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Abstract

In today's highly advanced society, more industries are beginning to turn to autonomous ve-
hicles to reduce costs and improve safety. One industry in particular is the defense industry.
By using unmanned and autonomous vehicles, the military and intelligence communities are
able to complete missions without putting personnel in harm's way. A particularly impor-
tant area of research is in the use of marine vehicles to autonomously and adaptively track
a target of interest in situ by passive sonar only. Environmental factors play a large role
in how sound propagates in the ocean, and so the vehicle must be able to adapt based on
its surrounding environment to optimize acoustic track on a contact. This thesis examines
the use of autonomous surface vehicles (ASVs) to not only autonomously detect and localize
a contact of interest, but also to conduct follow-on long-term tracking and interception of
the target, by using anticipated environmental conditions to motivate its decisions regard-
ing optimum tracking range and speed. This thesis contributes a simulated and theoretical
approach to using an ASV to maximize signal-to-noise ratio (SNR) while tracking a contact
autonomously. Additionally, this thesis demonstrates a theoretical approach to using infor-
mation from a collaborating autonomous vehicle to assist in autonomously intercepting a
target.
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Title: Assistant Scientist
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Chapter 1

Introduction

1.1 Motivation

Operating a manned vessel out at sea requires significant resources. Between the crew salary,

maintenance costs, fuel, and technical support, operating costs for a warship or research ves-

sel is easily in the millions of dollars per year, and the costs are continuing to rise. In a

2009 study by the National Research Council of the National Academies, it was noted that

between 2000 and 2008 the total number of at-sea operating days by the University-National

Oceanographic Laboratory System (UNOLS) had dropped by 13%, but the total operating

costs increased by 75%, doubling the acerage costs per day [4].

More important than the financial resources required to operate a ship at sea, operating

a manned vessel is inherently dangerous. In the summer of 2017 the U.S. Navy had two high

profile collisions while operating in areas with high shipping densities 122]. In June 2017

USS Fitzgerald (DDG-62) and a container ship and in August 2017 the USS John McCain

(DDG-56) collided with an oil tanker. Between these two collisions, 17 sailors were killed.

In the subsequent investigations, the U.S. Navy found that both collisions were preventable

and were caused by human errors and poor seamanship exhibited by the crews of both de-

stroyers [211.

Due to the rising costs and inherent danger associated with operating manned vessels,

several industries, including national defense, are turning to autonomous marine systems,

which include autonomous surface vehicles (ASVs) and autonomous underwater vehicles

(AUVs). Autonomous vehicles are relatively low-cost, easy to deploy, difficult to detect,

and unmanned, so the risks that were previously associated with carrying out a mission
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(both financially and personnel-wise) are significantly reduced. As a result of this, use of

autonomous vehicles will be a critical component of future naval operations.

One area of interest for these autonomous systems is detection, classification, localiza-

tion and tracking (DCLT) using passive acoustics. In the autonomous DCLT mission, an

unmanned vessel uses a hydrophone array, data aquisistion system, and signal processing

software to provide a remote user with information on nearby vessels and acoustic conditions.

Passive autonomous DCLT technology is an area of active research, and with increased size,

speed, and autonomy capability of ASVs a critical area of interest is how to best use multiple

vehicles in the DCLT mission. Some areas in the autonomy decision space include how to

position multiple vehicles for passive tracking of targets, autonomous response to detection,

and communication and coordination approaches. This thesis describes research into use of

two gasoline-powered ASVs to demonstrate detection, tracking, and interception of a target.

1.2 Background

There are several different methods that researchers and defense personnel employ to local-

ize and track a contact in the ocean, such as RADAR, active SONAR, and passive SONAR.

While RADAR and active SONAR provide high fidelity solutions to the contact of interest,

there are increased counter-detection risks associated with using them (a particular concern

for submarines and AUVs). As a result, one of the most commonly used methods to detect,

localize and track a contact of interest is passively via a bearings-only approach.

There has been extensive research done in the field of passive acoustic tracking. Most

array processing texts, including Van Trees [271, cover the theory and real-world applica-

tion of passively tracking a sound source extensively. There are also excellent examples of

papers that demonstrate single-vehicle adaptation to improve beamformed SNR and break

left-right ambiguity, e.g. [2],[7].

The Maritime Security Laboratory at the Stevens Institute of Technology has also done

work in this field, developing an underwater passive acoustic array that has successfully de-

tected, classified, and tracked various noise sources, such as divers, surface vessels and AUVs

[3],[23]. Another example of progress made in the development of passive acoustic systems

is work done by the Ocean Acoustical Services and Instrumentation Systems (OASIS, Inc.),

which has demonstrated the feasibility of tracking AUVs with a passive acoustic system

16



in harsh harbor environments [1]. Additionally, there have been several studies providing

information on expected signal to noise ratio and frequency content of different types of

surface vessels [17],[30].

One noticeable gap in the current state of research is using passive acoustics as well as

ocean modeling to inform an autonomous vehicle's decision on where to track a target of

interest from in order to optimize signal-to-noise ratio and most effectively track the contact.

1.3 Contributions

The key contributions of this thesis include:

" SNR modelling to inform autonomy that includes self-noise, array gain, and acoustic

propagation of target noise.

" Development and deployment of an array system for Jetyak ASVs

• Simulation studies on autonomous techniques using the above.

" Field experiments to test autonomy.

1.4 Organization

This thesis is organized into six chapters. Chapter 2 discusses acoustic propagation in an

ocean environment and the calculation of acoustic rays for use in modeling software. Chapter

3 discusses common techniques to detect and track a sound source or contact of interest.

Chapter 4 explains the experimental methods that were used to both simulate a realistic

tracking problem, as well as collect real-world acoustic data. Chapter 5 displays the results

of simulations and real-world experiments. Finally, conclusions and recommended future

work are discussed in Chapter 6.

17
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Chapter 2

Acoustic Propagation

A critical aspect of this thesis is to optimize the signal-to-noise ratio (SNR) of a signal

that a receiver collects from a sound pressure wave emitted from a sound source in the

water. To successfully do this, the ocean environment and sound sound propagation must

be accurately modeled. This chapter presents a mathematical background of how sound

propagates through the ocean, and describes the process used to accurately calculate the

transmission loss at a particular point in the ocean, which will be used to calculate the

received level (RL) and SNR.

