
Perception-driven optimal motion planning under resource

constraints
by

Thomas Sayre-McCord
Submitted to the Joint Program in Applied Ocean Science & Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

February 2019

@2+R Thomas Sayre-McCord
All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

A uthor Signature redacted
Joint Program in Applied Ocean Science & Engineering

Massachusetts Institute of Technology
& Woods Hole Oceanographic Institution

October 12, 2018

C ertified by

Accepted by

Acc ted b

Signature redacted
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Massachu s Institute of Technology

pThesis Supervisor

Signature redacted-M
..

Nicolas Hadjiconstantinou
Chairman, Co mittee for Graduate Students

Massachasite Institute of Technology

Signature redacted
.

Henrik Schmidt
Chairman, Joint Committee forAppe cean Science & Engineering

I MASSACHUSETS INSTTU Massachusetts Institute of Technology
OF TECHNOLWGY-. j Woods Hole Oceanographic Institution

FEB4 24Z019

IBRARIFS

z
0

4:

p- y.*

2

Perception-driven optimal motion planning under resource constraints

by

Thomas Sayre-McCord

Submitted to the Joint Program in Applied Ocean Science & Engineering
Massachusetts Institute of Technology

& Woods Hole Oceanographic Institution
on October 12, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Over the past few years there has been a new wave of interest in fully autonomous robots op-
erating in the real world, with applications from autonomous driving to search and rescue.
These robots are expected to operate at high speeds in unknown, unstructured environ-
ments using only onboard sensing and computation, presenting significant challenges for
high performance autonomous navigation.

To enable research in these challenging scenarios, the first part of this thesis focuses on the
development of a custom high-performance research UAV capable of high speed autonomous
flight using only vision and inertial sensors. This research platform was used to develop state-
of-the-art onboard visual inertial state estimation at high speeds in challenging scenarios such
as flying through window gaps. While this platform is capable of high performance state
estimation and control, its capabilities in unknown environments are severely limited by
the computational costs of running traditional vision-based mapping and motion planning
algorithms on an embedded platform.

Motivated by these challenges, the second part of this thesis presents an algorithmic
approach to the problem of motion planning in an unknown environment when the compu-
tational costs of mapping all available sensor data is prohibitively high. The algorithm is
built around a tree of dynamically feasible and free space optimal trajectories to the goal
state in configuration space. As the algorithm progresses it iteratively switches between pro-
cessing new sensor data and locally updating the search tree. We show that the algorithm
produces globally optimal motion plans, matching the optimal solution for the case with the
full (unprocessed) sensor data, while only processing a subset of the data. The mapping and
motion planning algorithm is demonstrated on a number of test systems, with a particular
focus on a six-dimensional thrust limited model of a quadrotor.

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics
Massachusetts Institute of Technology

3

4

Acknowledgments

I would like to express my appreciation to several key people who have supported and taught

me over the past five years. First of all, I want to express my heartfelt thank you to my PhD

advisor Sertac Karaman. He has been a constant source of inspiration and advice, and I

feel very privileged to have gotten to work with him. Thank you for the freedom to work on

what excited me for better or worse, and the knowledge, advice, and resources to make those

ideas so much better. Your knowledge and energy across such a range of fields has been

inspiring, and your ability to convey that knowledge on to me has been so valuable. The

hours spent discussing topics across robotics, and how we could address them, were some

of the most fun and educational parts of my PhD. I would also like to thank my Masters

advisor and committee member Hanu Singh. Thank you for bringing me into the world of

robotics; for teaching me so much about not only the theory of robotics but also the practice.

Thank you for being a tireless advocate for me, for always having your door open, and for

going well out of your way to help me however you can both professionally and personally. I

am greatly indebted to John Leonard, who provided me my first "home" at MIT and never

ceased being a source of support and advice for the rest of my PhD. Thank you for never

once saying "no" to me, for always having the time no matter how busy you were, and for

being able to say just the right things in our meetings to put me on the right path. Finally, I

would like to thank Luca Carlone for the hours spent with me helping to debug and teaching

me along the way. You taught me immeasurable amounts not only about robotics, but also

about how to be a good engineer and a good scientist. I can not thank you enough for the

skills you gave me and as a model of mentorship that I will look to for the rest of my life.

I was very privileged to be a part of three excellent research communities over the course

of my PhD. I want to thank the Deep Submergence Lab for teaching so much about building

and deploying robots, the Marine Robotics Group for the innumerable conversations over

coffee and many late nights, and the AgileDrones group for the laughter through bad times

(basement labs and broken drones) and good (anywhere with windows, but still broken

drones). To all of you, thank you for the knowledge and the friendship, without all of you

my PhD experience could never have been the same. At WHOI, I particularly want to thank

Karen Schwamb and Judy Fenwick for always having the answers and the care for whatever

I needed, Kevin Manganini for good times and great help getting the Jetyak running, and

5

John Bailey for his immense knowledge, help, stories, and general good times whether we

are on land or at sea. At MIT, thank you to Jin for always helping with my many many

requests, to Dehann and Pedro for your friendship from the very first day we started, and

to Winter for making our research better and our time more fun from the beginnings of my

time on the drone project.

Outside of MIT, I can't express enough my gratitude to my family and friends. I feel to

have my parents, Happy and Geoff, who have always provided their endless support, advice,

and encouragement. They have always believed in me, encouraged me, and have been ready

to help at a moments notice. I also want to thank my brother, Rob, and sister-in-law Claire,

for their advice, for being role models in how to approach life, and as a perpetual outlet for

a fun weekend. The biggest thank you goes to Narges, who has been the constant source

of all things good in my PhD. Thank you for the endless love, support, advice, and jokes

(even the ones at my expense). You have made everything over the last four years amazing;

providing the fun and the relaxation when I was not working, and the knowledge, advice,

and support when I was. I would also like to express my appreciation to my friends across

Boston, both inside MIT and out. Thank you for always being there for me, for the good

memories, the good fun, and for making my time in Boston so wonderful. Thank you to all

of the remarkable people in my life; I feel very fortunate to have all of you by my side.

The work reported in this dissertation was supported in part by NVIDIA, MIT Lincoln

Laboratory, MIT-WHOI Joint Program, and JD.com. Their support is gratefully acknowl-

edged.

6

Contents

1 Introduction 15

2 UAV System and Onboard State Estimation 21

2.1 Related Work 23

2.2 Hardware 24

2.3 Software Framework . 25

2.4 C ontrol . 26

2.5 State Estimation . 27

2.6 Photorealistic sensor simulation in the Loop (PiL) 31

2.7 Experim ents . 32

2.8 C onclusion . 35

3 Perception-driven motion planning 43

3.1 Related Work . 45

3.2 N otation . 46

3.3 Problem Statement . 47

3.4 A lgorithm . 49

3.4.1 Algorithm Walkthrough . 52

3.5 Algorithm Analysis . 60

3.6 Extensions . 67

3.6.1 Configuration Space Boundary Discretization 67

3.6.2 Dynamic Properties . 69

3.6.3 Anytime Properties . 70

3.7 Conclusions . 73

7

4 Applications 75

4.1 Test System s 76

4.1.1 Simulation Setup . 76

4.1.2 Grid Construction . 76

4.1.3 Implementation . 80

4.1.4 R esults . 81

4.2 Quadrotor UAV: Coupled Double Integrator 81

4.2.1 Coupled Double Integrator Boundary Value Problem 83

4.2.2 Numerical Tests . 91

4.2.3 Double Integrator Motion Planning . 92

4.3 Conclusion . 100

5 Future Work and Conclusions 101

5.1 Future W ork . 101

5.1.1 Implementation . 101

5.1.2 Non-physical barriers . 102

5.1.3 Complex dynamical systems . 103

5.2 Conclusions . 103

8

List of Figures

2-1 Mechanical and electronic designs for our agile quadrotor platform Penguin.

The quadrotor platform is CNC routed out of Garolite GI laminate for

a strong and lightweight housing of the drone electronics. Custom carrier

boards were designed in house to provide all of the essential elements for

flight (TX module, IMU, camera(s), motor control) while minimizing the

weight and footprint of the electronics. 37

2-2 Diagram of the full VIO state estimation system. Gray items are transmitted

at keyframe rate (3-10 Hz) and yellow items are transmitted at frame rate

(60 Hz). Subscripts i and j denote subsequent keyframes, while subscript k

denotes the current frame. 38

2-3 To enable algorithmic work in a wide range of visual conditions we have de-

veloped a system to replace the UAV's on-board camera with images from a

virtual environment. While the UAV is in flight (left) the motion capture pose

estimate of the UAV is sent to the Unity game engine running on a TitanX

GPU (right) which can generate the corresponding photorealistic image (bot-

tom) for that pose from a virtual world which is processed and transmitted to

the UAV in real time. The system runs fully in real time as if the sensors were

on the UAV, allowing experiments and decision making in adverse conditions

such as obstacle rich environments or in environments that are difficult to

access such as cities. 38

2-4 Visualization of a VIO experiment using simulated imagery showing the (a)

true and estimated trajectories of the drone, (b) top view of the drone's flight,

and (c) six images generated during flight with the tracked features shown. . . 39

9

2-5 An example development pipeline using photorealistic imagery in the loop.

While the UAV flies in a motion capture room, photorealistic imagery is

sent to the UAV to be fused with onboard sensors (IMU) and used in the

control loop. Once the algorithms have been developed, it is a simple switch

to use onboard camera imagery. No other changes are required as the UAV

is already in flight with autonomy algorithms in the control loop. In this

case, the challenging scenario was flying through a window gap repeatedly

with a forward facing camera. The ability to "hit" the virtual window at no

cost during development significantly decreased both the cost and time of

developm ent. 40

2-6 Error in VIO state estimate of the UAV's position as a percentage of the

distance traveled by the UAV, and rate of error in the VIO estimate of yaw.

Flights flown with the on-board camera are shown on the left while flights

flown using camera images rendered in Unity are shown on the right; a total

of 21 flights were flown with each style of camera without a window, and 8

and 10 flights with the real and simulated cameras respectively were flown

through a window. 41

2-7 Data from camera parameter testing using real-time photorealistic image sim-

ulation generated from logged flight data to assess VIO estimation perfor-

mance for different camera types. Eight trials were performed for each sensor

type. All trials were run in real-time using our simulation pipeline and an

attached Jetson TX1. FOV trials were conducted with XGA (1024x768) res-

olution at 60 FPS. FPS trials were run at VGA (640x480) resolution and 800

field of view. Camera resolution trials were conducted at 50 FPS and 600

FOV. 42

2-8 Images from VIO experiments, showing an image from a virtual on-board

camera (left) and of our UAV flying through a window gap under VIO control

(right) . 42

10

4-1 View of a 3D simulation with 200 randomly spaced cubes (gray) of length

2. The trajectory generated from a sparse plan graph is shown in green, and

from a grid plan graph in blue. Both graphs use a spatial discretization of

0.25, and the grid plan graph uses a connectivity of 1 (26 connected). 77

4-2 Generated trajectories of a Dubins car with turning radius 1, traveling through

100 obstacles of length 2, using 6 different plan graphs. The different graph

types, their display color, and the computed trajectory cost and computation

time are shown in the table. 78

4-3 Normalized results for trajectory cost vs. computation time for three robot

types on 200 randomly generated maps. Each type of plan graph was run on

the same 200 maps for each robot, and the results were normalized to show the

relative speed and solution quality of the different graphs. The figures display

the 95% boundary of the values for each graph type, with shape fill showing

the type of plan graph (sparse or grid), color showing the discretization level,

and line style showing the connectivity of the grid graphs. 79

4-4 Example of acceleration (y-axis) vs. time (x-axis) for a coupled double in-

tegrator optimal solution (solid line) and bang-bang approximation (dashed

line) for x (blue), y (red), and z (yellow) axes. While the bang-bang solu-

tion does not exactly match the optimal solution, it shares the same general

structure with negligible additional trajectory time required. 88

4-5 Histogram of computation times for double integrator approximation. Timing

include computation of the lower bound and upper bound of the solution

space, and the binary search for the lowest cost solution. 93

4-6 Histogram of the ratio of cost of the trajectory found through a bang-bang

approximation and the cost found using a shooting method with 100 node

points. Histogram does not include 4 out of 2500 samples (0.2%) which had

a ratio over 1.2, maximum ratio seen was 1.96 94

11

4-7 Visualization of the Monte Carlo simulations performed for a coupled double

integrator model. The solution found using our tree based method is shown in

Cyan with an execution time of 1.65 s and a computation time of 141.46 ins,

while a grid based search is shown in Blue with an execution time of 2.23 s and

a computation time of 973.65 ins. Each planner was run with a discretization

of 0.25 m, though note that discretization only occurs for the tree based

method along the boundaries of configuration space. 96

4-8 Experimental results across 200 Monte Carlo simulations in a randomized

world like the one shown in Figure 4-7, with 200 obstacles of length 3.0. Due

to the decoupling of the axes as well as the discretized nature of the solution,

the grid based method performs 30-40% worse than our tree search, while

also finding a slower solution. 97

4-9 Double integrator trajectory computed flying through a window and around

a tree in data collected on the University of Freidburg campust. Gray voxels

denote occupied space in the underlying world that was not directly mapped,

while orange voxels are mapped areas. Total computation time for this tra-

jectory was 331 ms. 98

4-10 Double integrator trajectory computed flying around obstacles through spa-

tial data collected in the University of Freidburg campust. Gray voxels denote

occupied space in the underlying world that was not directly mapped, while

orange voxels are mapped areas. Total computation time for this trajectory

using Algorithm 1 was 223 ms for a trajectory length of 3.4 s. For comparison,

the same problem took 7521 ms with a trajectory cost of 5.4 s using Lazy D*

L ite. 99

12

List of Tables

2.1 Measured model parameters of the Penguin UAV 26

3.1 Walkthrough of Algorithm 1. The left side shows the motion planning envi-

ronment for a 2D holonomic robot with gray (unmapped) and orange (mapped)

lines denoting impassible obstacles, while the right side shows the motion

planning tree. Colored dots on the left side correspond with the origin states

of problems on the right side. 60

4.1 Summary of mean values for planning a trajectory for a Dubins Car with

turning radius of 1 amoung 100 obstacles of length 2 (see Figure 4-2). Stan-

dard deviations are omitted as individual measurements are map dependent

and therefore the values do not follow a normal distribution, see Figure 4-3c

for relative distributions. 80

13

14

Chapter 1

Introduction

In recent years there has been a huge increase in interest and development of fully au-

tonomous robots in the real world. Unlike the robots that are currently prevalent in struc-

tured applications such as manufacturing and wherehouses, this new wave of robots are

working in diverse unknown environments using only the sensors and computation available

to them onboard. The potential use cases are numerous, including self-driving cars [83], con-

sumer productsi, defense applications 2 , search and rescue [1021, site inspection [73], marine

surveillance3 , and agriculture [17].

Many factors have combined to bring about these changes, but foremost among them

has been new, more powerful embedded computers such as the NVIDIA TX modules4,

improved and lower cost sensors 5 , and advances in algorithms particularly centered around

the boom in learning based methods. Despite the increase in spending on research and

development, very few truly autonomous robots are acting on their own in the real world,

with notable exceptions such as the Skydio R1 6 . Many open problems remain in robustness

and capabilities, particularly in bringing demanding algorithms to real time constraints and

embedded platforms.

This thesis is primarily concerned with the problem of autonomous robots working in

unknown cluttered environments with a high performance to computation ratio, meaning

that the capabilities of the platform will largely be dominated by the available computation.

lhttps://www.skydio.com
2https://www.delftdynamics.nl/
3http://sailbuoy.no/
4https: //www.nvidia.con/en-us/autolonmous-nachines/emnbedded-systems-dev-kits-modules/

'https://velodynelidar.com/vlp-16.html
'https://www.skydio.com

15

This type of platform is perpetually on the forefront of development in robotics, as in almost

all use cases there is an interest in higher performance and in cheaper computation platforms.

The inherent limitations in the problem force a mix of adapting existing algorithms to work

in resource constrained environments and looking for new, computationally aware solutions.

This thesis focuses primarily in the second area: what problems can be solved by building

algorithms that take a full-robot view of the navigation problem.

Classically the problem of robot navigation can be broken down into five "pillars": sys-

tem (what is the robot), state estimation (where is the robot), mapping (where is everything

else), motion planning (where should the robot go), and control (how does the robot get

there). Traditionally these problems are treated as isolated and cascading processes - system

determines sensing and actuation, state estimation informs mapping, mapping informs mo-

tion planning, and motion planning informs control. This breakdown allows for the isolation

of specific sub-problems for rapid and deep development, however, it can fail to take advan-

tage of the inherent coupling of the sub-problems. Various works have looked at bridging

the gap between the pillars. The most notable and ubiquitous of these methods is Simul-

taneous Localization and Mapping (SLAM) [59, 58] merging state estimation and mapping

into a single seamless process. Numerous other examples exist in literature, particularly in

recent years, which mix motion planning and state estimation [9, 12, 78, 105, 20] and motion

planning and control [70, 32].

A different design path is enabled by bringing multiple sub-modules together. For ex-

ample, in a purely visual state estimation context, research would primarily be focused on

questions such as "how can state estimation be robust in cases of few visual features," a com-

bined approach allows for questions such as "how can I perform motion planning to never

have few visual features." While the single topic approach has numerous benefits; both in

the depth that can be taken in a problem, and in the general applicability (the same algo-

rithm for a car, UAV, or phone), it leaves open gaps in integration that can give substantial

increases in performance, and provide more insight into the full navigation problem.

This thesis primarily focuses on the problem of optimal motion planning in unknown

environments, and particularly situations where the "mapping" phase of operation is a non-

negligible cost. Two such example scenarios are described below.

Visual UAV navigation. For a vision based UAV, a common sensor modality due

to the light weight and low power requirements of vision sensors, mapping is done using

16

either stereo matching across a pair of cameras [82] or structure from motion with a single

camera [641. Stereo matching tends to be the less computationally intensive process, yet

it still runs at only 30 Hz for a single VGA (640x480) stereo pair on an NVIDIA TX1, a

modern embedded processor [36]. With a required safety boundary for how far a UAV can

travel between map updates, the speed of a UAV can be severely limited. For example a

safety boundary of 10 cm traveled between "re-map" events requires that an autonomous

UAV be limited to -3 m/s, making such a system ineffective for time critical applications.

This speed limit presents a dramatic decrease in UAV capability, as systems have been

demonstrated that can perform state estimation [251, control [99], and motion planning [77,

87] at significantly higher rates. In this scenario, we have also accepted data from only a

single stereo pair with its limited field of view. To perform omni-directional mapping, a set

of six stereo pairs like those found on the Skydio RI would be required, causing an even

further slow down of flight. The underlying problem, to be addressed in this thesis, is that

there is simply more data to process than computation to process it. The key element to

increase performance is that the processing of stereo data is directly related to the amount

of volume to map, so if areas can be marked as "unimportant" through motion planning that

data may go unprocessed.

Intent prediction for self driving cars. One of the major challenges facing au-

tonomous driving is the problem of intent prediction [931, i.e. determining the probabilistic

future motion of other actors in the environment. It is on the resulting time varying "intent"

map that motion planning must be performed, however, deploying the most advanced pre-

diction detectors on every actor in the environment can be prohibitively expensive. Again,

this presents a scenario where there is too much data (the full raw description of every actor

in the environment) to process, forcing either slower or more conservative performance. By

bringing motion planning into the process an increased awareness of what elements of the

environment are important can be found, i.e. which elements of the environment warrant

expensive intent prediction, and for which can cheap methods be used. A key element of

this process is that it is not a single shot prediction, the result of one prediction process can

inform the need for another.

The computational challenges inherent in mapping have long been recognized, and vari-

ous approaches have been taken to mitigate them. The most obvious approach is to change

sensor modalities to a less computationally intensive sensor such as a LIDAR; for example

17

Mohta et. al. [751 use visual data for state estimation but LIDAR data for mapping. Even

by switching sensor types the authors are forced to map only in a locally dense area due

to high computation costs. The other clear approach to reducing the costs of mapping is

heuristic decisions made a priori about which areas, and to what level, mapping should

occur. This can include mapping only local areas densely, or mapping only the areas in

the general regions a robot hopes to move into. These techniques can be effective in re-

ducing computation, and keep the mapping process relatively isolated, but the require a

pre-determined limitation on accuracy and operation envelopes.

Other techniques have been developed that move further down the path to process data

in a way that is less accurate as a traditional map, but still useful for motion planning.

Methods include using a "pushbroom stereo" method to assume movement of a vehicle and

generate a dense local map by only processing a single disparity level and integrating through

time [51, "NanoMap" which forms a history of single pose local maps and checks candidate

trajectories against the local maps rather than performing expensive map merger actions [231,

and Tunable Stereo which uses a mixture of sparse depth estimation and meshing to give a

fast and arbitrarily dense representation of the world [841. While each of these can provide

benefits to speed at some price of accuracy, they are still fundamentally purely mapping

procedures and are agnostic to the goals of the system and the motion planning process. In

contrast, and of particular interest to this work, Ghosh and Biswas [30] demonstrate that by

using motion planning to drive mapping; in this case by performing local stereo matching

during graph expansion in motion planning, significantly less mapping (stereo processing)

can be performed.

