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Abstract

A diverse set of functional materials can be fabricated using dispersions of colloids and nanoparticles. If
the dispersion is responsive to an external field, like dielectric and charged particles in an electric field
or paramagnetic particles in a magnetic field, the field can be used to facilitate self-assembly and control
particle transport. One promising feature of field-responsive materials is the ability to drive them out of
equilibrium by varying the external field in time. Without the constraints of equilibrium thermodynamics,
out-of-equilibrium dispersions display a rich array of self-assembled states with useful material and transport
properties. To leverage their unique behaviors in real applications, a predictive, theoretical framework is
needed to guide experimental design. In this thesis, I carry out a systematic investigation of the self-assembly
and dynamics of colloidal dispersions in time-varying external fields using computer simulations, equilibrium
and nonequilibrium thermodynamics, and electro-/magnetokinetic theory.

I first develop efficient computational models for simulating suspensions of polarizable colloids in external
fields. The simulations are accurate enough to quantitatively reproduce experiments but fast enough to reach
the large length and time scales relevant for self-assembly. I use this simulation method to construct the
complete equilibrium phase diagram for polarizable particles in steady external fields and find that many-
bodied, mutual polarization has a remarkably strong influence on the nature of the self-assembled states.
Correctly accounting for mutual polarization enables a thermodynamic theory to compute the phase diagram
that agrees well with simulations and experiments. Though the equilibrium structures are crystalline, in
practice, dispersions typically arrest in kinetically-trapped, disordered or defective metastable states due
to strong interparticle forces. This is a key difficulty preventing scalable fabrication of colloidal crystals.
I show that cyclically toggling the external field on and off over time leads to growth of colloidal crystals
at significantly faster rates and with many fewer defects than for assembly in a steady field. The toggling
protocol stabilizes phases that are only metastable in steady fields, including complex, transmutable crystal
structures. I use nonequilibrium thermodynamics to predict the out-of-equilibrium states in terms of the
toggle parameters.

I also investigate the transport properties of dispersions of paramagnetic particles in rotating magnetic
fields. Like toggled fields, rotating fields also drive dispersions out of equilibrium, and their dynamics can
be tuned with the rotation frequency. I find that the rotating field greatly increases particle self-diffusivity
compared to steady fields. The diffusivity attains a maximum value several times larger than the Stokes-
Einstein diffusivity at intermediate rotation frequencies. I develop a simple phenomenological model for
magnetophoresis through porous media in rotating fields that predicts enhanced mobility over steady fields,
consistent with experiments.

Lastly, I study the nonlinear dynamics of polarizable colloids in electrolytes and report a new mode of elec-
trokinetic transport. Above a critical external field strength, an instabilty occurs and particles spontaneously
rotate about an axis orthogonal to the field, a phenomenon called Quincke rotation. If the particle is also
charged, its electrophoretic motion couples to Quincke rotation and propels the particle orthogonally to the
driving field, an electrohydrodynamic analogue to the Magnus effect. Typically, motion orthogonal to a field
requires anisotropy in particle shape, dielectric properties, or boundaries. Here, the electrohydrodynamic
Magnus (EHM) effect occurs for bulk, isotropic spheres, with the Quincke rotation instability providing bro-
ken symmetry driving orthogonal motion. In alternating-current (AC) fields, electrophoresis is suppressed,
but the Magnus velocity persists over many cycles. The Magnus motion is decoupled from the field and acts
as a self-propulsion, so I propose the EHM effect in AC fields as a mechanism for generating a new type
of active matter. The EHM "swimmers" behave as active Brownian particles, and their long-time dynamics
are diffusive, with a field-dependent effective diffusivity that is orders of magnitude larger than the Stokes-
Einstein diffusivity. I also develop a continuum electrokinetic theory to describe the electrohydrodynamic
Magnus effect that is in good agreement with my simulations.
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Title: Texas-Mangelsdorf Career Development Professor
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Chapter 1

Introduction

A major effort in chemical engineering is the synthesis of "designer materials", materials with physical prop-
erties tailored for a specific application. Photonic crystals with precise optical properties can serve as
waveguides in photonic circuits.1-4 Membranes with optimal conductivity are used in batteries for energy
storage.5, 6 Special fluids with tunable rheological properties are used in automobile break lines, artificial
joints, pumps, and vibrational dampeners. 7 1 ' The microscopic features of these materials give rise to their
effective properties observed on the macroscopic scale. If we can design and control the microstructure, we
can rationally synthesize materials with desired physical properties. For these materials to be useful, we need
to engineer fabrication schemes that scale efficiently to produce large quantities of material at low costs.

Microstructural features can be patterned directly using top-down lithographic techniques.1214 Because
these features are orders of magnitude smaller than the materials they make up, it takes a very long time
to build macroscopic quantities of material. These top-down approaches are typically expensive and time-
consuming at large scales. Bottom-up approaches, particularly self-assembly, offer a promising route to
scalable synthesis of nanomaterials. 15

,16 In self-assembly processes, interactions among small building blocks
spontaneously drive them into larger, organized structures. As long as we can synthesize the building blocks,
we get the entire structure "for free", in the sense that the building blocks do the work of creating the
structure. Fabrication via self-assembly has the potential to scale well. To create macroscopic amounts of
self-assembled material, we simply begin with macroscopic amounts of building blocks.

The types of materials we can form using self-assembly are determined by the types of building blocks we
choose. Colloidal dispersions, made up of 1 nm to 10 pm sized particles dispersed in a fluid, offer a particularly
powerful class of materials for self-assembling structures. Colloidal particles are highly engineerable, and
there exist many controlled processes for synthesizing different types of particles with desired size, shape,
and surface functionalization.1 7  These particles interact, exerting forces on one another that arise from
a variety of physical mechanisms, including van der Waals interactions, steric repulsions, electrostatics,
magnetostatics, depletion attractions, hydrodynamic flows, and capillary forces." Because the physical and
chemical properties of the particles are tunable, so too are the interactions between the particles. This allows
us to engineer different assembled structures simply by modifying the particles that make them up.

The simplest and most common self-assembly schemes, static self-assembly (SSA), involve no external driving
force; the particle interactions are innate and the dispersion spontaneously assembles on its own.1 5  Such
systems are said to be passive. In static self-assembly, the configuration of particles in the dispersion evolves
over time until it reaches a thermodynamic equilibrium state, which is stable and does not change. This
equilibrium state can be anything from a disordered fluid-like configuration to a complex, ordered crystalline
structure. The tools of equilibrium thermodynamics and statistical mechanics provide a generic algorithm
to predict the equilibrium state from a known interparticle interaction potential. 19 This allows us to predict
which interparticle potentials might lead to a particular target structure, informing us on what kinds of
particles to use as building blocks. Thus, static self-assembly offers an efficient paradigm for rational design
and synthesis of functional materials. The strategy is to engineer colloids that have an interparticle potential
whose theoretical thermodynamic equilibrium state has the desired material properties for the application
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of interest.

Static self-assembly has already been used to synthesize a diverse set of functional materials at the lab
scale. However, two main engineering challenges have prevented robust, scalable fabrication of nanomate-
rials using SSA methods. The first challenge is the difficulty of designing and synthesizing building blocks
with arbitrarily complex interparticle interactions. Simple structures like face-centered cubic (FCC), hexag-
onally close-packed (HCP), and body-centered cubic (BCC) have been self-assembled from particles with
simple interactions. However, more complex structures require particles with increasingly complicated inter-
actions, which may be difficult to engineer. Lattices mimicking atomic crystals have been assembled using
nanoparticles with highly anisotropic attractions, 20 ,21 but existing methods for synthesizing these particles
are not easily scalable. 22 Lattices mimicking ionic crystals have been formed with binary mixtures of charged
nanoparticles, though two components with precisely controlled stoichiometry, charge, and size are needed.2 3

Attractions mediated by grafted DNA offer a tunable platform to produce a variety of crystal structures,
but can have high materials costs.24 -26  Complex crystals and quasicrystals can be assembled from steric
repulsions, but require complicated, precisely-sculpted polyhedral particles with dozens of faces that may be
challenging to synthesize. 27 There are systematic ways to concoct complicated, but isotropic, interparticle
potentials whose thermodynamic equilibrium state is any target structure, but there is no guarantee that
these can be realized experimentally. 2 8 3 Even if we can, the target structure might be particularly sensi-
tive to small deviations from this exact potential, and such deviations are always present in real systems.
For example, a modest of amount of size polydispersity can suppress crystallization 31 ' 32 and slight shape
deviations can stabilize wildly different crystal structures. 27

The second challenge involves the kinetics of assembling the target structure. It is advantageous for the
forces driving assembly to be many times larger than thermal forces to facilitate rapid structure formation.
Though particles quickly aggregate, they often arrest in kinetically-trapped defective or disordered metastable
states.* Defects degrade the performance of crystalline structures, and nearly-perfect crystals with essentially
no defects are required for semiconductor or photonic applications.1, 33 In fact, if the defect density is too
high, they provide nucleation sites for rapid structural change, and the material may catastrophically fail.
Because the metastable state is not thermodynamically stable, the material will slowly age as it converts to
its equilibrium state. Its properties will change over time which is not desirable for use in a stable operation.
Weaker forces can be used to promote controlled, defect-free crystallization via nucleation and growth, but
the kinetics are necessarily slow and not scalable. The range of system parameters in which this mechanism
is experimentally possible, the "crystallization slot", is usually quite narrow and not necessarily known a
priori.35 Particle interactions must be tuned to find the crystallization slot and then carefully controlled to
remain inside, which may require sophisticated control schemes. Thus, for static self-assembly, there is an
intrinsic coupling between the thermodynamic driving force and the assembly kinetics that forces a tradeoff
between quality of the self-assembled microstructure and its rate of formation. 36 ,3 7

This coupling between structure and dynamics can also be problematic when designing transport processes
involving statically self-assembled structures. For example, magnetic nanoparticles have been proposed for
targeted therapeutics, because they can be manipulated using magnetic fields to deliver cargo to target sites.
However, strong dipolar attractions between particles results in significant aggregation during magnetophore-
sis and limits their mobility through dense, porous tissue, greatly reducing their efficacy.38  Dispersions of
monoclonal antibodies have been investigated for targeted immunotherapy technologies, but protein agglom-
eration results in large viscosities that prevent subcutaneous injection. 39-42 Additives to electrolytes within
batteries to improve mechanical stability by forming percolating networks can also reduce the electrolyte's
conductivity and degrade the battery's performance.4 3 4 5

If particle interactions can be controlled with an external stimulus, the stimulus can be used to facilitate
self-assembly. Many such systems have been studied experimentally 4 6 including dispersions that respond to
light, temperature, pH, electric field, and-magnetic field, examples of which are listed in Table 1.1. If the
stimulus is held steady in time, these dispersions behave like statically self-assembling systems and relax
to thermodynamic equilibrium, suffering from the same problems plaguing other passive processes. If the

*Sometimes, these metastable states are the ones that are desired, like in the case of manufacturing a colloidal gel. However,
this isn't controllable, and we cannot easily prevent these structures if we don't want them.
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stimulus chemistry interaction
light photo-sensitive ligand van der Waals 47 48

photochromic solute electrostatic49 ,50

temperature thermally responsive polymer bridging,5 1 - 53 depletion 54

DNA functionalization hybridization2 4,5 5

pH pH-responsive ligand electrostatic,49,5' hydrogen-bonding 57 -59

electric field dielectric contrast dipolar,6o-62 dielectrophoretic 6 3

magnetic field magnetic contrast dipolar,1 0 ,64-68 magnetophoretic 69

shear flow any entropic, 7 0 viscoelastic, 71 hydrodynamic 72

Table 1.1: Examples of stimulus-chemistry pairs promoting switchable interparticle interactions in nanoparticle

systems.

stimulus is varied in time, the particles experience time-dependent interactions, which drastically alter their
dynamics and assembled structures. This type of assembly belongs to a class of nonequilibrium processes

called dynamic self-assembly (DSA), where energy is supplied to a dispersion from an external source to drive
the assembly of particles. 15 Such systems are said to be active. To reach a steady-state, assembled structures
must dissipate the energy input, and are therefore not in equilibrium. Because the dispersion is driven out
of equilibrium, there are no longer constraints that couple the dispersion structure and its assembly kinetics.
Thus, using time-dependent external stimuli to synthesize materials via dynamic self-assembly can overcome
the the challenges plaguing static self-assembly.

Early experiments involving assembly in time-dependent stimuli were performed by Promislow and Gast,
who assembled paramagnetic colloids with dipolar interactions controlled with a strong, external magnetic

field. 64 '6 When the magnetic field was held steady in time, the particles arrested in a defective, metastable
state. When the magnetic field was toggled on and off cyclically in time, the particles rapidly crystallized
into large, well-ordered domains, even though the interparticle forces were many times larger than thermal

forces. While the field was off, the particles' thermal motion helped anneal defective, arrested configurations
that would have persisted for long times in steady fields. The second engineering challenge (coupling of
the structure to its rate of formation) was solved, and it became possible to quickly assemble high-quality
crystals using large interparticle forces. Further work by Swan, Furst, and coworkers showed that the
assembled structures and their dynamics could be controlled with the toggle frequency.67,68,73-75 If the

toggle frequency was too large, particles could not diffuse sufficiently far from their original positions in the
off half-cycle, and defects persisted from cycle to cycle. If the toggle frequency was too small, the particles
diffused away farther than the range of the interaction in the off half-cycle and did not reaggregate when the
field was turned back on. Only for intermediate frequencies were the particles able to diffuse far enough to
relax defected structures without melting completely. Thus, they were able to optimize the toggling protocol
to yield the fastest crystallization rates. Tang, Grover, Bevan, and coworkers designed a feedback control
scheme for the toggle parameters to efficiently crystallize colloids in toggled electric fields. 76,77 A variety
simulations extended toggled self-assembly to other types of particle interactions and structures, including
those that are not observed with steady interactions. 78 -84 The ability to form structures not available to
static self-assembly is especially interesting because it suggests that toggled self-assembly may be used to
overcome the engineering challenge of scalable synthesis of complicated particles. The strategy would be to
use particles with simple interactions (that are easy to manufacture) and add complexity in the external
time-signal (which is easy to control) to generate more complicated structures that would generally require
more complicated particles if synthesis were restricted to static self-assembly.

There are many other types of time-variation in the external stimulus including varying the spatial potential
landscape in time 8 5 and, if the external stimulus has an associated direction like a flow, electric, or magnetic
field, flipping the field's polarity.6 2,7 0,s 6- 88 A particularly useful mode of time-variation in rotating the field
orientation in two or three dimensions. This has been used to assemble structures not observed with SSA in
steady fields,. 89- 92 Rotating fields have proved especially promising for controlling the transport properties

18



of colloidal dispersions, and have been used to enhance mixing at the micron scale,9 3 9 4 amplify signals
from biochemical sensors,95-97 propel artificial microswimmers, 98 1 00 assemble "conveyor-belts" to transport
cargo, 1 01 and enhance electro- and magnetophoresis through porous media.38,10 2

Time-varying stimuli are only a subset of dynamically self-assembling systems. Another important subset
consists of "active" particles that sustain some form of self-locomotion, including self-propulsion ("swim-
mers"),98,103,104 self-rotation ("rotors"),105-108 or growth. 109 This class of materials is called "active matter",
and is inspired by biological systems where "particles" include bacteria, microorganisms, and motor pro-
teins, that convert chemical energy into locomotion. Because active particles dissipate energy, they are free
from the constraints of equilibrium thermodynamics and dynamically self-assemble into a rich assortment of
out-of-equilibrium materials," 0 including flocks,"',1 2 nematics,1 09 and crystals.113,114 These phases have
useful collective transport properties and have been used to significantly increase the translational velocity
of flocks of microrollers," 5 understand enhanced mixing in cells,"16 '117 and transport passive cargo.1 01'"18

These works demonstrate that active systems and dynamic self-assembly can overcome the engineering chal-
lenges inherent to passive systems and static self-assembly, at the expense of continually injecting energy into
the assembling system. However, a major drawback is the difficulty in predicting the assembled structures
and their dynamic properties. For steady interactions in static self-assembly, the tools of statistical mechan-
ics and equilibrium thermodynamics provide a straightforward and generic (albeit intractable in many cases)
algorithm to compute equilibrium states. There are numerous kinetic theories that rely on equilibrium ther-
modynamic quantities, including classical nucleation theoryi9,'120 and Cahn-Hilliard kinetics,1 21,122 that
describe the assembly dynamics. Fundamental transport quantities like diffusivity, viscosity, conductivity,
and permittivity can be related to equilibrium fluctuations of thermodynamic quantities using Green-Kubo
relations.1 23 With time-varying and dissipative interactions in dynamic self-assembly, the dispersion evolves
toward an out-of-equilibrium terminal state, which is not governed by the laws of equilibrium thermody-
namics. There is no generic theory to predict and describe such dissipative, out-of-equilibrium states, their
dynamics of formation, or their transport properties. This is problematic because it makes designing, opti-
mizing, and scaling real DSA processes difficult. This remains a key hurdle preventing dynamic self-assembly
from being utilized to reliably fabricate nanomaterials.

The goal of my thesis is to develop a predictive, theoretical framework for the assembly and dynamics of
colloids in time-varying external fields. Such a framework will aid in the experimental design of dynamically
self-assembling processes.

In Chapter 2, I discuss my approach to studying dynamic self-assembly of colloids using computer simu-
lations. I first present the equations that govern the motion of colloidal particles and how hydrodynamic,
Brownian, and steric forces are handled in simulations. I then derive a detailed mathematical model for
the electro/magnetostatic forces in dispersions of arbitrarily shaped colloid particles, as well as an efficient
numerical implementation accelerated on graphics processing units (GPUs). These latter sections are quite
lengthy and technical and are not needed to understand the rest of the results in this thesis. While the
interested reader is welcome to look through the details, reading only Section 2.1 and then proceeding to
Chapter 3 is sufficient.

Chapter 3 investigates a simple model of dynamic self-assembly: colloids with a toggled, isotropic, short-
ranged attraction facilitated through the depletion interaction. This is an important physical system in
colloid science and has well-understood equilibrium phase behavior. I derive a first-principles theory of
nonequilibrium thermodynamics to predict the out-of-equilibrium assembled states. The theory necessitates
equality of the time average of pressure and chemical potential in coexisting phases of the dispersion, which
can be evaluated using well known equations of state. I also develop phenomenological models to describe
and predict the self-assembly rates. These models can be leveraged to optimize the assembly rate and the
quality of the assembled microstructure, which are substantially enhanced over steady interactions.

This toggled depletion system is somewhat of a simple "toy" model. I would like to extend the results
and analysis to toggled electric and magnetic fields, which have already been investigated experimentally.
However, the analysis hinges on a full understanding of the equilibrium phase behavior in steady fields. This
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was well-understood for the depletion system, but the complete phase diagram for field-directed assembly
of dielectric and paramagnetic colloids has not been computed, even for steady electric and magnetic fields.
Chapter 4 develops a complete thermodynamic description of such assemblies. I show how an important
physical feature of these types of particles, mutual polarization, sculpts the free energy landscape and has a
remarkably strong influence on the nature of the self assembled states. My theoretical predictions agree with
the phase behavior I observe in dynamic simulations of these dispersions as well as that in experiments of
field-directed structural transitions. This new model also predicts the existence of a eutectic point at which
two crystalline phases and a disordered phase of nanoparticles all simultaneously coexist.

In Chapter 5, I develop computational and theoretical models for dielectric and paramagnetic particles
in toggled external fields. The active process stabilizes phases that are only metastable in steady fields,
including a dense fluid phase and body-centered orthorhombic crystals. The growth mechanism and terminal
structure of the dispersion are easily controlled by the toggling protocol, and the toggle parameters can be
used to continuously transmute between crystal structures with different lattice parameters. Results from
linear irreversible thermodynamics are used to predict the dissipative terminal states of the active assembly
process in terms of parameters of the toggling protocol.

Chapter 6 investigates the transport properties of dispersions of paramagnetic colloids in rotating magnetic
fields, another mode of time-varying external fields. I find that self-diffusion of particles is enhanced in
rotating fields compared to steady fields, and that the self-diffusivity in the plane of rotation reaches a
maximum value at intermediate rotation frequencies that is larger than the Stokes-Einstein diffusivity of an
isolated particle. The magnetophoretic velocity of particles through the bulk in a field gradient decreases
with increasing rotation frequency, but the enhanced in-plane diffusion allows for faster magnetophoretic
transport through porous materials in rotating fields. I also examine the effect of porous confinement on
the transport properties in rotating fields and fine enhanced diffusion at all pore sizes. The confined and
bulk values of the transport properties are leveraged in simple models of transport through tortuous porous
media.

In Chapter 7, I investigate the electrokinetic transport properties of dispersions of charged colloids in elec-
trolytes. For sufficiently strong fields, an instability occurs that causes spherical colloids to break symmetry
and spontaneously rotate about an axis orthogonal to the applied field, a phenomenon named Quincke ro-
tation. If the colloids also have a net charge, the electrophoretic motion couples to Quincke rotation and
propels particles in a direction orthogonal to both the driving field and the axis of rotation, an electrohy-
drodynamic analogue to the Magnus effect. Typically, motion orthogonal to the field requires anisotropy
in particle shape, dielectric properties, or geometry of boundaries. Here, the electrohydrodynamic Magnus
(EHM) effect occurs for bulk, isotropic spherical particles, with the Quincke rotation instability providing
broken symmetry driving orthogonal motion. The direction of the Magnus velocity is not changed by flip-
ping the sign of the field, so net orthogonal motion persists in alternating-current (AC) electric fields. This
orthogonal motion is decoupled from the field and acts as a type of self-propulsion, so I propose the electro-
hydrodynamic Magnus effect in AC fields as a mechanism to create a new type of active matter. Because the
EHM effect is oberved for simple spheres, these active dispersions are inexpensive and simple to synthesize,
easy to control with the external field, do not lose activity as long as the field is sustained, and do not require
specific boundary geometries. I use a simple electrokinetic theory to analyze the charging dynamics, predict
the Magnus velocity, and determine a critical AC frequency above which Quincke rotation and the EHM
effect shuts off. The long-time dynamics are diffusive, with a diffusivity that is orders of magnitude larger
than the Stokes-Einstein diffusivity due to the particles' activity.

Finally, in Chapter 8, I discuss how the results of the work of this thesis can be leveraged to design efficient
assembly processes using external fields. I propose strategies for using the toggling protocol to assemble
complicated crystals, including colloidal diamond. I also detail promising opportunities for rotating fields to
optimize particle transport for targeted therapeutic purposes. Lastly, I suggest active matter and particle
separation applications for the electrohydrodynamic Magnus effect.
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Chapter 2

Dynamic Simulations of Colloidal
Dispersions in Electric and Magnetic
Fields

Computer simulations can augment our understanding of experimental systems by providing information
that is difficult to obtain or inaccessible to experiments. At the colloidal scale, we are often interested in
information at the individual particle level. Because the particles are small, 0(1nm - 10 pm), the relevant
length and time scales are also small. Sophisticated scattering and imaging techniques are required for these
high resolutions which can be expensive, time consuming, and difficult to interpret. It can also be challenging
to control certain aspects of experiments, like gravity, temperature fluctuations, and vibrations, which may
obscure observations or complicate their interpretation.

Simulations provide a controlled way to investigate systems at high resolutions, at the expense of using
only an approximate model as a proxy for a real experiment. These "virtual experiments" help to interpret
and predict experimental observations, which in turn allows more accurate computational models, and so
simulations and experiments work together in a synergistic feedback loop. Because the level of approximation
can greatly affect the outcome of a simulation, it is important to carefully construct models that incorporate
the necessary physical mechanisms that dominate the behavior of the systems of interest. In this Chapter,
we will discuss the computational models used in this thesis to simulate colloidal dispersions in external
fields.

2.1 Brownian Dynamics Simulations of Colloidal Dispersions

There are numerous types of simulation methods we can choose for dispersions of colloids ranging from the
highest resolution atomistic molecular dynamics to the most coarse-grained continuum models. A useful
model should be simple enough to be computationally tractable, yet accurate enough to be a realistic
representation of actual dispersions. In this thesis, we use a Langevin-type model which explicitly represents
each colloid particle as a discrete element but treats the solvent implicitly as a Newtonian fluid continuum.
That is, we do not incorporate solvent molecules explicitly but rather account for the effect of the solvent on
the particles, which has two main contributions: deterministic hydrodynamic forces from flows in the fluid
and stochastic Brownian forces from fluctuating interactions of the colloid and solvent molecules.

In our simulations, we have a monodisperse suspension of N colloid particles that are spheres of radius a
and mass m dispersed in a fluid of viscosity q. The dynamics of each particle i at a position xi(t) at time t
are governed by the Langevin equation1 24

mdt= FK +F + F + Fp (2.1)
dt2  i i i t

where V' is the hydrodynamic force on particle i, FPis the stochastic Brownian force,FV is the interparticle
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force arising from thermodynamic interactions among particles, and Ft is an external phoretic force exerted
by a global force field.

If a steady force is suddenly applied to a colloid particle at rest, the particle accelerates to a terminal
velocity over an inertial time scale T = m/-, where -y = 67ra is the Stokes drag coefficient. 125 Because we
are interested in modeling assembly and transport, we are more concerned with the time scales on which
the particle actually moves. One such time scale is that for diffusion TD = ya2 /kBT, where kBT is the
thermal energy of the solvent. The Schmidt number Sc TDr I Y2 a2 mkBT, compares the rate of
inertial relaxation to the rate of diffusion. For typical colloids of size a - 1 pm and density _ 103 kg/m3 in
water with viscosity 17 10-3 Pa.s at room temperature T - 293 K, the Schmidt number is Sc 10 7 , and
inertial relaxation is orders of magnitude faster than particle motion. If we were to numerically integrate
(2.1) directly, most of our computational effort would be spent resolving the inertial dynamics, and it would
be difficult to reach diffusive and larger time scales. As long as we look on time scales larger than Ti, there
is essentially no error in assuming particles instantaneously move at their terminal velocity when they feel a
force. In this case, the acceleration of the particle is always zero and the dynamics are said to be overdamped,

0= +F± +F +F, (2.2)

and the particles are always "force free".

2.1.1 Hydrodynamic Forces

The velocity field u(x) within the incompressible, Newtonian fluid solvent is governed by the Navier-Stokes
equations

P (d +U-Vu =-VP+ V 2u, V u = 0, (2.3)dt

where p is the fluid density and P(x) is the pressure. On the particle surfaces, the fluid satisfies no-slip
boundary conditions and moves with the local surface velocity. The Reynolds number, Re = pua/7, where
u is a characteristic velocity, compares the magnitude of inertial forces to viscous force. For typical values
at the colloidal scalep 03 kg/m 3 ,u 10-6 m/s, a 1 pm, 0 Pa-s, the Reynolds number is10-6
and inertial forces are small compared to viscous forces. In this case, for times larger than ri, the left side
of the Navier-Stokes equation vanishes, and fluid motion is governed by the Stokes equations

TV2 u = VP, V. u = 0. (2.4)

The fluid flow in the solvent is pseudosteady, and time-dependence arises solely from the time-dependent
no-slip boundary conditions as particles move around. Because this equation is linear in u, there exists the
linear relation

Ui = M . Fj, (2.5)

where Mf is the hydrodynamic mobility tensor coupling the nonhydrodynamic force Fj FP +Fj +Ff on

particle j to the velocity Uj of particle i. 125,126 Forces on a particle generate flows in the fluid that entrain
and move other particles, so motion among the particles is coupled together. This equation (2.5) for a single
particle can be written in matrix/vector form for all N particles,

Ui~ ~M 1 1  M 12  F1
U2- M 2 1  M2 2  - 2 .F (2.6)

where V/ [U 1 , U 2 ,.., UN]T is a list of the N particle velocities, _q [F 1 ,F 2 ,...,FN] is a list of
particle forces, _H is the grand hydrodynamic mobility tensor whose ijth block entries are M , and the T

superscript indicates transposition.* _H is determined from the solution to the Stokes equations (2.4) with

*We use script letters to denote collections of individual particle variables.
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no-slip boundary conditions on the particle surfaces and therefore depends on the particle configuration.
One approximation for Mf is the Rotne-Prager-Yamakawa tensor,

3a a3  (3a 3a3 ii

1 (4r 2r3  
4 r 2 r3 2.r

23 - - I+ 3- r<2a
32a 32a

where r = xi - xj is the center-to-center distance vector, r Irl, and i = r/r.127 Mg can be succinctly
written in periodic geometries with its Fourier-space representation

M = 1 e ik sin ka I2 ) (2.8)

where k E [27rk./L ,27rky/Ly,27rkz/Lz : (k,,ky,kz) E Z]T is the wavevector, k - |k, k = k/k, LX, LY,
and Lz are the dimensions of the periodic simulation cell, and V LxLYLZ is its volume. 128 This far-
field representation of the hydrodynamic mobility tensor treats each particle as a point force plus a point
quadrupole generating a Stokeslet that entrains the other particles. Because this is the dominant contribution
to the hydrodynamic interactions, we neglect higher order force moments (e.g. torques and stresslets) for
computational efficiency. These can be incorporated in more sophisticated hydrodynamic models to improve
the accuracy of _&H.129 Lubrication forces between nearly touching particles can be included pairwise,1 30,131

but are not implemented here.

Equation (2.5) can be numerically integrated over a time step At using a forward Euler scheme,

xi(t + At) = xi(t) + Ui(t)At. (2.9)

This discretized version is the one implemented in simulations. At each time step, particle forces are com-
puted, particle velocities are calculated from 2.5, and the positions are updated using 2.9.

2.1.2 Brownian Forces

The solvent exerts stochastic, Brownian forces on the particles originating from fluctuating interactions
between solvent molecules with the colloids. The statistics of the Brownian forces satisfy the fluctuation-
dissipation theorem,125

( -(t)) = 0, K B(t)gB(t+T) 2kBT(.>kL6(T) (2.10)

where 6 is the Dirac 6-function and () indicates an ensemble average over particles and time. The average
Brownian force is zero, while its variance is related to the inverse of the grand hydrodynamic mobility tensor.
The Brownian forces are uncorrelated in time (i.e. the set of forces JF at one time does not affect the
set of forces at a later time), but the forces are correlated between particles through their hydrodynamic
interactions. The discretized version of (2.10) averages the Brownian force over a single time step At,

( B)= 0, (ABtB (2.11)

and the magnitude of the force depends on the time step. 13 2 Sampling these Brownian forces is generally a
difficult task because it requires evaluating the square root of WH, but a cmputationally efficient "positively-
split Ewald" method has been developed.1 28

2.1.3 Interparticle Forces

Interparticle forces arising from thermodynamic interactions among particles are represented as the gradient
of a potential energy U(X), which is a function of the coordinates of all particles X [x1, x 2 ,•-. , XN]T,

FI(X) =_ -V, U(X), (2.12)
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where the gradient is taken with respect to the position of the ith particle. In some cases, the total potential
energy (or at least a contribution to it) can be decomposed into a sum of pair potentials Uij that depend
only on the relative displacement between a pair of particles

U (X) = Uij (r), (2.13)

where i and j run from 1 to N and the factor of 1/2 corrects for double-counting each pair. In this case, the
forces can also be decomposed into sums of pairwise forces

Fi' (r) VrUij(r). (2.14)

In this thesis, we are concerned with solid, rigid colloids, which cannot overlap. In terms of a function, these
steric interactions are represented by the hard sphere pair potential

(00s o if r < 2a
ifr<2 . (2.15)

0 if r > 2a

In other words, particle overlaps are forbidden (require infinite energy), but the particles are otherwise non-
interacting. Though real colloidal particles are not perfectly hard, hard-core models have been successful
at reproducing generic behavior seen in many dispersions.13,4 The hard sphere force computed by the
derivative of this potential is discontinuous; it is everywhere zero except for a 6-function of infinite mag-
nitude at contact. This type of force cannot be implemented directly in simulations. Typically, the hard
potential is approximated with a soft potential of the form r--, where n is a large power. The larger n,
the more accurately the soft potential approximates the hard potential, but the larger the resulting forces
become as the potential diverges faster and faster.13 5 Smaller time steps must be taken as n increases to
prevent unphysically large steric forces, leaving this method computationally inefficient. Heyes and Melrose
implemented a "potential-free" hard sphere algorithm by allowing particles to overlap over the course of a
time step due to other forces and then separating them to contact at the end of the time step.136 Because
equations (2.5) and (2.9) give a relation between particle displacements and forces we can compute the
effective hard sphere force that was required to separate these two hydrodynamically interacting particles
to contact. Thus, the potential-free algorithm can be equivalently written in terms of a hard sphere pair
potential. For the particular choice of the Rotne-Prager-Yamakawa tensor for Mi,3

2aln-+r-2a ifr<2a
As 3At r (2.16)

T0 ifr>2a

This potential does not diverge as particles approach contact, so we do not need to worry about taking small
time steps to avoid large forces.t There are no adjustable parameters, but because At is explicitly included
in the functional form, the strength of the hard sphere potential always adjusts to bring particles exactly
to contact over a single time step. This hard sphere potential reproduces all of the correct hard sphere
thermodynamic and transport quantities. 138

2.1.4 Freely Draining Model

We refer to the above method of handling hydrodynamic interactions as the "HI model". Because of the
computational cost of computing the long-ranged, many-bodied hydrodynamic interactions, a common sim-
plification is the "freely draining" (FD) model, which neglects interparticle hydrodynamic interactions so
that the drag on each particle is decoupled from all of the others and equal to the Stokes drag,

MH = 0, i z1 j MH = I/_-. (2.17)

tEquation (2.16) does have a slow logarithmic divergence as r - 0. This is only a problem if particles are nearly completely
overlapped, in which case they are not behaving like hard spheres anyway (which may be due to excessively large forces, large
time steps, etc.). This is quite different from the case of 1/r-- potentials, where even a small amount of overlap can lead to
unphysically large forces if n is large.
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In this case, the discrete equations of motion take the simpler form

xi(t + At) = xi(t) + -i (t)At. (2.18)

With this approximation for .//H, the Brownian forces among particles are no longer correlated with one
another,

0, (jBgB) 2kBTy 7

(SB)= 0, At '(.9

and the effective hard sphere potential takes on a different form, 3 7

y (r - 2a)2 if r < 2a
U.= 4At (2.20)

7j 10 if r > 2a

2.1.5 Implementation

All simulations are run in HOOMD-Blue, a software suite for particle simulations optimized on graphics
processing units (GPUs).1 39-141 The native HOOMD-Blue package can only integrate the equations of
motion for the freely-draining model. For the hydrodynamic model, we utilize the positively-split Ewald
method, implemented as a plugin to HOOMD-Blue.1 28 To incorporate electro-/magnetostatic and electro-
/magnetophoretic forces, we utilize mutual dipole and immersed boundary plugins to HOOMD-Blue dis-
cussed in the following sections. 14 2

Calculations in simulations are performed on dimensionless quantities, so we must select a consistent set of
units to nondimensionalize variables. All lengths are scaled by the particle radius a, all energies are scaled on
the thermal energy kBT, and all times are scaled by the bare diffusion time rD = 7a2 /kBT. A dimensionless
version of a quantities is indicated with a tilde ~. With this choice of dimensionless units, the Stokes drag
is unity 7 = 1 and the solvent viscosity is i = 1/67r.

2.2 Electric and Magnetic Forces for Spherical Particles

Dispersions of dielectric and paramagnetic particles that respond to electric and magnetic fields have addi-
tional interparticle and phoretic forces on top of the ones discussed in the previous section. These forces'
are long-ranged and many-bodied and are difficult to implement in simulations. In this section, we derive
the forces induced among particles by external fields and discuss a rapid numerical implementation of the
calculations.

2.2.1 Governing Equations

The electromagnetic interactions in colloidal dispersions are governed by Maxwell's equations. A useful form
of Maxwell's equations is obtained by averaging them over volumes that are small compared to length scales
of interest (like the particle size) but large compared to atomic length scales, which can be represented
as1 4 3 ,144

V-F=p, F=-AV@, (2.21)

where V(x) is the potential, F(x) is the flux, p(x) is the free charge distribution, and A(x) is a conductivity.
For the case of dielectric particles, F is the electric induction D, -V@ is the electric field E, and A is the
electric permittivity E. For the case of paramagnetic particles, F is the magnetic induction B (sometimes
called the magnetic flux density), -VO is the magnetic field H, and A is the magnetic permeability p. The
mathematical analysis of both of these classes of materials is identical. For simplicity, we will cast our
derivation in the context of dielectric particles in an electric field, with the understanding that all of the
expressions also hold for paramagnetic particles in magnetic fields.
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If we have colloids of permittivity A, in a solvent of permittivity Aj and all the free charge is located on the
particle surfaces, so that p(x) = 0 everywhere in the fluid, (2.21) reduces to solving Laplace's equation

V 20 = 0 (2.22)

for the potential inside Op and outside of the particles subject to the boundary conditions on each of the
particle surfaces Si

Op = Of, (Ff - F) . fi = qo, for x E Si, (2.23)

where qo is the free surface charge density and F, and Ff are the fluxes inside and outside of the particles,
respectively.1 43-14 6 We also enforce periodic boundary conditions commensurate with the dimensions of the
periodic simulation box L, L., and L,.

These equations hold well when the time scales for electric and magnetic relaxation inside the particle and
fluid are much smaller than time scales of interest. These intrinsic electric and magnetic relaxation times,,
0(1ns), are nearly always negligible compared to time scales for particle motion, 0(1s), but can become
important if rapidly varying external fields are present, like high-frequency AC electric fields. 125, 144 ,147 Like
the fluid velocity in the Stokes equations (2.4), the potential in (2.22) is pseudosteady, and time-dependence
emerges only from the time-dependent boundary conditions (2.23) as particles move around or the external
field varies. The linear relation between F and E holds well for small E. As E increases, F "saturates" and
nonlinear polarization models are needed.1 44'148-150 These models preclude analytic progress, so we assume
the linear limit is applicable in this thesis.

2.2.2 The Periodic Green's Function for Laplace's Equation

The Green's function solution G(x) to Laplace's equation is the potential at a position x due to a point
charge of unit magnitude at the origin within a fluid of unit permittivity.

-V 2 G = 6(x). (2.24)

G can be determined by taking the Fourier transform of this equation, solving for the transformed Green's
functionG 1/k2 , and inverting,

G(x) = ) dk--eik'x 1 (2.25)
(2 7r)3 k2 47rx'

wherex =x|. Suppose now that the charge density is a periodic array of point charges,

-V 2G = E (x - n), (2.26)
n

where n E f{(niL, ny Ly, nzL,) : (n, ny, nz) E Z} and LX, LY, and Lz are the periodicities in each dimension.
Because Laplace's equation is linear, we can immediately write the solution as a superposition of single point
force solutions,

G(x)1 (2.27)
n47r |x - n|

This sum, representing the potential from an infinite array of positive point charges, does not converge. To
evaluate G, we assume there is an additional, uniform negative charge distribution throughout the medium
that balances the positive charges and ensures the overall system is charge-neutral. 145 This renders the sum
convergent, and we can use the Poisson summation formula to sum over the reciprocal lattice instead of the
real lattice,

1 ikx
G(x) k2  (2.28)

k O

where k c {(27rk,/L, 27rk2 /L, 27rk3/L) : (ki, k2 , k 3) E Z}. Removing the k = 0 term from the wave space
sum enforces electroneutrality. This periodic solution will be convenient for the periodic boundary conditions
of a simulation box with dimensions Li, L 2 , and L3 .

*Here, we are referring to relaxation of atomic or magnetic domains (on length scales much smaller than those of interest)
that contribute to A and not relaxation of mobile ion species, which can have significantly longer relaxation times.
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2.2.3 Spherical Harmonic Expansion of the Periodic Green's Function

Because the periodic Green's function satisfies Laplace's equation, it is possible to expand it in terms of
spherical harmonics Ym as,

G(x - y) = Z ik2xy ) r' + Bmr -1 )Yem(0, 4), (2.29)
k$ k2

where the spherical coordinates (r,0, 4) of y are relative to some arbitrary point xj and x is treated as a
fixed parameter here. The geometry of this setup is illustrated in Figure 2.1. x and y are restricted to the
primary box L = [-L 1/2,L 1/2) x [-L2/2,L 2/2) x [-L 3 /2,L 3/2). G(x) is finite everywhere in L except
x = 0, so G(x - y) is finite everywhere except y = x. Because the point xj is not necessarily x, G(x - y)
is, in general, finite at r = 0. Therefore, all of the Be coefficients are zero, and the expansion is

G(x - y) = Ae mrYm(0, 4). (2.30)
em

This represents G as a local expansion about xj that can be truncated for small r. If x is outside of the
sphere of radius a centered at xj, we can determine the coefficients Aem by multiplying both sides of (2.30)
by Yem, integrating y over the surface of this sphere, and using the orthonormality of spherical harmonics,

Aem= 2a 2  eik(xx) dr e-ik.rY (0, (2.31)
kfAO

By orienting the coordinate system so that the z direction points along k for each k in the sum, the coefficients
can be evaluated analytically,

(- eik-(x-xj)

-2 47r(2e + 1)i- j(ka), for m = 0,
Aem = k$O k(2.32)

0, for m # 0,

where je(ka) are the spherical Bessel functions of degree f. The complete expansion of the periodic Green's
function about xj is,

1 ik.(x-xj) r1G(x - y) 1 k 47r(2f+ 1)i-'je(ka)(Y(6,4), (2.33)VZ k 2  Sal
with Ye = Yo. We will also need the normal derivative§ of the Green's function,

- 'yGx 1y eik-(x-xo) 
-

n-VG(x- y) 1 eV k2 /47r(2f + 1)ijj(ka)( Y (,). (2.34)aV ~i k2  ai

2.2.4 Multipole Expansion of the Fluid Potential

For a point x in the fluid, the potential is given by the integral form of Laplace's equation,

I(X) - 0o(x)= 1E dy (G(x - y)Ff (y) .fiy + Af V(y)ny -VyG(x - y)) (2.35)

where o(x) is the externally imposed potential, and the sum goes over all N particles in L. Because of the
periodic boundary conditions, the potential @ (x) -o(x) does not decay as x -+ 00, so there is an additional
integral in (2.35) over a surface at infinity to ensure the well-posedness of the problem. Bonnecaze and Brady

§This normal derivative requires us to use the specific expansion in equation (2.29) with a particular r dependence rather
than an arbitrary spherical harmonic expansion with unspecified r dependence.
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Figure 2.1: Schematic of the geometry of the multipole expansion.

showed that this term ends up canceling out, 141 so we neglect it from the beginning in our derivation here.

For each of the terms in the j sum, we substitute the spherical harmonic expansion for the periodic Green's

function about Xj and write the integral in terms of r =- y - Xj, whose spherical coordinates are the same

as that in the expansion,

iky(x-xj) IA

Of(X) -0 (X)= AfyV k2 V47r(2f + 1)i-'j,(ka) dr YFf . nt + Y .a2.6
j kfAO f I3

Writing out the spherical harmonics for each f, Y = 1/v/'--, Yi = ,/3/47r z/a, Y2 = /5/167r(3z2 /a 2 _ 1),
etc. and using the definitions of the particle charge, dipole, quadrupole, etc. moments

qj = s dr Ff - ni, (2.37)

Si = s dr (rFf -n, + Af @gn f) , (2.38)
1 S2

Q dr (rr - 3(r - r)I Ff - t + rn + nir (r -n) (2.39)

the potential becomes

I - (k2 qjf (k) + Sj fs(k) + 1Q: fg(k) + -(2.40)

where the "shape factors" associated with the particle moments are

fg (k) jo(ka), (2.41)

fs(k) -ji(ka)k, (2.42)

5 1

fg (k) 1 -- j2 (ka) I . (2.43)

a 3

and serve to propagate the particle moments through wave space.

sThe quadrupole shape factor fg that comes from the integral of Y2 actually only has a incomponent. However, because
Q is traceless, we can include an isotropic tensor in the shape factor without modifying the result. We choose this particular

isotropic tensor so that both Q and its propagator share the same traceless property.
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2.2.5 Multipole Expansion of the Particle Potential

Now that we have an expression for @f(x) in the fluid outside of a particle, we need to derive an expression
for O,(x) inside a particle. Because there is no charge distribution inside the particle, the potential satisfies
Laplace's equation and must be of the form,

zz = A mr'Y(, #). (2.44)
f=O m=-e

where the spherical coordinates (r, 0, )are relative to the particle center xi and the coefficients of the r-f-1
terms must all be zero so that is finite everywhere. Like (2.30), this represents Op as a local expansion
about x3 . The normal component of the flux inside the particle is then,

F, = -Ap Aem!?re- Yemn(0,q#). (2.45)
'em

The coefficients are determined in terms of the particle moments. The definitions of the moments (2.37)-
(2.39) are in terms of the potential and flux in the fluid. With the boundary conditions (2.23), Of = Op and
Ff . i = F n - + qo, we can substitute the particle potential and flux from (2.45) into the definitions of the
charge, dipole, quadrupole, etc,

qj = dr (F - fi + qo) = -Ap, Aema'- dr Yem + qfj = qf, , (2.46)
JSi   em

S 3 = dr (r (F - ni + qo) + Af @,i) ZAmal-- dr (-ApfrYem + Af aYemn) + Sf (2.47)

= Aima (Af - AP) dr Yimi+ Sf (2.48)

Q =Jdr rr - (r . r)I (F,-in+qo)+ rfi+fir- (fi.r)I Af4 @), (2.49)

= ZAemae- dr -eApa2 n f- Yem + 2Afa 2 (ff - I Yem + Qf,j (2.50)

= 2A2ma3 (Af - AP) dr nn - 1Yem ± + Q,, (2.51)

where qf,j, Sfj, and Qfj are the permanent charge, dipole, and quadrupole from the fixed charge distribution
qo. For simplicity, we allow a fixed net charge on the particles, but assume that they have no permanent
dipole, quadrupole, and higher order moments, Sf,=   ... 0.

2.2.6 Constructing the Potential Matrix

With an expression for the potential in the fluid (2.40) and an expression for the potential in each particle
(2.44), we can systematically construct a linear system of equations by equating these two expressions at the
surface of a particle using the boundary conditions (2.23) and integrating over the particle surface,

47ra2  dx(Vp(x) - 1o (x) =dx 2 gjfq + Sj - fs + Qj : fo +

(2.52)
We denote the surface average of the potential of particle i as,

(0) i= 41r2 1dx Op (x). (2.53)
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We perform the integration of the external potential by first Taylor expanding about the center of particle i,

47ra2 dx V)o(x) 4ra2 dr (o (xi) + r -V4o (xi) + rr : VV 0 o (xi) + - -

6 1 V + 0v4 + ) 0 (xi) = o(xi),

(2.54)

(2.55)

where we have used the fact that V2o(X,) V4
00o(xi) = ..- = 0. The result of the integration of the right

side of (2.52) comes immediately from the spherical harmonic expansion of the periodic Green's function,

2 dx eik-x _ eik-xijo(ka).

Therefore, the result of the integration of the total expression (2.52) is

( 0- o(xi) = k2i-j fq gqjfq + Sj - fs + Q j : fo +
j k-O

We have isolated the lowest order harmonic of the potential of particle i. Now w
moments. Multiplying (2.40) by x/47ra 4 and integrating over the surface of particle i,

(2.56)

(2.57)

e isolate higher order

41 a4 dx(xp(x) x14o(x) 47 4 fdx x e ik- 2  q fq + Sj - fs + Q : fQ +-

(25j 
k8

(2.58)
We use the spherical harmonic expansion for the particle interior to evaluate the left side,

1 f dx xop(x) = 4 7 Ap a fdr rYm = 4 7 AimfdrYim.
4rra 4 i 4r 4  Si 4ra2 AlJsI riY,

'em m

We already showed in (2.48) that this can be written in terms of the particle dipole,

1 f S-
47ra 4 Si 47ra3 (d 4 _ 4).

The integral of the external potential again proceeds by Taylor expansion about x

1 115 1
4ra4  dx xVo(x) = 4ra4  dr r o(x ) + rr - Vbo(x) + 1-rrr :VVo(xi) +

The integral on the right side of equation (2.58) is,

1 dx xe ik-x= e ikx ij(ka)^
47ra4 Ii a

Combining equations (2.60)

(2.59)

(2.60)

\)1
= -V5~x)3

(2.61)

(2.62)

(2.62) for the integral of the total expression (2.58),

(2.63)-VO(x) = 47ras + 1EEe f qfe + Sj - fs + Qj : fQ +
YOX) 47ra 3 (A - Af) Af V i k:O 0 2

To isolate the second order harmonic, we multiply (2.40) by (xx - a2 1/3)/47ra6 and integrate over the surface
of i,

47 a6 dx xx - x -x)I)p(x) - o(x

Af
1 x f~(1X-(X -le ik-(xx ) ($ C ,

47ra i3 2 gfq + Sj - fs + 2Qj : f + - -
k7fo2

(2.64)
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Using the spherical harmonic expansion of the potential to evaluate the first term in the integral on the left
side,

47ra 6  dx xx - (x -x)I) p(x) = 47ra2 dr - 3Y 2 m 87ra5(Af - Ap) (2.65)

Using a Taylor expansion of the external potential to evaluate the second term in the integral on the left
side of (2.64),

47a6/ dx xx - (x . x)I o(x)

47a6 Sidr rr - 1) o(xi) + r V4o(xi) + rr :VVo(xj) + (2.66)

1
= 15V o~i).(2.67)

Evaluating the right side of (2.64) directly,

1 eik.(x-x) eikx j 2 (ka)(- - 1
47ra6 x(X-3 X-X1 k2 -e a2 kk-3 (2.68)

Combining equations (2.65) - (2.68) for the integral of the total expression (2.64),

-VVOo(xi) 8 5(A A)+AV eik(xx f qfq + Sj - fs + Q :q + (2.69)

In summary,

-0 00(Xi) = A1 V k2i- fq (q.fq + Sj - fs + 1Qj : fq + - -(2.70)
AfVk 2  2(f C~~

j k$O-

kf$O
-VOO(xi) = 47ra.Sj + Eik (x-xj) s jfq + Sj fs + Q: fo + (2.71)

15Q -I1 eik.(x -xj) + ,. +1
87ra 5(Ap - Af) + A2 EE k2 fq f

with
3 15 1

- (2.73fq(k) = jo(ka), fs(k) a ji(ka)k, fQ(k) -32j2(ka) 3- (2.73)

We can write this in the condensed form,

-W _WEES WE ...