2.1 Acoustic Propagation in the Ocean

In the ocean, the surrounding environment is a significant factor in how an acoustic wave

propagates and how far it travels before being attenuated below a detectable level. The speed

of sound in the ocean is dependent on water density, which is a function of pressure/depth

(z), salinity (S), and temperature (T), as defined in Equation 2.1 13].

c = 1449.2 + 4.6T - 0.055T2 + 0.00029T3 + (1.34 - 0.01T)(S - 35) + 0.016z (2.1)

The water temperature, pressure, and salinity can vary greatly within a water column,

and as a result of this, the ocean can be viewed as a layered acoustic waveguide with an

infinite number of interfaces stacked together as depicted in Figure 2-1 [12]. Similar to

19



Figure 2-1: Depiction of fluid-fluid interfaces in the ocean [11].

optical waves, acoustic waves bend according to Snell's law [121:

k1 cos 01 = k2 cos 02 = k, cos 0, (2.2)

where k, the acoustic wavenumber, is a function of angular frequency (w) and sound speed

(c) as defined in Equation 2.3, and 0 is the incident angle of the wave at the interface.

k (2.3)
C

2.2 Acoustic Rays

In the previous section, it was noted that acoustic waves observe Snell's Law of refraction.

Using this, acousticians have developed different techniques to calculate the expected path

that a sound pressure wave takes for a given sound speed profile, as well as the expected

pressure amplitude of the propgating sound at a particular point. Some of the most com-

monly employed models are either normal mode calculations or ray tracing models, each

with their own advantages and disadvantages [121. Ray tracing models tend to be less ac-

curate than normal mode models, however take much less processing power and therefore

have faster processing times. For the purpose of this thesis, a ray tracing model was used,

and will be discussed in greater detail in the following section.

20
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2.2.1 Ray Tracing

To calculate the path and amplitude of an acoustic wave along a single ray, we begin with

the Helmholtz equation [12]:

P + 2 (p = -6(x - xo), (2.4)

where xO is the location of the sound source and x=(x,y,z). To get the ray equations, we

assume a solution to the Helmholtz equation in the form of:

p(x) = e ()(2.5)
n=o

After taking the first and second derivatives of Equation 2.5, and solving for V 2p, we

insert the result back into Equation 2.4 to get the result in terms of two separate equations:

a non-linear partial differential equation (PDE) known as the Eikonal equation and an infi-

nite series of of linear PDEs known as the transport equation [12].

The Eikonal equation, defined in Equation 2.6 can be solved using many different meth-

ods, but is often solved by introducing a family of rays perpendicular to the wavefronts. This

method allows us to define the ray trajectory x(s) by the differential equation in Equation

2.7.

1
Vr|2 =(2.6)c2 (x)(26

dxdx= cVr (2.7)
ds

Next, we differentiate the x,y, and z components of Equation 2.7 with respect to s to obtain:

d 1 dx 1
( =- Vc (2.8)

ds c ds c
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Finally, the ray equations can be written in the form:

dr-- = c (, (2.9)
ds
d z

= c((s), (2.10)ds
d< 1 oc
ds c2 r'

d( 1 09C(2.12)

where r(s) and z(s) is the trajectory of the ray in the range-depth plane [12].

Now that the Eikonal equation has been solved, the transport equation must be solved

to calculate the pressure amplitude along the ray. The transport equation is defined in

Equation 2.13:

V (A'Vr) = 0 (2.13)

By applying Gauss's divergence theorem to Equation 2.13, we are left with:

jA V0r - ndS = 0 (2.14)

where n is an outward pointing normal vector. Next, by grouping a family of rays together,

we can define the volume enclosed by the rays as a "ray tube". Since rays are normal to the

phase fronts, the ray is the normal vector on the ends of the ray tube, resulting in V -n = 1
C

on the ends of the ray tube and V . n 0 along the sides of the ray tube [121. From this,

we determine that:

J A2 A2-dS- d S = constant. (2.15)8aVO C aV C

As the ray tube becomes infinitesimally small, we are left with:

Ao(s)= Ao(0) c(0) J(0), (2.16)

J =r )2 + ( )2 (2.17)
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2.2.2 Eigenrays and Transmission Loss

By applying the methods described in Section 2.2.1, we were able to calculate the amplitude

of the pressure along a single ray. However, we also often want to know what the pressure

field looks like at a particular point. Because multiple rays can pass through a single point

(known as eigenrays), and each one contributes to the pressure field based on its intensity

and phase at that point, we must find all eigenrays to determine the total amplitude of the

pressure field at that point.

To find the eigenrays, we start by tracing a fan of rays, and then identify pairs of rays

with adjacent take-off angles that bracket the receiver in depth, as shown in Figure 2-2,

and finding the phase delay and amplitude through linear interpolation. As can be seen

r

Source

z

Figure 2-2: Illustration of bracketing rays in depth around areceiver [12].

in Figure 2-2, two rays with adjacent take-off angles that bracket areceiver in depth may

have different ray histories (i.e. one may have had asurface orbottom interaction, while

the other ray was direct path). Since large errors can result by interpolating the results of

two rays with different histories, interpolation is performed in this case.

Once all of the eigenrays have been determined, the total pressure intensity is calculated

by summing up the contributions of each eigenray, as shown in Equation 2.18.

N(r,z)

p(C) (r, z) = Epj (,z) (2.18)

j=1
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Once the intensity has been determined, we can calculate the transmission loss at the par-

ticular point as:

TL(s)= -20 log p(S) (2.19)

where po(s = 1) =

Once the transmission loss is calculated, the RL and SNR can be calculated using the

passive sonar equation [25], defined in Chapter 3, which will be then be passed to various

autonomous behaviors to help motivate the vehicle's decision.
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Chapter 3

Source Detection and Tracking

As was discussed in Chapter 2, the transmission loss at any given point in the ocean is

heavily dependent on the environment in which the acoustic wave is propagating, and the

transmission loss can be estimated through various techniques. Assuming deep water, and

a mid-water-column sound source, the basic passive sonar equation can be used to describe

the received level of sound based on the source level (SL) and the transmission loss (TL),

as well as the background noise level (N) [29]:

RL = SL - TL + N, (3.1)

Additionally, the SNR can be described as:

SNR = RL - N. (3.2)

The SL is the acoustic level of the source referenced 1 meter from the source, TL is the

transmission loss the acoustic wave due to the distance the wave travels from the source to

the receiver, NL is the background noise level including ownship noise and background noise

levels [29], all measured in decibels (dB).