Due to the computational challenges involved in mapping, and the inherent limitations

in heuristic approaches, this thesis proposes a new way of looking at the robot navigation

problem. Rather than a two step processes where sensor data is converted into a map, and

then a motion plan is determined based on the map, the new process is the joint problem of

moving from sensor data into a motion plan, skipping the unnecessary intermediate step of

a full map. By viewing the problem jointly, a single optimization problem can be solved (the

optimal motion planning problem) using methods that account for the computational costs

of both motion planning and mapping. Viewed through the lens of the example problems

described above, this means that stereo data need only be processed in the volumes of interest

for the motion planner. A key point is that this is not a single step decision, as the results

18

of processing certain sensor data will inform what new data should be processed next. A

similar framework can be used for the intent prediction problem - a single cheap detector can

be used, and intent prediction can be iteratively refined as various agents become involved

during the motion planning problem. Unlike reactive methods, the resulting problem is

a motion planning one in the traditional sense, except that the internal process takes into

account both the costs of mapping and motion planning. By taking a "map aware" approach

to the motion planning problem, certain properties of optimal motion planning become

apparent allowing for efficient motion planning search as the map is filled in.

The theory and algorithms described in this thesis for mapping and motion planning

are widely applicable, however, in this thesis a particular focus is placed on aerial robotics.

Aerial robotics provides an excellent test platform both due to the interest in its applications

to time critical problems such as search and rescue, and because of the realistic constraints

it provides. Aerial platforms are constrained in computation and power due to weight

limitations, they provide tight real-time constraints due to the lack of a safe state (such

as parking) in which they can stay until state estimation or motion planning algorithms

complete, and they provide an almost arbitrarily complex and high dimensional system for

planning and control.

As part of moving forward into these high speed, high computation aerial platforms,

we found that the systems and development environments required for advancing new high

performance algorithms did not exist. Part of the work for this thesis has been developing

an end-to-end system for agile aerial vehicle development including hardware, electronics,

software, visual state estimation, and a photorealistic development environment for rapid

prototyping.

This thesis is organized as follows: Chapter 2 describes the UAV research platform,

photorealistic development environment, and experiments with each, Chapter 3 lays out

the joint mapping and motion planning optimization problem, an algorithm to solve the

problem, and proofs of the optimality of the algorithm, Chapter 4 applies the mapping and

motion planning algorithm to several test systems, particularly a coupled double integrator

UAV model, and Chapter 5 describes properties of the algorithm and optimization problem,

and discusses future work.

19

20

Chapter 2

UAV System and Onboard State

Estimation

Unmanned Aerial Vehicle (UAV) systems have been demonstrated in many domains, rang-

ing from agriculture to consumer utilization [17]. Although fully autonomous UAVs have

long been available, their capabilities still do not match the operational speeds that can

be easily achieved by minimally-trained UAV operators. Various algorithmic components,

such as control, planning, or perception for agile flight have been demonstrated in isolation

using off-the-shelf components, however, a system that integrates control and perception

algorithms developed from the ground up has not yet been d.esigned, developed, and demon-

strated. An important opportunity that may help close the gap is the emergence of powerful

embedded supercomputers that can process high-rate, high-resolution exteroceptive sensory

data in an efficient manner. This sensor data is essential to enable situational awareness

and accurate state estimation for closed-loop agile control at high speeds. Developing the

algorithms required for fully autonomous high speed flight, however, is a major challenge

due to the lack of two critical components: (i) powerful research platforms equipped with

high-rate electronics and massively-parallel embedded computers and (ii) safe development

environments that can help propel algorithm and software development.

In this chapter, we describe a powerful UAV system that is capable of high-speed agile

navigation in GPS-denied environments using control closed on visual-inertial state estima-

tion. For this purpose, we develop: (i) state-of-the-art mechanical and electronics hardware

that integrate a powerful embedded supercomputer, the NVIDIA Jetson Tegra X1, with an

21

inertial measurement unit and a camera, centered around the design of a custom NVIDIA

Jetson carrier board; (ii) a unique virtual-reality UAV development environment, which

we call FlightGoggles, that allows us to simulate camera images photorealistically while

the UAV is in flight, providing the integration of simulated visual data with real inertial

measurements; (iii) state-of-the-art visual-inertial state estimation algorithms that give an

accurate state estimate for closed-loop navigation in complex environments, such as through

doors and windows, in a robust and repeatable manner. The development and integration

of these three systems are the main contributions of the present chapter.

To the best of our knowledge, in this chapter we describe one of the most capable NVIDIA

Jetson carrier boards designed specifically for the development of high-speed agile flight by

integrating key peripherals such as high-resolution, high-rate cameras and precision inertial

measurement units.

Furthermore, we present the idea of a "virtual-reality" UAV development environment.

While using simulation systems for UAV development has attracted a vast amount of atten-

tion, especially very recently with the introduction of AirSim by Microsoft [95], our system

utilizes a motion capture environment to photorealistically render camera images which are

then fed back to the UAV for active decision making and closed-loop flight control. In this

system, the physics are real, the inertial measurements are real, but all exteroceptive mea-

surements are simulated photorealistically in real time with the help of powerful desktop

GPUs. We emphasize that this system does not simulate physics and interoceptive mea-

surements, and is designed for use with a live robot. Hence, this system can be used for

applications involving complex physics, e.g., when aerodynamic effects are dominant, and

complex electromechanical effects dominate propulsion forces. Because only a single element

of the system is simulated, this environment allows us to rapidly develop agile UAVs and

move into field deployments in a safe and scalable manner.

Finally, we develop on-board visual-inertial navigation algorithms that integrate monoc-

ular camera images and inertial measurements to estimate the vehicle's state in real time

on-board the drone for closed loop control. The visual-inertial odometry algorithm presented

in this paper validates the idea of utilizing synthetic camera images generated in real time

together with real inertial measurements in closed-loop flight. The image simulation system

is used to develop the visual-inertial algorithms in a challenging scenario of flying through

a window gap, which is subsequently verified in laboratory experiments with an on-board

22

camera.

Much of the work presented in this chapter was published in the International Robotics

and Automation Conference in 2018 [91].

2.1 Related Work

UAV Systems. Multi-rotor UAVs for research in vision based algorithms have primarily

used off-the-shelf flight platforms and/or autopilot systems that have been modified with

additional sensors and computation power. The most popular off-the-shelf platforms have

been the AscTec Hummingbird [41, 11, the AscTec Pelican [96], and the Parrot AR Drone

[18]. A few custom platforms have also been built, typically augmented with an off-the-shelf

autopilot board [68, 21, 19]. Due to being lightweight and low-power, the most popular

sensor package for UAVs is a single camera (either forward or downward facing) and an

IMU, although lightweight 2D laser scanners [1], stereo camera pairs [1, 97], and an R.GB-

D sensor [67, 68] have also been used. The recent DARPA Fast Lightweight Autonomy

challenge' has brought an increase in attention and funding to high speed UAV flight in

unknown environments. Mohta et. al. have built a combined visual (state estimation) and

laser (mapping) platform demonstrating high speed flight in unknown environments [75].

The platform we present in this paper is built from the ground-up to house high-end iner-

tial measurement units, high-rate high-resolution cameras, and state-of-the-art embedded

CPU/GPU computing systems.

Synthetic Environments for Robotics. There has been a variety of work on the

use of synthetic data sets and simulation in robotics and more generally computer vision.

Synthetically generated data sets, such as those in [90, 29], have become of particular interest

as the need for large labeled data sets for deep learning has become prevalent. Of particular

note to the work presented here is the method of Richter et. al. in [891 which uses pre-

built video games to generate semantically mapped synthetic data sets. Kavena et. al. use

photorealistic renderings to evaluate the performance of different feature descriptors under

a variety of camera conditions [45]. Handa et. al. provide a synthetic data set for the

verification of SLAM algorithms against a known 3D model and trajectory [33]. In robotics,

Gazebo [51] is the ubiquitous full simulation environment, with specific applications to

1https://www.darpa.mil/program/fast-lightweight-autonomy

23

UAVs in RotorS [28], which is studied in depth in [74]. Of primary relevance to this work

is Microsoft Research's release of a developing project, AirSim, an Unreal Engine based

simulation environment for UAVs [95]. AirSim is a plug-in to Unreal Engine providing a

rendered viewpoint of a simulated (or possibly real) UAV location in the Unreal world. Early

releases have an eye toward being able to generate large data sets for deep learning based

off a simulated UAV model. To the best of our knowledge, the proposed system for UAV

development is the first system that allows the UAV computer to use synthetic exteroceptive

sensor data along with real interoceptive sensor data, both streaming in real time, while the

UAV is in flight experiencing real physics.

Visual-Inertial Navigation. The literature on visual-inertial navigation is vast, in-

cluding approaches based on filtering, e.g., [53, 37], fixed-lag smoothing, e.g., [76, 601, and

full smoothing [10, 24, 26, 79]. We refer the reader to the survey by Forster et. al. [261

for a comprehensive review. As the computational power that can be carried on a flying

platform has increased, some visual-inertial navigation algorithms have begun to be run in

real time on UAVs. Early implementations such as [18, 6, 103] focused on extending the

full SLAM system of Klein and Murray (PTAM) [48] to work on aerial vehicles. Because

PTAM was originally designed as a single camera solution for small workspaces, subsequent

works primarily focus on application to large workspaces without computational costs grow-

ing too high, and using IMU information to correct for the scale drift that is inherent in

monocular vision only solutions. More recent approaches have included using a cascading

estimate of orientation and position with a low rate stereo camera [971, replacing the PTAM

visual SLAM system with the semi-direct approach SVO [25] augmented by an IMU [191,
using an off-the-shelf pose estimate from an RGB-D sensor (Google Tango) [68], low energy

applications [104], a factor graph based approach similar to our own [631, and a high speed

multicamera SVO approach [75].

2.2 Hardware

A UAV test platform and development environment was built for the testing of on-board

autonomous navigation algorithms while performing agile maneuvers. To integrate the elec-

tronics on the UAV, a custom carrier board for the NVIDIA TX1 module was designed,

providing the interfaces necessary for sensing and control, while minimizing size and weight.

24

A mechanical frame was designed and built around this carrier board (see Fig. 2-la). The

UAV is fully controlled by an on-board NVIDIA TX1 module with a modular software frame-

work, enabling rapid testing of new algorithms and sensors. A real-time visual simulation

environment runs using a motion capture system and the Unity game engine, allowing for

rapid prototyping of visual algorithms.

UAV Mechanics. The mechanical layout of the UAV consists of a series of three

stacked plates carrying the power, control, and sensors (see Fig. 2-1a). At the bottom is

the power plate carrying the electronic speed controllers (ESCs), power distribution board,

batteries, and the four quadrotor arms with motors and propellers. The middle board is

the TXl module carrier board, and the top plate serves as a utility plate for mounting the

camera(s), external IMU, NAZE flight controller (safety mechanism only), and the WiFi

antennas. To reduce the vibration on the sensors, the bottom "dirty" plate is separated from

the top two "clean" plates by four mechanical dampeners. For maximum agility, the motors

are placed as close as possible to the center of the board.

UAV Electronics. The Penguin Carrier Board (Fig. 2-1b) carried by Penguin was

designed in-house to integrate the TX1 module with the rest of the vehicle. The board

is designed to minimize size and weight while providing seamless integration of the essen-

tial capabilities. Elements such as an extra microcontroller (Atmel328P MCU) to control

the ESCs and high speed data lanes for IMU and camera data were integrated to provide

autonomous flight. A single USB 3.0 Point Grey Flea3 monochrome camera with a resolu-

tion of 1024x1280 and an external Xsens MTi-3 IMU provide the visual and inertial sensor

package for the board. The Point Grey camera uses a Sunex DSL219 fisheye lens; to avoid

the high distortion at the edges of the lens only the center of the image was used for VIO

algorithms, leading to an effective resolution of 512x640.

2.3 Software Framework

The UAV is controlled through an on-board software setup that provides complete end-to-

end operation of the UAV from raw sensor data to the signals sent to each ESC. The system

uses Lightweight Communications and Marshaling (LCM) [42] for communication between

on-board modules, giving a lightweight and flexible framework. Each on-board module

(controller, VIO estimation, motor control) remains agnostic to its data source, allowing for

25

Property
mass
inertia around x axis
inertia around y axis
inertia around z axis
torque coefficient
thrust coefficient
thrust lever w.r.t x and y

Value
1.05 kg
4.9 x 10- 3 kg m 2

4.9 x 10- 3 kgm 2

6.9 x 10-3 kgm 2

2.6 x 10-8 kg m 2

1.89 x 10-6 kg m
0.158 m

Table 2.1: Measured model parameters of the Penguin UAV

easy switching between methods and data sources (e.g. moving from motion capture to VIO

state estimation). All processing occurs on-board the CPU and GPU of the TX1.

2.4 Control

A backstepping controller based oil the work of Bouabdallah and Siegwart [8] was inple-

mented to perform trajectory tracking on the UAV. The controller uses an outer loop position

controller and an inner loop orientation controller.

Position controller. The total thrust, U, is defined by an altitude controller according

to:

m
Uz = c (ez + g - az (ej + azez) -- aej)

Cos 0 Cos 0
(2.1)

where 4 (roll), 9 (pitch), 'i (yaw) are the Euler angles that rotate XYZ (global frame) to

xyz (body frame), e,, = 7d - 7 and e = - jd - a (qd -,q) are offsets from the desired

value ryd of variable q, and a, are control parameters. The x and y positions are controlled

by adjusting the associated projections of U, onto the XY axes, that is, uxUz and uyUz.

The desired values of ux and uy are specified by another set of backstepping controllers:

U'z = (m/Uz) (ex - ax (et + axex) - aces)

u= (m/Uz) (ey - oy (e + ayey) - ce)
(2.2)

26

Symbol
m

Ix

IY
Iz
d
b
d

Orientation controller. Since the systems thrust is assumed to be directly along the

z axis of the body, uk and uy prescribe desired pitch and roll for the inner loop:

= - sin- (m4 cos -- u sin V) (2.3)

d Sin- 1 U cos + u sin - (2.4)
Y = sin (2.4)

1-(cos@ - uk sin @)2 ,

These values, alongside the desired yaw inputs, are then controlled by specifying the torques

in their associated directions:

U I. (ex - J z6 - a + (e4 +awe4) - ae) (2.5)

Uo V -(eo - - ao (e6 + aoeq) -age (2.6)

1z (4- y
U 1= eg -- a,0deo (e + ap eo) - age, (2.7)

Finally the desired forces and torques are transformed into appropriate propeller speeds

using the thrust and torque coefficients assuming a quadratic relationship with motor speed.

2.5 State Estimation

The on-board state estimation system uses an inner loop visual-inertial Extended Kalman

Filter (EKF) for high rate control, with an outer loop fixed lag smoother Visual-Inertial

Odometry (VIO) algorithm providing accuracy and robustness. The VIO algorithm esti-

mates the motion of a device from visual and inertial cues. Our VIO approach is based

on the work by Forster et. al. [26] with modifications made to allow for real time state

estimation on the limited computation of a TX1 module. In the following, we discuss the

different components of our VIO pipeline, made up of the low-level signal processing (vision

and IMUfront-end), the inference engine used for accuracy (estimation back-end), and the

high-rate visual-inertial filter used in the control loop (visual-inertial EKF).

The Vision Front-end. Our vision front-end includes feature detection, tracking, and

geometric verification. The state estimation system uses a keyframe based scheme where

computationally intensive tasks (feature detection, MAP estimation, geometric verification)

only occur at keyframes, while computationally cheap tasks (feature tracking, EKF estima-

tion) occur at full camera frame rate. A camera frame is declared to be a keyframe if one of

27

three situations occurs: after a maximum amount of time has elapsed, after the smoother

has finished processing the previous keyframes, or if the number of tracked features drops

below a threshold. The feature detector, triggered at each keyframe, extracts Shi-Tomasi

corners [98]. Between keyframes, given the pixel locations of the features in the (k - 1)-th

frame, we use the Lucas-Kanade feature tracking method for finding the location of these

features in the k-th frame. We use OpenCV's GPU implementations for these tasks. To

restrict the computational complexity of the optimization problem for real tiem application

on embedded systems, features are restricted in the length of time they may be tracked for.

Verification of the tracked features is performed using 2-pt RANSAC [501 (implemented

in OpenGV 149]) to determine the largest set of tracked features that could be described

by a rigid body transformation given the rotation estimated from Euler integration of the

on-board gyroscope. Individual tracked features are converted from raw pixel locations to

physical direction measurements through the camera calibration, which is performed with

the OCamCalib Toolbox [92] for our on-board camera, and a known pinhole model for the

Unity generated images.

The IMU Front-end. The IMU front-end is responsible for the preintegration of IMU

measurements, which amounts to compressing a set of IMU measurements collected between

two consecutive keyframes into a single preintegrated measurement and its corresponding

covariance matrix. Preintegration decouples the IMU measurement from the keyframe states

that it links, allowing for those states to be updated in the MAP estimation without per-

forming the computationally intensive task of reintegrating the IMU.

The on-manifold preintegrated IMU model used in this system was proposed and de-

scribed in detail in [26], and is described briefly below for clarity. Let us denote the ac-

celerometer and gyroscope measurements acquired at time k by ak E R3 and Wk E R3, and

denote their respective biases at time k by ba E R and bg E R3 . We wish to determine the

relation between the state, x, of the UAV at two consecutive keyframes, where the state is

made up of the attitude R, position p, velocity v and IMU biases ba, b.

Considering two consecutive keyframes at time i and j, the IMU preintegration performs

integration of the IMU measurements (ak, Wk) for all sampling times k = i,. ... , j, with time

spacing At, to produce a relative rotation A~ij, a psuedo-relative velocity AfMij, and a

28

psuedo-relative position Apij in the local frame at time i, as shown below [26]:

j-1
A i3 = H Exp((Wk - 6')At)

k=i
j-1

A-ij = bk)At (2.8)
k=i

j-1

Afii S [Aik Ajt + 2 A ~j (ak k ~L~2
k=i-

These same values can be computed directly as functions of the keyframe states and

noise values 60ij, 6vij, 3pij E R3 in Eqn. 2.9. The decoupling of measurement integration

and keyframe states significantly saves computation by allowing for adjusting state estimates

during optimization without reintegrating IMU measurements.

ARij = RTRj Exp(3Oij)

Avi= R= (v - Vi - gAtij) + 6vi (2.9)

Apij =R - - - 2gAtt) + Spij

The Maximum a Posteriori (MAP) Back-end. The optimization back-end per-

forms fixed-lag smoothing and computes the MAP estimate of the most recent keyframe

states within a given time window, using the measurements produced by the front-end. Of

critical importance for real time flight applications is that the state estimator is not only

accurate and fast, but that it is consistently so. Even if average accuracy and timing values

for the system are low, a single long delay in computation can potentially cause the UAV

to crash. To ensure more consistent computation times, the MAP system is restricted in

the data in receives both in time, and in number. Only a fixed number of vision measure-

ments are used, for a defined number of keyframes into the history. Older measurements

are marginalized out of the factor graph. In addition, a pure odometry system is used,

sacrificing global accuracy but removing the high, and variable, computation costs of loop

closures.

The vision measurements (produced by the vision front-end) are the pixel observations of

a landmark in a keyframe. More specifically, each measurement uim generated by the vision

front-end represents the projection of landmark 1m E R3 onto the keyframe at time i. The

29

vision measurements are included in the MAP problem as structureless vision factors which

treat the unknown landmark location 1m as a direct function of the measurements of the

landmark and the state estimate, rather than as an unknown variable in the MAP estima-

tion [26]. The IMU measurements (produced by the IMU front-end) are the preintegrated

measurements (A~ij, Aij, Apij) in (2.8).

The MAP estimator is a nonlinear least squares optimization problem, whose minimum

is the MAP estimate:

x* = arg min riMU(xi, xj, ARj, AvfJ, Apfj)2_+
(i,j)EYF (2.10)

S S IrCAM(xi, uim) 2 +rPRIOR(x) 2
mEL iEFm

where the elements of Eqn. (2.10) are the negative log-likelihood of the IMU measurements,

vision measurements, and the priors, respectively. In Eqn (2.10), F is the set of consecutive

keyframes indices, Tm is the set of keyframes in which landmark m has been observed, and

L is the set of landmarks observed during the time horizon. The functions rIMu(-), rCAM('),

rPRIOR(.) are often called residual errors in that they quantify the mismatch between a

given state estimate and the available measurements and priors. The optimization problem

in Eqn. (2.10) is solved using the incremental smoothing algorithm iSAM2 [44] implemented

in the GTSAM 4.0 toolbox 115].
Visual-Inertial Extended Kalman Filter (EKF) Estimator. Because of the com-

putation limitations on-board the UAV, the MAP estimation back-end runs with a keyframe

rate of only 3-10 Hz, which is insufficient for use in closed loop control. Unlike standard

techniques which use IMU data only to bridge the gaps in MAP estimates, we take advan-

tage of the frame rate camera data in a decoupled visual-inertial EKF. The EKF follows

the standard two step EKF process with a prediction step provided by IMU integration and

an update step provided by comparing frame rate feature measurements against the esti-

mated 3D landmark locations generated by the MAP estimator. The IMU state prediction

is given by Euler integration of the acceleration and angular velocity measurements, with

the unknown bias terms 6' and 69 updated at each keyframe by the MAP estimator.

