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Abstract

The race is on to build the first quantum computer, and although there are many
groups working towards this goal, their quantum devices have certain architectural
properties in common. First, the devices tend to be built on qubits arranged in a 2D
grid, with gates between neighboring qubits. Second, we expect Clifford gates will
be an important gate set because of their close connection to stabilizer codes (being
both necessary to encode qubits, and easily implemented on encoded logical qubits).
Finally, the limited lifespan of qubits (due to various forms of noise) encourages shal-
low circuits, at least until fault tolerance is achieved. It is important to acknowledge
these limitations and incorporate them into our models of computation in order to
make the most out of near-term quantum devices.

In this thesis, we will explore the three concepts above. First, we see a cellular
automaton with a demanding universality property, to illustrate that computation
in the grid is possible even under extreme circumstances. Second, we present a
classification of subsets of the Clifford gates, furthering our understanding of this
important quantum gate set. Finally, recent work of Bravyi, Gosset, and Konig (2018)
shows, unconditionally, that there are problems that can be solved by constant-depth
quantum circuits, but not constant-depth classical circuits. We present two follow-up
results above low-depth quantum circuits with the goal of strengthening the classical
hardness. One result extends the separation AC® circuits (constant depth, unbounded
fan-in AND/OR gates), and arguably simplifies the Bravyi et al. problem. The other
result proves hardness beyond AC® (specifically to @L) for the task of interactively
simulating certain constant-depth quantum circuits.
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Chapter 1

Introduction

In recent years, we have seen an unprecedented new wave of investment in quantum
hardware. Established tech giants, ambitious start-ups, and university labs around
the world have finally begun the race for quantum computers in earnest. Over the
last six years!, for example, Google has moved from cautiously benchmarking of D-
Wave devices, to constructing their own 72-qubit [68] quantum architecture. These
devices (and others like them) appear to be the precursors of general-purpose quantum
computers, if they can overcome the high error rates and limited number of qubits
they have at present. We assume that with time, researchers will find a way to lower
the error rate below the critical threshold for quantum computer and then, as with
conventional computers decades ago, scale up the size of the devices (i.e., number of
qubits) to the point where full-scale quantum computation is possible.

An important milestone for these quantum hardware groups is the first demon-
stration of quantum advantage or quantum supremacy, i.e., some computational task
for which quantum devices outperform classical devices. A quantum advantage is
crucial to convince skeptics (and more importantly, investors) that quantum devices
are not snake oil, and that some fundamentally different, new form of computation is
evident. Any particular demonstration will have detractors, so we expect there will
be a sequence of increasingly convincing quantum advantage experiments until only
the most die-hard detractors of quantum computing are left unpersuaded. Indeed,
we may have already seen the first example: although the verdict seems to be that
D-Wave’s devices did not live up to their marketing (or indeed, surpass the classical
state of the art), there was enough doubt about how their quantum annealing algo-
rithms compared to the best classical algorithms that it spurred further investigation
by Google [40], and the computer science community in general [79, 104].

The push for a quantum advantage is not just the purview of hardware engineers;
there has been significant progress on the theoretical side too. From the beginning,
interest in quantum computing has been motivated by the idea that quantum comput-
ers could be more powerful than classical computers. That is, the class of problems
solved by quantum computers in polynomial time, BQP, is separate from the class of
problems that can be solved by classical computers with randomness in polynomial

1 Coincidentally, the same period of time the research within this thesis was conducted.
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time, BPP.?2 Proving such a separation unconditionally is beyond current techniques
in complexity theory,® but there are some convincing conditional results on the the-
oretical side.

Initially, it was assumed there would be a quantum advantage for the task of
simulating quantum systems [48].4 That is, there are lots of special cases where
physical quantum systems can be simulated efficiently, even classically, but some cases
appear to require exponential time. A universal quantum computer could plausibly
simulate the same systems in polynomial time (for a substantial quantum advantage).
However, this is bordering on tautological, like saying that simulating an NP machine
is an NP-complete problem. The first concrete evidence of a quantum advantage
came from Deutsch-Jozsa [41], separating EQP and P in a black-box query model
of computation, and Simon’s algorithm [107] improved this to a separation of BQP
and BPP (again, only in the query model). Shor’s algorithm [105] solves another
problem, factoring, which is thought to be hard classically (at the very least, we
do not have even a quasipoly-time algorithm yet), but unlike simulating a quantum
system, factoring is a very natural, number-theoretic problem which has been studied
for centuries.

Around 2010, Aaronson and Arkhipov [2] introduced boson sampling, showing
that there could be an advantage for a non-universal quantum device built using lin-
ear optics, and using a sampling task rather than a conventional decision problem.
Unfortunately, linear optical devices have proved difficult to scale up to the point
that the Aaronson-Arkipov proposal would be classically intractable. Independently,
Bremner, Jozsa, and Shepherd [29] gave a similar result with similar hardness as-
sumptions, but using a commuting gates model instead of linear optics. The weakest
versions of the Aaronson-Arkhipov and Bremner-Jozsa-Shepherd results require the
(quite reasonable) conjecture that the polynomial hierarchy does not collapse, and
stronger versions (usually to sample within additive error) require domain-specific
conjectures about, e.g., the permanents of matrices with random Gaussian entries,
or anti-concentration of amplitudes in IQP circuits. Sampling results also include
random circuit sampling, the problem of measuring a sample from a quantum circuit
of randomly chosen gates, with various choices of depth, topology, and gate set of
the circuit. Variations of random circuit sampling are the basis of several competing
proposals [21] for demonstrating quantum effects in near-term devices, although they
often fall somewhat short of a rigorous quantum advantage, one main exception being

2Whether polynomial time (either P or BPP) captures the efficient computation is a big question
on its own, going back to Cobham [32] or Edmonds [45] in 1965. It is even less clear that polynomial
time captures efficiency for quantum computations, since the same arguments against the idea still
apply (e.g., constant factors could be large, big exponents are not especially efficient) and, for now,
we lack real world evidence with quantum computers to support it. We adopt the orthodox view
that P, BPP, and BQP capture “efficient” or “tractable” problems, although we will have little use
for these classes within this thesis.

3In particular, P ¢ BPP and BQP ¢ PostBQP ¢ PSPACE, so a separation would settle the open
question of whether P = PSPACE negatively. This would be an enormous breakthrough.

‘In a single quote: “Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because
it doesn’t look so easy.”
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that of Bouland et al.[23].

Notice that in these quantum supremacy proposals, there is a trend over the years
towards what is practically realizable on quantum devices in the near future. Early
theoretical results were understandably focused on establishing that quantum com-
puters are a worthwhile goal, potentially useful in some hypothetical sci-fi future. As
experimental progress is made, the proposals get closer to might soon be achievable,
e.g., using linear optics because the hardware looks promising (photons are in some
ways easier to manage than other quantum media). The theoreticians are meeting
the experimentalists in the middle, so to speak, and in this thesis we argue that is a
good thing. Adapting theoretical results (and especially the models of computation)
to the realities of near-term quantum devices can only hasten the advent of quantum
supremacy. Moreover, some limitations of current quantum hardware may persist
well into the future, so there is value in adapting our models of computation to the
devices.

This thesis is a collection of results about models of computation (i.e., mathe-
matical descriptions of computational devices, suitable for proving theorems about).
In each case, the model captures some aspect or limitation of near-term quantum
devices (NTQD), and thus contributes to our understanding of those devices. There
are three properties which appear again and again, which are themes (and therefore
chapters) of this thesis.

1. The topology of qubits in NTQDs tends to be a two-dimensional grid. Being
able to implement quantum gates between arbitrary pairs of qubits is probably
not realistic in the near-to-intermediate future, so expect local gates.

2. The Clifford gates are a special gate set in several areas of quantum comput-
ing. While we do not expect Clifford gates to be the only gates available on
NTQDs, they may be easier, cheaper, or more reliable to implement. If we can
make our circuit out of only Clifford gates, so much the better.

3. Depending on the implementation of qubits, coherence time puts an upper
bound on the usable lifespan of any qubit. This limits the depth of any cir-
cuit we can implement (at least until we have quantum error correction), so
low-depth quantum circuits are the most realistic for now.

The models of computation we study are not new: quantum low-depth circuits have
been studied for twenty years, cellular automata were proposed in the 1940s, and
the Clifford group was of mathematical interest in the nineteenth century. Neither
are the models of computation especially realistic or fine grained: in a long tradition
of theoretical results, we are interested more in asymptotic behavior than constant
factors, even when the constant factors are prohibitive. Our goal is merely to explore
these three limitations of near-term devices in a mathematically precise way.

We devote Chapter 2 to notation and background. Experts should skim it for
our notation for Clifford gates and complexity classes in particular. The meat of the
thesis is in the four chapters after that on grid topology (Chapter 3), Clifford gates
(Chapter 4), and two chapters on low-depth quantum circuits (Chapter 5 and Chap-
ter 6). Do not be surprised to find these concepts outside their respective chapters,
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since they are the themes of this thesis, not merely chapter headings. Let us briefly
discuss each of the three themes before we continue.

First, for the popular quantum architecture of superconducting qubits, quantum
information resides in superconducting islands, i.e., physical structures on a chip. The
fabrication techniques used for quantum chips are not so different from conventional
integrated circuits, and in particular they arrange the qubits on a plane. In principle
one could arrange the qubits in any planar configuration on the chip, but designers
naturally tend toward regular grids, since then any qubit in the middle of the grid has
a similar neighborhood and hopefully similar circuitry. With sufficiently many qubits,
it is no longer practical to connect every pair of qubits directly, and the architecture
shifts towards connecting only nearby qubits (again, making the connections regular
may simplify matters). Thus, we expect qubits on a plane, in a grid topology, with
local gates between neighbors—and this is exactly what we see in 50+ qubit designs
of IBM, Google, and D-Wave (68, 22].

The Clifford gates are interesting enough in their own right to deserve study.®
In keeping with the theme, however, there are also reasons to believe Clifford gates
will be especially important for quantum devices in the future. Some quantum error
correcting codes have the feature that some gates can be implemented transversally on
encoded qubits, i.e., by applying the gate to each physical qubit in all logical qubits.
That is, in a code with k physical qubits per logical qubit, transversal operations are
performed with k& gates. Unfortunately, at most the Clifford gates can be transversal,
and they are insufficient for universal quantum computation. There are proposals to
achieve universal computation with encoded qubits, but in at least one notable case
(using magic states, or |T') states) the non-Clifford gates dominate the cost to the
extent that Clifford gates are counted as “free”. At any rate, under any quantum code
with the transversal property, we can expect the Clifford gates to be the cheapest to
implement.

Last, we consider low-depth circuits. Qubits have limited lifetimes, in the sense
that the time until an error occurs follows an approximately exponential distribution.
On real, current devices with superconducting qubits, the mean time to error is in
the tens of microseconds [73]. Even at a clock rate of a few gigahertz (comparable
to modern classical devices) the quantum device can perform fewer than 105 gates
on a particular qubit before it should expect an error. Lowering the error is a major
engineering challenge, and mitigating the error with quantum error correcting codes
is not yet feasible either, and even once it is possible, error correction will require
additional qubits and gates to implement. For now, the best way to minimize this
kind of error on a qubit is to minimize the length of time the qubit needs to exist
coherently. The time required to execute a circuit can be approximated by its depth
(up to constant factors, perhaps), so we wish to study low-depth quantum circuits.
Furthermore, low-depth classical circuits have enjoyed over four decades of fruitful
study, so it is natural to study analogous quantum device (as evidenced by two decades
of low-depth quantum circuit study).

Each chapter presents a different result, so let us briefly summarize them before

SIndeed, mathematicians studied the Clifford group long before computer scientists.
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continuing. Theoretically, grid based computation does not present much difficulty,
so Chapter 3 considers an extremely constrained grid-based model of computation,
the cellular automaton. We show that a particular cellular automata satisfies a very
stringent universality property, and take this as evidence that computation in a grid
is possible even under extreme circumstances. Next, Chapter 4 classifies the power of
arbitrary subsets of Clifford gates. It turns out a collection of Clifford gates generates
one of 57 different subsets of Clifford operations, and we enumerate all of these classes
to better understand the structure within the Clifford group from the perspective of
building quantum circuits. This brings us to our two low-depth quantum circuit
results, which both build off of a recent unconditional separation of shallow circuit
classes: constant-depth quantum circuits can do something constant-depth classical
circuits cannot [26]. The first result, Chapter 5, extends this result by augmenting
the classical circuits with unbounded fan-in AND and OR gates, and proving the
unconditional separation persists. The second result, Chapter 6, also makes the
classical circuits more powerful, but proves a separation for an interactive task (two
rounds of input/output), conditional on standard complexity-theoretic assumptions.
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Chapter 2

Background

In this chapter, we briefly introduce the basic concepts and notation for quantum
computing with qubits. We also discuss universality, the Pauli group and Clifford
group, common gates, and relevant complexity theory.

2.1 Qubits, Measurement, and Quantum Gates

Mathematically, a qubit is the set of unit vectors (under the ¢, norm) in a two-
dimensional Hilbert space. The two classical basis or Z basis vectors are called |0)

and |1) where
o) )

The symbol |} is a “ket”, and it denotes a complex vector labeled by the contents of
the ket. As you can see, |0) and |1) are just the standard basis vectors ey and e;. We
also define the X basis vectors,

On the other hand, when we write, e.g., |z ® y) where x,y € {0, 1}, we mean either |0)
or |1) depending on whether z®y evaluates to 0 or 1, not a new vector labeled literally
“z@®y”. We hope it is clear from context how each ket is meant to be interpreted.

For this thesis, most of the models of computation are built on a finite array of
qubits. Since a bit has two states and a qubit is a two-dimensional Hilbert space,
by analogy we use a 2™-dimensional Hilbert space to represent an array of m qubits.
Canonically, we construct this space by taking the tensor product, denoted ®, of m
two-dimensional Hilbert spaces (i.e., qubits). The states for an m-qubit system are
the unit norm vectors in this 2™-dimensional Hilbert space.

We can also take the tensor product of vectors, e.g., the m-fold tensor product of
0),

0)*™ :=10) ® |0) ® - ®]0),
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is a state on m qubits. The tensor product symbol is omitted in practice as much
as possible, so this would typically be written |0)[0)---]0). We define the m-qubit
classical basis vectors |0---0),|0---1),...,|1---1) as

|b1---bp) = |b1) ® -+ & |byy)
where by, ..., b, € {0,1} are bits. Thus, all of the following states are equivalent:

0)°™ =10) ® - ®0) = [0) - 0) = [0---0) =]0"™)

Measurement (in the Z-basis) of a single-qubit state

|#) = |0} + 1)

collapses it to either |0) with probability |a|? or |1) with probability |32|, and in the
process we learn which outcome has occurred. The probabilities sum to one because
|¢) is a unit vector: |a|? +|8]> = 1. Similarly, measurement of an m-qubit state
[¥) = Lze0,1)m Oz |2) returns |x) with probability |a,|?, and again the probabilities sum
to one because [¢)) is a unit vector. More generally, orthogonal measurements divide
the Hilbert space into orthogonal subspaces and project the state onto a subspace
with probability proportional to the square of its component in that subspace. For
example, measuring just the first qubit of [¢)) gives the state

zze{o,l}"'l 0oz |0x)

> with probability |Z$E{071}n—1 oz

2
"

"no_ ‘Zz {0,131 QQx
|w ) - Zze{eovl}n—l Ot1;p|1-’l')

|2 with probability ‘ZmE{O,l}n—l 1z

|2

sze{(]’l)n—l X1z

In this thesis, we are interested in models of quantum computation built on qubits.
That is, we start with the qubits in some initial state, manipulate them by some
sequence of quantum operations, then measure. Furthermore, we will consider only
models of computation where the quantum operations applied in discrete steps (i.e., a
gate model), though it is worth mentioning that continuous time models exist where
quantum operations can, e.g., continuously rotate |0) to |1) through |+). A quantum
gate is linear map U from the Hilbert space (however many qubits) to itself, mapping
quantum states to quantum states, i.e., preserving ¢, norm. One can show that the
¢y norm is preserved if and only if U is a unitary matrix, i.e.,

Uut=UtU =1,

where UT is the Hermitian conjugate of U. Clearly the inverse of U is UT, and the
product of two unitaries is unitary, since

UvUuvt=uvviut=UIUut =UU" = I.