The received sound is detected by a hydrophone or transducer, which measures changes

in sound pressure levels. This signal is then converted to an electrical signal, where it is

processed to determine direction of arrival or bearing. Once the direction of arrival has

been established, this information can be applied to various state estimation algorithms to

estimate the position, course, and speed of the source. This chapter presents the math-
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ematical basis for the detection and tracking algorithms that were used in this thesis, to

autonomously localize and track a sound source in the water.

3.1 Acoustic Arrays and Beamforming

Beamforming is used to determine the bearing from the sound source to the receiver. The

array filters the signals in a "space-time field by exploiting their spacial characteristics" [27].

The filtered signals are expressed as a function of wavenumber, where the wavenumber for

a plane wave in a locally homogeneous medium is defined as:

sin 0 cos

k = -2rsin 0 sin 4(3.3)

cos 0

As shown in Figure 3-1, 0 is the polar angle with respect to the z-axis, # is the azimuth angle

with respect to the x-axis. A is defined as the wavelength associated with the frequency of

the signal [27].

The geometry of the array that is chosen affects the performance and operation of it.

Polar Angle

AzlmuthAngle

Figure 3-1: Coordinate system used for beamforming [27].

For example, when a line array is used, only one angular component is resolved, resulting

in right/left bearing ambiguities [27]. Additionally, the array length, spacing between the

sensors, sampling frequency, and weighting at each sensor output significantly affects the

array's performance.
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3.1.1 Uniform Line Arrays

In this thesis, a horizontal line array with equally spaced hydrophones was used. This is

known as a uniform line array [27], and is pictured in Figure 3-2.

n=N-1 4I

I

I

I

I

I

n=0 *

Figure 3-2: Uniform Line Array with N-elements and elemental spacing Az [27].

The sensor locations are defined [27] as:

PXn = Pyn = 0

Pz = (n - N 1)Az, for n = 0, 1,..., N - 1
2

The array elements sample the field, resulting in a vector of signals:

f (t, po)

f(t,p)= f(tPI)

f (t, PN-1)_

27
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(3.6)

Pn
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The array output, y(t), is then realized by processing the output of each sensor through an

impulse response filter, ha(r), and summing them together [27], which can be written as:

N-1i

y(t)= Ej h(t - r)f(-r, p)dr (3.7)
n=o

= j hT(t - r)f(r, pn)dr, (3.8)

and visualised in Figure 3-3.

In lieu of Equation 3.8, the array output can be written more succinctly in the transform

f(t,po) ho (T) f(t)

f ~ hs (1 f(t) +y(t)

fMtpN-1 N-1 ft

Figure 3-3: Visualization of an acoustic array with linear processing [27]

domain as [27]:

Y(w) HT (w)F(w), (3.9)

where

H(w)= h(t)e-jwtdt, (3.10)

and

F(w)= f(t, p')e~wtdt. (3.11)
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Assuming the acoustic wave from the target of interest propagates as a plane wave, the

signal received at each sensor is:

f(t -To)
f (t - Ti)

f (t,p) f (t-TO (3.12)

f(t - TN-1)

where -r is the time delay in arrival at each sensor and is defined [27] as:

1
7 = ( ,p, sin 6 cos $ + py, sin 0 sin # + Pz, cos]. (3.13)

c

In the case of a linear array, as used in this thesis, Equation 3.13 can be reduced to:

rn -Pz' cos 0 (3.14)
C

Using Equations 3.11 and 3.12, the nth component of F(w) is [27]:

Fn(w) = f (t T )e-iwidt (3.15)

(3.16)

where

wr = kT pn. (3.17)

The exponential term of 3.16 can be rewritten in terms of an array manifold vector [27]:

e-jkTpo

e-jkTp1
Vk (k)= (3.18)

eikTpN-1
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and therefore,

Fn(w) = F(w)vk(k) (3.19)

As before, the output of each sensor is processed through a filter, hn(T), defined as:

h(-r) = 1o(r + rn) (3.20)

to align all of the signals in time. The signals are then summed together to obtain the

output y(t) = f(t), as illustrated in Figure 3-4. This process is known as "delay-and-sum

beamforming" or "conventional beamforming" [27]. In the frequency domain this can be

f(t)

f(t-T1) f(t)1+r, + -f(t)

f(t-rN-1) f(t)
lt +rN-1

Figure 3-4: Delay-and-sum beamforming process [271

compactly written as:

H T(w) = I vk H (ks) (3.21)

By combining Equations 3.18 and 3.21, we arrive obtain the frequency-wavenumber response

to a plane wave [27]:

(3.22)
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Finally, the beam pattern is calculated by evaluating the frequency-wavenumber response

versus the steering direction:

B(w : 0, # = Y(w, k)|k= !a(0,4) (3.23)

3.2 Tracking

After beamforming a signal, a single receiver will have a relative direction to the source,

however range is still unknown; the target of interest can be anywhere down that bearing.

By adding a second receiver at a different location, the position and range are able to be

determined by calculating the position at which the bearings cross, as illustrated in Figure

3-5.

to *•

Intercept ASV

Figure 3-5: Illustration of crossed bearings between two moving receivers and one moving
target.

Assuming perfect data (i.e. not noise corrupted and perfect bearing resolution) a perfect

system solution to the source can be obtained after each receiver obtains just two bearings.

This process of bearings only tracking over time is known as "target motion analysis" (T MA).

In the real-world, however all measurements have varying degrees of noise added to the

system. By using more advanced and more expensive equipment to obtain the measurements,

the noise can be minimized, but not completely eliminated. As a result, the system solution

will be imperfect. However, by processing the measurements through a state estimation
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algorithm, such as a Kalman filter or one of its variants, the system is able to account for

the noise corruption and over time converge on a more accurate estimation.

3.2.1 Classical Kalman Filter Overview

The Kalman filter is a recursive discrete-time filter that is used to estimate the solution to

linear dynamic systems [8]. The Kalman filter has been used for a wide-range of applications,

dating back to the 1960's, and has several variants for non-linear systems, including the

extended Kalman filter (EKF).

In the classical Kalman filter, the state is estimated by propagating a linear state space

model perturbed by white noise, and then estimating updates to the state solution based

on measurements which are also perturbed by white noise [15], defined as:

Xk = Ak-lxk-1 + qk-1 (3.24)

yk = Hkxk + rk, (3.25)

where Xk is the state of the system at time k,yk is the system measurement at time k, Ak_1

is the discrete-time transition matrix, Hk is the measurement model matrix. The discrete-

time process noise, qk-1, and measurement noise, rk, are assumed to be zero-mean Gaussian

white noise [8], such that:

qk-1 ~ N(O, Qk-1) (3.26)

rk ~ N(O, Rk), (3.27)

where Qk-1 is the process noise variance matrix, and Rk is the measurement noise variance

matrix.