The camera update step runs at the frame rate of the camera (rather than the keyframe

rate used for the MAP estimate) using the error between tracked pixel locations um of the

mth landmark and the reprojection of the MAP estimated 3D location Im onto the camera.

30

Because the EKF uses tracked features from every frame in its update step and the

outlier rejection method (RANSAC) only occurs on keyframes, we perform a fast outlier

rejection by excluding measurements for which the reprojection error is above a threshold.

By using the IMU bias and the 3D landmark locations from the MAP estimate, the

EKF maintains similar accuracy to the MAP estimate, while still running at a rate suitable

for closed-loop control. Furthermore, by using the visual data between keyframes from the

EKF estimate, a more accurate initial guess for the pose is used in the MAP smoother. By

creating a decoupled system between the EKF and the MAP smoother, the state estimation

system is more robust to fluctuations in accuracy and speed of the MAP smoother, allowing

for a smooth accurate signal for controlling the vehicle. Large jumps in the MAP estimate

which can be hazardous for control (even when improving the accuracy of the state estimate)

are naturally smoothed out by the filter.

The full estimation system, from processing IMU and camera data in the IMU/Vision

front-ends, to a high rate state estimate from the EKF is shown in Figure 2-2.

2.6 Photorealistic sensor simulation in the Loop (PiL)

Algorithm development for UAVs faces a natural challenge that many of the locations that

we want to deploy UAVs (cities, forests, and other obstacle rich landscapes) are difficult and

dangerous locations to develop algorithms. To counteract this, we have developed a simu-

lation system that allows for real dynamics, inertial measurements, and closed loop control,

while simulating the exteroceptive sensors that are primarily effected by the surrounding

environment.

Simulation of exteroceptive data (in this case imagery) is performed in the Unity game

engine via a ground station computer featuring an NVIDIA TitanX GPU. The simulation

of imagery is performed by creating an environment in Unity that contains a virtual world

for the UAV, and one or more camera objects which are attached to a TCP socket. Over

TCP, the various parameters of the camera may be set, most importantly the camera pose

can be set in real time based on the motion capture position of the UAV. For each pose of

the camera received, the Unity camera object returns a timestamped image of the virtual

reality environment as it would be seen from that pose (see Figure 2-3). Because of the

networking limitations of sending full images wirelessly to the UAV, for our VIO state

31

estimation experiments using simulated imagery the vision front-end is executed on the

ground station computer at a speed that the on-board GPU can execute, and only feature

data is sent wirelessly to the UAV for state estimation. The total delay in receiving visual

data on the UAV (rendering and wireless transmission) is primarily Gaussian around 37

8 ms with 1.3% outliers above two standard deviations due to wireless network dropouts.

For comparison, the time from image acquisition to processed data with our live camera is

15 5 ms.

While our image simulation system may be used for traditional Hardware in the Loop

(HiL) simulations (simulated dynamics and inertial measurements with real decision mak-

ing) or with logged data from a real UAV (real dynamics and inertial measurements, pre-

determined decisions), it was implemented with the intention of running in real time while

the UAV is in the air for Photorealisitic (exteroceptive) sensor simulation in the Loop (PiL)

(real dynamics and inertial measurements, online decision making). By running all systems

in real time the PiL system comes as close as possible to a real camera running on-board

the UAV, allowing visual algorithms to be used in the decision making loop.

2.7 Experiments

Experimental Setup. Experiments were performed in an approximately rectangular

6 m x 4 m environment. A set of 6 OptiTrack Prime 17W cameras provide a ground truth

pose estimate in the enclosed area, running at 120Hz, which is used for photorealistic camera

image generation. Three sets of experiments were performed:

1. Visual state estimation and control in a baseline scenario involving an indoor environ-

ment

2. Visual state estimation and control in a challenging scenario involving flying through

a window

3. Camera parameter sweep to investigate estimation accuracy for various camera pa-

rameters

The first two experiments were conducted both in simulated environments (using FlightGog-

gles) and in real environments, whereas the last experiment was performed purely taking

advantage of the simulated environments. Each experiment has two phases; first, a take-off

32

phase where the UAV flies under motion capture using position references provided by the

operator, and second; the experimental phase where the UAV flies with the VIO state es-

timate in the loop and executes a predefined periodic pattern until a low battery warning

occurs. The take-off period serves to both stabilize the VIO state estimate with visual fea-

tures (a natural restriction of a monocular method) and to initialize the integrator for the

controller. Due to the small available flight space and long flight times the UAV will eventu-

ally drift into a wall if given a fixed reference trajectory in the global coordinate frame. To

keep the UAV within the flight cage drift is corrected by shifting the global desired trajec-

tory to match the visual-inertial odometry (VIO) local frame after each loop. This mimics

the behavior that would occur if the UAV were generating trajectories based on its available

local map to navigate a room.

Visual Navigation in Open Space. In total 42 experiments were performed in open

space, 21 using the on-board camera on the UAV and 21 using our photorealistic image

generation system to simulate a camera in real time. In all 21 experiments using the on-

board camera and in 19 out of 21 experiments using the simulated camera the UAV traced

out the desired trajectory with the VIO state estimate in the control loop for the full life

of the battery (2-3 minutes). In the two simulated experiments that had to be ended early,

WiFi network dropouts caused visual data to not reach the UAV, and the experiment was

ended for safety. The reference trajectory flown for these experiments is an oval of length

2.8 m and width 1.6 m, with a period of 3.5 - 3.8 s, for an average speed of ~2 m/s and a

maximum speed of -3 m/s on the long sides of the oval.

The estimation error as a function of distance traveled for all 42 experiments is shown

in Figure 2-6. Since this system has no loop closures the initial estimation error during

take-off cannot be recovered, resulting in the higher error percentages at the beginning of

the flight when little distance has been traveled. Once the UAV starts flying its trajectory

the estimation error remains below 1% (1 cm error for every 1 m flown) in all experiments.

Note that the tracking of features is intentionally limited to 3 seconds, both to maintain

low computation costs and to better mimic flying through an ever changing environment

where no features can be seen continuously. The VIO state estimate was continuously in

the control loop without assistance from motion capture for all 42 flights, demonstrating a

stable and accurate state estimate.

Visual Navigation through a Window. Our second set of experiments involves fly-

33

ing through a window (0.90 m x 0.60 m, approximately twice the size of the UAV) with the

VIO state estimate in the loop. Flying through windows presents a challenging problem for

monocular VIO systems with forward facing cameras, as the visual element of the VIO sys-

tem relies on motion to triangulate features. When flying through a window the only visual

data linking state estimates on one side of the window to the other are those seen through

the window, for which there is little tangential motion making triangulation inaccurate.

To the best of our knowledge the only two demonstrations of on-board, vision-based

navigation through window openings come from Loianno et. al. [691 and Falanga et. al.

[211. In both cases the focus was on trajectory generation and control under uncertainty,

and state estimation was only maintained for a single traversal of the window before landing.

A key concern is the ability to continue flight after passing through a window; therefore we

sought to repeat the baseline experiment with a window in the path of the oval trajectory,

although at a slower speed (average speeds of -1.7 m/s and maximum speed of -2.3 m/s).

At each loop a simulated window detection occurred to set a new flight trajectory through

the window, however, this window detection was not used for state estimation.

Our photorealistic sensor simulation system provides the platform to develop our al-

gorithms for window navigation. Developing algorithms with a physical window hazards

numerous crashes as the system is developed, and the development of the system without

a window or without visual navigation algorithms in the loop does not provide an accurate

description of the performance of the UAV powered by visual navigation algorithms. In-

stead, our development environment allows for the visual effect of flying through a window,

real dynamics, and real inertial measurements, without crashing on failure. We show the

pipeline for developing with photorealistic image simulation in Figure 2-5, first developing

and tuning the system with virtual imagery and then performing the same task in the real

world. Once the system was successful with virtual imagery, it was a simple change of

camera source and camera parameters to perform the same task in the real world.

A total of 10 flights were performed with a simulated camera, constituting 361 traversals

of the window, with 3 traversals resulting in a "crash" with the virtual window (crashes

detected from the motion capture position of the UAV). The estimation error across the

flights is shown in Figure 2-6.

Through experimentation with simulated imagery we found that a high keyframe rate

with less feature data is necessary to both consistently bridge the gap created by flying

34

through the window, and to quickly re-establish an accurate state estimate on the other

side of the window. Based on these lessons, we performed the same experiment with a real

window and the on-board camera. A total of 8 flights were performed, constituting 119

traversals of the window with 6 crashes/pilot take overs due to estimation divergence. Post

processing of data revealed that the lower success rate when using a real camera was due

to a combination of noisier visual data than provided by the simulation system, and the

additional computational load on the on-board computer of image acquisition slowing down

the optimization rate. The noisier visual data can come from a combination of lower quality

features in the world, motion blur of the live camera, and imperfections in the estimated

camera model.

Camera Parameter Tests. In addition to allowing for testing in a variety of visual

environments, our development environment also allows for rapidly evaluating sensor prop-

erties and configurations. For instance, we took a 70 second pre-recorded flight of our UAV

flying an oval trajectory under motion capture and tested the VIO's performance in real-time

using real-world IMU measurements against a set of camera parameters spanning Field of

View, Camera Resolution, and Frame Rate. See Figure 2-7 for a selection of results. These

measurements are not meant as a declaration of the best camera to use for visual-inertial

navigation, but rather to show the capabilities of the system for rapid system prototyping

to fit new challenges.

The ease of experimenting with this simulation system makes testing out sensor config-

urations in new flight scenarios easy and cost effective. While we have focused on a few

parameters of the camera sensor itself, a wide range of other effects such as camera blur,

scene lighting, feature richness, and accuracy of the camera model can easily be investigated.

2.8 Conclusion

The work described here demonstrates the capabilities of our fully integrated drone plat-

form, its onboard visual-inertial odometry system, and a novel real time visual simulation

environment. The full platform provides the essential components for further development

of high speed vision based algorithms, with the required hardware, processing power and

onboard state estimation performance. The combined drone and visual simulation system

provides a platform for rapid development of vision based algorithms in increasingly complex

35

scenarios.

The results shown here demonstrate both that the simulated imagery is viable as an

alternative to real onboard imagery for algorithm development, and that developing first

in a simulated world and then moving to the real world can be a seamless process. This

architecture, combined with the controller from [99], has been used in 14] to collect a large

scale publically available dataset of high speed UAV flight containing high rate imagery,

onboard inertial data, and precise motor speeds.

36

Point Grey
Flea3 Ca era

Power Plate

(a) Exploded view of Penguin quadrotor platform used in VIO experiments

3
1.
2.

3.
4.
5.
6.

7.
8.

NVIDIA TXI
MPU-9250
IMU
Arduino MCU
USB 3.0 Host
CAN/12C Port
UART/SPI
Port
GPIO Port
Serial Debug

(b) Penguin Carrier Board

Figure 2-1: Mechanical and electronic designs for our agile quadrotor platform Penguin. The
quadrotor platform is CNC routed out of Garolite G10 laminate for a strong and lightweight
housing of the drone electronics. Custom carrier boards were designed in house to provide
all of the essential elements for flight (TX module, IMU, camera(s), motor control) while
minimizing the weight and footprint of the electronics.

37

IMU Front-End ARY , Apj , Av iiVision Front-End

V, Wk MAP Smoother - 1{.} {u }

EKF

R, p, V Controller

Figure 2-2: Diagram of the full VIO state estimation system. Gray items are transmitted at

keyframe rate (3-10 Hz) and yellow items are transmitted at frame rate (60 Hz). Subscripts

i and j denote subsequent keyframes, while subscript k denotes the current frame.

DRONE POSITION
AND ORIENTATION

DRONE FLYING WITH ONBOARD VIO-IN-THE-LOOP CONTROL REAL-TIME PHOTOREALISTIC CAMERA SIMULATION

(Motion capture used for virtual iiage generation) (Drone viewpoint rendered in Unity virtual reality world)

TRACKED PHIToREAIII
FRATITRES IMAGES

DETECTION AND TRACKING OF VISUAL FEATURES

Figure 2-3: To enable algorithmic work in a wide range of visual conditions we have de-
veloped a system to replace the UAV's on-board camera with images from a virtual envi-

ronment. While the UAV is in flight (left) the motion capture pose estimate of the UAV
is sent to the Unity game engine running on a TitanX GPU (right) which can generate
the corresponding photorealistic image (bottom) for that pose from a virtual world which
is processed and transmitted to the UAV in real time. The system runs fully in real time

as if the sensors were on the UAV, allowing experiments and decision making in adverse

conditions such as obstacle rich environments or in environments that are difficult to access

such as cities.

38

(a) Trajectory from a single oval of VIO-in-thie-
loop flight overlaid on the 3D model used for pho-
torealistic image generation. The green line shows
the position of the drone as recorded from motion
capture while the red line shows the VIO state
estimate of position used for control.

(b) Top view of the drone flying in the lab during
the experiment, the pose of the drone for the six
images images displayed below is emphasized.

(c) Six photorealistic images generated and streamed to the drone in real time for VIO state esti-
mation during a VIO experiment around an oval trajectory. Green lines show 0.3 seconds of history
for visual features detected and tracked by the vision front end. Our simulation system generates
photorealistic images at 60 Hz based on motion capture pose estimate, which are processed by the
VIO system, and used in-the-loop for controlling the drone's flight.

Figure 2-4: Visualization of a VIO experiment using simulated imagery showing the (a) true
and estimated trajectories of the drone, (b) top view of the drone's flight, and (c) six images
generated during flight with the tracked features shown.

39

PROTOTYPING WITH VIRTUAL IMAGERY To ENABLE AGILE AUTONOMY

Agile platfurm with fully
integrated custom
electronics and hardware

Real-time
photorealistic
image generation
for safe
prototyping

Vir1 .n nagurv
wiria a windmVw

ISEd in-It14-144
fil1 live (11)e

I
()smnalI I12'r12i
Alvas-It 12 21 i

0Onboard monocular visual
inertial odometry (VIO)

implementation used in-the-
loop for agile flight

('h1m'4I!3 i
4xp4ri men,114 42
vvrifid a I ion-

I 0
Repeated VIO-
iu-the-loop flight
through a
window

Figure 2-5: An example development pipeline using photorealistic imagery in the loop.
While the UAV flies in a motion capture room, photorealistic imagery is sent to the UAV
to be fused with onboard sensors (IMU) and used in the control loop. Once the algorithms
have been developed, it is a simple switch to use onboard camera imagery. No other changes
are required as the UAV is already in flight with autonomy algorithms in the control loop.
In this case, the challenging scenario was flying through a window gap repeatedly with a
forward facing camera. The ability to "hit" the virtual window at no cost during development
significantly decreased both the cost and time of development.

40

I

Alolion vapt Inx.
I r I king 44, live

domilf jx)A

I

On-board Camera

0 50 100 150 200 250 3000 50 100 15O 200 250 300
Distance Traveled (m)

On-board Camera - Window

50 100 150 200 25
Distance Traveled (m)

On-boa Cormers

0 50 100 150
Time (s)

On-board Camera - Window

40 60 0 100 120
Time (s)

00 250

21 -Unity Camera

1.4 -
1.2-

a 1.

S0.8 -
4.u 0.6
-r 0.4.

a 0.2-
0

0 0 50 100 150 200 250 300 350 40

2 e
1.8

1.6
S1.4

S12

0.8

w 0.6

0.4

0.2

0-
50 0

1r

0.9 -

0.8 .

0.7

00.6-

0.5

00.4-

0.3

0.2

0.1

0 L0

0.9

0.8

0.7

oj0.6

~0.5
00.4

>- 0.3

0.2

0.1

140 160

Figure 2-6: Error in VIO state estimate of the
traveled by the UAV, and rate of error in the

Distance Traveled (m)

Unity Camera - Window

50 10 15 20 25 30 35 40 5

0

so 100 150 200 250 300 350 400 45D
Distance Traveled (m)

Yaw Drift Rate

50h 100 15

50 100 ISO
Time (s)

Unity Camera - Window

0

on-board camera are shown on the left while flights flown using camera images rendered
in Unity are shown on the right; a total of 21 flights were flown with each style of camera
without a window, and 8 and 10 flights with the real and simulated cameras respectively
were flown through a window.

41

50 100 150
Time (s)

200 250

200 250

2

1.8

ei 1.6

1- 1.4

1.2

0.8
i1 0.6

0.4
EZ;0.2

1.8

a1.6

I- 1.4

0 12

0.8

0.6

0.4

0.2

0
0

I
0.9

0.8

0-7

0.6

0.5

0.4

) 0.3

0.2

0.1

0.6

0.5

0.4

0.3

0.2

0.1

0
20

UAV's position as a percentage of the distance
VIO estimate of yaw. Flights flown with the

i 40 -- - - . . - r . - -

Estimation error per distance traveled (%)
3.0% 3.0% 3.0%

2.0% 2.0% 2.0%

1.0% 1.0% 1.0%

0.0% 0.0 0.0%
50 60 70 5 0 * 90~ 100 110 120 130 145 O0 30 60 90 120 .%VGA XGA HalI HD Full HO

Field of View Frames per Second Camera Resolution

Figure 2-7: Data from camera parameter testing using real-time photorealistic image simu-
lation generated from logged flight data to assess VIO estimation performance for different
camera types. Eight trials were performed for each sensor type. All trials were run in real-
time using our simulation pipeline and an attached Jetson TX1. FOV trials were conducted
with XGA (1024x768) resolution at 60 FPS. FPS trials were run at VGA (640x480) reso-
lution and 800 field of view. Camera resolution trials were conducted at 50 FPS and 60'
FOV.

(a) Unity generated image with window to
through in the upper right corner.

fly (b) Image of UAV flying through a physical win-
dow using VIO in the loop based on its on-board
camera and IMU.

Figure 2-8: Images from VIO experiments, showing an image from a virtual on-board camera
(left) and of our UAV flying through a window gap under VIO control (right)

42

I

Chapter 3

Perception-driven motion planning

Both motion planning and mapping are fundamental problems of robotics. The problem

of mapping is to create an accurate representation of obstacles around a robot based on

sensory measurements, and the problem of motion planning is to find a dynamically-feasible

trajectory around these obstacles. These two problems are intimately linked. A high-quality

motion plan often requires working with an accurate high-resolution map, which requires

extensive processing of large amounts of sensory data.

Unfortunately, both the mapping problem and the motion planning problem can re-

quire significant computational resources. The computational constraints are even more

pronounced for small vehicles attempting to traverse complex environments rapidly. Due to

the small size of the vehicles, relatively limited computational platforms can be carried on

board. Due to the fast operation of the vehicles, there is little time that can be devoted

to computation. In particular, typical mapping methods using camera data, e.g., stereo re-

construction, structure from motion, and learning based techniques, are all computationally

burdensome, and their computation scales directly with the amount of area they need to

map.

Due to the computation effort devoted to mapping there has been increasing interest

in methods that attempt to minimize the processing of sensory data. For instance, the

pushbroom stereo method [5] avoids full stereo depth computation for each stereo pair by

integrating over time, and the NanoMap method [23] maintains data in a sensor frame to

avoid explicitly integrating it into a map.

In this chapter, we consider a joint mapping-and-planning problem, in which sensory

43

data is processed for mapping only when it is necessary for planning, with the aim of

minimizing the computational costs (for both mapping and planning), while maintaining

the completeness and optimality guarantees of motion planning. The algorithms that solve

this problem are well suited for online settings that require small vehicles to rapidly traverse

complex environments that are unknown a priori, but revealed in an online manner.

In many implementations robot navigation systems, the coupling between motion plan-

ning and the obstacle map is through a search graph, e.g. [54, 391. The nodes of the graph

consist of a set of robot states with the edges representing collision-free, dynamically-feasible

trajectories between these states. There is a vast literature on the construction of this dis-

crete graph from the continuous robot dynamics and its environment. Common algorithms

include regularized discretizations of the state space into state lattices, roadmap methods

(e.g., PRM [47]), and tree methods (e.g., RRT [56] or RRT* [46]). There is also a large

literature on algorithms that focus on the search of an existing graph. A* [34] is the de-facto

standard search method with numerous adaptations to provide properties such as planning

on dynamic graphs (e.g., D* Lite 1521), and heuristically accelerated planning (e.g., ARA*

[61]).

