2)

where SF is the free surface. The Sommerfeld radiation condition is satisfied at the

infinity S..:
8p( *)

- ikp(Y) = 0 x -+ 00 (2.3)

where n is the normal direction on the boundaries. Although shallow water en-

vironment is usually associated with penetrable bottom conditions, a rigid bottom

condition could be considered easily by imposing Neumann boundary condition on

the surface of rigid bottom SB:

p( ) x (2.4)

For shallow water environments, a multi-layer model [Pereira et al., 20101 is

adopted to account for the inhomogeneous of medium properties. In this model,

we assume p and k in each layer to be constant at every instant of time. A sketch of

the multi-layer domain is shown in Fig.2-1.
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Source S,, v, Water Column 1 p, c,

S2, v2  Water Column 2 Ph C2

S 3, v3  Sediment P3, C3

S.

Figure 2-1: Schematic of multi-layer model with a total number I = 3 layers.

Then, at every instant of time, the homogeneous Helmholtz equation governing

the sound field in each layer can be expressed:

Vsp'(i) + k2p (X) =0, X e v (2.5)

where i is the number of layers with i = 1 .... , I, vi is the volume of layer i. Continuity

of pressure p and particle velocity ui are required across the interface S+ 1 (Si) of

neighboring layers vi and vj+1 (including at the penetrable bottoms), the symbol

'A' and 'V' represents the upper and lower boundary of layer i, respectively. The

continuity boundary condition across the interface can be expressed as

pi pj+l z E $+1  (2.6)

P = + E $i+1  (2.7)

Based on the impedance relation between velocity and pressure, the continuity of the

normal gradient of the pressure at the layer interface is derived from Eq.(2.7) as

-pi = i+1 X c<+1 (2.8)
Pi Pi+1

From Green's second theorem, the boundary integral equation (BIE) for the pres-
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sure pi(S) in each layer (X E vi) is derived from Eq. (2.5) as

api(1) - p' G(-; dSj() + pi'()Gn.(; -)dS() = 0 (2.9)

where Si is the boundary of each layer (note that S= SF), G(X; ) 1 .eikl(S-CN

is the Green function which satisfies the Helmholtz equation, 6 is a dummy variable

representing the point on the layer boundary Si, and a is the solid angle.

To demonstrate the coupled domain BEM formulation, we consider the multi-layer

case shown in Fig.2-1. By taking the limit of X -+ Si and using boundary conditions

Eq.(2.2), Eq.(2.3), Eq.(2.6) and Eq.(2.8), the BIE in Eq.(2.9) for each layer can be

coupled into one large set of integral equations as

apl(S) - ff 1 j3 X)GQz; )dS1(C) + 01 ffil j3()G(F; ()dS 1 (f) + ff 1 2 (4)G,(-; ()dS 1 (f)

47rfsekIs- - X8, E Si

XpiQs) - ff3p.(C)G(F; ()dS(() + ffi, Y( )GnV; C)dS()) + #4 ff ()G(; ()d54(f)

+ ffP. i+1(f)Gn(F; S)dS4(() = 0, E S2,...1-1

ap'(Y) - ff, d)G(,;4)d1() + ff, j3(()Gn(; )dS1() = 0, E S1

(2.10)

where fs is the strength of a point source located at Y, in layer 1 as shown in Fig.2-1.

#4= . It should be noted that the Green's function automatically satisfies the

Sommerfeld condition given by Eq.(2.3), therefore, S, does not appear in Eq.(2.10)

[Wu, 1994, Pereira et al., 2010].

For simplicity, we used Constant Panel Method (CPM) in the present study. In

this method, we discretize the boundaries of all of the layers into N quadrilateral ele-

ments. On each element, the quantities such as the acoustic pressure p and the normal

gradient of the pressure Pn are assumed to be constant. These transfer Eq.(2.10) into
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a set of linear algebraic equations of the form

27p1(x) - + = /i L,()j + Z,~ i(F2)j = 47rfseiII _ - , E S,

2 irp(X) - EN (j + EZI( )j + i EN%(F+1) + E +1 = 0, E 2,...1-1

27rp'(s) - Zt'(F), + Zi (F)y = 0, E S,
(2.11)

with

= (i) G ) ( = (P)3 fJf G(x; ()dS( ) (2.12)

(F = (5i)J G ((; C)dS4(f); (Pj)y = (f J G ((; ()dS (j) (2.13)

where E represents the jth constant element and N' is the total element numbers in

ith layer. Here, solid angel a equals to 27 on the smooth domain boundary based on

CPM. The entire linear system of equations, Eq.(2.11), is then expressed as

[A] {x} = {b} (2.14)

where [A] is a N x N dense and nonsymmetric matrix of influence coefficients with

N = E-_ 1 N, {x} is the vector of unknowns (p and pn) on domain surface and {b} is

the known vector due to the point source at x,. Equation (2.14) may be solved using

direct matrix inversion method such as Gaussian elimination, which requires O(N3 )

operations. An iterative solver such as the generalized minimum residual (GMRES)

method [Saad and Schultz, 1986] could also be applied to solve the system Eq.(2.14).

GMRES normally requires O(NitN2 ) operations with Nitr the iteration numbers of

the GMRES solver. The most expensive step in the iterative solver is matrix-vector

product ([A{x}) which require a minimum of O(N2 ) operations. Physically, each

multiplication F, (or F) in [A] {x} represents the influence from element j to element
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i on the domain boundary. As a result, the N elements contain N2 interactions.

The 0(N 2 ) effort of the iterative methods limits the applicability of BEM to 3D

underwater acoustic problems involving a large number(N) of unknowns (e.g. large

domains or high frequency).

2.2 Formulation of pre-corrected fast Fouier trans-

form method

An alternative approach is to use the Precorrected-FFT algorithm which can eval-

uate the product [A]{x} with O(NlogN) operations without explicit construction

of the matrix [A]. This efficient numerical algorithm is developed to solve acoustic

propagation and scattering problems in shallow water environments in the present

study.

For illustration, we consider the form of pressure p(z) at point X due to a source

(G(Y; ()) distribution on N boundary elements on S, e.g.

N N

p(X)= J o-()G(; )dS()= I Q ) (2.15)
j=1 j=1

where E is the jth boundary element, o- is the strength of source distribution, and

Ih3 is the contribution to the pressure at F due to the source distribution on the jth

element.

The evaluation of pressure p(Y) in Eq.(2.15) for X at the collocation points of N

elements by the PFFT algorithm mainly contains five steps: (i) grid definition, (ii)

projection, (iii) convolution, (iv) interpolation and (v) near field correction.

Grid definition: In this step, we identify a 3D block that contains the entire 3D

domain after it has already been discretized into the N boundary elements. By

subdividing this 3D block into a grid of small cubes, each differential cube will contain

only a few of the boundary elements. Each of these small cubes is referred to as a

cell. By temporarily computing the pressures on the cell grid points, we can account
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for the distant interactions by using only a few weighted local pressure cell values.

Furthermore, by evaluating these pressures on a uniform grid, the pressure evaluation

has the form of a convolution (will be derived in the projection step) which allows

for it to be evaluated with FFTs. Correction steps are then taken at the end of the

algorithm to adjust the solution from the cell values back to the boundary element

mesh. Our algorithm constructs this surrounding grid using N, x N x N, uniform

grid in the x-, y-, z- directions (with Ng = N, x Ny x N). Note that the grid

size h does not necessarily need to be identical in the three directions. Without loss

of generality, h is considered to be constant [Yan and Liu, 20111.

Projection: In this step, the source distribution Eq.(2.15) is projected to point sources

at the v 3 (V > 2) vertices of the cell which contains the boundary element Ej. An

accurate projection must satisfy the requirement that the p(S) obtained from the net

influence of the point source at cell vertices must be identical to that of the original

source distribution on the elements.

In order to do that, we first represent the Green function G(z; ) (i.e. p(s) results

from a unit source at ) by the net influence of point sources at the vertices of the

cell which covers point source G(z; ):

V 3

G (X; )=E Hm ((m) G (A; m) (2.16)
m=1

where (m is the coordinate of the mth vertex of the cell which covers the element Ej

and Hm is the spatial interpolation function for the m'h vertex of the cell. Several

methods has been proposed to to construct H. The most direct way is to expand the

left and right hand sides of Eq.(2.16) separately based on Taylor series expansion and

obtain the expansion coefficient by matching the two sides of the equation. However,

this method is very tedious and thus time consuming. We here follow the same

procedure proposed by Yan and Liu [2011] which obtained the same H as the direct

way but with much less computational efforts. We take the Green function G(z; )

and a cell with 23 vertices as an example. We define a set of linear function which
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can represent the function G as

K=4

G(X; 4) = A cf( )fk(f) = ( ') (2.17)
k=1

where fk(() = 1,(, 77, for k = 1, 2, 3,4, respectively, {f}T = {ff, f2,..., fK}, and

{c} = {c1 , C2, ... , CKIT. The unknown coefficient vector {c} could be obtained by

substituting the values of G at vertices of the cell (m, m = 1, 2, ... , 8 into Eq. (2.17).

G1(, (X1C) f 1( ) f 2 ( ) --K ((I C1

{G}(x) = G 2(X, ) fi() f2(G) - -fK C2( = [F]{c}()

GF7zC8) h1(C 8) f2 ((8) -.-. fK 8W CKF

(2.18)

For a given F, {G} and [F] are known. We thus solve for {c} from solving Eq.(2.18).

{c}(Y) = [F] 1 {G}{} (2.19)

After substituting Eq.(2.19) into Eq.(2.17), we could obtain G(', ) inside the cell

represented in terms of G(z; m) at the cell vertices as

G(X; () = {f} T (f)[F] 1 {G}(Y) (2.20)

Comparing Eq.(2.20) with Eq.(2.16), we obtain the linear interpolation function

H as

{H}(f) = {f} T ( )[F]- 1  (2.21)

where {H} = {H1 , H2 , ... , H8 }T for a 8 vertices cell. For K = 4, Eq.(2.18) is an over-

determined system of equations and the singular value decomposition method could

be applied to obtain [F]- 1 . Instead of using Eq.(2.17), we can also approximate the
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Green function inside a cell with 23 vertices as

K=8

G(;) = ; ck( )fk ( ) (2.22)
k=1

where fk (C) =, , , , , , for k = 1, 2, ... , 8, respectively.

Following the same procedure in Eq.(2.18)-Eq.(2.21), we could obtain the inter-

polation function {H} in another form as

Hm({ = (1 + (m) (I + j7,q) (I + m), m = 1, 2, ..., 8 (2.23)

where ( , 77, ) are the coordinate of cell vertices in a natural coordinate system. The

quadratic terms (2, 72 or 2 are not included as it would make [F] in Eq. (2.18) singular

due to the symmetry property of the matrix. In addition, although more terms are

included in Eq.(2.22) than in Eq.(2.17), it does not necessarily give more accurate

solution as the maximum errors in these two methods are in the same quadratic order.

On the other hand, we could obtain a interpolation function {H} which includes

partial cubic and complete quadratic terms for a 33 vertices cells. One way to derive

{ H} based on a 27-vertex cell is to write G in the form as

K=17

G( = ( c(X)f ) (2.24)
k=1

where fk() = 1, (, 2, , 21,1g, 2, 2 72, 2 2 2 ,2 j2 for k = 1, 2, ... , 17,

respectively. Following the same procedure as described to solve for linear interpola-

tion functions, the quadratic interpolation functions could also be determined. As a

result, I (z) is expressed as

V
3

I = I -({G('; ()dS() = E qjmG (; Cm) (2.25)
SfJEj 0 Xm=1

where

qjm = -(C) Hm()dS() (2.26)
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Eq.(2.26) is used to determine the strength of the projected point source, qj,, at mth

vertex of the cell associated with the jth element. After taking the summation of all

the projections of the boundary elements associated with the uniform 3D FFT grid

n, the total strength of the point source at nth grid q, is given by

Nn

qn= Z qn (2.27)
j=1

with n = 0, 1, ... , Ng - 1, Nn represents the total number of boundary elements asso-

ciated with the uniform 3D FFT grid n.

Convolution: In this step, we evaluate the pressure at the 3D grid points due to point

sources at these grids as

Ng -1

PI = gnGq n 1 = 0,l, ... , Ng - 1 (2.28)
n=o

where Gln = 1 eiklx,-XnI.The Fast Fourier Transform (FFT) is used to evaluate

Eq.(2.28) efficiently as it is in a convolution form. Before directly applying FFT,

the forms of the G and q terms needs to be modified since the total number of G

terms differs from that of q and due to Go being singular. To do this, we fist define

a function P as

Ng-1

P= q' G_, I = -Ng + 1, ... , 0, 1, ... , Ng - 1 (2.29)
n=-Ng+1

where q' and G' are periodic with the same period (2Ng - 1) and are defined as

G_= 0 = n, (2.30)

Gl n, -Ng +1 <1-n Ng- land 1 #-n

and

qn'{0, -Ng+1<n<0, (2.31)
qn, 0 < n N9 - 1.
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Eq. (2.29) is now in the convolution form of two discrete periodic functions. Therefore,

FFTs can be directly applied to evaluate P for a given q' and G' with a computational

cost of O(NelogN9 ). With the self influence excluded from p in Eq.(2.28), we have

pi = P, 1 = 0, 1, ... , N9 - 1 (the self influence of point source will be added to solution

in the step of near field correction).

Interpolation: In this step, we evaluate p(S) on the boundary elements using the

interpolation function Hm based on the grid values p, obtained in the convolution

step. The form of p(s) can now be expressed as

V3

p(Y) = Hm( )p( m), (2.32)
m=1

where m is the m'h vertex of the cell surrounds the element located at Y.

Near field correction: In this step, we correct the near field part of p(s) evaluated by

FFT based on Eq.(2.25). This is due to the fact that when Ix - (1/h ; 0(1), the

accuracy of representation of G(X; ) by G(z; f), m = 1, ... , v 3 deteriorates. In this

step, the near field contribution evaluated in the convolution step and the exact near

field contribution obtained using direct computation is subtracted and added to the

solution, respectively. The correction Ap(Y) is represented as

X)= PN ) - PFN (2-33)

where PFN() is the near-field part of the influence obtained from Eq.(2.32) based on

the results in convolution step and PN(x) is the exact influence of the near-field ele-

ments determined by directly evaluating the boundary element integrals in Eq.(2.15).

Then, the final result of p(g)

p) (X) + X ) (2.34)

where PF() is the total influence results evaluated from the convolution step.

Similarly, p, can be valuated by the same manner using PFFT algoritm. We
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consider the normal gradient of the pressure pn(z) at ? due to the influence of the

dipole distribution with strength -y(() on a surface S, e.g.