][<E _WES EQ

V4 s AQ ... . (2.74)

where now () -o - [(0)1- o(x1)...,( )N ~~o(XN)]T , o --V o(Xi),..., -Vo(XN)], Vo
[-VV0o(x1),..., -VVOo(xN)] T, ... are lists of all particle potentials, external fields, and other gradients,

-[q1, ... qN]' YT [S1, SNT, -9 = [Q1i , N]T ... are lists of all particle charges, dipoles, and

other moments, and the AEm blocks are tensors that couple the pth potential gradient to the mth moment.
The matrix E 'is called the potential matrix, as it converts moments to potentials and potential gradients,
and is Hermitian and positive definite. 128,15 1 ,1 5 2 Each block is of the form of a wave space sum of the
Green's function propagated by a product of two shape factors. The only difference between the blocks is
which shape factors are present in the product. Moving rightward between blocks increases the second shape
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factor by one degree (i.e. fq - fs - fg - - - ). Moving downward between the blocks increases the first

shape factor by one degree, with every other shape factor complex conjugated (i.e fq - fs fQ- ').
The diagonal blocks also contain an additional self term.

Typically, the particle charges X, external field &o, and all higher external field gradients are known while

the particle potentials (T) - To, dipoles Y, and all higher order moments are unknown. If the expansion is
truncated at the pth moment, we have a linear system of p2 N equations and p 2N unknowns. The potential

matrix 7 /&fE is dense and therefore takes O(p4 N 2 ) operations to construct and O(p6 N 3 ) operations to invert,
both of which are infeasible when N is large. However, _WE is Hermitian positive definite, and (2.74) can be
solved efficiently using a Krylov subspace method, of which we choose to use the general minimized residual
(GMRES) method. 53 Rather than construct 4 E explicitly, we compute its action on a vector gE . vin
O(p2N(log N)d/(d+3)) calculations, where d is the fractal dimension of the particle configuration, as discussed
in section 2.3.

2.2.7 Computing Forces

Once the unknown particle moments are found, we can compute forces. Let's consider the case of charge-free
particles, in a constant external field. The total electric potential energy of the suspension is, 144 154

U = Y . Bo. (2.75)
2

The dipoles are computed from the external field as

U = #.Ps : _oWo. (2.76)

The electric force on a particle i is calculated as the gradient of the electric potential energy,

FE = -V _W (,E - _ s Vx : , (2.77)

or
=-Z VM : SMSE . (2.78)

If particles have a net charge, similar manipulations yield

F E _5 x x P S2.79)

2 Vx M xE E xE . L ~ E +ViES ,j(.0

= - S(vxMjqqiqj + Vx, M s qiSj+ VxM q Siqj+VxM s SiS3 ) (2.80)

2.3 Spectrally-Accurate Ewald Summation

To multiply one of the blocks of tEwith one of the particle moment vectors, e.g. 1 . or S , we
must evaluate sums of the form,

p~(i) 1 if()e k(xix)
PV (Xi) k) e k2  fm(k) -m, (2.81)

where mj is any of the particle moments, pT is the contribution to the potential or one of its gradients from
the m moments, and fp(k) and fm(k) are their corresponding shape factors. For example, .ts . Y gives
the dipole contribution to the potential, so p = (0) - o, m = S, f, = fq, and fm = fs. It is not numerically
efficient to evaluate (2.81) directly. Not only does this require O(N 2 ) operations, the wave space sum only
decays algebraically as 1/k 4 (each shape factor decays as 1/k), requiring a large number of terms to attain a
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desired error tolerance." We can improve the rate of convergence by introducing an Ewald splitting kernel,
h(k) ek2 /4,to split the sum into two terms, one that converges quickly in real space and the other that
converges quickly in wave space. Using the Poisson summation formula to evaluate one portion in real space,

p (xi) =ZIik2(xixj) (1-h(k))fp(k)fm(k)-mj+ Zf(k) k ik (xxj) (k -m
nAf AVk# j

(2.82)
where F-1 indicates the inverse Fourier transform. The Ewald splitting parameter ( controls the rate of
convergence of the real space and wave space sums. The real space sum is computed pairwise by evaluating
the inverse transform analytically, listed in Appendix A. The wave space sum p can be further split by
introducing a spectral parameter r/ into h(k),s**

k (X,) = 1 6 -(1-q)k
2 

4 m mje7k2
/4 

2 eikx(
Pi fp k2 fm(2.83)

We treat a portion of this sum

H(k) 5mek 2/ e , (2.84)

as the Fourier transform, indicated with a hat ", of a real space quantity

H(x) = m e (2.85)

Computing H(x) can be thought as spreading (or projecting) the particle moments in real space to x.1 We
multiply H(k) by a scaling factor to define a new quantity,

e-(1-,7)k2 /4
H (k) = k2  fpfm -H(k). (2.86)

The potential can then be computed in real space using Parseval's formula,
p7 (Xi) = 1 Ai-i k2/V 1 ( 2 2Y)/2dij22 (X_)2/?,,

p )ikx Vk2/ 0 e(k) = 3/ - x) , (2.87)

which can be thought of contracting (or interpolating) H(x) to xi. To compute forces, we need to evaluate
the gradient of (2.81). This is handled with the same Ewald implementation as above, with the gradient
of the real space sum evaluated directly after Fourier inversion (Appendix A) and the gradient of the wave
space sum handled during contraction,

VXi p (Xi) = w 3 /2  2 2 5/2 - -2(x-x)2/q (2.88)

IThe two "extra" factors of 1/k from the shape factors are a bonus of the specific way we derived the potential tensor in
Section 2.2. Typical Ewald formulations 14 5

,
1 55 use the a -+ 0 point-particle limit (Appendix A.9) where the wave space sums

decay only as 1/k 2 .

can be different in different dimensions, in which case the exponentials take the form e-- e ek-/40 e-l e--ozki/4
2

ttThe shape factor fm can be excluded (as in (2.83)) or included in the spreading kernel. If the shape factor is excluded, we
spread vectors and tensors (i.e. spread dipoles and quadrupoles) to a grid. This requires more FFTs, one for each component
of the moment, but a smaller support on the grid. 15 6 If the shape factor is included, we spread scalars (i.e. charges), which
requires only a single FFT, but a larger support. 15 6 We can also mix these two extremes and spread only a portion of the
shape factor. For example, we can spread quadrupoles to the grid as dipoles by spreading Q -k rather than using both k in the
shape factor. In practice, the FFTs are fast compared to spreading, so it is better to exclude the shape factors in the spreading
kernel.
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The following algorithm details an efficient scheme for implementing the Ewald summation on GPUs. This
calculation is performed for every component of each block in (2.74) on each iteration.

1. Real Space Sum. The first sum in (2.82) can be rapidly computed in real space because its terms
decay exponentially. We define a cutoff radius rc and compute the sum between all pairs of particles that
are separated by a distance less than rc. Using a neighbor list constructed in O(N) time to find particle
pairs separated by less than r, the real space sum can be computed in O(NNb), where the average number
of neighbors is Nnb ~ r #, # is the particle volume fraction, and d is the fractal dimension of the particle
configuration. By truncating the real space sum at rc, we commit a truncation error Er. While it is possible
to get rigorous bounds on the error, 128 ,129,155,156 it is convenient to use error estimates. Because the terms
in the real space sum decay as e- 2 2 , the simplest estimate is

Er < Cer42, (2.89)

where C is some constant. On the GPU, the real space sum is performed using one thread per particle that
loops through a particle's neighbors.

2. Spreading. The second sum in (2.82) can be rapidly computed in wave space because its terms decay
exponentially as e-k 2 /4 2. We define a cutoff wave vector k, and neglect terms with |k| > kc. Similarly to
the real space sum, we suffer a truncation error estimated as,

Ek <Cek2CC (2.90)

kc corresponds to a real/wave space cubictl grid of Ng = 1+ Lkc/7r nodes in each dimension with spacing
h -- L/Ng used to evaluate fast Fourier transforms (FFTs) and inverse fast Fourier transforms (IFFTs).
Evaluating H(x) = (22/7rr) 3/ 2 Ejmye-22(x-xaj)/ on these grid points corresponds to spreading (or
projecting) the particle moments to a grid using Gaussians. Because the Gaussian decays rapidly, we can
truncate the spread to a cubic array of the closest P grid points in each dimension in O(NP 3 ) calculations,
suffering a truncation error,

et Ce-h 2 2 2 /2n (2.91)

On the GPU, spreading is performed using one block of P 3 threads per particle, with each thread corre-
sponding to one of the P 3 supporting grid points.

3. Fast Fourier Transform. With H(x) evaluated on a regular grid, we can compute its Fourier transform
H(k) using efficient O(N3log N ) FFT algorithms, like those in the NVIDIA cuFFT library.1 7

4. Scaling. We compute H(k) by scaling the H(k) values at each of the grid points in O(N ) calculations.
The scaling operation converts the particle moments into potentials in wave space. On the GPU, scaling is
performed using one thread per grid point.

5. Inverse Fast Fourier Transform. As with the FFT step, IFFTs yield H(x) on the grid in O(N log N )
calculations.

6. Contraction. We contract (or interpolate) N(x) from the grid to the particle positions xi using
Gaussians from the integration in (2.87), evaluated numerically using quadrature via the trapezoidal rule.
Because the Gaussians decay rapidly, we can truncate the contraction to a cubic array of the closest P
grid points in each dimension in O(NP 3 ) calculations, suffering a truncation error (2.91) identical to the
spreading step. Because our domain and integrand in (2.87) is periodic, the trapezoidal rule quadrature is
spectrally accurate, with a quadrature error128,129, 155,156

eq < Ce-2?/2 2h 2 . (2.92)

IlWe assume a cubic domain here for simplicity, but this method works in general for orthorhombic geometries with unequal
dimensions L,, Ly, and Lz, which leads to different numbers of grid nodes in each direction, Ng,., Ng,y, and Ng,z, for the
same kc.
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We can relate 7 and P by requiring the quadrature and truncation errors to contribute equally to the total
error in the contraction step, Eg ~ Et,

h = V .
(2.93)

7r

This establishes an optimum relationship between the decay of the Gaussian (controlled by 77) and the
support of the Gaussian (controlled by P) to ensure that the Gaussian is not so narrow that quadrature
errors dominate nor so wide that truncation errors dominate. With this relationship, we can express the
error for the entire contraction step as

ec Ce-/ 2 . (2.94)

To summarize,

step complexity error estimate
real space sum O(Nrd) Er < erN

wave space sum -k< e e

FFT and IFFT O(N log N3)
spreading and contracting O(NP 3  e /2

The total computation time is therefore,

t C1Nre + C2 N log N + C3 NP3 . (2.95)

We can use the error estimates to choose parameters based on our desired error tolerance e,

c 2L - - 2nE (2.96)
7r 7r

Substituting into the total computation time, assuming all of the constants are 0(1), and keeping only the
highest order terms in N,

t = N(-d + N 3 log N + N In E. (2.97)

We choose the Ewald splitting parameter to be the value = that minimizes the computation time,

at 0 ->(* ~. (2.98)
a( (log N)1/(d+3)

Substituting (* back into the total computation time and keeping only the highest order in N,

t ~ N(logN)d/(d+ 3). (2.99)

In the worst case scenario of a fractal dimension of d = 3, t is O(N /logN), which is still an enhancement over
traditional N log N methods. Because solving (2.74) iteratively is limited by how quickly we can evaluate
the Ewald sums in the matrix/vector dot product, this spectral Ewald method allows for rapid calculation
of the many-bodied electric forces in dispersions.

Figure 2.2 shows the absolute error, e.g. Sapprox - SexactI, in computing the dipoles and forces on a pair of
uncharged particles in an electric field E0 = 1/47r, where 0 = Eo V/a3 Af/kBT, compared to the specified
error tolerance e. The error agrees well with e, so our error estimates prove reliable. Figure 2.2 also shows
the computation time as a function of the error tolerance, which increases linearly as the error tolerance
decreases exponentially, i.e. t ~ -log e, confirming that the method is spectrally accurate. Figure 2.2D
shows that the computation time scales nearly linearly with the number of particles. Though we predicted
the computation time should scale as t ~ N(logN)d/(d+3), in practice, the /logN portion is not observed,
and the Ewald sums are evaluated in nearly O(N) time for up to at least 106 particles. Thus, our method
allows us to accurately simulate very large systems.
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Figure 2.2: The absolute error in computing the dipoles (A) and forces (B) and the computation time (C) as a
function of specified error tolerance for two particles separated a distance F = 3 oriented parallel to an applied field
E0 = 1/47r. The dashed black lines of unity slope indicate errors equal to the specified tolerance. These calculations

were performed on an Intel(R) Xeon(R) E5-2620 CPU processor. Panel D is the computation time per time step

as a function of the number of particles N for an initially random configuration of particles averages over 1000 time

steps of a simulation. These calculations were performed on a GeForce GTX 980 Ti GPU.

2.4 An Immersed Boundary Method for Electric and Magnetic
Forces of Arbitrarily-Shaped Conductors

The previous method works well for monodisperse dispersions of spherical particles of any permittivity. In
principle, the method could be extended to spheres of different radii aj, and the final expressions would simply
substitute aj for a for each term in the j sums. For particles that are not too different in size, this method
can be numerically implemented efficiently. However, when the particle sizes become disparate, the method
becomes computationally expensive to evaluate. Consider the interaction between a very large uncharged
sphere and a very small charged sphere. The small sphere induces a surface charge on the large sphere that
is concentrated in the region of the surface closest to the small sphere. 158 The charge distribution on the
rest of the large sphere is only weakly perturbed to maintain a net zero charge. This highly asymmetric,
localized charge distribution is not well represented by the first few charge moments (dipole, quadrupole), so
a large number of moments must be maintained for accuracy. Additionally, the Ewald sum implementation
requires apportioning the interaction into real and wave space contributions truncated according to a single
error tolerance. However, what looks "far away" for the small particle appears to be very close to the large
particle, so it is not obvious how to efficiently separate the two sums. For nonspherical particles, the method
could, in principle, be applied, but the surface integrals in Section 2.2 are difficult to evaluate for complicated
shapes.

These limitations are problematic because there are many systems where electrically andmagnetically re-
sponsive objects are not all equal-sized spheres, including proteins,42,159-161 electrolytes, 1 62 rods,i 63-i6 6 and
polyhedra.1 67 168 To model the electro- and magnetokinetics of these systems, we must generalize our method
to arbitrarily-shaped particles.

2.4.1 The Composite Bead Model

We can construct a particle of arbitrary shape (which we will refer to as a "body") by tessellating its surface
with spheres (which we will refer to as "beads") whose centers lay on the body surface. The beads are
constrained to move together rigidly, and the composite body serves as an approximation for the true body.
Because we already derived a method for the electrostatic interactions among beads, we can leverage it
to compute the net interactions of the composite body. There are many ways to construct this surface
tessellation. Surface meshing algorithms can be used to construct a mesh, and then beads can be placed
at the mesh points. For spherical bodies, a convenient tessellation can be constructed by placing beads
at the vertices of an iscohedron and iteratively bisecting edges with more beads.1 6 9 To use our previously
developed method, the tessellating beads must all be the same size, but we are free to choose the bead
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radius. We have found that setting the beads to be as large as possible without overlapping yields a good
approximation of the true surface. This approach is called an "immersed boundary method" because we use
different, incommensurate discretizations of the body surfaces and the fluid. The surfaces are discretized
with the bead tesselation and are "immersed" in the Fourier grid that discretizes the fluid.

2.4.2 Induced Surface Charge Distribution

In equation (2.74), we typically know the net charges on all the particles. Here, we know the net charge of a
body, but because the body can polarize, we generally do not know the induced surface charge distribution
(i.e. the charge on each bead). We must construct a system of equations for the charge distribution on
the surface of each body in the dispersion. We will consider this simplest case where each body is a perfect
conductor, though the following method can be generalized to dielectric bodies.

Consider Nb rigid body conductors each with center of mass position Xi made up of Ni beads of radius
ab tesselated over the body surfaces at positions xij. We will use lowercase variables to indicate individual
bead quantities and uppercase variables to indicate rigid body quantities. Lowercase bead quantities with
two indices (ij) indicate the jth bead on the ith rigid body while a single greek index (a) implies a global
bead ID (e.g the jth bead on the ith rigid body has a global index of a = (i - 1)N. + j). The total charge
on a rigid body Qj is known and equal to the sum of the unknown bead charges qij on that body

Qi qi. (2.100)

The system is immersed in a constant electric field EO that establishes the external potential 4o(x) = -x -E0 .
Because the rigid body is a conductor, the potential everywhere in the body is constant, and each bead's
potential Oi(xij) is equal to the potential 'i(Xi) of the rigid body to which it belongs. The difference
between the bead potential and the external potential is therefore

V/hj- Oo,ij = WI + xij -Eo = W1 - Wo, + rij - E0 , (2.101)

where rij = xij - Xi is the position of the bead relative to the center of mass of the rigid body. The bead
potentials are also related to the bead charges by the potential tensor block . which we will simply
denote as M as the other blocks will not be used,

a - Po,c1 = Mapqo, (2.102)

where the sum goes over all N = Z Ni beads. We can combine these three equations with the help of a
summation tensor,

1 1 -.-. 0 0 -.-. 0 0 -.-.
0 0 .-- 1 1 ... 0 0 .--

E 0 0 0 0 1 1. (2.103)

E is an N x N matrix whose rows correspond to rigid bodies and columns correspond to beads. Each
row is entirely Os, except for Ni consecutive s corresponding to the Ni beads in rigid body i. Letting
q = [ql , q12,.-. ,q21, q22, - ]T be a list of all bead charges and Q = [Q1,Q2, ]T be a list of all rigid body
charges,

Q = q. (2.104)

Equations (2.101) and (2.102) can be combined to

M - q = ET - (IF - Wo) + r -Eo, (2.105)

where % - I o [T1 - Wo,1, T2 - Wfo,2, - - ]T is a list of rigid body potentials less the external potential
and r -Eo = [rii - E0 , r 12 - E0 , -., r21 -Eo, r 22 . E0 , - ]T is a list of relative bead positions dotted with the
external field. Equations (2.104) and (2.105) can be written in saddle point form,

[M ET q [ r - E (2.106)
E 0 1 [P- X0 =I Q I
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This equation can be solved iteratively for the bead charges and the rigid body potentials.

2.4.3 Preconditioner

Taking advantage of the the saddle point form, we can apply the "constraint" preconditioner1 70

P = - N/47abAf ET
~ E 0 E0

(2.107)

where M is an easily invertible approximation of M chosen to be its diagonal elementsM IN/47rabAf,
where IN is the N x N identity tensor. P can be inverted analytically,

P _-+M-1. ET- E-
(2.108)

whereA E - M-- . ET is the Schur complement of -M,

~N1

A=47rabAf
N2 ~11

4rabAf

NM_

1/N1
1/N 2 BM

41abAf
1/NM]

Other terms in P- 1 include,

1/N11 -1 E .~M -1_ 0 1/N1  ... 0 0
0 ... 1/N2 1/N 2 -- E

where E' is a tensor that averages bead quantities within each body, and

/ 47rabAf BN,

1N,, /NM_

where 1
Nj is an Ni x Ni matrix of ones. Thus, the preconditioner inverse is

p-1 47rabAf (BN - IN) (2.112)
Bm/47rabAf]

2.4.4 Rigid Body Dipole Moments

The rigid body dipole moments can be computed from the bead charges by

S= rij qij.

If we define a new summation tensor,

1 1 .. 0 0 0 0 ...
0 0 .-- 1 1 ... 0 0 ---
0 0

ri
0
0

r12

0
0

--- 0 0

0
r2

- - 0

0
r22

0

... 1 1

0
0

--- r31

0
0

r32

40
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1 N2 /N 2
(2-111)

(2.113)

(2.114)

M- T . A-1
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we can compute the rigid body charges and dipoles in a single matrix/vector multiply,

(2.115)]= E" .q,

where S = [Si, S 2 , ... ]T is a list of rigid body dipoles. The bead charges are given from the matrix inversion,

q =M-(T -(%F- WPo)+r-Eo) =M 1 EI Eo .-
(2.116)

Therefore, the moments are related to the potential gradients as

(2.117)

The quantity E" M-IE"T is called the "grand capacitance tensor" of the dispersion.

2.4.5 Rigid Body Forces and Torques

The potential energy of the system is expressed as a sum of products of rigid body moments
derivatives

11 1
U-= (QA~i- Si Eo) = - Q - Wo +- [q

4 - Wo] r. Eo

and potential

(2.118)

The induced charge distribution and rigid body potentials are computed from the inversion of equation
(2.106),

1 1
2 2

(2.119)

The force on an individual bead a is the negative derivative of the potential energy with respect to the
bead position xa, given all other beads remain fixed. Because the rigid body charges and external potentials
do not depend on the bead positions, the negative derivative of the first term in (2.119), -V Q- o/2,
vanishes. The product rule splits the negative derivative of the second term in (2.119) into three terms with
the gradient acting only on one of the three matrices. The first of these terms is,

) . [-M ET rEo] [V ]r.E[0].q 1  qEoVx, [-r -Eo Q] -xE 0, r - Eo 0] - _, =q] o (2.120)

and similarly for the term with the gradient applied to the third matrix. Notice that only the ath component
of Vxa r = [V.,ri, Vx, r2, ... , Vx,,.. .]= [0,0, ... ,I,...] is nonzero, so only the q, term survives the dot
product. The second term is,

- [-r.E V Q](v [-M ET - [-r - Eo
- -r- o ] V"E 0 j Q

=[-r.Eo Q]-

[q - @o]. q

=-q • Vx, ,M - q

M E .[VX,M V x. ET -M ET -r-Eol0 Vx, E 0 0 Q
M Qq- T 0 01 V-,' KM, -' . I-.E

Notice that because the summation tensor is constant, its gradient is zero, V, E = 0, and only the upper
left block of the matrix survives. Thus, the force on bead a is

1
qa Eo - (Vx, M) : qq

2
(2.124)
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Although the second term was written as q . M -q in (2.123), rewriting the equations in index notation
shows that both dot products should contract the vector indices of the charges with the indices of the potential
tensor, leaving the force with the same indices as the gradient. Therefore the proper vector notation is the
double dot product in (2.124). The force and torque on a rigid body can then be computed from the
distribution of bead forces,

Fj = fig, (2.125)

Li = rij x fij. (2.126)

These forces and torques serve as the input to a rigid body hydrodynamic integrator that computes the rigid
body velocities and angular velocities of the composites by solving1 69 ,171

E'" 0f/ - c 0 (2.127)

where fc is a list of N constraint forces on each bead that hold the rigid composite together and E". is a
summation tensor defined in reference 169. & = [U 1, U 2 , ...U]T is a list of rigid body velocities and similarly
for the rigid body angular velocities f, rigid body forces q, and rigid body torques Y. Each bead ij then
moves with a velocity specified by the translational Uj and rotational Og velocities of the rigid body i to
which it belongs

uij = U, + fi x rij. (2.128)

2.4.6 Validating the Immersed Boundary Method

We validate our immersed boundary method for conductors by comparing our results with exact solutions
for simple scenarios.

Single Sphere in an External Field

The dipole moment of a single conducting sphere in a constant external field Eo is

S = 47ra 3A Eo, (2.129)

where a is the radius of the sphere. We construct spherical composite bodies out of a varying number of
N beads and compute the dipole moment S. The relative error 6 = |S - SI/ ISI is shown as a function of
number of beads in Figure 2.3. The error converges fairly slowly with bead number, 6 ~ N- 1/ 2 , but we
are able to achieve reasonable accuracy (within ~ 5% for 0(1000) beads). This slow convergence is actually
to be expected based on the differences in size between the bead composite and the body it is trying to
approximate. The beads are constrained to sit on the surface of the body of radius a and then assigned a
bead radius ab so that the beads are in contact with neighboring beads. For small numbers of beads, the
composite bead body is quite a bit larger than the real body it is trying to approximate. The dipole is
proportional to the volume of the body, so the composite has a larger dipole strength than the real body.
The error in dipole is dominated by this volume difference, and not on the finite discretization of the body
surface. We can assign an effective radius aeff to the bead composite so that S = 41raeffAfEo, shown in
Figure 2.3.

Two Spheres in an External Field

The dipole moment of two conducting spheres with center-to-center separation vector r in a constant external
field is given as the power series

S = 47ra3 Af ()P(AI + Bp) . Eo.   (2.130)
p=o
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Figure 2.3: A: A spherical conductor constructed from N beads polarizes in an external field Eo, acquiring the
surface charge distribution indicated by bead color. Red indicates positive charge, white indicates zero charge, and
blue indicates negative charge. B: The relative error in the dipole as a function of number of beads. C: The fractional
increase in the effective radius aeff of the composite sphere required so that (2.129) agrees with the computed dipole.

Jeffrey determined the coefficients A, and B,, which are given by recursion relations in Ref 172. The force on
the spheres is related to the gradient of the dipole moments and can be evaluated directly from the gradient
of (2.130) using the same coefficients

F - -VS -Eo. (2.131)

In Figure 2.4, we compute the dipole strength and the attractive force on a pair of particles oriented parallel
to the external field using our method for various numbers of beads and compare the results to the analytic
solution. Unlike the single sphere, where the induced charge distribution is symmetric about the sphere's
equator, the induced charge distribution in one sphere is mostly localized to the region close to the other
sphere. In this calculation, we assume a is fixed, so the bead radius ab decreases as N increases. The field
strength is Eo = 1, normalized by the fixed composite sphere radius as Eo = Eo a3Af /kBT, and similarly
S = S/ a3AfkT and F = Fa/kBT. Both the dipole strength and the force increase as the particles
move closer together. The numerical results converge to the exact result as the number of beads increase.
From the single sphere calculation, we can use the effective radius aeffrather than a to interpret the dipole
calculation, improving the agreement with the exact solution. Each sphere's dipole is too large by a factor
of (aeff/a) 3 , so the force is too large by a factor of (aeff/a). Correcting for aeffimproves the agreement with
the exact force.

Face-Centered-Cubic Lattice of Conducting Spheres in an External Field

The exact dipole strength for cubic lattices of conducting spheres in an external field was calculated by
Sangani and Acrivos.a7 3  In Figure 2.5, we compute the dipole strength of a face-centered-cubic (FCC)
lattice of particles as a function of volume fraction 4. Like the two particle calculation, we hold a is fixed
while ab decreases as N increases. The field strength is E = 1, normalized as E F = Eo fa3Af/kBT, and

S = S/ a3 AfkBT. The dipole strength increases as the lattice becomes denser due to enhanced mutual
polarization among the conducting spheres. At small volume fractions (2.5A), the dipole moment is the
dominant contribution to the surface charge distribution which resembles that of an isolated sphere. At
large volume fractions (2.5B), higher order moments contribute significantly and the charge distribution
becomes concentrated to the spots near the bodies' neighbors, like the two-particle case. The numerical
results converge to the exact solution as the number of beads increases, and the agreement is even better if
we use the effective radius aeff from the single sphere results to correct the dipoles as (a/aff)3 .
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force corrected by factors of the effective radius aea determined from the single sphere calculation.
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Chapter 3

Dynamic, Directed Self-Assembly of
Nanoparticles via Toggled Interactions:
A Model System with Isotropic,
Short-Ranged Attractions

In Chapter 1, we discussed numerous advantages of dynamic self-assembly of nanomaterials via toggled
interactions over static self-assembly with steady interactions. The toggle protocol can avoid the propensity
for particles to arrest in defective, disordered metastable states, as well as form new structures not observed
with steady interactions. However, a major drawback of toggled self-assembly, along with other time-varying
protocols, is the difficulty in predicting the assembled structures and their rates of formation. For steady
interactions, the tools of statistical mechanics and equilibrium thermodynamics provide a straightforward
and generic (albeit intractable in many cases) algorithm to compute equilibrium states. Several kinetic
theories have been developed that rely on equilibrium thermodynamic principles to describe the dynamics
of phase separation, such as classical nucleation theory,1 1 9, 120 Cahn-Hilliard kinetics, 12 1,122 and thermal
barrier hopping. 174 ' 175 Because of the cyclic driving force, structures formed by toggled self-assembly are
not true, time-independent equilibrium states, but rather periodic-steady-states that are unchanged from
cycle to cycle but vary within a toggle period. There is no generic theory to predict and describe such
dissipative, out-of-equilibrium states or their rates of formation. This lack of understanding is the main
obstacle to implementing toggled self-assembly for efficient, reliable nanomaterials fabrication.

To gain insight into toggled self-assembly, we investigate one of the simplest possible systems: a monodis-
perse suspension of spherical nanoparticles that interact with isotropic, short-ranged attractions that are
toggled on for a time t, and off for a time tff periodically in time. Such systems have already been realized
experimentally by decorating nanoparticles with photoswitchable ligands to induce short-ranged attractions
that can be reversibly actuated by exposure to UV irradiation.4 7' 1 1  Short-ranged interactions are straight-
forward to incorporate into simulations, and the equilibrium phase behavior is well understood, 176-178 so
toggled short-ranged attractions provide a useful prototype for dynamic toggled self-assembly that can be
investigated experimentally, computationally, and via first principles theory. A fundamental understanding
of this simple model will lead to methods for describing more complex processes. The more complicated
cases of steady and toggled electric and magnetic field directed assembly is discussed in Chapters 3 and 4.
As we will show, the assembly process modeled by toggled short-ranged attractions shares many features in
common with experiments having more complicated interparticle interactions.

"Toggling" implies instantaneous switching between an "on" state in which particles are mutually attractive
and an "off" state in which particles behave as hard spheres (i.e. a square wave time signal). The off switching
state does not have to be one in which particles are non-interacting (for example, the particles could have
attractions in the on state and repulsions in the off state, or particles could switch between two different
types of attractive interactions), but we use the on/off notation for convenience. There are innumerable
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other forms of time-varying control that could be used to switch between the on and off states. However,
toggling is simple to implement in experiments and simulations and straightforward to analyze in theory.
The signal is characterized by only two parameters, ton and toff. Equivalently, the signal can be described
by its period 3 ton + toff, duty cycle (which we will also refer to as the duty) ( = ton/(ton + toff), duty
ratio r = ton/toff, or frequency w = 1/3. Some dynamic self-assembly simulations have shown that other
periodic time signals lead to essentially the same phase behavior as the square wave toggle signal.8'

For the functional form of the interparticle attraction, we choose to use the Asakura-Oosawa equation,
which represents the effective pairwise attraction of colloidal spheres in the presence of a non-adsorbing
depletant,1

78 179

U(r) a + ( ) 3 ) for 2a < r < 2(a + 6). (3.1)
62(3a/2 + 6) 4 a + 6 16 a +6o

The particles also interact via the hard sphere repulsion in equation (2.20). Here, r is the center-to-center
distance between two particles, a is their radius, E is the interaction strength at contact, and 6 is the
interaction range. We make the particular choice of the depletion potential as a model for short-ranged
attractions in general because it is an important and well-studied interaction in experiments, the functional
form is continuous and differentiable beyond contact (compared to, say, a square well potential), and there
are analytic expressions for the phase behavior of particles interacting via this potential.1 78 The specific
shape of the short-ranged attraction is irrelevant for the equilibrium phase behavior, as the Noro-Frenkel
principle of corresponding states demonstrates that the equilibrium phase diagram of any dispersion with an
arbitrary short-ranged attraction is generic. 177 For this work, we focus on cases where the attraction is strong
compared to the thermal energy, E ~ 5 - 10kBT, and short in range compared to the particle size, 6 = 0.1a.
Throughout this chapter we use the freely-draining simulation model and neglect interparticle hydrodynamic
interactions for reasons of computational efficiency. The implications of ignoring HI are discussed later in
the text.

In this chapter we develop a formal description of the phase behavior of dispersions self-assembled via period-
ically toggled attractions. First, we compare suspensions self-assembling with steady attractions versus those
with toggled attractions, showing that toggling enhances the crystallization rate and crystal quality. Next,
we measure the volume fractions of coexisting phases with a fixed toff 62 /D while varying ton and the vol-
ume fraction #. Three different simulation techniques are used to make this measurement: crystal nucleation
from a homogeneous fluid, fluid nucleation from a homogeneous crystal, and sedimentation equilibrium. We
also measure the coexisting phases while fixing the volume fraction # and varying ton and tof independently.
We develop a first principles theory to predict the concentrations of the coexisting phases, which shows that
the phase behavior is accurately predicted by appropriate time-averages of analytic equations of states for
the dispersion in the attractive mode and the purely repulsive mode. Finally, we develop phenomenological
models to explain two different kinetic mechanisms we observe in the self-assembling dispersions. The first
model describes the coarsening of crystalline strands in percolated, gel-like networks. The second model
describes nucleation and growth of large crystals via one-step or two-step mechanisms. These models are an
important step to understanding the complicated kinetics involved in dynamically self-assembling systems.
We conclude with a discussion of the results and their implication for dynamic nanoparticle self-assembly.

3.1 Steady versus Toggled Interactions

Figures 3.7 and 3.8 shows the equilibrium phase diagram for a dispersion with steady, short-ranged attrac-
tions. To navigate the equilibrium phase diagram, we can tune two parameters: the particle volume fraction
# and the attraction strength e relative to the thermal energy kBT. The range of the attraction 6 also affects
the phase behavior, but is kept fixed at 6 = 0.1a in this work. We consider the case of an initially homo-
geneous, disordered suspension at constant volume fraction, say # = 0.20, and e below the phase boundary.
As E increases across the phase boundary, the suspension will phase separate into dense crystal and dilute
fluid. If E is close to the fluid phase boundary, phase separation occurs via nucleation and growth. Because
the thermodynamic driving force is small near phase boundaries, the dynamics are necessarily slow and tend
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to create compact, low-defect crystals. The extent of crystallization is quantified with the crystal fraction
Xc = NC/N, defined as the ratio of the number of particles incorporated into the crystal, N, to the number
of total particles, N (see Methods for how we determine Nc). Figure 3.1 shows the crystallization kinetics in
simulations of steady attractive suspensions with different attraction strengths. Near the phase boundary,
a large fraction of the suspension crystallizes, but only after a significant induction period followed by slow
growth.

If E increases quickly and quenches the suspension deep into the coexistence region, the thermodynamic
driving force for self-assembly is significantly enhanced. Initially, the aggregation speed is high, but the
suspension quickly forms a disordered, percolated phase. Conversion from this metastable gel to the ther-
modynamic equilibrium crystalline state is incredibly slow, and the terminal state is treated as arrested over
the time scales of interest. These kinetics are quantified in our simulations in Figure 3.1, where only a small
fraction of the suspension crystallizes at large e. Therefore, for static self-assembly, the kinetics and terminal
structures are coupled; we can either form ordered crystals slowly or disordered states quickly.
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Figure 3.1: The crystal fraction Xc as a function of time t, made dimensionless by the diffusion time rD, for various
steady attraction strengths E.

In the case of toggled particle interactions, two extra parameters, ton and toff, in addition to # and e
influence the suspension self-assembly. It is convenient to normalize ton by the toggle period 7 ton + tof
and treat the duty ( - ton/(ton+toff) as an independent variable rather than ton. Though we gain additional
control over the self-assembly, we lose the predictive power of equilibrium thermodynamics, which is no
longer valid with a time-dependent interaction potential. Note that in the toggled suspensions we refer to
e as the absolute attraction strength and ed as the time-averaged attraction strength. Unlike in the steady
attractive suspension, the self-assembly kinetics in the toggled attractive suspension are not constrained by
the location in the phase diagram, and (, toff) can be optimized to yield desired self-assembly kinetics, even
at fixed (#, e). Thermal motion while the attractions are off helps to anneal defective, arrested configurations,
opening out-of-equilibrium pathways towards the equilibrium crystalline state. Swan and coworkers argued
that an optimal choice for tof exists and is comparable to the time it takes for a particle to diffuse the range
of the interaction, tof = 62 /D, where D is the particle diffusivity. 7 , 6 8

,
82 This choice for tog allows for the

largest amount of structural rearrangement without dissolving aggregated structures, as explained in detail
in Figure 3.2. With 6 = 0.1a, tog = /D = 0.017D.

Figure 3.3 shows that for any particular value of eg, the toggled attractions produce more crystal after
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Figure 3.2: Schematic showing how toggled interactions can anneal defects and avoid kinetic arrest in a nanoparticle
suspension. The particles diffuse as hard spheres for a time toff in the "off" half-cycle and experience strong, short-
ranged attractions for a time ton in the "on" half-cycle. The left column shows a kinetically arrested configuration with

a vacancy defect. If tff is too short (top row), the particles cannot diffuse sufficiently far from their original positions
in the off half-cycle, and the defect persists when the attractions are turned on. If toff is too long (bottom row), the
particles diffuse away farther than the range of the interaction in the off half-cycle and do not reaggregate when the
attractions are turned on. If toff = 6 2 /D (middle row), the particles diffuse far enough to relax the defected structure
but still reaggregate when the attractions are turned on and find their thermodynamically favorable crystalline
configuration.

10000 than steady attractions of equivalent absolute or time-averaged strength. Equivalently, the rate of
crystallization is always faster with toggled attractions than with steady attractions of equivalent absolute
or time-averaged strength. Though the proposed "optimum" to = 6 2 /D = 0.01OTD does enhance the crystal-
lization rate appreciably relative to steady attractions, a wide range of other tff values work as well. In fact,
the crystallization rate generally increases as the toggle frequency decreases beyond tff = 6 2 /D = 0.01D.

Toggled attractions also produce, larger and higher quality crystals than steady attractions. The quality of
crystal is quantified by Lc = N/Ni, the ratio of the number of particles in the crystal interior to the number
of particles at the crystal interface Ni (see Methods for how we determine Ni). N, scales with the crystal
volume, while Ni scales with the crystal surface area, so Le estimates a quantity proportional to the length
scale of bulk crystal. Lc tends to increase with crystal size, but fluid/crystal interface, grain boundaries,
and defects all contribute to Ni and penalize Lc. At a given Xc, dispersions with a few large, high quality
crystalline domains have a larger Le than those with many small, defective or polycrystalline domains. Thus,
Lc serves as one measure for overall crystal quality. Figure 3.3 shows that for any crystal fraction, Le is
always larger for toggled attractions than steady attractions. The crystal quality generally increases as the
toggle frequency decreases.

A broad range of ( and tff at constant e for toggled attractions lead to fast kinetics and high quality
structures whereas only a narrow range of e for steady attractions produces acceptable crystallization rates
and qualities. Finding this narrow crystallization slot for steady attractions and then designing a control

scheme to ensure the dispersion stays within it can be challenging. With toggled attractions, control over e
is not important, and only the toggle parameters, which are easily controlled, need to be adjusted.
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Figure 3.3: Left: The crystal fraction X, as a function of steady attraction strength E or toggled time-averaged
attraction strength e , made dimensionless by the thermal energy kBT, for various values of tff. Right: The ratio
of number of crystalline particles Nc to number of interfacial particles Ni as a function of crystal fraction. For the
steady attractions, E varies, but for the toggled attractions, e = 10kT is fixed and ( varies. At any particular steady
6, the crystallinity is higher in toggled suspensions of equivalent ed. At any particular crystallinity, Nc/Nj is larger
in toggled suspensions. For clarity, not all of the data collected in Figure 3.5 is shown here.

3.2 Using the Toggle Parameters to Control the Terminal Structure
and Kinetic Mechanism

3.2.1 Nucleation Line

Though toggling improves the crystallization rate and quality, not all choices of toggle parameters result in
self-assembled states. If the duty ( is too small, particles do not have enough time to sufficiently aggregate
in the on half-cycle. Any small clusters dissolve in the off half-cycle, and the suspension will remain as
a homogeneous fluid. As ( grows, particles aggregate appreciably in the on half-cycle without completely
dissolving in the off half-cycle, and large crystalline domains emerge after many toggle cycles. At fixed e
and tff, the crystal nucleation line () separates these two regions. Below (), crystal nucleation from
the homogeneous fluid is not observed. Figure 3.4 shows the crystal nucleation line in terms of the duty
ratio q* = */(1 - (*) from Brownian dynamics simulations of 64000 particles at fixed e = 10kBT and

tff = 0.01rD. The lowest duty ratio at which crystal nucleation was observed within 105 toggle cycles in
the initially homogeneous fluid for different volume fractions was designated as q*(#). q* decreases quickly
with increasing #, as aggregation in the on half-cycle becomes easier with decreasing interparticle spacing.

Similarly, we can determine the fluid nucleation line *(#) below which fluid nucleation within an initially
homogeneous crystal is suppressed. In the on half-cycle, particles try to move away from their lattice positions
and collapse into closest packings. However, because the hard sphere crystal is stable at large densities, the
particles tend to move back to their lattice positions in the off half-cycle. If 6 is small, the particles do
not deviate sufficiently far in the on half-cycle and always return back to their lattice positions in the off
half-cycle. If 6 is large enough, there is enough time for density fluctuations to drive portions of the crystal
to collapse into closest packings and open up a fluid pocket in which the crystal melts. Figure 3.4 shows
the fluid nucleation line in terms of the duty ratio 7* = c/(1 - *) from Brownian dynamics simulations
of 62500 particles following the same method as that to determine *. 1* generally increases slightly with
increasing # as it becomes more difficult for particles to move off-lattice with decreasing lattice spacing.
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Figure 3.4: Nucleation lines determined from homogeneous nucleation simulations at fixed E 10kBT and to=

62/ID = 0.01D. The points correspond to the lowest duty ratio at which crystal nucleation in a homogeneous fluid

(green) and fluid nucleation in a homogeneous FCC crystal (purple) was observed after 105 toggle cycles. Below these

curves, the suspensions remains homogeneous while above them phase separation occurs.

3.2.2 Varying the Toggle Parameters

The volume fraction # and attraction strength e are set by the specific formulation of the dispersion. Typi-
cally, these are fixed once the dispersion is prepared and cannot easily be changed. The toggle parameters

toff and (, are controlled externally and are simple to modulate. Figure 3.5 summarizes the results of Brow-

nian dynamics simulations of 64000 particles at fixed # = 0.20 and E = 10kBT assembling from an initially

homogeneous fluid for around 100007D for various tff and (. The space is divided into five regions where dif-

ferent terminal structures formed through various kinetic mechanisms, shown in Figure 3.6. The final crystal

fraction (like in Figure 3.3) after 10 0 0 0rD is also shown as a color density plot. For small duty fractions
(region 5), there is insufficient driving force for self-assembly, and the suspension remains a homogeneous

fluid. While some aggregation occurs in the on half-cycle, tff is too long and the aggregated structures all

dissolve in the off half-cycle. The nucleation line (*(to), below which no phase separation is observed, is

nonmonotonic with respect to toff. Initially, (* increases with with increasing toff but eventually peaks and

decreases with increasing tff.

Above (* are regions of fluid/crystal and fluid/fluid coexistence. Because of the annealing capabilities of

the toggling protocal, the assembled domains are large and (for crystalline phases) highly-ordered, with

very few defects. At low toff 0.02rD (region 4), the suspension phase separates into fluid and crystal

phases by one-step nucleation, where crystal nucleates directly in the initial fluid (second and third rows

of Figure 3.6). At moderate toff > 0.05rD and > c2(toff) (region 2), the suspension reaches fluid/crystal

coexistence by two-step nucleation, where droplets of dense fluid nucleate first and grow before crystal

preferentially nucleates and grows within the dense fluid (fourth row of Figure 3.6). Two-step nucleation

has been reported for short-ranged attractive colloid and protein dispersions with steady interactions.1 0 - 182

Gc2(toff) is the boundary above which the second crystal nucleation occurs. The transition between crystal
nucleation and fluid nucleation occurs between 0.02D toff 5 0.05rD for all (. The maximum in the phase

boundary (*(toff) occurs precisely at this transition between crystal and fluid nucleation. For sufficiently

large toff and < c2 (region 3), the second crystal nucleation is suppressed entirely and only fluid/fluid phase
separation occurs (fifth row of Figure 3.6). The boundary c2 sharply increases with toff. In fact, at to 2T rD,
crystal nucleation is suppressed entirely for all 6 we simulated. Fluid/fluid coexistence was also observed in

experiments of paramagnetic colloids assembling in toggled magnetic fields at low frequencies. 67' 68

At small toff and large 6 (region 1), the suspension undergoes a spinodal-like decomposition and initially

forms a disordered, percolated gel. The toggling protocol allows the structure to relax defects, and the gel

slowly coarsens and becomes more crystalline (first row of Figure 3.6). The coarsening is sufficiently slow

that the structure remains percolated at the end of 1000OTD. The gel line gel(toff), above which the global
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structure is percolated, is a monotonically increasing function of tof. Below (ge1, phase separation may still
proceed by gel coarsening, but the rate of coarsening is sufficiently high that the structure depercolates and
condenses into more compact domains within the duration of observation. Thus, (gei depends on the finite
observation time. The space around was sampled with high resolution, but gel was not, so the shape of
(ge is less certain than the shape of*.

In the one-step fluid/crystal, two-step fluid/crystal, and fluid/fluid coexistence regions, points on or very
close to the boundary (* exhibit nucleation and growth of a few, noninteracting nuclei, shown in the bottom
three rows of Figure 3.6. Farther from the phase boundary, many nuclei form and significant coalescence
and Ostwald ripening occur, as in the second row of Figure 3.6. As we approach the gel line (gel from below,
spinodal-like decomposition starts to occur along with nucleation and growth, coalescence, and ripening, and
there is a complicated combination of many different kinetic mechanisms.

3.2.3 Self-Assembling the Largest, Highest Quality Crystals

In Figure 3.5, there are two regions of high crystallinity. The first is at small tff and very close to the
lower self-assembly boundary (* in the one-step fluid/crystal region (region 4). Here, the crystal fraction is
generally a monotonically decreasing function of ( moving away from the (* boundary at constant toff. The
second is in the middle of the two-step nucleation region (region 2). Here, the maximum in Xc at constant
toff shifts away from the phase boundary. Necessarily, the crystal fraction is zero in the fluid/fluid (region
3) and homogeneous fluid (region 5) regions. Both the one-step and two-step fluid/crystal regions achieve
similar crystallinities, but for any particular Xc, the crystal size and quality as measured by Lc = N/Ni in
Figure 3.3, is much higher for the latter.

Because fluid particles are more mobile than crystalline particles, the initial fluid/fluid phase separation in
the two-step region is very fast. Even if many dense fluid droplets nucleate, they rapidly coalesce and ripen
to form a single bulk dense fluid domain. Crystal nucleates preferentially in the dense fluid, so all crystal
domains are localized rather than dispersed throughout the suspension volume. It is easy for the crystals to
coalesce and ripen into a single crystalline domain with very little interface and high quality. In contrast,
crystals nucleate throughout the entire suspension volume in the one-step region. Coalescence is limited by
the time it takes for the large crystal clusters to diffuse toward one another, which is long because of the
reduced diffusivity of the cluster compared to individual particles. Ripening is limited by the number of
particles in the crystalline domains that can diffuse sufficiently far in the off-cycle to escape the crystal and
enter the bulk fluid. Because tof is short in the one-step region, very few particles detach from the crystals
and ripening is also slow. Reducing interface is therefore a very slow process in the one-step fluid/crystal
region and so Lc is smaller here. Thus, adjusting tog and ( to drive two-step nucleation is a strategy for
optimizing the quality of the assembled crystals.

3.3 Determining the Out-of-Equilibrium Phase Diagram

3.3.1 Sedimentation Equilibrium

Under a weak, constant gravitational force Fg = -Fgez the competing processes of sedimentation and
diffusion in a suspension result in a nonhomogeneous equilibrium number density profile n(z) as a function
of height z that satisfies,

BP(z)
z -n(z)Fg, (3.2)

Oz
where P is the (osmotic) pressure of the colloid particles. Note that the number density and volume fraction
are related by von = #, where vo = 47ra 3/3 is the volume of a single particle. If the vessel containing the
suspension is sufficiently tall, i.e. a tower, the suspension is so dilute at large z that the pressure at the top
vanishes. Integrating from the top of the tower z = L to any height z,

P(z) = -Fg zdz'n(z). (3.3)
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Figure 3.5: Color density plot showing the fraction of particles Xc that are crystalline after 10000rD as a function
of off duration toff, made dimensionless by the diffusion time TD, and duty fraction . The solid lines divide the
space into five domains of different terminal structures and phase separation mechanisms, a representative image of
which is shown in the legend. 1: gel coarsening, 2: fluid/crystal coexistence via two-step nucleation, 3: fluid/fluid
coexistencce, 4: fluid/crystal coexistence via one-step nucleation, 5: homogeneous fluid (no self-assembly).

gel coarsening

Oll = 0. ft O tw =0.01-

coalescence
and ripening

tol = 0.07, toff = 0.02

one-step crystal
nucleation

t.1 = 0.046, toff = 0.02

two-step crystal
nucleation

t.1 = 0.24, tw = 0.1

fluid/fluid phase
separation

t1 = 0.39, toff = 0.2

Figure 3.6: Kinetic mechanisms observed in simulations of toggled attractive suspensions. Each row shows snapshots
of the self-assembling suspension over time, with the snapshots in the first column taken at time t = 0 and in the

last column at around t = 10000TD. Snapshots in the other columns do not correspond to the same time points.

Crystalline particles are colored light blue in rows two through five and dense fluid is colored pink in rows four and

five.

55



Therefore, if we measure the number density profile n(z) we can obtain the pressure profile P(z) using (3.3),
from which we can infer the equation of state P(n). If there is sufficient pressure, the bottom of the sample
will crystallize under the weight of the particles above. At the height of the fluid/crystal interface, there is a
single value of pressure but two values of density on either side of the interface. Thus, the equation of state
will reflect phase coexistence, and the densities on either side of the interface are the coexisting densities
of the two phases. This is a common technique used to obtain equations of state and phase diagrams of
nanoparticle suspensions.is3-185

Equations (3.2) and (3.3) only hold for equilibrium, time-independent systems. With time-periodic inter-
particle interactions, these equations will never hold, and the system is always instantaneously out of equi-
librium. Instead, with a periodic driving force, the suspension evolves until it reaches a periodic-steady-state
(PSS) where it does not change from cycle to cycle, n(x, t) = n(x, t+ ) for all future t. The number density
evolves according to the conservation of mass law,

On
O = -v. J, (3.4)at

where J is the particle flux. Integrating (3.4) over a pulse cycle and dividing by the pulse period 3,

1 1 ft+5
(n(x, t + 7) - n(x, t)) = -V - dt J. (3.5)

At periodic-steady-state, the left side vanishes. The system only varies in the z direction so, (3.5) simplifies
to

O9Z= 0, (3.6)
Oz

where the overbar indicates a quantity time-averaged over a pulse cycle,

1 t+.7
X (t) --- dt X. (3.7)

Therefore, the time-averaged flux is constant. Because particles cannot escape, there is a no-flux boundary
condition at the bottom of the tower. Thus, the time-averaged flux must vanish everywhere at periodic-
steady-state, J = 0. To make further progress, a constitutive relation is needed for the time-averaged particle
flux. In the linear regime of nonequilibrium thermodynamics, the particle flux is, at constant T, proportional
to the gradient in chemical potential,

J = -MnVyi', (3.8)

where M is the mobility.19,36 The chemical potential is,

Of'
O= (3.9)an'

where f' is the free energy density, which can be written as

f'(n, z) = f (n) + nzF, (3.10)

with f(n) as the free energy density of a homogeneous system at density n'in the absence of the gravitational
field. Therefore,

p'(n, z) = p(n) + zF,   (3.11)

where p is the chemical potential of a homogeneous system at density n in the absence of the gravitational
field. Substituting (3.11) into the flux expression (3.8),

J, = MnI +Fg . (3.12)

Using the Gibbs-Duhem relation, n dp = dP,

Jz, = M lp+ nFg (3.13)
( 0z
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Taking the time-average of this equation,

z = OM + nFg (3.14)

In this step, we have assumed that M is constant within a toggle cycle. The mobility is a function of only
the particle configuration. The only effect the interparticle potential has on the mobility is through its effect
on the particle configuration. For short toggle periods, the configuration of the particles cannot change
appreciably, and so the mobility is nearly constant within a cycle. Note that this is not true for the pressure,
which is highly sensitive to the interparticle potential. Examples where M varies appreciably within a toggle
cycle are discussed in Chapter 5. Because the time-averaged particle flux vanishes at periodic-steady-state,

=9 -F, (3.15)
Oz

and

P(z) = -Fg f dz'ii(z), (3.16)

and equations (3.2) and (3.3) hold for time-averaged quantities in the toggled suspension. In particular, the
validity of (3.16) implies that there exists an equation of state P = P(h) that relates the time averaged
pressure and density. It is not immediately obvious that such an equation should be valid. Additionally, if
phase separation occurs in the suspension, we can use (3.16) to extract coexistence points and determine
the phase diagram of the toggled suspension. Because the average in (3.16) is over a single toggle cycle, the
equation of state is independent of frequency, and only depends on the duty cycle.