The algorithm proposed here lies in the area of graph construction, starting from a single

edge from origin to goal and an empty map, and iteratively switching between checking the

validity of the solution (mapping), and updating the graph structure to account for newly

processed sensor data (planning). The graph is structured as a tree of "Problems" where each

problem is an sub-motion planning problem from some intermediate state in configuration

space to the goal state.

Our approach incrementally grows a sparse tree by taking advantage of two provable

properties of the problem, specifically that (1) the constrained optimal trajectory will be

made of free space trajectories joined at the boundaries of obstacles and (2) adding obstacles

to the problem will never decrease the optimal cost of the motion planning problem. By not

constraining the trajectories to a pre-determined form, we are also able to handle systems

with differential constraints, provide a naturally multi-resolution representation of the state

space, and create plan trees that can be efficiently queried, while minimizing the mapping

required. The incremental growth of the plan tree starts from a best case, obstacle free

solution to the motion planning problem, checks it against available sensor data, and in the

event of discovering a new obstacle adds new elements to the plan tree to avoid the obstacle.

44

This process is repeated until an optimal solution is reached. By mapping along only the

current best solution we can perform "edge optimal graph search" following the model of

Dellin and Srinivasa [16] to perform minimal mapping on the way to finding the optimal

solution. These techniques are a unification of the general lazy techniques used in literature

[7].

This chapter is organized as follows. Section 3.1 lays out the related work in the field of

graph construction and minimal sensing. Section 3.2 lays out the notation that will be used

in this chapter. Section 3.3 describes the coupled mapping-and-motion planning problem we

seek to solve. Section 3.4 describes the principles behind the algorithm and the algorithm

itself. Section 3.5 provides the proofs surrounding the algorithm's properties. Section 3.6

describes ways of extending the motion planning algorithm to work in high dimensional

spaces, with dynamic systems, and as an anytime system.

3.1 Related Work

A typical setup for the robotic motion planning problem combines a pre-built map of the

environment and a plan graph of nodes (robot states) and edges (robot trajectories). In

common implementations the plan graph uses the map for validity checks of nodes and edges,

but does not reference it for the structure of the plan graph [57]. Many methods have been

developed, however, that more tightly couple the planning and mapping processes to achieve

lower cost trajectories or computationally more efficient planners. For example, visibility

graphs place nodes at the vertices of polygonal obstacles providing exactly optimal solutions

for 2D holonomic robots [2]. In sampling based methods, the obstacle map can be used to

inform node sampling strategies such as increased placement near obstacle boundaries for

navigating cluttered environments and narrow cooridors [3].

Several methods exist which use the result of collision checks executed during search to

adapt the structure of the plan graph. The any angle planning variants Theta* [80], Lazy

Theta* [81], and Incremental Phi* [62] start with a grid structure for the initial search but

add virtual diagonal edges to shorten the path where permissible on the obstacle map. Of

close relation to this work, several planners have been proposed which initially start searching

a simple plan graph, and incrementally increase the complexity of the problem based on the

result of collision checks. For example, Wagner and Choset [101] propose initializing an

45

n-robot planning problem as n 1-robot sub-problems. When two sub-problems produce

collisions between robots, they are combined and re-solved, thereby locally increasing the

complexity of the problem but eliminating the collision. This process is repeated until

no collisions remain. Similar concepts have been proposed for other navigation scenarios.

Shah et. al. [94] initialize with a low resolution grid representation of the state space and

adaptively increase its resolution during search. Gochev et. al. [311 propose a method that

incrementally increases the dimensionality of the state space for complex robots when low

dimensional representations cause collisions.

Another field of work has looked at reducing computation by minimizing the number

of collision checks that must be carried out during motion planning. These methods, often

called "lazy" search techniques, typically focus on robotic arms [13 but apply to any graph

search problem. Dellin and Srinivasa [16] show that several existing algorithms for "lazy"

search are actually specific instances of a more general algorithm for minimizing the number

of collision checks.

Recent work has considered bringing together robot mapping and motion planning.

Pryor et. al. [86] use motion planning to determine which areas of the map around a

humanoid robot to resolve from sensor data. Ghosh and Biswas [30] show significant reduc-

tions in the matching of stereo pairs for a ground robot by directly connecting the checking

of disparity matches to the expansion of the plan graph. These methods provide a strong

basis for the benefits of creating joint mapping and planning processes.

3.2 Notation

The overall motion planning problem is to find a feasible motion between two robot states,

formalized as follows. The configuration space of the robot is defined as X C Rd, and is the

set of all possible states, written x, of the robot. The map, i.e. invalid configurations of the

robot, is denoted M C X, which is assumed to be an open set. The free space is defined as

Xfree : cl(X\M), where cl(.) is the closure operator.

The dynamics governing the transition between robot states is represented by an ordinary

differential equation of the following form:

x 4(t) = f (x(t), U()) (3.1)

46

where u E U is the control input. A dynamically feasible trajectory from a starting state

Xstart E X to a final state xgoal E X is a mapping startagoal [0, 7) -+ X such that

start(~goal(0) = Xstart, startogoal(T) = Xgoal, and start0goal(t) satisfies Eqn. (3.1) for all

t E [0, T). A valid trajectory from a starting state Xstart E X to a final state xgoal E X

against a map A is a dynamically feasible trajectory startagoal such that startoagoal(t) C Xfree

for all t E [0, i). Validity is a map specific term, and we will denote trajectories that are

valid on a map Al by st ag

We denote the set of all dynamically feasible trajectories from xstart to Xgoal as startEgoal,

and the set of all valid trajectories on map A by sjtEgoal-

We define a trajectory cost function to be a mapping C (.) : o -+ R U oc that assigns

a non-negative cost to a trajectory. We define this cost function for a set of trajectories to

be the minimum cost of any trajectory in the set, i.e. C (E) := mino-eE C (o).

We will define the addition of two trajectories as the concatenation of them in time:

(ao~b + bOc)(t) = ao(t) for all t E [0, Tab); (3.2)

bJc(t - Tab) for all t E [Tab, Tab + Tbc),

which gives a new trajectory aac : [0, Tab + Tbc) -+ X.

3.3 Problem Statement

The general optimal motion planning problem can be stated as follows:

Problem 1 (Optimal Motion Planning). Given an optimal motion planning problem in-

stance (Xstart , Xgoal , M, C ()), find a valid trajectory start*oa1 such that C (start0oai) =

min or E M E C (o-), and return failure if no such trajectory exists.
start goal

For this work, we wish to consider a wider problem where the pre-built map A does

not exist, and instead a set of sensor data S is available with some non-trivial incremental

function fmap(S) -+ Ms that can be used to generate a map. We can modify Problem 1

accordingly to generate the new problem:

Problem 2 (Optimal Motion Planning). Given an optimal motion planning problem in-

stance (Xstart, Xgoal, ,C (-)), find a valid trajectory starto*oal such that C (starto* oal)

minE MS>E C (o-), and return failure if no such trajectory exists.
start goal

47

The movement from a map to a sensor opens questions for the motion planning problem,

namely how to handle parts of the world for which information is not available within the

sensor data. For this work we leave that decision to the function fmap, requiring it to

generate a full map from any amount of sensor data, and instead focus on the problem of

motion planning against the (assumed complete) map Ms.

A naive solution to Problem 2, e.g. generate the map with fmap and then solve the

motion planning problem will be computationally expensive in two places. First, as noted

in the problem definition, fmap is a non-trivial function and generating a full map from S

requires the maximum number of evaluations of fmap. Second, solving the motion planning

problem is related to the size of the search space s~I~ oal. Approaches to solving the

second problem make up decades of motion planning literature with the assumption of a

pre-existing map. For the first problem, specifically for the problem of graphical search, there

is a set of literature that is focused on reducing the number of validity checks required for

motion planning. These techniques, generally known as "lazy" methods, were first proposed

by Bohlin and Kavraki [7]. These methods are typically used for systems with complex

collision checks such as robot arms, however, the conceptual approach is equally valid for

processing perception data. In recent years, Dellin and Srinivasa have created a coherent

picture for these lazy methods, which they denote LazySP [16]. In this work, we will build off

the principles of these lazy methods to feed collision checking back into the motion planning

problem to simultaneously reduce the computational costs of both the map generation and

the motion planning problem.

To properly characterize the desired problem, let us define three subsets of the full

solution space E. Eu: elements of the solution space that are not currently in the motion

planning problem, Ein: elements of the solution space that are currently in the motion

planning problem i.e. the search graph, and E sensed: elements of the solution space for which

validity against the sensor data/map have been evaluated. These sets have the properties:

n 2 sensed (3.3)

out= E \ Ein (3.4)

Generally speaking we can say that the computational requirements of mapping will be

related to I sensed and the computational requirements of motion planning will be related

48

to IEi1. From this, we can state a new, computationally aware, motion planning problem.

Problem 3 (Perception Driven Optimal Motion Planning). Given an optimal motion plan-

ning problem instance (Xstart , Xgoal, S, C (-)), find a valid trajectory start*oal such that C (start01oa)
min aM C (a), while minimizing some cost mixing function g(|E |,|sensed1).

start goal

For the theorems put forward in this work we also require two assumptions about the

nature of the system. These assumptions are maintained throughout the following sections,

but will be referenced when their existence is key.

Assumption 4. The dynamics of the robot, Eqn. (3.1), are such that all candidate opti-

mal solutions from Pontryagin's Minimum Principle [85] can be found for generic boundary

conditions x(O) = x0 and x(-r) = xf. We will denote this candidate set by Z'.

This assumption is effectively a requirement that we have the capability of finding all

local minima of the system given boundary conditions in a obstacle free world. While

this is a strict requirement for the proofs that follow, Section 4.2 demonstrates using an

approximation to solve the boundary value problem while still producing a highly effective,

though sub-optimal, system.

Assumption 5. The cost function C (.) obeys the triangle inequality on all - E E, i.e..

C (aO-) <; C (0-) + C (,p9), for all Xa, Xb, X, E X (3.5)

This provides a relatively generic assumption for the standard motion planning problem,

however, it can be restrictive for situations with a history based cost function such as

localization accuracy [91.

3.4 Algorithm

In this section we will describe the mapping and planning algorithm, first describing its

properties (to be proved in Section 3.5), then the conceptual approach, and finally the

algorithm itself.

The algorithm described in the following sections, Algorithm 1, will have the following

properties:

49

Theorem 6 (Cost Optimality of Algorithm 1). Given an optimal motion planning problem

instance (X, Xg,, S, C (.)), the solution produced by Algorithm 1, ,(o, will have the property

C (-) = min M C (o-), where ME are all elements of sEg that are valid on the map
oTE 8A 9 9

generated by fully processing S.

Theorem 7 (Completeness of Algorithm 1). If there is a valid solution to the optimal motion

planning problem instance (x,, xg, S, C (.)), then Algorithm 1 will return a solution, and if

there is no valid solution then Algorithm 1 will return failure in finite time.

Theorem 8 (Sensing Optimality of Algorithm 1). There is no alternative algorithm that can

be guaranteed to require less sensing than Algorithm 1, i.e. result in Esensed being smaller,

while maintaining the guarantees of Theorem, 6 and Theorem 7.

Theorem 9 (Graph Optimality of Algorithm 1). For any sub-problem aPg in Algorithm 1,

the submap Ma that the problem uses is optimally compact, meaning that it can be made no

smaller while maintaining the guarantees of Theorem 6 and Theorem 7.

Theorem 9 references the optimal compactness of sub-maps in the algorithm. This is

used as a proxy for the compactness of the tree search itself, as additional edges are required

to account for new obstacles in a map, causing an increase in IEin , however, the direct

optimal compactness of JEJ is not shown here as additional conditions can be placed

on which trajectories must be included in the tree beyond those conditions included in

Algorithm 1.

As previously stated, our goal is to solve an optimal motion planning problem, meaning

that we wish to find a cost optimal trajectory that is valid on the underlying world map.

Algorithm 1 is centered around two principles: (1) that any optimal trajectory can be built

from long, free space optimal trajectories that are joined at boundaries of configuration

space (Theorem 10), and (2) solving the optimal motion planning problem for a map that is

a sub-map of the true map will result in a solution with cost less than or equal to the true

cost (Theorem 12).

Based off of the first of these principles, we will treat the optimal motion planning

problem as a decision tree rooted at x,, where every node in the tree is either a state on

the boundary of configuration space or is the goal state xg, and every edge connecting two

nodes is the set of free space optimal trajectories that join those nodes. Every leaf in the

tree that ends in xg is therefore a valid solution to the motion planning problem. If the tree

50

is complete, then every node in the tree is connected to every other node on B(M) U xg,

and the minimum cost leaf that ends in x9 is also the optimal motion plan. Such a tree can

be structured as a dense graph and rather trivially be proven to be optimal and complete

through Theorem 10, however, it suffers two problems: first, for N = IB(M) U x, U xg , the

graph will have N nodes each with a branching factor of N, making the graph extremely

expensive to form and to search for any reasonably sized problem. Second, the graph requires

full previous knowledge of B(M) requiring many expensive sensing evaluations.

Instead, we will look at the overall motion planning problem from x, to xg as set of

N sub-problems from xi C B(M) U xs U xg to Xg. We will denote such a sub-problem by

iPg. Any given problem can then be broken down into moving from the current state to any

other state, and then solving the subsequent motion planning problem. This creates a tree

structure, with nodes denoting intermediate sub-problems and edges denoting dynamically

feasible trajectories within a sub-problem. A full solution to this tree reverts to the dense

graph described above, however, we will use the second principle described above to create

a admissible heuristic for the cost to solve any given problem. This heuristic (the solution

to the sub-problem on a sub-map) drives which sub-problem to investigate and increase the

heuristic for. Once the admissible heuristic becomes an optimal heuristic, meaning that it

matches the true solution cost, then the optimal solution to the full problem is found. This

sub-map approach fits well with the desire to sense as little of the environment as possible.

To carry out such a heuristic search, each sub-problem, labeled ag will have the following

characteristics:

1. A map, Ma of obstacles which have been included in the sub-motion planning problem

2. An ordered set of sub-maps, ma(i) which show the growth of Ma. These sub-maps

are used to allow other problems to minimally add another problem. The state of a

problem at the addition of ma(i) will be denoted apg(i).

3. A set of children, which are triplets (ao, j 1%, azi) denoting possible solutions to the

problem a g made up of moving to the intermediate state xi with agh, and subsequently

solving the problem iPg(azi). The value azi marks the sequence of submaps of jP that

aP is aware of. A higher azi brings the heuristic of iPg closer to optimal, but requires

more complexity within aPg. These children are maintained in a priority queue, with

priority matching the cost described below. The top priority child is the current best

51

solution to the motion planning problem.

4. A cost function for a problem C (a,g) given by the top child (aoi, iPg, azi), where

C (aPg) = C (aoi) + C (iPg(azi))

The algorithm has two primary functions, the first is MakeConsistent which updates

the tree until the current minimal element of the tree is free on all already sensed data M.

This is a process of incrementally updating sub-problems until their heuristics lie above the

optimal cost on M,. The second function is Sense which checks the current best solution

against all available sensor data. If the current best solution is valid on Sense, then it is

also optimal. If not, the tree is updated for the new map information, and another round

of MakeConsistent is called.

Result: - = arg min M., C (o-)

1 Algorithm SparseShortestPath(x, xg)
/* Initialize the problem

2 free = False

3 Initialize(,Pg)

4 while not free do

5 consistent = False

/* Update the graph given currently processed data

6 while not consistent do

7 Mnew = MakeConsistent(,Pg)
8 L consistent = IsEmpty(Mnew)

/* Check the best solution against all data

9 Mnew = Sense (,Pg)

10 free = IsEmpty(Mnew)

/* Return the unblocked solution

11 return Solve(,Pg)

Algorithm 1: Sparse Graph Algorithm

3.4.1 Algorithm Walkthrough

To better understand Algorithm 1 a visual walkthrough of the algorithm is provided in

Table 3.1. For ease of visualization, a 2D holonomic robot moving through line obstacles is

used as an example. For a more complex example, please refer to Section 3.6.1. At each

iteration of the algorithm (a row in Table 3.1) the currently effected paths in the motion

planning problem are shown in the center column, while the search tree is shown in the right

column.

52

1 Procedure MakeConsistent (avg)

/* Already reached goal
2 if xa = X then
3 return 0

/* Find the best solution available to a Pg

4 (aob, bPg, aZb) = PoP(aPg)
5 Mnew = SenseTrajectory(ao'b, M 8)
6 if IsEmpty(Mnew) then

/* Make b g up to date in apg
7 Mnew = UpdateProblem(bpg, aZb)

8 Push(apg, (aab'bPgazb)

9 if IsEmpty(Mnw) then

/* aI g is consistent, move to bPg
10 Mnew = Makeonsistent(bpg)

11 Push (apgl > a 'b b aZb

12 AddObstacles (ag new)
13 return Mnew

14 Procedure Sense (g)
15 if xa = Xg then

16 L return 0

17 (aob, bPg, aZb) = POP(ag)

18 Mnew = SenseTrajectory (a b, Msensor)
19 if IsEmpty(Mnew) then
20 L Mnew = Sense(b g)

/* Update a g for any new obstacles found */

21 AddObstacles (ag Mnew)
22 L return Mnew

Algorithm 2: Sparse Graph Algorithm (Part 2)

Each node in the search tree is a Problem in the algorithm, with the node colored to

correspond with the physical locations in the center column. As the tree grows new sub-

problems are added to effected parts of the tree. Note that at any given step the tree can

only be expanded in problems that were part of the current best solution (highlighted in

blue).

There are two primary elements of the algorithm that are visualized in this walkthrough:

1. Finding the current best solution (branch) of the tree, as shown in steps (1), (3), (6),

and (9). As the search space is an already sorted tree this is a very cheap operation.

2. Checking the current best solution against all available sensor data, steps (2), (4), (5),

53

Procedure Initialize (aug)
/* Initialize the problem with an empty map

Ma=0

Push(aPg, a g7 gg, 0)
Za = 0

za=E0

ahg(0) =C (g)

ma(0) 0

Procedure Push(aPg, (aob, bPg, aZb))

priority = C (aab) bhg(aZb)

ag -÷ queue() -* push((a b, b9, aZb) , priority)

Procedure Top (avg)

L return aPg -+ queue() -+ top()

Procedure Pop (avg)
bestChild = Top (avg)

a'g -+ queueo -+ pop()
return bestChild

Procedure UpdateProblem(bpg, aZb)

if aZb = Zb then

Lreturn 0

aZb = aZb + 1
return mb(aZb)

Procedure AddObstacles(a g, Mnew)
if Mnew V Ma then

Ma = Ma U Mnew
for xi E B(Mnew) do

if IsNew(i' 9) then

L Initialize(jpg)
Push(aP g, (i7 0

Za = Za + 1
ma(za) = Mnew

(aJbbPg,aZb) = ToP(a g)

ahg(Za) = C (arg) + bhg(azb)

Procedure Solve (avg)

if Xa = Xg then

Lreturn

(a0b bPg,azb) = Top (ag)
return aob+ Solve(b g)

Algorithm 3: Sparse Graph Algorithm (Part 3)

54

(7), (8). This operation only effects the sub-problems directly involved in the current

best solution.

The third major component of the algorithm, the use of "inconsistent" sub-problems to

restrict growth of the sub-problem is never directly used in this demonstration, however, it

can be seen in the final tree as part of 5Pg.

The most important takeaway from the algorithm is the sparsity of the search tree, which

can be seen in three places. First, we can see that for the first 8 steps of the algorithm,

the left half of the search tree (corresponding to moving below the first obstacle) remains a

single sub-problem with awareness of a single obstacle, while the right half (corresponding to

moving above the first obstacle) has become aware of three obstacles and added many more

sub-problems. We are able to do this because the "best case scenario" for moving below the

first obstacle has a higher cost than going above the obstacle with a more complex map. At

step (9), however, the heuristic cost of the right hand side of the tree has been increased to

the point where exploring the left hand side of the tree becomes necessary.

The second important element can be seen in the final search tree in step (11). Here we

see that the sub-problem on the right hand side of the tree corresponding to x5 is aware of

the third obstacle and therefore has sub-problems to x 6 and x7 , while the same sub-problem

on the left hand side of the tree has no sub-problems. This corresponds to the "consistency"

for the problem, where on the right hand side the problem is fully expanded, and 3 z 5 = 1,

while on the left hand side the problem is not and 2Z5 = 0. By not expanding 5Pg fully on

the left hand side, we avoid the need to add sub-problems from x 2 to x6 and x7 .

Finally, we can see that only 3 out of 7 obstacles in the world directly effected the optimal

solution, and the extra 4 never entered the search space, further decreasing the size of the

search tree.

(1) Initialize the tree

(Line 3) with OP., i.e.

the best case no obsta-

cle scenario

55

(2) Sense the blocking

obstacle and add new

candidate sub-problems

that avoid the blocked

obstacle (Line 12)

(3) Select the new best

branch of the tree,

OPg 4 3 Pg

(4) Sense the blocking

obstacle, and add new

candidate sub-problems

that avoid the blocked

obstacle to the effected

sub-problems OPg and

OP3 (Line 12). Note

that the unused prob-

lem 2Pg is unaffected.