Thus, the unitary operations on a d-dimensional space form the d-dimensional unitary
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group, denoted U(d).!

In both classical and quantum circuit models, we do not assume we can implement
arbitrary gates (i.e., arbitrary Boolean functions classically, or arbitrary unitaries
quantumly). For one, an arbitrary gate has an exponentially long description (as-
suming an approzimate unitary quantumly). Instead, one typically assumes a small
set of gates with constantly many inputs, and perhaps a uniform family of gates on
an unbounded number of inputs. Classically, one takes the AND, OR, and NOT
gates, or simply the NAND gate, or all 1- and 2-bit gates. These can be augmented
by unbounded fan-in gates for AND and OR, or for PARITY, MOD functions, MA-
JORITY, and so on. Quantumly, the situation is similiar: we take some subset of 1-
and 2-qubit gates which is universal in the sense that the gate set can simulate all
quantum gates. For example, the CNOT gate defined below, and the set of all (n.b.,
uncountably many) single qubit gates is universal.

Fact 1. The CNOT gate and the set of all single-qubit gates are universal for quantum
computing in the sense that any unitary U € U(2™) on m qubits may be implemented
exactly with a circuit of these gates.

2.1.1 Quantum Gates

We know in the abstract that quantum gates are unitaries, acting on a small number
of qubits. Let us see some examples used in practice, starting with the reversible gates,
which permute the classical basis states.? These correspond to permutation matrices
on 2™ dimensions, and every permutation matrix is unitary so they are immediately
quantum gates as well, acting on quantum states by linearity.

First among the reversible gates is NOT, which flips the input, exchanging 0 and
1, the only non-trivial 1-bit reversible gate. Next, the SWAP gate is a 2-bit gate
which exchanges the two bits, i.e., exchanges 01 and 10. The controlled-NOT or
CNOT gate is a 2-bit such that input (z,y) is transformed to (z,z @ y) for any
x,y € {0,1}. The first bit is called the control and the second bit is called the target,
and the gate is like applying a NOT gate to target if and only if the control bit is 1.
In the same vein, the controlled-SWAP gate (or CSWAP or Fredkin gate) swaps the
second and third (target) bits if and only if the first bit is 1. And finally, we have
the controlled-controlled-NOT gate (or CCNOT or Toffoli gate), where a (singly)

IThere is also a question of phase. If we recall the definition of quantum measurement, notice
that nothing changes if we multiply the entire state by ¢*®, in that the measurement outcomes occur
with the same probabilities, and the states afterward are multiplied by €*. For this reason, people
say the global phase of a quantum state is irrelevant. It follows that we wish to treat all unitaries
of the form eI as equivalent, so we are actually interested in the projective unitary group, PU(d),
defined as the quotient of U(d) by its center, the set of unitaries of the form e*1I.

2 As background, reversible computing was proposed (before quantum computing) as a remedy to
Landaucr’s principle, the idea that destructive operations (e.g., erasing a bit) must consume energy
as a consequence of thermodynamics. To avoid this cost, the computation needs to be reversible
physically, and therefore also reversible logically, and remarkable work of Bennett [15] shows this
is possible. Reversible gates are logically reversible and therefore useful in reversible computation,
hence the name.
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controlled-NOT gate is applied to the second and third bit if the first bit is 1, i.e.,
(z,y,2) = (z,y,2y @ 2).

In addition, we define some common quantum gates. The controlled-sign gate (or
CSIGN or CZ) flips the global sign if and only if both inputs are 1, i.e., the diagonal
transformation

100 O
010 O
001 O

CSIGN :=
0 0 0 -1
Similarly, the phase gate, traditionally either S or P (we opt for S), is diagonal:
S:= (7). Last but not least, the Hadamard gate is H = 5(1 }).

2.2 Pauli Group and Clifford Group

An entire chapter of this thesis (Chapter 4) is devoted to the Clifford gates on qubits,
and they are ubiquitous in quantum computing. We have already seen many Clifford
gates above, but let us formally define the Clifford group, and before that, the closely
related Pauli group.

2.2.1 Pauli Group

First, recall the Pauli matrices, a collection of four 2 x 2 unitary matrices:

N A

Since the Pauli matrices satisfy the relations

X-Y =4z, Y-Z =X, Z-X =1Y,
Y-X = —iZ, Z-Y = —iX, X-Z =Y,
X2=v2=22=1

and I is an identity element, the set Py := {£1,+i} x {I,X,Y,Z} is a group under
multiplication. This is the one-qubit Pauli group, and it generalizes to the m-qubit
Pauli group Py, := {z1,+i} x {I,X,Y,Z}®™. A typical element is therefore a m-fold
tensor product of the Pauli matrices, which we call a Pauli string, and a {£1,+¢}
component which we call the phase. We typically omit the tensor products in the
Pauli string when possible, e.g., writing IXYZ for I® X® Y ® Z.

Let us name the group of phases Z,, := {1, +i}xI®™ and note that Z,, is a normal
subgroup of P,,. This means the quotient P,,/Z,, is well-defined. Each element of
Pm/Zm is a coset {+P,—-P, +iP,—iP} for some P € {I,X,Y,Z}®™ but we identify each
such element with P, its positive representative.

A useful property of the Pauli group is that it is a basis for all matrices.
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Fact 2. Any matriz A € C2"*2" can be written as a complex linear combination of
(I,X,v,2}®m.

Define the notation G(1-bm) := G @ --- @ Gb» where G is a unitary gate and
(b1,...,bn) € Z is an integer vector. Another useful fact is that there are subsets of
2n Pauli elements which generate the whole group up to phase.

Fact 3. Any P € P,, can be written in the form P := aX*Z° where a € {1, +i} and
a,b e F'. Since X1, ..., X~ generates (by multiplication in the group) all X* and
Z°1 ..., Z° generates all 2%, together they generate all of P,, up to phase.

Finally, although the Pauli group is not abelian, it has the property that any two
elements either commute or anti-commute.

Fact 4. For all P,Q € P,,, the commutator [P,Q] = PQPIQ’ is either + I®™ or —I®™.

2.2.2 Clifford Group

Define the m-qubit Clifford group, C,,, as the set of m-qubit unitaries (under multi-
plication) normalizing the m-qubit Pauli group,

Co = {U € U(2™) : UP, Ut = P, ).

That is, a unitary U € U(2™) is Clifford if for any P € P,,, conjugation by U gives
an element of P,,. It is immediate that this is a group, and by construction P, is a

normal subgroup of C,,, i.e.,
Zm 4P 4Cp.

Since conjugation of a Pauli by a Clifford operation is so common, we define the
notation e : C,, x P,, - P,, where U e P:=UPU" for any U €C,, and P € P,,.

This definition is a quite abstract, so let us give some examples. First, perhaps
obviously, the SWAP gate is a Clifford gate since

SWAP(XI)SWAP' = 1x, SWAP(IX)SWAP! = X1,
SWAP(ZI)SWAP! = 17, SWAP(I1Z)SWAP' = z1.

It suffices to check that XI,IX,ZI,IZ are mapped to Pauli strings because of Fact 3.

Any other Pauli string can be written as a product of these elements, and since

U(PQ)Ut = (UPUT)(UQUT), will be transformed to a product of Pauli strings.
Similarly, CNOT is a Clifford gate:

CNOT(XI)CNOT' = X1, CNOT(IX)CNOT' = 1X,
CNOT(zI)CNOT! = z1, CNOT(1Z)CNOT! = 1Z.

All Pauli operations are immediately Clifford gates by Fact 4, which implies PQPT =
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+P for all P,Q € P,,. The Hadamard gate (H) and phase gate (Rz) are also Clifford:

HXH' =2, SXST =y,
HzH' =X, SzST = 2.

The surprising fact, however, is that CNOT, Hadamard, and Phase generate the
entire Clifford group.

Theorem 5. Every element of U € C,, can be constructed from a circuit of CNOT,
H, and Ry gates.

We define a Clifford circuit as any quantum circuit built from a basis of Clifford
gates, with {CNOT, H,Rz} being one possible basis (for the entire group, by Theo-
rem 5). A Clifford state or stabilizer state is any quantum state of the form U |0)*™,
where U € U(2™) is Clifford. A equivalent way to define a Clifford state is by its
stabilizer group,

Stabyy) = {P € P : P[Y) = |¢)},

the set of Pauli elements which fix the state. The X-basis (|+), |-)), Y-basis (]¢),
|-4)), and Z-basis (|0), |1)) states are all trivially stabilizer states, where

_10) +41) j0) -4 1)
V2 V2o

is also an example of a Clifford state.

i) |-i) =

The cat state L211")

The Clifford gates are not universal for quantum computing, which is hardly
surprising given that C,, is a discrete, finite group for any particular m. In fact, the
Clifford gates are classically simulable, not only in P, but in the complexity class &L
[4]. We discuss complexity classes in Section 2.3.

2.2.3 Clifford Tableaux

An important representation for Clifford operations (and a good way to prove a
simulation result) is the tableauzr representation. In this section, we explain how
tableaux can be derived from first principles, going as far as we need for general
background and Chapter 6. The Clifford chapter, Chapter 4, will require a more
extensive treatment (see Section 4.2).

Observe that any unitary can be defined (up to phase) by how it conjugates
density matrices, i.e., by the set {(p,UpUT) : p > 0}. Since the Pauli group forms a
basis for all matrices, this can be reduced to the set {(P,UPUTt): P € Py }. In fact,
since Xé1,... Xém Zé1 . . Z°m generate P, and conjugation preserves produces (i.e.,
UPUUQUT = UPQUY) it suffices to write down UX¢ Ut and UZ%U? for all . When
U is a Clifford unitary, we also get that UX%U' and UZ%UT are in P,,. For example,
SXST =Y and SZSt = Z, from which we can derive that

SYST =i8XS5TSzS8T = ivZ = —X.
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Clearly S1ST = I, and thus we can derive SpSt for any p by linearity. Similarly,
HXH'=Z,HZH' = X and

CNOT(XI)CNOT' = xx, CNOT(IX)CNOT' = 1%,
CNOT(ZI)CNOT' = z1, CNOT(1z)CNOT' = zz.

In general, a Pauli operator P = aX®Zb € P,, can be represented with two m-bit
vectors a,b € F* and a pair of bits for a, and any Clifford operation is defined by 2m
Pauli operators UX®UT, ... UXxe~Ut, Uz U1, ..., UZ*~U", the entire operation can
be described by a matrix of 2n rows with 2m + 2 bits per row. The phase information
can be reduced to one bit per row (instead of two) to give a tableau, but since we will
not need that part of the tableau for most of thesis (only in Chapter 4, and we have
a separate discussion of Clifford tableau), we will skip it and focus on the remaining
2m x 2m binary matrix.> We divide the matrix into four blocks,

A B

C D
where A, B,C, D € Fi*™. That is, the ith row of A records the X component of the
Pauli string UX®U*, and the ith row of B represents the Z component of the same

Pauli string. Similarly, the ¢th row of C' and D represent the X and Z components
of the Pauli string UZ%UT. Then we have the following facts.

Fact 6. The tableau [& B] corresponds to a Clifford operation if and only if it is
symplectic. The matriz is symplectic if and only if ADT + BCT = I and both ABT
and CDT are symmetric.

Fact 7. Let U € C,, be a Clifford unitary with tableau [ 4 B]. Then U(X"Z°)Ut = aXx*z*
for some e {1, +i} if and only if

(G p)-0 .

It follows that, ignoring phase, the tableau for a unitary VU is the standard matrix
product of the tableau for U and the tableau for V.

We have not seen complexity classes yet, but matrix multiplication over Fy is in
®L. Hence, we can simulate a sequence of Clifford gates in ®@L. This is essentially the
Aaronson-Gottesman theorem [4], which we slightly extend in Theorem 120 to get
measurements for multiple bits.

2.2.4 Clifford Gates

In our final background subsection on Clifford gates, we make a thorough study of
single-qubit Clifford gates (which happen to correspond to symmetries of cube, see

30ne can check that for all X* and Z°, the phase of UX?U' and UZPU" is either +1 or -1 for all
U € C,y,. We formally justify the sign issue in the next section, and in particular Lemma 106.
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Figure 2-1), and then the named multi-qubit Clifford gates.

2.2.5 Single-qubit Gates

We group the gates by the type of rotation to emphasize this geometric intuition.

Face rotations: The Pauli matrices X, Y, and Z (as gates) correspond to 180° rota-
tions about the X, Y, and Z axes respectively. Similarly, we define Rx, Ry, and

Rz to be 90° rotations (in the counterclockwise direction) about their respective
axes. Formally,

I-X I-3Y I-3Z

3 R:—, R:_—_a
V2 VG S

although in the case of Rz (also known as the phase gate and often denoted

by S or P), a different choice of phase is more conventional. The clockwise
rotations are then RTX, R; and RTZ.

Ry =

Edge rotations: Another symmetry of the cube is to rotate one of the edges 180°.
Opposing edges produce the same rotation, so we have six gates: Ox.y, Ox_y,
Ox.+z, Ox-z, Oy.z, Oy_z. We define

P+Q P _P-Q
\/5 ) P-Q — \/§ 3

for all Pauli matrices P # ). Note that fx.,z is the well-known Hadamard gate,
usually denoted by H.

0P+Q =

Vertex rotations: The final symmetry is a 120° counterclockwise rotation around
one of the diagonals passing through opposite vertices of the cube. The cube
has eight vertices, (£1,+1,+1), and we denote the corresponding single-qubit

gates I'y,,, ['yi, ..., I___. Algebraically, we define
I-iX-1Y-1Z
| 9 )
I—2X—-1Y+:22Z
I‘++— = 2 )
I -2X+1Y+1Z
r - 1 21 1 .

We also define I' (without subscripts) to be the first gate, I',,,, since it is the
most convenient; conjugation by I' maps X to Y, Y to Z, and Z to X.
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Ox_y <«

- m - -—-—-——--)

I,

-
-

6Y+Z

Figure 2-1: Single-qubit gates as symmetries of the cube
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Gate Tableau Unitary Matrix
< 100 0 1
0 1)1 10
1 01 0 —i
Y 011) (z o)
, 1 0|1 1 0
0 1]0 0 -1
Rx 111) %(—i 1)
R 0 1]1 G 1 -1
Y 1 0[0 vzl 1 1
_ 110 {10
Rz =5 L0 1]0 _2(02')
~ ~ o1/0Y| (1 1
HXZ—9X+Z_H \1 0l0 ﬁ(l _1)
p 0 1]1 G (-11
X-z 1of1) val 1 1
(1 1]0 1 =i
Foe =l 1 0j0)| 2\1 4

Table 2.1: Single-qubit gates

2.2.6 Multi-qubit Gates

We now introduce some multi-qubit Clifford gates. We have already seen the SWAP
gate and the CNOT gate. A generalized CNOT gate is a two-qubit Clifford gate of

the form

C(P,Q) = I®I+P®I+2I®Q—P®Q7
where P and (Q are Pauli matrices. If the first qubit is in the +1 eigenspace of P then
C(P, Q) does nothing, but if it is in the -1 eigenspace of P then C'(P, Q) applies @ to
the second qubit. Of course, the definition is completely symmetric, so you can also
view it as applying P to the first qubit when the second qubit is in the —1 eigenspace
of ).

Observe that C(Z,X) is actually the CNOT gate; Figure 2-2 shows this equivalence,
and illustrates our circuit diagram notation for generalized CNOT gates. Also note
that C'(X,Z) is a CNOT in the opposite orientation. The rest of the heterogeneous
generalized CNOT gates (i.e., C(P,Q) where P # @) are the natural equivalents of
CNOT in different bases.