Often Equation 3.24 is displayed in the following form:

k = Fx(t) + Lw(t), (3.28)

where F is the system transition matrix, L is the noise coefficient matrix, and w(t) is

the system process white noise with power spectral density Q. Equation 3.28 must be
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discretized to solve for Ak and Qk, to redefine the system in the form of 3.24:

Ak = eFdt (3.29)

Q I= eF(dt-r cT eF(dt-,r) TdJdtQk- eF dr)LQcLT~Fdr)d (3.30)
0

The Kalman filter consists of two steps during each time step: a prediction step and an

update step. The predicted state solution is calculated given the previous system solution.

The update step calculates the Kalman gain factor matrix, Kk, and the innovation, Vk

(difference between the actual and predicted measurement values), and then uses these

values to update the predicted state equations [8]. The system prediction equations are

defined as:

i = Ak_1-c+ (3.31)

P- = Ak1Pk-A 1 1, (3.32)

where PI is the system covariance matrix and Qk is the process noise covariance matrix.

The system update equations are defined as:

Vk = Yk - Hkk-k (3.33)

Sk = HkPiHT + Rk (3.34)

Kk = P-HTS- 1  (3.35)

= ik + KkVk (3.36)

P - P- KkSkK   (3.37)

3.2.2 Extended Kalman Filter

As stated in Section 3.2.1, the classical Kalman filter can only be used in linear applications.

The expected bearing from each ASV to the target of interest is defined as:

yk - ASVk\
Bk = arctan A- ASV~k (3.38)

(Xk - ASVI
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where ASV2k and ASVYk are the x and y positions, respectively, of the ASV, and X and yA

are the estimated x and y positions, respectively, of the target of interest. Since the bearing

measurement to the target of interest in non-linear, an EKF is used to estimate the state of

target, where the state of the target consists of a two-dimensional position and velocity and

is defined in Equation 3.39. An EKF builds on the concepts presented in Section 3.2.1, and

linearizes the non-linear parameters by performing a first order Taylor series expansion [9].

xk)

Xk = (3.39)
. k

\9k|

Similar to Equations 3.24 and 3.25, the model is defined as:

Xk = f(Xk-1, k - 1) + qk-1 (3.40)

Yk = h(xk, k) + rk, , (3.41)

where h(Xk, k) is a nonlinear function as shown in Equation 3.38. As with the classical

Kalman filter, the EKF is performed in two steps, a prediction step and and update step.

The EKF system prediction equations are defined as [81:

ik = f (k+_ 1 , k - 1) (3.42)

Pk = Fx(x_, k - 1)PkFT(x , k - 1) +Q _1, (3.43)

and the EKF update equations are defined as:

Vk = Yk - h(zk, k) (3.44)

Sk = Hx(^k, k)P-HT (--,k)+Rk (3.45)

Kk = P-HT(, )sk1 (3.46)

Rk = Rl + Kkvk (3.47)

P+ = Pi - KkSkKT, (3.48)
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where Fx(x, k - 1) and H.(i, k) are the Jacobians of f and h.

In this thesis, the beamforming and filtering techniques presented in this chapter are

used to detect and estimate the state solution to a sound source in the water by sharing

bearing and ownship navigation information (i.e. position and speed) between two deployed

ASVs.
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Chapter 4

Experimental Methods

One self-noise experiment was performed for each ASV to obtain the power spectral density

of the self-generated noise for all speeds from idling to maximum speed. This experiment

allowed us to map the total noise generated by each Jetyak across its entire speed range.

Additionally, one field test was performed using both Jetyaks and an acoustic source to

simulate a target of interest. This test was to illustrate the effects of RL vs range and speed,

assess the accuracy of the speed versus noise models generated in the self-noise experiment,

as well as to demonstrate the feasibility of deploying a low-cost passive acoustic system on

an ASV to detect a contact of interest.

All acoustic testing was performed in the Great Harbor in Woods Hole, Massachusetts.

The self-noise experiment was conducted on the west side of the Great Harbor, as pictured

in Figure 4-1. This location was selected due to its convenient location to Woods Hole

Oceanographic Institution, and it being isolated from other marine traffic in the harbor.

The experiment using both Jetyaks and a source was conducted off the pier at Woods Hole

Oceanographic Institute (WHOI), also due to convenience and relatively light vessel traffic.

Finally, a series of simulations were conducted in the Mission-Oriented Operating Suite

Interval-Programming (MOOS-IvP) environment to demonstrate the theoretical ability for

vehicles to autonomously adapt their behaviors in situ to track a target of interest based on

optimizing SNR and intercepting a target based on a collaborator's solution estimate [181.

The results of these experiments and simulations are presented in Chapter 5.
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Figure 4-1: Test Site for each Jetyak Self-Noise vs. Speed Test [6].

4.1 Jetyak Autonomous Surface Vehicle

Two WHOI-designed Jetyaks [14], pictured in Figure 4-2, were used to collect all real-world

acoustic data that is presented in this thesis.

The Jetyak is an impeller driven, modular, three-piece kayak with a Mokai ES-Kape hull,

and a Subaru EX21 four-stroke engine [26]. The Jetyak has three operating modes: manned,

remote controlled, and autonomous [14]. While in autonomous mode, the Jetyaks utilize

a front seat/back seat computer architecture. All helm decisions (i.e. speed, heading, and

waypoint calculations) are made by the back seat and controlled with MOOS-IvP autonomy

software. The back seat passes this information to the front seat, via a serial command to

actuate the throttle and rudder servos. The front seat then, in turn, passes pertinent vehicle

information (i.e. vehicle position and speed) to the back seat. This is illustrated in Figure

4-3.

The modular design of the vehicle allows multiple sensors to be easily configured and

mounted for many different applications. For the experiments presented in this thesis, each

Jetyak was equipped with an eight-element horizontally mounted hydrophone line array to

collect and process all acoustic data. The line array is mounted on the port side of both

vehicles, approximately 1 meter below the surface. The array is made up of eight HTI-96-
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Figure 4-2: One of two Jetyak ASVs used during real-world experiments, collecting acoustic
data to demonstrate the effects of range and speed on the RL of the received signal emitted
from the source.

MIN hydrophones [10, pictured in Figure 4-4. The analog signals from the hydrophones are

converted to a digital signal at a sample rate of 19200 Hz using a Measurement Computing

USB-1608FS-Plus-OEM data acquisition board [5], and then stored and processed on a

Raspberry Pi 3 Model B computer [19]. This process is illustrated in Figure 4-5. The eight

channels were equally weighted, with a nominal array spacing of 9 inches (0.2286 meters).