PnQ) ()(; )dS(C) = Ic(() + In() + I (-) (2.35)

zn) = J (f)()G( ; )dS(f), x (2.36)

where (nc, n,, n ) are the three components of the unit normal on S((). Instead of the

G(X, ) from the earlier description, we now have G (, ) = G( (Y - (), G, ( )X =

G,(- () and G (,) = (X - (). As a result, IC(I, I ) can be determined using

the PFFT algorithm described in the above with G and o- replaced by G (Go, G)

and nCy(n7,y, nr-y), respectively.

In summary, the evaluation of the pressure p on the boundary by the PFFT

algorithm involves computational accounts of O(N), O(v 3N), O(NglogNg), O(N),

and 0(v3 N) in the grid definition, projection, convolution, interpolation and near-

field correction steps, respectively. For shallow water applications, Ng is normally of

the same order as N. The total computational cost using the PFFT-BEM algorithm

is thus ~ O(NlogN) which is much lower comparing with conventional BEM with

O(N 2 ) for N >> 1.

In this section, we have shown the formulations of coupled layer BEM and the

PFFT-BEM algorithm for 3D shallow water acoustic problem. The key numerical

steps of PFFT-BEM are illustrated. It is shown that the PFFT-BEM method reduces

the computational cost from O(N 2) to O(NlogN) which is much more efficient for

N >> 1. As a result, the PFFT-BEM method is very suitable to study the shallow

water acoustic problems in which complex 3D and large scale computational domains

are usually considered.

2.3 Accuracy dependence on numerical parameters

In order to investigate the numerical accuracy and efficiency of PFFT-BEM algorithm

for shallow water waveguide problem, we begin by considering a Pekeris waveguide
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problem [Jensen et al., 2011] with flat pressure release boundary on the top and flat

penetrable bottom. A unit source with frequency f = 20Hz is located at depth

z = 36m. The depth of the upper water column H = 100m with an infinite depth

in the bottom layer. The water column has a density pi = 1g/cm 3 and sound speed

ci = 1500m/s while P2 = 1.89/cm 3 and c2 = 1800m/s in the bottom layer. Different

computational domain and element(grid) sizes will be used and compared in order to

demonstrate the accuracy and efficiency of PFFT-BEM.

x

P1, C= H = 100m

P2, C2

Figure 2-2: Geometry of the Pekeris waveguides [Jensen et al., 20111: a 20Hz point

source is located at z=36m. The depth of the upper water column H = 100m with an

infinite depth in the bottom layer. The water column has a density pi = 1l/cm 3 and

sound speed ci = 1500m/s while P2 = 1.89/cm3 and c2 = 1800m/s in the bottom

layer

Two important factors that determine the accuracy of the PFFT-BEM are investi-

gated: the interpolation from boundary elements to FFT-grids and the discretization

of FFT-grids and boundary elements.

We first examine the behavior of the interpolation errors. In the far field, the

interpolation error is determined by the ratio between the FFT grid size h and the

acoustic wavelength A (i.e. h/A). In the present study, we chose h/A to equal to Al/A

where Al is the size of the boundary elements. This ensures that the interpolation

error is of the same order as the discretization error in the far field. In the near field,

the interpolation error is a function of the polynomial order # of the interpolation

function H where # = 1, 2 denotes linear (i.e. Eq.(2.17)) or quadratic polynomials

(i.e. Eq.(2.24)) and d/h is the critical distance separating the near and far fields.

We compare the pn on the top surface (pressure release boundary) and p on
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the bottom surface (penetrable boundary) of the Pekeris waveguide obtained using

PFFT-BEM with the numerical solutions obtained by conventional BEM. The com-

putational domain size of the Pekeris waveguide is chosen as 1km x 1km x 100m

with uniform meshing Al = h = A/12. In Fig.2-3(a), 6 denotes the average difference

between conventional BEM solutions and PFFT-BEM solutions normalized by the

conventional BEM solutions (e.g. for p, c = 1 N ((PBEM)i - (PPFFT)i)/(PBEM)i)

and is shown as a function of d/h. It is seen that for both # 1 and 2, 6 decays with

increasing d/h, as expected. In addition, the convergence rate of the PFFT-BEM

solutions with increasing d/h are much faster when quadratic interpolation functions

(#= 2) are used.

To compare computational cost, PFFT-BEM with # = 1, 2 are applied to solve

the Pekris waveguide problem using different size of meshing. Using the numerical

experiment shown in Fig.2-3(b), we compare the operation count per iteration Np for

PFFT-BEM using different # and it is seen that # = 2 uses only slightly more CPU

operations per iteration than the # = 1 scheme. For underwater sound field measure-

ments [Robinson et al., 2014]), the uncertainty of the receiver system in laboratory

conditions is approximately 0.1dB, and the overall uncertainty for a field receiver is

ldB. As a result, an average relative error of c ~ 1% (i.e. 0.1dB) would be sufficient

for the underwater acoustic numerical simulation and is used as the standard to judge

the methods of interpolation and discretization in the present study. As a result, we

have chosen to use the PFFT-BEM parameters as 3 = 2, d/h = 3 for the remainder

of the study.

To examine the discretization error, we compare our numerical solution of the

Pekeris waveguide with the known analytical solution [Jensen et al., 20111 in order to

understand the convergence characteristics of the PFFT-BEM numerical predictions.

Here, we continue to use that d/h = 3 and 0 = 2. The maximum and averaged errors

between the analytical results and the numerical values is defined as

Eaverage = N ((PPFFT)i - (PanalyticalMi)Panalytical)i (-7

46



2 3
d/h
(a)
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Figure 2-3: (a) Normalized average interpolation errors E between PFFT-BEM and

conventional BEM on different surfaces as a function of d/h. (b) Comparison of

operation count per iteration step of PFFT-BEM using linear (6=1) and quadratic

(#=-2) interpolation function as a function of N.

Emax = max{|((PPFFT)i - (Panalytical)i)/(Panalytical)ilI (2.38)

are shown in Fig.2-4. The errors of pressure at z = 46m decrease approximately
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quadratically as element (and grid) size Al/A decrease (i.e. decrease linearly with the

element area) as expected.

100 [

-0 10-' [

10-2

10'
A/Al

Figure 2-4: Normalized average Caverage and maximum Emax errors of the pressure

at z = 46m of the Pekeris waveguide obtained using the PFFT-BEM as a function

of A/Al. The slopes , are approximately equals to -2 for both the maximum and

averaged errors shown.

2.4 Determination of preconditioner

The computational cost in solving Eq.(2.9) is also largely impacted by the convergence

rate of the iterative solver (i.e. Nitr defined in section 4.2). An efficient preconditioner

[Axelsson, 1996] can significantly increase the convergence rate of the iterative solver

(i.e. reduce Ntr) and thus reduce the computational cost. The pattern of matrix

A highly determines the effectiveness of the a preconditioner. It is well known that

the Jacobian preconditioner (i.e. diagonal preconditioner), which is widely used for

Neumann problem in which A is a diagonal dominant matrix, is not efficient for the

Dirichlet or mixed boundary condition problem in which A is not a diagonal dominant

matrix. In this study, we use a so called 'Mesh-based Neighbor(MN)' preconditioner
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which has been shown to be useful in different kinds of boundary value problems

[Chen, 1998, Harris and Chen, 2003]. The key idea of this method is to approximate

the dense matrix A-- by a sparse matrix M- and solve the system as

M- 1Ax = M-1 b (2.39)

It is found that as M -+ A, the system would converge faster. For general BEM

problems, the influences from far field elements are generally much weaker than the

neighboring elements' and decays as 1/r. Thus an effective pattern for the jth column

of M- can be computed by selecting and meshing only neighboring elements of

element j to formulate and inverse the submatrix. By doing this, we can capture

the main entries of A 1 as M while keeping M 1 reasonably sparse. We test MN

method for Pekeris waveguide with two different size of 1km x 1km x 1OOm and

25km x 15km x 100m. Here, we chose d/h = 3, 3 = 2 and Al/A = 1/8. Three

different MN preconditioners are used: the diagonal-type preconditioner for which

only the mesh's self interaction is considered; the MN preconditioner including 2

neighboring meshes (Nm = 2); and the MN preconditioner including 4 neighboring

meshes (Nm = 4). The case without a preconditioner is also presented for comparison.

In Fig.2-5(a), the MN-preconditioner is shown to improve the computational speed of

the PFFT-BEM code by nearly an order of magnitude for the small Pekeris waveguide

problem. For the larger case, as shown in Fig.2-5(b), the preconditioner increases the

convergence speed by nearly 2+ orders of magnitude. Comparison of the various MN

methods shown in Fig.2-5 shows that although faster convergence is obtained with the

larger matrix bandwidth, the increase is not dramatically significant above Nm = 2.

This further confirms that the influence of the neighboring elements decays rapidly

with distance from the element.
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Figure 2-5: GMRES residual [Saad and Schultz, 1986] as a function of iteration

number for the (a) Pekeris waveguide problem with size of 1km x 1km x 100m,

(b) Pekeris waveguide problem with size of 25km x 15km x 100m. The results are

obtained: without a preconditoner, with Jacobian diagonal preconditioner and MN

precondtioner with neighboring meshes Nm = 2,4.
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2.5 PFFT-BEM scalability on numbers of processors

and unknowns

To further increase the numerical capability, the PFFT-BEM is implemented using

the PETSc software package which allows for efficient highly scalable algorithms to

be developed [Balay et al., 20171. To demonstrate the scalability of the parallelized

PFFT-BEM, we report the scaling results by comparing the total execution time

for a fixed problem as a function of the total processor count. We perform this

test using a finely meshed Pekeris waveguide case with a computational domain of

size 10km x 10km x 100m and element size Al = A/16 which makes N = 7 x 106.

We use # = 2, d/h = 3 and Nm = 2 in this case. The test is carried out using:

P = [120, 240, 320, 480,600, 800, 960] where P is the number of processors that are

used. As shown in Fig.2-7(a), we define a variable called 'speed up' which defined as

the CPU time for a run with P processor compared with the run with P = 120 case.

Strong scaling is observed in Fig.2-7(a) with the computational speedup being nearly

linear with the processor count.

9

8

7

6

S5

c4

3

2

0

-+- PFFT-BEM
- - Linear speed up

0 200 400 600
CPU Numbers

800 1000 1200

Figure 2-6: CPU scaling for the Pekeris waveguide and fixed N=

increasing processors counts, using PFFT-BEM.

7 x 106, with
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Figure 2-7: (a) Comparison of memory requirement of PFFT-BEM method (slope

r, ~ 1) and conventional BEM (slope K ~ 2) as a function of N. (b) Compari-

son of operation count per iteration step of PFFT-BEM method (slope K - 1) and

conventional BEM (slope r ~,- 2) as a function of N.

In Fig.2-7(b), we plot the operation count per iterative step of PFFT-BEM versus

different N for the Pekeris waveguide problem. We use # = 2, d/h = 3 and Nm = 2

in this case. For comparison, the computational effort of conventional BEM is also

52



plot. It can be seen that the computational effort is proportional to N for PFFT-

BEM while that of conventional BEM is proportional to N2 and much larger than

the computational effort of PFFT-BEM.

We will further demonstrate the effectiveness of the PFFT-BEM method and its

capability in simulating realistic acoustic wave propagation and scattering problems

in 3D range dependent environments by examining three canonical shallow water

problems: the Pekeris waveguide, the ASA wedge and a 3D underwater seamount

problem. We have chosen to use the PFFT-BEM parameters as 3 = 2, d/h = 3

and Nm = 2 in all these benchmark cases. Different grid(element) sizes are used to

show the convergence of the numerical results towards the theoretical results. All

the computations are performed on parallel HPC platforms with large number of

computational nodes that each contains 32 Intel Xeon processors clocked at 2.3GHz.

2.6 Concluding remarks

We develop a highly efficient multi-layer boundary element method for large scales

acoustics propagation and scattering in shallow water environment with complex

medium and boundaries. The method is based on the integration of the pre-corrected

fas Fourier transform (PFFT) algorithm into the constant boundary integral solver.

The developed PFFT-BEM reduces the computational operations for the boundary

value solution from O(N 2 ~ 3 ) to O(Nlog N), where N is the total number of boundary

unknowns. We demonstrate the high efficiency and robustness of PFFT-BEM by

comparing the numerical its cost with conventional BEM for solutions of a canonical

shallow water acoustics problem: Pekeris waveguide problem. To further improve

the efficiency of the PFFT-BEM solver, we optimize the PFFT-BEM scheme by

examining the accuracy dependence of the PFFT-BEM on key numerical parameters

such as the size of the near field and the boundary mesh sizes. By making use of

the Mesh-Neighbor-based (MN) preconditioner, we further improve the convergence

of PFFT-BEM iterative for 2+ orders. With high performance library (e.g. PETSc

and FFTW3), we implemente PFFT-BEM on massively parallel HPC platforms to
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achieve linear CPU scalability up tp 0(1000) CPUs. The PFFT-BEM could thus

account for cases with: (a) Inhomogeneity of water properties. (b) Internal and

surface waves. (c) Complex topography and lateral boundaries. (d) Multiple-scale

reverberation/scattering by bottom and lateral boundaries and water surface. For

the validity and applicability of PFFT-BEM, the performance of PFFT-BEM will be

further studied using several benchmark solutions and acoustics scattering problems

under realistic underwater conditions in the next chapter.
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Chapter 3

Numerical validation/ benchmark of

the PFFT-BEM method

In this section, we first benchmark the PFFT-BEM method against available theoret-

ical/numerical results: the Pekeris waveguide, the ASA wedge and Gaussian Canyon.

Good agreements are obtained against available theoretical/numerical results which

validate the accuracy of PFFT-BEM. Another goal of this chapter is to demonstrate

the practical simulation capability of PFFT-BEM for 4D (3D+T) underwater acous-

tics scattering problems. As a result, the next part of this chapter is to illustrate the

numerical capability of PFFT-BEM in the simulation of sound scattering variations

due to the change of medium properties with time. Two cases are considered: (i)

prediction of sound scattering by traveling internal waves; (ii) prediction of 3D sound

scattering in the Mouth of the Columbia River.
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3.1 Comparison with existing analytical and numer-

ical results

3.1.1 Pekeris waveguide

Homogeneous ocean condition

We continue to use the Pekeris waveguide benchmark case. The computational do-

main is 10km x 10km x 100m. The boundary element model consists of uniform

quadrilateral element with edge length of Al equals to A/8 or A/12. The numer-

ical method computes the transmission loss (TL) along the range at depth of at

z = 46m and we compare it with the analytical results [Jensen et al., 2011] as shown

in Fig.3-1(a). The numerical results compare well with the reference result which

could validate our numerical method.The numerical results shows a clear convergence

to the theoretical solutions when the Al is decreased from A/8 to A/12. The total

computational time for the Pekeris waveguide case with Al = A/8 is 276.3s with 16

computational nodes.