Similarly, C'(Z,Z) is better known as the controlled-sign gate (denoted CSIGN or
CZ), which flips the sign on input |11), but does nothing otherwise. The homogeneous
generalized CNOT gates (i.e., C(P, P) for some P) are quite different from hetero-
geneous CNOT gates. For instance, when one CNOT targets the control qubit of
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Figure 2-2: CNOT expressed as a C(Z,X) gate

another CNOT then it matters which gate is applied first. On the other hand, two
CSIGN gates will always commute, whether or not they have a qubit in common.

It turns out that every two-qubit Clifford gate is equivalent (up to a SWAP) to
some combination of one qubit Clifford gates and at most one generalized CNOT gate
(see Section 4.9.4). Most classes of Clifford gates are of this form, but there are a
handful of classes which require larger generators such as the T4 gate |5, 53|. For all
k > 1, we definc Ty, as the 2k-bit classical gate that flips all bits of the input when
the parity of the input is odd and does nothing when the parity of the input is even.
In particular, Ty is the lowly SWAP gate. Notice that T is an orthogonal linear
function of the input bits. The matrix of the T gate (over Fy) is

e i e )

1
0
1
1

R e
O = = =

In the quantum setting, define the Ty, gate as apply this linear transformation to the
Z basis vectors.

2.3 Computational Complexity
We assume a familiarity with Turing machines and the basic complexity classes:

e P: decision problems solvable in polynomial time,
e L: decision problems solvable in logarithmic space,
e NP and NL: decision problems solved by non-deterministic versions of the above,

e PSPACE: decision problems solvable in polynomial space.

We will also need &L, the class of decision problems solved by an NL machine where
we accept if the machine has an odd number of accepting paths and reject if the
machine has an even number of accepting paths (i.e., perfectly analogous to ®P, but
logarithmic space).

Now let us define some standard polynomial-size circuit families. For each of the
families below, we adopt the convention that C* denotes the subfamily of circuits in
C with depth O(log’n).
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Gate Tableau Unitary Matrix on computational basis
(1 070 0) 1 1 1 -1
0 1|1 0 Jd 1 1 -1 1
C(X,X) 0 0[1 0 21 -1 1 1
\ 1 0]0 1/ -1 1 1 1
(1 0]1 1) (1 —i —-i 1
0 11 1 i1 -1
cv.Y) 1 1|1 0 204 -1 1 —i
\1101J \ 1 i i 1
(1 0[]0 1) rlooo
0110 0 010 0
C(2,2)=CSIGN | | 517 o 001 0
\ 0 0|0 1) \0 0 0 -1
(1 0|1 0 1 1 -
011 0 d 1 o1 i
c¥.x) 0 0[1 O 20 ¢ - 1 1
\ 1 1/0 1/ i i 1 1
(1 0[1 1) 100 0
0 1/0 0 010 0
c(zY) 0 1[1 0 00 0 —
\ o0 1]0 1 00 i O
(1 0[0 0) 1000
0 1/0 1 0001
C(%,2) = CNOT | | 517 0010
\ 0 0(0 1/ 0100

Table 2.2: Two qubit gates. The sign bits are all 0 in the above tableaux so they are

omitted. In this table, we adopt the convention (from Chapter 4) that the Pauli basis
elements are XI, ZI, IX, IZ in that order.
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e NC: classical circuits of bounded fan-in AND, OR, and NOT gates.

e AC: classical circuits of unbounded fan-in AND, OR, and NOT gates.

e QNC: quantum circuits of CNOT gates and arbitrary single-qubit gates.
e Clifford: quantum circuits of CNOT, Hadamard, and 7-Phase gates.

Let us now define another quantum circuit family, CCC, the classically-controlled
Clifford circuits.

Definition 8. A classically-controlled Clifford circuit is a quantum circuit of Clifford
gates where some gates are labeled by a individual bits of the classical input. To
execute a classically-controlled Clifford circuit on an input, we remove Clifford gates
labeled by a 0 input bit and keep the unlabeled gates or those labeled by a 1 bit.
Then run the quantum circuit as usual.

The name comes from the concept of a controlled gate. Given any n-qubit gate
G, we can define an (n + 1)-qubit controlled gate

(I+X) @, +(I-X)®G

X(G) = 5

which applies G to the last n qubits (the target qubits) if and only if the first qubit
(the control qubit) is 1. For example, CNOT is literally a controlled NOT gate, x(X).
An alternative definition of CCC is a quantum circuit with the input partitioned
into control bits and target bits, where controlled Clifford gates (e.g., CCNOT, C-
Hadamard, C-Phase, CZ) are allowed from the control bits to the target bits and
arbitrary Clifford gates are allowed on the target bits. The classical input appears as
the initial setting of the control bits. See Figure 2-3 for an example circuit.

controls

Ch Cy
targets { — — — .-

Cs

Figure 2-3: CCC circuit for Clifford gates C,Cs,... € {CNOT, H, S}.

We also note two important subclasses of the classically controlled Clifford gates.

e L/poly: the family of classically controlled Clifford circuits where the only gates
are controlled or not controlled versions of SWAP and X (i.e., NOT),
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e &l /poly: the family of classically controlled Clifford circuits where the only
gates are controlled or not controlled versions of CNOT and X (i.e., NOT).

The names of the classes (deliberately) suggest that they are related to the Turing
machine classes L and @L. The notation /poly means they are given polynomial-length
classical advice. In other words, the class is augmented with an (by default, classical)
advice string of polynomial length (indicated by the poly) which depends on the input
length, but not the input. This string is passed to the computational device with the
input. For example, P/poly is equivalent to polynomial-size circuits since, in one
direction the advice could encode a circuit to simulate (circuits € P/poly), and in
the other direction, any P computation can be written out as a circuit and then the
advice could be hard-coded (P/poly C circuits).

As the names suggest, these two classically controlled Clifford circuit classes indeed
align with advice classes.

Theorem 9. The class of decision problems solved by a family of L/poly classically
controlled Clifford circuits is the advice class L/poly. Similarly, the class of decision
problems solved by a family of @L/poly classically controlled Clifford circuits is the
advice class @L/poly. Note that the solution to a decision problem is encoded (for this
kind of computational device) by the value of the top bit at the end of the computation.

Proof. A result of Cobham [33] says that L/poly (the advice class) is equivalent to
polynomial-length, polynomial-width branching programs. For the unfamiliar, a de-
terministic branching program is a computational device consisting of a layered di-
rected graph, where the edges of the graph are labeled by input bits and there is only
one outgoing edge for each label. A result of [74] says that log space is equivalent
to reversible log space, which improves the Cobham result by asserting the layers of
the branching program are permutations. We leave it as an exercise to verify that a
polynomial-length, polynomial-width branching program of permutations is equiva-
lent to a network of swaps (i.e., the classically controlled Clifford circuit class) and
thus to L/poly.

Computing the product of a network of CNOT gates is complete for &L according
to a survey of Damm [39]. It follows that a @L/poly family of classically controlled
Clifford circuits can be simulated in ®L/poly, where the advice is to specify the circuit.
Conversely, given a &L machine that uses advice, translate it to a network of CNOT
gates and then hardcode the ones that depend on the advice. O

It will be handy to have circuit characterizations of these Turing machine classes,
since we are about to define several kinds of computational problems from circuit
families.

Traditionally, a complezity class is a set of computational problems, often the set
of problems solved by a particular device under certain resource constraints (e.g.,
limited time/space or depth/size) and acceptance conditions (e.g., the device counts
as answering “yes” if it says yes on at least % of random inputs). There are many
kinds of computational problems:
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Decision problems: A decision problem is a subset of strings L < {0,1}*, and a
computational device solves that problem if it accepts precisely the input strings
in L. In other words, standard, deterministic, yes-or-no problems on classical
inputs. By default, complexity classes are sets of decision problems. We abuse
notation and use, e.g., NC' as both family of circuits, and the collection of
decision problems solved by NC' circuits {Cp}ns0 Where C, has n input bits
and one output bit, and the circuit accepts if and only if the output bit is 1.

Relation problems: A relation problem is defined by a relation R ¢ {0,1}*x{0,1}*
on strings. A computational device which takes an input string and returns
a string solves a relation problem if the input-output pair satisfy the relation.
In the interest of clarity, classes of relation problems will begin with Rel. For
example, ReINC' is the class of relation problems such that there exists a family
of NC! circuits which, for any input string, output some string such that the
pair satisfies the relation.

Sampling problems: A sampling problem is like a relation problem, but each in-
put defines a distribution over output strings, and the computational device
is required to output strings at random from this distribution (sometimes ez-
actly, but by default with multiplicative error). Some computational devices
are inherently deterministic and thus require a stream of random bits to be
provided with the input. Classes of sampling problems will begin with Samp.
For example, SampQNC? is the collection of sampling problems where the goal
is to sample from distributions obtained by measurements on a family of QNC°
circuits.

Interactive problems: An interactive problem is a generalization from a single
round of interaction, e.g., the device gets an input and returns an output, to
multiple rounds of interaction. Our main results are about interactive problems
that can be solved by shallow depth quantum circuits, but probably not by
certain weak classical devices. An interactive problem is distinct from a series
of relation problems (or sampling problems) in two ways: the computational
device is allowed to keep some state from one round to the next (by explicitly
passing bits/qubits for circuits, or by not erasing the work tape of a Turing
machine between rounds), and the device is evaluated based on the entire tran-
script (i.e., the sequence of inputs and outputs). We introduce the prefix Inter
to put in front of circuit families to denote an interactive problem. This kind
of problem is used in Chapter 6 and the details of that interactive model are
described in Section 6.3.

When we augment a circuit family C with a gate G, we write C[G] for the new
circuit family (and decision problem class). When the gate is a MODy, gate (i.c.,
MODy, outputs 1 if the sum of the input bits is 0 modulo k) then it is traditional to
write just k, e.g., AC°[2] := AC°[MOD,]. With that, we have the following hierarchy
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of non-uniform?* complexity classes:
NC® c AC® c AC®[2] c TC? € NC* ¢ L/poly ¢ @L/poly = Clifford ¢ AC*[2]

where all containments are presumed strict, but only the ones written c are known
to be strict.

2.4 eol-Complete Problems

Finally, we give some more background on @L, and justify that simulating a sequence
of CNOT and NOT gates is @L-hard. We are particularly interested in the following
promise problem variant:

Problem 10 (CNOT Multiplication with Cycle Promise (CNOTMult*)). Given a
sequence of CNOT gates g1, ..., gy, decide whether the product g,---g, is equal to the
three-cycle on the first three bits or the identity transformation, promised that one
is the case. FEach gate is represented by an m x m binary matriz such that the only
non-zero entry (i,j) denotes the CNOT gate from bit i to bit 7.

The reduction will go through the following two problems, both of which were
already known to be ®L-complete (e.g., see Damm [39]). We include this material for
both completeness and to verify the efficiency of the reductions.

Problem 11 (Layered DAG Path Parity). A layered DAG is a directed acyclic graph
where the vertices are divided into an ordered sequence of layers such that there are
only edges from each layer to the next (no loops, no backwards edges, and no skipping
layers).

An instance of LDAGParity consists of a binary matriz describing a layered DAG
with n+1 layers having n nodes each. The goal is to compute the parity of the number
of paths from some source node to some target node, where the source is in the first
layer and the target is in the last layer.

Problem 12 (CNOT Multiplication (CNOTMult)). Given CNOT gates g, ..., 3n,
compute the top right entry of the binary matriz g,---g,.

2.4.1 Reductions

We note that the reductions can be computed in DLOGTIME, that is, with a RAM
Turing machine using logarithmic time.

Lemma 13. For any language A € ®L, A <pLogTime LDAGParity.

Proof. Consider the non-deterministic log-space machine M for the language A. The
main idea is to construct a layered DAG where there is a node for each configuration

4 Non-uniform describes a computational device defined on a per input length basis, e.g., most
circuit classes or uniform models with advice.
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of M (where the configuration includes the contents of the work tape, the position
of all tape heads, and the internal state) at each time step. There is a connection
from a node in layer to the next if M could transition between the corresponding
configurations in one time step. We leave it as an exercise to check that, in general,
paths in the DAG correspond to computation paths.

All that remains is to check a few details:

e The number of configurations and the running time of the computation are both
poly(n), so by adding dummy configurations or extra steps we can make the
DAG square (i.e., m layers of m nodes each).

e Connectivity in the DAG can be decided in DLOGTIME. That is, given two
suitably encoded configurations and the input, there is a DLOGTIME algorithm
to decide whether there is a transition from one to the other.

e We assume there is a single accepting configuration, so the number of accepting
computation paths is exactly the number of DAG paths between a single source
and target.

O

Lemma 14. Let A = {a;;} be an nxn upper triangular binary matriz with ones along
the diagonal. Then,
1 n
A= ] TI CNOT(j,4)%.
i=n-1 j=i+1

(assume ]y x; = 2125 ... T, and I‘[in Ti = TpTp_1...21 for non-commutative variables

Proof. The proof follows from a straightforward calculation using the fact that the
matrix for CNOT(7,7) is the identity matrix except that the (¢,7)th entry is 1. I

Lemma 15. LDAGParity <pogTive CNOTMult.

Proof. The transitions between a pair of layers in a layered DAG can be expressed
as an adjacency matrix. Thus, an instance of LDAGParity is equivalent to binary
matrices Ai,..., A, € F*" where the number of paths from a source s; in the first
layer to a target t; in the last layer is the (7, 7)th entry of the product A;---A, over
IF,.

n(n+1)xn(n+1)

Consider the matrix A €, given below:
(I A, 0 0 - 0 0 \
0 I A 0 - 0 0
0 0 I A; 0 O
A= ]
0 0 0 O I A,
\0 0 0 0 0 I)
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Figure 2-4: Construction of CNOT if top right entry of A is equal to 1.

The inverse, A1, is upper triangular, and we leave it as an exercise to show that for
i < j, the (4,7)th block of A1 is (-1)77*A;---A;_;. In particular, the upper right block
is (ignoring sign, since we are working in [Fy) the product A;---A,. In other words,
we can assume without loss of generality that the top right entry of A~! reports the
parity of the number of paths from the source to the sink in the LDAGParity problem.
Given the decomposition of A into CNOT gates by Lemma 14, we can also easily
construct the inverse of A in DLOGTIME, which completes the proof. O

Theorem 16. CNOTMult <pLogrime CNOTMult*.

Proof. Let A = {a;;} be the matrix from the reduction in Lemma 15 whose top right
entry is ®L-hard to compute. We now give a procedure to create a new matrix from A
and additional CNOT gates, which isolates the effect of the top right entry—mnamely,
if the top right entry is 1, the product of the gates involved is the 3-cycle on the first
three bits; otherwise, the product is the identity gate. We show the entire construction
in Figure 2-4.

For the analysis, we break the construction into a simpler units. First, we extract
information about the first row of A using the following construction:

D

5
P

A At

Call this matrix B. We can determine B by considering its affect on each standard
basis vector e; € {0,1}™*! (where e; is the binary vector whose only non-zero entry is
at location 7). We have

A~l

(1,0,...,0) & (@,0,...,00 2T (0,..,00 2 (10,...,00 =% (0.0
©,1,...,00 & (0,1,...,00 X% (11,...00 2 (@11,...,00 =% (0,1,...,0)
A CNOT Al CNOT
€i+1 - (Oval,iy” . 7am,i) - (al,iy i -;am,i) - (al,i; ]-507 s 10) —— (al,i7 1,07 tee 10)

where the last row is for ¢ > 2. That is, B is the identity matrix except the first row
of A is now (more or less) the first row of B. It is now clear that if we repeat the
construction except with the matrix BT, we can extract the information from the last
column:
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Notice that this will produce a CNOT gate if the top right entry of A is 1; otherwise,
it is the identity. From here, we can simply use this CNOT gate to construct the
3-cycle on the first three qubits. The entire construction of the CNOT gate is shown
in Figure 2-4, where some CNOT gates have been eliminated by noticing that the
construction of the circuit B is the same if you apply the CNOT gate first or last.
Up to this point, we have been rather agnostic as to the encoding of the CNOT
gates. We simply point out that we can convert between most reasonable encodings
in DLOGTIME. O
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Chapter 3

Grid-Based Computation

As discussed in the introduction, there is reason to believe near-term quantum devices
will gravitate towards a grid of qubits. It is the logical conclusion of three points:

1. Current techniques for building quantum chips arrange the qubits on a flat
surface, i.e., a two-dimensional plane. For most kinds of quantum hardware,
qubits exist in physical constructs on the (planar) quantum chip.!