The array specs are summarized compactly in Table 4.1.

Number of Channels 8

Sampling Frequency 19200 Hz
Samples per file 19200
Element Spacing 0.2286 m

Table 4.1: Summary of acoustic array design specifications

4.2 Acoustic Data Collection

4.2.1 JetYak Self-Noise vs. Speed Test

Acoustic data were collected from each vehicle to measure the Power Spectral Density (PSD)

of the self-emitted noise at speeds ranging from 0 m/s (engine idling) to maximum sus-
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Throttle
Servo

Rudder

Vehicle Servos

Figure 4-3: Flow of information between front seat and back seat computers for autonomous

decision-making.

tainable speed (approximately 3.0 m/s, with intermittent speeds up to 3.5 m/s), at speed

increments of 0.5 m/s.

The horizontal line array outlined in Section 4.1 was equipped to each vehicle, 1 meter

below the surface. One vehicle was operated at a time in autonomous mode and drove the

track shown in Figure 4-1, going from the southwest waypoint to the northeast waypoint,

turning around, and ending at the southwest waypoint. This procedure was repeated at

incremented speeds of 0.5 m/s up to the maximum sustainable speed of approximately 3.0

m/s. Once these data were collected from the first vehicle, the engine was turned off, and

the experiment was repeated using the second vehicle.

4.2.2 Source Detection and SNR Experiment

On July 11, 2019 an experiment was conducted off the WHOI pier in Woods Hole, Mas-

sachusetts, with two Jetyaks operating in remote-controlled mode, and one Lubell LL916C

40

Estimated
BRG

Estimated
* Solution

MOOS Apps
------------------------- --------------- I

------ -- --- --- --

Tracking Tracking
Range Speed

Desired Desired
Course Speed

lvPHelm

MOOS Behaviors

0

0

V

I



Figure 4-4: HTI-96-MIN hydrophone [10].

8

7

Watertight Acoustic Bottle:

Raspberry
Pi/Data DAQ
Storage 4

12V Power Ba er

Power

Figure 4-5: Data flow process from eight element hydrophone array to storage on a Raspberry
Pi 3 Model B Computer.

underwater acoustic source [16] emitting a continuous 1 kHz tonal. The specifications of the

acoustic source are listed in Table 4.2.

During the experiment, both the source and line array were approximately 1 meter below

the surface. This experiment was broken up into 2 different tests, each with different vehicle

configurations and goals. Figure 4-6 shows the test tracks and configurations for the vehicles

and sound source. In the first test, the vehicle operated along a East-Westerly track, while

the source was tied to the pier. The goal of the first test is to demonstrate the effects of

range and speed on the RL and to test the models that were developed to predict the RL
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Source Model Lubell LL916C
Output Level 180dB/uPa/m at 1kHz

Operating Frequency 1 kHz

Table 4.2: Operating characteristics of Lubell LL916C underwater acoustic source.

(a) (b)

Figure 4-6: Vehicle and Source configurations for the two acoustic experiments performed.
(a) Test 1 configuration with vehicle tracks perpendicular to each other and sound source

placed at the WHOI pier; (b) Test 2 configuration with vehicles passing fixed sound source
in the harbor [6]

for the given speed and range. In the second test, the sound source was tied to a dead in the

water (DIW) boat in the harbor and two Jetyaks passed the sound source, on either side.

The goal of the second experiment was again to validate the assumed models, but also to

demonstrate the ability to deploy a low-cost passive acoustic system on an ASV to detect

and track a sound source in the water.

4.3 MOOS-IvP Simulations

A series of simulations were conducted in the MOOS-IvP environment to demonstrate the

theoretical capability of ASVs to autonomously localize a target of interest, and adapt their

behavior to either track it based on optimizing SNR or intercepting it based on inputs from

a collaborator. The simulations were conducted in a shallow water environment, similar to

the one observed in Woods Hole Harbor, Massachusetts. In the simulations, the vehicles are

divided into one of two categories: one vehicle will be referred to as the "tracking vehicle"

and the other one will be referred to as the "intercept vehicle".
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4.3.1 MOOSApps

Several MOOSApps that are common to both vehicles were developed to accomplish the

goals of this thesis. Figure 4-7 shows a flowchart of the MOOSApps with the inputs and

outputs to all of the MOOSApps. In a real-world environment the acoustic data from the

Array Data

Python Script pGenerateBRG

Target Bearing

pMultiLocaliza t ion

Initial Target Position

pMultiTMA

Initial Target Solution

- pSingleLocalization

Target Solution

MOOSBehaviors

Figure 4-7: Flowchart of MOOSApps that were developed in support of this thesis

line array is processed in real-time using a Python Beamforming script that was developed in

support of this thesis, and the estimated bearing is passed to pMultiLocalization. However in

a simulated environment, we do not have real acoustic data to process, so a noise-corrupted

simulated bearing is generated via pGenerateBRG and passed to pMultiLocalization. pMulti-

Localization is run on both vehicles and shares the estimated bearing with the other vehicle.

An initial position estimate is then calculated by determining where the bearings cross, as

discussed in Section 3.2. This position estimate is then passed to pMultiTMA. After a pre-

determined wait interval, pMultiLocalization calculates a new position estimate and passes

it to pMultiTMA. Once pMultiTMA has two position estimates it uses the time and position

difference to obtain an initial course and speed estimate of the target. The target solution

is then passed to pSingleLocalization to initialize the EKF.

Once the EKF is initialized, pMultLocalization and pMultiTMA are turned off, and all
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future solution estimate updates are done in pSingleLocalization. pSingleLocalization is also

run on both vehicles, however the EKF is designed to take either one or two bearings as an

input, in the event that one vehicle loses acoustic contact on the target (i.e. the intercept

vehicle enters a shadow zone or maneuvers to place the target in forward endfire while clos-

ing range to the target).

Finally, once pSingleLocalization has been activated, the vehicles will enter either the

Tracking or Intercept Mode.

4.3.2 MOOSBehaviors

To accomplish the Tracking and Intercept Modes, two MOOSBehaviors were developed:

BHV_ Track and BHV_Intercept. Prior to mission launch, a transmission loss vs range

analysis for the anticipated sound speed profile, source depth, and receiver depth is per-

formed using the BELLHOP modeling software [20] and is loaded into BHVTrack.