Inhomogeneous ocean condition: summer sound profile

In this subsection, we demonstrate the use of the PFFT-BEM to realistic range-

dependent underwater acoustics problems. The same Pekeris waveguide is used but

with the summer sound profile [Kuperman and Lynch, 2004]. The bottom is ho-

mogeneous with sound speed 1700m/s, density 1.5 g/cm 3 and medium attenuation

a = 0.5dB/A. Fig.3-2 shows the spatial variations of sound speed in the water column.

The sound frequency is 60Hz located at 70m below the sea surface. The computa-

tional domain is 2km x 2km x 100m. The boundary element model consists of uniform

quadrilateral element with Al equals to A/8. The numerical method computes the

transmission loss (TL) along the range at depth of at z=70m.
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Figure 3-1: (a) Tranmission Loss (TL) at z = 46m for 20Hz point source at 36m

depth in the Pekeris waveguide: comparison between theoretical predictions[Jensen

et al., 2011J and PFFT-BEM. (b) Contours of transmission loss vs. depth and range

for 20Hz point source at 36m depth in the Pekeris waveguide

Since no theoretical results are available for validation, we show the convergence

of the numerical results with respect to the number of layers used in PFFT-BEM.

We consider four cases with different number of layers: (i) In the two layer case, the
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sound speed is 1500m/s in z=0-100m region and 1700m/s in z>100m region.
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Figure 3-2: Shallow water summer sound profile with a gradient region at 20m -40m.
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Figure 3-3: Tranmission Loss (TL) at z=70m for 60 Hz point source at 70m depth in

the Pekeris waveguide with summer sound profile: comparison among PFFT-BEM

results with different number of layers.

(ii) In the three layer case, the sound speed is 1530m/s in z=0-30m region, 1500m/s
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in z=30-100m region and 1700m//s in z>100m region. (iii) In the four layer case, the

sound speed is 1530m/s in z=0-20m region, 1515m/s in z=20-40m region, 1500m/s

in 40-100m region and 1700m/s in z>100m region. (iv) In the five layer case, the

sound speed is 1530m/s in z=0-20m region, 1520m/s in z-=20-30m region, 1510m/s

in 30-40m region, 1500m/s in 40-100m region and 1700m/s in z>100m region. After

five layers is used, Fig.3-3 shows the numerical results converging with errors only in

high TL region. This example demonstrates the use of PFFT-BEM for shallow water

environment with inhomogeneous sound profiles.

3.1.2 Acoustical Society of America (ASA) wedge

An idealized wedge problem, shown in Fig.3-4, is used as the second benchmark

problem. A 25Hz point source is located at (x, y, z) = (0, 0, 100m). The wedge

meets the free surface (z = 0) at y =-4000m. The computational domain size covers

the range of 28km x 8km x 400m. The water column is homogeneous with sound

speed ci = 1500m/s, density pi = ig/cm 3, and no medium loss. The bottom is

also homogeneous with sound speed 1700m/s and medium attenuation a = 0.5dB/A.

Two examples with bottom density equal to 1 or 1.5 g/cn3, which corresponds to a

fluid or soil bottom, are presented. The boundary element model uses quadrilateral

element with Al = A/8 or A/12.

In the first example, we consider the bottom density to be 1g/cn3. Fig.3-5(a)

compares the numerical results of TL to the theoretical solution derived by Deane

and Buckingham [19931 along x-axis at z = 30m. Excellent agreement between our

3D predictions and the theoretical solutions are observed in Fig.3-5(a). The total

computational time for the first ASA wedge example with Al = A/8 is 3163s with 15

computational nodes (480 CPUs).

In the second example, we considered a bottom density of 1.5g/cM 3 and kept

the same computational domain size and resolution as the first ASA example. Once

again, the comparisons of numerical TL along x-axis at z = 30m to analytical results

shown in Fig.3-6(a) are excellent. Using direct 3D boundary element simulations, we

capture full 3D features as shown in Fig.3-5(b) and Fig.3-6(b) which is not generally
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available using 2D numerical methods.

x

Z yz Source

Z

P1, cl

Figure 3-4: Geometry of the underwater ASA wedge, slope angle 7r/63. A 25Hz point

source is located at (x,y,z)=(0,0,100m). The wedge meets the free surface (z=0) at

y=-4000m.

The total computational time for the second ASA wedge example with Al = A/8

is 4113s with 15 computational nodes (480 CPUs).

To further demonstrate the code's capability to simulate higher frequency case, we

simulated an ASA wedge case with source frequency f = 75Hz. The slope angle in

this case is 7r/36, and the medium properties in the water column and the bottom are

the same as the fluid bottom case shown above. The source is located 2km away from

the wedge apex at depth 100m. The computational domain size is 28km x 4km x 400m.

The element resolution are identical to the previous ASA wedge. The TL along the

x-axis at z = 30m and the TL contour on the horizontal x - y plane at z = 30m

obtained from PFFT-BEM are shown in Fig.3-7(a) and Fig.3-7(b). In Fig.3-7(a), the

numerical result compares very well with the theoretical result which demonstrates

the efficiency and accuracy of the present method for higher frequency cases. The

total computational time for the higher frequency ASA wedge with Al = A/8 is

22678s with 20 computational nodes (640 CPUs). It should also be noted that the

numerical results show a clear convergence to the theoretical solutions when the Al

is decreased from A/8 to A/12 for all the three ASA wedges.
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Figure 3-5: (a) TL along the x-axis at z = 30m for ASA wedge: comparison between

theoretical predictions by Deane and Buckingham [19931 and 3D direct simulations

by PFFT. (b) TL obtained using PFFT-BEM on the x - y plane at z = 30m. Case 1:

source frequency f = 25Hz with two water layers and both having the same density,

p - lg/cm 3, but different sound speeds, ci = 1500m/s, c2 = 1700m/s. The bottom

layer has a medium attenuation a = 0.5dB/A.
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Figure 3-6: (a) TL along the x-axis at z = 30m for ASA wedge: comparison between

theoretical predictions by Deane and Buckingham [19931 and 3D direct simulations

by PFFT. (b) TL obtained using PFFT-BEM on the x - y plane at z = 30m.

Case 1: source frequency f = 25Hzwith upper water layer having pi = 1l/cm3 ,
c, = 1500m/s, on top of a soil bottom with P2 = 1.5g/cm3, c2 = 1700m/s. The

bottom layer has a medium attenuation a = 0.5dB/A.
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Figure 3-7: TL along the x-axis at z = 30m for ASA wedge: comparison between

theoretical predictions by Deane and Buckingham [1993 and 3D direct simulations

by PFFT. (b) TL obtained using PFFT-BEM on the x - y plane at z = 30m.

Case 3: source frequency f = 75Hz with upper water layer having p, = 1g/cm 3,

c, = 1500m/s, on top of a soil bottom with P2 = 1.5g/cm3, c 2 = 1700m/s and a

medium attenuation a = 0.5dB/A.
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3.1.3 3D Gaussian canyon

In the third benchmark problem, we consider a waveguide problem with Gaussian

canyon with a pressure-release surface and a penetrable bottom. The water column

has a depth of 700m with c1 = 1500m/s and pi = 1.0g/cm 3. A point source with

f=25Hz with unit strength is placed at (x, y, z) = (0, 0, 30m). The bottom has

the properties as p2 =1.5g/cm3, c2 =1700m/s and a=0.5dB/A. The geometry of the

Gaussian Canyon bottom is defined as

z(x) = -200 - 500exp[-(x - 5000)2/4] (3.1)

where the coordinate system (x,y,z) is used and defined as shown in Fig.3-8.

Figure 3-8: The geometry of the Gaussian canyon used in the present study with

upper water layer having p1 = ig/cm3 , Ci = 1500m/s, on top of a soil bottom with

p2 = 1.5g/cm3, c2 = 1700m/s and a medium attenuation a = 0.5dB/A.

The computational domain size is 12km x 23km x 750m. PFFT-BEM uses quadri-

lateral elements with Al = A/8. As the bottom is invariant along y-axis, the numerical

results obtained by longitudinal invariant finite element method are used to compared

with the 3D direct simulation results obtained by PFFT-BEM.
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Figure 3-9: (a) TL along the y-axis at z = 35m for Gaussian canyon: comparison

between longitudinal invariant FEM predictions [Isakson et al., 2014] and 3D direct

simulations by PFFT-BEM. (b) TL obtained using PFFT-BEM on the x - y plane

at z = 30m.

As shown in Fig.3-9, our numerical results compares well with the results obtained

by the longitudinal invariant. The prediction by 3D direct PFFT-BEM agrees well

with that by the 2.5D FEM method [Isakson et al., 2014] valid for longitudinal-

invariant (2D) geometries. TL contour in the horizontal plane at the source depth is
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also plot in Fig.3-9 in which significant 3D horizontal refractions could be observed.

The total computational time for the low frequency seamount with Al = A/8 is 1hr

with 20 computational nodes.

3.2 Comparison with experimental results

3.2.1 Prediction of 4D sound scattering by traveling internal

waves

Tidal interactions with bottom features often generate internal solitary waves (ISWs)

in the shallow water environment. Previous experiments [Apel et al., 1997, Headrick

et al., 2000, Badiey et al., 2005] found that the acoustics signals would fluctuate when

the sound waves were transmitted through ISWs. The amplitudes and phases of these

fluctuations are highly correlated with the ones of ISWs. Quantifying the interaction

between the acoustics wave and ISWs are of importance for shallow acoustics. In 1995,

the multi-institutional SWARM'95 experimental was conducted on the New Jersey

continental shelf and showed strong variability, of 7 dB, for a broad band signal

propagation through ISWs [Apel et al., 1997, Headrick et al., 2000, Badiey et al.,

2005]. A schematic diagram of the acoustics source and receiver position relative to

the ISWs front during the experiment are plot in 3-10 (a) [Badiey et al., 2005].

During the interval 18:00 to 20:00 GMT on 4 August 1995, the source was placed

at 12 m below the sea surface at the position about 15km from the receiver as shown

in Fig.3-10 (b). The receiver was placed at 45m below the sea surface. The broadband

source frequency f equals to 30-160Hz with 3 peak frequencies at 30Hz, 60Hz and

90Hz. Using PFFT-BEM, we simulate the propagation of the acoustics waves through

the internal waves. As shown in Fig.3-10 (b), a three layer condition is used in 3D

PFFT-BEM direct numerical simulation. The properties of the water column and sea

bottom is based on the data from Badiey et al. [2005].
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Figure 3-10: (a) Field experiment arrangement of the source/receiver and their rel-

ative position with respect to the internal wave fronts [Badiey et al., 20051 (b) Pa-

rameters of PFFT-BEM simulation (oblique sea condition): upper water layer with

p1=1.024g/cm 3, c1=1530m/s, lower water layer with p2=1.0257g/cm3, c2 =1480m/s

and the bottom layer with pb=1.8g/cm3, cb-1750m/s and a=0.4375dB/A
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Figure 3-12: (a) Field normalized acoustics pressure data [Badiey et al., 2005] with

source f = 30 - 160Hz and irregular internal waves. (b) Normalized acoustics

pressure predicted by 4D PFFT-BEM with sound frequency f = 60Hz and regular

internal wave with amplitude R as n = 10sech2 [(y-c itt)/70], where cjet is the internal

wave phase velocity equals to 0.65 m/s [Badiey et al., 2005]

The sound speed and density of the upper layer in the water column are c1=1530m/s,

p1=1.024g/cm3 . The sound speed and density of the lower layer in the water column

are c2=1480m/s, p1=1.0257g/cm3 . The properties of the bottom are cb=1750m/s,

pb=1.8g/cm3 with attenuation parameter a=0.4375 dB/A. The shapes of the ISWs

are based on the model proposed by Badiey et al. [2005] as

n = 10sech2 [(y - cintt)/70] (3.2)

where q is the height of the internal waves. The phase velocities of the ISWs are

cit=0.65 m/s. Here, we ignore the differences between the speeds of separate solitary

waves. As a result, the whole internal wave train is assumed to move at the same

speed. The sound source frequency used in 3D PFFT-BEM is selected to be 60 Hz.

To demonstrate the acoustical scattering effects of the internal waves, we plot the

transmission loss in x-y plane at the receiver depth over one internal wave period. As
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shown in Fig.3-11, transmission loss obtained using 3D multi-layer PFFT-BEM shows

strong variability as internal wave train moves, consistent qualitatively with the field

experiments (e.g. Headrick et al. [20001, Badiey et al. [2005]). We then compare

the acoustics pressure calculated using 3D PFFT-BEM at the receiver with the field

measurement during a two-hour period (18:00 to 20:00 GMT on 4 August 1995). As

shown in Fig.3-12, numerical prediction by PFFT-BEM agrees qualitatively well with

field experimental data on the trend of time variation and magnitude of fluctuation

of received sound pressure.

3.2.2 Prediction of 3D sound scattering in the mouth of the

Columbia river

Experimental description and observations

The salt wedge often occurs in the estuarine environment. It happens when the fresh

river water flows directly into salt water in the ocean. Advection of the salt and fresh

water often happens during this process. Accurate monitoring and modeling of the

salt wedge advection is important for the understanding of several coastal processes

[Reeder, 20161. In 2014, a field experiment was carried out in the Mouth of the

Columbia river, which spanned from several kilometers west of the North Jetty and

South Jetty at the river mouth to points just west to the A-M bridge in the North

Channel as shown in Fig.3-13 [Reeder, 20161 . In this thesis, we are concentrating on

the time period during the period: 20130527 at 16Z-21Z as the sound speed gradients

are the strongest during this period. This period is corresponding to the retreat of

the fresh water (or advance of the salt water) in the estuary. The acoustic source (S2

in Fig.3-13) located 7 m below the surface transmitted acoustics signal to a receiver

system (A5 in Fig.3-13). The experiment uses a linear modulated acoustics signals

in 500-2000Hz band. The distance between the source and receiver is 1.36km. The

receiver is im above the seabed. Fig.3-14(a) shows the sound speed versus depth at

the source location during the period of interest. The sound energy level during the

experiment, which measures the sound energy and related to the sound pressure p as
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SEL ~ log Ipj2, was given by Reeder [2016] as shown in Fig.3-14(b). The SEL is stable

before the salt water entrance then slowly decreases approximately 15dB during the

advection of the salt and fresh water. Then during an one hour period afterwards,

SEL increases 15dB back to the same level before the salt water entrance.

Numerical modeling and comparison with experiments

In this subsection, we use 3D multi-layer PFFT-BEM to compute the acoustics pres-

sure at the receiver A5 with and without the salt wedge. We modeled the estuarine

environment with the bottom geometry and the sound speed based on the measure-

ment from Reeder [2016]. The sound frequency was selected to be a signal frequency

f=500Hz. Before the entrance of the salt wedge (fresh water only), the acoustic tran-

sect is composed of nearly isospeed fresh waters with c1-1460m/s and p-1.0g/cm3 .