2. Any arrangement of qubits on the plane is possible, but there are advantages to
a structured grid configuration. It is simpler to design and fabricate a chip if
the neighbors of a qubit are always in the same relative position, for example.

3. As the number of qubits increases, there is not enough space on the chip to
directly connect all quadratically many pairs of qubits. A configuration with
O(1) connections per qubit, e.g., nearest neighbor gates in the grid, does scale
and is therefore preferable for large numbers of qubits.

We conclude that near-term quantum devices will place qubits on a plane, most
likely in a grid with local gates between neighboring qubits. This chapter is about
computation within a grid topology.

Surprisingly, much is already known about computation on the grid. Let us start
with the obvious: if our model allows arbitrary 2-qubit quantum (or reversible) gates,
but only between adjacent qubits in some connectivity graph, then we can simulate
gates between arbitrary qubits as long as the graph is connected. That is, to apply
a gate to two distant qubits, use swaps to bring the qubits next to each other, apply
the desired gate, then swap the two qubits back to their original positions. In the
worst case, this incurs overhead proportional to the diameter of the graph, i.e., a
factor of O(y/n) for the grid. From a coarse-grained complexity theory perspective,
this polynomial factor overhead is irrelevant since, e.g., it is not enough to move a
problem outside BQP. And in some cases the slowdown is unavoidable, in the sense
that we cannot hope to do anything non-trivial on a \/n x /n grid in less than /n

OThis chapter is based on work in [100].
1A notable exception is in bosonic quantum computing, which bounces photons through optics.
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depth, simply because of “light cone’? arguments. Much of the remaining work is
focused on mitigating the slowdown in practice, or for special algorithms. Let us see
a few examples.

For example, early work of Aaronson and Ambainis [1] shows that the quadratic
speedup of Grover search almost carries over to the grid via a quantum walk algorithm,
with only a polylog slowdown. Their work is physically motivated by the limitations of
the physical universe in general (rather than near-term quantum devices). They note
that in one dimension, search necessarily requires Q(N) time since the diameter of
the connectivity graph is (), but in two or more dimensions, they recover O(\/N )
Grover search by a quantum walk algorithm. On the complexity side, Harrow and
Mehraban [60] consider random circuits in the D-dimensional grid, and show that
they entangle qubits (under certain important measures) in time proportional to
nl/P | essentially as fast as the speed of light allows since the diameter of the grid
is n1/P. This implies a number of promising quantum advantage proposals based
on random circuits could be made to work on a @D grid with O(y/n) depth. In
a more practical vein, there is work (e.g., [75]) on automatically compiling circuits
under qubit connectivity constraints, in the hope of beating the worst-case slowdown
for actual quantum algorithms. They explicitly target existing quantum devices, but
offer some flexibility for devices with different connectivity.

The message we get from this work is that computation in a grid is straightforward
except for the slowdown, and this can often be reduced in practice, or with more
careful algorithms and analysis. How can we add to this picture of grid computation,
aside from picking a problem and showing the slowdown can (or cannot) be avoided
for that special case? One idea is to further restrict the model of computation to,
e.g., cellular automata. Briefly, a cellular automaton is a grid of cells, with each cell
having a finite state, which update according to an extremely uniform circuit in both
space (i.e., the same gate is applied to each cell) and time (i.e., layers of the circuit
are the same). Nevertheless, it is known that classical cellular automata [118, 18, 36],
reversible cellular automata [78, 85|, and quantum cellular automata [119, 115, 92] are
computationally universal in the sense that they can be made to simulate classical,
reversible, or quantum circuits respectively. That is, simulating a polynomially large
region of a cellular automaton for polynomial time can be P- or BQP-complete for
certain CAs.

In the rest of the chapter, we study a particularly demanding property of cellular
automata called physical universality, defined by Janzing [65] in 2010, with no know
examples at time of definition. Physical universality extends the computational uni-
versality described above (i.e., P-completeness or BQP-completeness) by demanding
the computation take place on cells chosen arbitrarily from the grid. In computa-
tional universality results, the simulation/reduction is free to choose how the input
bits/qubits are represented (as long as the representation is easy to compute for the

2The light cone for some qubit at a particular time within a circuit is the region of influence of
that point: the collection of all points in the past that could affect the qubit, and all points in the
future that could be affected by it. With local gates on an \/n x \/n grid, the influence of a qubit
takes Q(\/n) time steps to propagate across the grid, and if some circuit depends on all the bits
then Q(\/n) time is necessary.
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reduction), and they often appear as spaceships, i.e., multi-cellular patterns which
repeat in the same orientation but a different position (that is, they move across the
cells). Physical universality further requires the reduction to work when the input
is an arbitrary region of cells in an arbitrary initial state. We will see a formal defi-
nition of cellular automata and physical universality below, followed by examples of
physically universal CAs in both classical and quantum settings.

We argue that the existence of these physically universal CAs provides new ev-
idence that computation, whether classical or quantum, is robust to restriction to
the grid. For example, this result shows that computation on a grid is possible even
if we only have one quantum gate, and we are forced to apply that gate locally on
the grid in a very uniform way. In that sense, this result is similar to work showing
that translationally-invariant Hamiltonians on a grid are universal [72], but in a gate
model instead of a Hamiltonian model.

3.1 Cellular Automata

Computation with cellular automata (CA) has a long, interesting history. Early work
by von Neumann focused on self-reproducing structures and universal construction
in cellular automata [118], although many of the proposed CAs were also computa-
tionally universal. In 1982, Berlekamp, Conway and Guy [18| showed that Conway’s
Game of Life (see also Gardner’s article [50]), a particularly simple binary cellular
automaton, is Turing-complete. Shortly after, Margolus [78] gave a reversible cellular
automaton analogue for Fredkin and Toffoli’s (reversible) billiard ball model of com-
putation. More recently, Cook [36] proved rule 110 (a binary, one-dimensional CA)
Turing-complete.

A cellular automaton is Turing-complete if it can simulate a Turing machine, but
there is a fair amount of latitude in the details of the simulation. For instance, in Life,
the simulation uses multi-cellular patterns called gliders to transmit and manipulate
information. Likewise, Margolus’s machine is based on “billiard balls" composed of
pairs of particles moving along the same trajectory. Rule 110 builds its simulation
on multi-cellular patterns called spaceships. In each case, the simulation requires the
input tape to be specially formatted (as gliders, spaceships, or pairs of particles) and
produces output in a similar format.

Janzing [65] proposed an alternative notion of universality specific to cellular au-
tomata. Informally, a CA is physically universal if it is possible to implement any
transformation on a finite set of cells by initializing the surrounding cells and letting
the system evolve (we will see a formal definition in the next section). In other words,
computations in a physically universal CA operate directly on cells, without requiring
any special input encoding. “

For instance, in a physically universal CA, there is some way to configure the
cells around a 5-by-5 square region such that after some number of steps, ¢, the
contents of the region will be rotated 90 degrees. Of course, we are not limited to
geometric transformations. Given two disjoint 1-by-n regions, we can treat them
as n-bit integers, compute their product, and write back the high-order bits of the
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product in one region and the low-order bits in the other. We can transform the input
region by any function.

As motivation for physical universality, consider Deutsch’s constructor theory [42],
which “seeks to express all fundamental scientific theories in terms of a dichotomy be-
tween possible and impossible physical transformations". A physically universal CA
is a toy universe in which all transformations (on a finite region) are possible. As
a special case of physical universality, we can construct any desired pattern, and al-
though this does not imply the existence of self-reproducing machines, it is closely
related to von Neumann’s work on universal construction. Janzing proposed physi-
cally universal CAs as a model of a world in which the boundary between a controller
and the physical system it controls can be shifted. He discusses the thermodynamic
and Kolmogorov complexity implications of physical universality at length in [65].

Physical universality imposes fairly stringent conditions on a CA. In particular, the
CA must be reversible (i.e., it is possible to run the CA backwards), because otherwise
information in the input may be lost before we can reach it. For instance, there are
exponentially many configurations in Life which evolve to the empty configuration in
one step. If one of these configurations occurs in the middle of the input region, there
is no way to distinguish it from the others, because we cannot interact with it before
it collapses. Reversibility rules out all of the examples above except for Margolus’s
CA.

Despite being reversible and capable of simulating circuits, Margolus’s CA is not
physically universal. It is possible to construct immovable, impenetrable walls in
Margolus’s CA, which contradict physical universality in two different ways. First,
information cannot pass through the wall, so input cells within the wall cannot in-
teract with the cells encoding the transformation, and it is impossible to implement
an arbitrary transformation. Second, there is no way to move or destroy a wall, so
it is impossible to construct certain output configurations. Since these well-known
CAs (and many others) are not physically universal, Janzing asked whether physically
universal CAs exist, which we answer affirmatively below.

3.2 Physical Universality

Consider a cellular automaton where each cell has a state in X, a finite set. We will
assume the cells are positioned at integer points Z? in d dimensions (and eventually
specialize to d = 2), but many of the following definitions could be generalized to other
topologies. Let  := Z4 be the set of all cells. Given a set X € Q, we say X := Q\X is
the complement of X in Q.

A configuration of some subset of cells X ¢ ) is a map assigning each cell in X
a state in X, and we let XX denote the set of all configurations of X. The notation
v — ~' indicates that a configuration v € X changes into 7' € X after one timestep.
Similarly, ¥ = 4’ means that after n timesteps the configuration goes from v to 7’

Suppose Z ¢ 2 is a set of cells and we partition Z into disjoint subsets X and
Y. A configuration «y € 32 naturally splits into configurations v|x € XX and ~|y € &Y
called the restriction of v to X (resp. Y ). Conversely, given configurations a € X
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and f € XY, we let @ ® 8 denote the combined configuration of $Z.

Definition 17. Let X,Y ¢ () be finite sets. Let f:¥X — ¥V be an arbitrary function.
Then we say a configuration ¢ € XX implements the transformation f in time T if for
any configuration x € ¥X there exists a configuration ¢ € ¥ such that

10y f(z).

In other words, a configuration ¢ of X implements a transformation f if any initial
configuration of z, combined with ¢, evolves (in T" timesteps) to a configuration where
Y contains f(z). We do not care about the contents of Y after 7" timesteps.

Definition 18. We say a cellular automaton is physically universal if for any input
region X < €2, output region Y ¢ ), and transformation f:3X — XY there exists a
configuration ¢ of X and constant t, such that ¢ implements f in time #.

We say the CA is efficiently physically universal if the implementation runs in
time ¢y, where tq is polynomial in

o the diameter of X (i.e., the width of the smallest hypercube containing the set)
and diameter of YV,

e the distance between X and Y, and

e the computational complexity of f under some appropriate model of computa-
tion (e.g., the number of logical gates in a circuit for f).

Janzing’s definition differs from our definition in two ways, but it turns out the
definitions are equivalent. First, he assumes the input and output region are the
same, i.e., X =Y. Clearly we can take any region Z containing X uY and extend
f to a function f on the region Z, which does not depend on cells outside X, agrees
with f on Y, and takes arbitrary values everywhere else. Janzing also assumes the
transformation is bijective, but by a well-known result of Bennett [15], we can embed
an arbitrary function f into a reversible function on twice as many bits, such that for
some initial configuration of half the bits, f is a restriction of the reversible function
to the other half of the bits.

Let us make a few observations about efficient physical universality. First, the
time to implement an arbitrary transformation must grow linearly with the diameter
of the input, since information can only travel O(1) cells per timestep. For the same
reason, information must (in general) travel from X to Y, so the number of steps is
at least linear in the distance between them. Finally, there is an enormous number
of transformations from X to Y. Even if Y is a single cell, we need at least ]E||X' bits
specify an arbitrary transformation. We do not have that many bits in polynomial
space, so we need a third parameter, e.g., computational complexity, to give us more
space for some transformations.

3.3 Cellular Automaton

In this section, we define and motivate a cellular automaton; in Section 3.4 we will
prove the CA is physically universal. We use two states, ¥ = {0,1}, in our CA. In
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figures, we will represent 0 cells as white and 1 cells as black. Our CA is a kind of
block cellular automaton, meaning that we partition the grid into blocks of cells and
update each block according to a local update rule. In this case, we use a partition
of the grid into 2-by-2 blocks. On the next timestep, we shift the partition one step
north and one step east, then back again for the timestep after that. This is known
as a Margolus neighborhood.

Let the symbol @ denote a set of four cells in a 2-by-2 square. The state of a block
is a function from @ to %, so we write 2® for the set of all configurations of the block.
In a Margolus neighborhood cellular automaton, the local update rule takes the form
p- 2% - ¥¥ which expresses the evolution of a 2-by-2 block over one timestep.

There are some advantages to using a Margolus neighborhood over the more com-
mon Moore neighborhood, where each cell is updated based on its current state and
the states of its eight nearest neighbors. It is much easier to express CAs with re-
versibility and conservation properties in a Margolus neighborhood. For instance, a
Margolus neighborhood CA is reversible if and only if the update rule p is reversible,
and the reverse CA has a Margolus neighborhood. Compare this to a Moore neigh-
borhood CA, where it is undecidable whether an arbitrary CA is reversible, and the
reverse may not be a Moore neighborhood CA.

Margolus and Toffoli [114] give a very general conversion from block cellular au-
tomata to Moore neighborhood CAs. Their conversion augments the set of states
with extra information, so each cells knows its current position within the block (e.g.,
NE, NW, SE, SW). Then the Moore neighborhood rule can tell which neighbors of a
cell are in the same block, and update accordingly. This is suitable for simulating a
block CA, but note that the extra information must have the correct initial configu-
ration (e.g., a “northeast corner" cell should not be next to another cell of the same
type) or the CA will fail. The resulting Moore neighborhood CA is therefore not
physically universal, since some configurations of the input region (or output region)
are forbidden.

Another way to convert a Maroglus neighborhood CA to a Moore neighborhood
is to collapse each 2-by-2 block to a cell (with state ¥®). The configuration of a
block after two timesteps is a function of its current state and the eight surrounding
blocks, so we can make one timestep in the Moore neighborhood CA simulate two
timesteps of the Margolus neighborhood CA. It will turn out that our (Margolus
neighborhood) CA takes an even number of steps to implement any transformation,
so the corresponding Moore neighborhood CA is also physically universal.

Let us introduce the local update rules for our CA. We begin with the following

two rules:
H — H B — i

The rule on the left says that empty (white) space remains empty. If we start with
a single black cell in the northwest corner of a block, the rule on the right moves
it to the southeast corner. Since the partition also moves one step southeast (or
equivalently northeast /northwest /southwest), the black cell is again in the northwest
corner and therefore it takes another step southeast. Every step, the black cell will
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move one unit southeast.
We also have the following three similar rules.

M- wi— " " adius
It follows that a lone black cell will move in some direction (northeast, northwest,
southeast or southwest as dictated by the corner it starts in) until it encounters
another black cell. We think of black cells as particles and white cells as empty space,

so the remaining update rules describe the interactions between two or more particles.
In keeping with the particle metaphor, our CA satisfies the following “physical" laws.

Symmetry: Particle interaction is symmetric. To be precise, given a symmetry
m 8 - 8 of @ (e.g., rotation or reflection), p(z o m) = p(x) o7 for all z € £®,
where o denotes function composition.