.. ...

.

- \

* /1 \

56

A=

406

(5) Candidate top solu-

tionis Og P 4P. and

OPg + 5Pg are blocked

by already sensed ob-

stacles, so they are re-

moved (Line 8).

(6) Select the new best

branch of the tree,

0P9 4 31% --+ 51

(7) Sense the blocking

obstacle, and add new

candidate sub-problems

that avoid the blocked

obstacle to the ef-

fected sub-problems

OPgIOP 3,0P5 (Line 12)

..-

-

o

--

-.

57

4"rL

(8) Candidate top so-

lutions 3P9 - Pg

0 Pg 32 P 4 6 , and

OPg - 7P. are blocked

by already sensed ob-

stacles, so they are re-

moved (Line 8).

(9) Select the new best

branch of the tree,

OPg 4 2Pg. Note that

up until this point

in the algorithm, no

branches have been

expanded on this side

of the tree.

4.A

58

.....

(10) OPg a 2Pg is found

to be blocked against

a known obstacle, and

new avoiding branches

are added to the tree

(Line 8). Note that the

blocking obstacle has

been known since step 3

in the walkthrough, but

was not found to be nec-

essary to include in this

branch of the tree until

this step due to the use

of heuristics.

(11) The optimal solu-

tion is found and ver-

ified (Line 12). Note

that the search tree

remains unbalanced as

only promising areas

were explored, and that

4 out of 7 obstacles re-

main unmapped as they

did not effect the opti-

mal solution.

-.....-. .

59

a

Table 3.1: Walkthrough of Algorithm 1. The left side shows the motion planning environ-
ment for a 2D holonomic robot with gray (unmapped) and orange (mapped) lines denoting
impassible obstacles, while the right side shows the motion planning tree. Colored dots on
the left side correspond with the origin states of problems on the right side.

3.5 Algorithm Analysis

This section will provide the proofs for the optimality and completeness of Algorithm 1,

(Theorem 6 - Theorem 9) through a series of Theorems and Lemmas.

As a starting point for the algorithm, we use the a priori knowledge of what form an

optimal trajectory will take. Unlike many common algorithms (grid search, randomized

methods, gradient decent), we will directly take into account our knowledge of the form of

the final solution and only search over trajectories that meet this criteria.

Theorem 10 (Structure of optimal trajectories). Let M"O* be a solution to the optimalstart goal

motion planning problem, Problem 1. staroal must have the form

n-1

start oal >+
i=o

where

XO Xstart

Xi E B(M) for all i E [1, n - 1]

Xn - Xgoal

Proof. The proof follows directly from a more constrictive Theorem 25 from Pontryagin's

Mathematical Theory of Optimal Processes [85].

"Let the optimal trajectory [of Eqn. (3.1)] lie wholly in the closed domain [Xfree] and

contain a finite number of points of abutment [entrances to the boundary], and let every

piece of it that lies on the boundary of G be regular. Then every piece of trajectory in

the open kernel of [Xfree] (with the possible exception of its ends) satisfies the [minimum]

principle; every piece lying on the boundary of [Xfree] satisfies MTOP-Theorem 22; and the

jump condition (MTOP-Theorem 24) is satisfied at every point of abutment." E

In plain text, this means that the only reason for an optimal trajectory to deviate from

60

its "locally" optimal trajectory is at the boundary point of configuration space.

Based off this fact, we can break the full motion planning problem down into a two step

solution; moving from the origin to one point on the boundary of configuration space and

then moving from that boundary point to the goal. This makes the first level of the tree

structure used throughout the algorithm.

The next step in the process is to view the subsequent sub-problems of moving from the

boundary of configuration space to the goal in the same manner as the original problem.

This ends up creating a decision tree of locally minimal trajectories between intermediate

states, each of which is on the boundary of configuration space. Based off of Theorem 10

and Lemma 11 we can then state that the minimal path down the resulting tree will be the

optimal trajectory.

Lemma 11 (Recursive optimal trajectories). The optimal motion planning problem, Prob-

lem 1, can be broken into two discrete steps: (1) a free space solution to Pontryagin's min-

imum principle from Xstart to some state xi in the set {B(M) U x_}, and (2) solving a

secondary optimal motion planning problem from xi to Xgoal on M. The original optimal

motion planning problem can then be solved by taking the minimum of cost across all candi-

date locations of xi. This can be written as:

C (or) = min C O' +C Si

Proof. This Lemma follows directly from Theorem 10, the optimal trajectory on M is either

a locally optimal trajectory directly from x, to xg, or the optimal solution passes through

at least one point bound on the boundary of M.

As described in Section 3.4, solving for the optimal solution in this full decision tree

requires solving a dense graph with N nodes. Instead we will use Theorem 12 to reduce the

intermediate states and trajectories that must be considered.

Theorem 12 (Sub-map Super Optimality). If a map M1 is a sub-map of another map

M 2 , meaning that all obstacles within M 1 are also in M 2 , then solving the optimal motion

planning problem from xa to Xb on M1 will always find a solution with cost less than or

61

equal to the cost of solving the same motion planning problem on M 2 , i.e.:

If, M1 M2,

then, C (0 -*) < C (M -*). (3.6)

Proof. Let MEblocked be the elements of E that are invalid due to M, i.e. MEblocked
a b a b a b

a b \ a b. By definition, this means that for all trajectories 0- Maboked there is some

time t E [0,r) such that o(t) C Mi. If Mi C M 2 and o(t) E M1 , then o-(t) E M 2 ,

therefore o C M2Eblocked. Since all elements of MlEblocked are in M 2 Eblocked M 1 gblocked ca b a b a b a b

M2 Eblocked
a b k therefore:

aba b Mi blocked D ab b M locked _M2 (3.7)

Label a minimum cost element of or*. as M-* From Eqn. (3.7) Mgb G MiZb, therefore

o-* E MiEb' so:

C (-s*) ; C (Ms) = C (2--*) (3.8)

Theorem 12 is intuitive; adding more obstacles to the environment will never result in a

shorter path. Practically, this provides us with a very important property, we may convert

a complex optimal motion planning problem on a complex map M 2 into a simple motion

planning problem on a simple map M 1 (already processed data), and a complex validity

check on M 2 (all data).

Combining Lemma 11 and Theorem 12 gives us a new way to search the tree:

Lemma 13 (Sub-problem super optimality). An admissible heuristic for the cost to solve

the optimal motion planning problem, Problem 1, can be found by breaking the problem into

two discrete steps: (1) a free space solution to Pontryagin's minimum principle from xstart to

some state xi in the set {B(M) U xg}, and (2) solving a secondary optimal motion planning

problem from xi to Xgoal on Mi where Mi C M. The admissible heuristic can be found by

taking the minimum of cost across all candidate locations of xi. This can be written as:

If, Mi C M, for all i [1, n - 1]

then, C (-*> min C +C *(39)
xi 6B(M)ux }

62

Proof. From Lemma 11, there is some "joint state" xj E {B(M) U xg} such that C (Mo-*) =

C E +C (o-*). Using this same joint state xj there is an element in the right hand side

of Eqn. (3.9) with cost: C +C (M-*). From Theorem 12, we know that if M3 C M,

then C (M) C . , therefore:

C (A/0-) = C (p*) +C (-g*) ;> C (*) +C -Ms*) > Cin C (O) +C (o,*)S g 8 ig S 3 9 xiEfB(M)ux91S}

(3.10)

It is important at this point to note that the second element of the right hand side of

Eqn. (3.9) has the same form as the left hand side of Eqn. (3.9), and therefore Lemma 13

can be applied recursively.

So far, this section has considered the costs required to solve a given motion planning

problem. From this point, we will move to the Problems that are used in Algorithm 1. We

will describe what it means for a Problem to be lower bounding meaning that the cost to

solve a given problem at its current state lower bounds the true cost to solve the problem. By

being lower bounding, the cost resulting from that Problem is also an admissible heuristic.

Definition 14 (Lower bounding). A problem, a 1, in Algorithm 1 is defined to be lower

bounding if, for (aai, iPg, azi) = Top (a'P), C (aori)+C (iP,(azi)) < A4o-*. In other words,

the assumed cost to move from xa to xi is less than the true cost, making it an admissible

heuristic.

Lemma 15 (Problem Lower bounding). A problem a~g is guaranteed to be lower bounding

if the following four properties hold:

1. Ma C MS

2. For all (aoi, i g, azi G a~g - queue(, U !zimi(j) Milazi) C Ma

3. For all xi C {13(Ma) U xg} there is a child (aOi, ipg, azi) E a~g - queue()

4. For all (aoi, ipg, azi) E a~g -+ queue(), iPg is also lower bounding

Proof. This lemma is a direct follow on from Lemma 13. From Theorem 12 we have that if

condition (1) holds, then:

C (Mso-*) > C (Mao-g*) (3.11)

63

Combining Lemma 13 with condition (2) and condition (3), we get:

C (Mo) > min C (09) + C (Mi(aZi) * (3.12)
xiE{B(Ma)UXg}

Finally, condition (4) gives C (Pg(azi)) < C (Mi(azi) o, so:

0i CB + C (Mi(azi)O_*) C (aP9) (3.13)
xiE{B(Ma)uxg}

Combining these equations results in the desired result:

C (Mo'*) > C (aPg) (3.14)

Lemma 16 (Lower bounding of Algorithm 1). At every iteration of Algorithm 1, marked by

returns to Line 5 (new iteration) or Line 14 (final solution), every problem aPg that exists

is lower-bounding.

Proof. We will show this through recursion, showing that at every iteration of Algorithm 1

each problem aPg has the four properties described in Lemma 15.

Iteration 0: At iteration 0, the only problem in Algorithm 1 is Pg, and the only

action taken on it is Initialize (,Pg). The four properties of Lemma 15 are guaranteed

by:

1. M, = 0 g Ms (Algorithm 3, Line 2)

2. The only child is (, gg, 0). Mg(O) = 0 C 0. (Algorithm 3, Line 3)

3. B(0) U xg = Xg, for which there is a child in the queue. (Algorithm 3, Line 3)

4. C (gPg) = 0 by definition, so it is always (tightly) lower bounding

Iteration k + 1: Assume that every problem in Algorithm 1 is lower bounding at

iteration k; then every problem in Algorithm 1 is still lower bounding at iteration k + 1.

There are two functions that expand the map for an individual problem: SenseTraj ectory 0

and UpdateProblem(). SenseTrajectory() forces an expansion of the map in general,

resulting in a call to AddObstacles 0, whereas UpdateProblem() moves along the sequence

64

of submaps forcing an update due to condition (2). Once Addbstacles 0 is called, the 4

conditions are held according to:

1. All new map elements, Mnew are generated from checks against Ms so they are

elements of Ms

2. This condition is only effected if a call to UpdateProblemo returned Mnew, for some

problem jP . From the assumption that all problems were lower bounding at iteration

k, Mi(azi - 1) C Ma and Mi(azi) = Mi(azi - 1) U Mnew. From (Algorithm 3,

Line 23) Ma = MA U Mnew 2 Mi(azi - 1) U Mnew = Mi(azi)

3. Either MAew was in Ma in which case this condition is already held, or the necessary

children are added at (Algorithm 3, Line 27).

4. If AddObstacles o is called, it is called recursively for all effected problems, making

any child problem also lower bounding.

0

Based off of the Theorems and Lemmas above, we will return to the original algorithm

properties from Section 3.4 (restated below) and provide proofs.

Theorem 6 (Cost Optimality of Algorithm 1). Given an optimal motion planning problem

instance (x,, xg, S, C (-)), the solution produced by Algorithm. 1, so-*, will have the property

C (,o) = minm C (a-), where MAsZ are all elements of ,E that are valid on the map

generated by fully processing S.

Proof. From Lemma 16 we know that at every iteration in Algorithm 1, C (,Pg) = C (Solve(,Pg))

8-*. If Algorithm 1 returns a solution, then from Line 12 we know that Solve(,Pg) g)

therefore C (Solve(,Pg)) > min - C (o-) = C (-4o-*) ;> C (Solve(,Pg)). Therefore, if Al-

gorithm 1 returns a solution, it is also an optimal solution. Z

Theorem 7 (Completeness of Algorithm 1). If there is a valid solution to the optimal motion

planning problem instance (x,, xg, S, C (-)), then Algorithm 1 will return a solution, and if

there is no valid solution then Algorithm 1 will return failure in finite time.

Proof. As stated in the problem, both M and S(M) are finite sets, with size IM l= N

and |B(M) = M. Given this, there are M possible sub-problems in the tree, each of which

65

has M possible children (including the goal state). There are therefore M 2 possible raw

trajectories in the tree. Each sub-problem may also have N possible sub-map expansions,

providing MN total sub-maps in the tree.

At every run of MakeConsistent(,P,), one of three actions will occur:

1. An empty map will be returned, moving the algorithm to Line 12 of Algorithm 1

2. A trajectory will be found blocked at Line 5 of Algorithm 2

3. An index will be incremented at Line 7 of Algorithm 2

In case (1), the algorithm will move to Line 12 of Algorithm 1 where either a trajectory is

found to be blocked, or a solution is returned by the algorithm. There are only M 2 possible

trajectories in the tree, so this may occur at most M 2 times. Again, case (2) requires a

trajectory to be blocked, therefore case (1) and case (2) may occur together a total of M 2

times. Case (3) will result in the advancing of an index along one sub-problem. There are

M possible sub-problems, each with N possible submaps, so ZMr1 zi < NM. This means

that case (3) may occur a maximum of NM times.

Based on these three cases, MakeConsistent(,Pg) may be called a maximum of N 2 +NM

times before returning a solution. Based off of Theorem 6, if Algorithm 1 returns a solution,

then it is an optimal solution, so Algorithm 1 will return a valid (finite cost) solution

whenever one is available, and invalid (infinite cost) solution whenever there is no solution.

Theorem 9 (Graph Optimality of Algorithm 1). For any sub-problem aPg in Algorithm 1,

the submap Ma that the problem uses is optimally compact, meaning that it can be made no

smaller while maintaining the guarantees of Theorem 6 and Theorem 7.

Proof. The submap for any given problem, aPg is only increased by the function Addbstacles 0.

AddObstacles 0 is only called if the current best solution to aPg is blocked at SenseTrajectory ()

(the trajectory is directly blocked), UpdateProblem() (a sub-problem had previously found

a block that had not yet been incorporated into this problem), or MakeConsistent 0 (the

sub-problem was effected by one of the two conditions above). Without the addition of the

new submap Mnew, the current best trajectory would remain optimal for all future itera-

tions of the algorithm, despite being invalid on MS, therefore A, must be included in

this problem. E

66

Theorem 8 (Sensing Optimality of Algorithm 1). There is no alternative algorithm that can

be guaranteed to require less sensing than Algorithm 1, i.e. result in Esensed being smaller,

while maintaining the guarantees of Theorem 6 and Theorem 7.

Proof. Let Men.sed,i be the map discovered at the ith iteration of Algorithm 1. From

Theorem 6 we know that C (Solve(,Pg)) = C (M sgd -). At Line 12 of Algorithm 1 there

are two discrete options, (i) perform sensing along the current best solution Solve(,Pg) or

(ii) perform sensing elsewhere. If option (ii) is taken, then Solve(,Pg) remains an option

for ,Pg, therefore C (Solve(,Pg)) 5 C (Msnae.g* From Theorem 12, we know that

C (Solve(sPq)) = C (M s di) <c(nse C ad so Solve(,Pg) remains the optimal

solution. This will be true until option (i) is taken, therefore it is always optimal to perform

sensing along the current optimal trajectory.

3.6 Extensions

The algorithm described in the previous sections, Algorithm 1, addresses the general motion

planning problem and provides the foundation for theoretical proofs of the algorithm's global

optimality and completeness properties. In the following section, we will describe several

extensions of the algorithm for use on robotic systems. Specifically, we look at sensor types

and robot dynamics that do not naturally provide discrete obstacles with discrete boundaries

(Section 3.6.1), how to update the planner as a dynamic planner to re-use information as

the robot moves and new sensor data becomes available (Section 3.6.2), and how to use the

planner as an anytime planner in scenarios where computation time for a globally optimal

solution may overrun the time available for motion planning (Section 3.6.3).

3.6.1 Configuration Space Boundary Discretization

The algorithms and proofs so far in this chapter have worked in a primarily map-centric

view, where additional map elements are added to the problem as they are discovered. This

map focused approach provides the theoretical basis for the algorithm, and is well suited to

scenarios such as the example shown in Table 3.1, where there are discrete obstacles with

clear boundaries in configuration space. In more complex real world scenarios, however, this

purely map based approach presents several challenges.

First, Algorithm 1 assumes a discrete and identifyable set of obstacles each of which has

67

a defined boundary in configuration space. For many sensor modalities such as visual stereo

processing, however, a given obstacle (e.g. a chair) may only be revealed incrementally as

more and more sensor data is processed and becomes available. Furthermore, the act of

segmenting sensor data into discrete obstacles presents another non-trivial challenge.

Second, while a single physical object such as a chair may be clearly identified and

seperated from other elements of the map, this is frequently not the case when moving

from real space to configuration space. For example, a multi-link robot arm may have

inaccessible elements of configuration space that are fully connected, making it difficult to

identify and segment out individual obstacles from the map. As we wish to work across

general robotic systems and configuration spaces, a move away from physical maps to more

general configuration space techniques is required.

Third, for most real robotic systems (effectively all beyond 2D holonimic robots) the

states on the boundary of a map B(M) are not finite, as the boundary surface is continuous

and high dimensional. This means that we must make some approximation of the states on

the boundary of an obstacle. While such a discretization is possible in a purely object based

approach by approximating B(M), the methods presented below more seamlessly integrate

with discretization techniques.

Finally, for higher dimensional systems, the size of the boundary of configuration space

for a single obstacle may be a very large, resulting in a high branching factor within the

tree. For example, for a 3D double integrator, a single physical obstacle in 3D space requires

boundary states for every possible velocity of the system at every boundary (x, y, z) point

of the obstacle. Given K physical boundary states to an obstacle, and M possible velocities

in each dimension, the total size of the boundary set becomes KM3.

To combat all of these problems, we change the notion of obstacles from true discrete

objects, to "voxels" within a occupancy grid style map. Each voxel in the world is a can-

didate obstacle, however, unlike traditional grid based methods, all free areas of the map

remain continuous. In this way we adopt a gridded approximation of only the boundaries

of configuration space while leaving the remained of configuration space continuous. By

creating a small discretization of the configuration space, only a small area of configura-

tion space must be sensed, no distinguishing of full physical objects/objects in configuration

space is required, and the number of boundary states for the voxel can be set to 2 N where

N is the dimension of the configuration space. As these new voxel obstacles remain a true

68

"obstacle" in the plan map, the proofs and guarantees provided in Section 3.5 still hold up

to the discretization level of the configuration space boundary.

Moving to a voxel based approach allows for moving from an obstacle-centric algorithm

to a state centric algorithm. Any origin or goal state in the planned trajectory will lie on the

configuration space grid, with continuous trajectories stretching through free space. Because

of this we may track the states expanded in sub-problems rather than obstacles. To do this

we must edit Procedure AddObstacles(ag), see Algorithm 4.

1 Procedure AddObstaclesDiscrete(ag, Mnew)
2 for Xi C B(Mnew) do
3 if xi afg - states() then

4a Pg -4 stateso = a~g -+ stateOU xi
5 if IsNew(i.P) then
6 L Initialize(ipg)

7 Push((aoi, jpg9 0>

8 a~g -*substates() -> push (B(Mnew,))

9 (aabbPg,aZb) = ToP(aPg)

10 _ ahg(za) =C (ag) + bhg(aZb)

Algorithm 4: Discrete Sparse Graph

3.6.2 Dynamic Properties

While one shot globally optimal motion planning is often of interest, this algorithm was

particularly designed for real-time operation of robots as they move. The movement of

the robot provides two dynamic elements: first the motion planner must account for the

movement of the origin state of the motion planning problem (as the robot moves), and

second it must account for new sensor data generated in between planning iterations.

A simple solution to this problem would be to re-run the full global planner from scratch

at every planning instance. To prevent the problems that come with "memoryless" planners

and a limited sensor range such as repeatedly trying the same dead end, already processed

sensor data can be remembered within a global map for future iterations. At the next

planning instance, the global map can be used as its own "sensor" determining the validity

of previously explored areas in conjunction with the true sensor data.

While the above approach would frequently be viable due to the speed of the motion

planning algorithm, it fails to take advantage of the already generated search tree at time

69

step i, which is still largely applicable at time step i + 1. To adapt Algorithm 1 to work as

a dynamic process, we look to the example of D* Lite [52]. Unlike D* Lite, the algorithm

described below is meant only for processes in which unknown or free areas of the world

are dynamically changed from free to occupied (i.e. edge costs may only increase, never

decrease). Such a scenario is well suited to the problem of partially processing sensor data,

where the primary addition is newly occupied areas. In the advent that edge costs are

required to decrease, a re-building of the tree would be required based off of the assumptions

of always maintaining a sub-map up the tree. The primary take away used here from D*

Lite is the use of a heuristic offset, km to prevent a full resorting of the priority queue.