We performed Brownian dynamics simulations of 32076 particles at an overall volume fraction ofq#= 0.50
sedimenting under a weak, constant gravitational force Fg = 0.1kBT/a (Figure 3.7). The attaction strength
and off duration were fixed at E = 10kBT and tff = 62 /D = 0.01l, and the duty was varied. To test
the result that the phase behavior is independent of frequency, we performed simulations at two other
off durations tff = 0.005rO and tff = 0.02rD. We also performed simulations with tff = 0.017D but
different attraction strengths e = 5kBT and E = 15kBT. The suspension was supported below by a wall
that repelled particles with a strong, short-ranged Lennard-Jones potential truncated at its minimum for
purely repulsive interactions. The aspect ratio of the simulation cell was 16, oriented in the direction of
Fg, to ensure that the pressure near the bottom of the suspension was large enough to sustain a crystal.
While traditional sedimentation experiments start with a homogeneous fluid and then allow the particles
to sediment downward, this setup is quite slow in simulation. We choose to implement the reverse scheme

where all particles are initially in a closest packed FCC crystal at the base of the tower and allowed to
melt from the interface until periodic-steady-state is achieved. While the terminal density profile is identical
in either the downward or upward sedimentation schemes, the equilibration time in the upward setup is
much shorter. Once periodic-steady-state was achieved, the volume fraction profile #(z) was determined by
dividing the tower into thin, rectangular volume slices and measuring the fraction of slice volume occupied
by particles. This profile was then time-averaged over many pulse cycles and smoothed over space using
Gaussian convolution. The equation of state P(0) was then obtained from (3.16). The coexistence points
are the volume fractions on either side of the crystal/fluid interface. These points appear as cusps in the
equation of state and can be extracted from a plot of P versus 0. Because the cusp was not always sharp,
error bars were also computed as a reasonable range of volume fractions around the cusp. The results are
plotted in Figure 3.7.

3.3.2 Coexistence Criteria/Theoretical Phase Diagram

The appearance of the time-averaged equation of state P(0) in the periodic-steady-state condition for sedi-
mentation equilibrium suggests that the toggled suspension may be described by equilibrium thermodynamics
if instantaneous quantities are replaced by their time averages. Suppose a toggled suspension phase separates
into bulk dense and dilute phases such that the interface between them is flat and reaches periodic-steady-
state, which is observed in the present simulations as well as elsewhere. 8 2 This requirement of macroscopic

57



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 3.7: Fluid/crystal (F/C) phase diagram for the toggled depletion suspension. The phase behavior is com-

pletely determined by the volume fraction < and time-averaged strength ei/(1 + 7), made dimensionless by the

thermal energy kBT. The solid lines are the coexisting volume fractions predicted by the time-average of the equi-

librium equations of state, and the points are those extracted from Brownian dynamics sedimentation equilibrium

simulations with a variety of strengths E, duty ratios 7, and off durations toff, where t* = 52 /D. For clarity, error bars

are rendered only for a single set of data. Also shown in the inset are the data from Figure 3.4, the phase boundaries

determined from homogeneous nucleation in a metastable fluid (green squares) and in a metastable crystal (purple

squares).
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phase separation restricts the following derivation to to, and tff short compared to the time to homoge-
neously nucleate one phase within the bulk of the other. Else, if nucleation occurs, the dispersion is not well

described by two homogeneous bulk phases. If we designate z as the direction normal to the interface, the
analysis of the time evolution of the volume fraction profile is similar to the sedimentation analysis without
the gravitational field. In particular, equations (3.12) and (3.13) imply

# = vo = 0, (3.17)

where we have used the result that the time-averaged particle flux vanishes everywhere at periodic-steady-
state. The pressure and chemical potential are very sensitive to the interparticle potential. Because we are

modulating the potential over time, the pressure and chemical potential vary greatly within a single pulse
cycle. However, the volume fraction profile does not. At periodic-steady-state, the volume fraction satisfies
#(x, t) = #(x, t + J). If # is to return to its profile at the start of a cycle, it cannot deviate too far within

the cycle. Thus, # is relatively time-independent at periodic-steady-state,

#(x, t) = #(x, t + 7) - #pss(x) (3.18)

This approximation is good when the toggle period is small compared to the time scale on which the particles

move. At larger time scales, this approximation may break down. With # constant within a toggle cycle the
left side of (3.17) becomes,

dt =# Jdtpy=# (3.19)
49 a z z 7 09Bz

Therefore, for coexistence in a periodic-steady-state,

p constant P = constant. (3.20)

In particular, far away from the interface, the time-averaged quantities are given by their bulk values so the
time-averaged chemical potential and the time-averaged pressure must be equal in the two bulk phases at

periodic-steady-state,

p1(#1) = p2(02 ) P1(# 1) = P2(#2). (3.21)

This is analogous to the coexistence criteria of equal pressure and chemical potential for equilibrium with

steady interactions. Of course, the equilibrium coexistence conditions will never hold in the toggled suspen-
sion, so the suspension is always instantaneously out of equilibrium. However, the nonequilibrium periodic-
steady-state phase diagram can be determined solely from the equilibrium equations of state using equations

(3.21).

For the time averages, we split the integral over a toggle period 7 into two integrals over the half-cycles,

P = (dt Pon + Idt Poff), (3.22)

where the subscripts of P indicate which half-cycle the quantity is evaluated in. In general Pon and Poff may
change slowly over many cycles, but because the volume fraction profile is essentially constant within a cycle,
the pressure does not change significantly within a half-cycle. Thus, we may approximate the time-average
as,

P - ton Pon + toff Po = MPn + (1 - )Pof, (3.23)
ton + toff

and similarly for the time-averaged chemical potential ft. Within a half-cycle, the suspension behaves as

either an equilibrium hard sphere system or an equilibrium depletion system, albeit in a state far from

equilibrium. Thus, the pressure and chemical potential of each phase in the off and on half-cycles are

given by the equilibrium equations of state (EoS) for hard spheres (HS) and depletion (dep), respectively:

Poff = PHS, poff = pHS, Pon = Pdep, and pon = /-tdep. The depletion equations of state are computed using
free volume and scaled particle theories and are of the form,

Pdep = PHS+ef(0), (3.24)

pdep -- PHS + -9(0), (3.25)
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where f(#) and g(#) are functions of only volume fraction.1 78 The time-averaged equations of state are then

P= PHS+(ef (#), j =HS+$E9(#). (3.26)

Comparing to (3.24), the time-averaged EoS are equal to the equilibrium depletion EoS with the interaction
strength scaled by the duty cycle (. The phase diagram for the toggled system, Figure 3.8, obtained by
solving (3.21) is therefore a scaled version of the equilibrium depletion phase diagram, which has already
been calculated. 178 Thus, the nonequilibrium states of the toggled assembly can be calculated solely from
equilibrium equations of state. Additionally, the out-of-equilibrium phase behavior depends only on the
time-averaged interaction strength (e and is independent of the toggle frequency.

The functional forms of the equations of state used to generate the phase diagram are explained in detail
in Appendix B. For the hard sphere fluid equation of state, we use an extension of an equation of state
derived by Torquato that diverges at random close packing. 186 187 For the hard sphere crystal EoS, the
Lennard-Jones-Devonshire lattice model is used. 188 The depletion equations of state are derived from these
hard sphere EoS using free volume and scaled particle theories.1 78 The phase behavior predicted by the time
average of these equations of state is in good agreement with the fluid/crystal coexistence points extracted
from our sedimentation equilibrium simulations, Figure 3.7, and the fluid/fluid coexistence points extracted
from our homogeneous nucleation simulations Figures 3.5 and 3.8.
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Figure 3.8: Phase diagram for suspensions of particles interacting with steady or toggled depletion attractions of
fixed range 3 = 0.1a, where a is the particle radius. The points are the volume fractions < at periodic-steady-state of
coexisting fluid (F) and crystal (C) phases (circles) or coexisting dilute and dense fluid phases (squares) in simulations
of toggled suspensions for various time-averaged strengths e(, made dimensionless by the thermal energy kBT. Each
color represents a data set of varyingtonat a particular E and toff, all of which collapse together when plotted in terms
of E(. The solid lines are the coexisting volume fractions predicted by the time-average of equilibrium equations of
state, which corresponds exactly with the phase diagram for steady depletion attractions with e( substituted fore.

3.3.3 Discussion

In the limit of very large toggle frequencies, particles experience an effectively steady, time-averaged in-
terparticle potential. 8 2 8 3 8 5 The dynamics are identical to that of steady interactions, and the suspensions
eventually relaxes to the same thermodynamic equilibrium state. We have shown that, even outside the large
frequency limit, where the dynamics of toggled dispersions is very different that the dynamics of dispersions
with steady interactions, the out-of-equilibrium periodic-steady-states can be predicted with only knowledge
of equilibrium equations of state using the criteria of equal time-averaged pressure and time-averaged chem-
ical potential in equation (3.21). This is a general result that holds for toggling between any two arbitrary
interparticle potentials. For the specific case of toggling between short-ranged attractions and hard sphere
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repulsions, the densities of coexisting phases at periodic-steady-state is controlled entirely by the parameters
(E and #, so the dimensionality of the parameter space describing phase behavior reduces from four (ton,
tog, e, and #) to two ((e and #). Notably, this implies that the limiting phase behavior is independent of
the pulse frequency w. Figures 3.7 and 3.8 show fluid/fluid and fluid/crystal coexistence points extracted
from simulations. While these points correspond to a variety of different interaction strengths, duties, and
frequencies, the data collapse together when plotted in terms of (E and # and agree well with the phase
behavior predicted by the time-averaged equations of state.

These conclusions hold when ton and tof are short compared to the time scale for homogeneous nucleation
of one phase within the bulk of the other. If this is true, all the particle flux occurs at the interface between
the two phases in periodic-steady-state, and the bulk phases are homogeneous. We find that ton and toff
up to order rD are short enough to suppress homogeneous nucleation and lead to structures that are well
described by our theory. For ton and tff between 2D and 10OTD, significant nucleation occurs within the
bulk phases in coexistence. The two phases are quite heterogeneous and it is difficult to assign a single value
of # to them. For ton and tff above 20TD, the on and off half-cycles are so long that the suspension forms a
percolated, disordered gel in every on half-cycle which completely dissolves in the subsequent off half-cycle.
Thus, no sustained, macroscopic phase separation was observed.

Although we did not account for hydrodynamic interactions between particles in our simulations, the way
we have formulated our analysis, hydrodynamic interactions do not affect the criteria of equal time-averaged
pressure and time-averaged chemical potential in two coexisting phases at periodic-steady-state. Hydrody-
namic interactions will only affect the value of the particle mobility M in equation (3.4), but they will not
change the fact that M does not vary much over a toggle cycle, and so we will arrive at the same periodic-
steady-state criteria whether or not hydrodynamics are accounted for. The effect of hydrodynamics on the
self-assembly kinetics is discussed in the following section.

The limiting phase behavior of the toggled suspension is only a function of (e and # and is not dependent on
both ton and tff. However, the kinetics of phase separation are sensitive to both of the toggling parameters.
The inset of Figure 3.7 shows the phase boundary extracted from homogeneous nucleation simulations over-
layed with the predicted phase boundary (i.e. the periodic-steady-state analogue to the binodal). Although
free energy barriers delay the onset of homogeneous nucleation, in the thermodynamic infinite time limit,
these boundaries should agree. However, because all simulations have finite duration, it may be exceedingly
improbable to observe nucleation as the phase boundary is approached from above. In this case, the suspen-
sion will remain in its metastable homogeneous state, and coexistence is inaccessible. The inset of Figure 3.7
shows that the fluid nucleation line * predicted from homogeneous nucleation lies above the predicted PSS
"binodal". In fact, from Figure 3.5, (* shifts as tog varies, unlike the PSS binodal, which is independent of
toff (at constant (e). The crystal nucleation line * coincides well with the predicted phase boundary. This
suggests that fluid nucleation in the crystal has a relatively small nucleation barrier while crystal nucleation
in the fluid has a larger nucleation barrier that limits the envelope of self-assembly. Note that this is purely
a kinetic effect, and the homogeneous crystal nucleation results are still consistent with the phase behavior
predicted by (3.21), as they lie within the coexistence region.

The sedimentation results lie much closer to the phase boundary than the homogeneous nucleation results. In
the classical downward sedimentation setup, the supporting wall at the bottom of suspension offers a surface
for heterogeneous crystal nucleation. In the reverse scheme that we implemented, the interface at the top
of the initial crystal block allows for heterogeneous fluid nucleation, i.e. interfacial melting. In either case,
the nucleation barrier for heterogeneous nucleation is lower than that for homogeneous nucleation. Because
the nucleation induction time decreases with decreased barrier height, it is much easier to observe phase
separation with finite duration simulations via sedimentation rather than homogeneous nucleation, and so
the results are in better agreement with the theory.

The effects of toggle parameters on the phase separation kinetics are even more striking in Figure 3.5. Our
theory predicts a single value for the fluid phase boundary (* at fixed # and e for any tof. However, (* is
not constant and is a nonmonotonic function of tff. At small tff, the duty * required for self assembly
increases with increasing tog. Here, one-step nucleation is observed and crystal nucleates directly in the
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homogeneous fluid phase. * peaks at the first appearance of dense fluid nucleation. Beyond this point,
dense fluid nucleation occurs in the homogeneous fluid rather than crystal nucleation. While (* increased
with increasing toff for crystal nucleation, (* now decreases with increasing tog for fluid nucleation. Because
of this, it is possible to observe four different terminal structures (from left to right: percolated, fluid/crystal
coexistence, homogeneous fluid, fluid/fluid coexistence) assembled via a variety of kinetic mechanisms for
a single value of (s. Clearly both ton and toffare important for controlling the dynamics of the toggled
assemblies.

Several researchers have reported fluid/fluid phase separation in short-range attractive colloidal suspensions
in the context of two-step nucleation before. 180 -1 2 The two-step nucleation mechanism, where a dense fluid
drop nucleates and grows before crystal nucleates within the dense fluid, is an alternative to the classical
one-step nucleation mechanism, where crystal nucleates directly in a dilute homogeneous fluid. Because the
dense fluid is closer in density and structure to the initial dilute homogeneous fluid than the crystal phase
is, the fluid/fluid interfacial tension is lower than the fluid/crystal interfacial tension. Thus, the barrier
to nucleation is smaller for the dense fluid than the crystal, and the fluid nucleates first. Similarly, the
interfacial tension between the dense fluid and crystal is less than that for the dilute fluid and crystal,
so crystal nucleation preferentially occurs within the dense fluid. The increased density of the fluid layer
around the growing crystal provides particles to the crystal and enhances the rate of crystal growth. Two-
step nucleation is only possible within a metastable fluid/fluid coexistence region. Outside of a fluid/fluid
coexistence region there is no thermodynamic driving force for the first dense fluid nucleation. If fluid/fluid
coexistence was thermodynamically stable relative to fluid/crystal coexistence rather than metastable, there
would be no thermodynamic driving force for the second crystal nucleation.

Two-step nucleation is also observed in the toggled suspensions, and the time-averaged equations of state do
predict fluid/fluid coexistence, Figure 3.8, suggesting that the observed two-step nucleation likely is rooted
in the periodic-steady-state coexistence diagram. But from Figure 3.5, one-step crystal nucleation, two-
step nucleation, and simple fluid/fluid phase separation are all observed within the fluid/fluid PSS binodal
envelope depending on the value of tog. While (e and # are still descriptive of the terminal structure, the
frequency too is important for the growth mechanism and to select whether the terminal coexistence is
fluid/fluid or fluid/crystal.

In an equilibrium short-ranged attractive suspension, fluid/fluid coexistence is metastable to fluid/crystal
coexistence for sufficiently short attractions (the 6 = 0.1a used in this work satisfies this condition). Even if
fluid/fluid phase separation occurs first, the suspension must eventually crystallize. In the out-of-equilibrium
toggled suspension, there is nothing to preclude fluid/fluid coexistence from an acceptable periodic-steady-
state. Energy is constantly added to and removed from the system, so the same thermodynamic variational
principles that favor fluid/crystal over fluid/fluid coexistence in the equilibrium suspension are not valid in
the toggled suspension. This is not to say that the periodic-steady-state criteria,P 1 P= 2 and pi = A2, are
invalid. Only that we cannot make any assertions on the relative stabilities of two different phase coexistences
that both satisfy the periodic-steady-state conditions. We cannot predict whether or not phase separation
will occur or which coexistence is favored, only that if it does, the phases must satisfy (3.21). The fact that
we observe fluid/crystal and fluid/fluid coexistence at different frequencies but the same (E is therefore not
an inconsistency within our analysis, but rather a fascinating result that the out-of-equilibrium self-assembly
process can stabilize structures that are only metastable in static self-assembly.

Why low pulse frequencies should favor fluid/fluid phase separation rather than fluid/crystal phase separation
is presently unclear. One may hypothesize that at low pulse frequencies, the particles are more mobile
in the off half-cycle and thus the crystal phase may be kinetically unstable, like the Lindemann melting
criterion. 189 ' 19 0 However, we do not observe instabilities in the crystal at large frequencies. Figure 3.9 shows
that if we increase the pulse frequency in a fluid/fluid coexisting suspension, crystal nucleation and growth
occurs within the dense fluid. However, if we then decrease the frequency to its original value, the suspension
remains in fluid/crystal coexistence rather than return to its fluid/fluid state. This hysteresis implies that
the terminal state is path dependent, since both fluid/fluid and fluid/crystal coexistence are observed at the
same point in parameter space.
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Figure 3.9: Path dependence of the periodic-steady-state of the toggled suspension. A suspension toggled at
ton = 1. 5 -rD, to = 0. 5 7 reaches fluid/fluid coexistence (right bottom). If the toggle frequency is raised, crystallization
occurs in the dense fluid and the suspension reaches fluid/crystal coexistence (right top). A suspension toggled at
toi = 0.

3 TD, to = 0- lrD reaches fluid/crystal coexistence (left top). If the toggle frequency is lowered, the suspension
remains in fluid/crystal coexistence (left bottom). Crystalline (light blue) and liquid-like (dark-blue) particles are
distinguished.
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3.4 Kinetic Models

Because only two parameters (#, E() are needed to specify a location in the periodic-steady-state coexistence
diagram, the other two ((,fto) can be optimized to yield desired self-assembly kinetics. However, without
estimates for the rates of assembly, it is difficult to perform this optimization a priori. Instead, the kinetics
must be investigated explicitly in simulations and experiments to find the optimal choices of toggle param-
eters, a time-consuming endeavor. Here, we develop phenomenological models to describe the self-assembly
rates for two observed kinetic mechanisms: coarsening of percolated, gel-like networks and nucleation and
growth of dense phases. These models can be leveraged to design efficient fabrication processes using toggled
assembly.

3.4.1 Gel Coarsening

Colloidal gels formed by steady, strong, and short-ranged attractions coarsen slowly over time according to
a power law,

L = Lo + kt", (3.27)

where L is the characteristic length scale of the gel strands, Lo is the length scale of the initial network
formed, k is a rate constant dependent on the attraction strength E and particle volume fraction #, and
n is the power law exponent. The power law exponent is set by the kinetic mechanism that dominates
coarsening. n = 1/3 when the kinetics are limited by bulk diffusion, n = 1/4 when the kinetics are limited
by surface diffusion, 19 1 and n = 1/6 is observed at early times in spinodal decomposition. 19 2 Although
the strong attractions favor a compact, crystalline conformation in thermodynamic equilibrium, the local
microstructure is arrested in a disordered configuration, with an average contact number around Nnb = 6 -
713 rather than a fully occupied nearest neighbor shell of Nab = 12.

To coarsen, thermal fluctuations must break the interparticle "bonds" in the gel to allow the particles to
rearrange. Because the bond strength is O(E) and many times larger than the thermal energy in the gel-
forming regime, bond-breaking is incredibly slow and the coarsening process takes on the order of days or
weeks. 19 2 In our simulations at E - 10kT, steady attractions form an arrested gel that only reaches a
crystal fraction of X, = 0.005 in 10000TD (see Figure 3.1). If this average crystallization rate held constant,
it would take around 106TD (or around 10 days for a typical TD = 1s) to crystallize half of the particles,
consistent with experimental time scales.

Toggling the particle attractions greatly enhances the rate of coarsening by accelerating the rate of bond-
breaking. In the off half-cycle, all particle bonds are immediately broken, so there is no kinetic barrier
preventing microstructural rearrangement. Figure 3.10 shows that the coarsening rate of the toggled attrac-
tive gel is orders of magnitude faster than the coarsening rate of the steady attractive gel at e = 10kBT.
Unlike the steady attractive gel, the local microstructure of the toggled attractive gel is highly crystalline
with Nnb = 12. Although the global structure is disordered and percolated, the toggling protocol anneals
local defects and allows the particles to find low energy, closest-packed crystalline configurations. If the time
scale for local crystallization is short compared to the time scale for global coarsening, the gel strands are
nearly entirely crystalline and slowly grow larger over time, as in the top row of Figure 3.6. We observe this
to hold in nearly the entire range of the gel coarsening regime, with the local crystallization and coarsening
rates becoming comparable only at the large toff ; 0.05rD edge of the region. In this case, Lc = Nc/Nj
serves as a good estimate for a quantity proportional to the characteristic length scale L of the gel strands.

We performed Brownian dynamics simulations of toggled attractive gels at # = 0.20, E = 10kBT, and a
variety of points (toff,) in the gel coarsening region of Figure 3.5. Figure 3.10 shows the evolution of the
gel length scale Lc over time. We observe that coarsening of toggled attractive gels is also described by the
power law in equation (3.27). (3.27) is relevant on time scales long compared to the toggle period, and is not
intended to describe the fast dynamics within a single toggle period, which are of little interest compared to
the slow dynamics of phase separation.

The rate constant k for the steady attractive gel is a function of E and #. For the toggled attractive gel, k
is also a function of ton and tof, even with E and # fixed. The dependence of k on the toggle parameters
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reflects the competing processes of aggregation in the on half-cycles and structural rearrangement in the off
half-cycles. Because the attraction is strong compared to the thermal noise, the suspension microstructure
quickly freezes in place at the start of each new on half-cycle. For the remaining duration of the on half-cycle,
essentially no more structural changes occur because the strong bonds are difficult to break. Time is "wasted"
sitting in the frozen configuration until the bonds are broken at the end of the on half-cycle. The value of
ton has no effect on the rate of coarsening other than delaying the next off half-cycle. The larger ton, the
longer it takes between structural rearrangements in the off half-cycles, and the slower the coarsening rate.
We can remove the effect of ton by tracking the coarsening kinetics in terms of the number of toggle cycles
that have occurred, Nycle t/37, rather than the absolute time t. Recasting (3.27) in terms of Ncycie,

L = Lo + k'(), (3.28)

where the new rate constant k'(toff) = k7" is a function of tof only. ton only affects the rate constant k
through its effect on the period T. Figure 3.10 shows that when Lc is plotted versus Ncyce, all kinetic curves
with the same toff, but different ton, collapse together. Equation (3.28) holds when ton » tof, but may break
down for ton ~ tof, where the amount of rearrangement in the on and off half-cycles become comparable.

The extent of structural rearrangement in the off half-cycle depends on the amount of time the particles
diffuse. k'(toff) increases with increasing tof, indicating that particles with more time to rearrange tend to
promote enhanced coarsening. If toff is short, particles will not diffuse very far from their initial positions in
the off half-cycle, and the amount of structural rearrangement will be small. It is difficult for the suspension
to sample new configurations, and coarsening proceeds slowly. Presumably then, it is easier to sample new
configurations the longer the particles diffuse, and coarsening occurs faster at longer toff. One way to quantify
the extent of structural "arrangement" is to track the fraction of particles f that diffuse a sufficient distance
f in the off half-cycle. We assume that the 1 - f fraction of particles that failed to diffuse sufficiently far
in the off half-cycle return to their same configuration when the attractions are turned back on and cannot
contribute to coarsening. The f fraction of particles that succeeded in diffusing a distance f find a new
configuration and can contribute to coarsening. At every cycle then, the coarsening rate dL/dNycle is a
factor of f smaller than we might expect if all particles could contribute to coarsening. Thus, we can recast
(3.28) again as

L = Lo + k"f ( , (3.29)

where now the rate constant k" k87"/f is independent of both ton and toff and is constant for all
simulations. A good choice for f is the capture radius rc, the separation distance at which the strength
of the interparticle attraction JU(r)f is equal to the thermal energy kBT. With this choice, particles that
diffuse r < rc in the off half-cycle have |UI > kBT and are recaptured when the attractions are turned on
while particles that diffuse r > rc have |UI < kBT, with enough thermal energy to avoid capture. For the
particular choice of the depletion attraction (3.1), rc = 0.14a. We estimate f by integrating the probability
distribution P(x, t = toff) for ideal Gaussian diffusion,

f = dx e-x1+/4Dtoff_ rc   -r2/4Dto f erfc (3.30)
rc 4,rDtoff ,rDtf 4Dtoff

In reality, the particles have hard repulsions that modify their diffusion. Some particles will diffuse more
slowly than ideal diffusion because they are caged while others will diffuse more quickly due to stronger
osmotic pressure gradients, so the true f is different than the one here. Figure 3.10 shows that when Lc/f
is plotted versus t/7, all the kinetic data collapse to a single master curve. The best fit values of the power
law exponent and the rate constant in (3.29) are n = 0.24 t 0.05 and k" = 0.057 ± 0.021 (see Methods
for details on the fit). We ignore the effect of Lo, which only affects the short time kinetics, by assuming
Lo = 0 for the fits. The average value of n = 0.24 supports that surface diffusion (n = 1/4) likely plays the
dominant role in setting the coarsening rate, though it is difficult to distinguish between the other possible
power laws (e.g. n = 1/3 or n = 1/6).
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Figure 3.10: Evolution of the characteristic length scale Lc = Nc/Ni of toggled dispersions in the gel coarsening

region of Figure 3.5 for fixed e = 10kBT and varying to, and tff, made dimensionless by the diffusion time rD. The

top row shows data in the regime where our model applies. A: The length scale increases as a power law in time

t, dimensionless on rD. B: In terms of number of cycles, Ncycie = t/ton + toff), curves with the same tof collapse

together. C: Dividing Lc by the fraction of particles f diffusing the capture radius rc from equation (3.30), the curves

all collapse to a single universal curve (dashed line). The bottom row shows data outside of where our model applies.

In moving from panel D to panel E, the curves at toff = 0.001 do not collapse, while the curves at toa 0.05 show a

different kinetic mechanism, indicating that our model does not describe these regimes. Only the toff = 0.01 curves

behave like the model predicts.
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Maximizing the Coarsening Rate

As toff increases, the fraction of particles f able to diffuse r in toff increases, enhancing coarsening. However,
increasing toff also increases the toggle period 3 = ton + toff, which reduces the number of toggle cycles and
hinders coarsening. There is an optimal toff = t*ff given by Bk/toff = 0, where k =- k"f/7", at which the
rate constant k (and therefore the coarsening rate dL/dt) is maximized. At constant ton, the value of t*ff
depends on ton. At constant (, t* is independent of ( because 7 = toff/(1- ()and so ( contributes only to
the coefficient in k = k"(1 - ()"f/t gf. Maximizing k with respect to toff at constant ( yields

Ok 0, -> t*ff =O.lTD. (3.31)
atoff

This is very close to the time it takes for a particle to diffuse the range of the interaction, 62 /D = 0.01TD,
allowing for the most structural rearrangement in the off half-cycle while still reaggregating in the on half-
cycle, which Swan and coworkers argued was the optimal choice for toff. 36 , 6 7 ,6 8 ,82 The local maximum
toff ~ 0.01T at constant ( can be seen in the crystal fraction Xc in Figure 3.5 at large ( > 0.9 in the gel
region, where our kinetic model works best. For any particular tof, k also increases with decreasing (. This
agrees with the monotonic trend of the crystal fraction at constant toff in the left half of Figure 3.5 with
toff< 0.02D.

Relevant Domain of the Model

Equation (3.29) describes the coarsening data well in the decade 0.002 < toff< 0.02rD when t.. » tog,
but breaks down elsewhere in the gel coarsening regime. For toff 0.001TD (with 2 (gei), the coarsening
data does not collapse together when plotted in terms of Nycle, shown in the bottom row of Figure 3.10.
Although the coarsening rate at constant toff increases with decreasing ton (as in (3.29)), evidently the value

of ton influences k more than just its effect on the toggle period. One possibility is that the time scale
for toggling (-) is so fast relative to time scale for particle diffusive motion (D) that the particles see a
steady attraction of time-averaged strength ed. Figure 3.3 shows the crystallinity of the toggled attractive gel
approaching that of the steady attractive gel of equivalent time-averaged strength as toff decreases, although
even at the shortest times investigated here, toff = 0.001OTD, there is still decent enhancement (a factor of

~ 2) in the crystallization rate for the toggled gel. The approach to an effectively steady attraction may
prevent collapsing the coarsening data in terms of Ncycie,.

At larger toff 0.05TD (with ( 2 (gel), the time scale for local crystallization is slow compared to the time
scale for global coarsening. As a consequence, fluid/fluid phase separation occurs rather than fluid/crystal
phase separation and the local microstructure of the percolated network is fluid-like initially. After some
time, crystal nucleates within the dense fluid network and rapidly grows to crystallize the entire network, at
which point the structure slowly coarsens like usual in the gel coarsening regime. From the way we estimate
L = Nc/Ni, the gel length scale rapidly increases after crystal nucleation, even though the true length scale
set by the dense fluid network is already large here. Interestingly, the data still collapse when plotted in
terms of Ncycie, but equation (3.29) does not account for two-step nucleation and cannot describe the full
suite of coarsening kinetics.

3.4.2 Nucleation and Growth

In the fluid/crystal and fluid/fluid coexistence regions of Figure 3.5, distinct clusters nucleate in the toggled
suspensions rather than many nuclei forming a network as in the gel region. The clusters grow, coalesce,
and Ostwald ripen as the suspension heads toward a periodic-steady-state of two-phase coexistence. As
the self-assembly boundary (* is approached from above by lowering the duty cycle, the driving force for
self-assembly decreases and few nuclei form. Very close to the phase boundary, only a single nucleation
event occurs. Here, coalescence and Ostwald ripening are entirely suppressed, and phase separation occurs
purely by nucleation and growth. This is the simplest place to understand the self-assembly kinetics in the
coexistence regions, so we focus on a kinetic model for the nucleation and growth of a single, spherical nuclei
close to the phase boundary, as in the bottom three rows of Figure 3.6.

67



Suppose a dense spherical nucleus of radius R and volume fraction #n has already formed in the surrounding
dilute fluid at volume fraction #f. The nucleus can be composed of crystal, dense fluid, or both. When the
attractions are on, particles prefer the dense phase and the nucleus grows. Particles within 6 of the nucleus
are quickly driven towards the nucleus at the beginning of the on half-cycle by the strong interparticle
attractions. The number of particles in this 6 layer is

Niayer = layerA (3.32)
Vo

where A = 47rR2 is the surface area of the nucleus, vo = 47ra/3 is the volume of a single particle, and
Gayer is the volume fraction of the layer, which is unknown but between the densities of the nucleus and the
surrounding fluid, #f < #1ayer < 0,. The time it takes for a particle away from the nucleus to reach the
nucleus directed by the interparticle force of E/6 is tayer ~ 62kBTrDa2 . For E = 10kBT and 6 = 0.la, as
in the all the simulations presented, tayer = 10-3TD. If ton tlayer, all of the particles in the thin 6 layer
will be incorporated into the nucleus in the on half-cycle, independent of ton.

Because the attractions are strong and short-ranged, the remaining particle flux into the nucleus in the on
half-cycle is diffusion-limited,

Jon f (3.33)
avo

where the self diffusivity in the fluid Dj is used to estimate a characteristic diffusive speed Dy/a of the fluid
particles. Notice that the flux is negative, indicating that particles are moving into the nucleus.

When the attractions are off, particles are pushed out of the dense phase and the nucleus shrinks. The
particles interact only through hard repulsions, so the particle flux out of the nucleus is also diffusive,

Dc#n
Jefl- , (3.34)

avo

but the appropriate diffusivity is the collective diffusivity D' of the particles in the nucleus. While the
self-diffusivity describes the motion of a single particle in a homogeneous phase, the collective diffusivity
describes motion of a collection of particles moving along concentration gradients. The two diffusivities
are related as D° = Ds#(0([/kT)/#), so D' contains additional thermodynamic information capturing
interactions between particles. Here, D'/a estimates the enhanced speed (over D'/a) of particles out of the
nucleus when the attractions are off due to the high osmotic pressure of the dense nucleus.

At constant volume and number of particles, the background fluid becomes depleted in particles as the
nucleus grows because# 2 > #f,

f = 0 4rR3 n 3 = + (# - n) 4r R 3+ O(uc), (3.35)
1- 4iR 3 nnuc/3 3

where #0 is the overall particle volume fraction, nauc is the number density of nuclei, and#nuc=- 47rR3 nnuc/3
is the overall volume of the growing nuclei relative to the system volume (and not the volume fraction within
the nuclei itself, #n). The largest #nuc can become is #0, when all particles are incorporated into the
nucleus, so we can drop the O(#2uc) terms and higher. Here, #0 = 0.20, so neglecting higher order terms
suffers only a 4% error in the worst-case scenario and only near the end of the phase separation. While #f
decreases as the nucleus grows, we assume #n is constant and given as the known coexisting volume fraction
at periodic-steady-state from Figure 3.8.36

If ton and tof are not too long compared to a2/D' and a2/D', the nucleus cannot change size appreciably
within a single half-cycle, and the change in the number of particles in the nucleus, AN, over one toggle
cycle may be approximated as,

AN?,_ 1= (Niayer - JonAton- JoffAtoff), (3.36)
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On time scales long compared to the toggle period 37, AN/g - dN,,/dt, and we have a first-order ordinary
differential equation for the nucleus radius,

dR 1 (Djko De ga Dj 47rnnu
= 1 Mayer + ton - D ntoff- ton ( 0) 4  RnucR3 (3.37)

dt 94, a a a 3

ki - k2 R3, (3.38)

where

ki = layer + D -- (1 -0) (3.39)g4, a#n a

k2 = ( -_ 0) 47rnuc, (3.40)
a~n 3

and we have used Nn = #n (R/a)3 to write dNn/dt = (3#RR2 /as) dR/dt. k 2 > 0, so the second term, arising
from the depletion of the background particle concentration, acts to shrink the nucleus. ki must be positive
for any growth to occur, so the condition ki > 0 sets a critical duty necessary for growth. However, this
does not take into account nucleation barriers, so the true (* from Figure 3.5 may be different. Whether
this critical duty from the ki > 0 conditions coincides with the predicted phase boundary in Figure 3.8 from
is unclear.

From (3.38), we immediately extract the limiting behavior. Initially, the growing nucleus is small, and so
the second term in (3.38) is negligible. The nucleus grows linearly in time at a constant rate k1 . As the
nucleus grows, so does the magnitude of the O(R 3) term. Eventually, growth ceases when the two terms in
equation (3.38) exactly cancel and the nucleus reaches a terminal size,

Rf , (3.41)

where the suspension is at periodic-steady-state. Recasting (3.38) in terms of R = R/Rf and T= kit,

dl?
dR= 1-A 3 . (3.42)
dt

While R(t) in (3.38) depends on the values of ton and tof, N(T) in (3.42) does not, and the kinetics have

universal behavior. Separating variables in (3.42) and integrating from R = 0 at t= 0 to N at T, we obtain

an expression implicit in R

1 1+ A+ 2 V3 1 v' pt =-lIn ~~ + tan~ .(.3
6 (1 - R) 2  3 2+R (3.43)

We could have begun the integration from N = f* at T= t, where R* is the initial size of the nucleus at
the nucleation event occurring after an induction time ti, which adds a constant factor to the right side of
(3.43). We observe that f* < 0.1 for nucleation events that occur in the simulations, so we ignore this term,
with the understanding that trefers to time after nucleation. As t -oo, R - 1 with the asymptotic form

R 1 Ce- , C =/-=Vv/6. (3.44)

Figure 3.11 shows the growth of nuclei in Brownian dynamics simulations of toggled attractive dispersions
at different points close to the phase boundary (* in Figure 3.5. Each curve corresponds to a different
point along (* and a single curve represents the average growth for 5-10 replicates of the same point. The
terminal radius Rf of each curve was easily extracted from the late time data, and the rate constant ki was
determined from a least squares linear fit of (3.43) to the data. The values of ki and Rf along the phase

boundary (* are shown in Figure 3.12. All of the data collapses to a single curve when plotted asR= R/Rf
versus t= kit and agrees well with (3.43) and (3.44).
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Figure 3.11: Left: Growing radius R, made dimensionless by the particle radius a, of a single, spherical nucleus
in the toggled suspensions as a function of time t after nucleation, made dimensionless by the diffusion time rD, for
different points along the nucleation boundary (* in Figure 3.5. Right: The data collapse to a single master curve
when the radius is scaled by the terminal radius Rf and time multiplied by the fit rate constant k1 . The curve agrees
well with the solid line from equation (3.43). The inset shows that the asymptotic behavior of the data as R/Rf -> 1
also agrees with the dashed line from equation (3.44).

Estimating ki and R1 Parameters

The terminal nucleus size Rf is set by the number of particles leaving the nucleus in the off half-cycle
balancing the number of particle condensing to the nucleus in the on half-cycle. One way to estimate Rf
is to estimate the kinetic parameters ki and k2 and then use equation (3.41), which reflects the balance
between particle fluxes in the on and off half-cycles. At periodic-steady-state, the dense phase in the nucleus
is in coexistence with the surrounding dilute fluid phase. Therefore, another way to estimate Rf is to use the
phase diagram in Figure 3.8 to compute the nucleus size that yields nucleus and background fluid volume
fractions equal to their coexisting volume fractions. For each duty fraction (, we extract the coexisting
volume fractions #n and #f. With a known overall volume fraction #0, the lever rule sets the total fraction
(by volume) of the dense phase to be (#0 - #)/(# - #f). From the known nucleation density nnuc= 1/V,
where V is the total dispersion volume in our simulations, we can then compute the terminal volume and
radius of the dense phase. The predicted Rf is shown in Figure 3.12 along with the Rf from the simulations.

Generally, Rf decreases in the simulations as tff increases. The predicted Rf overestimates the true Rf
and remains fairly constant with toff until it sharply decreases at large tff, where the coexisting volume
fractions of the dense and dilute phases approach each other. The predictions assume a sharp interface
between the nucleus at #n and the surrounding fluid at #f to compute a precise nucleus radius. However,
the real interface is diffuse, with the volume fraction decaying continuously from #n to #f moving away from
the nucleus. The discrepancy between the simulation data and the prediction could be due to the diffuse
interface region growing larger as tff increases. In the worse case scenario, the theory only overpredicts the
true Rf by ~ 20% and can still provide a fair estimate of its magnitude over a wide parameter range.

The initial growth rate ki is more difficult to estimate. From equation (3.39), ki is a sum of three terms. The
first term represents the particles in the thin 6 layer that rapidly condense to the nucleus at the beginning
of each on half-cycle. This happens once per cycle, so the contribution to ki decreases as 1/ as the cycles
become longer. The second and third terms in equation (3.39) are from the diffusive contributions in the on
and off half-cycles. Assuming that all the parameters in (3.39) do not change significantly compared to tog
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Figure 3.12: Left: Growth rate constant ki in equation (3.38), made dimensionless by a/-rD, as a function of toff,
made dimensionless by rD, along the nucleation bounday (* from Figure 3.5. The points are data extracted from
simulations while the dashed line is a fit of (3.45). Right: The terminal nucleus radius Rf, made dimensionless by
the particle radius a, extracted from simulations (filled points) and predicted (open points) from the phase diagram
in Figure 3.8.

as we move along the nucleation boundary (*(toff), ki follows the form

ki - + C2, (3.45)

where C1 and C2 are constant. Figure 3.12 shows that the ki observed in the simulations agrees with (3.45)
with the linear least squares fit values of Ci = 10--5a and C2 = 4 x 10- 4 a/rD.

We can estimate C1 and C2 by estimating the terms in (3.39). 0, Giayer, On, and ( are all 0(0.1- 1). If
we assume that the diffusivities D' and D' are on the same order of magnitude as the diffusivity of an

isolated particle, O(a2
/rD), equation (3.39) predicts that C1 ~ O(0.01a) and C2 ~ O(0.la/r) about 103

times larger than observed in the simulations. There is likely a multiplicative prefactor missing in (3.39)
that slows the growth time scales by several orders of magnitude. Though we cannot quantitatively predict
the C1 and C2 parameters, the variation of k1 with tff agrees with our model.

Critical Radius

In classical nucleation theory, the change in Gibbs free energy AG of forming a spherical nucleus of radius
R at volume fraction #n in a homogeneous phase at volume fraction #f is given as,119

AG = 47rR 2 -+ Ap, ). (3.46)

The first term is the surface energy of the nucleus and contains the interfacial tension y between the two
phases. This term is positive and always contributes an energy penalty to phase separation. The second
term is the bulk Gibbs energy difference between the nucleus and the equivalent number of particles in the
surrounding phase and contains the difference in chemical potential Ap = p(#n) - pf (#f)between the two
phases. This term is negative in the phase coexistence regime. Whether the nucleus grows or shrinks is
dictated by the sign of dAG/dNn. Because the surface and bulk terms in (3.46) scale differently with R,
there is a critical nucleus size

R* = 2vo (3.47)
#n (pf -Y )

at which OAG/ONn = 0 and AG has a maximum. Clusters smaller than R* reduce AG by shrinking, while
clusters larger than R* reduce AG by growing. Because only clusters with R > R* can grow, there is a finite
induction time tj for fluctuations in the dispersion to produce a critical cluster before growth can occur. The
induction time grows exponentially with the nucleation barrier height, AG(R*), 119

ti ~ eAG(R*)/kT e 4,rR*2
/3kBT. (3.48)
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Equation (3.47) gives the critical size R*tdy a nucleus must reach to grow for steady attractions. For toggled
attractions, all nuclei will shrink in the off half-cycle and only those larger than R*tY will grow in the
on half-cycle. The critical radius R* for toggled attractions must be at least as large as R* dy. We can
estimate R* using the equations of state for short-ranged attractions, 178 which gives Ap = -22kBT
between the equilibrium crystal phase#= 0.730 and metastable fluid phase #f = 0.20 at e = 10kBT.
The interfacial tension of colloidal dispersions with short-ranged attractions is small and on the order y =
0(0.1 - 1kBT/a 2 ).1 93-1 95 Thus, R*tY a and individual particles are already the size of the critical nucleus.

Because the induction time goes as t~ e(R*/a) 2 , there is essentially no barrier to nucleation and nucleation
should occur immediately. However, we do observe a finite induction time in our simulations. This implies
that there must be another mechanism that is setting a second critical radius R* > R*tY.

One possibility is that R* must be the size of the smallest cluster that survives a single off half-cycle. If
R < R*, the cluster will completely dissolve in the off half-cycle and cannot grow in the subsequent on
half-cycle. If R > R*, the cluster does not dissolve completely in the off half-cycle and continues to grow
in the on half-cycle. This seems plausible for longer toggle periods, where tff is long enough for significant
dissolution, but does not necessarily explain the finite induction time for short toggle periods. For example,
a cluster of any size is unlikely to dissolve completely in toff = 0.001D, yet we still observe a significant
induction time in this case.

Whatever the mechanism is to set R*, it is certain that this critical cluster must form in the on half-cycle

(or over several consecutive on half-cycles), as all clusters shrink in the off half-cycle. The longer ton, or
equivalently the larger (, the more likely it is to form a cluster of the critical size. When ( becomes large
enough that nucleation of a critical cluster becomes likely in the simulation time, a nucleation event will
occur. This sets the boundary (* for a given finite observation time. This (* must be at least the that
guarantees ki > 0 in equation (3.39), because ki > 0 is required for any cluster to grow (according to our
model).

3.4.3 Effect of Excluding Hydrodynamics

Our Brownian dynamics simulations neglect interparticle hydrodynamic interactions and instead use the
freely draining model, where each particle experiences the hydrodynamic resistance of an isolated particle in
a solvent. This neglects both long-ranged, many-bodied hydrodynamic couplings as well as pairwise near-
field lubrication interactions. 1 3 0 Without capturing the correct fluid mechanics of the solvent in which the
particles are immersed, our simulation model is not a completely accurate picture of real suspensions. We
should be careful to consider how choosing not to incorporate these physics impacts our results. As discussed
earlier, hydrodynamic interactions do not affect the coexistence criteria at periodic-steady-state (3.21), but
they do influence the phase separation kinetics.

The lubrication interactions are only important for particles that are very close together. As two particles
approach each other, an increasingly large force is needed to squeeze out the thin fluid layer in the gap between
them, with the force increasing as the reciprocal of gap width. This tends to slow down the dynamics of nearly
touching particles and prevents them from coming into contact. This is likely not important for condensation
in our suspension with strong attractions, because the attractions allow the particles to get "close enough"
to condense before lubrication plays a significant role. It is possible that lubrication makes it more difficult
for a particle to diffuse away from dense clusters in the off half-cycle, but is likely a small effect because
of the strong osmotic driving force for dissolution of the dense phases with hard repulsions. Simulations of
colloidal gelation have found that including lubrication does not modify the general self-assembly behavior
of suspensions.1 37 ,196

The long-ranged hydrodynamic couplings on the other hand are crucial for capturing the correct kinetic
behavior of suspensions. Without far-field hydrodynamic couplings, each particle in a cluster contributes to
the diffusivity of the entire cluster, and so the cluster diffusivity decreases as R 3 , where R is the cluster
radius. With far-field hydrodynamics, only the overall cluster size affects the diffusivity, so the cluster
diffusivity scales as R-137 Within dense phases, hydrodynamic interactions are screened and do not
contribute to local rearrangements of individual particles. The enhanced cluster aggregation relative to local
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crystallization tends to promote gelation when far-field hydrodynamics are included 1 3 7 and may shift some
of the boundaries in Figure 3.5.

Within the gel coarsening region, the microstructure evolves from surface diffusion of individual particles.
While the diffusivity of these particles is modified by HI, the mechanism is not. The progression of equation
(3.27) (L vs. t) to equation (3.28) (L vs. Ncycle) to equation (3.29) (L/f vs. Ncycl) is still valid with inclusion
of HI, though the value of k" in (3.29) may change quantitatively. Similarly, our model of nucleation and
growth only accounts for a single growing nucleus, whose cluster diffusivity is not relevant. HI will change
the diffusivities D' and D' in (3.37), but not the growth mechanism.

Conclusion

Fabricating nanoscale materials on a commercial scale requires well-characterized, efficient processing tech-
niques. Dynamic self-assembly methods hold much promise in this area over their equilibrium counterparts
in three critical areas: speed of assembly, quality of product, and ease of control. In fact, nearly all ma-
terials in nature are self-assembled using such out-of-equilibrium pathways. Out-of-equilibrium methods
are also capable of forming novel structures that equilibrium methods cannot. As the nature of materials
becomes more complex, dynamic self-assembly will play a bigger role in nanomaterial fabrication. The main
obstacle to implementing dynamic self-assembly processing techniques in practice so far has been a lack of
understanding of their governing principles and little exploration into the large parameter spaces involved.

In this chapter, we have answered some key questions about dynamic self-assembly by examining the phase
behavior and phase separation kinetics of a dispersion of nanoparticles with isotropic, short-ranged attrac-
tions that are toggled on and off cyclically in time. Because this simple toggling model is only a "first-order"
perturbation away from static self-assembly with steady interactions, we were able to derive analytic expres-
sions governing the assembly. The limiting out-of-equilibrium phase behavior was described with only two
parameters, the time-averaged strength of interaction de and the volume fraction 4, and could be predicted
in terms of equilibrium equations of state. The dynamics are easily controlled with the external toggle
parameters, sO ton and toff can be optimized to enhance the self-assembly rate and quality of the assembled
structure as well as be tuned to stabilize structures that are only metastable in static-self assembly. We
developed simple models to describe the toggled assembly kinetics for several different mechanisms. This
predictive framework will aid in the design of scalable dynamic self-assembly processes to synthesize useful
nanomaterials.

We believe that the results in this chapter represent the first detailed view of a model dynamically self-
assembled material, and thus may be applied quite generally to a broad range of materials driven to assemble
by toggling protocols. Our analysis can be extended to more complicated particle interactions or different
forms of time-variation, as we will show in Chapter 5 with toggled electric/magnetic field assembly.

Methods

The Brownian dynamics simulations were performed using the freely-draining model discussed in Chapter
2, which neglects hydrodynamic interactions among particles. In the simulations, lengths are made dimen-
sionless by the particle radius a, energies are made dimensionless by the thermal energy kBT, and times
are made dimensionless on the bare particle diffusion time TD = 67rr/a3/kBT. All simulations are performed
with around 64000 identical particles for around 10000rD. The integration time step was chosen sufficiently
small to resolve the fastest time scale in the suspension. For long ton and tof, the diffusive motion of a single
particle is the fastest time scale, and we use a time step of At = 10- 4 -D when both ton and toffare longer
than or equal to 0.01rD. This time step is sufficiently short to accurately capture the dynamics of colloidal
particles with our simulation method. Where either ton or tff fall below 0.01rD, we use a smaller time step
At = 10TrD to resolve the dynamics within each individual half-cycle.