Conservation: The number of particles is conserved. The number of black cells
within a block does not change after one update step, and therefore the number
of black cells across the whole grid is constant over time.

Reversibility: The CA is reversible. A Margolus neighborhood CA is reversible if
and only if the update rule, p, is bijective.

We argued that reversibility is necessary in a physically universal CA. There is no
reason to believe symmetry or conservation are necessary for physical universality,
but they are nice properties to have.

Up to symmetry, there are only four kinds of collisions: two opposing particles,
two particles at right angles, three particles, and four particles. Particle conservation
forces the four-particle rule to be

H N

and severely restricts the two- and three-particle collisions. Symmetry narrows down
the set of possible rules even further. For instance, if we have one of these two rules,

“ulndun i
then we have both by symmetry, since they are 180 degree rotations of each other.
Both rules cannot hold simultaneously because the local update rule is deterministic,

therefore neither rule holds. Due to the reversibility of the CA, the reverse situation
is similar. That is, we cannot have the rules

- -
since having one would imply the other (by symmetry) and having both contradicts
reversibility.
There are eight cellular automata which meet our self-imposed constraints. We
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Figure 3-1: A full description of p, the local update rule.

will take the CA such that

mulandl“"F “ulnd*uk _ulindl of
but at least five of the alternatives have been previously studied, including Margolus’s
billiard ball CA [78] and Hardy-Pazzis-Pomeau (HPP) gas [59]. The HPP gas is
particularly interesting, because it is likely physical universal by a similar proof.
For reference, Figure 3-1 presents the complete update rule for our CA.

3.4 Proof of Physical Universality

As discussed earlier, we may assume the input region X and output region Y are the
same, and take X to be a 2n x 2n square of cells aligned to the block boundaries. We
assume our boolean function is given as a circuit of m NOR gates. Our goal is to
produce an initial configuration ¢ € ©X which implements f in time polynomial in n
and m.

We divide the computation into stages chronologically as follows.

1. It turns out that particles in our CA behave somewhat like a gas, in that
particles diffuse out of any bounded region. We will show that if all particles
are initially in a square box (e.g., X)), then after some number of timesteps, all
particles will be outside the box, moving away in one of four groups of particles.

2. We place particles in the initial configuration of X to intercept the particles
as they escape from the box, preserving the information represented by the
presence or absence of a particle. We rearrange this information into a column
formation for easier computation.

3. Next, we show how to implement a NOR operation on the column of bits. Since
the NOR gate is universal, we can implement arbitrary circuits, which we use
to perform the following transformations.

e Simulate the CA in reverse to determine the initial configuration of the
input, based on the particles that escaped X.
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e Apply the function f to the initial contents of X.

e Simulate the CA in reverse again, so we know where to send particles to
achieve the desired output configuration.

4. Finally, we carefully position particles such that they converge on X and interact
to produce the desired result.

We structure the proof to reflect these stages. For each stage, we place a few more
particles in the initial configuration at positions designed to cause collisions between
particles at precise locations. By setting up collisions in appropriate locations (and
avoiding all other collisions), we can accomplish the objectives for each stage.

3.4.1 Particle Diffusion

Particles in our CA will tend to diffuse out of any finite region into the empty space
surrounding it. The CA is deterministic, so all particles escape after finite time, and
we can give an explicit bound on that time. Furthermore, there are exactly 4n? places
where the 4n? particles in the input region can escape, so we know where to intercept
the particles. We express this more precisely with the following theorem.

Theorem 19 (Diffusion Theorem). Let X ¢ Q be a 2n-by-2n square region of cells.
Partition X into four groups of cells, Cyg, Cnw, Csg and Csw. Let Cyg consist
of the southwest corner of every block in X, because particles in those cells will move
northeast in the next timestep (barring interference from other particles). Similarly,
Cnw, Csg and Csw consist of the southeast, northwest and northeast corners of the
blocks.

Let each group evolve as a function of time (i.e., Cyg = Cyge(t)) such that after
t timesteps, group C, s translated t cells in the direction x from its initial position.
Let X evolve over time as well by defining

X(t) = CNE(t) u CNw(t) U CSE(t) U Csw(t).

If we start in a configuration with all particles inside X (0) then all particles will
be inside X (t) after t timesteps. For t > n, no block contains more than one cell in
X (t), so it follows that there are no particle interactions after timestep n.

The difficulty in the proof is reasoning about the evolution of the CA under all
possible configurations of the region. Our strategy will be to keep track of all positions
a particle could reach. To do this, we augment our original CA (the concrete CA)
with a third state, drawn gray, to represent an unknown, uncertain, or “wildcard”
state. We call the new three-state CA the abstract CA. The idea is that the abstract
CA agrees with the concrete CA on all black-and-white configurations, and when
there are gray cells it evolves to propagate the uncertainty as best it can. Note that
the new CA will not be physically universal, or even reversible; it is purely a proof
tool.

More formally, the abstract CA is over a set of three states, I' = {{0}, {1},{0,1}},
drawn as white, black and gray in figures. We say a concrete configuration ¢ € XX
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is consistent with an abstract configuration ® € ['X, and write ¢ £ @, if for all cells
x € X, the state ¢, is an element of ®,. Then the update rule p:I'® - I'® for the
abstract CA can be defined as follows: for each ® € I'?, let p'(®) be the element of
I'® with the fewest gray cells such that if ¢ £ ® then p(¢) £ p/(®). That is, if a
cell of p'(®) is gray (i.e., uncertain) then there are concrete (i.e., black and white)
configurations ¢, ¢’ consistent with ® which evolve to configurations p(¢), p(¢') € £
having different states for that cell. For example, p’ contains the following rule

-

because the two configurations consistent with m evolve as follows,

A — muind "
and E is the minimal configuration consistent with both outcomes.

Recall that the abstract CA is a tool to describe about the evolution of many
concrete configurations. The precise result we need is stated below, without proof.

Theorem 20. Let ® € I'? be an abstract configuration. Suppose ¢ € £ is a concrete
configuration such that ¢ = ®. Then clearly p™(¢) = (p')"(P) for all n > 0.

The abstract CA and the theorem above clearly generalize to other CAs. We could
easily take an arbitrary binary cellular automaton and construct a corresponding
abstract CA as above. In most cases, the result will be uninformative; the “uncertain"
gray states tend to proliferate, which tells us nothing about the concrete state. For
some CAs, Theorem 20 may tell us little more than “non-blank cells may spread up
to f steps away in t timesteps". In the abstract version of Conway’s Life, for example,
aside from two simple patterns?, it is challenging to construct any configuration where
the uncertain cells neither go extinct, nor overwhelm everything else.

Our specific abstract CA does not suffer from the problems described above be-
cause interaction between cells is rare in the concrete CA. It just swaps opposite
corners within each block unless exactly three of the cells are black. As a result,
p' swaps opposite corners within each block unless it is consistent with some three-
particle concrete block. This allows us to compute most of the rules on white and gray
blocks, shown in Figure 3-2. Observe that on white and gray blocks, p’ is identical
to p, except for the three-particle interactions. It follows that gray cells behave like
particles, except when exactly three of them collide.

We will now argue that a square of gray cells will diffuse into four groups without
generating any new gray cells. By Theorem 20, any concrete configuration of the
square must also diffuse, and the diffusion theorem from the main text follows.

Theorem 21. Let X € Q be a 2n-by-2n square region of cells. Let ¢ € T'? be the

3Specifically, a blinker and a block, identical to their counterparts in concrete Life, but with
uncertain cells.
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Figure 3-2: The update rule p’ (suppressing symmetries) on white and gray blocks.

configuration where X is white and X is gray. Then we can partition the gray cells
wnto four groups, Cng, Cyw, Csg and Csw such that

e cach group contains n? gray particles,
e the gray particles in Cy all move in the direction x each step, and

e the cells outside Cygp U Crw UCsg U Coyw are all white.

It follows (by Theorem 20) that for any concrete configuration v consistent with ¢
(i.e., with all particles confined to the box X ), the region X will be empty after 2n
limesteps.

Proof. The initial abstract configuration ¢ contains only white and gray cells. Since
p’ maps white and gray blocks to white and gray blocks (see Figure 3-2), the con-
figuration will always be white and gray. Divide the gray particles into groups Cyg,
Cyw, Csg and Cgw. We let Cyg contain particles in the southwest corners of their
respective blocks because a particle in the southwest corner will move to the northeast
corner (i.e., in the northeast direction) if there are no other particles. Similarly for
Cnw, Csp and Cgw.

We claim that only the following four rules (and rotations thereof) from Figure 3-2
are used in the evolution of the square.? °

H - H H— e

= F
This rule swaps opposite corners, so gray particles move diagonally (as described in
the theorem statement) as long as the claim is true. Clearly the claim is true initially,
since all of the blocks are full or empty.

Next, we argue that if the blocks move diagonally in their respective directions,
then the claim is true. Suppose there is some block where the northeast corner of

4Interestingly, since the proof only depends on the behavior of the abstract CA on these four
blocks, it generalizes to other abstract CAs (and corresponding concrete CAs). In particular, we can
change the two-opposing-particle, three-particle and four-particle interactions in the concrete CA,
and it will only affect the corresponding interactions (between gray particles) in the abstract CA.
As an example, the HPP gas changes only the two-opposing particle and three-particle interactions,
so it satisfies the theorem too. Perhaps this is not surprising for a CA designed as a crude model of
gas particles.
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the block is white. That is, C'sy does not overlap with the block. Since Cgw is (the
upper left corners of) a square, our block of interest does not overlap Csy vertically
or horizontally. If the block is too far north or south relative to Csy,, then the same
is true of Cgg, so the northwest corner of the block will be empty. If the block is
too far east or west relative to Cgy, then the same is true of Cnyy, so the southeast
corner of the block will be empty. Together, this implies we will never see the blocks

o
or their rotations.

A simple induction argument completes the proof. The claim about blocks is true
for t = 0, so the cells evolve as described, which implies there are no forbidden blocks
in the next timestep, and so on. U

The theorem tells us that the information in a square will escape from the region
on its own, saving us the trouble of probing into the input region to its contents. Most
reversible CAs would scatter that information across a square expanding outwards at
the speed of light, mixing the bits with each timestep, creating an urgency to probe
the bits to learn them before they spread any further. By the diffusion theorem,
this is unnecessary for our CA because all the information from the input region will
remain concentrated in 4n? cells forever, or at least until we begin probing with outside
particles. Furthermore, after n steps, the contents of those 4n? cells is essentially fixed,
so there is no need to probe the cells simultaneously. Recovering the information from
the input region is substantially easier because the diffusion theorem applies.

The diffusion theorem has other applications. First, we can avoid unintended
collisions between particles. For example, suppose we design the first stage of the
computation (say, probing the diffusing clouds from the input region and reorganizing
the information into a line of particles). If we put a box around this entire stage,
the diffusion theorem tells us when the last collision between these particles can
occur. Any subsequent collisions necessarily involve at least two particles from a
later stage. Second, the CA is the same running forwards in time as backwards, so
the diffusion theorem tells us we can create an arbitrary configuration (momentarily)
in the output region by firing four groups of particles into it. This is, in fact, exactly
how we will construct the final configuration. Finally, the diffusion theorem upper
bounds the running time of any finite configuration, ruling out the idea of unbounded
computation in this CA (at least with finitely many particles).

3.4.2 Redirecting Signals

After 2n steps, the input particles are in the four groups, as described above. The
presence or absence of particles in the groups encodes 4n? bits of information. Every
timestep, each particle in Cyg moves one step northeast. Similarly, if there is no
particle in some cell of Cypg then in the next timestep there will be no particle in
the cell one step northeast. Either way, a bit of information moves northeast each
timestep. We call this moving piece of information a signal.



We need to preserve the signals in order to reconstruct the original input bits,
and eventually perform the transformation. We cannot hope to perform any compu-
tation while the signals are moving in four different directions at the speed of light.
Therefore, our first task is to redirect the signals to all move in the same direction,
say, northeast. Then we manipulate the signals so they are in the same column and
densely packed. We call this arrangement column formation.

We use carefully placed particles (control particles) to control the signals. Since
there are no interactions between pairs of particles, we need to intercept a signal with
at least two other particles to affect it. Nothing useful happens when three particles
meet a signal, so we consider the two ways (up to symmetry) for a signal and two
particles to meet. We call these cases reflection and deflection.

Reflection: Suppose two particles meet head-on, with the signal at right angles. The
signal will reflect off of the two particles and move in the opposite direction, as
shown by the following rules.

M m e
We use reflection to reverse the direction of a particle.

Deflection: Suppose the signal meets one particle head-on and another particle at
right angles. The signal will continue on, but the particle at right angles will
be reflected or not depending on the signal, effectively copying the signal.

s Il & ol
Deflection is useful for creating a duplicate (or inverted) signal at right angles.

A deflection can produce particles or signals in all four directions, so we usually
follow a deflection with one or more reflections to clean up.

These two operations are the building blocks for all the signal redirection. We
also think of the following two operations as primitives, although they are built from
deflections and reflections.

Double Deflection: In this maneuver, we deflect the signal 90 degrees, and then
deflect it back along its original heading. This changes the diagonal along which
the signal is moving, but not the direction. The deflections do not change
the path of the original signal, so unless stated otherwise, a double deflection
operation also includes a reflection to divert the original signal.

Double Reflection: When we reflect a particle twice, it will end up moving the
same direction, along the same diagonal, but further back than before. The
time between the two reflections controls how far the particle moves backwards.

Figure 3-3 illustrates all four basic operations, and shows how a signal = is ma-
nipulated by the other particles.
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Figure 3-3: Basic operations for manipulating a signal (z) representing a bit of data.
The flow of information is indicated by dashed lines.

Notice that collisions only happen with three particles, so reflections and deflec-
tions require us to intercept a signal with two other control particles. The control
particles intersect at a unique position and time, evident from their initial positions,
so we can be sure they introduce no other collisions. However, when there are mul-
tiple redirection operations, we must be careful to avoid collisions between control
particles implementing separate operations, since these collisions could unintention-
ally redirect signals. In fact, we use this in the following section to redirect a group of
0(n?) signals with O(n) control particles, but otherwise we wish to have each control
particle participate in exactly one operation.

3.4.3 Redirecting Input Signals into a Column

As discussed, it is not feasible to compute on four groups (Cyg, Cnw, Csg, Csw, as
in the diffusion theorem) of signals moving apart at the speed of light, so our first
goal is to redirect the groups into an orderly column. The highest priority is actually
to get the signals (or copies of the signals) moving all in the same direction, say,
northeast. Only then will we worry about constructing a column.

Theorem 22. We can arrange for the signals (or copies of the signals) in Cng, Cnw,
Csg, Csw to be directed northeast.

Proof. Consider each group separately:



Northeast The signals in Cyg are already moving northeast. We do not need to do
anything with them until we have all the other signals moving northeast too.

Southwest The group Csy is moving southwest, so we can use reflections to reverse
the signals. One could reflect each particle individually, but it is easier to reflect
the entire group by having a line of O(n) particles moving southeast meet a
line of O(n) particles moving northwest. The two lines form a “mirror” which
reflects the group.

Southeast The signals in Csg are moving southeast, so we need to deflect them
northeast. There is no shortcut to deflect the entire group at once (as we did
for Csw ), but a single particle moving northwest may intercept many signals in
Csg, and we can reuse it for deflection of all those signals in quick succession.

Northwest The procedure for deflecting Cyw is essentially the mirror image of the
procedure for Csp. However, particles passing through Cyw (going southeast)
may meet the particles passing through Csp (going northwest). These inter-
sections are harmless unless they meet a signal from Cgy, moving northeast
(having been redirected by our mirror) and reflect it back southwest. We can
avoid this kind of interaction by changing the precise timing of Csw, Csg or
Cyw redirections, so we will assume it does not happen.

|

Now suppose the four groups have been redirected and all the information from
the input is contained in a collection of 4n? signals moving northeast. We can use
reflections to turn around any other particles or signals moving northeast, so let us
assume only the 4n? signals are moving northeast. Assume we also wait (by the
diffusion theorem) until there can be no more collisions involving control particles
and/or signals defined up to this point. For the sake of avoiding unwanted collisions,
we will try to maintain the above points as an invariant. That is, we adopt the
following convention until Section 3.4.5, where we must abandon some of it to redirect
the particles to the output.