The bottom has the properties as cb=1620m/s, pb=1.83g/cm 3, and attenuation a of

0.365 dB/m [Sherwood and Creager, 19901. As the salt wedge entrance to the estu-

ary, PFFT-BEM uses a three layer condition in the seawater with c1=1460/s from

z=0~14m,c 2 =1470m/s from z=14~15m and c3 =1490 from z>15m. Comparing the

3D numerical results in the xz plane of Fig.3-15(a) and (b), we observed that the

acoustics waves were trapped at the upper layers of the seawater and the transmis-

sion loss at the receiver increases by 7dB which is consistent with the 2D numerical

results conducted by 2D Bellhop [Porter and Bucker, 1987] in Reeder [20161.

However, the actual increase in the experiment is nearly 10-15dB which is not

fully observed in the numerical results. Many reasons may be accounted for this

difference such as the change of the geoacousitc parameters during the experiment, the

errors in the measurement of the sound speed and free surface wave effects. Here we

focus on the effect of free surface waves and simulated the acoustics wave propagation

with and without free surface waves.
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Figure 3-13: (a) Mouth of the Columbia River: station S2 where the acousitc source

was placed, and station A5 where the receiver was placed im above the riverbed. The

acoustics transect was 1.36km long [Reeder, 2016J. (b) A sketch of the side view of

the flood tide (salt wedge) entrance the fresh water and the wave generated by the

interaction between the fresh water and flood tide.
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Figure 3-14: (a) The sound speed (m/s) vs depth at time (Z) at receiver during the

6h period of the acoustic transmission [Reeder, 2016]. (b)The SEL measure at the

receiver during the flood period [Reeder, 2016].

As indicated by Thomson et al. [2014], very rough surface conditions can be pro-

duced via wave-current interactions. As shown in Fig.3-15(c), we include a regular

free surface wave based on a sinusoidal function as:

r7 = 77o sin(kx) (3.3)

where AO=2m, 3m and 4m, and k=-0.045m 1 based on the field measurement by

Thomson et al. [2014] during the entrance of salt wedge. Fig.3-15(c) shows an example

with AO= 4m. Significant scattering effects from surface waves are found by direct

numerical simulations. When including the surface waves, the increase of the TL data
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comparing with fresh water cases changed to lldB~-18dB which confirming the field
measurement data.
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Figure 3-15: PFFT-BEM prediction of the transmission loss using 500Hz frequency

and realistic geometry and acoustic environment: (a) Fresh water case, c1=1460m/s,

Cb=1 6 2 0m/s and a=0.365dB/m in the bottom. (b) Salt wedge only, c1=1460m/s,

c2 =-1470m/s, c3 =1490m/s, cb=1620m/s and a=0.365dB/m in the bottom. (c) Salt
wedge and free surface waves with amplitude A=4m, c1=1460m/s, c2=1470m/s,

c3 =1490m/s, cb=1 6 20m/s and a=0.365dB/m.
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Figure 3-16: PFFT-BEM prediction of the transmission loss using 500Hz frequency

and realistic geometry and acoustic environment with different surface wave phases

relative to the sound source: (a) Calm water with salt wedge A=0, c1=l46Om/s,

cb=1620m/s and c=0.365dB/m in the bottom. (b) Salt wedge with head sea sur-

face wave amplitude A=r4m, sound source located under the surface wave crest with

c1 =-1460m/s, c2 =1470m/s, c3 =14490m/s, cb=1620m/s and ca=0.365dB/m in the bot-

tom. (c) Salt wedge with head sea surfacewave amplitude A=4m, sound source lo-

cated under the surface wave zero crossing. (d) Salt wedge with head sea surface

wave amplitude A=-4m, sound source located under the surface wave trough.
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Figure 3-17: PFFT-BEM prediction of the transmission loss using 500Hz frequency

and realistic geometry and acoustic environment with different surface wave phases

relative to the sound source: (a) Calm water with salt wedge A=0, c1=1460m/s,

cb=1620m/s and c=0.365dB/m in the bottom. (b) Salt wedge with beam sea sur-

face wave amplitude A=4m, sound source located under the surface wave crest with

c1 =1460m/s, c2=1470m/s, c3=1490m/s, cb=1620m/s and a=0.365dB/m in the bot-

tom. (c) Salt wedge with beam sea surface wave amplitude A-4m, sound source

located under the surface wave zero crossing. (d) Salt wedge with beam sea surface

wave amplitude A=4m, sound source located under the surface wave trough.
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We further investigate the effect of the relative position of surface waves and the

source point. As shown in Fig.3-16, we simulated cases with source located under

free surface wave crest, zero crossing and trough. Comparing the the calm water case

(A=0m), TL increased 9 - 15dB for different surface wave phases. This indicates the

effects of wave phase are relatively small for head seas.

The surface wave direction is another important parameters influencing the scat-

tering effects by the surface waves. Here, we considered the scattering effect due to

beam seas surface waves (i.e. surface wave front parallel to the acoustic insect). Dif-

ferent surface wave phases of the beam wave are considered and compared in Fig.3-17.

From the direct numerical results, we found significant variation of TL (-10dB ~+8dB)

due to presence of beam seas waves. Different with the head sea condition, the rela-

tive surface wave phase has a major effect on TL for beam seas. Trough comparison

among numerical simulation with calm fresh water, with only salt wedge and with

both salt wedge and surface waves, we demonstrate the importance of the surface

waves/roughness on the acoustics scattering. The 3D sound scattering effects due to

rough surfaces will be further discussed in Chapter 4.
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3.3 Concluding remarks

We develop and apply a highly efficient numerical capability using PFFT-BEM for

direct solution of full 4D sound-wave equations without fundamental approximations.

First of all, multiple coupled domain boundary-element method (MCD-BEM) is for-

mulated based on the continuity of normal velocity and pressure at the domain in-

terface to account domain inhomogeneity. Secondly, using pre-corrected Fast Fourier

Transform (PFFT), PFFT-BEM reduce the computational (and memory) cost from

O(N2 ~ 3) to O(N log N), where N is the total unknown number.

For validation, this chapter first presents study of three sample three-dimensional

underwater acoustic propagation and scattering problems: Pekeris waveguide prob-

lem, ASA wedge problem and the Gaussian canyon problem. For all these problems,

the PFFT-BEM simulation results compare well with existing theoretical and numer-

ical results. Good agreement are also obtained between the 3D+T simulation results

and the experimental data for internal wave and salt wedge cases which involves re-

alistic boundary and medium conditions. This demonstrates the practical simulation

capability of PFFT-BEM for 4D (3D+T) underwater acoustics scattering problems.

The computational times for all the cases presented in this chapter are listed in Table

3.1.
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Table 3.1: Computational time for validation/benchmark casses
case name f(Hz) L2, Ly, H(km) N Ncpu t (hrs)
3D Pekeris waveguide 20 10, 10, 0.1 1 x10 7 512 0.08
40 Hz seamount 40 2.5, 2.5, 0.25 2 x10 7 384 0.08
Gaussian Canyon 25 12, 23, 0.75 5 x10 8 640 1
25Hz ASA wedge 25 28, 8, 0.4 2x10 8 640 1
MCR (with surface waves) 500 1.7, 0.5, 0.03 1 x10 8 960 4
Internal wave simulation 60 17, 5, 0.07 2x10' 512 6
75 Hz ASA wedge 75 28, 4, 0.4 3 x10 9 960 6
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Chapter 4

Study on the 3D scattering by rough

surface

A direct three dimensional (3D) numerical method based on Pre-corrected Fast Fourier

Transform (PFFT) approach Boundary Element Method (BEM) has been developed.

The validity of the PFFT-BEM in computing shallow water acoustics has been pre-

sented. In this chapter, the PFFT-BEM is used to study 3D acoustics scattering from

a random rough surface with Gaussian roughness spectrum, satisfying the pressure

release (Dirichlet) boundary condition. PFFT-BEM, which reduces the computa-

tional effort from O(N2 ~ 3) to O(N log N) where N is the total number of boundary

unknowns, could effectively eliminate the edge effect by using large computational do-

main size. By the use of PFFT-BEM method, we perform a Monte Carlo computation

to obtain the acoustics scattering cross section: we first obtain the scattering pressure

from one surface realization and then average over 50 realizations. Due to the high

computational cost for direct numerical simulations, previous studies have proposed

several approximate models for rough surface scattering problems such as the Kirch-

hoff approximation, first and second order perturbation theories. By combing with

propagation models such as PE method and ray tracing methods, these approximate

models simulate reverberations/scatterings by bottom and water surface. However,

the validity of these approximate models, especially for 3D problems, is still ques-

tionable due to the large computational cost. By comparing the approximate model
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results with the direct numerical simulation results by PFFT-BEM, we obtain the va-

lidity regions of these approximate models for 3D rough surface scattering problems

for a wide region of grazing angles 9 g (Here, 9g is defined as the angle between the in-

cident plane wave and the mean rough surface). By 3D direct numerical simulations,

we demonstrate and discuss the acoustics wave grazing angle effects on the validity

regions of the approximate models especially near the backscattering direction.

4.1 Introduction

Accurate prediction of acoustics scattering from rough surfaces is of importance in

modeling the reverberation and forward scattering problems. Kichhoff approximate

model and perturbation theory are the most well-known and widely used approximate

models for rough surface scattering problems due to their capabilities in providing

fast prediction of statistics of rough surface scatterings.

The Kirchhoff approximation is based on flat surface assumption and generally

apply to gently undulating surfaces where the radius of surface curvature is large

compared to the acoustics wavelength. However, from previous 2D studies [Thorsos,

19881, it has been shown that Kirchhoff approximation is usually considered suspect

at low grazing angles and for backscattering in general. The main reason is that

the shadowing effect from the rough surface has not been taken into account in the

Kirchhoff approximations.

Perturbation theory is another widely used approximate model for treating acous-

tics scattering from rough surfaces. The perturbation model is valid when kh << 1.

Here h is the rms surface height and k is the acoustic wavenumber. In addition,

according to Thorsos and Darrell [19891, when kh is fixed, the perturbation theory

becomes inaccurate if kl, where 1 is the surface correlation length, is too large or too

small. An explanation for this behavior can be found in Thorsos and Darrell [19891

by theoretically comparing the first and second order perturbation formulations.

Although the validities of Kirchhoff and perturbation approximations for 2D scat-

terings have been demonstrated and tested by direct numerical studies [Thorsos,
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1988, Thorsos and Darrell, 1989, Kaczkowski et al., 1994, Thorsos et al., 2000, Isak-

son et al., 2008, Joshia and Isakson, 2011], no procedure has yet existed for estimating

the approximate model errors in scatter strength for 3D scatterings. Therefore, the

applications of perturbation and Kirchhoff approximations for 3D cases still need to

be analyzed carefully. The challenge for direct numerical simulation to study the

rough surface scattering problem is the difficulty to eliminate the edge effects, that

is, scatterings from the ends of the truncated computational domain. A tapering

incident wave such as Gaussian and Thorsos taper is usually used. The simplest and

most popular tapered incident wave is a plane wave modulated by a Gaussian taper

function. Unfortunately, Gaussian taper incident field only satisfies the Helmhotz

equation for normal grazing angle cases [Toporkov et al., 1999J. Thorsos and Darrell

[19891 derived a modified Gaussian tapered incident wave. The form of this tapered

incident wave satisfies the Helmholtz wave equation more closely.And the criteria for

the Thorsos taper to satisfy the Helmhotz equation is kg sin(Og) >> 1 where g con-

trols the tapering size of the domain (with g = L in Thorsos [19881). As a result,

when 0g << 1 which corresponds to a low grazing angle problem, g and L needs to

be >> 1 to satisfy the criteria kg sin(0g) >> 1.

For such a problem, the computational costs for 3D direct numerical methods such

as Finite element method (FEM)/Finite Volume Method (FVM)/Spectral Element

Method (SEM) are very large due to the requirements on meshing the 3D volume of

the computational domain. On the other hand, for boundary element method (BEM),

the Helmholtz boundary-value problem can be formulated as a boundary integral

equation (BIE) [Burton and Miller, 19711, for which only the unknown pressures

or the normal pressure gradients on the domain boundaries are solved for. As a

result, BEM only requires the meshing of the domain boundaries. By the use of

PFFT, we further reduce the overall computational efforts of BEM from O(N 2 ~ 3) to

O(N log N), where N is the number of unknowns on the domain boundaries. Because

of these advantages, PFFT-BEM is particularly suitable for studying rough surface

scattering problems.

In this chapter, we implement PFFT-BEM to obtain direct numerical solutions of
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general 3D acoustics rough surface scattering problems. Since the objective here is

to examine the validities of these approximate models, we choose to use the pressure-

release surface condition with Gaussian roughness spectrum for which 2D and 3D

approximation solutions can be obtained easily [Thorsos, 1988, Thorsos and Darrell,

1989, Kaczkowski et al., 1994, Thorsos et al., 2000, Isakson et al., 2008, Joshia and

Isakson, 20111. For each of 50 surface realizations consistent with the Gaussian spec-

trum, the scatted pressure in the far field, which is a function of the scattering angle

for a specified grazing angle, is computed numerically by 3D PFFT-BEM method.

The scattering cross section o- and the scattering strength defined as 10 log1 o o- are

found from the average scattered intensity. From numerical results, we assess the va-

lidity and applicable of Kirchhoff and perturbation approximation for 3D scattering

problems. Low angle grazing effects down to 2.50 are also simulated and discussed at

last.

4.2 Mathematical formulations

4.2.1 Boundary-value problem for plane wave scattering

We first formulate the boundary-value problem for plane wave scattering by a pressure

release surface in this section. We choose a Cartesian coordinates system Oxyz with

O-xy in the horizontal plane of the mean ocean surface and Oz pointing vertically up.

z = 77(x, y) describes the surface roughness. The acoustics pressure p(sx) exp(-27rft)

in the fluid domain satisfies Helmhotz equation as

V 2p(S) + k2p() = 0, X E V (4.1)

where f is the sound frequency, V denotes the gradient operator, V is the entire fluid

domain, and k the medium wavenumber.

The problem is subject to the pressure release boundary condition at the free

surface SF:

P(z) = 0, SF (4.2)
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and the condition at the far-field boundary S,, is:

P(S) = Pi, X -+> 00 (4.3)

where pi is the incident wave expressed as

pi (x, y, z) = eik(xsin(Oi)cos(0j)+ysin(9j)sin(oi)-zcos(i)) (4.4)

where 0i = 7r - 09 and q5 is the angle between the horizontal component of the

incident wave (in the xy plane) and the x-axis. The grazing angle 09 is defined with

g = - - 0i. 0, is the angle between the scattering plane wave and the mean rough

surface. 0, is the angle between the horizontal component of the scattering wave (in

the xy plane) and the x-axis. Here, we define the coordinate system such that Oi=O0

(i.e. Ki = (ki, 0)). This completes the statement of the boundary-value problem.