Because we consider only strong, short-ranged attractions, any crystal phase that forms is nearly closest
packed # ~ 0.74 for almost any E/kBT, with each particle contacting Nnb = 12 neighboring particles. The
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densest disordered packing is much lower, # ~ 0.64, so disordered particles contact fewer than Nb < 12
particles. We can distinguish between crystalline and fluid-like particles using the contact number. We
consider particles separated by a distance less than r < 2.1a as "contacting". A particle is designated as
"crystalline" if it has a contact number of Nnb = 12. We denote the number of crystalline particles as Nc and
the crystal fraction as Xc = Nc/N. A particle is designated as "interfacial" if it is contacting a crystalline
particle, but doesn't have 12 contacts itself. These particles are not necessarily disordered, because they
sit on a crystal lattice site, but do not have the same local structure as the bulk crystal particles due the
fluid phase on one side. We denote the number of interfacial particles as Ni. A particle that is neither
crystalline nor interfacial (i.e. has a contact number less than 12 and is not contacting a crystalline particle)
is designated "fluid-like".

In the case of fluid/fluid phase separation, we can distinguish between particles belonging to the dense and
dilute fluid phases using the particles' local volume fraction #f. The local volume fraction was determined
by looking at a sphere of radius 6a centered around a particle and calculating the fraction of this search
sphere's volume that was occupied by particles. The central particle's volume was included as well as
partial intersections of particle volume with the search sphere surface. Strictly, this represents density only
conditionally around a central particle and so overestimates the true local density. However, this allows us
to assign a local density unambiguously to a particle rather than to a position in space, and so is more useful
as a particle-based order parameter. The error in using our approach is small for all but the most dilute
regions. The distribution of #r has two peaks associated with the coexisting volume fractions of the two
phases. These are the fluid/fluid coexistence points shown in Figure 3.8.

The power law fit for the gel coarsening data in Figure 3.10 was computed by first performing a two parameter
linear least squares fit of log(Lc/f) versus log Ncycle data to find n and k" in equation (3.29) for each data
set in Figure 3.10. The values of n for each data set were averaged together to give the average n, with
an uncertainty given by the standard deviation. Then, an additional one parameter linear least squares fit
was performed to find k" again for each data set, assuming the average value of n = 0.24. The values of
k" for each data set were averaged together, and the uncertainty is given by the standard deviation. This
procedure ensures that each data set contributes equally to the fit parameters rather than biasing the fit
toward the data sets containing more data points.

To determine the size of the nucleus in Figures 3.11 and 3.12, we used R = a((Nc+N+N)/#O) 1 / 3, where Nd
is the the number of dense fluid particles and #n is the average volume fraction of the nucleus. This allows us
to track one-step crystal growth, two-step crystal growth, and dense fluid growth. Particles were designated
as dense fluid if they were neither crystalline nor interfacial and have a local volume fraction larger than
some threshold volume fraction. We select # = 0.35 as the threshold for one-step crystal nucleation and fluid
nucleation, and =0.40 for two-step nucleation. #n was measured when the nucleus reached its terminal size
and assumed constant throughout the growth process. In the case where two-step nucleation occurs, both
crystal and dense fluid are present in the nucleus, so we average the densities of both phases (#c and d),
weighted by the fraction of particles in each phase, #n = (Nc+Ni)#c/(Nc+Ni+Nd) +Nd/(N+Ni +N).
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Chapter 4

Field-Directed Self-Assembly of
Mutually Polarizable Nanoparticles in
Steady External Fields

With an understanding of dynamic self-assembly in the simple toggled depletion model of Chapter 3, we
would like to extend our results and analysis to toggled electric and magnetic fields, which have already been
investigated experimentally. 64,6 5 ,6 7 ,6 8 ,73-77,197 In toggled fields, the coexistence criteria at periodic steady
state in equation (3.21) involve time averages of chemical potential and pressure. These are constructed
in (3.23) using equilibrium equations of state in steady fields. This was well-understood for the depletion
system, but the complete phase diagram and equilibrium equations of state for field-directed assembly of
dielectric and paramagnetic colloids has not been computed, even for steady electric and magnetic fields.

In this chapter, we develop a complete thermodynamic description of these polarizable dispersions in steady
fields. We show how an important physical feature of these types of particles, mutual polarization, sculpts the
free energy landscape and has a remarkably strong influence on the nature of the self assembled states. Our
theoretical predictions agree with the phase behavior we observe in dynamic simulations of these dispersions
as well as that in experiments of field-directed structural transitions. This new model also predicts the
existence of a eutectic point at which two crystalline phases and a disordered phase of nanoparticles all
simultaneously coexist. Understanding the thermodynamics of these dispersions in steady fields will allow
us to compute the periodic-steady-states in toggled fields, which is the focus of Chapter 5.

Introduction

Dielectric and paramagnetic nanoparticles in suspension polarize and interact in the presence of an externally
applied electric or magnetic field. Because of this simple scheme for controlling particle interactions on the
nano- and colloidal scale, these materials have found many applications in technologies important for society.
The external field may be used to control the viscosity of electrorheological' 8 and magnetorheological 9'" 0

fluids used in automobile break lines, artificial joints, and vibrational dampers in earthquake resistant build-
ings. The optical response of crystals composed of dielectric/paramagnetic particles can be controlled by
using the external field to modulate the crystal lattice spacing. 9 8 Electric and magnetic fields are also used
to facilitate self-assembly of permanent structures with useful photonic and transport properties, such as
nanowires,199 two-dimensional 62, 200 ,20 1 and three-dimensional 6 ,202,203 crystals of spherical colloidal parti-
cles, and aligned phases of anisotropic particles.1 6 3, 2 04 These fields are especially convenient for self-assembly
because they are two of the few means of imparting long-ranged interactions to building blocks at the col-
loidal scale.1 8' 46 Magnetically actuated microswimmers have been synthesized that mimic the dynamics
of motile bacteria.98 Novel out-of-equilibrium materials have been fabricated from dielectric/paramagnetic
suspensions in toggled6 1, 68 and rotating magnetic fields.8 9,205

These applications take advantage of the ability of dielectric/paramagnetic dispersions to form structures in
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an external field. For fields held steady in time, these structures evolve towards a thermodynamic equilibrium
state, so the underlying equilibrium phase behavior governs many of the useful properties of these materials.
Accurate predictions for the equilibrium phase diagram are vital to facilitate rational design and use of
dielectric and paramagnetic nanomaterials. However, the simplest models of this assembly process fail to
describe the self-assembled states in terms of experimentally controllable variables. The best predictions to
date20 6 2 0 7 require that particles within coexisting phases possess the same dipole moment regardless of the
local organization of that phase or the bulk density. This is problematic because the dipole moments that
determine what phases self assemble are induced by both the externally applied field as well as a local field
arising from the dipole induced in all the surrounding particles through a process of mutual polarization.
For conducting particles, the induced dipole is enhanced in a concentrated phase relative to a dilute one,
while for insulating particles the converse is true. Thus coexistence and stability of any self-assembled states
should depend intimately on the nature of these induced dipoles and through them the polarizability of the
particles within a particular solvent. In this article, we develop a first-principles framework understanding
these effects on assembly of polarizable nanoparticles and predicting the assembled phases.

It is important to note a contrast between polarizable particles with induced dipoles and particles with
permanent dipole moments which assemble even in the absence of an external field. While rotational diffusion
is important for particles with permanent dipoles, which reorient thermally, it is largely irrelevant for isotropic
particles with induced dipoles as the timescale for relaxation of the induced dipoles is typically orders of
magnitude shorter than that for rotational diffusion. Additionally, permanent dipoles interact differently
with an applied field than do induced dipoles as the permanent dipoles are driven to align with the field.
The phase behavior of dispersions of particles with permanent dipoles has been studied elsewhere 20 and is
not the focus of this work.

We begin by introducing two models of dielectric and paramagnetic dispersions, the commonly used constant
dipole model and the more accurate mutual dipole model. We show that the constant dipole model does
not account for key qualitative features of real dielectric/paramagnetic dispersions, and its predictions for
bulk phase behavior fail to satisfy thermodynamic criteria for coexisting phases at equilibrium. Next, we
develop a thermodynamic theory for dispersions of dielectric/paramagnetic nanoparticles using the mutual
dipole model and calculate the complete equilibrium phase diagram. The theory satisfies all thermodynamic
coexistence criteria and contains solid/solid coexistence and eutectic points, which are lacking from the
constant dipole predictions. 20 6,207 We then perform Brownian dynamics simulations of self-assembling di-
electric/paramagnetic suspensions using the mutual dipole model and compute equilibrium phase diagrams
in silico. Finally, we summarize our results that show quantitative agreement between our theory, simu-
lations, and experiments and discuss key features of equilibrium self-assembly of dielectric/paramagnetic
nanoparticles.

4.1 Constant Dipole Model versus Mutual Dipole Model

4.1.1 Constant Dipole Model

A single, spherical dielectric/paramagnetic particle of radius a and conductivity Ap placed in a solvent of
conductivity Af polarizes in a constant external field Eo and acquires a dipole moment 144

S 47ra3 Af /Eo, (4.1)

where
Ap/Af - 1

# = .(4.2)
Ap/Af + 2

Here, "conductivity" quantifies the degree of polarizability of the media and is used generically to refer to the
electric permittivity in the case of dielectric particles in an electric field or the magnetic permeability in the
case of paramagnetic particles in a magnetic field. The mathematical analysis of both classes of materials
is identical, so we refer to a generic conductivity and field in this work. If the particle is more polarizable
than the solvent (A, > Af), 3 > 0 and the particle polarizes parallel to the external field. If the particle is
less polarizable than the solvent (A, < Af), # < 0 and the particle polarizes in the opposite direction of the
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applied field. If the particle and the solvent have equal conductivities (A, = Af), 3 = 0 and the particle does
not polarize. A perfectly conducting particle (A, -+ o0) has 3 = 1 and acquires the largest dipole strength
for a given field while a perfectly insulating particle (A, = 0) has#= -1/2 and acquires the most negative
dipole.

For dispersions of many particles in an external field, the simplest model used for numerical and theoretical
calculations assumes that each particle acquires the same dipole moment as a single, isolated particle, as in
equation (4.1).146 This is correct in the limit of infinitely dilute suspensions, but is only an approximation
at finite concentrations. The particles interact with the pairwise dipole-dipole interaction potential

ui (rij) = 4e a (1- 3 os 2 6O3 ), (4.3)
rij

where ri _= xi - xj is the distance vector from the center of particle j at position xj to the center of
particle i at position xi, r ij = |rij1, and Oij is the angle between rij and the applied field Eo. The parameter
E S2/116ra3 Af = 7ra3 Af 2 E0, where the dipole strength is S = |SI and the field strength is Eo = |Eol,
characterizes the strength of the dipole-dipole interactions. uji = -E when the pair of particles are in
contact, rij = 2a, and oriented parallel to the applied field, Oij = 0. e depends only on the product OEo
and not on # or EO independently, implying that dispersions of different / behave identically at the same e.
Because the particle dipoles are all identical and constant over time, this model is called a "constant dipole"
or "fixed dipole" model. 146 ,209

4.1.2 Mutual Dipole Model

For an isolated particle i at position xi, the presence of the particle modifies the field E(x), generating the
disturbance field 4 4

1
Ei(x) = E(x) - Eo = 3 (3H - I) - Sj, (4.4)

4xr

where r = x - xi, r = Irl, and i r/Irl. In real suspensions, particles are polarized not only by the external
field, but also by the disturbance fields produced by the dipoles in other particles. If the disturbance field of
each particle is approximated with the disturbance field (4.4) of an isolated particle, we can construct the
linear system of equations for the N particle dipoles

Eo M11 M12 [Si

Eo M21 M22 --. S2 ,(4.5)

where
(1

I4irAr(I - 3figig~) i #j
M (4.6)

-I I i = j

and iij ri%/rir|. All the dipoles are coupled and must be solved for simultaneously. We derived this
system of equations formally in Chapter 2, equation (2.74), from a multipole expansion of the integral
representation of Laplace's equation truncated at the dipole level, neglecting quadrupole and higher order
moments. For the charge-free particles we consider here, we only need the YES block of the grand potential
tensor 4 E,coupling the particle dipoles to the external field. For clarity in this chapter, we denote this -ffE
block as Aand refer to it as the grand potential tensor, with the understanding that we do not need the
other blocks (e.g. Ajg, Ais)particles with only dipole moments.A'hasdiagonalblockentriesM that
represent polarization of particle i due to the external field and off-diagonal block entries Mij that represent
polarization of particle i due to the disturbance field from particle j. The inverse W : A-l is called the
grand capacitance tensor. Regardless of the number of moments included in the multipole expansion, the
equations governing the dispersion can always be cast in the form of (4.5), with the accuracy of A and W
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improving as the number of included moments increases.14 5 As described in section 2.2.7, the force on a
particle i is determined by first computing the total potential energy of the dispersion,1 44'145

U = - IESi -Eo, (4.7)

and then taking the negative gradient with respect to the coordinates of that particle,

Fj = -VxU = - 1 (Vx.Mjk) : SjSk. (4.8)
jk

The unknown dipoles in (4.7) and (4.8) require solving the many-body system of equations (4.5), so U and
Fj are many-body quantities that cannot be decomposed into the sum of pairwise potentials uij and forces
fij that only depend on the separations of pairs of particles, U # Ei ui (ri), Fj #3 fij (rij).

Because particles mutually polarize/depolarize each other, models of the form of equation (4.5) are called
"mutual dipole" models.1 46,209 In mutual dipole models, the particle dipoles are a function of the suspension
configuration and, in general, not all equal. In dynamic simulations, the potential tensor / must be inverted
at every time step to solve the system of linear equations (4.5) for the unknown particle dipoles. Because
the entries of _& decay slowly as 1/r 3 , it is not possible to define a local truncation radius and ignore
couplings between particles separated beyond that radius. 14 5  & is dense, and inverting it to solve (4.5)
is computationally expensive. If the polarization due to the disturbance fields of other particles (the off-
diagonal blocks of W) is neglected and only the polarization due to the external field (the diagonal blocks
of &) is included, & becomes block diagonal and can be inverted analytically, reducing to the constant
dipole result (4.1) with pairwise potential (4.3). As 1#1 becomes small, the diagonal elements of & that
go as 1/3 become large compared to the off-diagonal elements that are independent of #, and the constant
dipole model approaches the mutual dipole model asymptotically. We may formally consider the constant
dipole model as equivalent to the mutual dipole model in the limit of 3 = 0. For any finite field strength,
3= 0 implies that S = 0 and E = 0, so there are no dipolar interactions. However, if we keep #Eo finite as

/3-*0, both S and e remain finite as well. While this requires infinitely large fields Eo c 00, it poses no
difficulty mathematically.

4.1.3 Comparing the Two Models

Because of the computational cost of solving the system of equations (4.5) for the mutual dipole model,
computational and theoretical studies overwhelmingly use constant dipole models. 90 ,20 6 ,20 7, 210- 218 The
complete phase behavior for dielectric/paramagnetic particles interacting with the pairwise dipole-dipole
potential (4.3) was computed by Hynninen and Dijkstra using Monte Carlo simulations. 206,207 Because the
interaction potential is characterized by a single parameter E, the phase behavior from the constant dipole
model is controlled solely by e and the particle volume fraction p. Suspensions of particles with different
conductivities (i.e different /) have identical phase behavior in terms of e.

Results involving mutual dipole, or more exact, models are limited. Most computational and theoreti-
cal work incorporating these higher fidelity models is limited to configurations involving only a few par-
ticles, 4 6

172,219221 one or two interacting chains,8 2 2 2 2 2 5 the Eo - oc ground state,2 2 6 static calcula-
tions of a few particular lattice configurations,1 45 ,227,228 and dynamic simulations of small systems in two-
dimensions 54,229 and three-dimensions 209 that captured chaining but were too short to observe further
structural evolution. Large, concentrated suspensions, where the effects of mutual polarization are most
important, have not been studied with the mutual dipole model, and the phase behavior predicted by the
mutual dipole model is unknown.

Figures 4.1A and 4.1B show the strengths of the dipoles and forces on a pair of perfect conductors ( = 1)
oriented parallel and orthogonal to an applied field calculated with the constant dipole and mutual dipole
models. For the mutual dipole model, the dipole strength increases as the pair moves toward one another in
the parallel orientation and decreases in the orthogonal orientation leading to stronger attractive forces in
the parallel orientation and weaker repulsive forces in the orthogonal orientation compared to the constant
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dipole model calculations. These trends hold for all # > 0 while particles with # < 0 have the opposite
trends. For # < 0, particles depolarize one another as they approach in the parallel configuration and
polarize in the orthogonal configuration.

For most pair separations, the constant dipole model is a reasonable approximation to the mutual dipole
model. The two models only differ near contact, but the error is not too significant compared to the thermal
noise in the dispersion. The computational cost of implementing the mutual dipole model is large for only
a marginal increase in the accuracy of forces on a particle pair. This reasoning is common to justify using
the constant dipole model over the mutual dipole model for concentrated suspensions with many particles.
However, because the constant dipole model fails to capture important many-body effects, the errors in
dipoles and forces are many times larger in concentrated suspensions than for a particle pair. Figure 4.1C
shows the particle dipole strength for a body-centered-tetragonal (BCT) lattice of different # at fixed aspect
ratio A = L2/L, = /2/3 as a function of lattice volume fraction #, where Lz is the unit cell dimension
parallel to the external field and L, is the dimension orthogonal to the field (depicted in Figure 4.3). The
constant dipole result is the same for all # and coincides with the -4 0 limit for each # value. For the
mutual dipole model, as # increases to closest packing (0 = 21r/9 ~ 0.698), the particles polarize more
strongly for / > 0 and depolarize for # < 0. Compared to Figure 4.1A, the polarization of the lattice is
much larger than for a pair of particles. As 13 - 0, the dipole strength becomes less sensitive to volume
fraction, and the constant dipole model improves in accuracy (which we asserted earlier by examining the
elements of W). The equilibrium phase behavior of dielectric/paramagnetic dispersions necessarily involves
bulk concentrated phases for which the constant dipole model is inaccurate, so the constant dipole model is
generally not appropriate for simulations of self-assembly and calculations of the equilibrium phase diagram,
unless 131 is small.

Figure 4.1D shows the particle dipole strength of a BCT lattice at fixed unit cell dimension Lz = 2a rather
than fixed aspect ratio. This corresponds to contacting particles in field-aligned chains with an interchain
spacing set by the volume fraction. The # -+ 0 limit corresponds to a single chain. Compared to the
# -+ 0 limit for a well-dispersed suspension, particles enhance their polarization (/ > 0) or enhance their
depolarization (/ < 0) by chaining. By increasing # and bringing the chains closer together, additional
polarization/depolarization occurs. For the limiting values of 1, the increase in polarization/depolarization
from bringing chains together is comparable to the increase in polarization/depolarization from chaining in
the first place. For small values of 131 however, essentially no additional polarization/depolarization occurs
after chaining. Suspensions with different / have qualitatively different behavior, which the constant dipole
model, with only the single parameter e, cannot capture.

4.1.4 Implications for Self-Assembly

For insight into how the phase behavior differs between the two models, we appeal to equilibrium thermo-
dynamics. The reversible electric/magnetic work1 43 ,144 associated with polarizing a dielectric/paramagnetic
dispersion is dW = EodSto, where the total dipole moment Stat = i Si is the sum of the individual
particle dipoles Si. This work contributes an additional term to the typical fundamental relation for simple
thermodynamic systems, 19

dU = TdS - PdV + ydN + Eo - dStot, (4.9)

where U is the internal energy, T is the temperature, S is the entropy, P is the pressure, V is the volume,
p is the chemical potential, and N is the number of particles. At equilibrium, coexisting phases (1 and
2) in the dispersion must satisfy equality of all intensive parameters, Ti = T2 , Pi = P2 , 1 = /12, and
Eo,1 = Eo,2 . Because of the linearity of the governing electrostatic/magnetostatic equations, there is a linear
relation between the applied field and the average particle dipole S = Stot/N = C -Eo.145 C is called the
capacitance tensor and is related to the ensemble average (.) of the grand capacitance tensor C = E - (W)IN,
where E is a tensor that sums the particle dipoles Stt = E - [S1,... , SNT and the T superscript indicates
transposition. As W depends explicitly on the particle configuration, so must C. Because coexisting phases
are different in structure and density, their capacitance tensors are in general not equal, C1 ? C 2 . As a result,
the coexisting average particle dipoles in the two phases are also not generally equal, Si 5 S2. The constant
dipole model, however, requires the particle dipole strengths in the two phases to be equal, Si = S 2 . This
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Figure 4.1: Top row: Dimensionless dipole strength = S/ Va3 AfkBT (A) and force F Fa/kBT (B) induced
in a pair of perfectly conducting particles 3 = 1 oriented parallel and perpendicular to an applied field Eo =
1 Vk T/a3 Af as a function of dimensionless separation r = r/a using the mutual dipole and constant dipole models.
Bottom row: Dipole strength of a BCT lattice of particles of various conductivities with Eo = 1 kBT/a3 Af as a
function of volume fraction # at fixed aspect ratio A = /2/3 (C) and fixed unit cell dimension in the field direction
L, = 2a (D). The well-dispersed dilute limit is shown with crosses. 5 < 0 implies that the dipoles are in the direction
opposite the field.

approximation is good for small 1|3, where nearly all polarization is due to the external field, and becomes
exact in the limit #-+ 0. For larger 1#|, the capacitance is different in the two phases, and the external
field must be different in the two phases Eo, 1  Eo,2 to ensure the dipole strengths are equal. Thus, the
constant dipole model predicts phase coexistence that fails to satisfy the thermodynamic criteria of equality
of intensive parameters in coexisting phases for # # 0. This is analogous to forcing the molar volume, V/N,
of two coexisting phases to be equal while allowing their pressures to be different, a case that also violates the
coexistence criteria. Additionally, the constant dipole model only offers phase behavior predictions in terms
of e, or equivalently in terms of dipole strength S = 4 7r 3 Afe. However, there is no direct way to set and
control the dipole strength of a dielectric/paramagnetic dispersion experimentally. Rather, predictions in
terms of the external field are more useful because Eo can be controlled in experiments. This is analogous to
the case where thermodynamic expressions in terms of temperature are significantly more useful than those
in terms of the conjugate variable entropy, as temperature is a variable directly controlled in experiments.
Note that it is tempting to say that the constant dipole model does predict behavior in terms of Eo because
S and e can be written in terms of the product OEo. However, we showed earlier that this model only applies
in the limit of -+ 0 and Eo -+ with #Eo finite. But this finite 3EO value is essentially the S and e over
which it is difficult to exert experimental control.

Figure 4.2 shows dramatic differences in phase behavior between the two models for perfectly conducting
particles 3 = 1 at fixed # = 0.50. At large field/dipole strengths, dynamic simulations of both models yield
coexistence between a very dilute fluid and a dense BCT crystal. As the dipole strength is lowered at constant
volume fraction, the constant dipole dispersion freezes entirely into a homogeneous BCT crystal. For the
mutual dipole model, the crystal melts as the field is lowered to reach coexistence with a dense fluid. The
phase predictions from the constant dipole model deviate qualitatively from the more exact model, suggesting
that the constant dipole model is a poor choice for use in the design of dielectric/paramagnetic materials,
where accurate predictions of the structure are necessary for their function. Despite the shortcomings of the
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constant dipole model, the equilibrium phase diagram of the mutual dipole model has not been computed. In
the next few sections, we report the complete phase diagram of dielectric/paramagnetic colloidal suspensions
using first-principles thermodynamic theory as well as Brownian dynamics simulations taking into account
mutual polarization among particles.

mutual dipole constant dipole

lower
i field/

dipole

Figure 4.2: Snapshots of the phase behavior of dielectric/paramagnetic nanoparticles in an external field from
Brownian dynamic simulations using the mutual dipole model (left column) and constant dipole model (right column).

The field is oriented orthogonal to the plane of view, so the three-dimensional cubic dispersion extending into the

page appears here as a two-dimensional projection. At high field/dipole strength (top row), both models predict

coexistence between a dense BCT crystal phase and a very dilute fluid phase. Lowering the field/dipole strength

(bottom row), the mutual dipole model predicts that the crystal melts to reach coexistence between a BCT crystal

and dense fluid. The constant dipole model predicts that the crystal expands and the dispersion volume freezes to

reach a homogeneous BCT crystal phase.

4.2 Thermodynamic Theory

Although the internal energy U = U(S, V, N, Stot) in (4.9) is written as a function of entropy, volume, particle
number, and total dipole moment, it is more convenient to work with a free energy L = L(T, V, N, Eo) that
swaps entropy and total dipole for temperature and external field as independent variables,

L U - TS - Eo - Stot, (4.10)

dL= -SdT - PdV + dN - Stot . dEo. (4.11)

This is convenient because T and Eo are typically the variables controlled in experiments rather than S
and Stat. At constant T and E, L is the quantity that is minimized at thermodynamic equilibrium.19
Additionally, this choice of thermodynamic ensemble automatically guarantees that the T, = T2 and E0 ,i =
Eo, 2 coexistence criteria are satisfied in multiphase dispersions. Shown explicitly by the form of the total

differential of the free energy dL in (4.11), we have the thermodynamic relation

StVt =- (4.12)
(OEo)T,V,N'

which we can integrate from EO = 0 using the linear relation S = C - Eo,

L(T,V,N,Eo)=Fhs(T,V,N)-N dE'-C(Eo)-Eo, (4.13)/Eo0
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where Fhs is the hard sphere Helmholtz energy at zero field. The capacitance tensor C = E . (%)/N
contains the ensemble average of the grand capacitance tensor (W) over all possible particle configurations.
Because the field changes the equilibrium particle configuration as it increases, C is a function of Eo and
the integration in (4.13) is difficult.

For crystalline phases, particles fluctuate about a lattice configuration x = [x 1, x2 ,..., XN], where xi is the
lattice position of particle i. We modify the free energy for a crystalline phase, L, to

Lc(T, V, N, Eo; x) = Fhs,c (T, V, N; x) - N dE' - C(Eo; x) -E0 , (4.14)

where L(T, V, N, Eo; x) and Fhs,c(T, V, N; x) are the free energy and hard sphere Helmholtz energy of a
crystal constrained to have lattice configuration x. Lc(T, V, N, Eo; x) is not the free energy at thermodynamic
equilibrium L(T, V, N, Eo), rather it is the free energy associated with a particular lattice configuration. If
we computed Lc(T, V, N, Eo; x) for all possible lattice configurations x, the lattice configuration Xeq with
the lowest free energy will be the equilibrium lattice configuration with free energy L(T, V, N, Eo; xcq) =
Lc(T, V, N, Eo). If the particles were confined only to their lattice positions, we would know the particle
positions exactly and the integration in (4.14) could be evaluated. Because particles fluctuate about their
lattice configurations, the ensemble average (W) and C are affected by the fluctuations. As the field is
increased, these fluctuations change and the integration is not straightforward. To make progress, we neglect
these fluctuations so that the ensemble averaged capacitance tensor is modeled as the capacitance tensor
for the lattice configuration, (%)(Eo,x) ~ %(x). In this case, C is completely independent of Eo and the
integration is simple,

N
Le(T, V, N, Eo; x) = Fhs,c (T, V, N; x) - -C(x) : EoEo. (4.15)

2

The probability of observing a particular particle configuration is proportional to eEo-Sto/kBT.123 At high
field strengths, this probability will be sharply peaked at the lattice positions, where the total polarization
is largest, and neglecting fluctuations is reasonable. At low field strengths, this approximation may break
down, but the integrand in (4.14) is small here anyway. Thus, we incur little error with the approximation
(%')(Eo, x) ~ %(x) and (4.15) is likely to yield good predictions. By incorporating the lattice configuration
x into the crystal free energy, we gain the ability to compute L, accurately but now must minimize L,
over all possible lattice configurations x to find the equilibrium lattice configuration. Fortunately, we can
narrow the possible lattice configurations to just a few candidate crystal structures. First, we assume that
the equilibrium lattice only has anisotropy in the field direction, while there is no bias in the two directions
orthogonal to the field. A single parameter, the aspect ratio A, is enough to quantify this anisotropy. This
hypothesis is commensurate with the symmetry of the applied field, is consistent with the low density and
high density ground states, and is observed in constant dipole simulations. 206 ,20 7 The E o -- o ground state
crystal is known to be BCT, as this orients the particles in interdigitated chains aligned with the field, as
in Figure 4.3.230 The Eo = 0 hard sphere equilibrium crystal state is also known to be face-centered-cubic
(FCC). The hexagonally-close-packed (HCP) hard sphere crystal has nearly the same free energy as the
FCC hard sphere crystal23 1 and is the high density Eo -+ o0 ground state for # larger than BCT closest
packing#= 27r/9 m 0.698.206,207 Both HCP and FCC structures have been observed at equilibrium in
dipolar systems. 206 ,20 7,232 The crystals orient so that their (111) hexagonal planes are orthogonal to the
applied field, as in Figure 4.3. Because the HCP lattice puts particles aligned in the field direction closer
together than the FCC lattice does, it is more stable than FCC for nearly all choices of Eo and #.201,207,232
Therefore, we consider only BCT and HCP as candidates for the equilibrium crystal phase. The orientation
of the crystals are fixed relative to the applied field, and the free energy

N
Lc(T, V, N, Eo; A) = Fhs,(T, V, N; A) - -C(A) : EoE0 . (4.16)

2

is minimized over all possible aspect ratios A to find the equilibrium aspect ratio and free energy. For the
BCT crystal, A is defined as the ratio of the dimension of the unit cell in the field direction Lz to the
dimension of the unit cell in either of the orthogonal directions L.. When A = 1, the structure is body-
centered-cubic (BCC). For the HCP crystal, A is defined as the ratio of the distance between (111) hexagonal
planes (i.e. half the unit cell dimension in the field direction Lz) and the distance between particles within
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the (111) planes L,. A = /2/3 corresponds to an isotropic HCP lattice, where a particle is equidistant
to its 12 nearest neighbors. These geometries are pictured in Figure 4.3. The minimizations are performed
separately for BCT and HCP structures and the lower of the two free energies corresponds to the equilibrium
crystal structure.

BCT

t L,=AL,
Eof

HCP

Eo Lz=2ALX

Figure 4.3: Left: BCT and HCP unit cells oriented relative to an applied field E0 . The aspect ratio A is defined
differently for the two structures. Right: Two-dimensional sketch of estimating the free volume V*. Boundaries
(dashed lines) are placed at the contact points (crosses) of the center particle with its neighbors along the line of
centers (thin lines). The boundaries are extended orthogonally to the line of centers. Their intersections form a small,
convex region (thick lines) estimating the free volume (shaded region) around the central particle.

During minimization of the free energy L, we must compute Fhs, and C. With our approximation(r) ~ 2

we can compute C = . W/N by inverting - to find W for a particular particle configuration. Direct
inversion is costly, so instead we use the fast iterative approach based on Ewald summation discussed in
section 2.3 for evaluating _ and a Krylov subspace method for the inversion. 1 5 5 We compute Fhsc using
free volume theory, 178 where a single crystalline particle moves in the free volume V* constrained by its
neighboring particles fixed to their lattice positions,

Fhs,c(T, V, N; A) -kB TN In V*. (4.17)

There is an additional contribution to the free energy kBTN ln(A/vo) containing the deBroglie wavelength A
that is not necessary in the present calculations. For isotropic crystals, V* can be approximated with simple,
analytic expressions. 178 There are no simple analytic expressions for the size of the free volume in anisotropic
crystals, so we approximate the complicated free volume 233 with a simple, convex region constructed from
the following algorithm and sketched in Figure 4.3. If a particle moves from its lattice position towards a
neighbor along the line of centers, the closest the center of the free particle can approach the center of its
neighbor is r = 2a. We construct a plane at this contact point, orthogonal to the line of centers of the pair,
to approximate the boundary of the free volume near this neighbor. Similar planes are placed at the contact
point for each of the free particle's neighbors. If the planes are extended and allowed to intersect, they will
form the boundary of a small convex polyhedron centered around the free particle's lattice position. The
volume of this polyhedron is an approximation for the true free volume V*. This approximation for V* is
good because it only neglects thin concave regions that contribute little to V*.233 It is able to capture the
anisotropy in the crystal lattice, but agrees nearly perfectly with simple expressions 17 8 for isotropic crystals.
Errors in computing Fhs, are dominated by the assumptions of free volume theory and not in our ability to
compute V*.

Unlike crystalline phases, particles in a fluid phase are not confined to fluctuations about a known con-
figuration. Instead, the mobile fluid particles sample many more configurations than in the crystal phase.
Although the sampled equilibrium structures are disordered, they are not isotropic because of a bias for
alignment in the field direction. If we defined an order parameter (or several order parameters) to reflect
the anisotropy in the fluid structure and were able to compute Fhs,f and C as a function of this order
parameter, we could take (4.13) and construct an expression like (4.16) for the fluid phase. Without these
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structure-property relations, we can only make analytic progress by assuming that the fluid configuration is
isotropic and independent of the field strength. In this case, the integration in (4.13) is simple,

N
Lf (T, V, N, Eo) = Fhs,f (T, V, N) - -C: EoEo. (4.18)

2

This equation is asymptotically valid in the limit of low field strengths but is only an approximation at higher
field strengths. Although our ability to compute Lf accurately is limited, (4.18) is an explicit expression
with no structural parameters which need to be determined. This is in contrast to L, which we can compute
accurately, but requires minimizing over aspect ratio A to find the equilibrium Lc.

For Fhs,f in the fluid, we use an expression constructed from the the Carnahan-Starling equation, 178,23 4

which is very accurate for isotropic hard sphere configurations

Fhs,f (T, V, N) = kBTN In -1+ - 2  (4.19)

Again, there is an additional kBTN ln(A 3 /vo) contribution to Fhs,f that we neglect. The fluid capacitance
tensor is approximated by assuming that each particle interacts with the mean disturbance field of the other
particles which yields the self-consistent mean-field expression,7,172

C = 47raI3 Af . (4.20)
1 - ##0

This expression assumes a completely structureless dispersion and is one of the simplest equations for the
fluid capacitance. Not surprisingly, this expression is only accurate to 0(1). A slightly more accurate
expression to O(#) for a structureless dispersion we could have chosen was given by Jeffrey by considering
the exact solution to the two body problem. 172 Because we know that our assumptions prevent us from
computing Lf accurately anyway, we choose to use the simpler mean field expression (4.20).

Both the crystal free energy (4.16) and the fluid free energy (4.18) can be written as L = Fhs - Stot - Eo/2,
where we have used Stot = NC - E0 . L is the sum of an entropic hard sphere contribution, Fhs, and an
energetic contribution from the total dipole moment in the field direction, -Stt.Eo/2. At low field strengths,
the entropic term will be the dominant contribution to L while at high field strengths the dipole term will
dominate. Figure 4.4A shows the entropic and energetic contributions for the BCT crystal phase, with the
HCP and fluid phases having similar trends.

The entropic contribution is always positive and contributes a free energy penalty. F, increases with volume
fraction as the free volume available to the particles decreases. The entropic term diverges at closest packing,
where the free volume goes to zero. For a fixed volume fraction, there is a minimum allowable aspect ratio
where particles in the unit cell come into contact. Here, the free volume also goes to zero so F. diverges for
small aspect ratios.

For 3 > 0 (A, > Af), the dispersion polarizes in the same direction as E0 , so Stot -Eo > 0 and the energetic
contribution to L is negative. The dispersion evolves to increase its total dipole strength, which decreases L.
Stot increases as the volume fraction increases or as the crystal aspect ratio decreases. Increasing the volume
fraction or decreasing the aspect ratio both move particles aligned in the field direction closer together,
greatly enhancing the mutual polarization. For # < 0 (A, < Af), the dispersion polarizes in the opposite
direction to E0, so Stot . Eo < 0 and the energetic contribution to L is positive. The dispersion evolves to
reduce its total dipole strength, which decreases L. As the volume fraction increases or the aspect ratio
decreases, mutual depolarization is enhanced and Stot decreases. Therefore, the trends of the energetic
contribution to L with respect to # and A for 3 < 0 are the same as the # > 0 case. For all #, the energetic
contribution to L decreases with increasing p or decreasing A, which corresponds to an increase in Stot for
/ > 0 and a decrease in Stot for # < 0.

At a fixed volume fraction, the competition between the entropic and energetic contributions leads to an
equilibrium aspect ratio that minimizes L. Figure 4.4B shows the equilbrium aspect ratio for a homogeneous
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BCT crystal with / = 1 at several different #. As the field strength increases, the energetic contribution
dominates the free energy and the particles in field-aligned chains move closer to one another to enhance
mutual polarization. Because # is fixed, the decrease in L, is accompanied by an increase in L, and the the
aspect ratio decreases. For lower values of 4, the equilibrium aspect ratios tend to be lower. This implies
that, at constant field, particles prefer to decrease their density by increasing the interchain spacing (or
equivalently L,) rather than their intrachain spacing (or equivalently L2) to maximize Stot.
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Figure 4.4: A: Entropic and energetic contributions to the BCT dimensionless free energy per volumeI
La 3 /VksT = fh - 3#Ozz E2/87r for / = 1. Solid lines correspond to the left axis and are the hard sphere BCT
dimensionless Helmholtz energy per volumefhs= Fhsa3 VkBT as a function of aspect ratio A for various 4 contours.
Dashed lines correspond to the right axis and are the energetic contribution (divided by E2) to , containing the
zz component of the dimensionless capacitance tensor Uzz = Czza 3

Af, the only component that contributes to I
with Eo oriented along the z axis. B: Equilibrium 3 = 1 BCT aspect ratio minimizing the free energy at constant
volume fraction as a function of dimensionless field strength Eo = Eo/a3 Af/kBT for various 4 contours. In both
panels, blue, yellow, green, and red colors correspond to volume fractions# 0.55, 0.60, 0.65, and 27r/9 ; 0.698,
respectively, as indicated by the labels in the lower panel.

For a multiphase dispersion with two coexisting phases (1 and 2), the total free energy is a sum of the
free energy of each phase L(N, V, T, Eo) = Li(Ni, V1, T, Eo) + L 2 (N 2 , V2 , T, Eo) where N = N1 + N2 and
V = V1 + V2 . It is convenient to work with a dimensionless free energy per volume,

T #0, Eo) = £1 #01, Eo )0 -1+ i2 # 2, Eo , 2- 1 (4.21)

where£ La3 /VkBT, Ti and2 are the dimensionless free energies per volume of the pure phases, and

5 =_ Eo a3Af /kBT is the dimensionless external field. This choice of dimensionless field strength defines

a dimensionless dipole moment S = S/ a3 AfkBT. Equation (4.21) expresses the overall free energy per
volume as a linear interpolation between the free energies per volume of the pure phases, a scheme that is
often called the lever rule.

I(#, o) is minimized over all possible #1 and#2 to find the coexisting volume fractions at a particular No.
The coexisting volume fractions are independent of the overall 4 provided it is intermediate the coexisting
volume fractions, #1 < 4 < #2. If one or both of the phases is crystalline, we must also minimize over all
possible aspect ratios of the crystal phase/s to find the equilibrium aspect ratio/s. This scheme satisfies the
thermodynamic coexistence criteria, Ti = T2 , Pi = P2 , A1 = A2, and Eo, 1 = Eo,2 . Equality of temperature
and applied field is automatically satisfied by the choice of constant T and Eo ensemble, which correponds
with the independent variables of the free energy L = L(T, V, N, Eo). The lever rule constrains E(#, Eo) for
the multiphase dispersion to lay on a line in 7 versus space connecting the £1(#1, Eo) and£2(#2, Eo) for
the two coexisting phases. To minimize E, this line must lay tangent.to the free energy curves f 1(), Eo) and

~2 (#, o).1 78 From the Euler relation, 19 I= -P + p#, the tangent line has a slope equal to i p/kBT and
a y-intercept equal to -P = -Pa3 /kBT. Because both phases are on this line, they have equal pressure

87



and chemical potential and all the coexistence criteria are satisfied. In contrast, the constant dipole model
requires the particle dipoles in coexisting phases to be equal Si = S2 at the expense of allowing the external
field to be different Eo,1 # Eo, 2 . The constant dipole approach is thermodynamically consistent in the # -+ 0
limit, where both Si = S2 and Eo,1 = Eo, 2 hold, but fails to satisfy all of the coexistence criteria for # 0.

With three candidate phases, fluid, BCT, and HCP, there are 6 possible phase coexistences: fluid/fluid,
fluid/BCT, fluid/HCP, BCT/BCT, BCT/HCP, HCP/HCP. If coexistence regions overlap, the one with the
lowest free energy will be the coexistence observed at thermodynamic equilibrium. Coexistence between
like phases, fluid/fluid, BCT/BCT, and HCP/HCP, has not been observed in suspensions of dipolar parti-
cles, 2 0 6,207 so it is likely that these are not good candidates for free energy minimizers. Instead, we consider
only fluid/BCT, fluid/HCP, and BCT/HCP coexistences. Minimizing (4.21) for many different Eo generates
the binodal curves for each of the three phase coexistences. Computing all binodals is equivalent to knowing
the entire phase diagram, as areas outside coexistence regions are single phase regions. The results of the
thermodynamic model are shown in Figures 4.5-4.8.
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4.3 Brownian Dynamics Simulations

Phase behavior can be directly observed in dynamic simulations of self-assembling dielectric/paramagnetic
nanoparticle suspensions. As described in detail in section 2.1, we performed Brownian dynamics simulations
of N = 8000 mutually polarizable spherical particles in a three-dimensional cubic box with periodic boundary
conditions using the freely-draining model. The simulation results can be used to validate the predictive
capability of our previous thermodynamic theory as well as illustrate the usefulness of our simulations as a
computational tool.

At high applied field strengths, BCT crystal nucleates in an initially homogeneous disordered fluid phase.
The crystal grows until the crystal and fluid volume fractions reach their coexisting values. The aspect ratio
of the crystal is the one that minimizes the crystal's free energy. If the dispersion has fully equilibrated,
we can measure the coexisting volume fractions in the simulation at this field strength. We repeat these
nucleation simulations for progressively lower field strengths, recording the coexisting volume fractions at
each step to construct binodal curves. Each simulation is independent of the others, all beginning from a
disordered fluid state. Eventually the field strength will become too small compared to thermal motion and
the dispersion will remain a fluid rather than phase separate. The equilibrium state at this point may be two
phases, but nucleation barriers prevent the dispersion from realizing its equilibrium state within the time
and size constraints of the simulation. In this case, we begin with the fully equilibrated, phase separated
dispersion at the lowest field strength that nucleated crystal and slowly lower the field. If the rate that the
field is lowered is slow compared to the rate at which the dispersion equilibrates, the volume fraction and
aspect ratio of the coexisting phases will respond to the changing field by tracing their equilibrium values on
the binodal. Because the initial configuration is already phase separated, homogeneous nucleation barriers
are avoided completely. In practice, we do not change the field continuously but rather make a small jump in
the field, let the dispersion equilibrate, make another small jump, and so on. We could begin this protocol at
any field strength that nucleated crystal, but we choose the lowest field strength because these configurations
tend to have the smallest number of defects.

This protocol traces out the fluid/BCT binodal curves, beginning with a high field close to the ground state
and lowering the field. We can also trace out the fluid/HCP binodal curves by beginning at the zero field,
hard sphere limit and slowly raising the field. Because the driving force for crystallization is small at low field
strengths, it is difficult to observe HCP crystal nucleation in a homogeneous fluid. Rather than begin the
simulations from a fluid state, we begin with all particles incorporated into an HCP lattice at some volume
fraction #c in a simulation volume with a lower overall volume fraction # < 0c. There is empty solvent
around the crystal in which particles can melt off the crystal surface and reach fluid/HCP coexistence. After
equilibrating at E0 = 0, the field was slowly raised to trace the fluid/HCP binodals. Again, this was not
done continuously but rather in discrete jumps, where the equilibrated final configuration at a particular field
strength was used as the initial configuration for the next field strength. It is possible for the fluid/BCT and
fluid/HCP regions to overlap. In this case, only one of the phase coexistences is actually the thermodynamic
equilibrium state while the other is metastable. Had we waited long enough and/or increased the system
size, the metastable coexistence would convert to the stable equilibrium coexistence.

We did not simulate BCT/HCP coexistence. Because of the lattice mismatch, there is a large interfacial
tension between the two crystal phases. The system volume must be large enough that the bulk free energy
driving phase separation overcomes the large interfacial penalty. At the large densities where BCT/HCP
coexistence is stable, the kinetics are incredibly slow and long simulations are needed to fully equilibrate
the dispersion. Additionally, there is a not a simple, continuous deformation of lattice parameters to diffu-
sionlessly transform between BCT and HCP structures. To convert between the two crystals, a portion of
one crystal must melt and reform into the other crystal. This mechanism has many energetic barriers which
further slows the kinetics. Because of the size and time constraints of our simulations, we did not perform
dynamic simulations of BCT/HCP coexistence. Our theoretical thermodynamic calculations did trace out
the BCT/HCP binodals, but we do not have dynamic simulation data with which to compare. Solid/solid
coexistence may be better probed using specialized Monte Carlo simulations,235,236 which is beyond the
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current scope of the work here. To our knowledge, no such simulations have been performed for mutually
polarizable dispersions.

For each field strength, we compute the dipole moment and local volume fraction of each particle in the
dispersion's final configuration, as described in the Methods section. This forms a two-dimensional distri-
bution of particle dipoles and particle local volume fractions. No such distribution exists for a constant
dipole model, as all the particles have identical dipole strengths. The two-dimensional distribution has two
peaks, one associated with the dipole strength and volume fraction of the bulk fluid phase and the other
corresponding to the dipole strength and volume fraction of the coexisting crystal. We assume that the total
distribution is the sum of two multivariate Gaussians, with one population corresponding to particles in the
fluid and the other corresponding to particles in the crystal. We use a maximum likelihood analysis to fit
the Gaussians to the measured distribution and extract means and standard deviations (see Methods for
more details). The means give the coexisting dipole and volume fraction of the two phases. These simulation
results are shown in Figures 4.5-4.7 along with the results from the theoretical thermodynamic calculations.

The standard deviations in the distribution correspond to equilibrium fluctuations in the dipole moment
and volume fraction. The size of the fluctuations is related to the electric/magnetic susceptibility and the
compressibility of the dispersion and is not a measure of the uncertainty in our calculations of the coexisting
fluid and crystal phases."' To obtain a measure of the error in our methodology, we compute the parameter

IN Nf_ N (4.22)
V # #f #c'

where the total number of fluid particles Nf and crystal particles Nc is determined by designating each
particle as either fluid or crystalline using the posterior probability that the particle belongs to one of the
populations. If we had exact measurements, indicated by hats "A", N/# N= /#f + / c/#c, and 5 = 0.
Thus, 6 is one measure of the relative error in our ability to extract Of and #c. The largest errors (6 - 0.1)
occur where the binodal varies rapidly with field strength while the errors are smaller (6 - 0.01) where the
binodal varies slowly with field. If the system size is too small, the amount of interface, grain boundaries,
and defects can become large compared to the amount of bulk fluid and crystal and obscure the calculation
of the bulk coexisting quantities, leading to large 6. However, our system size (N - 8000) is large enough
that the majority of particles belong to bulk phases and 6 remains small.
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Figure 4.5: So = Eo V/a3 Af /kBT versus < phase diagrams for different values of 0 in different colors. Circles corre-
spond to fluid/BCT coexistence while squares correspond to fluid/HCP coexistence, both extracted from Brownian
dynamics simulations. Colored lines simply connect the simulation data points. Solid black lines are the theoretical
binodal predictions using our thermodynamic theory and include BCT/HCP coexistence, for which we do not have
simulation data. Tie lines (not pictured) connecting coexisting phases are horizontal, and the fluid/BCT/HCP eu-
tectic tie lines are highlighted with thick lines. Dotted lines span a portion of the F/BCT binodals where we were
unable to obtain coexistence points using our thermodynamic model and connect points on either side of this region
where we did obtain solutions. The fluid/BCT simulation data for each / are combined in the bottom right plot.
The constant dipole (0 = 0) results are from Monte Carlo simulations in references 206 and 207 and can only be
meaningfully plotted in the bottom right plot.
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Figure 4.6: 5 = S/V/a3 AfkBT versus # phase diagrams for different values of # in different colors. Circles correspond
to fluid/BCT coexistence while squares correspond to fluid/HCP coexistence, both extracted from Brownian dynamics
simulations. The constant dipole (8 = 0) simulation results are from Monte Carlo simulations in references 206 and
207. Colored lines simply connect the simulation data points. Solid black lines are the theoretical binodal predictions
using our thermodynamic theory and include BCT/HCP coexistence, for which we do not have simulation data, as
well as the constant dipole (# = 0) case. Tie lines (dashed lines) connecting coexisting phases are sloped, and the
fluid/BCT/HCP eutectic tie line triangles are highlighted with thick lines. Dotted lines span a portion of the F/BCT
binodals where we were unable to obtain coexistence points using our thermodynamic model and connect points on

either side of this region where we did obtain solutions. The fluid/BCT/HCP eutectic triangles determined from the
theoretical calculations for each 3 are combined in the bottom right plot.

92

75

50

25

0r

BCT/HCP

F/BCT/HCP

- --
F/BCT ee 01010

- F- HCP.
. .e .0 .e........ BCT

F/HCP 
1C . * ... ... ....

.3/94
0.6

=.-=

== ==

/3=-1/2

A F
o BCT
-aHCP

- -

- -- - ---- 

-

-



10.0

7.5

. 5.

2.

0.

2 6

2.0-

cq1.5
00

-0.5 0.0 0.5 1.01s ~o 0 i

x
A
1P.

0
X

Ivey
Promislow
wen

0
A

simulation I 1
-0.5 0.0 0.5 1.0Wen

Figure 4.7: Dimensionless field strength So Eo  a3 Af/kBT corresponding to a coexisting fluid volume fraction
Of = 0.20 at fluid/BCT coexistence for different . This is, absent kinetic barriers, the field necessary to induce phase
separation in a homogeneous fluid at 4 = 0.20. These data are extracted from the equilibrium binodals determined
by Brownian dynamics simulations. Also shown are values extracted from a variety of experiments in references 237
(Ivey), 64 (Promislow), and 238 (Wen). The dashed line
to the simulation data in the right plot.

0.80-

0.78-
- F/BCT

- F/HCP
BCT/HCP

.7-- BCT/HCP

0 1 2

Eo

in the left plot is equation (4.24) obtained from a linear fit

3.6

2.05 -
3.4-

2.71. 2.2

2.6
2.1 --

2.5F

1 2 0 1
Eo Eo

Figure 4.8: Equilibium crystal aspect ratio A and unit cell dimensions parallel L L/a and orthogonal L, = L,/a

to the applied field 5o Eo Va3 Af /kB T along the binodals of fluid/BCT, fluid/HCP, and BCT/HCP coexistence for
# = 1. These data are from the theoretical thermodynamic calculations. Dotted lines span a portion of the F/BCT
binodals where we were unable to obtain coexistence points using our thermodynamic model and connect points on
either side of this region where we did obtain solutions.