The structure of the tree maintained by Algorithm 1 is well suited for dynamic re-use as

the robot moves because there is only one layer of the tree that is effected by the movement of

the robot, the top (,Pg). Additionally, as soon as the robot reaches one of the joint states,

the top of the tree can be "popped" and we are left with a new complete and consistent

tree. In this way the tree can constantly be edited for the movement of the robot and

newly available sensor data, while "resetting" the tree at every instance that a joint state is

reached. The resetting of the tree prevents a continuous growth in the size of the tree as

many motion planning iterations are run on the same tree.

The Dynamic algorithm is described in Algorithm 5, describing both the movement pro-

cedure of the robot, and changes to the original algorithm. Specifically, where SenseTrajectory 0,

Push(), and Top() were called in Algorithm 1, now D-SenseTrajectory(), D-Push(), and

D-Top() will be called. The primary additions to Algorithm 1 are the pruning and updating

of the tree, and maintaining a heuristic value km for trajectories already in the queue. Note

that because the origin state has moved in the motion planning problem, all trajectories

that were found blocked from the origin must be regenerated from the new state as they

may have become free. This regeneration is in contrast to gridded graph based approaches

where the robot state typically takes new values only at already existing nodes in the graph.

3.6.3 Anytime Properties

In addition to the Dynamic properties given by Algorithm 5, real time systems are also

frequently in need of "Anytime" algorithms, i. e. algorithms that can provide a solution on

demand. Anytime algorithms allow for control systems to request a control action from

the planning module whenever required. Traditionally "Anytime" algorithms are algorithms

70

Result: a-* = arg min aM C (o-)

1 Algorithm D-SparseShortestPath(x,, x.)
2 Xlast = xs

3 km= 0
4 Initialize (,Pg)

5 so-* = SparseShortestPath(, Pg)
6 while x, not(=) xg do
7 x, = Advance(,Pg)

/* Sensor data updated
8 new = SenseTrajectory(,o-*, Ms)

/* Our last best solution wasn't clear, so we have to resolve
again

9 if ~IsEMPtY(Mnew) then
/* Update cost offset for sPg queue

10 UpdateTree(,Pg)

11 s-g* = SparseShortestPath(,Pg)

12 Procedure Advance (,Pg)
13 (so-apalgisZa) = Top(,Pg)

14 t = t+ At
15 if t < sTa then

/* Still in the trajectory, so advance */
16 _X8 = sO-a (M

17 else

/* Reached a node point, prune the tree
18 Xs = Xa

19 Xlast = Xs

20 km = 0
21 t = 0
22 delete P9
23 sP, - a P g

24 return x,

25 Procedure UpdateTree (,Pg)

26 km = C (O-*ast

27 t = 0
/* Push back in previously blocked paths

28 for (xi, ,zi) E sPg -* blocked() do
29 L D-Push(,pg, (,' PgVzi)

Algorithm 5: Dynamic Sparse Shortest Graph

that quickly converge to a valid sub-optimal solution, and then incrementally improve the

optimality of the solution with more computation time. Such systems allow for the full

71

1 Procedure D-Push(aPg, (a b, bPg, aZb)

2 L priority = C (aob) + bhg(aZb) + km

3 aPg -+ queue(-* push((aab b g, azb), priority)

4 Procedure D-Top(aPg)

5 (ab, b g, aZb) TOP (aPg)

/* Cycle through queue until we find one with correct origin point */
6 while ao%(0) not(=) Xa do
7 Pop (avg)
8 D-Push (a , 0Eb, aZb

(a a bbbP9 (aobl b 9, aZb) = Top (apg)

Algorithm 6: Dynamic Push and Pop

generated motion plan to be executed safely without recomputing a new motion plan. These

solutions have the advantage of providing a fully valid solution at any point in time, however,

they are somewhat agnostic to the fact that another re-plan will occur in the near future

with a dynamic system. Practically, anytime solutions are typically recalculated at a much

higher rate as every iteration is used within a control loop. In such a scenario, the true goal

of an anytime algorithm should be to provide a solution that is both valid and near optimal

for the next time step.

In that light we describe Algorithm 7, which tracks the super-optimal solution to the mo-

tion planning problem that is valid for some time horizon thorizon. Unlike a typical anytime

solution, these super-optimal solutions are continually increasing in cost as more computa-

tion time is given, until the planning algorithm reaches the optimal solution and terminates.

The guarantee of thrizon provides a safety requirement that the currently generated control

actions will be safe, without requiring a check on further actions. We posit, without proof,

that the initial step in a super-optimal solution will bear a closer resemblance to the initial

step in the optimal solution than the initial step in the sub-optimal solution generated by

traditional anytime algorithms. Empirically, because of the structure of the search tree, early

elements of the super-optimal solution tend to get settled "earlier" in the motion planning

process, and further computation tends to effect later steps more than early steps.

72

Result: s-g

1 Algorithm A-SparseShortestPath(x,, xg, thorizon)

/* Initialize the problem */
2 free = False

3 o~=inull
4 Initialize (,Pg)

5 while not free do
6 consistent = False

/* Update the graph given currently processed data
7 while not consistent do
8 Mnew = MakeConsistent (,Pg)

9 L consistent = IsEmpty(Mnew)

/* If the best solution on current data is valid on all data for

thorizon make it the anytime solution

10 if Solve(,Pg)(0, thoizon) valid on Ms then
11 LS-g = Solve (,P,)

/* Check the best solution against all data
12 MAew = Sense (,Pg)

13 free = IsEmpty(MAn,)

/* Return the unblocked solution
14 return Solve(,Pg)

Algorithm 7: Anytime Sparse Shortest Graph

3.7 Conclusions

In this chapter a motion planning algorithm is described which couples the motion planning

and mapping processes within the robot motion planning pipeline. The motion planning

algorithm is built around a tree of locally optimal, continuous trajectories which are joined

at the boundaries of configuration space. Incremental mapping is used to drive the growth

of the tree, providing a direct coupling between the motion planning and mapping processes:

the motion planning algorithm drives mapping using traditional "lazy" planning techniques,

while the results of the mapping step are used to drive local expansion of the search space.

In this manner, an efficient and dynamics agnostic planning-and-mapping algorithm, Al-

gorithm 1, is formed. This algorithm is shown to be optimal (Theorem 6) and complete

(Theorem 7), while minimizing the mapped areas (Theorem 8) and the motion planning

search space (Theorem 9).

73

74

Chapter 4

Applications

In this chapter, we build off of the theoretical results from Chapter 3 to test Algorithm 1 on

several common robotic dynamical systems through Monte Carlo simulations. In the first

section, Section 4.1, tests are performed with several canonical low dimensional systems to

demonstrate baseline performance, while in Section 4.2, Algorithm 1 is applied to the high

dimensional and relatively unsolved problem of optimal quadrotor motion planning.

In both cases, comparisons are made between the proposed algorithm, Algorithm 1, and

Lazy D* Lite search [52, 7], comparing the quality of the solution (trajectory cost) and

the computation time to get a solution. Lazy D* Lite was chosen for comparison due to

its ability to satisfy the joint optimization problem of minimizing sensing and finding an

optimal solution. To fully minimize sensing, it is necessary to perform mapping only along

the current best solution [161, e.g. mapping such that if all checks come up free the motion

planning process can terminate. This requirement rules out sampling and optimization based

planning methods that use lazy checking on sample or on iteration, which while limiting

sensing, does not fully minimize it. While both Algorithm 1 and Lazy D* are optimal

cost algorithms, they are optimal within the structure of the graph meaning that different

choices of graph structure effect the cost of the resulting trajectory. As Algorithm 1 treats

the open elements of configuration space as continuous, while grid based methods use a

discrete approximation in the plan graph we can expect lower cost trajectories to result

from Algorithm 1.

The section of quadrotor planning contains two parts, first the derivation of a fast and

near-optimal method of solving the boundary value problem for a three dimensional coupled

75

double integrator, and second the application of this solution for 6-DOF globally near-

optimal motion planning for a quadrotor. To the best of our knowledge this if the first

such system capable of near-optimal motion planning for a coupled double integrator with

computation appropriate for real-time use.

4.1 Test Systems

As an initial test on the capabilities of Algorithm 1, we compared its performance on three

simple canonical systems: a 2D holonomic robot, a 3D holonomic robot, and a Dubins

car. Each of these systems can easily be implemented in grid based Lazy D* Lite fo exact

comparison between the different motion planners. While improved performance on these

simple systems is not the goal of a new motion planner, it provides a baseline of performance

that can be further expanded upon for higher dimensional and more complex systems where

grid based planning methods struggle.

4.1.1 Simulation Setup

Computational experiments were performed through Monte Carlo simulations in randomly

generated obstacle fields in R2 (Holonomic 2D and Dubins Car) and R3 (Holonomic 3D).

For the 2D holonomic robot and Dubins car, obstacles are impassible line segments of a

fixed length and random orientation distributed randomly in [0, 30]x[O, 30] c R2 . For the 3D

holonomic robot, obstacles are impassible cubes of fixed side length randomly distributed

in [0, 30]x[0, 30]x[0, 30] E R3 . The starting location is x, = (5, 5, 5) and the goal location

was set 20 units away at a random direction in the positive quadrant. The goal location is

rounded to the nearest integer to allow for easy integration with grid based methods. For

Dubin's cars the initial and final orientations were randomly generated increments of 7r/2,

again to allow for easy integration with grid based methods. Examples of the setup can be

seen in Figures 4-1 and 4-2.

4.1.2 Grid Construction

The gridded graph construction places nodes at regular intervals through the state space

with a fixed spatial discretization and, for the Dubins car, angular discretization. The edges

between nodes are placed based on a connectivity parameter, which determines to what level

76

LE

Figure 4-1: View of a 3D simulation with 200 randomly spaced cubes (gray) of length 2.
The trajectory generated from a sparse plan graph is shown in green, and from a grid plan
graph in blue. Both graphs use a spatial discretization of 0.25, and the grid plan graph uses
a connectivity of 1 (26 connected).

77

I

1'

/

/

a

a

AiV~
.~a ~

I
r

V ~

9>

I
Color Planner Grid Angular Conn. Cost Time

Discr. Discr. (ms)
Green Sparse - 7r/8 - 20.71 16.9
Black Grid 0.25 -r/8 4 20.86 751.3
Cyan Grid 0.5 -r/8 4 20.88 486.7
Blue Grid 1.0 -r/4 2 21.43 49.1

Purple Grid 0.5 r/8 2 21.86 110.9
Yellow Grid 1.0 7r/2 0 25.56 25.6

Figure 4-2: Generated trajectories of a Dubins car with turning radius 1, traveling through
100 obstacles of length 2, using 6 different plan graphs. The different graph types, their
display color, and the computed trajectory cost and computation time are shown in the
table.

78

I

/

I.S Holonmc 2D Robot
1.45

~1.3

10-0-1 1000 1003 1000 o'0" lo"A 1003 1
0

3.
0

Normalized computation time
Spar pl"nner Spatil Disa 0 -- enactvW 0
Gild plans -Spadai Dinor 0.25 - Oamner~loty 1

-SPUW ilsO.-so-cift 2

(a) Trajectory cost vs. compu-
tation time for a holonomic 2D
robot moving through 100 ob-
stacles of length 2. Cost and
trajectory length for each map
is normalized by the values of
planning with the sparse plan
graph.

Holanondc 3D Robot

.....-.".....'' .
1.

0LA

10.010
0 0

' 10- 10O 10-0 1
0

-
0

100 1
00

Normalized computation time
IMp-laniw -OPatla Oincr 0.10 -Can.Olly

I - Pla -Spdl Dn025 - -mMty I

(b) Trajectory cost vs. compu-
tation time for a holonomic 3D
robot moving through 200 ob-
stacles of side length 2. Cost
and trajectory length for each
map is normalized by the values
of planning with the sparse plan
graph with spatial discretization
of 0.1.

1.25 r

LZ

I

LA1.

I

Dublns Car

,

b-.
0

1000 101.0 101-
0

100-0
Normalized computation time

SpaSe | planner - "Anuar Dcrr --Cm .cl|
G-id planner A larDIscr */ - Connectivly: .

- lar Mr.fi -- Con 4

(c) 1 rajectory cost vs. com-
putation time for a Dubins car
moving through 100 obstacles of
length 2. Cost and trajectory
length for each map is normal-
ized by the values of planning
with the sparse plan graph with
angular discretization of 7r/8.

Figure 4-3: Normalized results for trajectory cost vs. computation time for three robot
types on 200 randomly generated maps. Each type of plan graph was run on the same 200
maps for each robot, and the results were normalized to show the relative speed and solution
quality of the different graphs. The figures display the 95% boundary of the values for each
graph type, with shape fill showing the type of plan graph (sparse or grid), color showing
the discretization level, and line style showing the connectivity of the grid graphs.

79

of adjacent nodes a node is connected to. A connectivity level of "0" connects to adjacent

non-diagonal nodes (4 connected in 2D) and a connectivity of n for n > 1 connects to

all nodes within n of that node in any dimension. For holonomic robots any path that

was a scalar duplicate of another one was trimmed. The Dubins car is connected to all

discretizations of angular space within the spatial connectivity, but with a heuristic pruning

of high cost (near full turn) trajectory primitives. This was found to significantly speed up

computation without hurting the quality of the paths.

Planner Grid Angular Connectivity Path Cost Plan Time Nodes Edges Area

Discretization Discretization (ms) Sensed

Sparse - r/16 - 22.315 1645 282 4838 436

Sparse ir/8 - 22.328 140 140 1369 418

Sparse - -r/4 - 22.357 20 70 383 382

Grid 0.25 7r/16 4 22.400 35871 49318 1101100 528
Grid 0.25 ir/8 4 22.424 2541 25276 278740 513
Grid 0.25 r/4 4 22.635 258 13704 77655 522
Grid 0.50 ir/16 2 22.710 715 13069 113290 544

Grid 0.50 ir/8 2 22.783 78 6677 27560 546

Grid 0.50 7r/4 2 23.090 29 3954 11733 449

Grid 1.00 7r/16 1 24.214 55 4266 19424 417

Grid 1.00 7r/8 1 25.280 15 2287 5897 403

Grid 1.00 7r/4 1 25.837 7 887 1780 282

Table 4.1: Summary of mean values for planning a trajectory for a Dubins Car with turning

radius of 1 amoung 100 obstacles of length 2 (see Figure 4-2). Standard deviations are

omitted as individual measurements are map dependent and therefore the values do not

follow a normal distribution, see Figure 4-3c for relative distributions.

4.1.3 Implementation

Collision checks in 2D were performed using a simple line intersection check, while collision

checks in 3D were performed using ray casting in Octomap 1401. Each collision checker acts

as a simulated sensor, moving along the trajectory mapping free or occupied space. Edges

for collision checking along the current "best path" are selected starting from the robot's

current pose and continuing forward towards the goal. This matches Lazy Weighted A*

[13] and the forward edge selector described by Dellin and Srinivasa [16J. As suggested by

Dellin and Srinivasa [161 other edge selectors are viable and can have different performance

characteristics, however, that is not the focus of this work.

Both the graph created by Algorithm 1 and D* Lite [52] were implemented in C++

using the same custom planning library for collision checking, trajectory generation, and

search. As we are only performing a single planning step we only use the lifelong planning

80

element of D* Lite, with edge updates coming from the "lazy" collision checking rather than

movement of the robot.

4.1.4 Results

Comparison data for the three dynamical systems is shown in Figure 4-3, comparing the

length of the path generated with the time to generate the path. Since path length and

computation time are highly map dependent, the values are normalized by the results from

a single method and the same scenario is re-run with multiple planners/settings. As can be

seen in the results, while there is a clear trade off between path quality and solution time in

the grid based methods, the Algorithm 1 is significantly less sensitive to parameter choice

in path length, and provides paths that are both lower in cost and faster to compute.

A summary of the data for the Dubins car experiments is shown in Table 4.1. As

expected, the sparse graph construction algorithm created graphs that generated shorter

paths, faster, with significantly less nodes and edges. The total area sensed was measured

by discretizing the position space into voxels of size 0.2 and marking them as sensed if the

mapping process moved through them. Since both methods use the same lazy forward edge

selection process we do not see significant differences in the areas sensed.

4.2 Quadrotor UAV: Coupled Double Integrator

Despite the surge in usage and research on quadrotor UAV's, motion planning remains a

relatively open problem due to the complex high dimensional dynamics of the system [100].

Much of quadrotor motion planning is based off of the work of Mellinger et. al. 172] showing

that (simple) quadrotor dynamics are a differentially flat system, meaning that the system

can be fully described by a subset of the states and their derivatives. Specifically, this

allows for motion planning only in {x, y, z, 0} coordinates, where 0 is the yaw of the vehicle.

Additionally, Melligner et. al. 172] introduced solving the motion planning problem on these

flat variables as minimizing the snap of the position variables and second derivative of yaw,

which corresponds to minimizing control effort. The snap minimization technique is still one

of the most used today, with notable updates in reformulating the problem to be numerically

stable for numerous segments [88, 871, and to create a hybrid minimum snap and minimum

time problem [11. While minimum snap trajectories are relatively practical and smooth

81

for flight, the optimization performed is fundamentally different from the traits generally

searched for in optimal motion planning: that the actuator constraints are never violated

(this can be verified, but not included in the optimization), and that the trajectories are

minimum time. In fact, the minimum snap trajectories assume pre-determined segment

lengths, possibly with a secondary optimization to find these lengths. Additionally, the

minimum snap formulation is relatively limited in its ability to perform obstacle avoidance,

with constraints generally limited to linear flight corridors [721.

More recently, several works have followed the approach introduced by Deits and Tedrake

of first solving for a viable flight corridor, and then optimizing within it [14]. Deits and

Tedrake originally proposed a method of finding an overlapping set of convex volumes (IRIS)

and performing a mixed integer convex optimization within them [14, 55j. Various works

have followed this model, using different approaches for identifying convex regions to opti-

mize in, waypoints to optimize between, and optimization techniques [65, 66]. While these

techniques have also demonstrated effectiveness on real systems, they still prevent a signif-

icant deviation from traditional motion planning as they involve a two step process - the

first is a dynamics unaware step which sets the bounds for the dynamics aware step. This

two step process works well in cases where the dynamics aware path resembles the euclidean

shortest path through obstacles, but can be highly sub-optimal in situations such as tight

corners which would require significant slow downs for a quadrotor.

The last notable set of techniques used is to treat the differentially flat quadrotor variables

as double or triple integrators with bounded velocity, acceleration, and/or jerk. These

techniques allow for directly including actuator constraints within the optimization problem

and solving the problem as a minimum time motion planning problem. Due to the complexity

of the dynamic constraints, however, these techniques typically resort to treating the three

dimensions of the quadrotor {x, y, z} as independent problems. This allows for simple, and

at times analytical, decoupled solutions, but requires artificially limiting the true actuator

constraints of the quadrotor to conservative estimates along each axis [35, 77, 65, 66, 22].

In this section, we derive a technique for directly solving the boundary value problem for

a coupled double integrator using a bang-bang approximation. This boundary value problem

takes as inputs the desired initial and final positions (xO, xf) and velocities (vo, vf), and

determines the approximate minimum time (and dynamically feasible) trajectory between

them. The resulting solution is sub-optimal due to the bang-bang approximation, however,

82

we demonstrate numerically that the sub-optimality is within 5% of the true cost in 99.8%

of simulations, with computation times on the order of tens of microseconds. This model

provides an accurate physical representation of the forces on the quadrotor, while neglecting

the inertial properties (it assumes the limited thrust vector can be reoriented arbitrarily

fast) and neglecting drag effects which may limit feasible velocities.

With this boundary value solver in hand, we then apply the techniques from Chapter 3

to rapidly find globally near-optimal minimum time solutions for the coupled double inte-

grator through obstacle fields. We demonstrate through Monte Carlo simulations that these

solutions are significantly lower cost and faster to compute than state of the art decoupled

search based techniques.

4.2.1 Coupled Double Integrator Boundary Value Problem

The coupled double integrator is a well known and well studied dynamical system. The

basic system can be described as a multidimensional point mass with a limited magnitude

of acceleration that may be applied to it, and in this case a fixed acceleration from gravity.

Despite the prevalence of this model, there is no known analytical solution to the optimal

control problem for a generic boundary value problem when the system has more than one

dimension.

In this section we derive a fast numerical procedure to find a dynamically feasible solution

that approximates the true optimal solution to the boundary value problem. We base this

approximation off the true analytical solution for a one dimensional double integrator, which

can be shown to always take the form of a "bang-bang" solution. Based off of this, we force

the multidimensional system to take the same form - the boundary value problem will be

solved by only taking two discrete control inputs. This technique is guaranteed to find a

dynamically feasible solution, while it empirically demonstrates a close approximation of the

true optimal solution.