Definition 23 (Hygiene Convention). We assume the following properties:

e All relevant information is contained in a group of signals C' moving northeast.
e No control particles are moving northeast.

e Control particles and/or signals from previous stages never intersect.

e There are diagonal planes separating the control particles and/or signals of

previous stages from C'

— Particles moving northwest are above the NE/SW diagonals of all signals
in C,

— Particles moving southeast are below the NE/SW diagonals of all signals
in C,
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— Particles moving southwest are below the NW/SE diagonals of all signals
in C'.

Next, we want to organize the signals into an orderly column.

Theorem 24. Given a collection of m signals moving northeast, there is a sequence
of collisions which reorganizes them into a column formation, i.e., all signals moving
northeast in a line with the same x-coordinate.

Proof. We break this task into two components: move all signals to separate north-
east /southwest diagonals, then move signals backwards until their z-coordinate lines
up. To change the diagonal of a signal, we use a double deflection operation to copy
the signal to a different diagonal, then reflect the original signal backwards, since it
is no longer needed. Once the signals are in separate diagonals, we align them in a
column by finding the signal furthest west and using double reflection to move the
other particles backwards (i.e., southwest) along their diagonals until they are in the
same column as the westernmost signal.

The plan above defines a sequence of operations which will redirect the signals
into a column. What we need to justify is that we can schedule the operations, i.e.,
choose a time and position for each one, in such a way that unwanted collisions are
avoided. Once we choose the time and position, we can work backwards to determine
the initial configuration of the control particles.

We claim that the first double deflection, double reflection, or reflection operation
in the plan can be scheduled as soon as the hygiene convention holds. By construction,
the control particles in one of these operations do not intersect except at the desired
collision points. If there were an unwanted collision, it would have to involve two
particles from a previous stage, but the hygiene convention rules this out. In fact,
the new control particles cannot intersect even one particle from a previous stage
because of the plane condition. For example, if our new control particle is moving
northwest, it cannot intersect an old particle moving southwest because it touched
some element of C, so at that time its NW/SE diagonal was above all old particles
moving southwest. Similarly for the other cases.

To be safe, we should wait to schedule the next operation until the hygiene con-
vention is satisfied again. We have only created signals moving northeast, none of the
control particles we used move northeast, and we just argued that there will be no
intersections between any new control particle and anything else. All that remains
is to wait for the new control particles to be separated from C' by diagonal planes.
This is guaranteed by the diffusion theorem, for example, in time proportional to a
bounding box around the signals. At that point the hygiene convention applies again,
and we can schedule another operation.

Assuming the signals are originally in a box of size B x B, we can implement each
operation in O(B) timesteps. The whole plan involves O(m) operations, so it can
be executed in at most O(mB) timesteps. However, we claim (without proof) an
optimal schedule can reduce this to O(m + B) timesteps. This is optimal since we
may be required to transverse the entire box at least once, and O(m) operations are
required in general. The intuition is that each operation puts control particles on
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O(1) NE/SW diagonals and O(1) NW/SE diagonals. We can avoid scheduling more
than one operation to a NW/SE diagonal, and we can implement the first deflection
in several double deflections along a NE/SW diagonal using one control particle from
the NE.

Also note that our “plan” is extremely flexible, both in the order of the operations
(we can do the double deflections in whatever order is most convenient, then the
double reflections in any order, etc.) and the operations themselves (we can choose
the order of the signals in the column, or put arbitrary gaps in the column), it seems
virtually guaranteed that there is some way to schedule (the first half of) all double
deflections in O(m) NE/SW diagonals, and thus O(m + B) time total, and likewise
for the double reflections and reflections. O

3.4.4 Logical Operations and Computation

Observe that the local update rule p: £# — ¥ is a function from four bits to four
bits. Define a four-input/four-output logical gate, the p-gate, based on p. The p-gate
is universal,® so we could write our circuit in terms of p-gates. If we believe we can
essentially arbitrarily redirect signals (using the primitives from the previous section),
then we can arrange for four arbitrary signals to meet at the same time at some block,
where they are transformed (in a single step) according to p, thereby implementing
a p-gate. The outputs of this interaction can then be redirected as well, and so on,
to build up an arbitrary p-gate circuit.

For the sake of computational efficiency, however, we will now give a different
approach, starting from the column of signals we just constructed. We show how to
compute the NOR of a set of signals and append it to the (south) end of the column.
Since NOR is universal, we can repeat this procedure to implement any logical circuit.
When all gates are complete, we have a column with signals representing the input
bits, intermediate computations, and output bits. The cost of the computation is
proportional to the length of the column.

Theorem 25. Let X = {z1,...,Zyim} be a group of signals moving northeast in
column formation, where signals x4, ...,x, encode bits by, ..., b, € {0,1} respectively,
and Tpy1, .-, Tnem 1€ EMPLY.

Suppose we are given sets Si,..., S, where S; is a subset of {1,...,n+1-1}, for
all i. Define b,.1,...,bnm such that

bn+i = \/ bj.

Jes;

Then we can initialize X such that after t timesteps, the signal x; encodes bit b;, for
all1 <j<m+n. In other words, we can modify the last m signals so each one is the
NOR of a given set of earlier signals.

>One can implement a controlled-controlled-NOT (i.e., a Toffoli gate), for instance, where two
of the inputs control a “dual rail" representation of a bit in the other two inputs.
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Furthermore, t is in O(n+m) and the number of particles in C' is

3m + Z|S%|

1=1

Proof. Consider an arbitrary signal z,,; where 1 <7 < m. We counstruct particles p;,
g; and r;, moving southeast, southwest, and northwest respectively. We position the
particles so they all meet (at the same time) with z;,,, assuming they are not reflected
earlier. Furthermore, we position p; north of all signals in X and north of py,...,p;;.
The idea is that if p; is not reflected back northwest before it meets r;, then p; and
r; will reflect ¢; into x;,, (i.e., signal x;., will contain a particle). Otherwise g; will
continue moving southwest and x;,, will continue to be empty.

We also set up a particle s;; for each 1 <7<m and j € S;. Let s;; move southwest
and intercept p; and z; at the same time. The result is that p; will be reflected if
b; = 1, unless p; has already been reflected. Hence, p; only reaches z;., if b; = 0 for
all j € S;. It follows that

bpvi = v ij

JeS;

as desired.

» / N
y
/
. 1

Figure 3-4: An example of a small computation on bits x, T2, 23.

Observe that only z1, ..., Tn.m and py, ..., py, are moving eastwards (i.e., northeast
or southeast). Each p; is positioned to collide with the corresponding z;.,, so they
must be in the same column. It follows that all eastbound particles are in the same
column. Collisions require at least three particles, at least one of which must be
eastbound, so all collisions must occur in the same column as the z;s. We positioned
the particles (p;, g;, 7; and s;;) based on where and when they meet the z;s, so the
only collisions are the ones we have already discussed.
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Suppose we place p; immediately above x; and p,,...,p,, in order above that.
Then clearly p,, reaches x,,., in t = O(m + n) time. It is also clear that we use only
3 +|S;| particles to modify z;.,, and hence only 3m + Y17, |\S;| particles altogether. [

Figure 3-4 shows the construction on three bits, ;1 = 1, 2, = 0 and z3 = 1.
We add ¢4 = 27 VI, =0, 25 = 1oVvrs = 0 and g = T3 Vs = 1 over the course of
the computation. The black cells are particles, and white cells are locations where
particles are conspicuously absent. For instance, we could place particles at si3, So1,
and so on, to specify a different circuit. We use arrows to indicate the motion of key
particles, and we use a dashed arrow if the particle does not interact with any other
particles. We can see that p; and p, are deflected (by z; and z3 respectively), but ps
makes it all the way to ¢z and r3, so it can reflect g3 into position as xzg.

We use our ability to perform a sequence of computations, where the original
transformation, f:¥X — XX is somewhere in the middle. Before we can apply f
to the initial configuration, z € ¥%, we must decode z from the 4n? signals captured
from the four square groups. Similarly, after we have computed the final configuration
f(z) e XX we need to encode it as a set of 4n? signals. We arrange the signals into
four groups, which converge on X to produce f(z). This last step is the subject of
the following section.

3.4.5 Output Stage

The final step of the construction is to insert the desired configuration, f(x), into X,
the output region. The diffusion theorem tells us we can insert f(z) by making four
groups of carefully designed signals meet in the output. We can compute whatever
we want, so assume the necessary signals were computed in the previous section, so
all that remains is to redirect a column of 4n? signals into four groups, converging
on X. This is essentially the reverse of an earlier step, where we redirected the four
groups of signals into a single column.

Unfortunately, literally reversing our steps (in an attempt to exploit the reversibil-
ity of the CA) is not possible. To illustrate, suppose we implement our procedure
and let the system evolve up to the point where the contents of the input region
are laid out as a column of signals (i.e., just before we begin computation). Then
we change some of the signals in the column, and run CA backwards for the same
number of timesteps. In this situation, the contents of the input region will not reflect
the changes we made to the column. The problem is that many cells, not just the
the ones in the column, depend on a given cell of the input. Our construction copies
information every time we perform a deflection operation, and we leave intermediate
steps around in our computation. We have to change all of these cells to change the
value of the input cell. Since there are too many cells to practically change, we must
find another way to populate the output. See our discussion of reversible physical
universality in Section 3.5.

Instead, we describe a procedure to redirect a column of signals four groups Cyg,
Cnw, Cnw, Csg converging on the output. We use the same primitive operations as
we did to redirect the input signals. The added challenge for output signals is that
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they must arrive simultaneously, which we ensure by designing “slack" into the paths
of the signals, so we can adjust the length of the path to make the signal arrive at
the correct time.

Let X be the square region, and divide the output signal into four groups, Cyg,
Cnw, Csw, and Cgg, where the subscript indicates the direction of motion of the
group when it eventually converges on X. Initially, the signals are in column forma-
tion, moving northeast, along with signals leftover from the intermediate computa-
tions. We make a few preliminary adjustments to the signals as follows.

1. Reflect all signals in the column except the 4n? designated signals. We do not
want any interference.

2. Use a series of double deflections to move the 4n? designated signals so they
are approximately northeast of X. That is, they are not too far from the
northeast /southwest diagonal passing through the center of X.

3. Use further double deflections and double reflections to rearrange the signals
into four square formations corresponding to the four groups. Within a group,
each signal should have the same offset from its intended destination, except
within Csyy. We will move Cgy into final position by reflection, so we expect
each signal to have the same offset to the reflection (over a northwest/southeast
diagonal) of its destination. For Csw and Cyg, we expect the offsets to be
strictly northeast (no steps northwest or southeast).

This should all be familiar from Theorem 24, and the last point is essentially Theo-
rem 24 in reverse.

At this point, we wait until the signals are, as a group, some suitably large distance
D northeast of X. The plan is to have the signals diverge at this point, and converge
on X in approximately 3D steps, at some target time ¢. Conceptually, we redirect
the four groups as follows.

Southwest Signals in Cgyy continue northeast until they are 2D units from X, and
then we reflect them back towards the origin. No other manipulations are
necessary because the signals in C'gy, are already in the correct square formation.

Northeast We reflect signals in Cyg back to the southwest, and let them travel 2D
units before reflecting them northeast again. The two reflections are sufficient
because Cyg is already in a square formation.

Southeast We deflect signals in Csg northwest for about D units. Then we deflect
the signals southwest for D units, and finally southeast for the final approach.
The final deflection (to the southeast) is different from the other deflections; we
use the incoming signal from the northeast and a particle from the southwest
to reflect a particle coming from the northwest because a particle from the
southeast would have to pass through X at an awkward time. In other words,
there is a group of particles in square formation moving southeast towards X,
and the final deflection whittles away particles to form signals.
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Northwest We redirect signals in C'yy as the mirror image Cqr. We will see that
it is not an exact mirror image in practice.

There are two practical issues. First is parity: all of the primitive operations except
double deflection do not change the parity of the position. That is, if a particle is x
blocks right of its target position and y blocks above, then it would require double
deflections to maneuver the particle into position if z + y is odd. Since we plan to
use only reflections for two of the groups, it is best if those signals have the correct
parity at the end of the computation stage. Second, we cannot redirect all four
groups simultaneously. Even if we could, deflecting Csp and C'nyw would likely create
unwanted collisions. As a result, there may be some distance (and time) between the
ideal initial redirection of a signal, and the actual initial redirection. Each signal still
needs to arrive at the right time, so we make corrections as follows.

e Define D so that the path of group Csy does not require correction. The other
groups may be delayed, but we assume D is large enough that the other groups
will be deflected long before we need to reflect Cgyy .

e As long as the initial reflection of Cyg is less than D steps late, it will pass
through X before the designated time t. As the time remaining (until the
groups converge) decreases, the distance between Cyg and X increases. At
some point the time remaining is equal to the distance, and we schedule the
second reflection for that point.

e We adjust signals in Cgsg using the second deflection, at a location approxi-
mately 2D cells north of its final location. Recall that we want each signal in
Csg to meet a particle moving southeast, so we must deflect the signal south-
west when it is in the same row of cells as the particle. Then the signal is to
the east of the particle, so the two will eventually collide.

Observe that if we delay the first deflection, it does not change the time of the
second deflection, since the signal is moving north (either northeast or north-
west) at the same rate before and after the first deflection. The delay does move
the location of the second deflection east.

Finally, we need to argue that this can all be done without any undesired collisions.
Since the undesired collision involves at least three particles, those be control particles
and/or signals involved in collisions from three different directions. If two or more
of the signals come from nearby collisions (say, within % timesteps) then we say
the collision is local. The nearby collisions must involve the same group, so we can
eliminate a local collision by rescheduling the collisions for a single group; there is
plenty of time and space to do schedule the collisions for a group, so we leave this as
an exercise. Assume there are non-local collisions.

There are only two areas where three intentional collisions could occur at the right
time to have an unintentional non-local collision. First, there are collisions on all sides
of the output region, but on three sides (NW, SW, SE) the only collisions are the ones
which produce the output signals as intended. Second, the area D units northeast of
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the output region is also D units from collisions involving Csg, Cyw, and Csw. The
concern is that control particles from the Csg and Cyw collisions (which deflect each
of those groups to the southwest) will cross in this area and interfere with Cgy . This
can be corrected by scheduling the initial deflections for Csg and Cnw on disjoint
NW/SE diagonals. Since all the signals are intentional, the four groups of signals
converge on X and create the desired configuration at time ¢. This completes the
proof of physical universality.

3.5 Reversible and Quantum notions of Physical Uni-
versality

First, there are some intricacies to even define quantum cellular automata, since the
update rule must be unitary. Like reversible cellular automata, the easiest way to do
this is with a generalization of Margolus neighborhood CAs called partitioned cellu-
lar automata. A partitioned cellular automaton divides the cells into many congruent
blocks and applies the same update rule to each one, then again with a different parti-
tion (and possibly different update rule), through constantly many partitions/update
rules in a periodic cycle. For example, a special case of this is a layered cellular
automaton, which has ¢ layers (i.e., parallel tracks) of cells arranged along Z. In
one timestep, we update the cells in all layers at each position according to some
reversible p: X¢ — Y¢ then shift all of the cells of layer ¢ to the right s; units, where
S1y...,8¢ € Z. See follow-up work of Salo and Térma [99] for an explicit CA; they
construct a one-dimensional physically universal CA by flattening the CA above to 4
layers of different speeds. ‘

Clearly a partitioned cellular automaton or layered cellular automaton amounts
to an extremely uniform circuit with one kind of gate per layer, and a short cycle
of distinct layers (two layers for our purposes; one of the layers being shifts in the
case of layered CAs). The quantum analogues of these CAs work the same way, but
they are extremely uniform circuits of quantum gates. To avoid trouble with infinite
dimensional Hilbert spaces, we insist that there is a quiescent state, and if all of the
cells are initialized to this state then the update rules leave it as it is. Hence, if all
but finitely many of the states are quiescent, computing the next timestep is a finite
problem.