Using the data from BELLHOP, as well as the current solution estimate to the source,

BHVTrack evaluates the course and speed that will result in the highest average SNR

over the next one minute, without resulting in it entering a shadow zone. If the vehicle esti-

mates that it is impossible for it to maintain the SNR greater than a set detection threshold

during the entire one minute period, the vehicle selects a course and speed that minimizes

the time with the SNR below this threshold.

Once the vehicle has arrived at the optimum tracking range, it maneuvers to place the

target broadside and matches the target's speed to maintain range.

The BHV_ Intercept behavior uses the current system solution to calculate the shortest

path and time to intercept the target of interest, and updates its desired heading and speed

to reposition to the calculated intercept point. Throughout the entire tracking process, the

tracking vehicle remains in constant communication with the intercept vehicle, continuously

providing updated target solutions, to allow the intercept vehicle to update its intercept

point even when it no longer holds acoustic contact on the target.

4.3.3 Shallow Water Summer Profile

In a shallow water summer profile, as illustrated in Figure 4-8, sound is more likely to have

a boundary interaction than in a deep water environment. As a result, sound is attenuated

more quickly, and does not propagate as far. Figure 4-9 shows the transmission loss vs
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Figure 4-8: Shallow water summer profile [13].

range in this environment, with a 1 kHz source placed at a depth of 1 meter, and a receiver

placed at a depth of 1 meter. This requires a receiver to be placed at a relatively close range

to detect the source. Because of this, the simulation presented began at an initial range

within 2000 meters, to ensure that the source would be detectable. In this simulation, the

V" l , --

235 -- --------

.'-,, V

3545 ¶535 5235

Figure 4-9: Transmission Loss vs Range plot for a 1 kHz source at a depth of 1 meter and
a receiver at 1 meter.

tracking vehicle began to the southeast of the source, at an initial range of approximately

1100 meters, on a course of 180. The intercept vehicle began to the southwest of the source

on a course of 090. Both vehicles had an initial loiter speed of 2 m/s. The initial conditions

of the simulation are summarized in Table 4.3.
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Vehicle
Tracking Vehicle
Intercept Vehicle

Source

Course
180
090
270 t Speed (m/s) Range

2
2
2

to Target (m)
1100
280
N/A

Table 4.3: Initial conditions of shallow water summer simulation
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Chapter 5

Results

The analysis and results of two real-world acoustic collection experiments as well as tracking

and intercept simulations are presented in this chapter.

5.1 Jetyak Self-Noise vs. Speed Test Results

To determine the speed based noise characteristics of each vehicle, a baseline noise test

was performed on March 28, 2019 in Woods Hole Harbor. The results of the experiment

described in Section 4.2.1 are presented in this section.

5.1.1 Jetyak 1

To process the data, first the voltage signals received from the hydrophone are converted to

a pressure measured in micro-Pascals (pPa) by a conversion factor [10]:

P = 10167 / 2OV, (5.1)

where P is the pressure and V is the received voltage. Then, a spectrogram of the acoustic

data was generated, as shown in Figure 5-1. The spectrogram is generated by taking a

discrete Fourier transform (DFT) of windowed time segments [24]. From the spectrogram,

we observe that the Jetyak has strong tonals between 80 Hz and 120 Hz, with evenly spaced

harmonics out to approximately 800 Hz. The power spectral density (PSD) is then calculated

by squaring the magnitude of each DFT time segment and converted to dB using equation
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Figure 5-1: Spectrogram of acoustic data collected on Jetyak 1 in Woods Hole Harbor,
Massachusetts on March 28, 2019.

5.2:

PSDdB = 10logio(PSD), (5.2)

where Pref is 10-6 for water. Finally, a moving average filter was applied to the PSD and

speed data of the vehicle to obtain the RL of the noise received by Jetyak 1 at each speed, as

shown in Figures 5-2 and 5-3. Finally, the total noise contributed by the Jetyak is calculated

by subtracting a reference background noise level of 70 dB. The reference background noise

level was determined by finding the average ambient noise level in the water with the vehicle

turned off. This reference background noise level is variable depending on several variables,

including the wind speed, current, and merchant traffic, and therefore must be determined

prior to every experiment.

Figures 5-5 and 5-6 show that the received level is fairly linear for speeds between 1.5 m/s

and 3.0 m/s, and the average SNR results for each measured speed are listed in Table 5.1.

From linear interpolation, we obtained the expected transmission loss vs speed for Jetyak 2,

to be approximately modeled by Figure 5-4.

5.1.2 Jetyak 2

The same process was repeated for Jetyak 2, and resulted in similar results, as shown in

Figures 5-5 and 5-6. A summary of the average observed RL vs speed is found in Table 5.2,
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Figure 5-2: Raw RL vs. Seedo eyk1
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Figure 5-3: Filtered RLvs. Speed of Jetyak 1.

again using areference background noise level of 70dB. Again, from linear interpolation, we

obtained the expected transmission loss vs speed for Jetyak 2,to beapproximately modeled

by Figure 5-7.

5.2 Field Results

A series of real-world tests were conducted on July 11, 2019 in Woods Hole Harbor to

observe the effects of range to the receiver versus the RL at the Jetyak, and to demonstrate

the ability to successfully detect a contact of interest on a deployed ASV. Prior to conducting

the experiments, a ambient background level of approximately 90 dB was measured, and
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Speed (m/s) SNR (dB)
Idle (<0.5 m/s) 10

1.5 18.83
2.0 22.31
2.5 25.84
3.0 29.48

Table 5.1: Speed vs. SNR results for Jetyak 1.
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Figure 5-4: Linear interpolation of data obtained from Jetyak 1test experiment, modeling
the estimated transmission loss vs speed.

was used as the reference level for both Test 1and Test 2.

5.2.1 Test 1- Stationary source on the dock witha single vehicle

The first test was conducted with a single vehicle, and a 1 kHz sound source tied off the

pier at a depth of approximately 1 meter. As shown in Figure 4-6a, the Jetyak was driving

perpendicular to the pier, on an East-Westerly course.

Figure 5-8 shows the RL change over the course of the first test, as the vehicle approached

and drove away from the source. This figure also plots the Jetyak speed and range from the

source as a function of time. From Figure 5-8, there is a clear inverse relationship between

range to the source and RL. However, from this plot, it is not as clear if the change in speed

over the course of the test had much impact on the RL. As a result, the expected SNR

versus SNR plot, Figure 5-9, was developed to compare the accuracy of the models.