The numerical approximation is based off of the total time T to move the double inte-

grator system from its initial state to its goal state. In the sections that follow, we show

that there are analytical upper and lower bounds to the values that T may take for a given

boundary value problem, and that given a value T, the required control inputs for a "bang-

bang" solution to the boundary value problem can be found analytically (though they may

violate control limits). These three analytical elements are combined to find a numerical

83

solution using a ID line search over the possible values of T, checking feasibility of control

inputs at each value of T. In the (rare) event that no "bang-bang" solution is found within

he upper and lower bounds, the analytical upper-bound on T is guaranteed to provide a

dynamically feasible solution.

Coupled Double Integrator Dynamics

The state of the system is written x = [x, y, z, b, y,] , with control inputs u = [ux, uz]F

and system dynamics:

x = (xu= F03x3 13x3]X + 03x3 u - 05x , lul Umax (4.1)
03x3 03x3 13x3 J

The necessary conditions for an optimal coupled double integrator are well known and can

be derived using Pontryagin's minimum principle:

H(x, u, A(t)) =1 + A(t)T , , u, , uZ - 91 (4.2)

from the adjoint transition equation, ij(t) = - , we can solve for the forms of the adjoint

variables with constant parameters c [57]:

A(t) = [ci, c2 , 3 , -cit + 4 , -c 2t + C5 , -c 4 t + 6 (4.3)

We can then rewrite the Hamiltonian using the constant terms c:

H(x, u, c) = 1 + cii + c 29 + c3 i + (c4 - cit) Ux + (c5 -c 2t) uV + (c6 - c3 t) (7 - g) (4.4)

Applying the minimum principle, H(x(t),u*(t), A(t)) H(x(t),u(t), A(t)), we can solve

for the form of u in terms of the constants c. For notational simplicity we will replace the

constants c with three new linear time varying values defined as:

A(t) = c4 - cit

B(t) = c 5 - C2t (4.5)

C(t) = C6 - c3t

84

To apply the minimum principle we need to solve:

u*(t) = argmin A(t)ux(t) + B(t)uy(t) + C(t)(u,(t) - g)
IIu(t) <;umax

(4.6)

Substituting uz (t) i unax - u. - uY, (uz chosen arbitrarily, another element may be

selected if uz = 0) gives:

u*(t) = arg min A(t)ux(t) + B(t)u, (t) + C(t)(VUnax - - u -g)
u (t)

which we can find the minimum for by solving 9 =0, H 0:Oux Oux

A(t)T- C(t)ux (t) = 0

C(t)ux (t)
B (t) -F - = 0

rearranging, and squaring both sides gives:

max - U- u) = C2 (t)u(t)

B2 (t)(Uax - C - u) = C2(t)u(t)

which can be solved for u*(t):

U*(t) = Umax

- /yA
2 (t) + B2 (t) + C2 (t)

A(t)

B(t)

C(t)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

For the sake of optimal motion planning we are trying to solve the problem:

minimize t*,
U

subject to x = fd(x, u),

x(0) =x

x(t*) = Xf.

(4.13)

85

From Eqn. (4.12) we know the necessary structure of the solution to Eqn. (4.13), and this

structure can be single and double integrated to explicitly find the solution to fdi. The

resulting analytical problem will have 13 free variables, c (6), integration constants (6), and

t*, with 12 constraint equations from x(O) = xo and x(t*) = xf, however, it can be seen

from the structure of Eqn. (4.12) that c can be scaled by an arbitrary scalar value and

produce the same result, leaving 12 free variables and 12 constraint equations. No known

analytical technique for directly solving this optimal control problem exists, so rather than

directly solving this system we will solve a much simpler approximation of the solution.

Bang-bang approximation

Rather than solving for the exact solution to Eqn. (4.12), we will instead derive a fast-to-

compute approximation that still satisfies the constraints of the problem. Our new solution

will take a "bang-bang" formulation inspired from the optimal control strategy for a 1D

double integrator:

* U1 for all t C [0, ti);

U2 for all t E [ti, ti + t 2),

where u1 and u2 are constant control inputs. Though multidimensional double integrators

do not share the same bang-bang properties as a one dimensional system, as can be seen

in Figure 4-4 the multidimensional system still follows the same pattern of one direction of

control effort and then another. This heuristic observation drives the approximation shown

below, which is later empirically demonstrated to be valid. Because the control inputs are

not time varying, we can easily analytically solve the system dynamics Eqn. (4.1) and set

boundary conditions on the position (xo, xf) and velocity (vo, vf), giving the constrained

optimization problem:

minimize t1 + t2
tl ,t2 ,U1 ,U2

subject to ti > 0, t2 > 0

iHUi II < Umax, Iu211 Umax (4.15)

/ 1 1
xf - xo = vo(ti +1 2) + I (ui - g) (t2 + 2tit 2) + I (u 2 - g) t2

Vf - vo = uitI + u2t2 - g(ti + t 2)

86

Assuming that ti > 0 and t 2 > 0 we can invert the boundary conditions to find functions

ui(ti, t 2) and u2 (ti, t2):

ui(t1 I t2) =2 (xf - xo) - (2ti + t2)vo - t2vf + g (4.16)
ti (ti + t2)

U2 (tI, t 2) -2 (xf - xo) + tivo + (ti + 2t 2) Vft2((t, +2) 2= + g (4.17)t2 (t1 + t2)

We can then perform a substitution of variables, T = t1 + t2 , giving:

2Ax - (T + ti)vo - (T - tl)vf + g (4.18)
ui2txT)tv +T - iv

u2 (ti, T) = 2x + tivo + (2T - tl)vf -- g (4.19)
T(T - t1)

simplifying Eqn. (4.18) further we get:

ui (ti, T) = -vv+ g) + - (2Ax - (vf + vo) (4.20)
T t1 T

Making the bang-bang assumption that ui will saturate the inputs, i.e. Hui Umax gives

a quadratic equation in ti:

U2 (Vf-v 1O+9 2Ax -(f+V 2 (.1
(maxv T T (vf+vo) (4.21)

For a given value of T, there are two possible solutions for t1 (T), for which valid solutions

must satisfy the conditions 0 < t1 (T) < T. A given value of T is a dynamically feasible

solution to the bang-bang problem if the condition IIu2 (t1(T), T) | Umax is satisfied. In

the following sections we will set analytical limits on the possible values of T to allow for a

quick line search to find the minimum feasible bang-bang solution.

Lower Bound

We can set a lower bound on the possible time from start to goal, T, by decoupling the

dimensions of the double integrator. Each one dimensional problem is then solved analyti-

cally as if it had the full control effort of the system available to it. The axis that takes the

maximum time is the minimum possible time for the full coupled system. We can therefore

87

* am a w eas so ga a M a a a m-I --LA-" a a 0 0

*ON onm*m muan U

Figure 4-4: Example of acceleration (y-axis) vs. time (x-axis) for a coupled double integrator
optimal solution (solid line) and bang-bang approximation (dashed line) for x (blue), y (red),
and z (yellow) axes. While the bang-bang solution does not exactly match the optimal
solution, it shares the same general structure with negligible additional trajectory time
required.

88

define the lower bound on time by:

tib = max ti
ic{x,y,z}

subject to x = fdi(x, u),

xi(O) XiO, i E {x, y, z}

xi(ti) =Xi,f, i E {x, y, z}

lui||< Umax, i E {X, Y, Z}

A ID double integrator is well known to have a single optimal bang-bang solution with one

or zero switching points [57]. We can write these equations for a single integrator as:

a = tUmax

1
AX = VO(1 + 72) + 2 (a (r2 - -2 + 2T1T2) - g (T1 + 2 + 2i-l2))

vf - vo = a(T1 - T2) - g(T1 + -r2)

(4.23)

(4.24)

(4.25)

We can solve

Eqn. (4.24) to

directly for 71 in Eqn. (4.25), 7-1 = (vf-vo) (ag)T2 and substitute it intoa-g

get a single quadratic equation:

Sa2 + ga 2av$ V 2 V2
AX =aT + 2(-2 + g

(a -g) (a -g) 2 (a -g)
(4.26)

which can be solved with the classic quadratic formula to find:

-2avf 2a(2Ax(a2 - g 2) + a(v8 + vf) - g(v - v0)
2a(a + g)

(4.27)

Combined with Eqn. (4.23) there are four possible solutions to the problem, of which we can

use the smallest real positive solution. The maximum value of r1 + r2 for each of the axes

of the problem sets a lower bound on the possible values for T in the bang-bang solution.

Upper Bound

We can set an upper bound for the coupled system by finding the analytical solution to a

three phase trajectory to move from xO to xf, based off of the method described by Johnson

[431. The first and third segments of the solution are (1) the minimum time solution to

89

(4.22)

move from xO to a state with zero velocity (xmo) by applying control input a,, and (3) the

minimum time solution to move from a state xmi which has zero velocity to the final state

xf by applying control input a3. The middle section is then moving from the two stationary

states xmo to xmi in minimum time, which has the bang-bang solution of applying a2 for

half the time and -a 2 for the second half. All three of these phases have simple analytical

and ever present solutions, meaning that such a trajectory can always be used to move

between any two states xo and xf.

The combination of these three easy to solve analytic problems, which fully satisfy the

constraints of Eqn. (4.13) provides an upper bound on the possible time between xo and xf.

This simple problem can be written as below:

vo + (ai - g) Ti = 0 (4.28)

(a3 - g) T3 = Vf (4.29)

1
xm0 = V07-i + 2(a, - g) -12 (4.30)

1
X -Xmo (a3 - g)T (4.31)

Xmi - Xmo = (a2 - g) 2 (4.32)

Ilai1 Umax, 11a2H| Umax, I|a3f| Umax (4.33)

Without gravity these problems can easily be solved, however, gravity adds a certain non-

linearity to the problem. Because we are looking for an upper bound solution we can further

constrain the problem by requiring that gravity be canceled at all times. To do this we can

change Eqn. (4.33) to a new set of constraints,

Ilai'll Umax - Ig91, |1a2' I Umax - Ig|1, 11a3'15 Umax - 11g11 (4.34)

and let ai = ai' + g. We can easily see that this representation satisfies Eqn. (4.33),

||aiI|= ||ai'+gI|I Ila 'I|+lg|I umax, while simplify the equations of motion. These simplified

90

equations of motion can then be solved analytically to provide the total times and states:

Ti = Ivo (4.35)
(Umax - I8 I)

73 = iv! 11 (4.36)
(Umax - lI)

a, =VO (4.37)
TI

a3 = Vf (4.38)
T3

1 2
xmO = 2 1l12 (4.39)

xmi = Ax - Ia3 32 (4.40)
2

-2 = 2 Xl xmO (4.41)
(umax - 11gj)

tub = 71 + 72 + T3 (4.42)

The final solution tub provides an upper limit to the bang-bang solution time T, as any

"bang-bang" solution with a higher total time should instead be replaced by the three phase

solution described above.

Solution

Putting together the three elements above, we have analytical techniques to (i) determine

a minimum value for total trajectory time T, (ii) determine a maximum value for T, and

(iii) validate if the bang-bang solution for a value of T satisfies the dynamic constraints

of Eqn. (4.15). Combining these three elements we can perform a binary line search in

between the upper and lower bounds, searching for the smallest value of T which satisfies

the dynamic constraints.

4.2.2 Numerical Tests

The bang-bang approximation for a double integrator that is described above is guaranteed

to return a valid solution (the solution computed by upper bound), however, it can provide

no guarantee about the tightness of the solution to the true optimal value. For this purpose,

Monte Carlo simulations were used to find the empirical tightness of the solution. Simula-

tions were performed using a thrust-to-weight ratio of 4, meaning that the total available

acceleration (amax = 40 m/s2) is 4 times gravity (10 m/s 2), matching a typical quadro-

91

tor capability. Tests were performed with xo = [0, 0, 0], xf c [0, 30] x [0, 30] x [-30, -30],

1voll E [0,30], 1vf 11 E [0,30] and randomized initial and final velocity directions. Simula-

tions were only performed along the positive axes of x and y because of the symmetry in

the problem. Because no analytical solution is available for the coupled double integrator

to compare against, a (computationally expensive) numerical shooting method was used as

a comparison. The decision variables of the shooting method were the timestep At and

the accelerations at each timestep ai, d = {At, ao, ... , aN-11. The optimization was then

formulated as follows:

minimize At,
d

subject to I1aill < amax, for all i E (0,N - 1)

At (N 0 N-1 (axf)(N 0 (4.43)AtNvo + 1:(ai - g) (N - i + 2 y
i=O

N-1

vo + At E (ai - g) - V= 0
i=O

Simulations were performed with N = 100 and initial At with three values between the

lower bound and upper bound solutions.

The timing results for the bang-bang computation are shown in Figure 4-5, showing

approximately ~ 70 ps per trajectory computed, including computation of the lower bound,

upper bound, and the binary search. The binary search was stopped once changes in T

reached 1% of the current value of T. Comparison in length of the computed trajectories for

the bang-bang approximation and the shooting method are shown in Figure 4-6. In 99.8% of

cases the bang-bang solution was within 5% or better of the solution found by the shooting

method.

4.2.3 Double Integrator Motion Planning

With the boundary value problem solver from above, we now have (approximately) satisfied

the assumptions required to use Algorithm 1 for global planning of a double integrator

through obstacle fields. Because the boundary value problem is approximate, the global

motion planning algorithm can no longer maintain its full optimality and completeness

guarantees, however, as demonstrated below, the full system remains highly effective and

near optimal.

92

60 70 80 90 100
Bang-bang computation

110 120
time (p~s)

130 140

Figure 4-5: Histogram of computation times for double integrator
include computation of the lower bound and upper bound of the
binary search for the lowest cost solution.

approximation. Timing
solution space, and the

93

250

200

150 1

0

E
LA

0

U

I
50 F

0
50

I I I I I I

400

0

0

350

300 -

250 -

200 -

150 -

100 -

I

50

40 50 60 70 80 90
Bang-bang trajectory length / shooting trajectory

100
length

110
(%)

Figure 4-6: Histogram of the ratio of cost of the trajectory found through a bang-bang
approximation and the cost found using a shooting method with 100 node points. Histogram
does not include 4 out of 2500 samples (0.2%) which had a ratio over 1.2, maximum ratio
seen was 1.96

94

Decoupled Double Integrator

As mentioned previously, there is no good method of true time minimal motion planning

for a coupled double integrator existing in literature that is known to this author. An

implementation of a coupled double integrator through gridded search techniques is infeasible

in nearly all scenarios. Fortunately, the double integrator presents itself well for graph search

in a decoupled form, with the total available thrust distributed along each of the axes. It

is this decoupled formulation that is used in nearly all works that use a double integrator

model, of particular note [66]. While this system technically remains a 6D system, by

decoupling the axes the search space becomes closer to 3 2D problems solved simultaneously.

This decoupled search technique gives an effective graph structure to search via D* Lite for

comparison to Algorithm 1.

Double Integrator Comparison

To test the performance of the complete coupled double integrator motion planner, we per-

form the same Monte Carlo simulation experiments as carried out in Section 4.1. Compar-

isons are again made in a randomized obstacle field in R3, however, because of the velocity

dimensions of the system the full configuration space is in R6 . In total, 200 simulations

were performed comparing the double integrator solution in Algorithm 1 to the decoupled

search method described above, see Figure 4-7 for a snap shot of one of the experiments,

and Figure 4-8 for a summary of results.

Because Algorithm 1 only expands the necessary components of the 6D configuration

space, it is able to solve the more complex fully coupled dynamics with less computation

than required for D* Lite to solve the reduced decoupled solution. The benefits of solving

with full coupled dynamics can be seen in the trajectory cost, which is 30-40% worse when

using the decoupled dynamics.

In addition to the Monte Carlo simulations in the randomly distributed obstacle world,

we also performed simulations in real world environments off of recorded data. These real

world environments use a base level Octomap representation for "sensing", with queries to

parts of the map marking new sensing information. The final result of two such queries are

shown in Figure 4-9 and Figure 4-10. In Figure 4-9 a quadrotor is navigating through a

window and around a tree to reach the goal point in a more local map, while in Figure 4-10

95

Figure 4-7: Visualization of the Monte Carlo simulations performed for a coupled double
integrator model. The solution found using our tree based method is shown in Cyan with
an execution time of 1.65 s and a computation time of 141.46 ms, while a grid based search
is shown in Blue with an execution time of 2.23 s and a computation time of 973.65 ms.
Each planner was run with a discretization of 0.25 m, though note that discretization only
occurs for the tree based method along the boundaries of configuration space.

96

WO wo ama -
'I

/# I= J

00

I -- -

'446

o Tree search: State spacing 0.25
- Tree search: State spacing 0.5

- - Grid seach: State spacing 0.25
- - Grid search: State spacing 0.5

10.0.5 100.0 100-5 101.0 101.5
Normalized computation time

Figure 4-8: Experimental results across 200 Monte Carlo simulations in a randomized world
like the one shown in Figure 4-7, with 200 obstacles of length 3.0. Due to the decoupling of
the axes as well as the discretized nature of the solution, the grid based method performs
30-40% worse than our tree search, while also finding a slower solution.

97

50 -

30

20 -

10 -

I.

0

0

_0
(U
N

0Z

0 -

-10 --

10 1-0 102.0 102.5

Figure 4-9: Double integrator trajectory computed flying through a window and around a

tree in data collected on the University of Freidburg campust. Gray voxels denote occupied

space in the underlying world that was not directly mapped, while orange voxels are mapped

areas. Total computation time for this trajectory was 331 ins.

tUniversity of Freidburg campus courtesy of Armin Hornung and Bastian Steder http://ais.informatik.uni-
freiburg.de/projects/datasets/octomap/

the quadrotor navigates across the full campus model. The full underlying map is shown

in gray (a subset of the model of the University of Friedberg campus), while the directly

sensed voxels are shown in orange. In the first example, despite the tight operating windows

and the need to explore against a full wall (a challenging scenario for this algorithm), the

full computation took 331 ins. In the second for the larger scale problem, Algorithm 1 took

223 ms to calculate and a trajectory length of 3.4 s. For comparison, the same problem took

7521 ms with a trajectory cost of 5.4 s using Lazy D* Lite. Because the algorithm treats

unoccupied elements of configuration space as continuous, it seamlessly switches between

the larger scale search and the smaller scale search without an increase in complexity or the

need for hand tuning adaptive resolution graphs.

98

Figure 4-10: Double integrator trajectory computed flying around obstacles through spatial
data collected in the University of Freidburg campust. Gray voxels denote occupied space in
the underlying world that was not directly mapped, while orange voxels are mapped areas.
Total computation time for this trajectory using Algorithm 1 was 223 ms for a trajectory
length of 3.4 s. For comparison, the same problem took 7521 ms with a trajectory cost of
5.4 s using Lazy D* Lite.

tUniversity of Freidburg campus courtesy of Armin Horning and Bastian Steder http://ais.informatik.uni-
freiburg.de/projects/datasets/octomap/

99

4.3 Conclusion

In this section we demonstrated the effectiveness of Algorithm 1 on several test systems,

comparing its performance in both computation time and trajectory cost against D* Lite.

Both Algorithm 1 provide the desired "sensing optimality" through Lazy graph search, but

Algorithm 1 sparse structure and continuous representation of configuration space allow it

to generate shorter trajectories with less computation time. Of particular note for this work,

and for the application of Algorithm 1, we demonstrated the algorithm on a coupled double

integrator model of a quadrotor UAV. This model provides a six-dimensional system with

non-linear constraints, a challenging and relatively unsolved scenario for standard planning

algorithms. Algorithm 1 provides real time performance with near-global optimality in large

scale obstacle rich environments. Along the way to solving this motion planning problem,

we derived a fast near optimal approximation for solving the obstacle free boundary value

problem for a coupled double integrator.

100

Chapter 5

Future Work and Conclusions

5.1 Future Work

5.1.1 Implementation

While the work presented here is primarily a theoretical and simulation based work, it is

designed with the intent of running on-board a real system using the Dynamic (Algorithm 5)

and Anytime (Algorithm 7) properties of the algorithm. A key part of implementing the

algorithm on a real system is the development of algorithms that are well suited to partial

queries of sensor data. For a vision based system we are particularly interested in meth-

ods of computing occupancy in small sub-volumes of space in an iterative manner. Basic

methods of stereo processing such as local block matching are particularly well suited to

this, as computing occupancy of a volume requires a single disparity check. While this

would be a clean (and likely effective) initial solution, significant improvements in stereo

have been shown with techniques such as semi-global matching 1381. A key component of

these techniques, however, is the regularization of all computed disparities across an image.

A potentially interesting future work would be to adapt semi-global matching to work in

an incremental fashion, regularizing only across currently processed data. In addition to

the algorithm presented here, such a system could be used with simpler high speed motion

planning methods such as trajectory libraries [271.

101

5.1.2 Non-physical barriers

One of the notable advantages of working with the incremental mapping technique described

here is that it incrementally builds an obstacle map in configuration space during runtime.

Though we have primarily looked at obstacles in configuration spaces as physical obstacles,

nothing in the methods described requires impassible areas of configuration space to be

physical. We can use the same techniques to perform incremental discovery of obstacles in

configuration space that are non-physical.