From Green's second theorem, we formulate the boundary integral equation (BIE)

for the pressure p(S) as

4 7rp(Y) - Pn()G(-; -)dS() + p (Gn(; jdS( ) = 0 (4.5)

where S is the fluid domain boundaries. Here, G('; ) = |-- feikIs- is the Green

function which satisfies the Helmholtz equation, and is any point on S. Then the

total acoustic pressure p(s) due to sound scattering from a pressure release rough

surface can be expressed as

P X) =P + 4 Pn( ) G(X; )dS(C) (4.6)

If we further allow F -+ SF, Eq.(4.6) yields

P()G(X; fdS() = )(4.7)

At this point, we discretize the boundaries in Eq.(4.7) into boundary elements
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with piecewise continuous values of p, within each element. Eq.(4.7) can be cast as

a system of linear algebraic equations of the form:

- 1(p.)3  G(; C)dS(C)=pi(z) (4.8)

where E is the jth element and N the total number of elements on SF. Finally, we

we express Eq.(4.8) in symbolic form:

[A] {x} = {b} (4.9)

where [A] is an NxN dense matrix. Precorrected fast fourier transform boundary

element method (PFFT-BEM), which is a highly efficient numerical scheme for the

calculation of [A]{x} with an computational cost of 0(N log N) and 0(N) memory

(without explicitly forming the influence matrix [A] ), has been applied to solve this

boundary value problem.

4.2.2 Incident wave field

For direct numerical computations, we truncate the unbounded rough surface to a

surface with finite length. As a result, we need to taper the incident pressure field to

zero on the surface edges to avoid the edge effects. Here, we use a modified version

of Gaussian tapering function which is proposed and given by Thorsos [19881 as

pi(x, y, z) = exp{ik[(x cos #i + ysin #$) sin(j) - z cos Oj](1 + w)} exp(-t) (4.10)

where

t = tG + ty (4.11)

t (cos 64 cos #ix + cos Oi sin Oiy + sin Oiz) 2  (4.12)
g 2 cos 2 0,

t - (cos q4y 2Sin Ox)2  (4.13)
9
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w = (2t ) -) +] (4.14)
k2 g2 COS2 0 92

Here, g controls the tapering domain size. pi satisfies the wave equation providing that

y = kg sin 0 >> 1. From previous 2D scattering numerical and analytical studies, it

is found that g = L/4 is a proper choice [Thorsos, 1988, Isakson et al., 2008]. The

appropriate value of -y for 3D surface scattering simulations will be determined by

convergence study.

4.2.3 Scattering strength

We demonstrate our numerical results by scattering strength as:

SS = 10 log1 C- (4.15)

with the scattering cross section a defined as

or- = p 2 (4.16)
E3

where <> indicates ensemble average, p, represents the scatted wave pressure at the

far field range r, and E3 is the sound flux through the surface by the incident wave

field.

E3 = pi(ui -n)dS (4.17)

where n is the surface normal, ui is the incident particle velocity on scattering surface

S.

4.2.4 Random surface generation

For modeling, the surface roughness is generated to be a random variable character-

ized by a power spectrum. In this study, we use Gaussian spectrum, which has been

used widely for 2D and 3D studies for the rough surface scattering problem [Thorsos,

1988, Thorsos and Darrell, 1989, Kaczkowski and Thorsos, 1994, Isakson et al., 2008,

Joshia and Isakson, 2011], to generate random surfaces.
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Figure 4-1: Surface realization with vertical exaggeration where kl=5.6, kh=0.52 (a)

Surface shape in xz plane (b) 3D surface.

The surface roughness spectrum W(K) is normalized such that

hJ2 jf W(K)dK
0 -o

(4.18)

where h2 is the mean square surface height and K = (ks, k,) denotes the surface
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spatial wave numbers.

The scattering surface has the length of L. = Nxdx and LY = Nydy with Nx (Ny)

meshes and equal spacing dx (dy) in the x (y) directions. The surface roughness at

point (Xm, yn) = (mdx, ndy) (m = I,-, N; n = 1, ... , Ny) is expressed as

j7 (xm, y,-) = -f {F (kxj , kyl)}1 (4.19)

where k,, = 27rj/Lx, ky1 = 27rl/Ly and F1 is the inverse Fourier transform. The

form of F(kxj, kyl) is

N(O, 1) + iN(0, 1) j or 1 #0,Ny12

F(kx, kyl) = 27rLx Ly jW(kxj, kEyl) NF2

N(0, 1), j = 0, Nx/2 or 1 = 0, Ny/2
(4.20)

where N(0, 1) is a random independent sample from a normal distribution with zero

mean and unit standard deviation. In this study, we use isotropic surface with Gaus-

sian roughness spectrum and W(K) is given by

W(K) = heK (4.21)
47r

where I denotes the correlation length of the surface. An example of a surface used

in the present study is shown in Fig.4-1 with kl=5.6, kh=0.52.

4.3 Approximate models

4.3.1 Kirchhoff approximation

In this subsection, we will briefly introduce the Kirchhoff approximation. Applying

the operator 8 to Eq.(4.7), we have

P(=) _ 2&pi(s) 1 P() G,(-; )dS( ) (4.22)
an an 27 an X
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The Kirchhoff approximation neglects the second term in the right hand side of

Eq.(4.22) and yields
P__ = 2 i() (4.23)
an an

We can then obtain the Kirchhoff approximation results by inserting Eq.(4.23) to

Eq. (4.6) and calculating the average over 50 realizations by Monte Carlo simulations.

Shadowing effect is the main reason for the inaccuracy of Kirchoff approximation

model. According to Thorsos [19881, the shadowing effect occurs in two situations:

for low grazing angles when section of the surface are shadowed from the incident field

and for low scattered angles when section of the surface lie in shadows with respect to

a receiver. A correction function S, which reduces the error, is proposed by Wagner

[1967].

S(08 ), 0 Os 9g

S(09,, 8) S(99 ), 99 Os 7r/2 (4.24)

S(9,, 0,) 7r/2 < 0, ir

where S function is defined as

S(0,) = [1+ erf(v,)](1 - e- 2B8)/(4B,) (4.25)

S(0,, 9O) = [erf(vg) + erf (v,)]{1 - exp[-2(Bg + B,)]}/[4(Bg + Bs)] (4.26)

B8 = {exp(-9v2/8)/(37rv') 1/2 + exp(-vl)/(rV2) 1/ 2 - [1 - erf (vS)]} (4.27)

with

Vs tan 0, (4.28)

and s = Vh/l. The quantities vg ,Bg and S(99 ) are obtained by substituting 6

for 0, in Eq.(4.28), Eq.(4.27) and Eq.(4.26), respectively. The shadowing correction

factor is applied directly to the incoherent part of the scattering cross section as
modif ied_

Sincoh =SJincoh- (incoh is obtained using

Cincoh = Utotal - RcohUflat (4.29)
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where R,0 h - e-k2h 2 (sines+sin0,)2 and Uflt is the scattering cross section of a finite

length flat surface. From previous study [Thorsos, 1988], the accuracy of 2D Kirchhoff

approximation has been examined by comparing with direct numerical simulation. In

the present study, we will examine the validity regions of the Kirchhoff approximate

model for 3D scattering problems.

4.3.2 Perturbation theory

Another approximate model to solve the rough surface scattering problem is pertur-

bation theory. By expansion with respect to O(kh), we write the acoustics pressure

field as a summation of pressure fields at different orders of kh

p(z) = po(i) + (kh)p 1 (z) + [(kh) 2/2]p 2 (') + [(kh3)/3!]p 3 (') + ... (4.30)

Then pm is solved at different orders by imposing boundary conditions correspond-

ingly. In the present study, we compare the PFFT-BEM results with the 3D scattering

cross section obtained by perturbation theory up to O(kh) 4. Our objective is to ob-

tain the validity regions of the perturbation theories. Here, we only present the forms

of corresponding scattering cross sections at different orders. The detailed derivation

can be found in Thorsos and Darrell [19891.

The first oder perturbation model obtains corresponding scattering cross section

up to (kh)2 as

all = 4k2 sin2 (0g) sin2(0,)W(Ki - K ) (4.31)

where K = (k, ky).

By expanding the acoustics pressure field up to the second order in the scattering

pressure P2, we obtain one part of the scattering cross section up to fourth order by

2 > _I< p2>

a22 = 4k2 sin2 (0) sin2 (0) Jf dKW(K. - K)W(K - Ki) (4.32)

x{|k2 - |K 2 1 + k 2 - |K| - |Ki + K. - K 2 ]*}
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< PiP3 + pp* > contributes another part of the fourth order scattering cross section.

This part is denoted by a13 and expressed as

a 13 = {4k 2 sin2 (0g) sin2(9,)W(K - Ki) x [h2 (fK,|2 + Kil 2 ) - 2R(I)]} (4.33)

with

I = dKW(K)[k sin(0.) 1/k2 -- K -K

+Iksin68 j V|k2 - |Ks - K|2 + /k 2 - |Ki - K|2  (4.34)

x V/k2 - IKs - K 2 + k2]

We give the final expression of scattering cross section up to (kh)4 as

a(4) - a 11 + a 22 + a1 3  (4.35)

The above perturbation incoherent theory is valid to all the scattering directions 0,

except at the specular direction. To obtain a fair comparison with the PFFT-BEM

results, we include the coherent part of the scattering section by combining the Kirch-

hoff approximation results for a flat surface and a refection coefficient [Kaczkowski

et al., 1994J. The total cross section a (for both first order and second order) is then

given by

a = Caicoh + Rf1 2 af (4.36)

where af is the scattering cross section result of a flat surface obtained by Kirchhoff

approximation. The reflection coefficient Rf is defined as

Rf = -1 + 21k sin Ogj dKW(Ki - K),/k 2 - IK 2  (4.37)

4.4 Results and discussions

In this section, we first investigate the accuracy dependence of the direct numerical

simulation on parameter -y=kg sin 09. From a convergence test, we obtain the optimal

value of -y. Secondly, we use this -y and 2D PFFT-BEM method to study the 2D
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rough surface scattering problem. By comparing the 2D PFFT-BEM results with the

direct simulation solutions from previous studies [Kaczkowski and Thorsos, 1994] and

the corresponding approximation models, we validate the accuracy and efficiency of

PFFT-BEM method in studying the rough surface scattering problem. Thirdly, we

conduct direct 3D simulations to investigate the applicability of the perturbation and

Kirchhoff approximate models for the 3D rough surface scattering problems. Based

on the 3D direct numerical simulation results, we obtain the validity region for 3D

rough surface scattering models in the kh-kl plane. Fourthly, we simulate the low

grazing angle (6 = 100) results by 3D PFFT-BEM to demonstrate the scattering

features for small 6O. At last, we study the effect of grazing angle on the validity of

different approximation models in the backscattering direction.

20

0

-20

-40

0 50 100
s

150

Figure 4-2: SS comparison for different domain size L using 3D direct numerical

simulation by PFFT-BEM. The incident wave grazing angle 69 = 450, the surface

parameter is chosen to be kh = 0.52, k1 = 2.6. Here k and A are the acoustics

wavenumber and wavelength.
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4.4.1 Test for convergence of domain size

In this subsection, we test the convergence behavior of the results with respect to

y-=kg sin 6. As y is directly related to the domain size L, we compare the scattering

strength obtained using Monte Carlo simulation by 3D PFFT-BEM with different L.

Here, we choose the grazing angle 69 = 45'. The boundary element size is chosen to

be uniform as A/8, where A is the acoustic wavelength. The tapering size g is chosen

as g = L/4 as suggested by previous study [Thorsos, 19881. As shown in Fig. 4-2,

the variation in PFFT-BEM solution becomes very small (with no visible error) after

L = 50A (corresponding to -y ~55). As a result, we choose to use the parameters as

-y >55 and g=L/4 in this study.

4.4.2 Comparison with 2D direct numerical simulation results

We show the 2D validity regions of the first-order perturbation model (a(2 )), second-

order perturbation model (a(')), Kirchhoff approximation obtained by various 2D

studies [Thorsos, 1988, Thorsos and Darrell, 1989, Kaczkowski and Thorsos, 1994j in

Fig.4-3. Three 2D examples are selected from these regions (denoted as (b)-(c) in

Fig.4-3). The grazing angle used here is 09=45'.

We compare 2D PFFT-BEM results with existing 2D direct integral solutions and

approximation model solutions for three different distributions of surface roughness

from Kaczkowski and Thorsos [1994]. From Fig.4-3(b)-(d), we obtain close agreement

between the numerical results from 2D PFFT-BEM, the 2D direct integral solution

from Kaczkowski and Thorsos [1994] and approximation model results. From these

comparisons, we show that the PFFT-BEM results are equivalent to the exact solution

for rough surface acoustics scattering problems.
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Figure 4-3: (a) Locations of the numerical examples (b-d) in the kh-kl plane , the

2-D validity regions (1-dB error) for the first-order perturbation theory, second-order

perturbation theory and the Kirchhoff approximation. The incident wave grazing

angle 0 g = 45'. (b) Comparison of the SS obtained by 2D direct numerical simulation

using PFFT-BEM with 2D direct numerical simulation by Kaczkowski and Thorsos

[1994] and first-order perturbation theory (kh = 0.38, k1 = 1.4). (c) Comparison

of the SS obtained by 2D direct numerical simulation using PFFT-BEM with 2D

direct numerical simulation by Kaczkowski and Thorsos [1994] and second-order per-

turbation theory ( kh = 0.52, k1 = 2.6). (d) Comparison of the SS obtained by 2D

direct numerical simulation using PFFT-BEM with 2D direct numerical simulation

by Kaczkowski and Thorsos [1994] and Kirchhoff approximation results (kh = 10.0,

k1 = 1.03).
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4.4.3 The validity regions of 3D perturbation theory and Kirch-

hoff approximation

In this subsection, we compare our 3D PFFT-BEM numerical simulation results with

3D first order, second order perturbation and Kichhoff approximation results. Our

goal is to identify the validity regions of these approximate models for 3D rough

surface scattering problems.

3D first-order perturbation theory

We first obtain the validity region of 3D first-order perturbation theory, denoted as

o,(). The grazing angle 09 = 4 5 '. We examine the accuracy of the 3D perturbation

theory by comparing it with direct simulation results by 3D PFFT-BEM. We obtain

the o() validity region in the kh-kl space. We adopt a maximum 1-dB error criterion

here based on Thorsos and Darrell [1989] as:

10 logi[(- 11 + U22 + U3 )/ 11 ]1 ; 1dB (4.38)

and

10 log 10(a -1/|orl|) > 1dB (4.39)

where o-, o-2 2 and a1 3 could be obtained based on the formulation in section 4.3.2.

Given a single grazing angle, this criterion needs to be valid for all scattering angles.

We make a number of numerical simulations near the boundary above and below

the 1-dB error contours to support the criterion shown in Eq.(4.38) and Eq.(4.39).