Now we turn to the subject of reversible physical universality as a warm up to
quantum physical universality. When we wish to implement a reversible transforma-
tion, i.e., one implemented by a reversible circuit, we can demand a notion stronger
than ordinary physical universality: we require that at the end of the computation,
the state of the cells outside the output region is independent of the state of the input
cells at the beginning of the computation. That is, there is a fixed state P € X at
the beginning, and a fixed state P’ € ©X at the end of the computation, and for any
z € XX, running the CA for t steps maps

P@azi»P'@f(as).
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An interesting consequence is that if we replace the contents in the output with some

y € X then we can run the CA backwards to compute the inverse: P'&y 5 Paf-1(y).
Note that this is only possible when f is reversible; otherwise a counting argument
will prevent us from running the computation both directions like this. Formally, we
define reversible physical universality as follows.

Definition 26. We say a cellular automaton is reversibly physically universal if for
any input/output region X ¢ €, and bijection f: XX - XX there exists a configuration
¢ of X and constant to such that ¢ implements f in time ¢o, and the configuration of
X at time to does not depend on the input configuration.

Our physically universal CA is not reversibly physically universal for a very simple
reason: it conserves (among other things) the total number of particles (i.e., 1 states).
That is, the total number of particles is the same in the initial configuration as the final
configuration, and since the configurations of X are fixed, this imposes a relationship
between the number of particles in the input and output. In fact, we must have the
same number of particles in X before and after (and the same number of particles
in X before and after), otherwise either the empty or full input configuration would
be a problem. Since most bijections do not have this property, our CA cannot be
physically universal. Ordinarily, we see the fact that the CA conserves particles as
natural and aesthetically pleasing, since it feels more like physical system, but in this
case it is a drawback. Instead, we define a layered CA with the properties we want.

We wish to define a layered CA that satisfies something like the diffusion theorem.
To this end, we define depleted configurations.

Definition 27. We say a configuration is depleted if there is at most one particle per
layer, and the particles are ordered by speed. That is, if s; < s; then all particles in
layer 7 are to the left of all particles in layer j.

The idea is that there are no more collisions between particles in a depleted con-
figuration, i.e., no more computation.

Theorem 28 (Layered CA diffusion). Consider a CA on 2k layers with velocities
~k,...,-1,1,... k. Suppose the update rule applied to (z_j,..., T 1,21,...,Zg) 18
such that it does nothing if either x_p =---=x_1=0 orx1=---=x, =0.

Then any finite configuration (say, confined to a region X of n cells) will be
depleted in O(kn) timesteps.

Proof. The crucial fact is that if there are no particles moving right (i.e., z; = -+ =
x = 0) then the CA does nothing. If there are no right-moving particles in the region
(—o0,7] then none are created there by the update rule, and even the slowest right-
moving particle moves one step, so after one step the region (-oo,j + 1] is free of
right-moving particles. Similarly, if there are no left-moving particles in [7, 00) then
in the next step there will be no left-moving particles in [j - 1, 00).

Note that there are initially no right-moving particles in (-oc0,0] and no left-
moving particles in [n +1,00), so in [%1] timesteps these two regions meet. At that
point, every location on the line has either no left-moving particles or no right-moving
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particles, so there can be no interaction. All we need to do is wait for the particles
to sort themselves by speed.

At time n/2, all the right-moving particles are between position § + O(1) and
position (1 + —’29) n+ O(1). The worst case for sorting is if a particle of speed k is at
the left edge and a particle of speed k-1 is at the right edge. In that case, it will take
(1+k)n/2+0O(1) steps for the particle to catch up, for a total of ¢t = (1+£)n+0(1) =
O(kn) steps for the configuration to be depleted. a

As long as we define a layered CA satisfying the conditions of Theorem 28, we will
have a diffusion theorem. In addition to diffusion, we want a few other properties.

e We want interactions involving fewer than three particles to be trivial, so that
it is easy to control exactly where and when non-trivial interactions happen.

e We do not want the update rule to satisfy any conservation laws:

— The total number of particles cannot be conserved.

— The number of particles of a given velocity, speed, or direction cannot be
conserved.

For example, we propose a CA where k = 4 and the update rule is defined as follows,
where we implement the first pattern that matches.

o ifr y=--=x;=00rz; =--=1x4 =0 then do nothing,
o ifx 4=--=1x_1 =1 then cyclically permute z; - z9 > 3 > x4 > 1,
o if £y =--=x4=1 then cyclically permute x_1 > 2 9 > 3 >x_4 > T 1,

e if exactly one of x4, z3 and exactly one of x_3,x_4 are set to 1, then swap z, or
x; (corresponding to whether x4 or z3 is set) with _; or z_5 (corresponding to
whether z_3 or z_4 is set),

o if exactly three of x4, 3,2 3,2 4 are set, then apply a Toffoli gate to the corre-
sponding three bits of x5, 21,2_1, 29,

e otherwise, do nothing.
Claim 1. The CA above is reversibly physically universal.

Sketch. It is immediate that CA satisfies the conditions of the layered diffusion theo-
rem (Theorem 28), so in O(n) steps the input region will be depleted. At that point,
we use the ability to cyclically permute the layers to adjust the speed of the particles,
and we use the ability to swap z; and x_; to reverse some of the particles. With a bit
of work, we can arrange for all the signals from the input to be moving at velocity 1,
for example.

We can arrange for any three of these signals to meet, perform a Toffoli, and then
return them to their original positions. This is a substantial gadget to justify, but we
have the advantage that at least three particles/signals must meet before anything
non-trivial happens, so we leave it as an exercise. Furthermore, unlike the original
physically universal CA, when we perform swaps, cyclic permutations, and Toffoli

64



gates, the positions of the outgoing control particles (i.e., after the collision) do not
depend on the signals. We leave the details as an exercise.

Finally, we redirect the signals into the output region. This is literally the reverse
of extracting signals from the input region, so with some care (again, an exercise), we
should be able to reverse our procedure for the input. Since any reversible transfor-
mation can be constructed from Toffoli gates, we can do the same as for the original
physical universality proof: collect the input signals, decode them to determine the
initial contents of the input region, compute on those bits, and then encode them for
reinsertion into the output region. The only difference is that since the positions of
the outgoing control particles do not depend on the signals, at a macroscopic level
the final configuration outside the region (i.e., all control particles) does not depend
on the signals inside the region. U

A similar argument constructs a quantum physically universal CA. First, the def-
inition of physical universality for a quantum CA, although at this point one could
probably guess it.

Definition 29. A quantum cellular automaton (QCA) is physically universal if for
any region X ¢ €, and any unitary U € U(2X) operating on X, there exist finite
configurations |¢), [¢') on X and a time ¢ such that for any state |¢)) on X, the state
|¢) ® [1) evolves to |¢') ® U 1)) in exactly ¢ timesteps.

There are two differences of note:

e Quantum universal gate sets exist with one- and two-qubit gates, so we can get
away with k = 3, i.e., six layers,

e We must define a quantum configuration to be depleted if all the classical basis
configurations are depleted. The layered diffusion theorem, Theorem 28, still
holds, because requires a new proof.

Otherwise, the proof goes through more or less as with the reversible CA. We omit
the details since they can be found in Schaeffer [101].

We conclude that classical, reversible, and quantum variants of physical univer-
sality are all achievable by essentially the same argument. In all cases the physical
universality is efficient in the sense that the time ¢ is polynomial in the size of the
input/output region and the depth of the circuit. It remains unclear whether a qual-
itatively different approach (say, without a diffusion theorem) can achieve physical
universality, and whether it can be extended to unbounded computation.

It is unlikely that near-term quantum devices will pursue a cellular-automaton-
like model where all the gates are the same, and have to be applied uniformly across
the entire grid, so the results of this chapter may not be directly applicable to near-
term hardware. Nonetheless, the fact that physically universal CAs (both classical
and quantum) exist demonstrates that computation on the grid is possible under the
most extreme circumstances. And the grid, if not cellular automata in general, will
be a feature of near-term quantum devices, or more generally, physical systems. For
instance, as discussed earlier, these results can also be connected to translationally
invariant Hamiltonians [72], which are of interest for physical reasons.
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Chapter 4
Clifford Gates

The Clifford gates! are extremely well studied and fundamental to quantum compu-
tation in many ways. First and foremost, the Clifford gates are connected to error-
correcting codes, which may be integral to the development of a general-purpose
quantum computer. The important family of stabilizer codes |52] are built on the
stabilizer formalism, meaning that the encoded states are stabilizer states (or Clif-
ford states). In particular, Clifford circuits suffice to encode or decode each logical
qubit, and to compute the syndrome. Since most of the work in these error-correcting
codes is to perform Clifford gates, we can only achieve error-corrected general-purpose
quantum computers when the error rate is sufficiently low on the Clifford gates, and
not before then.

Conversely, the Clifford gates are also exactly those operations which can be easily
computed transversally in many fault-tolerant schemes of quantum computing (e.g.,
the Shor code [106] or the [[7,1,3]] Steane code [109]). This means a Clifford gate on
two logical qubits can be implemented by applying the same gate to corresponding
pairs of physical qubits in each logical qubit. Since we expect any logical operation
to touch all physical qubits, a transversal implementation for a gate is as inexpensive
(in terms of gates, depth, etc.) as one can hope for. In other words, we think Clifford
gates may be among the cheapest gates to implement on fault-tolerant quantum
computers.

As already noted, Clifford gates are not universal, but adding literally any non-
Clifford gate makes the gate set universal [87, 88]. As a side note, because of the math-
ematical elegance of the Clifford group, certain additional gates (such as T := (| i ),
or Toffoli) produce a universal gate set with a clean number theoretic description
[9]. Number theoretic descriptions of unitary gates have led, in more than one case
[71, 20, 51], to “exact synthesis” algorithms for compiling unitaries, which produce
asymptotically better results than the Solovay-Kitaev algorithm [70]. Better com-
pilation algorithms reduce the depth of the circuit, and minimizing the depth is a
good idea for a variety of reasons discussed in the next two chapters (Chapter 5 and

This chapter is based on work in [56], used with the permission of the authors.

'Readers are encouraged to refresh their understanding of the Clifford gates and tableaux in
Chapter 2, since this chapter will, beyond this introduction, assume some familiarity with Clifford
gates.
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Chapter 6).

Yet another path to universality is to augment the Clifford gates with access to
special quantum states, known (unironically) as magic states |28, 94, 106]. Traditional
wisdom is that in this universal model of Clifford gates plus magic states, the cost
of distilling the magic states will dominate the cost of a typical computation. In
some papers, only magic states or non-Clifford gates count towards the cost of the
computation, further supporting the idea that Clifford gates are cheap to implement.
That said, there is some evidence in the other direction [77], so we may have to wait
and see.

For all of the reasons above, Clifford gates are relevant to quantum devices now
and in the future, and certainly worthy of study. This chapter will focus on a result
which classifies Clifford gates by the set of unitaries they can construct. That is,
for any set of Clifford gates whatsoever, we have a procedure to decide whether they
generate all Clifford gates or just a subset. We find that there are finitely many sets
of Clifford gates one can generate, and catalog all of them within this chapter.

4.1 Why Classify Clifford Gates?

A common thread throughout quantum computing is the manner in which a few
elementary gates often suffice for universal computation. This “pervasiveness of uni-
versality” is explored in recent work of Aaronson, Grier, and Schaeffer [5]. There,
the authors give a complete classification of classical reversible gates in terms of the
functions over bits they generate and find that a rich structure emerges.

Of course, the ultimate goal would be a complete classification of quantum gate
sets based on the functions over qubits they generate. Unfortunately, not even a full
classification of the subgroups of a three-qubit system is known.? Since each class
of gates is a subgroup, this suggests that a complete classification remains out of
reach. This might be surprising given how well we understand random gate sets,
and even those that contain particular gates such as CNOT [12, 103]. However, a
full classification begets a complete understanding of all possible behaviors, despite
their strangeness or rarity (see, for example, the sporadic gate sets in the lattice
of Aaronson et al. [5]). Nevertheless, there has been some recent and encouraging
progress on some classification problems, in particular, on classifying Hamiltonians
(which can be applied for any period of time), rather than discrete gate sets. For
instance, Bouland, Mancinska, and Zhang [24] recently classified all 2-qubit com-
muting Hamiltonians, while Childs et al. [31] characterized all 2-qubit Hamiltonians
when restricted to circuits over two qubits. Additionally, Aaronson and Bouland
[3] completed a classification for linear optics of 2-mode beamsplitters, which relied
heavily on the characterization [57] of the finite subgroups of SU(3), underscoring the
difficulty of quantum gate classification.

In this chapter, we contribute to the general classification problem by completing

2The difficulty in classifying the subgroups of SU(N) arises not from the infinite classes but
from the finite ones. In fact, even the finite subgroups of SU(5) remain unclassified. This motivates
our focus on finite, discrete classes such as the Clifford group.
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the case of Clifford gates. Our model is motivated in part by the use of Clifford
circuits as subroutines of a general quantum computation, much like the transversal
gates in a fault-tolerant scheme. We regard the creation of arbitrary quantum states
(e.g., magic states) as an inherently difficult task, and therefore require that any
ancillary state used during the computation must be returned to its initial state at
the end of the computation. These ancilla states are very similar to the “reusable
magic states” of Anderson [10]. In fact, our result closes many of the open problems
left by that paper.

4.1.1 Results

We present a full inclusion lattice of the 57 different classes of Clifford gates. Refer to
Figure 4-2 for a diagram of the 30 single-qubit classes and Figure 4-3 for the remaining
lattice of multi-qubit gates. Notation for the gates can be found in Chapter 2. We
list some highlights of the classification below:

(1) Conserved Quantities. The invariants that dictate the structure of the lattice
are most easily described by appealing to the tableau representation of a Clifford
circuit (see Section 4.2). Nevertheless, there are some common themes that
persist throughout classification. One major theme is that of basis preservation.
We say that a gate “preserves” a basis if it maps elements of that basis to
elements of that basis. For instance, the CNOT gate preserves the X and
Z bases, but not the Y basis. There are classes which correspond to all 8
possible ways to preserve the X, Y, and Z bases. There are also classes in
which each entangling operation only changes the sign of a certain basis, such
as the CSIGN gate, or classes in which each entangling operation acts like an
orthogonal transformation over the computational basis states, such as the Ty
gate (see Section 2.2.6). Finally, a class can be constrained by its ability to
rotate a single qubit. See Section 4.4 for a more formal exposition.

(2) Finite Generation. Every class can be generated by a single gate on at
most four qubits. In fact, given a set of gates generating some class, there
always exist three gates from that set that generate the same class. Moreover,
the classification implies that the canonical set of Clifford generators—CNOT,
Hadamard, and phase—is not a minimal set of generators in our model. Indeed,
it turns out that with the aid of ancilla qubits, CNOT and Hadamard generate
a phase gate. This is well-known [8, 66], but comes as a simple consequence of
our classification theorem.

(3) Ancillas. More generally, giving a Clifford gate access to ancillary qubits often
increases the sorts of functions it can compute. A priori, one might suspect that
extracting all functionality from a large entangling Clifford gate would require
large highly-entangled ancilla states. Nevertheless, our classification shows that
only a constant number of one and two-qubit ancillary states are ever needed. In
fact, an even stronger result is true. Namely, our classification holds even when
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we allow the ancillas to change in an input-independent manner, as would be
natural for a Clifford subroutine applied unconditionally in a quantum circuit.
See Section 4.3 for further discussion.