4.4 Results and Discussion

Figures 4.5 and 4.6 show the equilibrium phase diagrams obtained from our thermodynamic theory and from
our Brownian dynamics simulations for several different particle conductivities. The theoretical predictions
agree very well with the simulation results. For the # = 0 simulation data, we use the results of Hynninen and
Dijkstra from Monte Carlo simulations. 206,20 7 The/3 = 0 theoretical predictions are from our thermodynamic
model and agree well with the Monte Carlo simulations. Figure 4.5 contains the phase diagrams in terms
of applied field strength, showing the coexisting volume fractions for various Eo = Eo-a3Af/kBT. Figure
4.6 casts the phase diagrams in terms of induced particle dipole strength, where the coexisting volume
fractions and coexisting dimensionless dipole strengthsS S/ a3 AfkBT are shown together. Figure 4.7 is

a different projection of the E0 versus # phase diagrams of Figure 4.5, showing the Eo corresponding to a
coexisting fluid volume fraction #f = 0.20 at fluid/BCT coexistence for different 3. This is, absent kinetic
barriers, the minimum field strength necessary to induce phase separation in a homogeneous dispersion at
0 = 0.20. These data were extracted from the simulation binodal data. Also shown are the critical field
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strengths extracted from several experiments of field-induced structural transitions, which agree well with
our predictions. Finally, Figure 4.8 displays how the aspect ratios and unit cell dimensions of the crystal
phases change along the binodal, from our theoretical thermodynamic calculations.

On the Eo versus # phase diagrams (Figure 4.5), the tie lines connecting coexisting phases are horizontal due
to the constant applied field coexistence criteria, Eo,1 = Eo, 2 . Fluid/BCT coexistence is observed at high
field strengths and moderate volume fractions, BCT/HCP coexistence is observed at high field strengths and
large volume fractions, and fluid/HCP coexistence is observed at low field strengths. The three coexistences
meet at a field strength Eo,eut. This type of phase behavior shares the same generic features of a eutectic,
which is typically associated with phase separated binary mixtures.19 The eutectic point, (#eut, Eo,eut), is
the point with coordinates at the eutectic field Eo,eut and the eutectic volume fraction #eut, which is the
BCT volume fraction at the eutectic field #eut =BCT(Eo,eu). Along the eutectic line, there is simultaneous
fluid/BCT/HCP coexistence. This is consistent with the Gibbs phase rule,19

NDOF = Nvar - Nphase, (4.23)

for the degrees of freedom (dimensionality) NDOF of coexistence regions with Nphase phases and Nvar total
independent variables. Here, Nar = 4, corresponding to a choice of one of each of the following conju-
gate pairs as an independent variable: T or S, P or V, y or N, and Eo or Stat. Thus, the Nphase = 3
fluid/BCT/HCP coexistence region spans an NDOF = 1 dimensional line, the eutectic line, in Eo versus
space. Because the applied field is constant in all three phases, this line is horizontal at Eo,eut.

On the S versus # phase diagrams (Figure 4.6), the tie lines connecting coexisting phases are sloped because
the two phases polarize differently and have different dipole strengths. For # > 0, the BCT and HCP
crystals have larger dipole strengths than the coexisting fluids, so the fluid/BCT and fluid/HCP tie lines
have a positive slope. Because the spacing of particles within a field-aligned chain is smaller in the BCT
lattice than the HCP lattice, the BCT crystal has a larger dipole strength than the HCP crystal even though
the BCT crystal is at lower # and the tie lines have a negative slope. These trends are reversed for / < 0
where particle depolarize one another; the fluid/BCT and fluid/HCP tie lines have negative slope while the
BCT/HCP tie lines have positive slope. As 1#| decreases, the mutual polarization/depolarization weakens
and the dipole strengths of the coexisting phases approach each other. In the limit of # = 0, i.e. the constant
dipole model, the tie lines are flat.

The fluid/BCT/HCP eutectic line on the E0 versus # plot appears as a eutectic triangle on the S versus
# plot (Figure 4.6) because the three phases all have different dipole strengths. For # > 0, as decreases
the eutectic triangle flattens and the dipole strengths of the coexisting phases approach one another. In the
limit of # = 0, all particles have equal dipole strengths and the eutectic triangle becomes a eutectic line.
As / continues to decrease to negative values, the triangle opens up again but is inverted compared to the
positive / case. The range of volume fractions the eutectic triangles span also decreases as decreases, with
the trend continuing for / < 0. The coexisting fluid volume fraction at the eutectic increases with decreasing
/ while the coexisting BCT and HCP volume fractions generally decrease with decreasing . From the
Gibbs phase rule (4.23), there is only one degree of freedom available at the eutectic, which seems to forbid
the three phase eutectic from spanning a two-dimensional triangular region. This apparent contradiction is
resolved by noticing that no phase can reside arbitrarily inside the eutectic triangle on the S versus # plot.
The particle dipole strength is not a controllable variable and is calculated from the applied field and overall
volume fraction from an equation of state, S = S(Eo, #). Because there is a single eutectic field strength,
the dipole strength at the eutectic is given by the one-dimensional curve S(Eo,eut, #) inside the eutectic
triangle, satisfying the Gibbs phase rule. No combination of Eo and # yields arbitrary points inside the
eutectic triangle. An alternate explanation that the Gibbs phase rule holds is to notice that the two-phase
coexistence tie lines do not pass through the inside of the eutectic triangle, but rather are constrained by its
one-dimensional perimeter.

For certain / values, the fluid dipole strength at fluid/BCT coexistence is nonmonotonic with respect to
volume fraction or field strength. As we travel along the fluid binodal from left to right, the applied field
decreases while the coexisting fluid volume fraction increases. The fluid dipole strength decreases with
decreasing field strength but increases with increasing volume fraction, equation (4.20), so these competing
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effects produce a coexisting fluid dipole strength that is nonmonotonic along the binodal. This is attributed
to the rapid increase in coexisting fluid volume fraction over a small decrease in field strength on the Eo
versus # phase diagram, Figure 4.5. The increased polarization due to densifying outpaces the decrease in
field creating an interval where the coexisting dipole strength increases along the binodal on the S versus #
plot. The nonmonotonicity becomes less dramatic as # decreases, as the mutual polarization from densifying
weakens relative to polarization due to the applied field. For sufficiently low 3 > 0, densifying is never able
to overpower the effect of decreasing the field, and the coexisting fluid dipole is a monotonically decreasing
function of volume fraction. For 3 < 0 both densifying and decreasing the field act to depolarize the fluid,
so there are no competing effects that could lead to nonmonotonicity. The constant dipole model fails to
capture nonmonotonicity, instead predicting a monotonic fluid dipole strength along the binodal for any 3.

As 3 decreases, the BCT binodals in fluid/BCT coexistence extend to lower volume fractions, with the
trend continuing for # < 0. In fact, because the BCT binodal for F/BCT coexistence must meet the BCT
binodal for BCT/HCP coexistence, the BCT binodals for F/BCT have a "nose" point where the coexisting
volume fraction transitions from decreasing with decreasing field to increasing with decreasing field. The
BCT volume fraction at the nose point is the most dilute possible BCT crystal for a given . Figure 4.1D
showed that there is enhanced polarization/depolarization from aligning particles in chains, but only large I1
values have significant additional polarization/depolarization from bringing chains together. Because there
is nearly zero energetic advantage to bringing chains together, small 13 values have an entropic driving force
to keep chains well separated and increase the free volume. For a homogeneous crystal phase at a constant
volume fraction, an increase in chain separation (increase in L,) must be accompanied with a decrease
in the intrachain spacing (decrease in L,). Chains can only separate a finite distance until a minimum
aspect ratio is met where particles within a chain are at or near contact (L, = 2a). In a coexistence region
however, the overall volume fraction is fixed, but the crystal phase is free to take whatever density lowers
the total free energy of the dispersion. For small 131, the entropic driving force to separate chains pushes the
coexisting crystal volume fractions to more dilute values as Eo decreases. Thus, the BCT volume fraction
at the nose point decreases with decreasing /. This trend continues to negative , with perfectly insulating
particles having the most dilute BCT crystal. Although |3 increases as 3 -4 -1/2 and would seem to favor
bringing chains together, the increased depolarization from the large negative/ #value weakens the energetic
contribution enough to outpace this effect and favor more dilute crystals. The trend in the BCT nose point
mimics the trend of the BCT volume fraction at the eutectic, which generally decreases with decreasing.

Figure 4.7 shows the field strength corresponding to a coexisting fluid volume fraction #f = 0.20 at fluid/BCT
coexistence for dispersions of different /. Absent kinetic barriers, this is the minimum field needed to induce
phase separation in a homogeneous disordered dispersion at volume fraction # = 0.20. As 1/3 decreases,
a larger Eo is needed to induce phase separation. The magnitude of the interaction potential and forces
driving the phase transition is set by the magnitude of the particle dipole moments. Because the particles
polarize less in the applied field as 1# decreases, higher fields are needed to compensate for the reduced
dipole strength. This trend is also seen in the Eo versus phase diagrams, where the binodals shift upward
in field as 131 decreases. In the limit of / = 0, an infinite field is required to induce a finite dipole strength
and the Eo versus / curve diverges. In fact, the Eo versus 4 phase diagram for / = 0 in Figure 4.5 simply
has the F/HCP hard sphere coexistence points for all finite fields. Recall that, although the true hard sphere
equilibrium crystal is actually FCC, we excluded FCC from the phase diagrams here. In terms of free volume
theory, FCC and HCP crystals have identical free energy1 78 and we cannot distinguish them, so we indicate
F/HCP in Figure 4.5 to be consistent with the other plots. If there were only polarization from the applied
field, as in the constant dipole model, the product |#|Eo necessary for phase separation at a given # would be
independent of the value of itself. However, Figure 4.7 shows that the ,1Eo necessary for phase separation
at 4 = 0.20 increases with decreasing/. This is confirmed on the 1/1 Eo versus 4 phase diagram in Figure 4.5,
where the binodals of dispersions with different / do not collapse together, in contrast to what the constant
dipole model predicts. As / decreases, not only does the polarization from the external field decrease but
the mutual polarization from other particles decreases as well. Even if the polarization from the external
field were the same, larger Eo would be needed to compensate for the reduced mutual polarization. In other
words, at constant |#|Eo, the dipole strength decreases with decreasing /, so a larger |#IEo is needed for
phase separation. This trend continues for negative 3. Because particles depolarize one another for 3 < 0,
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even higher j3Eo is necessary for phase separation compared to the = 0 case where there is no mutual
depolarization. The critical 1#|Eo appears to be a linearly decreasing function of # over the entire range of
3, though we do not have an explanation for why the dependence should be linear. Because the fluid volume

fraction on the binodal changes rapidly with a small decrease in field strength, Figure 4.7 would look similar
had we chosen any fluid volume fraction over an appropriate range, say 0.05 < #f < 0.40. This suggests that
the critical field strength E necessary to induce large scale structure formation in dielectic/paramagnetic
dispersions satisfies

~al
E* = + a2 sgn3 (4.24)

for a wide range of volume fractions, where a1 and a 2 are constants and sgn =/ 131 is the sign of # and
equal to 1 for # > 0, -1 for / < 0, and 0 for /3 = 0. 5o could be, for example, the operating field strength
required to induce a significant rheological response in electrorheological/magnetorheological suspensions.
From a linear least squares fit to the |#|Zo versus # data in Figure 4.7, we find ai ~ 1.9 and a 2 ~ -1.0.

In Figure 4.7, we also compare the critical field strength E observed in experiments of field-driven struc-
tural transitions with that in our simulations and theory. Although there are numerous experimental studies
on dielectric and paramagnetic suspensions, few rigorously examine phase transitions and provide detailed
materials characterization necessary for accurate comparison. Ivey et. al. used light transmission measure-
ments to carefully infer structural transitions in an oil-in-water ermulsion of a = 150 nm radius paramagnetic
kerosene droplets containing Fe3 04 magnetite grains.2 3 7 The oil droplets had a measured magnetic per-
meability of AP = 2.7po, where yo is the vacuum permeability, while water is nonmagnetic (Af = po), so
the dispersion corresponds to / = 0.36. As the external magnetic field slowly increased, the amount of
light transmitted through the dispersion initially decreased as the oil droplets began to chain in the field
direction and then dramatically increased as the dispersion phase separated. At # = 0.10, Ivey et. al.
observe fluid/crystal phase separation at a field strength of E3 = 4kA/m, which corresponds to 53 = 4.4
in our dimensionless units and matches our predictions in Figure 4.7. Promislow and Gast investigated
phase separation in a similar paramagnetic oil-in-water emulsion of radius a = 380 nm and permeability
Ap = 9.25po ( = 0.73) octane droplets containing iron oxide Fe2O 3 grains in toggled magnetic fields.6 4

Although coexisting phases with toggled interactions are not true thermodynamic equilibrium states, they
can be mapped to the equilibrium phase diagram using appropriately time-averaged quantities, as discussed
in section 3.3.2.36 Following this analysis, the appropriate quantity in the experiments to compare with our
simulations and theory is the time average of the squared field, or in other words the quantity Eo = Eo//2.
Using video microscopy, Promislow and Gast observed rapid fluid/BCT phase separation at high toggled
field strengths and melting as the toggled field strength was gradually lowered. With measurements of the
volume of the condensed phase, the authors estimated the coexisting crystal volume fractions as a function
of (time-averaged) field strength. The coexisting fluid volume fraction was not reported. Below a certain
field strength, the coexisting crystal volume fraction drops dramatically with decreasing field, going from

0.56 at Eo = 1.99 to#c= 0.44 at EO = 1.44. We take the field intermediate these values, Eo = 1.72,
as the melting transition at constant #, which corresponds with the critical E in Figure 4.7. Wen and
coworkers performed rheological measurements on dense # = 0.15 - 0.50 electrorheological fluids consisting
of a = 40nm barium titanyl oxalate BiTiO(C2 04 ) 2 nanoparticles with a highly polarizable urea coating
(A, = 60eo) dispersed in silicone oil (A, = 2E), where so is the vacuum permittivity.238 ,239 Because of the
large dielectric constant contrast, # = 0.91, the electrorheological fluid showed a dramatic increase in yield
stress of hundreds of kPa above an AC field strength of about E = 2V/pm , or E = 1.05, for the entire
volume fraction range. 238 The appearance of a yield stress is attributed to the formation of solid-like struc-
tures within the fluid,7-1 0 and likely indicates crossing the fluid/BCT binodal into the coexistence region.
The E from the experiments matches well with our predicted E in Figure 4.7. Ramos and coworkers per-
formed similar rheological measurements on magnetorheological fluids consisting of a = 100, 200, and 375 nm
nonmagnetic silica particles (Ap = po) dispersed in a magnetite based non-aqueous ferrofluid.1 49 150 The
magnetic permeability of the ferrofluid decreases with increasing external magnetic field as the magnetization
of the permanent dipoles in the ferrofluid saturates, yielding variable / = -0.18 to / 3 0. The authors
report an increase in the zero shear viscosity1 50 and elastic modulus 149 over a range of 1|5 / = 2.5 - 5.0.
The data was quite noisy and ran against the noise limit of the rheometer, so we could not extract a single
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representative value to put on Figure 4.7, but the observed phenomena are consistent with our predictions,
laying not too far above the |#| E versus # curve necessary for significant structure formation. In particu-

lar, because 5 scales as a3/ 2 , the authors found that the smallest a = 100 nm particles could not cross the

threshold |#IE for any Eo studied, and therefore functioned as a very poor magnetorheological fluid with
no viscosity increase upon applying an external field. This illustrates the importance of understanding the
phase behavior of such dispersions for rational functional materials design. Yethiraj and van Blaaderen used
confocal microscopy to directly observe fluid/BCT coexistence in a = 1 pm charged polymethyl methacrylate
(PMMA) particles (A, = 5.6E) in a mixture of cycloheptyl bromide and cis-declain (A 1 = 4.Oo) above an

AC electric field strength of Eo = 0.5V/pm, corresponding to # = -0.11 and 1#1 E= 5.8. This value lays
above our predictions in Figure 4.7, but the particles in the experiments also had a strong, soft, and un-
screened electrostatic repulsion, rather than the hard sphere repulsions used in this work, which significantly
increases the field strength necessary for phase separation. 20 6,207 The authors added salt to reduce the range
of the electrostatic repulsions, but did not report the detailed phase behavior in this case. Hynninen and
Dijkstra examined dipolar particles with soft repulsions in detail and found qualitatively different phase
behavior than for dipolar particles with hard repulsions, so adding this experimental Eo to Figure 4.7 is not
the correct comparison. However, the value is consistent with our predictions, which provide a lower bound
for phase separation for any soft dipolar particles.

Figure 4.8 shows the aspect ratio and unit cell dimensions of the coexisting crystal phases in fluid/HCP,
fluid/BCT, and BCT/HCP coexistence for # = 1, though other / values have similar trends. At large field
strengths, the BCT crystal in both fluid/BCT and BCT/HCP coexistence approaches the ground state of a
closest packed BCT crystal at # = 27r/9 m 0.698 and aspect ratio A = /3 - 0.817. As the field strength
decreases, the entropic contribution to the free energy favoring more open crystal structures becomes larger
and the coexisting BCT volume fraction decreases. While both the unit cell dimensions parallel, L, and
orthogonal, L, to the field direction increase with decreasing field, the increase in L2 is small compared to the
increase in L, and the coexisting aspect ratio decreases with decreasing field. Because mutual polarization is
so strong between field-aligned particles, particles prefer to be near contact with neighboring particles in the
same field-aligned chain (L, ~ 2a) while lowering their density by moving chains apart rather than increasing
the intrachain spacing. As Eo approaches the eutectic, the aspect ratio flattens out and the A, Lz, and L2

for the BCT crystal in fluid/BCT coexistence approaches A, L2, and L, for the BCT crystal in BCT/HCP
coexistence, as the Gibbs phase rule requires. Although it was difficult to obtain coexistence points from
our thermodynamic model here, the simulations show that the BCT volume fraction is relatively constant
for3= 1 as the F/BCT binodals approach the eutectic. Figure 4.4 shows that decreasing the field strength
at constant volume fraction increases the crystal aspect ratio. Therefore, we expect the BCT aspect ratio
in F/BCT coexistence to have a minimum close to the eutectic. This minimum is likely related to the BCT
nose points on the EO versus # and S versus # phase diagrams, where the coexisting BCT crystal volume
fraction obtains its minimum value. Although the BCT crystal volume fraction for 3 = 1 does not drop
significantly below the eutectic BCT volume fraction, as / decreases, the minimum BCT volume fraction
decreases far below the eutectic BCT volume fraction. We expect the minimum BCT aspect ratio to also
decrease with decreasing /.

The coexisting aspect ratio of the HCP crystal in BCT/HCP coexistence has a similar trend with decreasing

field strength as that of the BCT crystal. At large field strengths, the coexisting HCP crystal approaches
closest packing # = gr/3V2 ~ 0.740 at isotropic aspect ratio A = /2/3 ~~ 0.817. As the field strength
decreases, the coexisting volume fraction decreases. Both L, and L_ increase, but the increase in L, is small

compared to the increase in L., so the HCP aspect ratio decreases with decreasing field. This keeps the (111)
hexagonal planes close together, keeping the distance between field-aligned particles small, while increasing

the spacing between particles in the same (111) plane. The coexisting HCP aspect ratio in fluid/HCP

coexistence shows the opposite trend with field strength compared to that in BCT/HCP coexistences. For

Eo = 0, the coexisting hard sphere HCP crystal has # = 0.545 and isotropic aspect ratio A = /2/3. As the

field increases, the coexisting density of the HCP crystal does not change much but the aspect ratio decreases.

The distance between hexagonal (111) planes L2 decreases with increasing field strength while the spacing
within hexagonal (111) planes increases with increasing field strength. A, L,, and L. for the HCP crystal
in fluid/HCP coexistence approaches A, L, and L. for the HCP crystal in BCT/HCP coexistence at the
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eutectic point, as the Gibbs phase rule requires.

As the F/BCT binodals approach the eutectic from above we were unable to obtain coexistence points
using our thermodynamic model. In this region, the fluid phase is dense and particles align with the field
into disordered chains. However, our expressions for the fluid free energy, equations (4.18)-(4.20), assume
isotropic, hard sphere configurations. We underestimate the fluid dipole strength (for # > 0 and overestimate
for # < 0) because we do not take into account the anisotropic structure of the fluid. At large Eo, where
bias for field alignment might be large, the coexisting fluid phase is very dilute while at small E0 , the
particle configuration is nearly an isotropic, hard sphere configuration, so our expression for the fluid free
energy is accurate. The coexisting BCT phase in the region slightly above the eutectic is dilute with a small
aspect ratio. Free volume theory, which assumes that a particle diffuses ideally in the small free volume
constrained by its stationary neighbors, is not a good description for the large, highly anisotropic free
volumes so equation (4.17) is not accurate for the hard sphere BCT free energy. Additionally, there are large
fluctuations in the lattice configuration so our assumption that the ensemble averaged capacitance tensor
is equal to the capacitance tensor of the ideal lattice with no fluctuations, (W)(Eo,x) _ W(x), is not valid
and equation (4.15) is inaccurate. In this region, expressions which take into account interactions between
fluctuating chains 22

2240 may be useful, but were not incorporated here. At large E0 , the BCT crystal
becomes denser and fluctuations decrease, so our expressions for the crystal free energy are accurate. At
small E0 , fluctuations may be large but the dipolar contribution to the free energy is small. The BCT crystal
becomes denser and more isotropic, so the hard sphere free volume theory is accurate. Only at moderate field
strengths slightly above the eutectic does our model break down. At the eutectic point our thermodynamic
model is valid, and we were able to obtain accurate coexistence points for the F/BCT binodals, which match
the values at the F/HCP and BCT/HCP binodals. In Figures 4.5, 4.6, and 4.8, dotted lines span the small
region of the F/BCT binodals where we were unable to obtain coexistence points. The dotted lines connect
the F/BCT coexistence points at the eutectic, which we were able to obtain with our model, to the next
highest field strength for which we could obtain coexistence points as a crude interpolation in this region.
Nonetheless, our thermodynamic model works well for nearly all of phase space and its predictions agree
very well with the simulation results.

Our model includes only dipolar interactions and neglects quadrupolar and higher order moments. Including
higher order moments does not change the general form of equation (4.5), but does increase the accuracy
of & and therefore W.145 Neglecting these moments, we underestimate the actual particle dipole strengths
and therefore overestimate the field strengths necessary for phase separation. Because the mutual dipolar
interactions capture many-body effects, which we believe are the most important governing phase behav-
ior, our results are general and accurate even without including higher order moments. Including higher
order moments does not qualitatively change the many-bodied nature of the particle interactions, only the
accuracy of the induced dipole moments. This acts to shift the binodal curves down to lower fields, but we
believe this will be a small quantitative correction without qualitative modifications. The same cannot be
said for the constant dipole model, which neglects many-bodied interactions and is therefore a qualitatively
different description of dielectric/paramagnetic dispersions. The higher order terms contribute more polar-
ization/depolarization as the particle density increases and as 1|1 increases. In fact, for perfectly conducting
particles # = 1, the exact dipole strength diverges for a particle chain or crystal as the particles approach
contact. 145, 241 In this case though, the free volume vanishes and the entropic contribution to the free energy
also diverges. A careful asymptotic analysis is needed to compare these two diverging interactions and yield
finite dipole strengths and free volumes at thermodynamic equilibrium, which is beyond the scope of the work
here. It is not straightforward to apply analyses of competing divergences to real suspensions, where particles
can never truly come into contact and other effects like van der Waals interactions, particle sintering (for a
nonstabilized suspension), and electrostatic repulsion (for a stabilized suspension) are significant for nearly
touching particles. For all #3 #1 there are no diverging contributions to the polarization and as # decreases
from 1, higher order moments quickly become negligible compared to the dipolar contributions.1 4 5 ,24 1

Our model also does not account for any structural changes within the solvent phase. These effects are
important in low-frequency dielectrophoretic assembly of particles in electrolytes, where the ionic double
layers around particles interact and respond to changes in the applied AC electric field.62 8 6 2 o In this
case, the ion cloud contributes additional polarization, and the # parameter is frequency dependent. The
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structure of the double layers changes as the particles assemble and lead to additional electrostatic and
osmotic pressure effects. 12 5 Polarizable colloids in electrolytes are investigated in Chapter 7.

Conclusion

Because of their simplicity and the availability of external control, dispersions of dielectric/paramagnetic par-
ticles responsive to electric/magnetic fields are widely used in industrial applications from shock absorbers9

to tunable photonic crystals1 98 and also provide a robust platform for controlling nanoparticle and colloidal
self-assembly. 46 The equilibrium phase behavior of these materials, a crucial piece of information for their
design and operation, has only been investigated using the constant dipole model,2 0 2  which fails to cap-
ture qualitative features of real suspensions. To address this issue, we have developed a simple numerical and
thermodynamic framework to describe the phase behavior of polarizable particles in an applied field. We
have taken into account mutual polarization of particles, which makes our framework a better representation
of real suspensions than constant dipole models. Our model leads to theoretical predictions that are simple
to evaluate and in quantitative agreement with the phase behavior observed in dynamic simulations and
experiments. In contrast to constant dipole model predictions, we find that coexisting phases have different
polarization strengths and dispersions of particles with different dielectric constant or magnetic permeability
have qualitatively different phase behavior. We have also fully characterized the eutectic behavior of these
dispersions, a quality that is usually missed in other descriptions of dipolar phase behavior.206,207 The
existence of a eutectic is an exciting feature for a nanoparticle dispersion as it can be manipulated to achieve
hierarchical assembly. In atomic alloys, for example, the eutectic can be used to form meso-phases of two
different solid compositions organized into patterns on a macroscopic scale such as lamellae or rods. Control
of hierarchical assembly is a grand challenge in the field of nanoscience, and polarizable particles near their
eutectic offer a new pathway for achieving that control.

Our work will be useful in the design and operation of responsive materials containing dielectric/paramagnetic
nanoparticles. In particular, we have provided detailed results about the relevant operating field strengths,
concentrations, and conductivities as well as enumerated the equilibrium structures in suspensions of spheres.
The thermodynamic framework can be extended to other systems whose interactions and assembly can be
understood in terms of coupled multipole moments and hard repulsions. For example, spherical particles
pinned to a fluid/fluid interface interact and assemble due to quadrupolar interactions. 242,24 3 The strengths
of the quadrupole moments are coupled in a similar way to our mutually polarized dipoles. The developed
dynamic simulations will also be useful to directly observe the assembly kinetics of dielectric/paramagnetic
dispersions, and our thermodynamic theory can improve existing theoretical kinetic descriptions 217, 218 that
incorporate equilibrium thermodynamic calculations. Finally, our simulations can be extended to dynamic
self-assembly processes of dielectric/paramagnetic dispersions, such as modulating the particle interactions
cyclically in time by toggling or rotating the external field.67 '68 89 Our thermodynamic model will also be
useful in analyzing these dynamic self-assembly processes, which in some cases can be understood in terms
of equilibrium phase behavior.3 6

Methods

We perform dynamic simulations of a monodisperse suspension of N ~ 8000 spherical colloidal particles
using the freely-draining model of section. 2.1.4 All lengths are made dimensionless by the particle radius a,
all energies are made dimensionless by the thermal energy kBT, and all times are made dimensionless on the
characteristic particle diffusion time rD -- 67rpwa3 /kT. Additionally, conductivities are made dimensionless
by the fluid conductivity Af which immediately sets the units of field VkBT/a 3 Af and dipole /aa3AkT.

For homogeneous nucleation simulations, we used N = 8000 particles beginning from a disordered initial
configuration, generated by allowing the particles to equilibrate for 10rD with no applied field. We then
apply the field and allow the dispersion to evolve for around 1000rD. We observed that this time was long
enough for the dispersion to nearly equilibrate, though some slowly resolving defects and kinetically arrested
configurations were still present. We do not expect these to obscure our results, as the vast majority of
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particles belonged to nearly perfect bulk phases. For simulations beginning with an HCP crystal, we initialize
all particles on an isotropic HCP lattice oriented so that its closest packed (111) planes are orthogonal to the
applied field. The volume fraction of the initial HCP crystal is lower than that of the overall system, so there
is empty solvent around the crystal. We choose to allow the crystal to span the periodic simulation box in
the two directions orthogonal to the field so that the empty space is located in the field direction relative to
the crystal. This allows the closest packed planes to change their spacing in the field direction in response
to the applied field, changing the equilibrium aspect ratio as a function of the applied field strength.

For cases where the field strength was modulated, a fully equilibrated configuration at one field strength is
used as the initial configuration for a simulation with a different field strength. The field strength was changed
by a small amount and allowed to equilibrate for around 250TD. Regions where the coexisting structures
changed slowly with field strength had larger field jumps than regions where the coexisting structure changed
rapidly. By adjusting our field step size, we always ensured that the structures equilibrated in around 250TD.

For E = 7ra3 Af/32E2 = 1, a time step of At = 10- 3 is small enough to accurately resolve the dynamics of the
dispersion. As the field increases, the forces and displacements in the dispersion grow. We reduce At by a
factor of E to ensure that our numerical integration is always accurate.

From equilibrated simulation configurations, we construct multivariate distributions of particle dipoles and
local volume fractions. The particle dipoles are computed using (4.5), while the local volume fraction of
each particle was determined using two methods. In the first method, the local volume fraction around
a particle is equal to the ratio of the particle's volume to the volume of its Voronoi cell. In the second
method, the local volume fraction was determined by looking at a sphere of radius 6a centered around a
particle and calculating the fraction of this "search" sphere's volume that was occupied by particles. The
central particle's volume was included as well as partial intersections of particle volume with the search
sphere surface. Strictly, both methods represent density only conditionally around a central particle and
so overestimate the true local density. However, this allows us to assign a local density unambiguously to
a particle rather than to a position in space and is more useful as a particle-based order parameter. The
error in using our approach is small for all but the most dilute regions. The Voronoi method gives more
accurate results at high field strengths than the search sphere method for dense, highly anisotropic crystals
in coexistence with a very dilute fluid because the shape of the Voronoi cell takes on the shape of the crystal
unit cell. As the field strength decreases, the crystal becomes less dense, the fluid becomes more dense,
fluctuations in both phases increase, and the search sphere method becomes more reliable than the Voronoi
method to distinguish fluid-like and crystalline particles. We switch between the Voronoi and search sphere
methods around the field strength where the coexisting fluid volume fraction transitions from nearly 0 to a
finite, measurable value.

In the Gaussian fits of the multivariate distribution of particle dipoles and local volume fractions, the
Gaussian peak heights are proportional to the number of particles in each phase. The dense crystal peak
is much larger than the dilute fluid peak, so the fluid values may have larger error than the crystal values.
Additionally, a third peak is sometimes observed corresponding to particles on the fluid/crystal interface,
which have dipole strength and volume fraction intermediate the fluid and crystal values. As the system
size L grows, the number of bulk fluid and crystal particles grows as L 3 while the number of interfacial
particles grows as L2 . For large enough systems, the interfacial peak will be insignificant compared to the
fluid and crystal peaks. Although we are not in this large system limit, we can remove the effect of interfacial
particles by adding a third Gaussian to the total distribution. First, we use a maximum likelihood analysis
to fit the distribution to three Gaussians and sort the particles into three populations (fluid, crystal, and
interface) using the posterior probabilities. The interfacial particles are removed and another maximum
likelihood analysis with two Gaussians is performed to extract the fluid and crystal dipole strengths and
volume fractions. Note that while we remove interfacial particles to determine #f and 0c, we include them
in Nf and Nc to compute o in (4.22) by sorting the interfacial particles into either the fluid or crystal
phase using posterior probabilities, enforcing conservation of particles N = Nf + Nc. This allows for robust
evaluation of the numerical error in the analysis method as well as the sampling.
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Chapter 5

Transmutable Colloidal Crystals and
Active Phase Separation via Dynamic,
Directed Self-Assembly with Toggled
External Fields

In Chapter 1, we discussed two main engineering challenged that have prevented robust, scalable fabrication
of functional nanomaterials via static self-assembly. The first was designing and synthesizing building blocks
whose interactions drive a dispersion toward a specific, often ordered, target structure. While simple struc-
tures have been synthesized with simple particle interactions, more complex structures require increasingly
complicated interactions, which may be difficult to engineer. The second challenge involves the kinetics of
assembling the target structure. The forces driving assembly tend to trap particles in kinetically-arrested
defective or disordered metastable states. There is an intrinsic coupling between the thermodynamic driving
force and the assembly kinetics that forces a tradeoff between quality of the self-assembled microstructure
and its rate of formation. 36 ,37

If particle interactions are varied in time, the dispersion is driven out of equilibrium and non-equilibrium
kinetic pathways can be leveraged to speed the rate of assembly, to enhance the quality of the assembled
structure, and to access states not available at thermodynamic equilibrium. Toggling the the interactions
on for a time ton and off for a time tff cyclically in time is a particularly effective mode of time-variation
and drives rapid crystallization, even when interparticle forces are orders of magnitude larger than thermal
forces.64,65,67,68,73-77,197 The toggle protocol can be used to assemble a variety of different structures,
including those that are not observed with steady interactions. 36 ,37,78-84

In Chapter 3, we used linear irreversible thermodynamics to show that coexisting phases at periodic-steady-
state (PSS) in toggled dispersions satisfy3 6

P1 = P 2 , 11 = 2, (5.1)

where Pi and pi are the pressure and chemical potential in phase i, and the overbar indicates the time average,
X=- f, dtX(t), over one toggle period 3' ton + tof. The time-averaged equations of state(EoS)
depend only on the duty cycle, ( = ton/(ton + to ), and not on the toggle frequency. The time-averaged EoS,
and therefore the periodic-steady-states, can be constructed using analytic EoS for steady interactions. The
phase behavior and equations of state for dispersions of polarizable particles in steady fields were computed
in Chapter 4. In this chapter, we apply this theory to toggled field-directed assembly. Magnetic fields are
particularly convenient for toggling because they are easy to control, and time scales for magnetic relaxation
inside particles are small compared to time scales for particle motion, so dispersions respond essentially
instantaneously to changes in the field. Toggled electric fields may also be used if conditions are controlled
to prevent unwanted currents, electroosmotic flows, and electrochemical reactions. A complete theoretical
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Figure 5.1: Structures observed in Brownian dynamics simulations of perfectly conducting (3 = 1) particles at

volume fraction # = 0.20 assembing in toggled fields of varying strength 5o, duty cycle (, and off duration to.
Symbols indiate different structures: arrested (orange squares), fluid/BCT coexistence (blue circles) via a one-step
(filled cirlces) or two-step (open circles) nucleation mechanism, homogeneous fluid (black crosses), and fluid/fluid
coexistence (green triangles). The field points into the page, as indicated by the schematic in the lower left.

description of self-assembly in toggled magnetic and electric fields will facilitate experimental design for
robust self-assembly.

In this chapter, we investigate dynamic, directed self-assembly in dispersions of polarizable, spherical nanopar-
ticles driven by toggled electric/magnetic fields. First, we use freely-draining, dynamic simulations to elu-
cidate the effect of the toggled field parameters on the terminal structures, their kinetic pathways, and the
quality of self-assembled crystals. Then, we construct appropriate time-averaged equations of state for the
dispersion and use these to predict the coexisting phases observed at periodic-steady-state. Finally, we inves-
tigate body-centered-orthorhombic (BCO) crystals, which spontaneously form as a single phase with toggled
fields in the neighborhood of a eutectic line on the equilibrium phase diagram. These active crystals are
only metastable at equilibrium and are never observed to nucleate in steady fields. The lattice parameters of
these BCO crystals can be varied continuously by changing the strength and duty cycle of the toggled field.

5.1 Out-of-Equilibrium Phase Diagram

Figures 5.1 and 5.2 show the results of Brownian dynamics simulations of dispersions of N = 8000 polarizable
nanoparticles assembling at constant volume fraction < = 0.20 in toggled fields of varying strength E0 , duty
, and off duration tff. In these simulations, the many-bodied forces between polarizable particles are

computed with the model from sections 2.2 and 4.1.2 in which the dipole moments induced within a given
particle depend linearly on the dipoles induced in other particles.1 42 For reasons of computational efficiency,
many-bodied hydrodynamic interactions are neglected. These interactions are unimportant for durations ton
and tog short relative to the bare particle diffusion time, 36 and limited testing with a far-field approximation
of the hydrodynamic interactions1 28 confirm there are no qualitative changes to the simulation results. The
field is made dimensionless as Eo = Eo va3Af /kBT, and time is made dimensionless as tff toff/TD, where
rD = 67rra3 /kBT is the bare diffusion time, a is the particle radius, q is the solvent viscosity, Af is the solvent
permittivity/permeability, and kBT is the thermal energy. After 1000D, the final state of the dispersion
was classified according the legend in Figure 5.1, and the crystal fraction, Xc = Nc/N, the fraction of total
particles N that are locally crystalline Nc, was computed in Figure 5.2 for dispersions that crystallized by
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Figure 5.2: Crystal fraction Xc after 1000 for perfectly conducting(#3 1) dispersions assembling at volume

fraction < = 0.20 in steady (black filled;= 1) and toggled (colored open) fields at various strengths Eo, duties ,
and off durations tff.

designating particles as crystalline if their local density exceeds a threshold value of# 0.60. Crystalline
and disordered particles can be distinguished by density alone for sufficiently dense crystal, as disordered
configurations are excluded above the random close-packing limit,# 0.64, which is close to our threshold
value. Higher threshold values yielded the same classification as did classification with local bond order
parameters. Interface, grain boundaries, defects, or disorder tend to decrease the local packing density, so
dispersions with few large, crystalline domains have a larger Xc than those with many small, defective ones.
Thus, Xc is one representative measure of the quality of the assembled structure.

For small duty cycles, the field is not on long enough to drive assembly, and the suspension remains a homoge-
neous disordered fluid. The critical duty (* necessary for assembly increases with increasing tff and decreases
with increasing Eo. Above *, at small tog the dispersion begins to assemble towards fluid/body-centered-
tetragonal (BCT) coexistence, but arrests in a percolated structure with many defects. The corresponding
crystal fractions in Figure 5.2 are small, and the toggled field does no better in assembling crystal than
a steady field of strength vEo. As with the first row of Figure 5.3, particles do not have enough time
to diffuse away from their arrested configurations within the span Toff, and defects persist from cycle to
cycle. Experiments with paramagnetic spheres also observed arrest at large toggle frequencies. 67,68 As Tf
increases, the dispersion assembles into large, high-quality crystals and reaches a periodic-steady-state with
fluid/BCT coexistence. The crystal fraction with toggled fields is several times larger than that with steady
fields. Two different kinetic mechanisms are observed in this region: one-step (second row of Figure 5.3) and
two-step (third row of Figure 5.3) nucleation. In the one-step mechanism, crystal nucleates directly from a
homogeneous fluid phase. Particles have enough time to diffuse while the field is off to anneal local defects
from cycle to cycle. Diffusion while the field is off also resolves grain boundaries, and smaller crystalline
domains coalesce to a few large, high-quality domains. In the two-step mechanism, fluid/fluid phase sep-
aration occurs before crystal nucleation. Because there are no grain boundaries, dense fluid drops quickly
coalesce. Crystal nucleates preferentially in the dense fluid and, because all nuclei are localized to the dense
fluid, the crystal quickly grows into a single, high-quality phase. The toggle parameters select which kinetic
mechanism is observed. Smaller Tf and larger ( increase the rate of crystal nucleation relative to fluid nu-
cleation and favor the one-step mechanism while larger tof and smaller ( favor the two-step mechanism. In
fact, if off is sufficiently large or ( is sufficiently small, crystal nucleation within the dense fluid is suppressed
for the simulation duration, and fluid-fluid coexistence persists as the PSS rather than fluid/BCT. Particles
diffuse far enough while the field is off that they cannot maintain a stable crystalline lattice from cycle to
cycle, consistent with the classical Lindemann criterion. While fluid/BCT coexistence is observed for steady
fields, fluid/fluid coexistence is metastable and can only be observed in toggled fields. Experiments also
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Figure 5.3: Snapshots over time of perfectly conducting(3 1) dispersions at4 0.20 evolving via different
kinetic mechanisms. Suspensions begin as a homogeneous, disordered fluid (first column) and evlove for 1000-rO (last
column). The middle columns at intermediate time points are different among rows.

observed crystallization only for a range of toggle frequencies while fluid/fluid phase separation occurred
at smaller frequencies, 6 7 '68 and both one-step and two-step nucleation mechanisms were observed in our
previous simulations with toggled isotropic, short-ranged attractions from Chapter 3.36,37

For dispersions that phase separate, structures evolve until the two phases satisfy (5.1), Pi = P2 and

Al = A2-36 If we had expressions for the time-averaged EoS, we could equate them in the two different
phases and compute the PSS diagram for toggled fields. In Chapter 4, we showed that for steady fields, the
EoS can be calculated by first computing the free energy at constant temperature T, volume V, particle
number N, and external field E0 ,1 4 2

L(T, V, N, Eo) = Fhs - NC: EoEo/2, (5.2)

where Fhs is the hard sphere free energy at zero field and C is the capacitance tensor relating the average
particle dipole moment S to the field, S = C . E0 . C accounts for polarization due solely to the external
field and many-bodied polarization from the fields generated by the dipoles of all other particles. C depends
on particle configuration as well as the ratio of particle permittivity/permeability A, to solvent permittiv-
ity/permeability Af through the contrast parameter =_ (A,/Af - 1)/(Ap/Af +2). The pressure and chemical
potential are then computed from derivatives of the free energy,

DLN ND8C
P = - - = Phs + 2 : EoEo, (5.3)

C V T,N,E0 2 i9V

and similarly for the chemical potential, where Phs is the hard sphere pressure at zero field. For toggled
fields, the time-averaged EoS take the form P = (1 - ()Poff +Pon, where P. and Pff are the pressures (or
chemical potentials) while the field is on and off, respectively.3 6 When the field is off, Poff = Phs, and while
the field is on, Po, is given by (5.3), so the time-average is

N DC
P=Phs+ : (EoEo, (5.4)

2 DV

and similarly for the chemical potential. The time-averaged EoS for toggled fields are equivalent to the EoS
for steady fields if the steady field strength Eo = |E0 j is replaced with VEo. In other words, a dispersion
in a toggled field with duty ( and strength EO can assemble into the same phases as a dispersion in a steady
field of strength /Eo. In steady fields, there is a single, well-defined equilibrium state that minimizes the
free energy in (5.2) for a given E0 . In toggled fields however, no equivalent criterion exists, and there can be

multiple periodic-steady-states for a given vNo. If any of the PSSs have multiple phases, the phases must
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satisfy (5.1). Therefore, the PSS phase diagram for toggled fields looks identical to the phase diagram for
steady fields of strength /Eo, but phases that are only metastable with steady fields, such as fluid/fluid
coexistence, can be stable and long-lived in toggled fields. However, whether or not phase separation occurs
and which types of structures assemble depend on the specific choice of toggle parameters.

In Chapter 4, we computed the complete phase diagram for polarizable suspensions in steady fields. 4 2 A
portion of this phase diagram, the fluid/BCT binodal, is shown in Figure 5.4 in terms of v Eo for perfectly
conducting (0 = 1) and perfectly insulating (/ = -1/2) particles. Using the same thermodynamic model,
we also calculate here the metastable fluid/fluid binodal using explicit expressions for P and p. Details
of the simulation method are described in sections 2.1, 2.2, and 4.1.2 and details of the thermodynamic
calculations are discussed in section 4.2 and Appendix B. Using the procedure from Chapter 4, we also
extract coexistence points from our Brownian dynamics simulations by computing the distribution of local
volume fractions around each particle, which has two peaks associated with the coexisting volume fractions
of the two phases. The presented data come from simulations with N = 8000 at a bulk volume fraction of
4 = 0.20 and N = 64000 at # = 0.35 - 0.52. The coexisting volume fractions are independent of the number
of particles and the bulk volume fraction, which only affects the relative volume of each phase via the typical
lever rule.
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Figure 5.4: Periodic-steady-state phase diagram for perfect conductors with = 1 (left) and perfect insulators
with / = -1/2 (right). The colored points are the coexisting volume fractions of fluid/fluid (F/F) coexistence

and fluid/BCT (F/BCT) coexistence from Brownian dynamics simulations in toggled fields at various strengths Eo
(different colors), duty cycles (, and off durations Tg (different symbols; see legend of Figure 5.2 for values), the filled
black circles (connected by dotted lines to guide the eye) are the coexisting volume fractions from simulations in steady

fields of strength V'50 from Ref. 142, and the lines are the predicted F/BCT (solid) and F/F (dashed) coexisting
volume fractions from our theoretical thermodynamic model. The dilute fluid phase in fluid/fluid coexistence is not
shown for the simulation data because the volume fractions were too small to accurately measure.

Because only the product /Eo appears in the time-averaged EoS, 0 and Tff cannot independently affect
the coexisting volume fractions, which are unchanged by tff. For both fliud/fluid and fluid/BCT coexistence,
the data collected at different 50 , , and Tff collapse together in terms of Eo. These collapsed curves
agree with the theoretical predictions for the PSS phase diagram from our linear irreversible thermodynamic
model. Just as o is the thermodynamic "control variable" for steady fields, one can use either the duty cycle
( or the field strength Eo to navigate the toggled field PSS phase diagram. The toggle frequency, set by tof,
appears to select which coexisting phases are observed, but does not affect the coexisting volume fractions.

Perfect conductors(#= 1) and perfect insulators(#3= -1/2) are the limiting cases of particle permit-
tivity/permeability, with real dispersions having intermediate values of . Both conductors and insulators
assemble into the same types of structures at PSS that can be understood in terms of the equilibrium phase
diagram at their respective values, so we expect dispersions of intermediate to behave similarly. Dis-
persions of different / can be compared most easily in terMs of the product |31 Eo. Because of many-body,
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mutual polarization/depolarization among the particles, the fluid/fluid and fluid/BCT binodals in steady
fields shift to lower 131 0 as # increases from -1/2 to 1. Thus, the fluid/fluid and fluid/BCT PSS curves
in toggled fields shift to lower /531 0 as # increases. The effect of # on the equilibrium phase diagram is
discussed further in Ref. 142.

The simulation results have small but systematic deviations from our predictions. The PSS coexistence
curves tend to shift slightly upward with increasing E, and at constant (, the coexisting volume fraction
of the dense phase (either fluid or BCT) decreases slightly as tff increases. We attribute these deviations
to large structural changes occurring within each toggle cycle. The PSS criteria in (5.1) are only valid if a
particle's local environment does not change significantly within a toggle cycle. However, for strong fields
and/or long toggle periods, the microstructure can switch from anisotropic chains while the field is on to
a diffuse, isotropic state while the field is off. In fact, in experiments these intracycle transitions can lead
to an elastohydrodynamic buckling instability in the self-assembled domains at every cycle.7 3 Additionally,
the predicted metastable fluid/fluid binodal for insulating particles underestimates the fluid/fluid PSS from
simulations, likely due to the EoS failing to capture the anisotropy of the dense fluid. These deviations
appear to be only second-order effects, and our theoretical predictions still provide a useful description of
the periodic-steady-states for a wide range of parameters.
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Figure 5.5: Lateral aspect ratio Ay - Ly/L2 of the homogeneous BCO crystal phase for perfect conductors= 1
(bottom left) and perfect insulators = -1/2 (bottom right) at volume fraction # = 0.55 assembled in steady (( = 1)
and toggled fields of various strengths Eo, duties (, and off durations toff. The open colored points are extracted from
simulations of BCO nucleation in toggled fields, the filled black circles (connected by dotted lines to guide the eye)
are from simulations of BCT to BCO lattice deformations upon lowering a steady field, and the black dashed line is
the metastable BCO aspect ratio calculated by minimizing (5.2) using our thermodynamic model for steady fields.

5.2 Transmutable Body-Centered-Orthorhombic Crystals

At large volume fractions and low duty cycles, particles assemble into a homogeneous body-centered-
orthorhombic (BCO) crystal, with the three unit cell dimensions, L,, LY, and L2, all having different
values as shown in Figure 5.5. For a BCT crystal, the typical crystal phase observed in steady fields, the
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two dimensions orthogonal to the field, L, and Ly, are equal but different from the dimension parallel to
the field Lz / L2 = Ly. While BCT breaks symmetry in the field direction, the appearance of BCO crystal
is surprising because it breaks symmetry in the plane orthogonal to the field, where there is no preferred
direction. For # > 0.50 and steady, weak fields, HCP crystal (with its 111 face orthogonal to the field) is
thermodynamically favored over BCT because the HCP lattice has a larger free volume.1 42 However, con-
verting between BCT and HCP requires melting one lattice and nucleating the other. BCO crystal also has
a larger free volume than BCT, but is accessible from BCT through a diffusionless lattice distortion. When
a steady field is applied to a BCT crystal and then the field strength is reduced, we observe this diffusionless
BCO transition, which has lower kinetic barriers than those for HCP nucleation. A pure BCT crystal breaks
symmetry and transitions to the metastable BCO phase as the steady field strength is lowered. The lateral
aspect ratio AY = Ly/L, of the BCO crystal is that which balances entropic and energetic contributions
to locally minimize the free energy in (5.2). However, defects and sufficient time will eventually drive a
transition to the stable phase through melting and nucleation of HCP crystal.

In toggled fields, particles prefer a BCT structure when the field is on and an isotropic HCP or FCC structure
when the field is off. The particles do not have enough time to switch between crystal structures within a
cycle, so they choose to assemble into BCO as a compromise between their preferred structures in the field-on
and field-off half-cycles. Unlike in steady fields, where BCO is only accessible by first nucleating a pure BCT
phase at high fields and then lowering the field strength, BCO nucleates and grows directly in toggled fields.
The lateral aspect ratio AY of the BCO crystal can be tuned with the duty or the field strength. Figure
5.5 shows AY for homogeneous BCO crystals assembled in Brownian dynamics simulations of N = 100000
conducting (0 = 1) and insulating (0 = -1/2) particles at volume fraction 4 = 0.55 and steady and toggled

fields of various 50 , (, and tff. AY was determined by identifying particles in the same plane orthogonal
to the field and then computing the radial distribution function among particles in the same plane. The
first two peaks correspond to the unit cell dimensions, L, and Ly, orthogonal to the field. Also shown are
theoretical predictions for AY from locally minimizing (5.2) using our thermodynamic model.4 2 At large

Eo, BCT crystal (AY = 1) is always stable over BCO. The point where BCT transitions to BCO is close
to the fluid/BCT/HCP eutectic line on the equilibrium phase diagram.1 42 Below this BCO/BCT transition

point, the aspect ratio of the BCO crystal decreases with decreasing E0 , approaching A, = 1/05 ~ 0.58 as

V0Eo - 0 which places field-aligned chains in a hexagonal arrangement, though this structure is metastable
with respect to hard sphere FCC. While the BCO aspect ratio could be a function of tof, , and Eo
independently, we observe that only JEo controls Ay, and the data collapse to a single curve. In fact, the

aspect ratio AY from nucleation in a toggled field at ( and Eo is identical to AY from lattice deformations in

a steady field of strength N50 and close to the theoretical predictions for metastable BCO. This is similar
to fluid/fluid and fluid/BCT coexistences in Figure 5.4, where VEo dictated the PSSs assembled in toggled
fields and corresponded to the steady field phase diagram. For a homogeneous phase however, there are
not criteria like (5.1) that must be satisfied at PSS, yet the observed BCO structures at PSS are identical

to the metastable BCO in steady fields of strength Vo. We might hypothesize that any PSS assembled
at a given Eo, , and toff in toggled fields must be a metastable or stable state in steady fields of strength

V/Eo, even if the metastable state is not actually observed for steady fields. This would allow all PSSs to be
described in terms of equilibrium thermodynamic expressions. This hypothesis requires further investigation
but is supported by all data in this chapter.