We show here four examples among these tests. The locations of the four examples

((a)-(d)) in the kh - k1 contour are shown in Fig.4-4. As shown in Fig.4-5, by moving

the test points outside from the C2) region ((a)--*(d)), the first-order perturbation

theory results become deviated from the 3D PFFT-BEM results, which validate the

52) region.
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3D second-order perturbation theory

Monte Carlo direct computations by 3D PFFT-BEM have been used in the present

study to obtain an estimate of 3D second order perturbation theory (U( 4 )) 1-dB va-

lidity region. We obtain the scattering strength over different scattering angles using

3D PFFT-BEM. The grazing angle 09=45'. This estimation has been included as the

upper red line in Fig.4-6. Four examples ((a)-(d)) below and above the 1-dB error

are shown in Fig.4-7.

6

4

2

100 10' 102
ki

Figure 4-4: The 3D validity regions (1-dB error) for the first-order perturbation theory

(o.)). These regions are valid for Og-45'. The black dots represent the locations of

the numerical examples (a)-(d) shown in Fig.4-5.
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Figure 4-5: Comparison of the SS obtained by 3D direct numerical simulation using

PFFT-BEM with 3D first order perturbation theory with (a) kh = 0.3, ki = 2.0 (b)

kh = 0.55, ki = 2.0 (c) kh = 0.85, k1 = 2.0 (d) kh = 1.3, k1 = 2.0, here 9 g=4 5'.

As shown in Fig.4-7(a) which is outside of U2) region while in a() region, first-

order perturbation results show significant errors when 0, > 600. On the other hand,

,4) yields good agreement with the 3D PFFT-BEM results for 6, > 600. As the

numerical example moves far away from the 52) validity region (Fig.4-7(b)), the

first-order perturbation results become more inaccurate while second-order perturba-

tion results match well the direct 3D PFFT-BEM results. This indicates that the

contributions from higher-order perturbation theory become more dominant. As ex-

pected, the use of second-order perturbation theory breaks down when moving out of
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the a(') validity region as shown in Fig.4-7(c) and Fig.4-7(d).

3D Kirchhoff approximation

Next we examine the validity region of the 3D kirchhoff approximation. As indicated

by 2D studies [Thorsos, 1988] and shown in section 4.4.2, the Kirchhoff approximation

is usually considered suspect for low scattering angles and in the backscattering angles.

As a result, we use Monte Carlo numerical simulation to obtain the validity region of

Kirchhoff approximation with 1-dB error only near the specular direction (Ospecular

250). As a result, the shadowing correction factors described in this chapter are not

applied in this comparison. This validity region is shown in Fig.4-9. Four numerical

examples (a)-(d), shown in Fig.4-9, are selected from these Monte Carlo simulations

inside and outside the 1dB region.

6

4

2

100 10' 102
ki

Figure 4-6: The 3D validity regions (1-dB error) for the first (lower line) and second

order perturbation theory (upper line). These regions are validity for Og= 45'. The

black dots represent the locations of the numerical examples (a)-(d) shown in Fig.4-7.
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Figure 4-7: Comparison of the SS obtained by 3D direct numerical simulation using

3D PFFT-BEM with 3D first-order and second-order perturbation theory with (a)

kh = 0.52, k1 = 2.6 (b) kh = 0.65, k1 = 2.6 (c) kh = 0.85, k1 = 2.6 (d) kh = 1.3,

k1 = 2.6, here 09=45'.

As shown in Fig.4-8, similar to 2D cases, the 3D Kirchhoff approximation over

predicts the scattering strength for the case with small scattering angle in the forward

scattering region and the backscattering in general. Also, by moving the test points

outside from the KA region ((a) (d)), the Kirchhoff approximation results become

deviated from the 3D PFFT-BEM results, which validate the KA region.
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Figure 4-8: Comparison of the SS obtained by 3D direct numerical simulation using

3D PFFT-BEM with Kirchhoff approximation with (a) kh = 1.33, ki = 20 (b)

kh = 1.33, k1 = 15 (c) kh = 1.33, k1 = 10 (d) kh = 1.33, k1 = 5.6, here Og=45*.
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Figure 4-9: The 3D validity regions (1-dB error near the specular direction) for Kirch-

hoff approximation. These regions are valid for 09=45'. The black dots represent the

locations of the numerical examples (a)-(d) shown in Fig.4-8.

4.4.4 Comparison between 2D and 3D validity regions

In this subsection, we further compare the 3D validity regions with 2D validity regions.

The 2D validity regions is obtained from Kaczkowski et al. [1994]. As shown in

Fig.4-10, the validity regions of the first-, second-order perturbation theories and the

Kirchhoff approximations are all shifted to larger k1 regions in the 3D cases. This

difference is mainly due to the out of plane scattering effects in 3D cases.

To have a better understanding of the difference between 2D and 3D validity

regions, we obtain the asymptotic form of (4) for k >> 1 and k1 << 1.

For k >> 1, the contribution of a1 3 to O4) can be neglected comparing with the

one of a.22 [Thorsos and Darrell, 19891. We then write 2D (4 as

(4 2 _4kizk 
2  F0

or(4) = 0 222_ Sz dkxW2D(ksx - kx)W2D(kix - kx)k J (4.40)
xf{\k2 -k + k2 -k[v/k2 2 _kix + kx k)2]*
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where W2D(k) 2 1h/4e-k12 /4.

For a Gaussian spectrum with a large correlation length and for scattering in back

scattering direction, the main contribution to the integral in Eq.(4.40) occurs when

the arguments of the two W2D function are about equal [Thorsos and Darrell, 19891.

Under this condition, Eq.(4.40) yields:

(4) 22 4 k2 2 _ _sx + kix) 2  
- k2W 4--k krD-9D 1 8zyv'2(k2  (~ X )h 2 (4.41)

k 44 F

For the 3D case, a similar procedure can be conducted for Eq. (4.32) and Eq. (4.21).

For k1 >> 1 at back scattering direction, o yields

1(4) = -22 = 4k 2k2(k2 _ (ksx + kix ) 2 )h 2W ix - ksx
3D U3D iz8 4 )W 3 D()4.2

Here, W3D = W in Eq.(4.21).

On the other hand, the exact forms of U(2) in 2D and 3D are

-1 = (4k2 k /k)W 2D(kix - ks) (4.43)

and

(2 = (4kTk ,)W 3D(kix - ksx) (4.44)

Due to the form of the Gaussian spectrum, we have

W2D(kix - ksx) _ W3D(kix - ksx) (4.45)
W2D ( kix k ) W3D ( kixksx)

As a result, for a fixed kh and k1, we obtain the relation given by

(4) (4)
2D = 3D (4.46)
(2) (2)
2D 3 D

This indicates that for a fixed surface roughness condition and grazing angle, the

difference between 2nd-order and 1st-order scattering cross sections in 2D is larger

than that of 3D. As a result, for k >> 1, the 1-dB error contour between 2nd order
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and 1st-order results is expanded in the 3D case.

For k1 << 1, on the other hand, the 2D formal perturbation theory [Thorsos and

Darrell, 19891 gives

9-+ (4kizksz/k)lh 2 /(2v/") (4.47)

for the first order and

(4) -+ 4kk2 1[dlkx[W2D(lx 2 2 (2) (4.48)
L2 D k _0 = -vA 2D

for the second order. s = V/2h/l. Similar results can be obtained in the 3D case as

0( -+ 4k2 k2 12 h2 /(47r) (4.49)

for the first order and

01(4) S2 U(2) (-0of -+s203(4.50)

for the second order. As a result, when ki << 1, for a fixed kh and kl, we could

obtained the relation as
(4) (4)
2D 3D(4.51)

U () or (2) (.1
2D ~3D

This indicates that for a fixed surface roughness condition and grazing angle,

the difference between second-order and first-order scattering cross sections in 2D is

smaller than that of 3D. As a result, for k1 << 1, the 1-dB error contour between

second-order and first-order shrinks in the 3D case. This explains quantitatively the

shift of the validity regions in Fig.4-10. To validate our asymptotic analysis, we

compare our asymptotic results with the direct numerical simulation. As shown in

Fig.4-11, good agreements between the asymptotic and direct simulation results are

obtained.
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The validity region of Kirchhoff approximation has the most significant changes

in 3D among the approximate models. From observation, we find that the validity

region of Kirchhoff approximation decreases in 3D. This is because that shadowing

effects are stronger for 3D cases. To show this, we compare the 2D and 3D results

for same surface roughness: kh = 1.03, ki = 10.0. The shadowing correction factors

are applied to the Kirchhoff approximation results here. From comparison, we find

that the Kirchhoff approximation errors are more significant in 3D (Fig.4-12) than

the ones in 2D (Fig.4-5 (c)), especially in the backscattering direction. According to

Thorsos [19881, the errors of Kirchhoff approximation in the backscattering direction

is mainly due to the inaccurate modeling of shadowing effects. The larger errors in

3D therefore indicate that the shadowing effects is stronger in 3D than that in 2D.

8
6

4

2

100
kI

101

Figure 4-10: Comparison between the 2D and 3D validity regions (1-dB error) for the

first-order perturbation theory (o(2)), second-order perturbation theory (o-()) and the

Kirchhoff approximation. These regions are valid for 9 = 4 5 .
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Figure 4-11: Comparison of the 0-(2) 1-dB error curve obtained by 3D direct numerical

simulation using 3D PFFT-BEM and asymptotic analysis with k >> 1 and ki << 1,

here 9g=45'.
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Figure 4-12: Comparison of the SS obtained by 3D direct numerical simulation using

3D PFFT-BEM with Kirchhoff approximation (kh = 1.03, k1 = 10.0), here Og= 4 5 .
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4.4.5 Effects of low grazing angles

Rough surface scattering problem at low grazing angles is of practical importance in

underwater acoustics. However, the validities of perturbation theory and Kirchhoff

approximation models remain suspect especially near the backscattering direction

[Thorsos and Darrell, 1989]. From previous discussion, we show that investigation

of low grazing angles effect for 3D rough surface scattering problem requires large

computational cost. Here, we first present cases with a low grazing angle Og=10*.

Three surface conditions are selected and compared as shown in Fig.4-13, Fig.4-14

and Fig.4-15.

20
- 3D PFFT-BEM
- - First order perturbation

10 ----- Second order perturbation
- KA approximation

0

-10-- ~-~1 .........................................

........ ............ ............... .............

-20
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-40

-50
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0

Figure 4-13: Comparison of the SS obtained by 3D direct numerical simulation using

3D PFFT-BEM with 3D first-order, second-order perturbation theory and Kirchhoff

approximation with kh = 0.55, ki = 2.0, here 9 g = 10 .

From comparison, first second order perturbation theory and Kirchhoff approxi-

mation all become inaccurate for low grazing angle cases, especially near the backscat-

tering directions. We can explain this behavior by examining the 1-dB criterion in

Eq.(4.38). For large ki, this criterion would take the form [Thorsos and Darrell, 1989]
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in the backscattering direction as

kh < Bexp[-|Ki - K,1212/16] (4.52)

where B = 0.35[1 - (k, + kx )2/(2k) 2] -1/2. For low grazing angle 0g -+ 0, Ki - K, =

2k which minimizes the maximum allowed ki in Eq. (4.52) for a fixed kh.
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Figure 4-14: Comparison of the SS obtained by 3D direct numerical simulation using
3D PFFT-BEM with 3D first-order, second-order perturbation theory and Kirchhoff
approximation with kh = 0.65, k1 = 2.6, here 0. = 10 .

To further analyze the effects of different grazing angles, we calculate and compare
the backscattering cross sections (defined as the scattering cross section at 0. =
7r - 6) down to 0. = 2.50. We compared the results obtained using second order
perturbation theory, Kirchhoff approximation and 3D PFFT-BEM method. Two
cases with different roughness are considered here: (a) kl=2.6, kh=0.65 in 3D (4

region and (b) with kl=15, kh=1.33 in 3D Kirchhoff approximation region. As shown
in Fig.4-16, the second order perturbation theory remains to be a good approximation
until very small incident grazing angle (0, < 20) while Kirchhoff approximation only
provides accurate results when incident acoustic wave is close to the normal direction
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of the rough surface (9 g ~ 900). We also plot the results obtained using Lambert's law

in Fig.4-16 for comparison. Lambert's law is often used to estimate bottom scattering

strengths from very rough ocean bottoms. It states that the scattered power in the

backscattering direction from a rough surface is proportional to sin2 Og. A good

review of Lambert's law can be found in Jensen et al. [2011]. As shown in Fig.4-16,

Lambert's law compares well with direct numerical solutions for grazing angle up to

40'. This result indicates that for 3D rough surface with large ki and moderate kh,

direct numerical simulation is required to obtain an accurate backscattering result,

especially for low grazing angles.
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Figure 4-15: Comparison of the SS obtained by 3D direct numerical simulation using

3D PFFT-BEM with 3D first-order, second-order perturbation theory and Kirchhoff

approximation with kh = 1.33, k1 = 15.0, here 6 g = 10 .
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Figure 4-16: SS in the backscattering direction with different grazing angle 0. (down

to 2.5') with (a) k1=2.6, kh=0.65 and (b) kl=15, kh=1.33.

110

- -

- -

- .................--.-..-.

- 3D PFFT-BEM
- - Second order perturbation
--...--. Lambert law

.......... ............ .............................. 
......

- 3D PFFT-BEM
- - Kirchhoff approximation -

......- 
Lambert law

I



4.5 Concluding remarks

PFFT-BEM method has been used to perform Monte Carlo computation of acoustics

scattering from 3D rough surfaces. We investigate 3D rough surfaces scattering prob-

lems over a large range of parameter values. Using direct numerical simulation by 3D

PFFT-BEM, we obtain the validity regions for different approximate models such as

the first- and second-order perturbation theories and Kirchhoff approximation for the

3D rough surface scatterings. From comparing the 2D validity regions and 3D valid-

ity regions, we find that the validity regions for first- and second-order perturbation

theories and Kirchhoff approximation are shifted to larger k1 regions in 3D. We then

discuss the reason for this shift in detail. The 3D scattering from rough surface at low

grazing angles is also studied in this chapter. From numerical results by PFFT-BEM,

it is found that the perturbation theory remains to be a good approximation until

small incident grazing angle (Og < 20') while Kirchhoff approximation only provides

accurate results when incident acoustic wave is close to the normal direction of the

rough surface (Og ~ 900). This result indicates that for 3D rough surfaces with large

k1 and moderate kh, direct numerical simulation is required in order to obtain an

accurate backscattering result, especially for low grazing angles.
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Chapter 5

Study on 3D sound field around

underwater seamount

An efficient three-dimensional O(Nlog N) multi-layer boundary-element method, PFFT-

BEM, has been developed. The method is capable of accounting for complex topog-

raphy, inhomogeneity of water properties, and dynamic environments associated with

complex coastal and estuarine conditions. In the previous chapters, this method is

benchmarked against several theoretical/numerical solutions. Through comparison

with existing field experiments, we also demonstrate the efficiency and accuracy of

the PFFT-BEM for 4D acoustics simulation under realistic environments.