Based off of the work in Chapter 2, we are particularly interested in the problem of

integrating state estimation and motion planning systems. Some of the most challenging

problems in visual state estimation such as maintaining a state estimate through low textured

areas and through degenerate motions such as pure rotation are relatively simple problems

when coupled with motion planning. Rather than make a complete state estimation system

which can handle all scenarios, we can instead create a state estimation system with a clearly

defined working area, and perform motion planning that respects those bounds. Several

recent works have approached this problem from a trajectory optimization standpoint [105,

20, 711, looking to adapt an existing motion plan to maximize state estimation performance.

A different possible approach would be to look at conditions for state estimation as in-

operable areas of configuration space. The state estimation system performs well in a set

of scenarios, and does not perform in others (and therefore those states can not be entered

safely). This creates a scenario of obstacles which may not be entered in configuration space,

similar to those found with typical motion planning. Using the incremental approach de-

scribed here, these "state estimation obstacles" may be avoided by incrementally expanding

the areas around these obstacles until a trajectory is found that satisfies both state esti-

mation requirements and motion planning optimality. What was previously a prohibitively

expensive operation, i.e. determining a complete map of state-estimation-safe regions, may

now be done on the fly.

Based off of the tree structure, it may also be possible to develop algorithms which are

history aware. A given state in configuration space may be available given one approach

(which for example it triangulates features better), but not available from another.

102

5.1.3 Complex dynamical systems

This thesis primarily focuses on systems for which the boundary value problem can be

solved, or at least approximated as in the case of the coupled double integrator, however,

the concepts are generally based upon the ability to solve some dynamics in an obstacle free

world. In a similar manner as described in the previous section, some of the constraints

on these optimization problems can be relaxed at the expense of adding more "obstacles"

to the configuration space. For example, velocity constraints on a double integrator can

be incorporated into the problem either in the boundary value problem or in the search by

adding virtual obstacles whenever a trajectory surpasses the allowable velocity of the system.

An interesting area of future work would be looking at solving highly complex dynamics

through a mix of simpler boundary value problems and configuration space constraints.

5.2 Conclusions

In this thesis we show two sides of the high performance navigation problem: an experimental

demonstration of a state of the art autonomous UAV platform with fully on-board state

estimation and control, and a theoretical description of a combined mapping-and-motion

planning system for navigation in unknown environments. The research platform provides

a fully integrated and customizable platform for further development, giving access to all

components of the system from the high level state estimation to low level motor control

and feedback. The combined mapping-and-motion planning system gives a high performance

system capable of working in unknown environments where mapping is expensive, and also

is demonstrated to work as a practical motion planner on complex high dimensional systems.

We demonstrate that taking a holistic view of the robot navigation problem, e.g. looking at

mapping and motion planning as a joint process opens up new avenues for both. Rather than

simply augmenting existing methods we are able to take advantage of fundamental principles

of optimal navigation through obstacles to quickly and optimally navigate in complex high

dimensional worlds.

103

104

Bibliography

[1] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy. Stereo vision and laser
odometry for autonomous helicopters in GPS-denied indoor environments. In Intl.
Soc. Opt. Eng. (SPIE), 2009.

[2] H. Alt and E. Welzl. Visibility graphs and obstacle-avoiding shortest paths. Zeitschrift
fur Operations Research, 32(3-4):145-164, May 1988.

[3] Nancy M Amato, 0 Burchan Bayazit, and Lucia K Dale. OBPRM: An obstacle-based
PRM for 3D workspaces. 1998.

[4] Amado Antonini, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and Ser-
tac Karaman. The Blackbird Dataset: A large-scale dataset for UAV perception in
aggressive flight. In Intl. Sym. on Experimental Robotics (ISER), 2018.

[5] Andrew J Barry, Anirudha Majumdar, and Russ Tedrake. Safety verification of reac-
tive controllers for UAV flight in cluttered environments using barrier certificates. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 484-490, 2012.

[6] M. Bloesch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based MAV navigation
in unknown and unstructured environments. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 21-28, 2010.

[7] Robert Bohlin and Lydia E Kavraki. Path planning using lazy PRM. In IEEE Robotics
and Automation Letters, volume 1, pages 521-528. IEEE, 2000.

[8] Samir Bouabdallah and Roland Siegwart. Backstepping and sliding-mode techniques
applied to an indoor micro quadrotor. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 2247-2252. IEEE, 2005.

[91 Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion plan-
ning under uncertainty. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 723-730. IEEE, 2011.

110] M. Bryson, M. Johnson-Roberson, and S. Sukkarieh. Airborne smoothing and mapping
using vision and inertial sensors. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 3143-3148, 2009.

[11] Michael Burri, Helen Oleynikova, Markus W. Achtelik, and Roland Siegwart. Real-
time visual-inertial mapping, re-localization and planning onboard MAVs in unknown
environments. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
volume 2015-Decem, 2015.

105

[12] Luca Carlone and Sertac Karaiman. Attention and anticipation in fast visual-inertial
navigation. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 3886-
3893. IEEE, may 2017.

[131 Benjamin Cohen, Mike Phillips, and Maxim Likhachev. Planning Single-arm Manip-
ulations with N-Arm Robots. In Robotics: Science and Systems (RSS), 2014.

[14] Robin Deits and Russ Tedrake. Efficient Mixed-Integer Planning for UAVs in Cluttered
Environments. In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2015.

[151 Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Technical
Report GT-RIM-CP&R-2012-002, Georgia Institute of Technology, September 2012.

[161 Christopher M Dellin and Siddhartha S. Srinivasa. A unifying formalism for shortest
path problems with expensive edge evaluations via lazy best-first search over paths
with edge selectors. icaps, (2295):459-467, 2016.

[17] J. Dong, L. Carlone, G. C. Rains, T. Coolong, and F. Dellaert. 4D mapping of fields
using autonomous ground and aerial vehicles. In 2014 ASABE and CSBE/SCGAB
Annual International Meeting, 2014.

[18] Jakob Engel, Jiirgen Sturm, and Daniel Cremers. Camera-based navigation of a low-
cost quadrocopter. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
320:240, 2012.

[19] Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli,
and Davide Scaramuzza. Autonomous, Vision-based Flight and Live Dense 3D Map-
ping with a Quadrotor Micro Aerial Vehicle. J. of Field Robotics, 33(4):431-450, jun
2016.

[20] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. Pampc:
Perception-aware model predictive control for quadrotors. IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2018.

[211 Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza. Aggres-
sive Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing
using Active Vision. In IEEE Intl. Conf. on Robotics and Automation (ICRA), dec
2017.

[221 Dai Feng and B Krogh. Acceleration-constrained time-optimal control in n dimensions.
IEEE transactions on automatic control, 31(10):955-958, 1986. Discussion of time
optimal control for acceleration constrained systems.

[23] Peter R Florence, John Carter, Jake Ware, and Russ Tedrake. NanoMap: Fast,
Uncertainty-Aware Proximity Queries with Lazy Search over Local 3D Data. IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2018.

[24] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. IMU preintegration on mani-
fold for efficient visual-inertial maximum-a-posteriori estimation. In Robotics: Science
and Systems (RSS), 2015.

[25] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast Semi-Direct Monocular Visual
Odometry. In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2014.

106

[26] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry. IEEE Trans. Robotics, pages
1-20, 2016.

1271 Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Maneuver-Based Motion Planning
for Nonlinear Systems With Symmetries. IEEE Trans. Robotics, 21(6), 2005.

[281 Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. RotorSAATa
modular Gazebo MAV simulator framework. In Robot Operating System (ROS), pages
595-625. Springer Verlag, 2016.

[29] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy
for multi-object tracking analysis. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 4340-4349, 2016.

1301 Sourish Ghosh and Joydeep Biswas. Joint perception and planning for efficient obstacle
avoidance using stereo vision. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 1026-1031. IEEE, sep 2017.

[31] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive dimen-
sionality for mobile manipulation. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 2944-2951. IEEE, 2012.

[32] Alex A Gorodetsky, Sertac Karaman, and Youssef M Marzouk. Efficient high-
dimensional stochastic optimal motion control using tensor-train decomposition. In
Robotics: Science and Systems (RSS), 2015.

[33] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark for RGB-D
visual odometry, 3D reconstruction and SLAM. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), Hong Kong, 2014.

[34] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100-107, July 1968.

[35] Markus Hehn and Raffaello DaA2Andrea. Quadrocopter trajectory generation and
control. In IFAC World Congress, volume 18, pages 1485-1491, 2011.

[36] D Hernandez-Juarez, A Chac6n, A Espinosa, D Vdzquez, J C Moure, and A M L6pez.
Embedded real-time stereo estimation via Semi-Global Matching on the GPU. In iccs,
2016.

[37] J.A. Hesch, D.G. Kottas, S.L. Bowman, and S.I. Roumeliotis. Camera-IMU-based
localization: Observability analysis and consistency improvement. Intl. J. of Robotics

Research, 33(1):182-201, 2014.

[38] Heiko Hirschmuller. Stereo Processing by Semi-Global Matching and Mutual Infor-

mation. IEEE Trans. Pattern Anal. Machine Intell., 30(2):328-341, 2008.

[39] Armin Hornung, Andrew Dornbush, Maxim Likhachev, and Maren Bennewitz. Any-
time search-based footstep planning with suboptimality bounds. In Humanoid Robots

(Humanoids), 2012 12th IEEE-RAS International Conference on, pages 674-679.
IEEE, 2012.

107

[40] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. OctoMap: an efficient probabilistic 3D mapping framework based on octrees.
Autonomous Robots, 3:189-206, Apr 2013.

[41] J. How, C. Fraser, K.C. Kulling, L.F. Bertuccelli, 0. Toupet, L. Brunet, A. Bachrach,
and N. Roy. Increasing autonomy of UAVs. IEEE Robotics and Automation Magazine,
16(2), 2009.

[42] Albert S Huang, Edwin Olson, and David C Moore. LCM: Lightweight communica-
tions and marshalling. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 4057-4062, 2010.

[431 Stewart D Johnson. Computing minimum time paths with bounded acceleration.
arXiv preprint arXiv:1310.5905, 2013.

[44] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. iSAM2:
Incremental smoothing and mapping using the Bayes tree. Intl. J. of Robotics Research,
31:217-236, Feb 2012.

[45] Biliana Kaneva, Antonio Torralba, and William T Freeman. Evaluation of image fea-
tures using a photorealistic virtual world. In Intl. Conf. on Computer Vision (ICCV),
pages 2282-2289. IEEE, 2011.

[46] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. Intl. J. of Robotics Research, 30(7):846-894, May 2011.

[47] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.
Robot. Automat., 12(4):566-580, 1996.

[48] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces. In
IEEE and ACM Intl. Sym. on Mixed and Augmented Reality (ISMA R), pages 225-234,
Nara, Japan, Nov 2007.

[491 L. Kneip, S. Weiss, and R. Siegwart. Deterministic initialization of metric state es-
timation filters for loosely-coupled monocular vision-inertial systems. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 2235-2241, 2011.

[50] Laurent Kneip, Margarita Chli, and Roland A Siegwart. Robust Real-Time Visual
Odometry with a Single Camera and an IMU. In British Machine Vision Conf.
(BMVC), volume 23, page 1157, 2004.

[51] Nathan Koenig and Andrew Howard. Design and Use Paradigms for Gazebo, An
Open-Source Multi-Robot Simulator. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), volume 3, pages 2149-2154. IEEE, 2004.

[52] Sven Koenig and Maxim Likhachev. D* Lite. AAAI/IA AI, 15, 2002.

[53] Dimitrios G. Kottas, Joel A. Hesch, Sean L. Bowman, and Stergios I. Roumeliotis.
On the consistency of vision-aided inertial navigation. In Intl. Sym. on Experimental
Robotics (ISER), 2012.

108

1541 Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli, and
Jonathan P How. Real-time motion planning with applications to autonomous urban
driving. IEEE Transactions on Control Systems Technology, 17(5):1105-1118, 2009.

1551 Benoit Landry, Robin Deits, Peter R Florence, and Russ Tedrake. Aggressive Quadro-
tor Flight through Cluttered Environments Using Mixed Integer Programming. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1469-1475, 2016.

[561 Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

1571 Steven M LaValle. Planning algorithms. Cambridge University Press, 2006.

158] John J. Leonard and H.F. Durrant-Whyte. Simultaneous map building and localization
for an autonomous mobile robot. In IEEE RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 1442-1447. IEEE, 1991.

159] John J. Leonard and Hugh F. Durrant-Whyte. Mobile Robot Localization by Tracking
Geometric Beacons. IEEE Trans. Robot. Automat., 7(3):376-382, 1991.

160] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. Keyfraine-based
visual-inertial SLAM using nonlinear optimization. Intl. J. of Robotics Research, 2015.

161] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. ARAAA6: Anytime AAA6
with provable bounds on sub-optimality. Advances in Neural Information Processing
Systems, 16:12, 2004.

162] Maxim Likhachev, Alex Nash, and Sven Koenig. Incremental Phi*: Incremental Any-
Angle Path Planning on Grids. Intl. Joint Conf. on Al (IJCAI), 2009.

[63] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen. Autonomous
aerial navigation using monocular visual-inertial fusion. J. of Field Robotics, 00:1-29,
2017.

[64] Yi Lin, Fei Gao, Tong Qin, Wenliang Gao, Tianbo Liu, William Wu, Zhenfei Yang, and
Shaojie Shen. Autonomous aerial navigation using monocular visual-inertial fusion.
J. of Field Robotics, jul 2017.

[651 Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based motion
planning for quadrotors using linear quadratic minimum time control. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 2872-2879. IEEE, 2017.

1661 Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. Search-based motion
planning for aggressive flight in se (3). ral, 3(3), 2018.

[671 G. Loianno, G. Cross, C. Qu, Y. Mulgaonkar, J.A. Hesch, and V. Kumar. Flying
smartphones: Automated flight enabled by consumer electronics. IEEE Robotics and
Automation Magazine, 22(2):24-32, 2015.

[681 G. Loianno and V. Kumar. Vision-based fast navigation of micro aerial vehicles. In
Proc. SPIE, Micro- and Nanotechnology Sensors, Systems, and Applications, 2016.

109

[69] Giuseppe Loianno, Chris Brunner, Gary McGrath, and Vijay Kumar. Estimation,
Control, and Planning for Aggressive Flight With a Small Quadrotor With a Single
Camera and IMU. IEEE Robotics and Automation Letters, 2(2):404-411, apr 2017.

[701 Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback
motion planning. Intl. J. of Robotics Research, 36(8):947-982, 2017.

[711 Travis Manderson, Andrew Holliday, and Gregory Dudek. Gaze selection for enhanced
visual odometry during navigation. In Proceedings of the Conference on Computer and
Robot Vision, 2018.

[72] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control
for quadrotors. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 2520-
2525. IEEE, 2011.

[73] Najib Metni and Tarek Hamel. A uav for bridge inspection: Visual servoing control
law with orientation limits. Automation in construction, 17(1):3-10, 2007.

[741 Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar
Von Stryk. Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. In
International Conference on Simulation, Modeling, and Programming for Autonomous
Robots, pages 400-411. Springer Verlag, 2012.

[75] Kartik Mohta, Michael Watterson, Yash Mulgaonkar, Sikang Liu, Chao Qu, Anurag
Makineni, Kelsey Saulnier, Ke Sun, Alex Zhu, Jeffrey Delmerico, et al. Fast, au-
tonomous flight in gps-denied and cluttered environments. J. of Field Robotics,
35(1):101-120, 2018.

[76] A.I. Mourikis and S.I. Roumeliotis. A dual-layer estimator architecture for long-term
localization. In Proc. of the Workshop on Visual Localization for Mobile Platforms at
CVPR, June 2008.

177] Mark W Mueller, Markus Hehn, and Raffaello D'Andrea. A computationally effi-
cient motion primitive for quadrocopter trajectory generation. IEEE Trans. Robotics,
31(6):1294-1310, 2015.

[781 Mustafa Mukadam, Jing Dong, Frank Dellaert, and Byron Boots. Simultaneous Tra-
jectory Estimation and Planning via Probabilistic Inference. In Robotics: Science and
Systems (RSS), 2017.

[79] R. Mur-Artal, J.M.M. Montiel, and .J.D. Tard6s. ORB-SLAM: A versatile and accurate
monocular SLAM system. IEEE Trans. Robotics, 31(5):1147-1163, 2015.

1801 Alex Nash, Kenny Daniel, Sven Koenig, Alex Nash, Sven Koenig, and Ariel Felner.

Theta*: Any-Angle Path Planning on Grids. In Nat. Conf. on Artificial Intelligence
(AAA I), volume 1, pages 1-47, 2007.

[81] Alex Nash, Sven Koenig, and Craig Tovey. Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. In Nat. Conf. on Artificial Intelligence (AAAI),
2010.

110

[82] Helen Oleynikova, Dominik Honegger, and Marc Pollefeys. Reactive avoidance using
embedded stereo vision for may flight. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 50-56. IEEE, 2015.

[83] Brian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A
survey of motion planning and control techniques for self-driving urban vehicles. IEEE
Trans. Intelligent Vehicles, 1(1):33-55, 2016.

[84] Sudeep Pillai, Srikumar Ramalingam, and John J. Leonard. High-Performance and
Tunable Stereo Reconstruction. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2016.

[85] L. S. Pontryagin. The mathematical theory of optimal processes. International series
of monographs in pure and applied mathematics: v.55. Oxford, New York, Pergamon
Press; [distributed in the Western Hemisphere by Macmillan, New York] 1964., 1964.

[86] Will Pryor, Yu-Chi Lin, and Dinitry Berenson. Integrated affordance detection and
humanoid locomotion planning. In 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids), pages 125-132. IEEE, nov 2016.

[87] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments. In Proc. of the Intl. Symp.
of Robotics Research (ISRR). Springer Verlag, 2013.

[88] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for
Quadrotor Flight. In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2013.

[89] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for
Data: Ground Truth from Computer Games. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, European Conf. on Computer Vision (ECCV), pages
102-118. Springer International Publishing, Cham, 2016.

[90] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M
Lopez. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 3234-3243, 2016.

[91] Thomas Sayre-McCord, Winter Guerra, Amado Antonini, Jasper Arneberg, Austin
Brown, Guilherme Cavalheiro, Yajun Fang, Alex Gorodetsky, Dave McCoy, Sebastian
Quilter, Fabian Riether, Ezra Tal, Yunus Terzioglu, Luca Carlone, and Sertac Kara-
man. Visual-inertial navigation algorithm development using photorealistic camera
simulation in the loop. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
2018.

[92] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A toolbox for easily
calibrating omnidirectional cameras. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 5695-5701. IEEE, 2006.

[93] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-
making for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous
Systems, 1(1):187-210, 2018.

111

[94] Brual C. Shah, Petr Svec, Ivan R. Bertaska, Armando J. Sinisterra, Wilhelm Klinger,
Karl von Ellenrieder, Manhar Dhanak, and Satyandra K. Gupta. Resolution-adaptive
risk-aware trajectory planning for surface vehicles operating in congested civilian traf-
fic. Autonomous Robots, 40(7):1139-1163, Oct 2016.

195] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-fidelity
visual and physical simulation for autonomous vehicles. In Field and Service Robotics,
2017.

[961 Shaojie Shen, Nathan Michael, and Vijay Kumar. Tightly-coupled monocular visual-
inertial fusion for autonomous flight of rotorcraft MAVs. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), pages 5303-5310. IEEE, may 2015.

[97] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Vision-Based
State Estimation and Trajectory Control Towards High-Speed Flight with a Quadro-
tor. In Robotics: Science and Systems (RSS), 2013.

[98] J. Shi and C. Tomasi. Good features to track. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 1994.

[99] Ezra Tal and Sertac Karaman. Precision tracking of aggressive quadrotor trajectories
using incremental nonlinear dynamic inversion and differential flatness. In IEEE Conf.
on Decision and Control. IEEE, 2018.

[100] Sarah Tang and Vijay Kumar. Autonomous flight. Annual Review of Control, Robotics,
and Autonomous Systems, 1(1):29-52, 2018.

[101] Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot path
planning. Artificial Intelligence, 219:1-24, feb 2015.

[102] Sonia Waharte and Niki Trigoni. Supporting search and rescue operations with uavs.
In International Conference on Emerging Security Technologies (EST), pages 142-147.
IEEE, 2010.

[103] Stephan Weiss, Markus W Achtelik, Simon Lynen, Michael C Achtelik, Laurent Kneip,
Margarita Chli, and Roland Siegwart. Monocular vision for long-term micro aerial
vehicle state estimation: A compendium. J. of Field Robotics, 30(5):803-831, 2013.

[104] Zhengdong Zhang, Amr Suleiman, Luca Carlone, Vivienne Sze, and Sertac Karaman.
Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach.
In Robotics: Science and Systems (RSS), 2017.

[105] Zichao Zhang and Davide Scaramuzza. Perception-aware receding horizon navigation
for mavs. In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2018.

112

...