To form a thermodynamically stable BCO phase with steady fields, additional interactions on top of dipolar
interactions must be introduced. Polarizable particles that also have electrostatic repulsions due to a net
charge can have a thermodynamically stable BCO phase.6 1,206 ,20 7 However, two energy scales as well as
an (screened) electrostatic length scale must be cooperatively engineered to favor BCO over other crystal
phases. Toggled interactions offer a simpler route to a stable, transmutable BCO periodic-steady-state using
a single energy scale V/Eo that can be robustly controlled.

The formation of BCO is one example where a complex crystal is assembled by toggling between two states
that prefer simpler crystals, BCT and HCP/FCC. We believe this idea can be extended to form other exotic
crystal structures by changing the two toggle states. That is, if a dispersion is engineered to switch between
two states that prefer different, incommensurate crystal structures at equilibrium, the toggle parameters
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can be optimized to assemble a third crystal by examining possible metastable structures predicted by
appropriate time-averages of equilibrium equations of state. Because these switching states can, in principle,
be any two states (e.g. two different types of interparticle attraction, two different orientations of the external
field, etc.), we believe growth of many interesting structures may be possible via toggled assembly.

Conclusion

In this chapter, we investigated active self-assembly of polarizable colloidal particles in toggled electric/magnetic
fields using Brownian dynamics simulations and thermodynamic theory. The toggling protocol offers a sim-
ple and easily controlled scheme for driving self-assembly of large, high-quality crystals at significantly faster
rates and with many fewer defects than assembly in steady fields. The toggle parameters can be tuned to
independently change the type of assembled structures and their growth mechanism. Phases that are only
metastable in steady fields, including a dense fluid phase and body-centered-orthorhombic crystal, can be
reliably assembled in toggled fields. In particular, the lattice parameters of the active BCO crystals can
be continuously modulated with changes in the toggle duty cycle. Such transmutable crystals can be use-
ful for sensing applications and as responsive materials capable of rapid changes in optical and mechanical
properties. Though the dissipative nature of active assemblies preculdes a generic description in terms of
statistical mechanics and equilibrium thermodynamics, we used linear irreversible thermodynamics to lever-
age thermodynamic calculations in steady fields to theoretically predict the periodic-steady-states in toggled
fields. The data extracted from our simulations agree well with the theoretical predictions. We observe
that the assembled periodic-steady-states in toggled fields are always selected from candidates that are at
least metastable in steady fields. This suggests that all out-of-equilibrium assemblies in toggled fields can
be described in terms of equilibrium thermodynamic expressions. These results will facilitate the design and
operation of robust assembly processes for colloids and nanoparticles directed by toggled fields, offering a
way to assemble complicated nanomaterials efficiently rather than relying on complex particle and/or process
engineering.

110



111

Im 11 " -,-- IM "-I Km



112



Chapter 6

Enhanced Diffusion and
Magnetophoresis of Paramagnetic
Colloidal Particles in Rotating Magnetic
Fields

field gradient-- field gradient-1

stdyrotatin
field'i2 c

WICD ~field .

Figure 6.1: Schematic of magnetophoresis in steady (left) and rotating (right) fields through a porous material.

In the previous chapters we have discussed how electric and magnetic fields can faciliate self-assembly of
structures of polarizable particles aligned with the field6 1 ,202 as well as modulate their macroscopic ma-
terial properties on-the-fly. 7'1 0"1 98 If the field is held steady in time, the dispersion can only respond by
relaxing toward thermodynamic equilibrium, so its structure and dynamics are coupled. This coupling can
be problematic when designing processes involving field-induced forces. For example, in Chapters 3 and 5,
we saw that large interparticle dipolar forces that drive self-assembly of crystals also tend to cause kinetic
arrest; 6 7, 2 4 4 large field strengths that drive rapid magnetophoresis lead to particle aggregation that reduces
mobility in porous media. 3 8 If energy is supplied to vary the field in time, the dispersion is driven out of
equilibrium. Unlike its equilibrium counterpart, the dispersion structure and dynamics can be tuned inde-
pendently and optimized for a target application.3 7 Several types of field modulation have been investigated
including toggling the field on and off,64 ,6 5 ,67,6 8,73-75,244,245 which was the focus of Chapters 3 and 5, and
switching the field's polarity,6 2,86- 88 but a particularly effective mode is rotating the field direction. 24 6 The
dipolar interactions among particles drive them to align in the field direction, forming chains that rotate
with the field. This has been used to enhance mixing at the micron scale, 9 3 , 9 4 amplify signals from biochem-
ical sensors, 95- 97 propel artificial microswimmers, 98-1 00 and assemble magnetic "conveyor-belts" to transport
cargo.101
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Many researchers have considered paramagnetic nanoparticles as a means to transport drugs and molecules
for targeted therapeutic applications. 38,88 ,245,24 7 The nanoparticles can be localized to a specific site using
magnetic field gradients to guide the particles magnetophoretically. In many cases, the target sites (e.g.
tumor cells) are surrounded by dense, porous tissue through which the particles must navigate. It is advan-
tageous to use large field strengths and large gradients to increase the flux of particles to the target site. If
the field orientation is held steady during magnetophoresis, the dipole moments induced in the paramagnetic
particles attract one another and the particles aggregate into long chains. The aggregate size can be much
larger than the characteristic pore size, hindering the particles' mobility through the tissue or even prevent-
ing penetration into the tissue entirely. Soheilian, Erb, and coworkers proposed using rotating magnetic
fields to suppress particle aggregation during magnetophoresis.3 8 The dispersed nanoparticles fit within
the pores and readily navigated the tortuous porous network in rotating fields, so the flux of particles was
greatly enhanced over magnetophoresis with a steady field. Figure 6.1 illustrates these differences between
magnetophoresis with steady and rotating fields. Understanding the transport of paramagnetic particles in
rotating fields will facilitate their use for promising targeted therapeutic applications.

The case of individual chains at very dilute concentrations in a rotating field has been thoroughly investigated
theoretically, computationally, and experimentally. 94,248- 256 At low rotation frequencies, the chains rotate
at the same frequency as the field, but lag behind it. The steady-state lag angle balances the magnetic
torque driving rotation with the viscous torque opposing it. 248,252,253 The magnetic and viscous forces vary
along the chain, causing the chain to adopt a slight "S" shape as it rotates. 253 As the rotation frequency
increases, the viscous shear forces along the chain overpower the attractive intrachain dipolar forces holding
the chain together. The chain can break up with increasing frequency to reduce its drag while still rotating
synchronously at the field frequency,249,2 5 0,257 or the chain can rotate asynchronously with the field and
have complicated breakup and orbiting dynamics. 38,258-261

Concentrated suspensions at very large rotation frequencies have also been investigated. 89- 92,26 2-26 4 When
the rotation frequency is much larger than the characteristic diffusion time of the particles, the particles
experience an effectively steady interparticle potential. This interaction is isotropically attractive in the
plain of rotation and repulsive out of the plane of rotation, and the functional form is identical to that
of regular dipolar interactions of half-strength oriented out-of-plane, but with the sign of attractions and
repulsions switched (i.e an "opposite" dipole interaction). 262 High-frequency rotating fields are especially
effective at forming large, two-dimensional sheets of particles in experiments.8 9 2 4 The complete phase
diagram in high-frequency fields has been computed in simulations and reveals that the equilibrium phases
are three-dimensional crystals. 90

The dynamics and transport properties of concentrated dispersions of polarizable particles in rotating fields
at intermediate frequencies have not been reported. Because many of the applications of such dispersions are
governed by their out-of-equilibrium response to rotating fields, understanding the transport properties is
crucial to effectively utilize rotating fields in practice. In this chapter, we use Brownian dynamics simulations
with and without hydrodynamic interactions to investigate diffusion and magnetophoretic transport of a
three-dimensional dispersion of spherical, polarizable particles driven by a two-dimensional rotating magnetic
field. Though either magnetic or electric fields can be used for rotation, magnetic fields are more common
in experiments because their effects on the dispersion are easier to control, as electric fields can generate
unwanted currents, electroosmotic flows, and electrochemical reactions. In this simulation study, we interpret
our results from the perspective of a magnetic field-driven experiment. However, the mathematical treatment
of either class of experiments is identical, so our results can apply to both rotating magnetic and electric fields.
First, we describe our simulation method which takes into account many-bodied, mutual polarization among
the particles as well many-bodied, hydrodynamic interactions. Next, we describe the steady-state response
of the dispersion as a function of various system parameters. We quantify the long-time self-diffusivity of
the particles, which is enhanced in rotating fields over steady fields. Then, we compute the magnetophoretic
mobility of the particles in the bulk and propose a simple model to calculate the mobility in porous media.
Finally, we elucidate the effect of porous confinement on the diffusion and magnetophoretic transport in
porous media.
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Figure 6.2: Snapshots from simulations of paramagnetic particles at two different volume fractions 4in steady and
rotating fields of different frequencies i. For# 0.005, the field strength pictured is Eo = 1.2, and for4= 0.05,
Eo = 1.0.

6.1 Simulation Method

In this chapter, we use both the hydrodynamic (HI) model and the freely draining (FD) model detailed
in Section 2.1 for the equations of motion and the mutual dipole model in Sections 2.2 and 4.1.2 for the
magnetic forces. Unless the FD model is specifically referenced, assume the HI model is used for the
simulations. We compute the set of particle velocities V from the set of particle forces J using the Rotne-
Prager-Yamakawa grand mobility tensor _WH (2.8),i.e. o ' H - F. The magnetic forces first require
finding the set of unknown particle dipoles Y by solving go = _E . y, where &o is the set of external
fields and /&E is the _WE block of the grand potential tensor (2.74). Then, the set of magnetic forces is

E V E .: 2.142,154

The external field rotates in the xy-plane with frequency v

Eo(t) = Eo [cos wt, sin wt, 0], (6.1)

where Eo =_ Eol is the field strength and w = 27rv is the angular frequency. We assume the rotation speed is
small compared to time scales associated with magnetic relaxation within the particles so that the dispersion
responds instantaneously to changes in the field. At each time step, the particle dipoles and forces are
computed for the current orientation of the field.

This description for the magnetic interactions assumes the magnetization of a particle is linearly dependent
on the local field. This is a good approximation for small field strengths, but the dipole moment eventually
saturates to a finite value at large field strengths. Above the saturation field, the particles can no longer
mutually polarize one another and a constant dipole model can be descriptive of the suspension. Such a
model is not considered here, and we assume the field strength is small enough to be in the linear limit.
The magnitude of the contrast parameter 1|1, usually written as the susceptibility X = 30 for magnetic
particles, controls how strong mutual polarization among particles is relative to the polarization due solely
to the external field Ho. This qualitatively changes the many-body description of the dispersion and has a
substantial effect on the phase behavior.' 2 Here, we focus on the limit of "perfectly susceptible" particles
with x = 3 (0 = 1) and AP - oo. This is the magnetic analogue to perfect electrical conductors. We could
have picked an arbitrary x value, but this limiting case at the maximum possible lxi lets us easily probe
the effects of mutual polarization. Real suspensions have X < 3, so mutual polarization is not as strong as
those observed in our simulations. For perfectly susceptible particles, the force between a pair at contact
and the dipole moments for a chain of particles in contact diverges if an infinite number of moments are
accounted for.1 45,265 It is possible to include this divergence with "lubrication-like" pairwise interactions. 145

However, this divergence is not realized in real systems because particles never come into true contact and
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other surface forces dominate particle interactions on these short length scales. Because we only include
dipole moments, all forces and dipoles are finite at contact. The interactions are regularized as the particles
overlap, r < 2a, so that they remain solutions to the governing magnetostatic equations but stay finite as
r -+ 0.142 From Chapter 4, the level of detail we have included in the simulations reproduces the phase
behavior observed in experiments with steady fields.1 4 2

The natural nondimensionalization scheme scales lengths by the particle radius a, energies by the thermal
energy kBT, time by the bare diffusion time TD 067r/a 3 kBT, and external field by VkBT/a3 Af. Other

quantities are nondimensionalized by combinations of these four, such as dipoles scaled by Va3 AfkBT (i.e.
a3 Af times the field scale). A tilde is used to indicate the nondimensionalized version of a dimensional
quantity, for example frequency i = vrD. We choose a time step of AT= 10- for frequencies i < 10, which
is short enough to resolve dynamics within a single rotation. For higher frequencies i > 10, we decrease the
time step to AT= 10-4. For all simulations, we use N = 8000 particles in a cubic, periodic simulation box.
Limited testing with larger system sizes of N = 64000 did not change our results. We first thermalized the
dispersion for 100TD with no applied field to obtain a random configuration. The rotating field is then turned
on, and the dispersion is allowed to equilibrate for 500 - 2 50OTD. Data is then collected and averaged over
100 - 2 50OTD. The wide range of simulation times was required for simulations at low frequencies, which
needed long acquisition times to resolve full rotation cycles. Simulations at larger frequencies equilbrated
quickly and only needed short data acquisition times. Snapshots depicting the simulation geometry and
typical configurations are shown in Figure 6.2.

6.2 Steady-State

In a steady, nonrotating field, particles align and form chains in the direction of the applied field. At low
field strengths Eo and volume fractions #, there is an equilibrium distribution of chain lengths whose mean
Nc increases as the field or volume fraction increases.7 Because the particles mutually polarize each other
as they chain, there is a distribution of dipole moments whose mean S also increases in magnitude S = ISI
with E0 and q.12 For sufficiently large field strengths and volume fractions, chain-chain interactions drive
crystallization, and the dispersion reaches fluid/body-centered tetragonal (BCT) crystal coexistence.1 4 2, 222

At sufficiently low densities and low field strengths, the chains are much shorter than the interchain distance,
and the dispersion in rotating fields can be described by the well-studied single chain results. 94,248-256 For
small rotation frequencies, the equilibrium distribution of chain lengths and dipole strengths in steady fields
is not perturbed much, but the viscous drag on the chains causes them to lag behind the field by an angle
0. For a straight chain of length Nc and rotation frequency v, the lag angle is that which balances the
total magnetic torque driving the rotation, 1ot = NcIS x Eol ~ Nc sin 20, with the hydrodynamic torque
opposing it, 1ot ~ vNe, and so the lag angle goes as sin20 vNc,increasingwithrotationfrequency. 2 5 3

Because the chain length and dipole strength are relatively constant, the magnetic torque increases with
v. As the frequency becomes too large, increasing the lag angle cannot provide enough magnetic torque to
sustain the rotation. Instead, the chain breaks up to lower its hydrodynamic torque, so the magnetic torque
attains a maximum value at intermediate frequencies around where chains begin to break up. This breakup
hinders mutual polarization and the dipole strength S of each particle drops with rotation frequency.

At larger So and #, several other factors complicate theoretical analysis. Chains of size Nc sweep out discs of
radius aN, and interchain interactions become important when these discs overlap. Because Nc can become
quite large as Eo and # increase, especially for low frequencies, chain-chain interactions are important even at
small volume fractions. Hydrodynamic flows generated within the dispersion as the chains rotate contribute
additional shear forces that may affect chain break up. As chains bump into each other, they can break
apart, reform, and assemble into different kinds of structures like platelets, sheets, and three-dimensional
crystals (as seen in Figure 6.2), so even the concept of "rotating chains" may not be appropriate for many
real dispersions in rotating fields. 8 9- 91

Figure 6.3 shows several steady-state quantities, the average cluster size Nc, the average dimensionless
particle dipole strength S = S//a3 AkBT, and the average dimensionless magnetic torque per particle
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Figure 6.3: Average cluster size Nc (left column), average particle dipole S (middle column), and average magnetic
torque per particle jE (right column) as a function of rotation frequency i for two different volume fractions # = 0.05
(top row) and # = 0.005 (bottom row) and several different field strengths Eo (different colors). Circles correspond to
simulations with long-ranged hydrodynamic interactions (HI) while crosses neglect these in the freely draining (FD)
model. The values for steady fields (with HI) at 0 are shown with dotted lines.

ZsE = FE/kBT = Et/NkBT in dispersions with different volume fractions, field strengths, and rotation
frequency. Particles were considered part of the same cluster if they were within a threshold distance of 2.1a
of any other particle in the cluster, and then the cluster sizes were averaged over the set of observed clusters
to obtain Nc. FE was computed from the mean dipole S as IE = IS x Eol. Note that this is the total
magnetic torque on the entire dispersion normalized by the number of particles. An individual paramagnetic
particle does not rotate due to this magnetic torque alone because the particle's induced magnetic moment
rotates freely. At low field strengths (Eo 1.05 for the dispersion at # = 0.005 and EO 0.9 for the
dispersion at # = 0.05), the trends of the steady-state quantities are similar to the dilute, single chain trends
discussed above. At higher field strengths, the complicated interchain interactions become important and
the steady-state quantities are not described by the single-chain model. At very low frequencies, the rotation
does not generate enough shear force to break chains apart, but rather helps chains "find" one another and
facilitates the formation of platelets and crystalline sheets. In some cases, the mean cluster size is larger
for the rotating fields than steady fields, where chains can only coalesce due to fluctuation- or defect-driven
interactions, which aren't particularly long-ranged.2 2 2',2 4 Thermodynamically, there is no preference for
chains to coalesce in-plane or out-of-plane, but rotation enhances the rate of in-plane aggregation so the
formation of platelets and sheets in the low frequency regime is a kinetic effect. These kinetic signatures
were also observed in experiments of paramagnetic particles, 249 where the steady-state chain length was
larger in low-frequency rotating fields than steady fields, as well as simulations of particles with permanent
dipoles, 2 61 that formed large sheets similar to Figure 6.2 at low rotation frequencies. The dipole strength of
crystalline configurations is significantly larger than that of chains for highly susceptible particles, so there
are also cases where the dipole in rotating fields of low frequency is larger than that in steady fields.1 4 2

These crystal platelets and sheets rotate with the field, which requires large magnetic torques, even at low
frequencies. This can be avoided in experiments by using slightly incommensurate frequencies in a biaxial
field setup 91 or a randomly fluctuating field orientation.8 9 As the frequency increases, chains break up
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before they coalesce in the plane of rotation, and the mean cluster size drops, accompanied by drops in
the dipole strength and magnetic torque, suppressing aggregation altogether as i gets large. Because the
high-frequency limit results in an effectively steady, "opposite dipole" interaction, aggregation can only be
suppressed for field strengths below the crystal phase boundary, where there is a thermodynamic driving
force for sheet formation. 9 The strength of the dipolar attractions decreases as the interactions become
time-averaged. For a constant dipole model (no mutual polarization), the strength of the high-frequency
attraction is exactly one-half of the strength of attractions in a steady field.2 62 For mutual dipole models,
the strength of the high-frequency attraction is even lower than one-half of the steady case, since anisotropy
of the structures with the field in the steady case give a huge mutual polarization boost compared to the

more isotropic configuration in the rotating case. 9 1,142 If the field is sufficiently large, particles form sheets

and crystallize at any rotation frequency, owing to thermodynamic phase boundaries in the low-frequency
(dipole) and high-frequency ("opposite dipole") limits, and particle aggregation cannot be prevented with
rotation.

Figure 6.3 also compares the average cluster sizes in dispersions with long-ranged hydrodynamic interactions
(HI) and those without (FD), where the drag on each particle is simply the Stokes drag. We find that

the mean cluster size, average particle dipole, and magnetic torque are similar for both models, with the
mean cluster size being a bit larger for the FD model at low frequencies. In the FD model, each particle

in an aggregate feels Stokes drag, and the total drag of the aggregate goes as N, the number of particles
in the aggregate, regardless of aggregate shape. With long-ranged HI, the drag on an aggregate goes as

Nc , where d is the aggregate's fractal dimension.1 2 6' 1 3 7 2 67 Solvent flows around the object, so particles
on the interior of the aggregate feel little drag compared to those on the exterior. Because the particles align
with the rotating field, the fractal dimension is close to d ~ 1, especially at early times, and the aggregates
feel similar drag whether HI are included or not. Additionally, the solvent can reach each particle and the
distribution of drag force along the aggregates is similar in both HI and FD models, so break up occurs at
similar frequencies. Therefore, we expect the steady-state quantities to be similar whether or not HI are
included, as observed in our simulations.

6.3 Diffusivity

On sufficiently long time scales, the motion of particles is diffusive and the mean squared displacement of a
particle grows linearly in time,

lim (r(T)r(T)) = 2D T (6.2)

where r(r) = x(t + T) - x(t), T is the lag time, (-) indicates an ensemble average over particles and time,
and D° is the long time self-diffusivity tensor. 125 For lag times much larger than the period of rotation,
T» V--1, the two directions in the plane of rotation are equivalent as the field sweeps many revolutions within
T. Therefore, the self-diffusivity tensor is characterized with three quantities, the in-plane D11 , out-of-plane
D, and cross D11 long-time self-diffusivities

r (r))= 4D11T, (rI(r)) 2DT, ((r (T) + ry (T))r,(T)) = 4D, 1 T, (6.3)

where r r 2 + r is thein-plane displacement and r isthe out-of-plane displacement. It is

convenient to consider these diffusivities relative to the Stokes-Einstein diffusivity Do = kBT/67rra of an

isolated particle,D D1 /Do,D a D1 /Do,D 1 _ Dl,_/Do. We observe that the cross diffusivity D 1 ,1
is always very small, so diffusive motion in the plane of rotation is decoupled from diffusive motion out of
plane, and only the diagonal elements of D° are nonzero. Figure 6.4 shows D11 and D_ for different volume
fractions, field strengths, and rotation frequencies.

A particle's self-diffusivity is related to its drag 7H (which is generally different than the Stokes drag y) via
the Einstein relation D = kBT/yH. When particles are aggregated, their self-diffusivity is constrained by
the self-diffusivity of the aggregate, which moves as a single unit. Because the fractal dimension is d ~ 1,
the drag on aggregates increase linearly with their lengths, and the self-diffusivity of the particles is small.
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Figure 6.4 shows that, at low frequencies, both bi andDbidecrease asthe field increases since the aggregate
size increases with field. As chains break up in the rotating field, the aggregates become smaller and the self-
diffusivity of the particles increases. BothDi and Diincrease as the rotation frequency increases. At large
frequencies, both self-diffusivities approach the self-diffusivity of ahard sphere suspension, Do(1 - 2.1#) at
small #, which is abit lessthan Doof anisolated particledue tohydrodynamic and stericinteractions. 2 s2 9

If the field strength istoo large, significant crystallization occurs for all rotation frequencies, and the self-
diffusivities are small and relatively independent ofi.

For intermediate field strengths, there is amaximum in ||at intermediate frequencies. Not only is the

maximum 5||larger than the hard sphere self-diffusivity at high rotation frequencies, it isalso larger than

Do. Thus, the rotating field facilitates faster diffusion for arange offrequencies. This diffusivity peak is
observed for all volume fractions between # = 0.005 and #= 0.05. The frequencyi&*at the peak Dgis
fairly independent of field strength for the field strengths investigated. Figure 6.5 shows that I* increases as

a power law with increasing #, while Dgdecreases withq#. A power law fit yields&* ~ # 2 0 , and the peak
frequency is quadratic in volume fraction inat least the range #= 0.005 - 0.05. As the volume fraction
increases, aggregation competes against diffusion, and the peak self-diffusivity Dgdrops as does the window

wherebi > D.In fact, if9#or 5become toolarge, bulkcrystallization occurs andthediffusivity remains
small for all rotation frequencies. The out-of-plane diffusivity does not have amaximum and increases
monotonically to the hard-sphere result asfrequency increases.

The scaling of v* ~#2 can be explained by considering chains of Ncparticles that sweep out disks of
volume Vd= 2ahrNe2as they rotate. If there are Nd= N/Nc of these disks, the disk volume fraction is

#5d= NdVd/V'-~ NNc/V ~Nc#,where9#5= 47ra 3 N/3V is the particle volume fraction. From the balance of
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magnetic and shear forces, the chain length decreases with frequency as Nc ~ v-1/ 2,249,253 SO #d ~ V-1/2.
We hypothesize that the peak frequency occurs when #d ~ 1, where the disks begin to overlap. Thus, the
critical frequency goes as v* ~ #2, consistent with the scaling we observe in the simulations.

Enhanced diffusion above Do can have contributions from two sources, illustrated in Figure 6.6. First,
the "interchain mechanism", aggregates can exchange particles as they break up and reform in the rotating
field. Particles can "hop" from chain to chain and be shuttled along due to interparticle forces alone.
Second, the "hydrodynamic mechanism", as the chains rotate they generate flow fields that entrain and move
other particles around. Each chain functions as a magnetic "stir bar" that produces mixing flows in the
dispersion. Figure 6.4 compares the diffusivities in dispersions with (HI) and without (FD) long-ranged
hydrodynamic interactions. When hydrodynamic interactions are turned off, the diffusivity peak disappears
and Dil increases monotonically with L to the hard-sphere value at high frequencies. From the steady-state
quantities in Figure 6.3, the structures in the two models are fairly similar, so the qualitative differences
in diffusivities is not solely a result of differences in structure. Without HI, enhanced diffusion can only be
due to the interchain mechanism, since the solvent flows in the hydrodynamic mechanism are absent. Even
though particles in the FD model assemble into large rotating chains and platelets that strongly interact,
this does not lead to fast diffusive transport. Because we do not observe enhanced diffusion when HI are
turned off, we conclude that the enhanced diffusion above Do is due mainly to hydrodynamic mixing flows.
As i increases, the aggregates rotate faster, increasing mixing, but they also break up and become smaller,
decreasing mixing. Therefore, there is an optimal frequency range that balances these competing effects and
yields the maximum in Dil we observe in Figures 6.4 and 6.5. This mixing mechanism is consistent with
experimental observations of enhanced tracer diffusion of noninteracting tracer particles in a dispersion with
rotating paramagnetic chains. 93,94 Because the tracer particles are not magnetically responsive, enhanced
diffusion above the tracer's Stokes-Einstein diffusivity is due solely to the hydrodynamic flow mechanism.
Our results show that this is true even for self-diffusion of paramagnetic particles, whose motion due to
solvent flows overpowers motion due to interparticle forces.

We observe that Di < bl for the entire field and frequency range. Particles have attractive interactions
in the plane of rotation but purely repulsive interactions out of plane. Thus, particles tend to move more
within the same plane parallel to the rotation than they do orthogonally to it. Additionally, hydrodynamic
mixing flows mostly have the same orientation as the rotating field driving it, so these flows push particles
around within the plane of rotation. Finally, the bare diffusivity of an isolated chain is larger in the direction
of its long axis than in the orthogonal direction.1 26 Because the long axis is always oriented in the plane of
rotation, the bare chain diffusivity contributes more to in-plane motion than to out-of-plane motion.
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hydrodynamic mechanism

interchain mechanism

Figure 6.6: Two possible mechanisms for self-diffusion in rotating fields (red arrows). A tagged particle (blue) can
move by the hydrodynamic flows (black arrows) generated by other particles (gray) or by interchain interactions.

6.4 Magnetophoretic Mobility

Polarizable particles will move in a nonuniform field via magnetophoresis. Here, we consider a rotating
field with a small spatial gradient oriented arbitrarily. If the components of the applied field gradient VEO
are small compared to Eo/a, the steady-state structure of the dispersion is only weakly perturbed by the
magnetophoretic forces. In this case, the average phoretic velocity can be computed from the steady-state
structure with no field gradient. The magnetophoretic force on a particle i, Ff, is equal to the dot product

of its dipole Si with the field gradient, F' = (VEo) - Si = G (to - S), where G = VEo and Eo = Eo/Eo.

Because the dispersion's structure and dipole moment are induced by the field and align with it, the absolute
field direction is not important and only its magnitude matters. We do not need to consider the field
gradient tensor VEo, which has both the field and gradient directions, but rather the field gradient vector
G = VEo, which has only the gradient direction and the field magnitude. Note that this would not be true
for an arbitrary, permanent structure or dipole in a field gradient, for which both the field direction and the
gradient direction matter.

The dipoles are determined from the steady-state configuration at zero field gradient by computing 9=
W &o, and the set of phoretic forces .Fp [Ft, Fp,... FP]T = G(Y.Eo) produce velocities V = _& -P.
The average phoretic velocity u =_ E - V = E u/N, where E is a summation tensor, can then be written
as

u = MP - G, MPiE H,. 0  (6.4)

where the magnetophoretic mobility MP is a 2-tensor whose elements M couple the gradient in direction j
to the velocity in direction i. For an isolated particle, the dipole is m = 47raAfEo and the hydrodynamic
mobility tensor is MH = I/67ra, so the magnetophoretic mobility is MP =- 2a 2Pf3EoI/3r/ = MoI, or in

dimensionless terms Mo = 47r,3oI =MoI. Mo increases with both # and Eo, and, unlike bo, Mo is not
normalized to 1 in our choice of dimensionless units.

In the rotating field, the field gradient G can point either in the plane of rotation or out of plane. We observe
that the gradient in-plane does not produce an appreciable velocity out of plane and vice-versa, so MP only
has two non-zero, diagonal elements, Mf and Mf, like the self-diffusivity

U| = MPG, u1 = MPG 1 (6.5)
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Figure 6.7: Small-gradient magnetophoretic mobility in the plane of rotation M1f (left column) and out of the plane
of rotation Mf (middle column) as a function of rotation frequency L for two different volume fractions4= 0.05
(top row) and # = 0.005 (bottom row) and several different field strengths 0 (different colors). Circles correspond
to simulations with long-ranged hydrodynamic interactions (HI) while crosses neglect these in the freely draining
(FD) model. The values for steady fields (with HI) at = 0 are shown with dotted lines. The effective out-of-plane
magnetophoretic mobility in porous media Mi,eff (right column) at E 0 = 1.0 (top) and 0 = 1.1 (bottom) for
different values of aPe (different colors) from equation (6.6).

Figure 6.7 shows the magnetophoretic mobility as a function of field strength and rotation frequency for
both the HI and FD models. Both the in-plane and out-of-plane mobilities decrease as rotation frequency
increases, approaching a value slightly larger than M0 at large v due to mutual polarization. Because the
hydrodynamic mobility tensor is isotropic for the FD model, both Mf = Mf. For the HI model however,
like the self-diffusivities, M < MP for the entire field and frequency range due to increased drag in the
direction orthogonal to the field. en particles are aggregated, the magnetophoretic force on each particle
contributes to the total magnetophoretic force on the aggregate, FP ~ Nc. The drag on the aggregate
only scales with the aggregate's characteristic length FP ~ N/d12,137,267 In the limiting case where the
particles aggregate into chains with fractal dimension d = 1, it would seem like these effects should cancel
out as the chains break up with increasing rotation frequency, and the magnetophoretic mobility should
remain constant. However, the dipole strength, which contributes to the magnetophoretic force, decreases
as the aggregates break up. Additionally, because the magnetophoretic forces on each particle are oriented
in the same direction, the hydrodynamic flows from each particle in an aggregate entrain the others and
decrease the drag on the aggregate. This particular drag-reduction mode is very strong for our hydrodynamic
model, which treats each particle as an isolated point force and point quadrupole. If an aggregate is treated
as a rigid collection of particles constrained to move together, which may be appropriate given the strong
interparticle forces, the rigidity constraints significantly increase the drag, so the drag reduction may not be
quite so dramatic.42 '171 Such a refined hydrodynamic model was not implemented here. If the particles form
platelets and sheets (d ~ 2) or crystals (d ~ 3), the mobility decreases even faster as the aggregates break up,
with the rate increasing the larger the fractal dimension. Compared to the FD model, where the drag on each
particle is constant, the in-plane mobilities are significantly larger in the HI model. At low volume fractions,
the out-of-plane mobility is also larger for the HI model, but fall below the values for the FD model at larger
volume fractions. These effects cause the magnetophoretic mobility to decrease with increasing frequency
and decreasing field. Therefore, in the bulk, particles can generally be magnetophoretically transported more
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Figure 6.8: Schematic of magnetophoresis in a field gradient G through a model porous material of length L
composed of obstacles of size f.

quickly in steady fields than in rotating fields.

This is not necessarily the case in porous media, as illustrated in Figure 6.1. Soheilian, Erb, and coworkers
showed that the magnetophoretic flux of paramagnetic colloids through synthetic porous tissue in steady
fields was smaller than that in rotating fields.38 The large aggregates formed in steady fields had difficultly
navigating the small tortuous pores, while aggregation was suppressed in rotating fields allowing individual
particles to more easily pass through the porous network. We can derive a simple phenomenological model
to explain this observation. Consider a porous material of length L illustrated in Figure 6.8. In a gradient of
strength G1 oriented out of the plane of rotation, the particles can travel that distance magnetophoretically
inaminimumtimet =L/uwhere = Mf 1 is the magnetophoretic velocity in the bulk. However,
because the porous material is tortuous, particles cannot move straight through the material. We imagine
that, as particles travel phoretically in the gradient direction, they run into obstacles of characteristic length
f. Because the phoretic force is directed toward an obstacle, the only way the particle can get around it
is diffusively, which takes a time t = 2/D11. The relevant diffusivity is D11, as diffusion is taking place
orthogonally to the out-of-plane gradient. Diffusion in the gradient direction D_ does not help traverse
the obstacle because it is directed towards and away from the obstacle and is usually negligible compared
to the phoretic forces. If there are N such obstacles across the length L, the total time to traverse the
porous material is t = L/u + Ne 2/D 11. Thus, the effective phoretic velocity through the porous material
is ui,eff = ul/(l+ Ne2ui/LD). If the gradient is directed in the plane of rotation instead, the relevant
phoretic velocity is uni while the relevant diffusivity is D1 , and the effective phoretic velocity is ul~eff
uji/(1+ Ne2u 1 /LD). Therefore, the effective magnetophoretic mobility in the porous material is

MP Mp
Mp = Mp = 1 (6.6)1,eg 1 + a Pe (MI/Mo) (Do/D1)' lI'eff 1+aPe(MPf/Mo)(Do/Dj)'

1±1eM/M)11D1 )

where a = Ne/L is a dimensionless function of the tortuosity and porosity of the porous network (through
N/L and e) and the P6clet number Pe = eMoG/Do depends on the field strength (through Mo) and the field
gradient. Figure 6.7 shows the effective mobility in porous materials of different aPe as a function of v. If
the porous material has high porosity and low tortuousity, there are very few, small obstacles and a is small.
Particles do not need to diffuse much in the direction orthogonal to the field and can pass nearly straight
through the porous network phoretically, so (6.6) simplifies to Mf Mf. The P6clet number is small if
the gradient or field is weak. In this case, for any pore geometry, diffusion around obstacles is fast compared
to magnetophoresis in the gradient direction, so transport is limited by magnetophoresis and again (6.6)
simplifies to Me - MT. In this latter case, diffusion in the gradient direction may become important,

and a more complicated model might be needed. Because both M and Mf decrease with increasing v,
the effective porous mobility in steady fields is larger than that in rotating fields and decreases with v. For
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porous networks with low porosity and high tortuousity in strong fields and field gradients, aPe is large and
diffusion orthogonal to the gradient dominates the transport, so (6.6) reduces to M ~ DiDMo/aPeDo.
Both D11 and Di increase with v, and the phoretic velocity through porous material in rotating fields is

larger than in steady fields. In fact, because D1 has a maximum at intermediate rotation frequency, so does

M gff at small aPe, and the fastest transport through porous media occurs at intermediate frequencies.
These trends are consistent with the experimental results of Soheilian et. al. of magnetophoresis through
porous media in rotating fields, so it is possible their experiments live in the large aPe regime. 38 This kind
of model was also used to explain enhanced diffusion of charged species through porous media in rotating
electric fields compared to steady fields. 1 02 In that case, the electrophoretic driving force changed direction
over time allowing the charged species to navigate around obstacles phoretically. This is similar, but of
a different nature, than our setup here, where the magnetophoretic driving force (i.e the field gradient)
is constant in time, and particles navigate around obstacles diffusively with a diffusivity enhanced by the
rotating field.

This simple model does not consider the effects of the pore walls on the magnetophoretic mobility. Steric
interactions, for example, can prevent aggregates from entering the pores at all if the pore size is smaller
than the aggregate size, and the flux through the material will be smaller than expected,3 8 as in Figure 6.1.
Hydrodynamic interactions with the wall tend to slow both diffusive and phoretic motion of particles as the
confining walls get closer together. 270,271 Thermodynamic interactions with the wall (e.g. van der Waals,
electrostatic, hydrophobic/philic) modify particle motion, with attractions tending to hinder particle travel
through pores. Amin et. al. showed in vivo that paramagnetic particles aggregated and stuck to vessel walls
in mice during magnetophoresis in steady fields leading to poor transport.88 This could be suppressed by
flipping the direction of the applied field gradient in time to detach particles from walls and increase the
transport rate, a different but analogous strategy to the setup discussed here. Finally, modes of transport
through walls, like endocytosis which is particularly important for transport in biological systems, are not
considered here but can be enhanced using time-dependent fields to suppress particle aggregation during
magnetophoresis. 24 5

As a first attempt to understand these wall effects, we simulated dispersions in a rigid cage scaffold of pore
size h, depicted in Figure 6.9, as a simple model for transport in a porous material exposed to rotating
fields with no field gradient. Because the channels through the cage are straight, the cage has very low
tortuousity and does not look like the model in Figure 6.8 we proposed to derive equation (6.6). However,
the cage is simple with a single defining parameter, the pore size h, and allows us to examine the effect
of confinement on the transport properties. To observe the dynamics in (6.6), we would need to apply a
field gradient and simulate magnetophoresis directly, which is beyond the scope of this work. The cage is
composed of beads of the same size as the paramagnetic particles, rigidly constrained together. The cage
is fixed in place and its walls interact sterically and hydrodynamically with the particles, with no other
cage/particle interactions (e.g. magnetic dipole, attractions, etc.). A modification to our hydrodynamic
model is needed to ensure the particles composing the cage remain rigidly constrained, which is discussed
in detail elsewhere. 42 ,169,171 Like our previous bulk calculations, we computed the long-time self diffusivity
from the mean-squared displacement (6.3) and the low-gradient magnetophoretic mobility from equation
(6.4), both shown in Figure 6.9.

As expected, both Db and Mf decrease with decreasing pore size due to steric and hydrodynamic hinderance

from the walls. The trends in bl and NL with rotation frequency v remain the same as the bulk trends
for all pore sizes. The out-of-plane magnetophoretic mobility decreases with rotation frequency, while the
in-plane diffusivity increases with frequency until it reaches a maximum value. D and Mf (not shown) also
follow the same trends as the bulk for all pore sizes. Because these transport quantities take into account
wall effects, they may be the appropriate ones to use in equation (6.6) for porous media with pore size f.
Because confinement does not qualitatively change the trends in b and MP, our earlier analysis for the

effective porous mobility MS using bulk values for b and Af still holds. In particular, the effective
magnetophoretic mobility in porous media of low porosity and high tortuousity (large a) is larger in rotating
fields than that in steady fields.
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Figure 6.9: (Left) Snapshot of simulation of paramagnetic colloids (blue) in a rigid scaffold (pink) of pore size

h = h/a (measured from the edges of the scaffold particles) exposed to a rotating magnetic field of the same orientation

as in Figure 6.2. The long-time, in-plane self-diffusivity Dil (middle) and low-gradient, out-of-plane magnetophoretic

mobility MP (right) as a function of rotation frequency p at a field strength 0 = 1.0 for different pore sizes (different
colors).

Our results for the the steady-state and transport quantities in the bulk and under confinement, along

with our simple expressions (6.6) for transport in porous media, can help to optimize particle transport

in experimental applications. We investigated how changing three main parameters, the field strength E0 ,
rotation frequency v, and volume fraction #, affected particle transport in rotating magnetic fields. For

example, increasing E0 generally increases the magnetophoretic mobility (Figure 6.7). However, if E is

too high, particle aggregation cannot be suppressed with rotation and the effective mobility M ffthrough

porous media is low. This is especially important when considering steric interactions with pore walls,
because particles may not enter the pores at all if the aggregate size is larger than the pore size, as in

Figure 6.1. The optimal field strength to maximize particle flux through porous materials should lie just

below the crystallization boundary, which decreases with #. For small, tortuous pores where transport is

diffusion-limited, the flux can be maximized at intermediate v for which D1 has a maximum (Figure 6.4).

The frequency at the peak diffusivity scales as i* ~ # 2 (Figure 6.5). The larger #, the more particles there

are to contribute to the flux, but D1 decreases with #. The window of frequencies where enhance diffusion

is observed shrinks as # increases, so finding this window experimentally at large # might be challenging.

Intermediate field strengths and frequencies, where aggregates have broken up sufficiently to enter pores

while retaining enhanced diffusion above Do are ideal for magnetophoresis through porous media. The

dynamics in this regime are complicated, and experiments have shown transient chaos in particle motion at

intermediate frequencies. 2 6 1 This time-dependent chaos could have important effects on particle transport

that aren't incorporated into our analysis. In anycase, the magnetophoretic flux through porous media in

rotating fields can be optimized at intermediate E0 , , and #. Such an optimization is predicted in the

effective mobility calculations in Figure 6.7. For certain a Pe regimes in porous materials, we have identified

some #, Eo, and i that can yield around 2-10-fold increases in the magnetophoretic flux in rotating fields

over steady fields. This is consistent with the enhancement observed in experiments. 38

Conclusion

Because rotating magnetic fields drive paramagnetic colloids and nanoparticles out of equilibrium, they can

overcome many of the challenges associated with assembling and transporting particles in steady fields.

However, fundamental transport properties of particles in rotating fields, crucial to dictating responses to

the time-varying field, had not been characterized in terms of experimental parameters. In this work, we used

Brownian dynamics simulations to study dispersions of paramagnetic colloids in rotating magnetic fields.

The simulations included both many-bodied long-ranged hydrodynamic interactions as well as many-bodied
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mutual polarization among particles. We found that, in the bulk, both the self-diffusivities in plane and
out of plane of the rotation increase with rotation frequency as particle aggregation is suppressed. The
in-plane diffusivity has a maximum at intermediate frequencies above the Stokes-Einstein diffusivity of an
isolated particle. Thus, the rotation frequency can be optimized to enhance self-mixing. Although the
magnetophoretic mobility in the bulk is larger for steady fields than in rotating fields, we derived a simple
phenomenological model for the effective magnetophoretic mobility in porous media that shows the mobility
is larger in rotating fields than in steady fields for porous media of large tortuousity and low porosity. The
model requires only bulk transport properties and physical characteristics of the porous geometry and can
be used to maximize magnetophoretic transport through porous materials. Finally, we examined the effect
of porous confinement on the transport quantities and found no qualitative difference in their trends with
respect to rotation frequency. Our results can be leveraged to design and implement efficient transport
processes in rotating magnetic fields.
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Chapter 7

Nonlinear Electrokinetic Transport of
Colloids in Electrolytes

Many technologies take advantage of electrokinetic phenomena for transport at the microscale. Colloidal
particles, polymers, cells, and proteins can be moved directly in electric fields via electrophoresis if they have
a net charge 272273 or in electric field gradients via dielectrophresis if they have net dipole moment.2 74

Electric fields can also be used to generate electroosmotic flows in electrolyte solutions with dissolved ions,
which can become quite large even at modest field strengths.87,275,276 Typical models of these transport
phenomena treat the charges on surfaces as fixed, and ions distribute themselves into an electric double
layer around the charged surfaces. Electrokinetic formulae have been derived for the electrophoretic velocity
of a charged spherical colloid or the electroosmotic velocity of a fluid above a charged wall using this
approach.

1 2 5 , 2 7 7 , 2 78

Highly conductive particles polarize in the presence of electric fields, acquiring a nonuniform induced surface
charge distribution in addition to its fixed charge distribution. Positive ions are drawn toward the negative
induced charges while negative ions are drawn toward the positive induced charges, so the surrounding
ion cloud also polarizes, like in Figure 7.1. As the ions accumulate near the particle surface they induce
additional surface charge in the particle (which draws in more ions, etc.), and the particle and double layer
"charge up", increasing their induced dipole moments over time. This generates a quadrupolar flow field
in the surrounding fluid. Squires and Bazant developed an electrokinetic theory to describe the charging
dynamics for this "induced-charge electroosmosis" (ICEO) phenomenon. 2 79,28 0 If a net charge is added to
the particle, the particle translates in the field due to "induced-charge electrophoresis" (ICEP), in addition
to charging up due to ICEO. Many experiments have leveraged ICEO and ICEP to generate large flows at
micron scales for microfluidic and lab-on-a-chip applications. 87 ,2 75,276

Because of differences in the double layer structure, particles behave differently in ICEO and ICEP than
they do in classical electrophoresis. The net dipole moment of the ion cloud is oriented in the opposite
direction of the applied electric field. The accumulated negative ions (next to the positive induced charge)
want to slip past the particle to travel opposite the field, while the accumulated positive ions (next to the
negative induced charge) want to slip past the particle to travel with the field. If the applied electric field is
above a critical field strength E, the orientation of the polarized double layer becomes unstable, and small
fluctuations drive uncharged spherical colloids to break symmetry and spontaneously rotate about a random
axis orthogonal to the applied field, a phenomenon called Quincke rotation. 105 A snapshot of a particle
undergoing Quincke rotation is shown in Figure 7.1. Quincke rotors have been used to power motors,281-284

reduce the viscosity of electrorheological fluids, 10 7 ,285,28 6 and generate fluid flows at the micron scale.28 7

Particles undergoing Quincke rotation near boundaries roll along them, and Quincke rollers have been used
for active matter applications. 288,289

In this chapter we describe a new mode of electrokinetic transport of colloidal particles. Above Ec, a charged
particle undergoes both induced-charged electrophoresis and Quincke rotation. We have discovered that
these motions couple together to propel the particle in a direction orthogonal to both the driving electric
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field and the axis of rotation, shown in Figure 7.1. This is an electrohydrodynamic analogue to the Magnus
effect at larger Reynolds number, where a simultaneously translating and rotating object experiences a lift
force that pushes it in a direction orthogonal to its main translation direction.2 9 0 Motion orthogonal to a
driving field requires some break in symmetry to drive particles off their preferred direction. 291 For example,
particles with anisotropic shape can move in complicated paths via induced-charge electrophoresis.10 4, 292

Particles with anisotropic dielectric properties, like Janus particles with both insulating and conducting
faces, move orthogonally to an electric field.2 9 3 Particles can roll along walls or in racheted microchannels
due to contact-charge electrophoresis. 294 ,29 5 In all these cases, anisotropy is specifically engineered into
the dispersion to induce orthogonal motion. In contrast, the electrohydrodynamic Magnus effect occurs in
the bulk for isotropic spherical particles, with the Quincke rotation instability providing broken symmetry
driving orthogonal motion. Because of this the electrohydrodynamic Magnus effect can be leveraged to create
bulk, three-dimensional active matter dispersions as well as for particle separation applications.

To utilize the electrohydrodnamic Magnus (EHM) effect in experiments, it is crucial to have a fundamental
understanding of the underlying physics governing the phenomenon. In this chapter, we investigate the
EHM effect using simulations and continuum theory. First, we recapitulate the theory of Squires and Bazant
for induced-charge electrophoresis of a nonrotating particle in an electric field. We extend their model to
account for nonlinearities in the description of ions for large zeta potentials and concentrations. Next, we
adapt the ICEP model for rotating particles and derive an electrokinetic theory for Quincke rotation. This
theory predicts a Magnus velocity for charged particles undergoing Quincke rotation above a critical field.
The critical field strength, direction of motion, and magnitude of the Magnus velocity are in reasonable
agreement with our simulations. The Magnus velocity persists over many cycles in an alternating-current
(AC) electric field. We propose the electrohydrodynamic Magnus effect in AC fields as a mechanism for
generating active matter dispersions of isotropic, spherical, polarizable particles in bulk electrolytes. The
EHM "swimmers" behave as active Brownian particles, and the field strength and frequency control their
activity. We leverage our continuum theory to show how the activity varies as a function of these parameters
and predict an effective active diffusion constant that is orders of magnitude larger than the Stokes-Einstein
diffusivity.

In this chapter, we consider a single, perfectly conducting particle of radius a and uniform fixed surface
charge density qo in an electrolyte composed of positive and negative ions of charge tqi and radius ai, each
at number density ni, dispersed in a fluid of permittivity ef and viscosity 7.* We choose the ion radius ai
as the hydrodynamic radius of the solvated ion and assume it coincides with a thermodynamic hard sphere
radius, which is around 0.4nm for simple salts. 1

12 As discussed in Section 2.2, the simulations use a set of
dimensionless variables, indicated by tilde. A set of dimensionless units can be constructed by setting the
dimensionless versions of the following values to unity: the ion radius ai, the thermal energy kBT, the ion
drag coefficient 7y -- 67rqai, and the fluid permittivity Ef. This sets as to be the length scale, kBT to be
the energy scale, the ion diffusion time TD = kBT/67rqa to be the time scale, and EfaikT to be the
charge scale. With typical values for water at room temperature, TD 1ns and fEaikBT - 0.2e-, where
e- is the charge of an electron. In all of our simulations, we set the total volume fraction of ions (cations +
anions) to# 0.10 and the characteristic ion-ion Coulomb energy at contact,

2

E - 1 (7.1)
87rEf aikBT

which yields a charge of around 5. For typical dimensional values, the salt concentration is around
300 mM and the ion charge is qi e- = 1.60 x 10-19 C, i.e. monovalent ions.