In this chapter, we conduct a 3D direct numerical study of sound propagation

and scattering by an underwater seamount environment. This is a classical three-

dimensional problem in which the azimuthal inhomogeneity and 3D effects are im-

portant and can not be neglected. As a result, the traditional method such as N x 2D

method [Perkins and Baer, 1982J, which assumes the out-of-plane scattering to be in-

significant, could not provide accurate results.

3D propagation models, such as the 3D Parabolic equation (PE) method [Lee

et al., 1990, 1992, Collins et al., 1995, Lin et al., 2013] can provide approximate

solutions by neglecting the backscattering effects. However, as will be shown in this

chapter, the backscattering effect can be important for the scattering problem of 3D

seamounts especially with specified mountain geometries.
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Another widely used method to study the 3D underwater seamount problem is

the couple mode method [Taroudakis, 1996, Luo and Schmidt, 2009]. By assum-

ing the conical seamount geometry, these methods provide accurate results in both

backscattering and forward scattering directions. However, the coupled mode method

developed by Taroudakis [1996] are severely limited in terms of frequency, size and ge-

ometry of the seamount. By extending this coupled mode method, Luo and Schmidt

[2009] obtained accurate and efficient coupled mode method for 3D propagation and

scattering around a large scale conical seamount.

On the other hand, direct numerical method requires huge computational effort

to solve such fully three-dimensional problem directly. First attempt was conducted

by Xie et al. [2016] using SEM. However, the size of the seamount and the sound

frequency are still limited. In this chapter, with the highly efficient PFFT-BEM

method, we obtain the exact numerical solution of such a three dimensional seamount

scattering problem. We assess the influences of different seamount geometries and

sound source frequencies through numerical studies. From these numerical results,

we examine the applicability of N x 2D method, axisymmetric coupled mode method

and PE method .

This chapter is organized as follows: We first compare our numerical results for a

specified seamount geometry (i.e. conical seamount) with the known 3D couple mode

results [Luo and Schmidt, 2009] which is only valid for axisymmetric (circular conical)

geometries. This step is used to demonstrate the accuracy of the PFFT-BEM method

in studying 3D underwater seamount problem. We then simulate and compare our 3D

numerical results with different seamount geometries (height and cross section shapes)

and sound source frequencies. The aim of this step is to demonstrate the dependence

of the backscattering, blocking and 3D scattering effects on the seamount geometries

and source frequencies. From these numerical results, we demonstrate and discuss

the applicability of N x 2D approximation, coupled mode methods and PE method.

At last, we provide two benchmark solutions. The first case is the seamount located

on New Jersey shelf with realistic sea condition. This example includes multi-layer

sound speed conditions and 3D complex bathmetry. The second benchmark is the
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double seamount scattering problem. By comparing with the results obtained by

different kinds of Parabolic equation method [Lin and Duda, 2012, Lin et al., 20121,

we assess the accuracy of different PE methods in simulating the propagation and

scattering of sound in underwater seamount environment. These benchmark solutions

are also important as it could facilitate the benchmark and improvement of different

propagation models in the future.

5.1 Validation against coupled mode method

We first consider a conical seamount waveguide with a pressure-release free surface

and a penetrable bottom. The water column has a depth of 250m with c1=1500m/s

and p 1 =1.0g/cm 3. A point source with unit strength is placed at (x,y,z)=(0,0,loom).

A conical seamount is located 800m from the point source. The geometry of the

seamount is based on the study by Luo and Schmidt [20091 as shown in Fig.5-1. The

slope of the seamount is 0 ~ 17' which is sharper than most existing studies by 3D

PE models [Xu et al., 20161. The properties of the seamount is the same as the

bottom with CBe 1800m/s, pB=2.0g/cm3 and medium attenuation a=0.1dB/A. The

computational domain size is 2.5km x 2.5kmx 250m. The source frequency is defined

as f=40Hz. PFFT-BEM uses quadrilateral elements with Al = A/8 and A/12. We

compare TL obtained using PFFT-BEM and the axisymmetric coupled mode method

of Luo and Schmidt 120091 at different x-locations with (y,z)=(0,100m). As shown in

Fig.5-2(a), our numerical results compares well with the coupled mode method results.

TL obtained by PFFT-BEM at different x-locations with (y,z)=(400m,100m) is also

plotted in Fig.5-2(a). Significant differences are observed at different x-locations

with (y,z)-=(400m,100m) comparing with the results at different x-locations with

(y,z)=(0,100m). TL contour in the horizontal plane at the source depth is also plot-

ted in Fig.5-2(b) in which significant 3D disturbance due to the presence of seamount

could be observed. The total computational time for the low frequency seamount

with Al=A/8 is 233s with 12 computational nodes (384 CPUs).
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Figure 5-1: Geometry of the waveguide with a conical seamount and a penetrable

bottom, seamount height 250m, seamount radius 350m. A 40Hz point source is

located at (x, y, z) = (0, 0, 100m) and 800m away from the seamount center.

5.2 Effects of seamount geometries on acoustic scat-

terings

The geometry of the seamount is expected to have a large effects on acoustics wave

scatterings. By conducting numerical simulations of underwater seamount with dif-

ferent geometries, we evaluate the dependence of backscattering, blocking and 3D

scattering effects on different seamount geometry parameters. We can therefore ex-

amine the validity of N x 2D and the axisymmetric coupled mode method [Luo and

Schmidt, 2009] for general shape seamount. The source properties are kept to be the

same with the ones in section 5.1.
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Figure 5-2: (a) TL comparison at different x-locations with (y, z) = (0, 100m) for

3D underwater seamount with f = 40Hz between coupled mode method [Luo and

Schmidt, 20091 (red line) and 3D direct simulations by PFFT-BEM with 8 elements

per wavelength (blue line) and 12 elements per wavelength (green line); TL at dif-

ferent x-locations with (y, z) = (400m, 100m) by PFFT-BEM with 12 elements per

wavelength (black line); the green and blue line overlap with each other in the figure.

(b) TL obtained using PFFT-BEM on the x - y plane at z = 100m.
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5.2.1 Seamount height

First, we illustrate the relation between the seamount height and the significance of

seamount 3D scattering, backscattering and blocking effects. Here, we change the

height of the conical seamount from 50m to 150m and compare the transmission loss

in the horizontal plane at the source depth z=100m. Fig.5-4 (b) plots the trans-

mission loss of the 3D numerical simulation results from PFFT-BEM versus the 2D

approximation results in the direction tangential to the seamount cross section. This

comparison can be seen as a direct check for the seamount 3D scattering effects.

Because an N x 2D method considers only in-plane results, the 2D results in the tan-

gential direction are the same with the waveguide results without a seamount. From

comparison in Fig.5-4 (a) and (b), we find that for a small seamount height H o=50m,

the 3D scattering effects is not significant and N x 2D approximation gives a good

approximation (with errors up to 2dB comparing with the 3D results). When the

seamount height rises from 50m to 100m which is plot in Fig.5-4 (c) and (d), the

Nx2D results deviate from the 3D results (with errors up to 5dB). As the height of

the seamount risers to 150m which is plot in Fig.5-4 (e) and (f), the 3D effects become

more significant and the N x2D results deviate from the 3D results up to 12dB. In

addition, as shown in Fig.5-4(b), (d) and (f), the perturbation zone in the 3D result

becomes larger as the seamount height is higher. This also indicates stronger 3D

effects.

We then further compare the transmission loss along the x-axis at the source depth

to check backscattering and blocking effects by seamounts with different heights.

From Fig.5-3, we see that when the height of the seamount is small, both the backscat-

tering and blocking effects are less significant. As the height of the seamount increases

from 50m to 100m, the backscattering and blocking effects from the seamount rises

with 2-3 dB. As the height of the seamount tip rises to 150m which is at the same

depth as source, the blocking and backscattering effect become much more significant

(up to 10dB different comparing with the 50m case).

We further compare TLD, which represent the differences between the TL in the
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field with seamount TLseamount and TL without seamount TLbackground. As shown in

Fig.5-5, as the height of the seamount rises, the value of TL D becomes larger in the

entire domain which indicates larger scattering effect from the seamount. From the

above observations, we can conclude that as the height of seamounts becomes larger,

the 3D, blocking and backscattering effects become more significant. These results

also indicate that the N x 2D model is a poor approximation of the three dimensional

model for an underwater seamount with large slope angle. Similar results were also

found in Luo and Schmidt [2009].
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Figure 5-3: TL comparison at different x-locations with (y, z) = (0,100m) for 3D

underwater seamount with f = 40Hz with HO=50m, 100m and 150m.
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x - y plane (z=100m) obtained using 3D direct simulations by PFFT-BEM for 3D
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(right column).
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Figure 5-5: TLD(=TLseamount-TLbackground) at x - y plane (z=100m) obtained using

3D direct simulations by PFFT-BEM for 3D underwater seamount with f = 40Hz

with (a) Ho=50m (b) H0=O100m (c) H0 =150m.
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5.2.2 Seamount cross section shape

Recently, 3D propagation models are developed based on coupled mode method for

simulating acoustics propagation and scattering in an axisymmetric bathymetry en-

vironment. These numerical methods can provide accurate and efficient solutions for

3D underwater bottom features with specified geometries such as cylindrical island

[Athanassoulis and Prospathopoulos, 19961 or conical seammounts [Taroudakis, 1996,

Luo and Schmidt, 20091. To assess the applicability of these methods, we study the

acoustics scattering problems of shallow water seamounts with different cross sec-

tion geometries. As shown in Fig.5-7, we conduct direct numerical simulations using

PFFT-BEM for the seamounts with different cross section shapes. The geometries

of the seamount cross sections are assumed to be ellipse which are not axisymmetric

shapes assumed by the coupled mode methods. The aspect ratio of these ellipses

a = RY : R, is defined in Fig.5-7. Here, R. is the ellipse radius in the y-direction

while R, is defined as the ellipse radius in the x-direction. The height of the seamount

HO is kept to be 100m. The source properties and fluid (and bottom) properties are

the same as those in the conical seamount case. For all these cases, PFFT-BEM uses

uniform quadrilateral elements with Al = A/8.

We first fix RY = R and vary a by changing R,. The TL in the x-y plane at

z=100m is plotted and compared in Fig.5-7. TLD, which represent the TL differences

between simulation with and without seamount, in the x - y plane at z=100m is

plotted and compared in Fig.5-8. From these plots, we see that the TL contour

changes significantly even with a small change in a. To quantify these differences, we

further compare the TL in the horizontal plane at depth z=100m along the x-axis for

different seamount cross section shapes. From Fig.5-6, we see that relatively small

variations in a can create large changes (up to 10dB) in TL for both backscattering

and blocking effects. As a result, we can conclude that using a conical seamount with

radius R=RY to approximate the acoustics scattering by an ellipse seamount would

introduce large errors in the backscattering, blocking and azimuthal directions.

In the second case, as shown in Fig.5-10, we fix R. = R and change the aspect ratio
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by changing Ry. The height of the seamount HO=150m. The other environment and

mesh properties are kept same. From Fig.5-10, we can see that relatively variations in

the scattering effect by the seamount with different a are not as significant as the ones

in first ellipse case. The TLD, which represent the TL differences between simulation

with and without seamount, in the x-y plane at z=100m is plotted and compared in

Fig.5-11.

.2GM

40

60

80

100 0 500 1000
x (M)

1500 2000

Figure 5-6: TL at different x-locations with (y, z) = (0, 100m) for 3D underwater

seamount obtained using 3D direct simulations by PFFT-BEM. Here, f = 40Hz with

seamount cross section are circle, ellipse with a=0.875, ellipse with a=0.7 and ellipse

with a=1.167. RY is fixed at 350m.
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at x - y plane (z=100m) obtained using 3D direct simulations by PFFT-BEM (right

column). Here, f = 40Hz with seamount cross section are (a) circle, (b) ellipse with
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From comparison, we find that the differences among the cases with difference

aspect ratios are mostly located in the azimuthal directions when keeping R, = R.

From Fig.5-9(a) which plots the TL along the x-axis from the source point, we see
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that the variations in aspect ratio a do not create visible changes in TL for both

backscattering and blocking effects. As a result, the conical seamount approximation

could provide a generally good approximation of the blocking and backscattering

effects when keeping R,=R. On the other hand, Fig.5-9(b) plots the TL along the

y-direction across seamount tip. This measures the strength of 3D scattering by the

seamount. From Fig.5-9(b), we observe large variations (up to 10dB) in transmission

loss for different a. Therefore, small variation in a can introduce large changes in TL

for 3D scattering effects. This indicates that the conical seamount approximation by

the coupled mode method cannot provide accurate predictions of the seamount 3D

scattering effects.

5.3 Difference between low frequency and higher fre-

quency scattering by the underwater seamount

A higher frequency case (with source frequency f = 400Hz) is also considered.

The fluid and bottom properties are kept to be the same. PFFT-BEM uses uni-

form quadrilateral elements with Al = A/8. The TL obtained by PFFT-BEM

at different x-locations with (y, z) = (0, 100m) and at different y-locations with

(x, z) = (800m, 100m) are compared with the PFFT-BEM results with source fre-

quency f = 40Hz. It should be noted that the source is located at (x, y, z) =

(0, 0, 100m) while the peak of the seamount is at (x, y, z) = (800m, 0, 100m) which

is marked by the dash lines in Fig.5-12. From Fig.5-12(a), it can be seen that the

backscattering effects from the seamount is more significant when f = 400Hz (the

TL is nearly 10dB smaller than the case with f = 40Hz in front of the seamount).

From Fig.5-12(b), it can also be seen that the 3D scattering effects in the azimuthal

direction from the seamount is more significant in the f = 400Hz case (the TL is

nearly 5dB smaller than the case with f = 40Hz at the side of the seamount). From

these results, we can see that as the frequency of the sound source becomes larger,

the backscattering, blocking and 3D scattering effect all becomes more significant.
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PFFT-BEM on the x - y plane at z = 200m. (d) TL obtained using PFFT-BEM on
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The TL contour in the horizontal plane at the different depths are also shown in

Fig.5-13. It can be seen that the 3D scattering effects from the seamount changes

significantly with different water depths. Significantly stronger (up to 10dB) backscat-
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tering and blocking effects for the deeper cases are observed due to presence of the

seamount. This numerical example indicates the backscattering effect can be im-

portant for cases with high frequency source and neglect the backscattering effects,

which is assumed in PE method, could introduce large error to the numerical re-

sults. The total computational time for the higher frequency seanount is 6hrs with

60 computational nodes.

5.4 Seamounts with realistic environment/geometry

One of the research objective in this chapter is to provide direct numerical bench-

mark solutions under realistic conditions or real underwater seamount geometries.