The expected SNR was realized by segmenting the test into 1 second increments to ex-

tract the estimated attenuation of the signal due to range from the source (TL) from Figure
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Figure 5-6: Filtered Rbvs. Speed of Jetyak 2.

4-9 and the total background noise (reference background noise of 90 dB plus the added

noise from the Jetyak) from Figure 5-4.

The results modeled in Figure 5-9 has an average difference between expected and re-

ceived of 1.37 dB and a standard deviation of 4.67 dB. As can be seen in Figure 5-9, at

approximately 850 seconds into the test the expected is almost double what the received

value was. This is likely due to the ambient background noise level being higher than the

90 dB reference level (possibly due to a noisy vessel starting up). The variability of the ref-

erence background noise level limits the accuracy of the models. To obtain a more accurate

estimated SNR, additional sensors can be added to the vehicles to continuously monitor

background noise levels in real-time.
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Figure 5-7: Linear interpolation of data obtained from Jetyak 2 test experiment, modeling
the estimated transmission loss vs speed.
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Figure 5-8: RL vs Time plotted alongside Range and Speed vs. Time for Test 1.
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Speed (m/s) SNR (dB)
Idle (< 0.5 m/s) 10

1.5 22.17
2.0 25.25
2.5 27.7
3.0 29.89

Table 5.2: RL versus speed results for Jetyak 2.
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Figure 5-9:tExpected vsActual RL Results for Test 1.

5.2.2 Test2- Stationarysourcein theharbor with two vehicles

The second testwasconductedwith a sound source i, te aboat inthe harboriwith both

vehicles driving by ona rEast-Westerly course.Once again, the sourcewasemittinga con-

tinuous 1 klzsource, as shown in Figure 5-10.

Aswiththe e firstitest, the Rbversus time foreachvehicleis plottedwiththerangeand

speed over time in Figures 5-11 and 5-12, and the expected versus the actual Rbis displayed

in Figure 5-13 and 5-14. Using the speed models from Figures 5-4 and 5-7, the expected

versus measured SNR values were relatively accurate with Jetyak 1having amean difference

of 1.16 dB with astandard deviation of 5.82 dB and Jetyak 2having amean difference of

2.39 dB with astandard deviation of 4.01 dB. Again, the high degree of variability in the

ambient noise level will require additional noise sensors to beadded to the vehicles to update

the reference level in situ as the background noise level increases or decreases.

Now that the ability to detect a contact of interest has been demonstrated, the next

step to demonstrate the ability to deploy a passive acoustic system on a low cost ASV to
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Figure 5-10: Spectrogram from Jetyak 1, showing the 1 kHz source.
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Figure 5-11: RL vs Time plotted alongside Range and Speed vs. Time for Jetyak 1, Test 2.

track a contact of interest is to beamform the acoustic data using the techniques defined

in Section 3.1. To beamform the array data, these data were divided into snapshots and

processed one second at a time, and the results are shown in Figure 5-15. During each itera-

tion the beamforming results were averaged over a frequency of 990 to 1010 Hz to calculate

the bearing with highest intensity (the estimated bearing). A relatively narrow band was

selected since the source was emitting a continuous narrow band 1 kHz signal, making a

wider beamforming band unnecessary.

The estimated bearing for Jetyak 1 is plotted in Figure 5-16 and in Figure 5-17 for

Jetyak 2. In both figures, the expected bearing is in red, and was calculated using latitude,

longitude, and heading values from the GPS, and the estimated bearing in blue. Jetyak 1's
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Figure 5-12: RL vs Time plotted alongside Range and Speed vs. Time for Jetyak 2, Test 2.
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Figure 5-13: Expected vs Actual RL Results for Jetyak 1, Test 2.

beamforming resulted in a mean bearing error of 11.535 degrees with a standard deviation

5.08 degrees, and Jetyak 2's beamforming resulted in a mean bearing error of 9.36 degees

with a standard deviation of 7.74 degrees. While a bearing accuracy on this order of magni-

tude is likely enough to establish a direction of relative motion of the source, localizing the

position and determining the course and speed to the fidelity needed to track based on RL

and to establish an intercept course is not likely. With this degree of bearing accuracy the

EKF could likely be initialized poorly, and would continue to update its estimation based

on poor measurements.

In order to improve the bearing accuracy of the beamforming, an optimum beamformer,

such as the minimum power distortionless response (MPDR) or the minimum variance dis-
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Figure 5-14: Expected vs Actual RL Results for Jetyak 2, Test 2.

IOI

Figure 5-15: Example output from beamforming Jetyak 1acoustic data.

tortionless response beamforming filters (MVDR) can be applied [28, rather than conven-

tional beamforming. This will be added at alater date and retested tovalidate improved

performance of the beamnforming.

5.3 Shallow Water Summer Profile Simulation Results

The first two sections of this chapter developed and demonstrated the models that are used as

the basis for our and interception algorithms to varying degrees of success. As was discussed

is Section 5.2.2, the current state of the conventional beamformer that was used in this

thesis does not have the bearing accuracy necessary to generate ahigh fidelity solution to
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Figure 5-16: Expectedvs. estimated bearing from Jetyak 1conventionalbeamforming.
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Figure 5-17: Expected vs. estimated bearing from Jetyak 2conventional beamforming.

the target. However, to demonstrate the theoretical application of all the concepts presented

throughout this thesis, tying it all together into theultimate goal ofdetection, classification,

localization, and tracking, data that was simulated in the MOOS-IvP environment will be

presented in this final section.

In the simulation, the simulated bearings are calculated with knowledge of both the

source and Jetyak's position, and then zero mean White Gaussian noise, with a standard

deviation of 0.5 degrees, is added. While this degree of fidelity is not likely for a low-cost

passive acoustic system, it is not an unreasonable assumption for a highly advanced system,

such as ones that the various commands under the Department of Defense employ. The

purpose of this is simulation is to demonstrate the theoretical ability to use an ASV to
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passively track a contact of interest based on maximizing SNR, as well as intercepting a

contact of interest using solution estimates from a collaborating vehicle.

5.3.1 Tracking Vehicle

After starting the simulated mission, the vehicles are initially in a loiter pattern with the

tracking vehicle on a North-South course and the intercept vehicle on a East-West course.

The initial conditions for this test are summarized in Table 4.3, in Section 4.3.3. The vehicles

begin receiving simulated bearings immediately and then begin estimating the solution, as

described in Section 3.2. The results presented in this section begin after the EKF has been

initialized and the vehicles have entered their tracking and intercept behaviors. The vehicle

track versus the source track is displayed in Figure 5-18 as a surface plot with the colors

varying with time to show the Jetyak's and source's relative position to each other. The

source is the top horizontal line going from east to west and the curved line is the tracking

vehicle closing range to reposition to the optimum tracking range.