7.1 Induced-Charge Electrophoresis

Consider an uncharged, conducting particle suddenly exposed to an external field E0 . The particle polarizes
and acquires an initial induced surface charge distribution qinit(0, #) = 3ef Eo cos 0, corresponding to a dipole

*Here, we use the i subscript to reference quantities pertaining generically to the ions (i short for ions). For example, the

charge of the positive ions q+ is q+ _ qi, and the charge of the negative ions q_ is q_ = -qi. i is not meant to be a dummy

index that can take on the values + or -.
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Figure 7.1: Left. A negatively charged colloid in an electrolyte with positive (red) and negative (blue) ions polarizes

the surrounding ion cloud in an electric field E0 . The field causes the particle to move downward at velocity U1 1 via

induced-charge electrophoresis. Right. If the field is above a critical value, the Quincke rotation instability causes

the particle to rotate with angular velocity f about an axis orthogonal to the applied field. The coupling between

electrophoresis and Quincke rotation drives the particle orthogonally to both the applied field and axis of rotation

with velocity U 1 , the electrohydrodynamic Magnus (EHM) effect.

moment So = fs dr rqinit = 47raEfE, where r is the position relative to the colloid center, 0 and # are

the azimuthal and zenith spherical coordinates relative to the z-axis pointed in the field direction, and the

integral is over the particle surface. Positive ions are drawn to the negative induced charges and negative

ions are drawn to the positive induced charges, forming a polarized double layer around the particle of

thicknessK --1  EfekB T/2niq, as in Figure 7.1. As the ions approach the particle surface, their electric

field induces additional surface charge in the particle, which pulls in more ions, etc., and the particle and

double layer "charge up" over time. An example of the charging dynamics is shown in Figure 7.4A. Squires

and Bazant2 79,280 showed that if the particle radius a is much larger than the double layer thickness r-1,
there is an inner region close to the particle surface where ions distribute themselves according to the

Poisson-Boltzmann equation,
Ef V20' = p (7.2)

and an outer region where the electrolyte is charge neutral

V20 = 0 (7.3)

where?'(r) and @(r) are the inner and outer potentials and p(r) = qi(n+(r)-n_ (r)) is the charge distribution

of the electrolyte in terms of the cation n+(r) and anion n_(r) concentrations. If a » K- 1, the angular

gradients in (7.2) can be neglected, and the particle surface appears flat in the inner region. At a particular

0 and #, 0' is the solution to the one-dimensional Poisson-Boltzmann equation in a normal coordinate h

with a surface charge density q(O, #, t), the additional induced surface charge density of the particle excess

of qinit from the initial field. The angular dependence of 0' is due solely to the angular dependence of the

boundary condition q(O,#, t). The solution to the Poisson-Boltzmann equation next to a flat plate is given

in Appendix C. Because the particle charges up, q is time-dependent. We assume that the ions in the

inner region equilibrate much faster than the time scale on which q varies, so that 0' always satisfies (7.2)

in a pseudosteady sense, with time-dependence coming solely from the time-dependent boundary condition

q(0,4,t).

The potential as h - o in the inner region, V' - (, where V' is the surface potential of the particle and ( is
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the potential drop across the double layer (i.e. the zeta potential), must equal the potential at the particle
surface in the outer region, 4. Because the particle is a conductor with ' = 0,

0(r = a, 0, #, t) -((0, #, t). (7.4)

Therefore, 4 can be expressed as

0(r, t) = -Eo - r 1 - + Cem(t)r-V+ )Yem(0, 1#), (7.5)
r em

where the coefficients are

Cem(t)= -a'+ dF ((o, o, t)Yem(0, #), (7.6)

Yem is the spherical harmonic of degree f and order m, F is the unit sphere, and dF sin 0 dO d is the
solid angle. Written in this form, 4 satisfies Laplace's equation, approaches the correct value at infinity
(-V0 -+ Eo as r -- o), and satisfies the initial condition (((0,#,0) = Cem(0) = 0). For a nonrotating
particle, there is no # dependence and only the m = 0 coefficients are nonzero. Additionally, symmetry
about the particle equator 0 = 7r/2 requires all the even f coefficients to vanish. However, we keep the entire
expansion for comparison with the rotating particle case in section 7.2. In the bulk electrolyte, there is a
local current density j(r, t) = E(r, t) from the mobile ions, where E = -V0 is the field associated with
the outer potential and a is the electrolyte conductivity, and so there is a current entering the double layer
equal to -j(a, 0, #, t) - -. The current induces equal and opposite surface charges q(0, #) (excess of qinit) in
the particle to satisfy electroneutrality in the inner region. On the particle surface, r a, we can construct
a conservation equation for the induced surface charge

dq( =, t) E - 3aEo cos + oa (f + 1) 5em(t)Yem(0,# (7.7)
dt fm

where em Cem/a'+l. The induced surface charge is related to the zeta potential through the solu-
tion to the Poisson-Boltzmann equation (Appendix C), admitting a relation q(() as well as the differential
capacitance C(() = dq/d(

q(() = sgn( 2f d(' p(') C(( M d = ( - , (7.8)
J d( q((

and the charge balance can be written solely in terms of (

d(,#, t)_ a 1 79
=((0,,t r 3Eo cos 0 + - ( + 1)mY (7.9)

dt C (0) a t

We can convert this into an ODE for the coefficients by multiplying the PDE by Ym and integrating over
the unit sphere

aDem(t) f
S = ] d 03 E o cos 0 + - ( f' + 1) miY m') Ye (7.10)

The particle dipole moment evolves over time as the particle and double layer charge up,

S(t) = So + dr rq(0, #, t) (7.11)

where the integral is over the particle surface. To solve (7.10), we need q(() and C(() from the solution to
the Poisson-Boltzmann equation, which requires that we choose a particular model for the ions.
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7.1.1 Debye-Huckel Solution

In the Debye-Huckel limit, ions are represented as point charges in the low zeta potential limit qi(/kBT « 1,
yielding the a linear relation between q andc

q =E r,(, C = EfI'. (7.12)

Because C is independent of (, we can easily perform the integration in (7.10) and solve the resulting ODEs
analytically. Only C10 has a nontrivial solution,

C10(t) = v 3raEo (et-/tcr- 1) (7.13)

where Tc =egnfa/2o- is the charging time. The zeta potential is then,

(0, #, ) = aEo cos 0 1 - e , (7.14)
2

and the particle dipole is,
S(t) =1 + (- e2 )- (7.15)

where S/So is normalized by the isolated particle dipole So = 47ra3 e EF. As t- 00,0 Co -v/5 a3Eo,
and the zeta potential is equal to that of an insulator, ( - jaEo cos0, corresponding to a final particle
dipole of

5(00) = 1 + . (7.16)
2

From (7.7), the dispersion reaches a steady-state when the outer field lines have no normal component,
resembling that of an insulator, and ionic current cannot enter the double layer. Because the initial charge
distribution goes as qinit ~ aEo, the steady-state zeta potential must also go as ( ~ aEo to bring in enough
charge q to counteract qinit. This contributes an extra factor of a to the induced dipole S ~ a4E0 compared
to the isolated particle dipole with no salt So ~ a3 Eo, and the normalized dipole grows as S ~ a. The
charging time also grows linearly with particle size Tc ~ a and inversely will conductivity Tc ~ a-- to
bring in this extra charge. In the dilute limit, o = 2niq,/yi, but becomes a complicated function of ni
and E at larger concentrations. 296 Figure 7.6 shows that the conductivity in our simulations is a bit lower
than this prediction, likely due to steric hinderance. However, the dependence of the ionic conductivity on
system parameters is not the focus here, and we use the dilute estimate so that we may evaluate expressions
analytically.

The linear Debye-Huckel theory predicts that both the charging time rc and the final normalized particle
dipole S are independent of the field strength Eo. Though the steady-state q grows with E0 , the ionic
current also grows with E and these effects cancel out. Figures 7.2 and 7.3 compare these predictions to
those from our simulations. At low E0 , the simulations show S and rc are independent of Eo andgrow
with a, in agreement with the Debye-Huckel predictions. However, at large field strengths both S and
T decrease with Eo. S - 1 at large E0 , indicating that polarization from the ion double layer is small
compared to the polarization from the external field. The charging time goes as r~ E-41 at large Eo, and
charging is limited only by how fast the external field can electrophoretically shuttle ions to the particle
surface. These nonlinear effects indicate a breakdown of the small ( potential assumption in the Debye-
Huckel approximation, q(/kT « 1. Because the steady-state zeta potential goes as ( ~ aEo, if the
particle is large, the induced zeta potential will be large, even for small E0 . For & = 30 and Eo = 0.01,
qi(/kBT ~ 2, and is well outside the linear regime. More sophisticated ion models must be considered to
capture nonlinear effects that are important at these large.

7.1.2 Gouy-Chapman Solution

Nonlinearities can be incorporated into the Poisson-Boltzmann equation through the relation between the
ionic charge distribution p and the inner potential 0'. This relation is derived by considering the chemical
potential p+ of each ion species. In the Gouy-Chapman model, the ions behave ideally,

y = kBT In ni t qi(0/ + (). (7.17)
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At equilibrium, the ion chemical potentials must be constant everywhere. In particular, far away from the
particle surface, 0' -+ -( and n± - ni so this constant value for p± is known. Solving for n± allows an
expression for the charge density,

p = -2qini sinh . (7.18)
kBT

From (7.8), the surface charge density and capacitance are

q = 4qini-1 sinh ,jB C=6fI'acosh . (7.19)
2kBT' 2kBT

Note that we recover the Debye-Huckel solution, q = er,( and C = epr, for qi(/kBT < 1. The Guoy-
Chapman solution to the ICEO problem is shown in Figure 7.2.

From (7.9), the nonlinear ion model only affects C(C). This affects the charging dynamics, but the steady-
state zeta potential, 1aEo cos0, remains the same for any C((). Because q grows exponentially with ( and
the steady-state ( goes as aEo, the particle dipole grows exponentially with Eo,

~ 4niqi . 3qiao (7.20)
Ef E0 4kBT

where i1 is the modified spherical Bessel function of order 1. The nonlinear ODE (7.38) does not have an
analytical solution, but we can solve it numerically and fit an exponential to the dipole strength over time
to extract the charging time, shown in Figure 7.2E. The charging time grows exponentially with Eo, as it
takes a much longer time for the outer field, which only grows as aEo, to inject the exponetially growing
charge in the double layer. Unlike the Debye-Huckel dynamics, where only i10 is nonzero and the particle
charges at the same rate everywhere, the Gouy-Chapman dynamics display different rates of charging across
the particle surface. The distribution of charging times 7c(0) is shown in Figure 7.2C and was extracted from
an exponential fit over time to the numerical solution q(0, t) for each 0. The poles, where the zeta potential
and charge are largest, charge much more slowly than the equator, where the zeta potential and charge are
small. The overall charging time rc determined from the particle dipole is a weighted average of the charging
time distribution r(O).

7.1.3 Carnahan-Starling Solution

The Gouy-Chapman solution predicts exponentially growing S and rc with increasing Eo, but our simulations
show decreasing S and -r,. Because the Gouy-Chapman model treats ions as point charges, they can pack
arbitrarily close together, leading to very large, exponentially growing charge distributions. However, real
ions have finite size that limit their packing density. At the large induced zeta potentials relevant to ICEO
and ICEP, ions are densely packed near the particle surface, and steric interactions become very important.
We can treat the ions as hard spheres of radius ai, and their chemical potential is given by the Carnahan-
Starling expression, 234

p± = kBT In #±+ 33 i qi(' +( (7.21)
(1 - (0+ + 0_))3

The ion volume fractions 0± are found by solving simultaneously,

lnq #+ 3(V + = n + 3 (7.22)
(1 - (#+ + 0-)) 3  kBT (1-0#)3
3-(#++4-) q (0' +) 3 - #i

ln #-± =In #i+ 3 ' . (7.23)In-+(1 - (#+ + #-))3 kB T =I0i+(1 - 0,)3 (.3

where #i is the total (cation + anion) bulk ion volume fraction. This does not have an analytical solution,
but we can solve it numerically and compute q and C with a numerical integration from (7.8). Because there
is a maximum sphere packing density where the chemical potential diverges, the charge distribution cannot
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exceed a maximum value. As p approaches this maximum, an increasingly large ( is needed to increase p, so
C decreases with (. The Carnahan-Starling solution to the ICEO problem is shown in Figures 7.2 and 7.3.

The steady-state zeta potential is, again, jaEo cos 6, but the steady-state dipole must be calculated numeri-

cally. Because q levels off with increasing (, S decreases with increasing E, and the polarization due to the
ions becomes small compared to the polarization from the external field. Though q levels off, the outer field
injecting charge increases as aEo, so the charging time decreases with E0 . However, the decrease is not quite

as fast as the scaling of -rc ~ E 1 at large E that we observe in our simulations. Like the Gouy-Chapman
solution, the particle charges at different rates across its surface. For the Carnahan-Starling solution, the
poles charge more quickly than the equator, opposite the trends of the Gouy-Chapman solution. The overall

Tc is limited by the slowest charging modes of rc(0). Because the slow modes occur near the equator and
the equator contributes more surface area to the overall dipole moment than the poles, the charging time

only decreases as -rc E0-1/2 in our theoretical model. This is not entirely unexpected, because the theory
only allows for ion transport in the radial direction in the double layer. It is likely surface conduction and
surface diffusion, which allow for ion transport in tangential directions, play an important role for charging
in the simulations, but are not incorporated into the theoretical model.

If the particle has a net charge qo, it also has a net zeta potential (o in addition to the induced zeta potential
C from the ICEO charging, and the ions in the double layer screen both q and qo. In the linear Debye-
Huckel regime, these two situations can be considered separately and their solutions superimposed, so the
net charge does not affect the charging dynamics. However, qo does change the dynamics in the nonlinear
Gouy-Chapman and Carnahan-Starling models. Figure 7.3 shows the particle dipole and charging time
for particles with various net charges from simulation and the Carnahan-Starling theory. The capacitance
relation in Figure 7.2A shows that the differential capacitance decreases with ( and q grows slowly. Particles
with a net charge, begin with a lower capacitance than a charge-free particle and charge less strongly.
Both the dipole strength and the charging time decrease with qo at small Eo. In fact, charging is nearly
suppressed altogether for the largest net charges we tested. The net charge is important when its associated
zeta potential is comparable to or larger than the induced zeta potential, (o > aEo. As Eo gets large, the
induced ( dominates the net (o and all the net charged particles behave the same.

7.1.4 Stern Layer

The Debye-Huckel, Gouy-Chapman, and Carnahan-Starling models all overpredict the induced dipole ob-
served in the simulations. The steady-state zeta potential is always 1aE cos0, so this overestimate implies
that the charge and differential capacitance relations, q(() and C((), are smaller in the simulations than
predicted. As in Appendix C, these relations are derived assuming ions can accumulate arbitrarily close to
the particle surface. However, because ions have a finite size ai, the closest their centers' may approach the
surface is ai. This forms a Stern layer of thicknesst ai near the surface where the charge density in the fluid
vanishes and the inner potential 0' is unscreened. The Stern layer has a capacitance Cs = ef/ai and acts
in series with the capacitance CD of the diffuse region of the double layer given by (7.8), whose reciprocals
are additive. The total capacitance is diminished, and the charge and capacitance relations are6 2

q(() = sgn 2 C(() =/--C , (7.24)
qa/e aI qC 1|Cs + 1|CD

Ef E p( - qa/E5)

which are implicit functions because q appears on both sides of the equation. This has an analytical form
for the Debye-Huckel-Stern model,

q = , C = , (7.25)
+ nai 1 + rai'

t Often the Stern layer thickness is left unspecified and used as a fitting parameter. Because we set the ion size explicitly in
our simulations and observe their closest appreoach to the particle surface, we are motivated physically to use as as the Stern
layer thickness.
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which admits analytical solutions for the final dipole and charging time,

+ =a 1 + rc =a (7.26)
2(1 + Kai)' 2-(1 + +kappaai)'

but the Gouy-Chapmann-Stern and Carnahan-Starling-Stern relations must be determined numerically.

(D = - qa/ef is the potential drop across only the diffuse region of the double layer.1 Figures 7.2
and 7.3 show that the Stern layer reduces the predicted dipole strengths, which now agree well with our
simulation results. Including the Stern layer also decreases the charging time, as the amount of charge in
the double layer is smaller. The Stern layer capacitance curbs the exponential growth of the Gouy-Chapman
capacitance because C = 1/(1/Cs + 1/CD) ~ Cs for large CD, and the Gouy-Chapmann-Stern dipole and
charging time level off as E increases. On the other hand, the Carnahan-Starling capacitance becomes
small at large Eo, so C ~ CD and the Carnahan-Starling-Stern predictions approach the Carnahan-Starling
predictions at large E0 .

7.1.5 The Electrophoretic Velocity

The fluid velocity outside of the double layer is given by the Helmholtz-Smoluchowski expression279

u E D Et, (7.27)
77

where Et is the outer field tangent to the particle surface. The particle velocity can then be computed from
the integral of the fluid velocity over the surface of the particle 297

U= - 4 2 dr u. (7.28)
47ra2 s

For a charge-free particle, the integral in (7.28) vanishes and the induced charge distribution alone cannot
result in translation. If the particle has a net surface charge qo, the net zeta potential (o in addition to the
induced zeta potential (D is included in (7.27), and

U = ' 2  dr o +(D)Et = 0 Eo, (7.29)

which is the well-known electrophoretic velocity of a charged sphere in the thin double layer limit.1 2 5 This
holds for all of the ion models as long as the double layer is sufficiently thin compared to the particle size.
Figure 7.7A shows excellent agreement between equation (7.29) and the velocity in our simulations. As qo
or E become large, particle and double layer convection can play a significant role in the charging dynamics
and may be responsible for the large decrease in dipole strength we observe with increasing net charge.
Including these effects in the governing equations was not considered here.

7.2 The Electrohydrodynamic Magnus Effect

With an understanding of the induced-charge electrophoresis of a nonrotating particle, we proceed now
to our original goal of understanding the induced-charge electrophoresis of a particle undergoing Quincke
rotation, which has a translational velocity orthogonal to the applied field due to the electrohydrodynamic
Magnus effect. It is crucial to have a fundamental understanding of the underlying physics governing the
phenomenon to utilize the electrohydrodnamic Magnus effect in experiments.

Quincke rotation has been well-studied in the context of "electrohydrodynamics" (EH), using the Taylor-
Melcher leaky dielectric model.29 8 2 99 In EH models, the fluid and particle phases are assigned electric
permittivities Ef and -p, respectively, and electric conductivities of and o-, respectively. Because of the
conductivity, each phase can conduct an electric current. Though this current is intended to represent a flux

tSometimes (D is referred to as "the" zeta potential. Here, "zeta potential" refers to (.s

137

I . I I . I I I I wl _, I I PF "Mrl



of ionic charge, nonuniform ion charge distributions are not incorporated into EH theories. By constructing
a charge balance at the particle surface, the angular velocity Q can be written in terms of the permittivities
and conductivities. 241, 3 00 The EH model for Quincke rotation reveals several things. First, Quincke rotation
only occurs if the charge relaxation time inside the particle, p/ap, is larger than the charge relaxation
time inside the fluid, e /of, and so Quincke rotation is usually associated with insulating particles of low
conductivity. In this case, the dipole moment induced in the particle is oriented opposite to the applied field.
Above a critical field strength,

Ec =(7.30)
ef TMW (Epf - Opf

where the Maxwell-Wagner time is TMW = (E + 2Ef)(,p + 2af), Epf -- (E, - e E, +-i- 2e), and op
(o - of)/(op + 2 af), this orientation of the dipole becomes unstable, and the particle rotates with angular
velocity

Q = ( ) -y1. (7.31)

This scaling of rotation frequency with field strength has been confirmed in numerous experiments. 28 1,282,285

While useful to understand the qualitative features of Quincke rotation, the electrohydrodynamic approach
has some key weaknesses, especially when applied to conductive colloidal particles in electrolytes. 30 1 First,
the leaky dielectric model is intended for two fluid phases. For solid particles, ions cannot penetrate the
solid surface and o, = 0. If the particle is highly polarizable, E, - oc, electrohydrodynamics predicts
a vanishing critical field, Ec - 0, and no Quincke rotation, Q -+ 0. This is problematic because we
observe Quincke rotation for solid conducting particles, but is only possible with insulators in the EH model.
Second, the EH model cannot produce particle translations (other than those due solely to the external
field), since electroosmotic flows driving particle motion are not incorporated. 299 This makes EH ineffective
in describing electrophoresis or the observed electrohydronamic Magnus effect. Finally, the EH approach
contains no information on the structure of the ionic double layer surrounding the particle. There are no
predictions for how the critical field should change with experimental parameters like salt concentration or
particle size, and there is no systematic way to incorporate nonlinear ionic behavior. Additionally, the double
layer structure can have profound impact on the magnitude and direction of electrophoretic motion, even
reversing the translation direction in some cases, 30 2,303 as well the interactions among many particles, 23,62 ,86

which cannot be elucidated with EH.

In this section, we analyze Quincke rotation and the electrohydrodynamic Magnus effect in the context of
"electrokinetics" (EK), where the dynamics of ions are incorporated. 0 ' With explicit reference to ions,
EK approaches can overcome some of the limitations of EH. As we saw in the previous section 7.1, our
electrokinetic approach to ICEO and ICEP yielded good agreement with our simulations. We extend our
theoretical analysis of induced-charge electrophoresis to a conducting particle that is rotating with angular
velocity f, which adds a convection term to (7.7)

8q (0, #, t)
0 t= -E .f- - V, . (qf x r) (7.32)at

where V, is the surface gradient. Because particle rotation results from an instability in the polarized ion
double layer, we do not know f. Like in Figure 7.1, ions slip pass the particle to travel electrophoretically
with the field, with the positive ions traveling in the field direction on one side of the particle and negative
ions traveling against the field direction on the other side. The ions drag solvent with them, and their
hydrodynamic interactions with the surface generate a torque on the particle LE that is sustained by the
net ion dipole Si 4 4

LE = S, x Eo - dSrq x E. (7.33)

The particle is torque-free, so it rotates at an angular velocity that balances the electric torque driving
rotation with the hydrodynamic torque opposing it,125 ,126

L H = -87ra 3 . (7.34)

138



Therefore, the angular velocity is

n = - 3 dSrq x E. (7.35)

In terms of the induced ( potential,

(1
C() = oE .- +   3 Vs . q(() dS rq(() x Eo) x r. (7.36)

at 8 Sy

It is convenient to choose a coordinate system where the z axis points in the direction of EO and the y axis
points in the direction of Q,

S-E-i aE dq(()sin0 cos0 cos#E.-cosOsin$E. ,. (7.37)
Ot C(() 8ir? (r

In terms of the coefficients of the spherical harmonic expansion,

a - d (3Eo cos 0 + ±(' + 1)eim'Yetm Yem - (fdq(C)sin0cos
(1 1

x /(e + m)(f - m+ 1)oem1i- p( - m)(y+ m+1)Cem1 . (7.38)

If we use the Debye-Huckel solution, q =e( and C =f, we can evaluate the integrals in (7.38)

aem 2v\iroEo 61 (+1)56m efr.Eo(C1, 1 - C11)
at EfIK , - Ka 8 -

X (£/( + m)(f -- M + 1) D V- -1(f - mn)(f +,m + 1)5e.) (7.39)

At steady-state, all Oem/at = 0. For £ > 2, (7.38) is linear in Oem, and of the form AR - Ce 0 where

C [ Ce e, e1,- . Af is always full rank, so the only solution is Cem = 0 for f > 2 and the

particle only has a dipole moment. The three equations for = 1 admit three steady-state solutions,

01o -v 3raEo, C1,1 -C1,_= 0 (7.40)

~ _ 8V'5 -r ~ 127rwI 81o(4
010 = -2 

2 aEo C1,1 -C1,_1 E 2 K2  
( .02ff f

The second solution only has real coefficients if

Eo 2 8, Ec (7.42)

The three possible angular velocities are then

Q = 0, (7.43)

where Tc -- Efra/2u is the charging time for a sphere. The Jacobian can be computed analytically and a
linear stability analysis about these steady-state solutions reveals that the stationary (Q = 0) solution is
stable below Ec and unstable above Ec, while the rotating solutions are stable for EO > E, i.e. a pitchfork
bifurcation. The EK expression for Q (7.43) is similar to the EH expression (7.31), with the charging time Tc

replacing the Maxwell-Wagner time TMW and the critical field depending on na rather than TMW, Epf, and
Ofp. Thus, the EK approach writes predictions for Quincke rotation in terms of experimentally controllable
parameters. In particular, the critical field decreases with particle size as Ec ~ a- 1, unlike the EH equation
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(7.30) which is independent of a. Because there is no screening length K- in electrohydrodynamics, EH
predictions cannot depend on a, as there is no other length scale to compare against. However, for large
fields,

Q ~ Eo /o-/2i, Eo » EC, (7.44)

and Q is independent of a, consistent with the EH expectations.o4 The normalized particle dipole is

(1 + na/2),bz, Eo < Ec

(2a Ec (Ec + a Ec) 2)&" EO>E, (7.45)

2 Eo Eo 2 Eo

with magnitude
1 + a/2, Eo Ec

S = + a (1 + na/4) (Ec/Eo)2, Eo > Ec (7.46)

Below the critical frequency when the particle is stationary, the dipole is aligned the field. Above E, the
dipole breaks symmetry and points off the field axis. S decreases with Eo as accumulated ionic charge in
the double layer is convected away and S- 1 at large E0 . The orthogonal component of the unnormalized
S reaches a finite value as Eo - oc, sustaining the electric torque to drive rotation, even at large E0 .

If the Stern layer is included, the Debye-Huckel capacitance, egn, is replaced with the Deby-Huckel-Stern
capacitance, Ef /(1 + Kai), in expressions (7.39)-(7.46), yielding,

Ec 8i(1 + Ka=)2  (7.47)
E2 K2a2

Sfa

rc = K(7.48)
2o-(1 + Kai)

1 + 82,6Z Eo :5Ec
2(1+Kai)

S12 E E ( ) (7.49)
t a 1 -- ex+ 1+ en, Eo > Ec

2(1 + Kai) Eo   E 2(1 + ai) EO

1 + Ka ,EO < Ec
2(1 + Kai) -

F=   2 (7.50)
Ka na Ec

+ 1, F 0 >Ec
1+ai 4I+(1 +Kai) E

Note that the expression for the angular velocity (7.43) remains the same, with the Debye-Huckel-Stern
critical field and charging time replacing the Debye-Huckel values.

Figure 7.4 shows the charging kinetics for stationary and rotating particles. Below E, the nonrotating
branch of (7.43) is stable and the particle dipole in Figure 7.4A charges to its final value over the charging
time -c. Above E, the stationary branch is unstable and the particle undergoes Quincke rotation. From
Figures 7.4B-C, the particle is initially nonrotating and charges up like typical ICEO. After an induction
time Ti, the particle spontaneously rotates and Q sharply increases. The ions accumulated at the poles spill
over the sides of the particle, and the particle dipole drops dramatically at Ti, before settling at a lower S
at an angle 0 relative to E. Figure 7.4D shows that the response of the ions in the double layer lags that
of the particle. The lag in these coupled systems leads to oscillations in the dipole and angular velocity that
persist at long times. In fact, the ions can be imagined as imparting "inertia" to the colloid's dipole so that
the dynamics can become chaotic at large enough field strengths. 305 306

Figure 7.5 shows further comparisons between the particle and ion dipoles. The electrokinetic theory predicts
that the ions in the double layer induce equal and opposite surface charges q in the colloid. The initial dipole
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Figure 7.4: A. Particle dipole moment charging over time t from simulation of a nonrotating particle of radius

i = 30 at field Eo = 0.1. The charging time Fc is extracted from an exponential fit the data and is the time for S

to reach (1 - e-) of its final value. B. and C. The particle dipole and angular velocity 2 for a rotating particle at

i = 30 and Eo = 0.4. The onset of the Quincke rotation instability occurs at Fi, but the stationary solution can be

extrapolated from a fit to the stationary region for t < Fi. D. The particle and ion dipoles for a rotating particle

with i= 60 and E   0.3. The ion dipole lags the particle dipole leading to oscillations, even at steady-state.
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Figure 7.5: Particle and ion dipoles S (left) and deviations angles 6 (right) relative to the applied field 0 for i= 30

and qo = 0 from simulations (points) and the Debye-Huckel-Stern theory (lines).

So corresponding to qinit induced by the external field is always present for the particle but not the ions, so

the ion dipole is predicted to be Si = -(S - So). Below Ec when the particle is stationary, Figure 7.5 shows

that the ion dipole matches the entire particle dipole, screening both q and qinit. Above Ec when the particle

rotates, this extra screening vanishes and the ion dipole Si drops below S and agrees with the predictions.

Though the normalized ion dipole Si vanishes as Eo - oo, the actual dipole Si is finite and orients at an

angle 9 = 7r/2, exactly orthogonal to the applied field. This supplies the electric torque to sustain Q even at

large Eo.

By fitting an exponential to the stationary regime t < Ti, we can extract the charging time and extrapolate

the final dipole the particle would have obtained had the rotational instability not occurred. These are shown

in Figure 7.6. Because ions are convected away by rotation, the dipole for the rotating state is lower than the

dipole for the nonrotating state, where ions accumulate at the poles and increase polarization. The rotation

facilitates ion convection and gives rise to an increase in the electrolyte's overall conductivity o- compared to

the pure electrolyte. The conductivity increases as the field increases due to the increased angular velocity

and depends on the colloid volume fraction (which was not investigated here). This conductivity increase

above Ec has also been observed in experiments of Quincke rotation.307 Both the charging time rc and the

rotation induction time ri decrease with Eo and decay as ~ E-1 at large Eo. The induction time always

follows the charging time, indicating that the particle has to charge up enough to trip the Quincke rotation

instability. As the critical field is approach from above, Tc begins to level off with decreasing Eo but the Tr
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Figure 7.6: Comparison between rotating and nonrotating simulations for d = 30 and o = 0. Left. The normalized
dipole strength S/So. Middle. The charging time Fc and onset of rotation time F. For Eo > E, the "stationary"

dipole and Fc were extracted from an exponential fit to the stationary regime for t < ri. Right. The ionic conductivity
3 with (circles and squares) and without (triangles) particles.

appears to diverge as EO - E. Near E, the particle completely charges in its nonrotating state and remains
metastable for a long time before a fluctuation in the ion dipole drives the Quincke rotation instability. This
is similar to nucleation and growth of phase transitions'in the metastable region between the binodal and
spinodal, where nucleation occurs stochastically after a finite induction time.

If the colloid has a net surface charge density , we can use the Helmholtz-Smoluchowski formula (7.27) to
compute the fluid velocity at the particle surface, and integrate over the particle surface (7.28) to compute
the translational velocity of the particle. As in ICEO, the integral of (DEt vanishes, and Quincke rotation
of an uncharged particle does not produce translation. The integral of (oEt, however, does not vanish,

ef (oEo 6z, Eo < Ec

2(7.51)
E f (o E E 2

U = I i2Ec 1 - e 'y x + =i ez Eo > Ec
77 Eo Eoz)

Below the critical field when the particle is not rotating, the particle moves with its standard electrophoretic
velocity. Above the critical field when the particle is rotating, the ionic charge distribution around the
particle breaks symmetry and the particle velocity has a component orthogonal to the applied field, i.e. the
electrohydrodynamic Magnus effect. The Magnus velocity orthogonal to the field increases with increasing
field, saturating at a value of Umax = 2Ef(oEc/. The electrophoretic velocity in the field direction
decreases with increasing field. Because accumulated charge in the double layer is swept away by convection
as Eo gets large, the electric field generated from the initial induced charge qinit due to Eo is unscreened.
The particle is a conductor, so unscreened field lines are all normal to the particle surface so that Et and
therefore U 11 vanish as Eo -+ oo.

Results from simulations of different particle sizes and charges are shown in Figure 7.7 along with the Debye-
Huckel-Stern theoretical predictions. The theory slightly underpredicts the value of the critical field, but the
predictions agree well with the simulation results. The dipole strength decreases with field as the particle
rotates and moves off the field axis with an angle 0 to supply the electric torque sustaining rotating. The
deviation angle has a maximum at intermediate EO but eventually the dipole aligns with the field at large Eo
where polarization from Eo dominates polarization from the ions. However, there is always a finite component
of S (unnormalized) orthogonal to the field, so the angular velocity Q increases linearly with E. S and 0
increase as a increases, but Q is independent of particle size at large E0 , consistent with (7.44). The theory
overpredicts the angular velocity a bit, which has also been observed in experiments. 285 For particles with
small net charges qo, the Quincke rotation dynamics and steady-states are identical to that of an uncharged
particle. As qo increases, the net charge begins to hinder Quincke rotation, suppressing it altogether for
sufficiently large charges. Like the net charge effects discussed for ICEP, qo hinders charging when nonlinear
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(C), electrophoretic velocity Ui (D), and Magnus velocity UL (E) for different particle sizes i (different shapes) and

net charges go (different colors) as a function of external field Eo from simulation (symbols) and Debye-Huckel-Stern
theory (lines).

steric interactions occur in the ion double layer or when convection is significant. Because Quincke rotation

is coupled to the charging process, it is hindered at large q0 as well. The Magnus velocity increases with E0

above Ec until it saturates at a plateau value U,max at large E0 . For small q0, the predicted U,max matches

our simulation results very well. Because U,max ~ Ec ~ a- 1, the equation (7.51) predicts that the plateau

Magnus velocity decreases with particle size, while our simulations show that U,max generally increases

with a. The theory also predicts that the electrophoretic velocity U11 above the critical field decreases with

increasing E0 due to the dwindling tangent electric field Et as rotation hinders ionic screening in the inner

region. However, we observe a linear increase in U 11 with E 0 and no dependence on a in the simulations,

and the classical electrophoretic velocity formula (7.29) seems to hold even while the particle is rotating.

This is surprising because if the surface charge is unscreened at large rotation rates, the formula for the fluid

velocity (7.27) valid at large K may break down. An approach that accounts for arbitrary screening lengths

may improve the predictions, 125 ,2 77 but was not pursued here.

Our continuum theory requires numerous approximations to admit analytic solutions, so there are several

ways discrepencies with the simulations can emerge. The charge conservation equation neglects surface con-

duction, which becomes important at large field strengths. 279 Radial diffusion and translational convection

are also neglected. The Debye-Huckel-Stern approximation is used for the description of the ions, which does

not offer a good description for concentrated electrolytes, as we saw in Figure 7.2 for ICEO. The analysis

assumes a very thin double layer relative to the particle size, but the double layer in our simulations has a

finite thickness. Finally, Brownian motion of the particle, fluctuations of the induced surface charge distri-

bution, and fluctuations of the ion cloud are not incorporated in the model (7.32) so that the dynamics are

completely deterministic. Even neglecting all these effects, our simple theory seems to be quite accurate.

We can solve (7.38) numerically for the Gouy-Chapman and Carnahan-Starling models to investigate how

nonlinearities in the description of the ions affect Quincke rotation. These results are shown in Figure 7.8.

The Debye-Huckel solution in the rotating regime E0 > Ec forms a curve S(Eo) that can be extrapolated
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field (B), and angular velocity U (C) as a function of external field 50 for different ion models. D. The critical field
Ec as a function of particle size a.

into the nonrotating regime EO < Ec. This curve acts as a limit of stability for the various ion models. If the
ion model predicts a dipole that is smaller than S(Eo), the nonrotating state is stable for that ion model.
Quincke rotation occurs once the dipole crosses S(Eo). From Figure 7.2, the Gouy-Chapman model predicts
an exponentially growing dipole moment, so the critical field is smaller than that predicted from equation
(7.42). Similarly, the Carnahan-Starling model predicts a decreasing dipole moment due to steric hinderance
among ions, so the critical field is larger that (7.42). For ICEO and ICEP, the induced zeta potential grew as

( - aEo and the Debye-Huckel description failed at large E. For Quincke rotation, convection removes ions
from the double layer and the induced zeta potential decreases with Eo above Ec. Thus, the Debye-Huckel
approximation holds for rotating particles at large E0 . The maximum ( occurs at E, which decreases with
~ a-'. Because ( ~ a below Eo < E, the zeta potential at the critical field is independent of particle size,
and the relative predictions for Ec among the models are unchanged for any particle size. This critical (
appears not to be too large, so that including nonlinearities in the ion model does not significantly alter the
predictions for Quincke rotation.

For typical values in water, the critical field (7.42) can be written as a voltage drop across the particle

0.075V
Ec ~ . (7.52)

For a 1I im particle, this corresponds to Ec ~ 750 V cm-'. The plateau value of the Magnus velocity is equal
to twice the electrophoretic velocity at the critical field, so for a particle with a net zeta potential (o ~ 50 mV,
U1 ~ 5 mm.s, which is quite fast for a small colloid.

7.3 Active Propulsion of Colloidal Particles via the Electrohydro-
dynamic Magnus Effect in Alternating-Current Electric Fields

Biological systems contain a vast array of entities that consume energy to propel themselves, from the macro-
scopic scale of animals roaming about to the microscopic scale of swimming bacteria. 1 5 This has inspired
many synthetic variants of dispersions of "active" particles that convert energy into self-locomotion by swim-

ming,98,103,104 growing,109 or rotating.io0-10s,292 Whether composed of biological or synthetic constituents,
this class of materials is called "active matter". Because active particles dissipate energy, they are free
from the constraints of equilibrium thermodynamics and dynamically self-assemble into a rich assortment of
out-of-equilibrium materials," 0 including flocks,", 1 2 nematics, 09 and crystals." 3,"4 These phases have
useful collective transport properties and have been used to drive microscopic motors, 308 ,309 significantly
increase the translational velocity of flocks of microrollers, "5 understand enhanced mixing in cells,1 6 '1 7

and transport passive cargo. 0 1 ",' 8 To utilize active matter for such practical applications on larger scales,
we must consider a few engineering challenges. An ideal active matter system should be inexpensive, consist
of simple components, allow for robust control over the activity, and retain activity for long periods of time.
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Active matter systems constructed with biological components, like swimming bacteria3 08- 312 or kinesin mo-
tors1 09,3 13 can be time-consuming and expensive to grow and/or obtain in purified form and lose activity as
they consume their fuel (unless the fuel is continually injected). Janus or asymmetrically-shaped particles
have been designed to selectively catalyze a reaction on only a portion of the particle surface, propelling the
particle via diffusiophoresis1 03 ,113,314 or electromigration. 3 15 ,316 However, these particles too lose activity
as they consume reactants and synthesizing the complex particle features is not easily scalable,22 so the
particles can be expensive to produce in large quantities.

Particle motion driven by electric fields offers a promising candidate for active matter because particles
retain activity as long as the field is on and the activity can easily be controlled with the external field
strength and orientation. Direct particle transport in electric fields, like electrophoresis of charged particles
in a direct-current (DC) field, dielectrophoresis of polarized particles in a field gradient, or electrorotation
of asymmetric particles in a rotating field, result in particle motion but not particle activity, as there is
no self-locomotion. Motion orthogonal to the driving field is decoupled from the field direction and can
serve as a form of self-propulsion to provide particles with activity. Polarizable particles that are anisotropic
in shape 1 04,292 or in dielectric properties, 293 move orthogonally to an electric field during ICEP due to
asymmetric electroosmotic flows. 279,280 ,291 However, scalable fabrication of cheap anisotropic particles is
challenging. 22 Isotropic particles can move orthogonally to a driving field near a wall288,28 9 or in ratched
microchannels, 294 ,295 but this imposes constraints on the dispersion geometry.

In the previous section, we discussed motion orthogonal to a driving electric field for isotropic spheres in
the bulk via the electrohydrodynamic Magnus effect. In this section, we propose the electrohydrodynamic
Magnus effect as a mechanism for generating active matter dispersions of isotropic, spherical, polarizable
particles in bulk electrolytes. Such particles are inexpensive and easy to synthesize, easy to control with
the external field, do not lose activity as long as the field is sustained, and do not require specific boundary
geometries. Thus dispersions of particles with the EHM effect are a possible route to a robust, scalable active
matter material.

7.3.1 Electrohydrodynamic Magnus Effect in AC Fields

Above the critical field strength Ec, a conductive colloid in an electrolyte will undergo spontaneous Quincke
rotation with angular velocity f. The axis of rotation is always orthogonal to the applied field E0 , but
the direction is random because the rotation is driven by an instability in the fluctuating dipolar structure
of the surrounding ionic double layer. If the rotating particle is also charged, it will translate in the field
direction with velocity U 11 due to electrophoresis and orthogonally to the field with velocity Ui due to the
electrohydrodynamic Magnus effect. From (7.51), the EHM velocity U_ is orthogonal to both the angular
velocity f and the electrophoretic velocity U 11, and the directions obey the right-hand rule U' = U1i x Q.
Because the direction of f is chosen randomly, Ui is also oriented in a random direction. U 1is not directed
by the field and acts as a self-propulsion (i.e. the EHM particles "swim"). The particle/double layer assembly
undergoes rotational diffusion, so the swim direction wanders over time. Thus, the Magnus swimmers behave
like active Brownian particles.

In DC fields, electrophoresis will eventually drive accumulation of ions and particles at the electrodes sup-
plying the field. Not only does this deplete the dispersion of the active particles, but strong interactions with
the ions can lead to uncontrolled electroosmotic flows, electrochemical reactions, and dendrite formation at
the electrode surfaces. Thus, DC fields are not suited for active matter applications. In AC fields, where
the sign of the electric field flips cyclically over time, net electrophoresis is suppressed over many cycles.
There are several possible time signals that could be used to vary the field including sinusoid or triangle
waves, but here we consider a square wave where the electric field instantaneously flips direction. Within a
cycle, if the field is flipped Eo -+ -Eo, the direction of the electrophoretic velocity flips U11 -+ -U 11. When
the Quincke rotation instability is initially tripped, the structure of the ionic double layer is isotropic in the
direction orthogonal to the field, so the direction of Q is chosen randomly. This breaks the symmetry of the
double layer, and the net dipole of the polarized ion cloud has a component that points orthogonally to the
field. Because of this break in symmetry, the particle does not pick a new random axis of rotation when
the field is flipped. Instead, the ions all flip their direction of motion and find a preferred dipole orientation
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Figure 7.9: Snapshots of a nonrotating (left) and rotating (particle) in an AC field from a side view (top row) and

a top-down view (bottom row) with i= 15, and E0 = 1.0. At large frequencies v > r (left), the particle does not
have enough time to charge up and has no net angular or translational velocity. At lower frequencies v < -r (right),
that particle has enough time to charge up and trip the Quincke rotation instability, acquiring a net angular velocity
Q and Magnus velocity U1 but no net electrophoretic velocity U1 .

that depends on their previous orientation, and so the angular velocity flips signf -+ -f. Because the
direction of the Magnus velocity obeys the right-hand rule U = U11 x , the sign flips of U11 and f cancel
out, and the Magnus direction remains unchanged U 1 - Ui when the field is flipped. Therefore, the
Magnus velocity persists over many AC field cycles, as confirmed from our simulations in Figure 7.9. AC
fields suppress net particle electrophoresis and net ionic current while maintaining a steady Magnus velocity,
making them ideal for active matter applications.

As we reported in section 7.2, Quincke rotation occurs when the orientation of the dipole moment in the
polarized ionic double layer (pointed opposite the field) becomes unstable as the dipole strength gets large.
When the field is first applied, there is an induction time r for the Quincke rotation instability to occur as

the particle and ionic double layer charge up. If the frequency v of the AC field is small compared to i ,
the particle and double layer have enough time to charge up during a field cycle to trip the Quincke rotation
instability and drive orthogonal Magnus motion. However, if v too large compared to ri-1, the particle and
double layer do not have enough time to charge up during a field cycle. The Quincke rotation instability is
never tripped, and there is no orthogonal Magnus velocity. Thus, the AC frequency serves as a switch that
can turn on or off the active Magnus velocity, as shown in Figure 7.9. The critical frequency v*, above which
the Magnus velocity turns off, is a crucial parameter to understand and predict.

Because Quincke rotation is an instability and is induced by fluctuations of the ion cloud, we cannot predict
the induction time T from the deterministic PDE (7.38). However, the larger the induced dipole, the smaller
the fluctuation needed to drive the instability, so Tr is related to the charging time Tc of the nonrotating

solution with Q = 0. Figure 7.6 shows that, at large fields, ri is only slightly larger than -rc. We analyzed
the nonrotating charging dynamics in detail in section 7.1. In the Debye-Huckel limit, the charging time is
rc = Esa/2o-, predicting no dependence on EO and a linear dependence on a. However, nonlinear effects are
important at the zeta potentials induced above Ec and Figure 7.2E shows rc ~ E-1' at large EO when steric
interactions among ions are considered. In this regime, polarization due to the double layer is small compared
to polarization due to the external field and charging is limited only by how quickly the external field can
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Figure 7.11: The angular velocity U (left) and Magnus velocity (right) as a function of AC field frequency i for

different net charges io (different colors) at fixed a = 15 and E = 1.0.

shuttle ions electrophoretically to the particle surface. Figure 7.6 confirms that the rotation induction

time also decreases as ri ~ E-' at large E0 . If v* ~ r1, then the critical frequency should increase as

V* ~ E at large E and decrease with particle size as v* ~ a- 1 . Figure 7.10 shows the angular velocity

and Magnus velocity as a function of AC frequency for different field strengths. The critical frequency v*

to suppress Quincke rotation and the EHM effect indeed increases as v* ~ E0 . The transition from rotating

to nonrotating occurs over a narrow region of v. Because of the sharp transition, v really does act as a

"switch" to turn on and off the Magnus effect. Figure 7.11 shows the frequency dependence at fixed E0 and

varying-net surface charge density qo. As we saw in Figure 7.7, small go does not affect Q or U1 , but larger

q0 hinders charging and rotation and pushes v* to smaller values.

The charging time grows linearly with particle size rc- a, so the critical frequency goes as v* ~ a-1 . For

a 1 im particle in water, a typical charging time is r, 10-is.279 ri is a few times larger than 7c, so the

critical frequency is in the 10 - 100kHz range, which is typical of high frequency experimental setups. 6 2

7.3.2 Active Diffusivity

The axis of rotation, and therefore the Magnus direction, is chosen randomly when the rotational instability

occurs. Any direction orthogonal to the field is a stable solution to the PDE (7.37) and is equally likely.

Over long time scales, the axis of rotation and the Magnus velocity wander as the colloid-double layer

assembly undergoes rotational diffusion. This rotational diffusion occurs about the field axis E, as f and

Ui are always oriented orthogonal to E0 . Rotational diffusion is negligible about the axes orthogonal to

E0 compared to the angular velocity of Quincke rotation. The associated rotational diffusivity D, has
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Figure 7.12: Particle trajectories (left), normalized velocity autocorrelation functions(middle), and mean squared

displacements (right) for particles of different charge o in AC fields of different strengths Eo at frequency v = 0.02

for rotating and nonrotating particles. Rotating particles run for a length UTr, before reorienting every r, so the

long time t » r, dynamics are diffusive with an effective diffusivity Deff.

dimensions of inverse time, defining a time scale for rotational diffusion as r, 1/Dr.

Figure 7.12 shows trajectories, velocity autocorrelation functions,

R(T) = (U 1 (t)Ui(t + r)), (7.53)

and mean-squared displacements (MSD) in the plane orthogonal to E0 ,

(r )(r) ((x(t + r) - xi(t)). (xj(t + T) - xi(t))) (7.54)

wherex1  x.(I-EOEO) is the component of the particle position x orthogonal to the field and the brackets

indicate an ensemble average over time. This is similar to viewing the particle along the field axis, as in

Figure 7.9, where only motion orthogonal to the field is observable. Nonrotating particles with no Magnus

velocity only move orthogonally to the field diffusively, so their velocities are uncorrelated (R ~ 0 on the

simulation time scales), and the MSD grows linearly with time as (ri) ~ Dt. From the inset to Figure

7.12, this diffusion is slow and particles do not move far over the duration of our simulations. For a rotating

particle, on time scales less than Tr, the orientation of 0 is highly correlated in time as is the direction of

U 1 , so R is constant. Because the orientation of the Magnus velocity doesn't change much for t < Tr, the

particle appears to swim in a constant direction with constant velocity U1 . This ballistic motion yields an

MSD that goes as (r)= (Uit)2 for t «r. On time scales much larger than r, the orientation of 0 is

uncorrelated in time, as is the direction of U1 , due to rotational diffusion, and R drops to zero. Figure 7.12

shows that the particle trajectories wander in different directions over long time scales. Because the particle

is traveling in random, uncorrelated directions, the dynamics are diffusive, and the MSD scales as

(ri)(r) = 4DeffT, t » , (7.55)

where Deff is the effective diffusivity of the Magnus swimmer. The effective diffusivity can equivalently be

computed in terms of the integral of the trace of the velocity autocorrelation function,

Deff = Tr d R(r). (7.56)
2 0o

Because of the particle's activity this effective diffusivity is much larger than the diffusivity of inactive

particles, which is close to the Stokes-Einstein value Do = kBT/67rrla.

Because the orientations of U_ are uncorrelated for t »r, we can imagine the Magnus swimmer as a

"run-and-tumble" active particle. That is, the particle travels at a constant velocity Ui for r, and then

"tumbles" and chooses a new, random orientation for Uj every Tr. These run-and-tumble dynamics are
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identical to a two-dimensional random walker taking steps of run length L = Uir, every r.1 1 4 Therefore,
the effective diffusivity is

Deff = 4 (7.57)
4

To predict Deff, we need estimates for U_ and r. In the Debye-Huckel limit, we derived an expression for
UL in equation (7.51) that is in reasonable agreement with our simulations in Figure 7.7. We do not have
an analytic expression to derive Tr for the particle/double layer assembly undergoing Quincke rotation. In
the simplest case, we can estimate that the assembly rotates with a diffusivity similar to that of an isotropic
sphere, Dr = kBT/87rqa 3 .1 2 Thus, the effective diffusivity is,

1287rao ( Ec \2)
Deff = ii(.8

K2 kBT Eo0  '

and is shown in Figure 7.13. Unlike the Stokes-Einstein diffusivity Do -- kBT/67rrla, Deffincreases linearly
with a. Though the Magnus velocity decreases linearly as U ~ a- 1, the reorientation time increases more
strongly as r, ~ a3 . The Magnus swimmer spends more time traveling in the same direction before it
tumbles to a new orientation, and the net diffusive motion is enhanced. Deff also depends quadratically
on the particle charge as U1 ~ (o, though large qo can suppress Quincke rotation and reduce Deff. Above
Ec, Def increases with EO and saturates to a constant value at large Eo. This allows the diffusivity of
the particles to be controlled with the external field strength or turned on and off with the field frequency.
Relative to the Stokes-Einstein diffusivity,

Def __ 7287r2 7a 2o-(2 (Ec )2)(59

D o - K 2 (kBT) 2  Eo

For dilute electrolytes, the conductivity can be estimated as o- = 2njq?/67r7a .2 79 At large Eo, the saturation
value is

Deff_ 1287refa 2(   (7.60)
Do ajkBT

Therefore, as the particle size grows, the EHM effect yields significantly enhanced diffusion, orders of mag-
nitude larger than Do. If a Stern-layer is including, the effective diffusivity is

Deff_ 7287r 27a2o.(1 +Kai)( 1  E,1
2 ) (7.61)

Do x2 (kBT) 2  Eo

We compare the diffusivities extracted from the simulations with those predicted from the Debye-Huckel
theory:

io Eo   Deff/Do (sim.) Deff/Do (Debye-Huckel)
0.12 0.5 700 2100
0.12 1.0 990 2100
0.62 1.0 3500 5.2 x 104

The orders of magnitude are fairly consistent, with the Debye-Huckel predictions overestimating the simu-
lation results by only a factor of 2-3 at small o.
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Chapter 8

Conclusions and Outlooks

Colloidal dispersions have been engineered to self-assemble into a diverse array of functional materials im-
portant for society. The types of materials we can manufacture are determined by the kinds of particles we
synthesize, which dictate the thermodynamic interactions that drive structure formation, and the fabrication
protocol, which affects the assembly kinetics. In Chapter 3, we discussed how electric and magnetic fields
are particularly effective for self-assembling dispersions of dielectric and paramagnetic nanoparticles. The
particle interactions are induced by the field, so the field can be used to control the interparticle potential and
change the equilibrium structure. Because the fields are generated external to the dispersion, they are easy
to control, and one of their promising features is the ability to drive dispersions out of equilibrium by vary-
ing the external field in time. Without the constraints of equilibrium thermodynamics, out-of-equilibrium
systems assemble into more complicated structures with more robust and useful material and transport
properties than their equilibrium counterparts. To leverage these unique properties in real applications, we
need fundamental, predictive theories to guide experimental designs. In this thesis, we carried out a system-
atic investigation of the assembly and dynamics of colloidal dispersions in time-varying external fields using
computer simulations, equilibrium and nonequilibrium thermodynamic theories, and electro-/magnetokinetic
theory.