This would be useful in understanding the importance of 3D sound scattering by

underwater seamount in shallow water conditions as well as facilitating the develop-

ment and validation of approximation/theoretical methods. To achieve this goal, two

numerical simulatios are conducted and presented here: the sound field scattering by

a seamount in New Jersey Shelf environment and a double seamount problem.

5.4.1 Prediction of 3D (spatial) sound scattering due to pres-

ence of a seamount in New Jersey continental shelf

The sound propagation and scattering effects by seamount under realistic environment

conditions are numerically simulated and studied here. The 3D multi-layer PFFT-

BEM method has been used to obtain the propagation and scattering of sound over

an underwater seamount on the slope of New Jersey shelf. The sound speed profile

and bathmetry shown in Fig.5-14 are based on the data from Lin [2016J. The origin

of the coordinates used in this problem is located above the source at the sea surface

with z-axis pointing into the sea. The source is located at (0, 0, 50)m. The multi-

layer model is used in the present study with water column sound profile shown in

Fig.5-14 and uniform fluid density p=1.024g/cm 3. The bottom layer is modeled with

sound speed cb=1700m/s, pb=1.5g/cm 3 and a=0.5dB/A. Due to the detailed 3D
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bathmetry of the shelf is unknown, we approximated the bottom feature, shown in

Fig.5-14 at 340m depth, as a 3D conical seamount with HO=100m, R=350m. The

center of the seamount is located at (5565, 0, 340)m. The numerical simulation

of the sound propagation and scattering over the seamount are conducted with a

computational domain of 8km x 4km x 0.5km and with uniform quadrilateral elements

of size Al = A/8. Fig.5-16 and Fig.5-15 shows the TL obtained using PFFT-BEM

on the x - z plane at y=0m without the seamount (a) and with the seamount (b).

From comparison, several observations can be made. First, the numerical acoustic

data shows that a significant decrease in sound intensity as it propagates through

the sea bottom. Secondly, by comparing the numerical results with and without the

underwater seamount, we show strong blocking and backscattering effects (5 15dB)

due to presence of (shallow water) bottom seamount.
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sound speed distribution and bathymetry on the slope of the New
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Figure 5-15: TL comparison at different x-locations with (y, z) = (0, 290m) for 3D

underwater seamount with seamount and without seamount.

5.4.2 Prediction of 3D (spatial) sound scattering due to double

seamount

The second problem contains a double seamount, which is in fact inspired by a real

world environment. The bathmetry of this double seamount problem is demonstrated

in Fig.5-17. The origin of the coordinate system is located at the free surface with

the z-axis pointing down to the ocean. The sound source is located below the origin

of the coordinate system with (x,,y,,z,)=(0m, Om, 250m) and frequency f=10OHz.

The tip of the first seamount is at (x,y,z) = (3500 m, 1000 m, 200 m). The tip of

the second seamount is at (x,y,z) = (3500 m, -1500 m, 200 m). The slope of both

seamounts is 1/4. The radius of both seamounts are 2500 m. The water depth away

from the seamount is 825 m. The water is iso-speed with sound speed ce=1500m/s

and pe=1g/cm3 . The sea bottom is also iso-speed with sound speed cb=16 50m/s,

p,=1.5g/cm 3 and bottom loss a=0.5dB/A. In this case, the numerical simulation

of the sound propagation and scattering over the seamount are conducted with a

computational domain of 8km x 6km x 0.8km with uniform quadrilateral elements of

Al = A/8.
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Figure 5-17: The double seamount geometry: The tip of the first seamount is at

(x, y, z) = (3500m, 1000m, 200m). The tip of the second seamount is at (x, y, z) =

(3500m, -1500m, 200m). The slope of both seamounts is 1/4. The radius of both

seamounts are 2500 m. The water depth away from the seamount is 825 m.

Three-dimensional models based on the parabolic equation method have been used

here for comparison. As is well known, parabolic equation models are suitable for

treating underwater acoustic propagation problems in cases only where no significant

backscattered field is expected. In the present study, three PE solutions [Lin and

Duda, 2012, Lin et al., 2012] using different discretization schemes are compared with

the PFFT-BEM results. The transmission loss in the x-y plane at depth of 400m is

plot and compared in Fig.5-18. From comparison, it is seen that the fixed arc-length

scheme (Fig.5-18(b)) and fixed radius-length scheme (Fig.5-18(d)) in a cylindrical

coordinate system give the best PE solutions. The Cartesian PE scheme (Fig.5-

18(c)) could only give good solutions close to the solution marching direction (the

x-axis). From observation, it is also clear that all the PE results underestimate the

backscattering effects in front of the seamount.

To further check the backscattering effects, we change the source location to

z,=400m which is closer to the double seamounts. The transmission losses for scat-

tering acoustics pressure are plotted in Fig.5-19 at different depths. As shown in

Fig.5-19, the backscattering effects is much stronger (up to 10 dB) at the source

depth (z=400m) when comparing with the ones at other depths.
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5.5 Concluding remarks

The PFFT-BEM method is a very efficient and accurate method to solve shallow

water range-dependent problems. In this chapter, we apply the PFFT-BEM method

to analyze the propagation and scattering around underwater seamounts. From nu-

merical examples, we show that 3D coupling effects in azimuthal directions can be

important for certain seamount geometry (i.e. seamount with large slope). Under

this condition, the Nx2D approach is not a good approximation of the true 3D ap-

proach. The dependences of the 3D scattering, backscattering and blocking effects on

the seamount cross section shapes are also illustrated through numerical examples.

We show that the 3D scattering effects by an ellipse seamount differs significantly

with the one of a conical seamounts. In such a situation, true 3D numerical models

are required especially for 3D scatterings. Two benchmark solutions are presented:

seamount on the New Jersey shelf slope and double seamount problems. We simulate

and discuss the seamount backscattering and blocking effects in both cases using 3D

PFFT-BEM. From comparison with different 3D PE solutions, we assess the accuracy

of different 3D PE methods in simulating 3D scattering problems.
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Chapter 6

Conclusion and future works

6.1 Conclusion

We develop a highly efficient multi-layer boundary element method for large scale

acoustics propagation and scattering in shallow water environment with complex

medium and boundaries. The method is based on the integration of the pre-corrected

fas Fourier transform (PFFT) algorithm into the constant boundary integral solver.

The developed PFFT-BEM reduces the computational operations for the boundary

value solution from O(N2 ~ 3) (for conventional boundary element method) to O(Nlog

N), where N is the total number of boundary unknowns. We demonstrate the high ef-

ficiency and robustness of PFFT-BEM by comparing the its computational cost with

conventional BEM for solving a canonical shallow water acoustics problem: Pekeris

waveguide problem. To further improve the efficiency of the PFFT-BEM solver, we

optimized the PFFT-BEM scheme by examining the accuracy dependence of the

PFFT-BEM on key numerical parameters such as the size of the near field and the

boundary mesh sizes. By making use of the Mesh-Neighbor-based (MN) precondi-

tioner, we further improved the convergence of PFFT-BEM iterative solver for 2+

orders. With high performance library (e.g. PETSc and FFTW3), we implemented

PFFT-BEM on massively parallel HPC platforms to achieve linear CPU scalability

up tp 0(1000) CPUs. The PFFT-BEM is able to account for cases with: (a) Inho-

mogeneity of water properties. (b) Internal and surface waves. (c) Complex/realistic
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topography. (d) Multiple-scale reverberation/scattering by bottom and water surface.

For validation, we present study of three sample three-dimensional underwater

acoustic propagation and scattering problems: Pekeris waveguide problem, ASA

wedge problem and the Gaussian canyon problem. For all these problems, the PFFT-

BEM simulation results compare well with existing theoretical and numerical results.

Good qualitative agreement are also obtained between the 3D+T simulation results

and the experimental data for internal wave and salt wedge cases which involves

realistic ocean conditions. This demonstrates the practical simulation capability of

PFFT-BEM for 4D (3D+T) underwater acoustics scattering problems.

Two underwater acoustics problems, which are of scientific interest and practical

importance, are then investigated in detail: acoustics scattering from a 3D pressure-

release rough surface and 3D acoustics propagation/scattering around a shallow water

seamount.

For the first problem, PFFT-BEM method has been used to perform Monte Carlo

computation of 3D acoustics scattering from rough surfaces. By using 3D PFFT-

BEM, we investigate and obtain the validity regions of different approximate models

for the 3D rough surfaces scattering such as the first- and second-order perturbation

theories and Kirchhoff approximation. From comparing the 2D validity regions and

3D validity regions of these models, we find that the 3D validity regions are shifted

to larger ki regions. The 3D acoustic scattering from rough surface at low grazing

angle is also studied in this study. From numerical results by PFFT-BEM, it is

found that the perturbation theory remains to be a good approximation until very

small incident grazing angle (Og < 200) while Kirchhoff approximation only provides

accurate results when incident acoustic wave is close to the normal direction of the

rough surface (Og, 900). This result indicates that for 3D rough surfaces with large

ki and moderate kh, direct numerical simulation is required in order to obtain an

accurate backscattering result, especially for low grazing angles.

We then apply the PFFT-BEM method to analyze the propagation and scattering

around a shallow water seamount. From numerical examples, we show that 3D cou-

pling effects in azimuthal directions can be important for certain seamount geometry

142



(i.e. seamount with large slope). When the azimuthal variation is strong, the out-

of-plane scattering can not be neglected and therefore, as shown by the results, the

Nx2D approach is not a good approximation of the true 3D approach. The depen-

dences of the 3D effects, backscattering and blocking effects on the seamount cross

section shapes are also illustrated through numerical examples. The numerical exam-

ples show that the scattering effects by the seamount with ellipse cross section shape

differ with the ones by conical seamounts. In such situation, 3D numerical models

are required especially for modeling the 3D scatterings. Two solutions are then pre-

sented: seamount on the New Jersey shelf slope and a double seamount problem. The

backscattering and blocking effects by the seamount in both cases are simulated and

discussed using PFFT-BEM. From comparison with different 3D PE solutions, we as-

sess the accuracy of different 3D PE methods in simulating 3D scattering problems.

By comparison the results of the double seamount problem at different depths, the

importance of backscattering effect by the seamount is also discussed.

6.2 Future works

We have developed an O(N) multi-layer boundary-element method, PFFT-BEM for

shallow water acoustic propagation which utilizes a Pre-corrected Fast Fourier Trans-

form (PFFT) approach to reduce the computational effort from O(N2~3) to O(N)

where N is the total number of boundary unknowns. The method is capable of ac-

counting for complex topography, inhomogeneity of water properties, and dynamic

environments associated with complex coastal and estuarine conditions. The method

is benchmarked against theoretical cases and field experiments. For realistic modeling

and forward prediction in practical estuarine environments, and especially for achiev-

ing inversion of the sensed acoustics to characterize and predict the geometry and

environment in such complex problems, a number of extensions and developments

needs to be accomplished in the future.

I. Develop of O(N2 /3) PFFT-BEM method for shallow layers with large

horizontal extent.
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In shallow depth, the influence of three-dimensional acoustic wave propagation

in the far field can be determined by the Taylor series expansion about a reference

horizontal plane. By use of this expansion, the influence of the three-dimensional wave

fields can be represented in terms of a small number of two-dimensional problems.

For the two-dimensional problems, the PFFT approach is again applied with the

total number of unknown reduced from N (in the 3D problem) to N2/3. The resulting

computational count then becomes O(N 2/3). This advantage shall be effective for

the shallow water problem at the large horizontal extents with relatively low acoustic

frequency. The potential gain in efficiency can be game changing, which could increase

the effective N from 0(1010) to 0(1015) using the same computational time. This will

achieve speedup of 0(103~s) for realistic applications requiring 0(109~1) unknowns.

II. Develop time-domain version of PFFT-BEM to achieve true 4D acoustic

predictions

For another direction of the future work, a time-domain version of PFFT-BEM

can be developed. Such a capability will be efficacious for true transient environ-

mental and acoustic problems including Doppler effects associated with fast moving

sources, and scattering by fast deforming boundaries. To do that, the BEM formula-

tion and solution in the frequency domain need to be modified to the time domain,

incorporating time-varying source position/speed, and boundary deformations. The

time domain boundary integral equation on the domain boundary F -+ S could be

formulated as

2p(z, t) = fff [G(-, tr)]p (,T)

aG~ s (6.1)

(z, t, r)dS-()dr - I Oj, r)G(, t|,T)dSodr
Bn so

Here, G is the time domain Green function as

P(t -r - Rc) (6.2)
47rR

with R=| I- and 6 is the Dirac delta function. The last term on the right hand of
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Eq.(6.1) represents the moving source with surface So and strength a( , r). By ob-

taining the 4D time-domain O(Nlog N) PFFT-BEM direct solution, we can study the

problem with large source speeds and surface/internal waves propagation at (small)

oblique angles to acoustic propagation direction, under which time-domain effects

(such as Doppler effects) are significant.

III. Develop O(N) solution to the acoustic inversion problem incorporating

fast forward capability based on the adjoint formulation

Characterization and prediction of the geometry and environment for complex

problems is another interesting topic which needs to be further investigated. The

inversion of the acoustics measurements could be achieved using Conjugate gradient

method. By incorporating fast forward capability using developed PFFT-BEM to the

acoustic inversion problem, we could obtain fast inversion of the measured acoustics

data. The computational cost of this direct method is thus O(N log NP) with P the

inversion unknowns. As a result, the adjoint approach is essential for large number

of inversion unknowns P, while the direct method is sufficient for small P. The key

challenges are the conditioning of the problem, and the minimization of the number

of optimization iterations/evaluations Npt (independent of N and P).

IV. Apply PFFT-BEM direct simulations to forward and inverse problems

of 3D and 4D underwater acoustics

After the above development of the PFFT-BEM method, we can then study the

realistic, practical problems such as the acoustics of the Mouth of the Columbia River,

the Connecticut River, and Regional Ocean Modeling System (ROMS) predicted

domains/environments to obtain validation and corroboration to measurements and

to available approximate model predictions. By studying these practical problems, the

importance of sufficient modeling resolution; the acoustic effects of complex surfaces

and bottoms; the surface/internal wave (spectral) amplitudes and nonlinearities; the

presence of complex sound speed and sound attenuation variations can be assessed.

Using the forward prediction, we can also characterize (possible) unmodeled effects

such as bubble fields and suspended sediments.

V. Apply of PFFT-BEM direct simulations to reverberation problems in
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shallow water waveguide

In chapter 4, we have studied the 3D scattering problem from a rough surface

extensively. The next step is to conduct 3D direct numerical of reverberation problems

in shallow water waveguide. Getting a rigorous numerical solution would be a major

effort since it would need to work with realizations of the roughness surface/bottom,

requiring averaging over many roughness realizations. The developed PFFT-BEM

method can accomplish this task efficiently. To account for the time dependence of

the reverberation, we need to cover the frequency band within the pulse with many

continuous wave runs and then using Fourier transform to get the time domain results.

These results are important as they would show how well the simplified models used

in reverberation modeling actually perform.
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