Fi 5Vd-8 Po o uing e rwak a

A., 1

Figure 5-18: Plot of the source and the tracking vehicle tracks, asthe tracking vehicle
repositions to optimize RL.

The vehicle speed and the SNR of the received signal are displayed in Figure 5-19.

Additionally in Figure 5-19c, the range versus time is plotted on the shallow water profile

sound propagation plot from Figure 4-9 to illustrate the fact that the vehicle selected the

range that resulted in a local maximum SNR.

One area of improvement with the tracking algorithm that remains to be implemented is

to add in additional logic to ensure while repositioning to the optimum tracking range, the
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(a) (b)

(c)

Figure 5-19: Simulation results for the tracking vehicle. (a) Tracking vehicle speed vs.
time; (b) Filtered SNR of the received signal, assuming a 70 dB ambient background noise;
(c) Vehicle range vs. time overlaid on the shallow water summer proffile plot of SL - TL,
illustrating which range the vehicle chose as the optimal range.

tracking vehicle maintains the source out of endfire. Bearing estimates are highly inaccurate

in endfire, and therefore should not be relied upon.

5.3.2 Intercept Vehicle

As discussed in Section 4.3.2, the tracking vehicle is in constant communication with the

intercept vehicle and is providing continuous solution updates to the intercept vehicle. For

the modelling purposes, it was assumed that as soon as the EKF was initialized, the intercept

vehicle no longer had reliable bearings to input into the EKF. As a result the estimated source

position was updated with a single bearing input from the tracking vehicle, once per second.

Figure 5-20 displays both the source and intercept vehicle's positions as a surface plot, to

illustrate their relative position to each other over the course of the simulation. The source

track is the horizontal line going from East to West (right-to-left), the intercept vehicle is

the jagged line, and the colormap represents time in seconds. As, shown in the Figure, the

intercept vehicle was able to successfully close range to the source and continuously updated

intercept course as the solution estimate was updated by the tracking vehicle.
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Figure 5-20: Intercept and Source Tracks vs. Time

5.3.3 Source Position Error

Figures 5-21 and 5-22 display the error in the x and y positions of the source vs. time, as a

measure of how accurate the single bearing EKF solution is. As shown the estimate in the

y-position of the source was more accurate than the estimate of the x-position with a mean

error of 2.42 and 4.38 meters and standard deviation of 43.76 and 74.11 meters respectively.

Figure 5-21: Error in source x-position estimate vs. time.

The high standard deviation in x and y-positions is likely due to periodic, excessively

noisy bearings that over bias the Kalman gain factor in the EKF. However, as more bearing

measurements are obtained, the EKF quickly converges on a relatively accurate solution
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Figure 5-22: Error in source y-position estimate vs. time.

once again.

5.4 Conclusion

The results of the various field and simulated experiments presented in this chapter demon-

strated the use of own ship's noise characteristic models to effectively optimize detection and

tracking of a contact of interest, by selecting a range and speed that results in the maximum

received SNR. Additionally, this chapter presented a theoretical approach to simultaneously

conduct an interception and tracking of a contact using multiple coordinating ASVs.
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Chapter 6

Future Work and Concluding

Remarks

Autonomous marine vehicles are becoming increasingly important to national defense due

to rising operating costs, danger to personnel, and increasing global threats. Autonomous

vehicles and systems are a key role player in future naval operations: in the near future

many missions that were conducted by manned teams, or that were considered to be too

dangerous will be completed by autonomous vehicles. This thesis explored the use of one

or more ASVs with hydrophone arrays for passive detection, classification, localization, and

tracking of acoustic contacts in simulation and field experiments.

Simulation was used to understand the impact of acoustic environment on SNR, and to

develop autonomy techniques that take into account ASV self-generated noise during ship

tracking and interception missions. In addition to optimizing the SNR that tracking vehicle

obtains, the simulations in this thesis presented a theoretical approach to using multiple

collaborating vehicles to simultaneously track and intercept the target. The hardware and

software for a low-cost ASV-based array system was also developed and deployed in experi-

ments on two Jetyak ASVs, and resulting data sets made it possible to assess the relationship

between vehicle speed and SNR and efficacy of passive beamforming for autonomous track-

ing. A key finding from both simulation and real-world experiments was the importance of

noise estimation in the autonomy for these types of fast, gasoline-powered ASVs: ownship

noise has an impact on tracking efficacy, and must be taken into account when considering

autonomous adaptation.
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This thesis lays the basis for future efforts on use of autonomous marine systems for

multi-vehicle adaptive DCLT. Key areas for future work will include improving fidelity in

beamforming using optimal or adaptive techniques, testing of multi-vehicle adaptation con-

cepts in field experiments, and improved environmental noise estimation to further improve

SNR-based autonomous adaptation.
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Appendix A

BELLHOP Configuration

'Munk profile, coherent'! TITLE

1000.0 ! FREQ (Hz)

1 ! NMEDIA

'CVF'! SSPOPT (Analytic or C-linear interpolation)

51 0.0 5000.0 ! DEPTH of bottom Cm)

0.0 1548.52 /

200.0 1530.29 /

250.0 1526.69 /

400.0 1517.78 /

600.0 1509.49 /

800.0 1504.30 /

1000.0 1501.38 /

1200.0 1500.14 /

1400.0 1500.12 /

1600.0 1501.02 /

1800.0 1502.57 /

2000.0 1504.62 /

2200.0 1507.02 /

2400.0 1509.69 /

2600.0 1512.55 /

2800.0 1515.56 /
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3000.0 1518.67 /

3200.0 1521.85 /

3400.0 1525.10 /

3600.0 1528.38 /

3800.0 1531.70 /

4000.0 1535.04 /

4200.0 1538.39 /

4400.0 1541.76 /

4600.0 1545.14 /

4800.0 1548.52 /

5000.0 1551.91 /

'A' 0.0

5000.0 1600.00 0.0 1.8 0.8/

1 ! NSD

1000.0/! SD(1:NSD) Cm)

1 ! NRD

1.0 / RD(1:NRD) Cm)

10001 ! NR

0.0 10.0/! R(1:NR )(km)

'Cg' ! 'R/C/I/S'

0 ! NBEAMS

-20.3 20.3/ ! ALPHA1, 2 (degrees)

0.0 5500.0 101.0 ! STEP (m), ZBOX (m), RBOX (km)
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