Not surprisingly, computational models of electric and magnetic dispersions are difficult to develop. As
we discussed in Chapter 2, the particle surfaces impose complicated boundary conditions that preclude
analytic solutions to the underlying electro-/magnetostatic PDEs, so various approximate solutions have
been proposed. Generally, more severe approximations lead to simpler solutions that are computationally
inexpensive, but have limited accuracy. In fact, nearly all computational and theoretical work use the
simplest possible model, where each particle in the dispersion behaves a single, isolated particle. In Chapter
3, we showed that this "constant dipole" model leads to predictions that do not agree with experiments.
Constant dipole models predict that, at constant volume fraction 4, a fluid to BCT transition occurs at a
single value of #Eo, for all values of the contrast parameters 3. However, the experiments in Figure 4.7 show
that the value of #EO at the fluid/BCT transition decreases with # and are not close to the constant dipole
predictions. Therefore, a constant dipole description is not satisfactory for studying the assembly of electric
and magnetic particles.

More complicated models that accurately represent real dispersions are computationally expensive. Because
of this computational burden, higher fidelity models have only been used for small systems of a handful
of particles or large systems for a small number of time steps. Neither of these are appropriate for the
large length and time scales involved in assembly. We were faced with the challenge of formulating and
implementing an efficient numerical scheme for electric/magnetic dispersions that was accurate enough to
reproduce experimental results, but fast enough to reach the necessary time and length scales for assembly.
Our solution to this challenge is detailed in Chapter 2 and Chapter 4. We constructed a multipole expansion
to the electro-/magnetostatic governing equations, where the polarization moments induced in one particle
generate fields that affect the polarization moments of all the other particles. Because of this "mutual
polarization", the interactions among particles are many-bodied, and depend intimately on the value of 3.
Though we derived expressions for the moment expansion up to the quadrupole level, we choose to truncate
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this at the dipole level in practice, which we refer to as a "mutual dipole model". We developed an efficient
numerical scheme for computing the dipole moments and interparticle forces. This scheme involves an
iterative solution to the electro-/magnetostatic PDE that leverages a spectrally-accurate Ewald summation
method to propogate dipolar interactions among particles. We implemented this numerical method on
GPUs in two plugins for the software suite HOOMD-Blue. The MutualDipole plugin considers charge-free,
polarizable particles of arbitrary 3. The Dielectric plugin considers charged and polarizable particles
of arbitrary 3. We also extended our analysis to arbitrarily-shaped conductors in Section 2.4. Here, we
used an immersed boundary method to construct conducting bodies out of small beads constrained to move
together rigidly. This method can incorporate an arbitrary number of polarization moments at the increased
computation cost of resolving the induced charge distribution on the body's surface. An efficient GPU
implementation is provided in the ConductorRigid plugin and used to study the electrokinetic behavior of
colloids dispersed in electrolytes in Chapter 7.

In Chapters 3 and 5, we investigated toggled fields as a means to improve the self-assembly of colloidal
crystals. Chapter 3 considered a simple model of toggled depletion attractions, which are isotropic and
short-ranged, while Chapter 5 examined the more complicated case of toggled field-directed interactions,
which are anisotropic and long-ranged but are easy to implement experimentally. In both cases, particles
avoided kinetic arrest and assembled into larger crystals with many fewer defects when the field was toggled
compared to fields held steady. Additionally, the crystallization rate was much faster in toggled fields. For
assembly in steady fields, there is usually a tradeoff between the quality of the final product and its rate
of formation. Toggled fields bypass this tradeoff and are capable of assembling high-quality crystal quickly,
making them ideal for inexpensive, scalable synthesis of functional nanomaterials. Both the assembled
structures and their assembly mechanism are controlled by the toggling protocol, so the toggle parameters
can be optimized for maximum quality and yield.

We proved from first-principles that structures that assemble in toggle fields must satisfy equality of time-
averaged chemical potential y and time-averaged pressure P for two phases to coexist at periodic steady-state.
This is an out-of-equilibrium analogue to the typical coexistence criteria from equilibrium thermodynam-
ics. The time-averaged equations of state can be constructed from equilibrium equations of state valid for
steady fields. This allows a periodic-steady-state diagram to be constructed that predicts coexisting den-
sities and structures as a function of the toggle parameters. By evaluating the time-averaged equations of
state, we computed the PSS diagrams for toggled depletion and toggled external field systems. The EoS
for equilibrium depletion dispersions was already known, 178 but we developed new EoS for dispersions of
mutually polarizable particles in external fields in Chapter 4. The theoretical predictions, which contain
no fitting parameters, agree very well with phase coexistence observed in our simulations. The duty cycle

S-- ton /(ton+toff) acts as a thermodynamic control variable that can induce phase separation and change the
coexisting structures. We also developed phenomenological models to describe the crystallization dynamics
for two observed kinetic mechanisms: spinodal-decomposition-like coarsening and nucleation and growth.
These theoretical frameworks can be leveraged to guide experimental design of efficient fabrication schemes
utilizing toggled fields.

Toggled fields stabilize structures that are only metastable and not observed with steady fields. An interesting
example of this is the spontaneous symmetry-breaking and formation of BCO crystal in toggled fields, whereas
BCT is the thermodynamically stable crystal structure in steady fields. The lattice parameters of the BCO
structure can be continuously transmuted by changing the duty cycle and match the parameters predicted
theoretically by minimizing the free energy of a metastable BCO lattice. This is one example where a
more complex crystal, BCO, is assembled by toggling between two states that prefer simpler crystals, BCT
and HCP/FCC. We believe this idea can be extended to form other exotic crystal structures by changing
the two toggle states. For photonic applications, the diamond lattice is predicted to have optimal optical
properties, so colloidal diamond is particularly sought after. 3 17- 31 9 This complex lattice has been formed
lithographically,3 19 self-assembled using highly anisotopic particles with tetragonal valence, 20 and assembled
electrostatically with binary mixtures of nanoparticles with precisely controlled stoichiometry, charge, and
size. None of these techniques are particularly scalable, so efficient production of colloidal diamond is not
yet possible. One strategy toward scalable diamond synthesis is to use toggled interactions which may allow
simpler, inexpensive particles to form diamond. In fact, even isotropic particles can form quite complicated
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crystal structures, as long as the interparticle potential can be precisely tuned. 28-3 0 The goal would be to
use the toggle parameters to construct a time-averaged interparticle potential for which the the diamond
lattice is at least metastable. Synthesizing colloidal diamond from toggled assembly of inexpensive particles
would enable efficient production of high-performance photonic materials.

Toggling the external field is not the only possible form of time-variation. In Chapter 6, we examined
dispersions of paramagnetic particles in rotating magnetic fields. Like toggled fields, rotating fields also drive
dispersions out of equilibrium, and the structure and dynamics can be tuned using the rotating frequency v,
an extra control knob beyond the normal thermodynamic variables. We showed that the rotating field greatly
increases the self-diffusivity compared to steady fields. The diffusivity attains a maximum value well above
the Stokes-Einstein diffusivity at intermediate rotation frequencies. This enhanced diffusion is predominately
a hydrodynamic effect, as rotating aggregates act as "magnetic stir bars", in agreement with the enhanced
tracer diffusion observed in experiments.93 9 4 We used our results to develop a simple phenomenological
model for magnetophoresis through porous media in rotating fild. The model predicts that increased
diffusion also enhances the magnetophoretic mobility through porous media in rotating fields compared
to steady fields. Experiments with rotating fields have already demonstrated improved magnetophoretic
flux through porous media.38,1 0 2 This makes magnetophoresis in rotating fields well-suited for targeted
therapeutic applications, where magnetic particle carrying drugs and other cargo must navigate dense porous
tissue on their way to a target site. Our analysis shows that the magnetophoretic flux can be optimized
at intermediate frequencies, and the model we developed gives predictions for the optimal experimental
conditions, i.e frequencies, field strengths, concentrations, etc.

Toggling and rotating the field are two examples where dispersions are driven out of equilibrium because
the time-varying field induced time-varying particle interactions. A different class of out-of-equilibrium
material is a dispersion of "active" particles that convert energy into self-locomotion. Like toggled and
rotating field dispersions, the dynamics and assembly of active matter systems do not suffer the constraints
of equilibrium thermodynamics and have useful collective properties. However, traditional active dispersions
are composed of biological material or complicated synthetic particles, which are expensive to produce and
tend to loss activity as they consume their fuel. In Chapter 7, we proposed generating active matter from
dispersions of conducting colloidal spheres undergoing motion orthogonal to a driving AC electric field via
the electrohydrodynamic Magnus effect. Above a critical field strength E, the orientation of the polarized
double layer around the colloids becomes unstable, and small fluctuations drive uncharged spherical particles
to break symmetry and spontaneously rotate about an axis orthogonal to the applied field, a phenomenon
called Quincke rotation. If the particles are also charged, their electrophoretic motion couples with Quincke
rotation to propel the particle in a direction orthogonal to the driving electric field, an electrohydrodynamic
analogue to the Magnus effect. Typically, motion orthogonal to the field requires anisotropy in particle shape,
dielectric properties, or boundaries to break symmetry. Here, the EHM effect occurs from bulk, isotropic
spheres, with the Quincke rotation instability providing broken symmetry driving orthogonal motion. In
an AC field, net electophoretic motion in the field direction is suppressed, but the Magnus velocity persists
over many field cycles. The particle only has motion that is decoupled from the field, which acts as a
self-propulsion and EHM "swimmers" behave like active Brownian particles.

We derived a continuum electrokinetic theory to describe the electrohydrodynamic Magnus effect that is in
good agreement with our simulations. The theory allows us to predict the critical field E, the charging time
r, and the Magnus velocity U1 in terms of system parameters like field strength Eo, particle size a, particle
charge, and ion concentration. This yields estimates for the critical AC frequency v* above which the EHM
effect is switched off. Thus the activity can be controlled externally using Eo or v. On long time scales,
rotational diffusion causes the propulsion direction of EHM particles to wander, and the long time dynamics
are diffusive with an effective "active" diffusivity Deff. By casting the transport in terms of run-and-tumble
dynamics, we predict Deff in terms of system parameters. Above E, Deff increases with Eo, so the field can
be used to tune control the diffusivity of the active dispersion. Unlike typical Stokes-Einstein diffusion, Deff
increases with particle size.

In addition to active matter applications, the scaling of Deffwith particle size can be leveraged for particle
separation by the EHM effect. This could be especially useful for situations where particles cannot be
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separated electrophoretically, since the electrophoretic velocity of a sphere is independent of particle size.
One possible particle separation scheme is a field-flow-fractionation setup, with two possible geometries.
First, particles can move electrophoretically down a channel in a DC field while diffusing orthogonally from
the EHM effect. Second, particle can be flown down a channel and an AC field applied in the flow direction
to induce orthogonal EHM diffusion. In both cases, larger particles move more quickly in the orthogonal
direction, so collecting particles in radial bins at some point downstream allows separation by particle size.

Toggled fields, rotating fields, and the electrohydrodynamic Magnus effect all drive dispersions out of equilib-
rium and, in many cases, improve dispersion properties over their equilibrium counterparts. The theoretical
analysis of such systems is challenging and limited predictions have prevented driven suspensions from being
leveraged in experiments. To address this, I developed a computational and theoretical framework for the
assembly and dynamics of colloidal dispersions in steady and time-varying fields. I hope the tools in this
thesis will facilitate further theoretical, computational, and experimental investigations of out-of-equilibrium
dispersions driven by external fields.

156



157

III 4PRI, Mp"" 1"M M RM



158



Appendix A

Real Space Contributions to the
Electric/Magnetic Ewald Summations

The real space contributions to the Ewald sums in 2.3 require evaluating inverse transforms,

1 1 eik'(xi-x3 )
P, (xi) ek2i-j (1 - h) f, fm - Mi. (A. 1)

Afn j

We separate out the first exponential term as this transforms to a delta function,

e ik.(xi-x 3) - 6(x + rij), (A.2)

where rij = xi - xj. This convolves with the remaining portion of the inverse transform, f dy6(x+rij)u(n -
x) = u(n+rig). In practice, we truncate the real space sum to contain terms with pair separations much less
than the system size. Only nearest image pairs need be considered, and we can always take n= 0. Thus,
the relavant spatial variable in the Fourier inversion is rij,

11 -dr-(1-Pf(Xi) = m-(2i i) 3 Jdr (1 - h) fpfmeikr. (A.3)

This can be a difficult integral to compute, even with symbolic mathematics software like Mathematica and
Maple. We begin by first using product-to-sum trigonometric identities to convert products of trigonometric
functions to sums of trigonometric functions. This rewrites the integral as a sum of terms like

° dk ( - h(k)) cos sk 0° d (1- h(k)) sin sk, (A.4)
0 k 1 0 k

where s is a constant and n is an integer. Mathematica can only integrate these analytically between bounds
of 0 and o0, i.e not for arbitrary bounds. However, because 1 - h(k) -+ k2 as k 0, these terms only
converge for certain values of n. Mathematica can evaluate individual terms for n < 2 with the cosine and
n < 3 with the sine. If the integrand has higher powers of k in the denominator, terms must be grouped
so they converge as k - 0. For example, if the integrand contains cosine and sine terms with k 2 and k 3 ,
respectively, these terms must be grouped as,

(1 - h(k)) sin sk -Css A5
k2 (sk

to ensure the integrand is regularized as k - 0 (as the leading term of sinc x - cos x is x2 ). With these
groupings, Mathematica can integrate in the cases of nonoverlapping, rij '> 2a, and overlapping, rij < 2a,
particles separately. The result is of the form

P1(xi)= my -p+e-(ri+2a)22 +pe(r -2a) 2 
2 0 oe 2

+Af s- -

+ s+erfc(ri + 2a) +s- erfc(rij - 2a) + soerfc rA+ CH(2a - r) (A -6)
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where the p, s, and C are polynomials of r with directional components depending on P and m. A few
notes: the inclusion of the Heaviside step function H ensures that the last term only applies to overlapping
particles; we take the value of the sign function at zero to be sgnO = 1; the self contribution is obtained by
letting r - 0; and finally, the point particle result is recovered by letting a - 0.

A.1 Potential/Charge Coupling

The potential/charge couplings in are,

(xZ) - o(x) jo(ka) xk jo(ka)q. (A.7)
k#O j

The real space contribution is,

O (xi) - o/{O(xi) Eq( )3fdk (1 - h(k))jo(ka)jo(ka)eikr, (A.8)

q 2 d (1 - h(k))jo(ka)jo(ka) sin 0 ekios °, (A.9)

3

q. 2 1- ) jo(ka)jo(ka)jo(krij), (A.10)

Eqj p+e- 3+2a?2+ pe- 2a2 2 +poeri2  +s erfc(rij+2a)(

+ s- erfc (rj 9- 2a) + so erfc rig + CH (2a - rig)), (A.11)

where,

p 2 2 (A.12)

1
p0 (r) 16Ir3/ 2 a2 g' (A.13)

S±(7') 2 2 (r ± 2a) 2 + 1 (A.14)
s+(r) = 647ra2g2r '(.4

2( 2r 2 +- 1
s°(r)- 327ra2r , (A.15)

C(r) = I + 4a - r (A.16)
47rr 167ra2

The self term is obtained by letting r -+ 0,

1 - e-4a2 2  erfc 2ad
- i,o Af 87r/2a2 + 47ra q . (A.17)

The point particle result is recovered by letting a - 0,

0,(Xi) - oro(Xi) = 4 Er erfc rjj (A.18)
4-FAf r%.7

A.2 Potential/Dipole or Field/Charge Coupling

The potential/dipole couplings in S are,

(xi) - Oi,o(xi) = a jo(ka) ek ji (ka)k Sj, (A.19)
aAf VZk~okaZ k2
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with field/charge couplings in written similarly. The real space contribution is,

-(X) o(X2) . - ( A dkh (1 - h(k))jo(ka)ji(ka)keik-r3s, (A.

- S i k d (1 - h(k))jo(ka)ji(ka) sin 0 cos 0 eikri cos 0 f (A.

_3 10

Af S (1 - h(k))jo(ka)ji(ka)ji(kr)i-, (A

1 (± rj 2a )22 .rj 2a 22 0 2

S . pe- +2a +p-e- -a pe- + s erfc(rij + 2a)(

+ s- erfc (rij - 2a)(+ s0 erfc rij + CH(2a - rij) (A

.20)

21)

.22)

.23)

where,

r -6(2r3 -F 4<2 r2 + (-3 + 8a 2 2 )r ± 2a(1 - 8a 2 2 )
2567r3 / 2a4 ( 3 r2

p (r) 3(2r
2 2 + 1)

1287r 3/ 2a4 3 r'

s*(r)= 12( 4 r 4 ± 32a< 4r3 + 12( 2 r 2 - 3 + 64a 4( 4

5127ra 4( 4r2

o( _ _3(4(4r4 + 4 2r2 - 1)
2567ra4( 4r2  '

C(r) =- + 
- 2

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

The self term is obtained by letting r -+ 0,

-0o = 0. (A.29)

The point particle result is recovered by letting a - 0,

-b(, Eb0(~ S,~f 2 ,3 +~ erfc i
47r~f V/rrij r?

A.3 Field/Dipole Coupling

The field/dipole couplings in -ES are,

9 eik(x-xj)
i,o(Xi) = a2 y ji (ka)Z k2  ji(ka)k - Si.

k#O j
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The real space contribution is

-I?4o(Xi)= - 9 A(2 32 dk (1 - h(k)) ji(ka)ji(ka)kkeikr, (A.32)

S - 0 dki dn ( - h(k))ji (ka)j ii(ka) sin 0 e s 2 (I - iF+i r cos 2

(A.33)

Af Sj - 27r 2a 2 k A 1 ek2/4 2 ji(ka)j(ka) (I - fii) + -(kri) j2(kri)

(A.34)

=1ES - ( (I - figi ) + 11Fig-i),
3f

where,

Ui = pe-(r+2a)
2 + p+ 2a2 + P e-r + S +erfc(r + 2a)(

+ si erfc(r - 2a)(+ s erfcr(+ CiH(2a - r). (A.36)

The I - fi component is

=44r F 8a 4r4 + 8(2(2 - 7a2 2)r3 T- 8a2(3 + 2a2 2)r2 + r(3 - 12a2 2 + 32a 4 4) ± 2a(3 + 4a2 2 - 32a 4 4 )
10247r3/2a,6(tGr3

4(4r4 - 8(2(2 - 9a2g2)r2 - 3 + 36a2 2

5127r3 / 2a6 ( 5r2

-8( 6r6 - 36(4(1 - 4a2 2 )r4 ± 256a3 6r - 18(2(1

(A.37)

(A.38)

8a 22)r2 + 3 - 36a 2 2 + 256a 6(6

20487ra 6 6r3

8( 6r6 + 36(4(1 - 4a2 2 )r4 + 182(1 - 8a 2 2)r2 - 3 + 36a 2 2
T (r) =10247ra6 ( 6 r3

(A.39)

(A.40)

(A.41)C(r)=- + 1 (- 9r r3 )
47rr 47ra 16a+32a 3

and the F component is

8-4r 5 - 16a( 4 r 4 + 2(2(7 - 20a2 2 )r3 - 4a( 2 (3 - 4a2 2)r2 - (3 - 12a2 2 + 32a4 ( 4)r T- 2a(3 + 4a 2 2 - 32a4 ( 4 )
5127r3/2a0g5rs

-8(4r4 - 2(2(7 - 36a2 2 )r2 + 3 - 36a2 2

2567r3/ 2 a0g5 r2

-16( 6 r6 - 36(4(1 - 4a 2 2 )r4 ± 128a 3 6r3 - 3 + 36a2 2 - 256a6( 6

10247ra6 (6 r3

16( 6r6 + 36(4(1 - 4a2g2 )r4 + 3 - 36a 2 2

5127ra 6(6 r3

CI (r) = 1
3+ 1 - + r2

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

The self contribution term is obtained by letting r -+ 0,

_1 -1+ 6a2 2  (1 - 2a 22),-4a 2  erfc 2a Si.
Af(167r/2a3 167r3

/
2 a6 ( 3 47ra3 )

(A.47)
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Pi,(r) =



The point particle result is recovered by letting a -+ 0,

1 ( e- erfc(ri ((2r±? + 1)e erfc (rij
-Z=27 3/ 2 r?. 47rr 3r

3 /2r?. 2rrr.
23 )3 23 Z3/

(A.48)

A.4 Potential/Quadrupole or Field Gradient/Charge Coupling

The potential/quadrupole couplings in OQ are,

15 eik (xi-xj)

(xi) - ,O(xi) =a2Af V jo(ka) k2  j2(ka)kk: Q,
k O j

with the field gradient/charge couplings in -. written similarly. The real space contribution is,

(xi)- ,o(xi) - (2r)a2Jdk (1- h(k))jo(ka)j2 (ka)kkeikri,

(272dk d (1 - h(k))jo (ka)j2 (ka) sin 0 eikrcs

x (7r sin2 0 (1 ii ) + 27r cos2 iij ij),

ZQj : 21r212 k 1- jo(ka)j2 (ka)j2 (krij) ij f i,

-1 Qj : f ij pe-+2a 2 + + +er   +sPer2i2+ S erfc(rig

+ sgn (rij - 2a) s~ erfc |rij - 2a|( + s0 erfc rjj + CH(2a - rij)

where,

Pr = 1024r3/2a65r320r ±24a( 4r 4 + 2(2(10 - 4a 22)r3 -F 16a 2(2 - a2 2)r2

P_(r)

s (r)

s0 (r)

C(r)=

- (15 - 12a2 2 + 32a4 ( 4 )r ± 2a(9 - 4a±22 + 32a4(4)),

15(4 4r4 + 4(2(1 + 2a2 2)r2 ) - 3(1 + 4a2 2)
5127 3/ 2 aeg 5r2

3(40( 6r ±128a(6r 5 + 20(4(3 + 4a 2 2 )r4 - 10(2(3 + 8a2g2)r2 + 15 + 60a2 2 + 256a6(6)
20487ra6( 6 r3

15(-8(6 r6 - 4 4(3 + 4a2 2 )r4 - 2(2(3 + 8a 2 2 )r2 - 3(1 + 4a 2 2 ))
10247ra 6( 6 r3

15(12( 4r4 - 2(2(3 + 8a2
2)r

2 + 3 + 12a2 g2 )
10247ra6sgrs

The self contribution is obtained by letting r - 0,

o8 = 0.

The point particle result is recovered by letting a - 0,

1 (((2r + 3)e- 2 A  erfc (r 3
(xi) - O(xi) =Q i: 2r/ 47rr J

273? 7O, ,
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(A.49)

(A.50)

(A.51)

(A.52)

+ 2a)(

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)
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A.5 Field/Quadrupole or Field Gradient/Dipole Coupling

The field gradient/dipole couplings in -6S are,

-Vv i,o(xi) = ai y j2(ka) ( I)

With the field/quadrupole couplings in -EQ handled similarly.
r = rig, the real space contribution is,

-VV o(Xi) =

1f

Af

e ik(xixjk) I

k2 ji(ka)k - S3, (A.61)

Dropping the ij subscripts for clarity,

S dk(1-h(k))j2 (ka)ji(ka) - I eik-r . Sj, (A.62)
L.(27r) 3 a3]f k 2 (

2 3a kf d0 d(1I-h(k))j2 (ka)j(ka)sin~eikr°°s" ki- 0Ik S ,

(A.63)

. Si,

(A.64)

(A.65)

- e-k /4 2 )j2(ka)ji (ka)

(j(kr)fi -S - 2 r) (Ii - si + sj + Sj) + i --(r) S),

(A.66)

+ u 2(r)(I -S + S i- + fSj) + u3 (r)Ii -S), (A.67)

1

1 45 00e'
A 27203  k (1

x

(1ui(r)fi' - Sj
Af

where,

S e + Pp r2a- + si erfc(r + 2a)

+ si erfc(r - 2a)(+ si erfc r + CjH(2a - r).
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00j rr
4i8 3  k dk (1 - h(k))j 2 (ka)ji (ka) sin 0 ekr cos o

x sin26 cos (I'+& ee + fI)+ (2 cos36 - 3sin2O cos) rrr 2 cosOI
3

2 2 a 3 dk (1 - h(k))j 2 (ka)j(ka)

x j(k(I + eei + f-I) - j3 (kr)fif - jI (kr) S,

(A.68)



The fi - Sj component is

P(') 16384r3/ 2a8 7r4  - 24 6r ±48a6r 6 - 44(9 - 8a2 2 )r ±8a 4(3 - 8a2 2)r4

+ 2(2(21 - 80Oa22 + 64a4 4 )r3 -F 4a 2 (3 - 8a2 2)2r2 - (45 - 120Oa2 2 + 192a4(4 - 512a6 6 )r

+ 2a(45 + 24a2 2 - 64a4 (4 + 512a6(6)), (A.69)

0~() 15(246r6 + 4 4(9 - 32a2 2 )r4 - 2(2(21 - 128a2 2 )r2 + 45 - 480a 2 2 ) (A.70)
81927r3 / 2a8 T7r3

s± (r) = 32768a5 8 r 4 488r8 + 326(3 - 8a2 2 )r6 - 244(3 - 16a2 2 )r4

+ 72(2(1 - 8a2 2 )r2 - 45 + 480a 22 + 4096 8), (A.71)

0(r) 15(-48(8r8 - 32(6(3 - 8a2 2 )r6 + 24 4(3 - 16a2 2)r4 - 72(2(1 - 8a2 2 )r2 + 45 - 480a2 2 )
01 = 16384ira8g8, 4

(A.72)

C1 = - + 6 r 6 / 3(A.73)
4___ 647__ - 162)

the I . Sj + Sji + iS component is

P(r) = 163843/2 ( - 40 6r7 ± 80a 6r - 204(11 - 24a2 2 )r 5 i 8a 4 (45 + 8a2 2)r4

- 2(2(45 - 80Oa2 2 + 64a4( 4 )r3 - 4a 2 (15 + 48a 2Z - 64a4 ( 4 )r2

+ (45 - 120Oa2 2 + 192a4(4 - 512a6(6)r ± 2a(45 + 24a2 2 - 64a (4 + 512a6(6)), (A.74)

(r) =15(8( 6r6 + 4 (11 - 32ak2 )r4 + 2$(9 - 64a 2 2)r2 -9 96a 2) (A.75)
81927r3/ 2 a8(Tr 3

s (r) = 32768 80r + 1606(3 - 8a2 ( 2 )r 6- 2048a 3 8 r 5 + 1204 (3 - 16a2 2)r4

- 120O2(1 - 8a2 2)r2 + 45 - 480a 22 - 4096a%8), (A.76)

so (r) 15(-16( 8r8 - 32(6 (3 - 8a2 2 )r6 - 24(4(3 - 16a2 2)r4 + 24(2(1 - 8a2 2 )r2 - 9 + 96a2 2) (A.77)
2 16384-7ta8g8r4

C 2 (r) = 3 K
1 - r+ 5128 3 (A.78)

and the I -S component is,

P3( 5 (44r 5 -F 8a 4 r4 + 16(2(1 - 2a 2 2 )r3 -p 24a(2r2 + 3r ± 6a) (A.79)
10247r3/2a

8 5r2

5 (-4(4r4 - 16(2(1 - 3a 2 2 )r 2 - 3 + 24a2 2 ) (A.80)p3 (r) 5127r3 / 2a8 5 r

s (r) - 5 (-8(6 r6 - 12(4(3 - 8a 2 2 )r 4 ± 128a3 6r3 - 6(2(3 - 16a2 2 )r2 + 3 - 24a 29) (A.81)4(r) ~~20487r a8( 6 r2  
, (.1

s (r) 5 (8(6r 6 + 12(4(3 - 8a2 2 )r4 + 6(2(3 - 16a2 2 )r2 - 3 + 24a2 2 ) (A.82)
10247ra8g6 r2

C3(r) = 5 1 - + . (A.83)
87r ( 4a 16aj

The self contribution is obtained by letting r -+ 0,

-VVOo = 0. (A.84)
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The point particle result is recovered by letting a - 0,

- VVO',O(r) = (4 4r 4 + 10$r 2 + 15)e- 2 2  15 erfc r
27r3 / 2r3 + 47rr

4 rS3

(22r2 + 23)e-
2  3erfcr 2re__

27r 3/ 2r3 + 47rr4 (I~S+Sj+S - 373/2 Ir Si).

A.6 Charge/Charge Force

The charge/charge contribution to the force is

F=- Vxi M , ijqq.j

The real space portion of the charge/charge force is

Fr = - q qqi(p+e-r+2a)2 2 + pe 2a + P0e- +s + erfc(r + 2a)

+ s- erfc (r - 2a) + s° erfc r + CH(2a - r) ,

where,

± (r r±Tz2a
pir) = 327r3 / 2a2 r2 ,

Po (r) 1
167 3/ 2 a2 r,

s() 22r2 - 8a2 2 
- I

647ra2g2r2

so(r) =- r2 2 1

1 1
C(r) =47r2 167ra2

A.7 Charge/Dipole Force

The charge/dipole contribution to the force is

F MVx s,ij -qiSj

with the charge/dipole force involving V.E written similarly. The real space portion is

Fi = qSj : (ui(I - ii) + u11i)
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(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)

(A.93)

(A.94)



Letting ups be the vector coefficient from the potential/dipole or field/charge coupling, we have ui = ugs/r
and uil with polynomials

-6( 2 r3 ± 4a2r2 + (3 - 8a2 2)r T 2a(1 - 8a2 2 )
P (r) =1281r3 /2 a4 ( 3 r3

0  3(2r2 2 _ 1)
,PW647r3/2a4(r2'

12(4r4 i 16a 4r3 + 3 - 64a4( 4

2567ra4 4r3

3(4(4r4 + 1)
so (r) = - 18OV1287ra4(4r 3 '

1 4a - 3r
C(r) = r + .

A.8 Dipole/Dipole Force

The dipole/dipole contribution to the force is

Fi= -VxM s~jSSi
ESi :1s

The real space portion is,

r Ou1L   IOu 1 OuI\5.'S
F r = --(Si Si )i- (Si . ) (S

09r ( r ~r )
- f) - U11 (S f)S + (Si -i)S - 2(Si - i)(Sj - f)

(A.101)
with u 1 and ull defined above in the field/dipole section. The coefficients of the vector terms are of the same
form as the couplings. We have Ou 1 /Or = (uil - ui)/r with polynomials,

3 /p3(r) = 1 4 4r 5 F 8a 4r4 + 42(1 - 2a2 2 )r3 ± 16a 3 4 r2
P ()=10247r3/2a6(5r4

- (3 - 12a2 2 + 32a4( 4 )r -F 2a(3 + 4a2 2 -- 32a4(4) ,

p(r) = 3 4(4 r4 -462(1 - 6a 2 62 )r2 + 3 - 36a2 2,
5127r3/2aeg0r3

s3(r) =6 -4  8 6r6 - 124(1 - 4a 2 2 )r4 + 62(1 - 8a 2 , 2 - 3 + 36a 2 2

2048ra 6ger 4

Sol(r) =66_ (8(6r6 + 12(1 - 42 2)4 -62( - 8a22r + 3 - 36a22,
10247ra a r4

3 3 r2
C1(r) = __ 3- 2

4xrr4 64a\ 2a2J'

(A.102)

(A.103)

- 256a66 ), (A.104)

(A.105)

(A.106)
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(A.96)

(A.97)

(A.98)

(A.99)

(A.100)
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and polynomials for Buli/Or - Bui/Or,

S 1024r/ 2 a6 (5r 4 44r5 - 8a 4 r 4 +8a 2 43 ±82 (-2 2 2

+ (3 - 12a 2 2 + 32a4( 4)r ± 2a(3 + 4a2 2 - 32a4(4)),

P02r) = 5127r3 /9a6 r (- 4 4r 4 +8a 2 4 r2 - 3+ 36a22),

2 (r) = 920487ra6 er4  8( 6r 6 - 4 (I- 4a 2 2 )r4 - 22(1 - 8a 2 ,2 + 3 - 36a 2 2 + 256a6(6),

() N 61024ra66r4 (86r6 + 4 (I- 4a22)r4+ 22(1 - 8a22)r2 - 3 + 36a 2 )

2r 9 -
C2 (r)- 4r4 - 647ra4

-2a2

A.9 Point Particle Solution

Our method currently accounts for the finite size of the particles. To compare our results to the known
point particle solution, we can take the limit of infinitely small particles a- 0 and then convert the sums
to real space. Note that the i = j, n = 0 self contribution must be computed before the limit a - 0. From
k symmetry during inversion and the properties of the moments (e.g. traceless quadrupole), there is only a
charge self term for the potential, only a dipole self term for the field, etc. Extracting the self contribution
and keeping the lowest order term in a in each of the blocks of ,

(A.112)
q. F 1 e ik (xj-xj)1
47ra - A k2 q j -- ik -Q : kk +--

4raAf Af E k2 2J

-Vo(Xi) = 47ra3S + S4  + k   (jik + Sj -kk - Qj :ikkk+ --
47ra3 (A - Af) 47ra3 Af Afjk22)I

(A.113)

15Q 3Q. eik-(x-xj) kk- 2
87ra 5 (Ap- Af ) 47ra5A A k2 - q k

jn

(A.114)

where r = xi - (x + n) and the prime ' indicates that the sum goes over all j and n except for j = i, n = 0.
Evaluating the inverses,

+A +4A(qj!-s*v ±Q,:VV1 +-47raAf 47rf n S + Q : V +.-

Si Ap/Af +2 1 1 1 1 17+..
-V4o(xi) = ra _Af i + 4r S ~ 14  + Q : VVV- + - -

41ra - I 47r~fin 2r

- o(xi) =4 Ap/Af + 3/2 1 47 '(q (VV _V2 1
4lra5 Af )Ap/Af -I +47A Lw .\ \ 3 )

- Sj -V (VV vI+ 1Q: VV VV - V2 + - - - .
3 ) r 2 3 3) rJ
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(A.108)

(A.109)

(A.110)

(A.111)

(A.115)

(A.116)

(A.117)

+ Sj ik kk- 3 1 + 1Qj: kk kk 3 I) + - - -



Because V 2(1/r)= 6(r) and the self term is removed from the sum, r is never zero and the 6(r) terms vanish.

1j . Y11 1 (A18
- 4'o(00Xi) 4 ±47r q S2 -V I+ Q:VV +.- (A.118)

in

-V -O(xi) Si Ap/Af + 2+ 1 1+ Q% : VVV + (A.119)
47ra3 Af A,/Af - 1 47rAf j 

3 r r V r

-VV O(xi)= 3Qi A,/Af + 3/2 1 %(qV 1-+ Qj VVVV +--.
47ra5Af Ap/Af - 1 4rAf jn r r 2 r

(A.120)

This exactly the known point particle solution.
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Appendix B

Equations of State

B.1 Hard Sphere Fluid

For hard spheres of radius a at volume fraction #, the pressure can be written in terms of the value of the
radial distribution function at contact g(#) = g(r = 2a,#),123

1hs (0+ 40 2g(#)) (B.1)
47r

where hs - Phsa3 kBT. The hard sphere chemical potential can be computed from the pressure by
integrating the the Gibbs-Duhem relation #dA = (47r/3)dP,178

[hs = -ido' (B.2)

where ihs /1hsBT and we have neglected an additional term, ln(A/a) 3 , containing the DeBroglie wave-
length A which is not needed for our calculations. The hard sphere Helmholtz energy per volume is then,

fhs = -Phs + #Lhs, (B.3)

wherefhs Fhsa3 VkBT. g(#) is given by the piecewise expression for its inverse h(#) = g-1(#),
3 6 ,18 6 ,18 7

(1-30 < # # f
h(#) = 2 3 (B.4)

A - + B + rcp 5 < # rcp
+#Orc B - f \Orep -#Of i #re - #Of

where #f = 0.494 is the hard sphere freezing point and drcp= 0.64 is the random close packing limit. The
constants A, B and C, are determined by matching h and its first two derivatives at #f,

A = 3hf + 2h' (#rcp - #f) + h' (#rcp- # f) 2 , (B.5)

B = -3hf - 3h'/ (rcp - #f) - h' (#rcp - #f )2 , (B.6)

C = hf + h' (#rcp - #f) + h'l (#rcp- #O)2 (B.7)

where,

hf h(#f) ( O (B.8)

h'- Oh (#f - 5/2) (1 - f) 2  (B.9)
f 0 k (1 - #f /2)2 

B

f 2 7 - 54f +#1
h"l h - ) (B. 10)

f #2 2 (1 - # f/ 2)2
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For < f, the equations of state are equal to the traditional Carnahan-Starling 234 expressions

~h 3# (3#.13#2
fhs = l0 n 0 - 1 + (0 32), (B. 11)

47r (1 - #)2

~3 #+#2+#3_04
P6hs = - 1_03 ,(B. 12)

ihs =nO 3 3, (B.13)
(1-#)

where, again, we have dropped the unnecessary A terms in fhs and 7 hs. Above #f, the equations take
a different form. As # -+ #rcp, h(#) decays linearly to zero, in agreement with the asymptotic behavior
observed in simulations. 32 0,321 The #2 and #3 terms in (B.4) are added to enfore continuity of h and its
first two derivatives at #f. The choice of the freezing transition #f to be the crossover point, proposed by
Torquato, 186 '1 87 is natural because the true equations of state are not analytic at #f due to the fluid/solid
coexistence line.

B.2 Hard Sphere Isotropic Crystal

For isotropic hard spheres crystals, the Lennard-Jones-Devonshire lattice model1 78,188 leads to the following
analytic equations of state,

~ 9 $
Ph-s =(B.14)

47r 1 - #/#c,'

fihs In 27A 3 cp - 1 + 3 (B.15)
8vo # 1 - #/#cy,

where #, = v5/2 ~ 0.74 is the volume fraction at closest packing.

B.3 Hard Sphere Anisotropic Crystal

The hard sphere crystal Helmholtz energy per volume is computed using free volume theory, 178 where a
single particle moves in the free volume V* constrained by its neighboring particles fixed to their lattice
positions,

fhs = -- In V*, (B. 16)
47

where we have dropped the term containing A. V* is estimated using the scheme depicted in Figure B.1.1 4 2

If a particle moves from its lattice position toward a neighbor along the line of centers, the closest the center
of the free particle can approach the center of its neighbor is a distance of 2a. We construct a plane at this
contact point, orthogonal to the line of centers of the pair, to approximate the boundary of the free volume
near this neighbor. Similar planes are placed at the contact point for each of the free particle's neighbors. If
the planes are extended and allowed to intersect, they will form the boundary of a small convex polyhedron
centered around the free particle's lattice position. The volume of this polyhedron is an approximation for
the true free volume V*.

B.4 Depletion

The depletion equations of state are derived using free volume and scaled particle theories, 178

Pdep = Phs + Ff (#), (B.17)

/dep = hs + g(), (B.18)
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2a

Figure B.1: Two-dimensional sketch for estimating the free volume V* of the central particle. Boundaries (dashed
lines) are placed at the contact points (crosses) of the center particle with its neighbors along the line of centers (thin
lines). The boundaries are extended orthogonally to the line of centers. Their intersections bound a small convex
region (thick lines) estimating the free volume (shaded region) around the central particle.

where,

daN
f = (a - #da , (B. 19)

d#(1a d5
g = da (B.20)

3 d#'

and

a= ~ ~ exp n(1 - # - 47 P (B.21)
62(6 + 3a/2) 1- # 2 1 - # (1-0#)2 3

F = e/kBT is the dimensionless depletion strength, 6/a is the dimensionless depletant radius, Pdep
Pdepa3 kBT, and idep pdep/kBT. Because the depletion interaction is isotropic, the crystals it forms are
also isotropic, so we use the isotropic hard sphere crystal expression in the depletion crystal equation of state
for Chapter 3.

B.5 Electric/Magnetic Equations of State

The free energy per volume at constant temperature T, volume V, particle number N, and external field Eo
is142

L (T, V, N, Eo) = Fhs (T, V, N) - -C (T, V, N, Eo) : EoEo, (B.22)
2

where Fhs is the hard sphere Helmholtz energy and C is the capacitance tensor. The pressure and chemical
potentials are computed as derivatives of the free energy,

DL NDC
P OL- T, N, Eo = Phs -N - : EoEo, (B.23)

DV 2DaV
DL 1( DC'

y D N T, V, Eo = phs - 1C+N N : EoEo, (B.24)

In terms of dimensionless quantities,

T (0 to) La3  3

i#, Eo) VkBT =hs()- 8 , 0) : oo, (B.25)

~ Pas   ~ 3#2 D6
P a -- = Phs - 050, (B.26)

kBT 87 (2

y k- - hs ( ~ -): 00, (B.27)kBT 2 09#
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whereC C/a3 Af is the dimensionless capacitance tensor, Eo = EoFa3 Af /kBT is the dimensionless field,
and Af is the solvent permittivity/permeability.

B.6 Fluid Capacitance

The simplest expression for the capacitance tensor is derived by assuming that each particle interacts with
the mean field of the other particles, which yields the self-consistent mean-field expression,7, 172

47ra3Af/3
C = , (B.28)

where# (Ap/Af -1)/(Ap/Af +2) is a function of the ratio of particle permittivity/permeability Ap to solvent
permittivity/permeability Af. This expression is only accurate to 0(1), and therefore only appropriate for
very dilute fluids. Jeffrey derived another expression for the capacitance accurate to O(#) by considering
the exact two-body solution, 172

C = 47ra 3 Afj (1 + c1#) I, (B.29)

where ci = 1.51 for conductors and ci = -0.392 for insulators. For other values of #, ci is given by the
value in Figure 2 of Ref 172 divided by 3#.

B.7 Crystal Capacitance

The capacitance tensor, or rather the average particle dipole S = C . Eo, is computed by inverting the
potential tensor - A WES to solve 142

90 = Y'., (B.30)

for the particle dipoles Y = [Si, S2 ,..., SNT, where &o = [Eo, Eo,.. I Eo]T is the external field repeated N
times, the T superscript indicates transposition, and W has block matrix entries

6 1 1 eik-rj
M i+ -a=+ j (ka)kk (B.31)
47ra3 (Ap - Af) AfV k2

where rij = xi-xj is the distance vector from particles at lattice positions xi and x, k E {(27rk./Lz, 27rky/Ly, 27rk,/Lz)

(k, ky, k,) E Z} is the wave vector, k = Ik| is its magnitude, k/k is its unit direction, (L, LY, L,) are
the dimensions of the periodic unit cell, V = LxLYLz is its volume, and ji is the spherical Bessel function
of degree 1. The average particle dipole is then S _ E Si/N.

For crystalline phases, particles fluctuate about a lattice configuration, here BCT, HCP, or BCO. We modify
the free energy for a crystalline phase to £(#, Eo; Ay, A,), the free energy of a lattice constrained to have
aspect ratios AY = Ly/Lx and Az = LZ/Lx. The combination of #, Ay, and Az along with the particular

lattice type is sufficient to completely specify the crystal structure. We minimize £(#, Eo; Ay, A,) over all
aspect ratios AY and A, to find the equilibrium aspect ratios Ay,eq and Az,eq and the equilibrium free energy

£(#, Eo) = £(#, Eo; Ay,eq, Az,eq). Because the crystal can by anisotropic, we use the anisotropic hard sphere

crystal procedure for fhs.

B.8 Electric/Magnetic Phase Coexistence

With explicit functions for I5 and in the fluid phase, we can compute the fluid/fluid binodal by solving

Pi #01, Eo) = P2 #2, No) , P1 #'1, No) = [t2 #02, So , (B.32)

at each Eo for the two fluid volume fractions #1 and #2. We choose to use the O(#) expression (B.29) for
the capacitance for fluid/fluid coexistence which more accurately models the dense fluid phase. For crystals,
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we do not have an explicit expression for the equilibrium free energy i(#, Zo) because we must minimize

f(#, Eo; AY, Az) to find the equilibrium aspect ratios. So, it is difficult to compute derivatives of £ to find P
and K needed in (B.32). Instead, for fluid/BCT coexistence we compute the free energy per volume for the
multiphase dispersion,

0 4,-N= + i2 #2, No; A, ,01 (B.33)
i 0 PO =T 0 t 4 2 -#1 )#2 -#1'

and minimize over the fluid volume fraction #1, the BCT volume fraction #2, and the BCT aspect ratio
Az, to find the coexisting values at a particular Eo. The coexisting volume fractions are independent of the
overall # provided it is intermediate the coexisting values, #1 < # < #2. For fluid/BCT coexistence, we use
the 0(1) fluid capacitance (B.28) because the coexisting fluid is very dilute (except at small fields, where
entropic effects dominate anyway). Note that for BCT, A1 = 1 so we do not need to minimize over Ay.
Fluid/HCP coexistence is handled the same way as fluid/BCT coexistence, with AY referring to the HCP

aspect ratio. For BCT/HCP coexistence, £ is minimized over the volume fraction and aspect ratios of both
BCT and HCP structures.
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Appendix C

Solutions to the Poisson-Boltzmann

Equation for a Charged Plate

Consider a charged, conducting plate at x = 0 in a solutions containing a symmetric electrolyte species that
dissociates into ions of radius ai and charges q± = ±qi. The bulk overall volume fraction is 2#i, so the bulk
species volume fractions are #i,+ = #i,- = #i/2. The chemical potential of ionic species i is

p+(x) = po,±(#+(x), #_ (x)) ± qi@(x) (C.1)

where V(x) is the electric potential, #±(x) are the volume fraction distribution of ions, and po,± is the
chemical potential in the absence of charges. At equilibrium, the force on the ions, which is proportional
to V±, vanishes so p±(x) must equal some constant p±(x) = C everywhere. Far away from the plate,
x - o, the potential vanishes,0 --4 0, and the ion concentrations approach their bulk values, 0± -4 Oi,
so C± = pi,+ = po,±(#i,+, #i,-) and therefore

(x) = t pi,i - p'o,± (+(x), -(x))). (C.2)
qi

The potential obeys the Poisson equation
d2 P(C.3)
dx 2  (.

where Ef is the electric permittivity of the fluid and the charge density is

p(x) = q(0+(x) - (x)), (C.4)

subject to the boundary conditions

(0)=( OR d -= q (X -+ 00) -+ 0, (C.5)
dxx=O Ef

where q is the plate surface charge density. If we knew both # and d@/dx at x = 0 (or equivalently, and q),
we could numerically integrate the ODE from x = 0. We must use the boundary condition on at x - oo
to infer the missing boundary condition at x = 0. Multiplying both sides of the Poisson equation by 2d@/dx,

2 (d= d2V)-2(dO) p (C.6)
dx dx2  kdx Ef

d d 2 -2 (d)p(C.7)

Integrating from x = 0 to x o0,

d-)2 - 0 dV p(V), (C.8)
dx O
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where the charge density is known in terms of the potential from (C.2). The gradient in V vanishes far from
the plate so,

d sgn ( - di p(O) 1/2. (C.9)

or in terms of the charge,
1/2

q = sgn(- 2 Ef Jdo p(o) . (C.10)

The sign of the gradient is chosen so that its magnitude decays away from the plate. If > 0, (d@/dx)o < 0,
and if ( < 0, (d/dx)o > 0. Equation (C.9) relates the surface potential and surface field, so only one needs
to be specified to know both 0 and d@/dx at x = 0. We can now find the solution to the Poisson equation
by a simple numerical integration. The differential capacitance, C dq/d(, can also be computed as

C = . (-2Ef p(()) = f - (.111 1- fq() (C. 11)
2 -25 ffd@/p( p) q()

Gouy-Chapman Solution

In the Gouy-Chapman model, the ions behave ideally,

p± = kBT In n±±qj, (C.12)

and so their concentration is
n+ =nieT (C.13)

The charge density is

p = qini qe- qqT e-ikB 2nsinh
/ ~ kBT (.4

The surface charge density on the plate is

q = sgn( 4Ef qini do sinhkBT)1/2 (C.15)

=sgn( 4efnikBT cosh - 1 1/2 (C.16)s~n~46fnikBTkBT

qj( qj(
V8Ef rnikBT sinh 2 4nqj A sinh (C.17)

2kBT -2kBT' (.7

where A C fekBT/2niq2 is the Debye length. The differential capacitance is

C 2enq2 cosh 2k( E cosh 2T (C.18)
f BT 2kBT 2kBT

where , = A-' is the inverse Debye length. We can recover the Debye-Huckel solution for qi(/kBT « 1,

q = Efr ,( (C. 19)

C = Ef r (C.20)

Had we integrated (C.9) from oo to x rather than from oc to x, we would have obtained,

d V_ 4njqjA qsin
dx e5 2kBT

dx 2
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where Q = qi@/kBT. We can integrate this from 0 to x to obtain the potential,

~ 1 + e-'x tanh1
b(x) = 4 tanh1 e-' tanhi(- 2 In t (C.21)

1 - e-"x tanh 1

Carnahan-Starling Solution

In the Carnahan-Starling model,

P± = kBT In 0k + - 3 3'j, C22)
(1 - #0)

The ion concentrations are found by solving simultaneously,

n±3-(#++0#_ ) 3 - #i
n (1 (++0-)) 3 + 0 = In #/2 + (1-0) (C.23)

3- (#++0#_ ) 3 - #i
no #_ +1 - (0 _) = In #i/2 +(1 03 (C.24)

which does not have an analytical solution. Therefore we can only find p, which in turn means we can only
find q through a numerical integration. Once p and q are found, we can compute C.
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