(4) Algorithms. Our classification implies a linear time algorithm which, given the
tableau of a gate (G, decides which class GG belongs to. As a consequence, we can
identify the class for a list of tableaux (by running the algorithm for each one,
then looking up the least upper bound on our lattice diagram), or determine
whether one gate generates another (by running the algorithm for both, and
checking whether the one class contains the other). In fact, to witness that
G generates some class C (or higher) in the classification, one only needs to
view a constant number of bits of the tableau. These details are discussed in
Section 4.7 and Section 4.8.

(5) Enumeration. For each class C and for all n, we give explicit formulas for
the number of gates in C on n-qubits. The enumeration usually leads to effi-
cient canonical forms for circuits in the various classes. In fact, every class is
exponentially smaller than any class strictly containing it. See Section 4.9.1 for
details.

(6) Sporadic Gates. There are five classes containing the T, gate, four of which
require some generator on at least 4 qubits. Nevertheless, the smallest generator
for the class (T4,I', P) is a gate on three qubits. We investigate such a gate in
Section 4.9.3. Interestingly, there are no affine gate sets in the classification of
classical reversible gates (i.e., in [5]) which admit a generator over three bits
and no smaller.

4.1.2 Proof Outline

We can divide the proof into a few major steps. First, we introduce the notion of a
Clifford tableau (or rather, recall it from Chapter 2), a binary matrix representation
of the function computed by a Clifford circuit. We then “guess” all the classes in the
classification and designate them by their generators. An examination of the tableaux
of the gates in these classes reveals candidate invariants based on the elements of
those tableaux. We then prove that these candidate invariants are indeed invariant
under the rules of our model of computation. That is to say, if we have two gates
whose tableaux satisfy the invariant, then the tableau of their composition satisfies
the invariant, and so on for all the other ways to build circuits from gates—tensor
products, ancillas, swapping.

At this point, we will have shown that each class has a corresponding invariant,
from which the distinctness of the classes in the lattice is immediate. That is, for every
pair of distinct classes there is a generator of one that fails to satisfy the invariant of
the other. Next, we will show that this correspondence is bijective; that is, for each

3Aaronson et al. called this the “Loose Ancilla Rule,” and it does affect their classification of
classical reversible circuits.
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tableau invariant there is a corresponding class whose generators generate all gates
satisfying that tableau invariant. This will have the side effect of producing canonical
forms for most of the classes in the lattice.

The challenge remains then to show that our list of classes is exhaustive. Suppose
we are given some gate set (G. Clearly, the class generated by G is contained in some
class in the lattice. Let C be the smallest class containing all the gates in G. The hope
is to show that G generates all of C. To do this, we use the minimality of C. That is,
for each class S c C, there is some gate g € G which is not in S, otherwise S would be
a smaller class containing G. We now wish to use g to generate a simpler gate, also
violating some invariant of §. This is accomplished via the “universal construction”
on the gate g, which is a particular circuit built from g and SWAP gates. Finally, we
combine the simpler gates to construct the canonical generators for the class C itself.
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4.2 Tableaux

Observe that the matrices I,X,Y,Z are linearly independent, and therefore form a basis
for the 2 x 2 complex matrices. It follows that P, spans all 2" x 2" complex matrices.
Hence, any unitary operation on n qubits can be characterized by its action on P,.
In particular, any gate is characterized by how it acts on

p1=XI---I,py = ZI--I,. ., Popy = I---IX, pon = I---1Z.

We call this list the Pauli basis on n qubits, since one can write any element of P, as
a product of basis elements times a phase (+1 or 7).

Now suppose we are given a Clifford gate, U € C,,. By definition, Clifford gates
map each Pauli basis element to something in P,, which can be written as a product
of basis elements times a phase. That is,

noo
ik
Uijt = ajl!—[pk I
=1

for some bits Mj1, ..., Mjc,) € {0,1} and some phase* a; € {+1,+i}. The tableau for
U is a succinct representation for U consisting of the binary matrix M = [Mj;], and
some representation of the phases «q,.. ., ag,.

It turns out that U maps p; to =1 times a Pauli string, never +i times a Pauli
string. This follows from the fact that the square of any p; is I---I, so

(Up-UT)Q =UpU' = U(I---I)UT =+I.--I.
J J

If the phase in front of the Pauli string in Up;U" were +i, then squaring it would
produce a negative phase. Therefore, Up;U' is +1 times a Pauli string.

Unfortunately, c; may still be any one of {+1, +i}. This is because the product of
DPok-1Pak is I---I(XZ)I--I = —41---IYI.--I, with an awkward —i phase. Once we cancel
the extra factors of ¢ from «;, we are left with

n
(-1)¥ = q; H(_Z‘)Ma’(zk—l)M;(zk),
k=1

where v; € {0,1} is the phase bit for row j. For example, if Up Ut is YI---I then
we have My, = M5 =1 and v; = 0. Then the complete tableau for U is the matrix
M =[M;] and the vector of bits v = [v;], which we typically write as

My, Ml(zn) n

Monyt -+ M@ny@2n) | Von

“Note that the order of the terms in the product matters, since the Pauli basis elements do not
; ; M Mj(an)
necessarily commute, so we assume the terms are in the natural order from p;"’" up to p,,/**" .
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Our ordering of the basis elements (which differs from other presentations) puts
Pauli strings on the same qubit (e.g., XI---I and ZI---T) side-by-side in the matrix,

so the 2 x 2 submatrix
Mayi_19j-1 Mai_19;
My; 951 My; 9j

completely describes how the ith qubit of the input affects the jth qubit of the output.
In fact, it will be fruitful to think of the tableau as an n x n matrix of 2 x 2 blocks,
along with a vector of 2n phase bits. To be clear, the blocks come from R := F2*?, the
ring of 2 x 2 matrices over the field of two elements, F5. Then the tableau is a matrix
in R™" (the n x n matrices over the ring R), combined with a vector of phase bits in
[F2n. Each row of the matrix is associated with a pair of phase bits from the vector.
However, not every matrix in R»" corresponds to a Clifford circuit due to unitarity
constraints. To best express these constraints, we define a unary operation * on R

such that .
a by ([d b
c d] \c al’

The * operator has the property that

a b\fa b) _fa b\(d b\_(ad+be 0O \_ la b
¢ dj\e d] \c dJ/\c a)] \ 0 ad+bc] ~|c d|'
Additionally,
I"=1,
(M + N)* = M* + N*,
(MN)* =N*M"~,
(M*)" =M,

so * makes R a *-ring or ring with involution. We also extend * to an operation
on matrices (over R) which applies * to each entry and then transposes the matrix.
It turns out that a tableau represents a unitary operation if and only if the matrix
M e R™™ satisfies MM* = M*M = I. This (intentionally) resembles the definition
of a unitary matrix (UU' = UtU = I), we will call this the unitarity condition, and
it corresponds to the unitarity of U as a gate, but M is certainly not a traditional
complex unitary matrix (nor unitary over some finite field with conjugation).

4.2.1 Correspondence between Gates and Tableaux

We will find it useful to switch between gates and tableaux, as one notion often informs
the other. In light of that, define 7(g) to be the tableau of a Clifford gate g. In fact,
we will use M(g) to denote only the matrix part of the tableau of g, as the phase
bits of the tableau often prove to be irrelevant. Indeed, most non-degenerate gate
sets generate the Pauli group, which alone suffices to set the phase bits of the tableau
arbitrarily as follows: applying X to qubit j negates vy; and applying Z to qubit
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J negates vg;_;. Furthermore, there is a surprising connection between individual
entries of tableaux and elementary Clifford operations that can be extracted from
them (see Section 4.7).

If a € R is invertible, then let G(a) be the single-qubit gate with M(G(a)) = a and
zeros for phase bits. These are the gates in the first row of Table 4.1. Let G(a,i) be
the gate G(a) applied to the ith qubit.

GO A [ [GD ]G | (]
I | Rk |6xz| Rz | Tews [T
X | Rx | R} [6xay [Ty | DTies
Z |6viz| Ry | Ry [T | T
Y

QY—Z HX-Z GX—Y I-‘+—- I—‘-|-+—

~~| A~ ~| —~
— o~ ol oo
~—| | | ~—

Table 4.1: Invertible tableau elements and the corresponding single-qubit gates pro-
duced by the universal construction. Row of the table corresponds to the sign bit of
the row of the tableau in which the element occurs.

If b € R is noninvertible, define CNOT(b,4,7) to be the generalized CNOT on
qubits ¢ and j corresponding to the singular matrix b. These are the gates in the first
row of Table 4.2. The tableau T(CNOT(b,4,7)) is the identity tableau except for b*
and b in positions (¢,7) and (J,1), respectively. We use the circuit in Figure 4-1 to
designate such a gate.

Elt. | (§%) | (11 (30) | Coo) /(B9 | (18) / (P9) | (o) / (81
Gate | C(X,X) | C(Y,Y) | C(2,2) | C(X,2) C(Y,X) C(z,Y)

Table 4.2: Noninvertible tableau elements and the corresponding generalized CNOT
gates produced by the universal construction.

Figure 4-1: Circuit diagram for CNOT(b, 1,2) gate.

Finally, we would like to have a direct way to compose two circuits by a simple
operation on their tableaux. Suppose we wish to compute the composition of circuits
C4 and C,. To compute T(Cs 0 C1), we must compute, for each Pauli basis element
p;, the product CgClijIC; First consider the jth row of T(C}), which gives

t 2n 1\/[(;)

. — ) IR

Cip,;C] = a; | ka ,
k=1
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where M) is the binary representation of M(C1), and «; is the phase. Similarly,

2n M(z)

Cop;Cy = B; [ 1" -
k=1

Therefore,
N
M
2n (1) 2n (1) 2n 2n (2) jk
t ot My T_ My ~tY M,
CoCp;C1Cy = Col o [Tp, ™ Oy = a; [T Copy ™ C3 ) = a; TT| B T 110
k=1 k=1 k=1 =1
2n (1) 2n (1) 5 ,(2) 2n 2n (1) 5 ,(2) 2n n (1) 5 £(2)
— o, [] BM]k I1 M Mg} 111 My My, i, M, My
= Q; k b, b, ¢
k=1 -1 =1 k=1 -1
Ny,
= Hpe ’
=1

Notice that this implies M(Cy o0 Cy) = M(C;)M(Cy). Since it is cumbersome
to write out explicitly, we did not include the exact phases in the above calculation.
Nevertheless, one can compute the phase bits by tracking the intermediate steps in
the above calculation, which includes the multiplication of Pauli basis elements.
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4.3 Classes

Informally, the class generated by a set of Clifford gates is the collection of Clifford
operations which can be constructed from those gates. Our goal is to determine the
set of classes and the relationships between them. We now must lay out the precise
operations we use to build circuits, such as composition and tensor product. Let us
also introduce and justify our rules concerning the reordering of qubits and ancillary
workspace.

First, we will always allow the swapping of qubits. This allows us to consider
gates without needing to specify the qubits on which they must be applied. Indeed,
we can relabel the input wires however we like. Secondly, we allow the use of quantum
ancillas, that is, arbitrary states that we can “hardwire” into the computation. We
only stipulate that these ancilla qubits be returned to their initial configuration at
the end of the computation.

These ancilla inputs can be viewed as the workspace of the computation. If do
not allow ancillary qubits, then a gate cannot be used to generate a smaller gate
because there are not enough inputs to use it at all. Furthermore, if we want to apply
a Clifford function as a subroutine of a general quantum computation, then we need
that the ancilla states do not depend on the input. Otherwise, they would destroy
the quantum coherence of the computation.

Finally, we turn to the question of the ancillas themselves. The weakest assump-
tion one could make is that the ancillas are initialized to an unknown state, which the
circuit may only change temporarily. This is somewhat artificial since we can, at the
very least, initialize the workspace to the all-zeros state. Other classifications suggest
that without this assumption the problem becomes dramatically more difficult.> A
slightly stronger assumption would be to allow ancillas initialized to computational
basis states, but this would break symmetry by introducing a bias towards the Z-
basis.6

A next natural step would be to permit ancillas initialized to arbitrary stabilizer
states. Although this would appear to be circular (i.e., Clifford gates are necessary
to implement stabilizer states, which we then use as ancillas in Clifford circuits),
the reusability of the ancilla states implies that even if the states are difficult to
construct, at least we only have to construct them once. Unfortunately, we are unable
to complete the classification in its entirety under this ancilla model. However, we
have reduced the problem to finding a single stabilizer state which is stabilized by
I and a permutation, and we conjecture that such a state exists (see Section 4.10).
Moreover, the conjectured classification matches the one we will present (under a
stronger ancilla model).

Finally, we arrive at our chosen model; that is, ancillas initialized to arbitrary
quantum states. A priori, these states could be arbitrarily large, and arbitrarily

°For example, the lattice of classical many-to-one functions over bits is finite when we allow 0/1
inputs to any function, but infinite when we do not allow such freedom [90, 5].

®We can fix the bias by allowing all single-qubit ancillary states: |0),]1),]+),]|-1),]i),|-i). This
introduces new classes such as (fx, z ® 6x.z), but we leave the classification under these assumptions
as an open problem.
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complicated to construct, which is clearly undesirable. It turns out, however, the
classification only requires finitely many one or two qubit states, in particular, the
eigenstates of the single-qubit Clifford gates and states that are locally equivalent to
the Bell state. For comparison, we have determined the reversible gate lattice under
quantum ancillas in Section 4.9.2, and observe that, in some cases, arbitrarily large,
entangled states are necessary.

It is worth noting that there is a long line of work showing that weak gate sets,
including Clifford gates, are universal for quantum computation when given access to
magic states |28, 94, 106]. Importantly, these magic states do not need to be preserved
after the computation. Conversely, under our model, we show that arbitrary quantum
ancillas cannot boost the power of Clifford gates beyond the Clifford group.

One might assume that we could increase the power of ancillas by letting them
change over the course of the computation, as long as the change is independent of
the input (that is, from some constant initial state to some possibly different constant
final state). Indeed, in the classification of reversible gates [5], these “loose ancillas”
collapse a few pairs of classes. Nevertheless, we show that even with loose ancillas,
our classification (as presented) still holds. When we formally define class invariants
in Section 4.4 (see Theorem 32 in particular), we will see that the invariants hold
under the loose quantum ancilla model, and therefore hold for all weaker models.

Now let us formally define a class C to be a set of Clifford gates satistying the
following four rules:

1. Composition Rule C is closed under composition of gates. If f,g € C, then
fogel.

2. Tensor Rule C is closed under tensor product of gates. If f,g € C, then f®geC.
3. Swap Rule C contains the SWAP gate.

4. Ancilla Rule C is closed under ancillas. If f € C and there exists g such that

[z} ® ) = g(Iz)) ® [¢)
for some |¢) and for all inputs |z) (up to a global phase), then geC.
Let’s first see a few simple consequences of the model.

Proposition 30. Let C be a class of Clifford gates. Then C contains the n qubit
wdentity gate for any n.

Proof. First, C contains SWAP. It follows that C contains the two qubit identity gate
since it is the composition SWAP o SWAP. By the ancilla rule, we can remove a qubit
from the two qubit identity using any one-qubit state. Hence, the one qubit identity
gate is in C. Finally, C must contain the n-qubit identity gate because it is the tensor
product of n one-qubit gates. O

Proposition 31. Let C be a class of Clifford gates. For any g € C, the inverse, g1,
belongs to C.
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Proof. Consider the sequence

n

g,9cg9g,90gog,...,g ,....

Since there are finitely many Clifford gates on n qubits (certainly finitely many
tableaux, and one gate per tableau), the sequence must eventually repeat. That
is, g* = ¢7 for some 1 < 7 < j. Since every Clifford gate has an inverse, we conclude
that 1 = g° = g9¢, and hence g1 = g7~*-1. In other words, g~! is a Clifford gate, and
g7! is a (positive) power of g and therefore in C. O

The most practical way to talk about a class C is by its generators. We say a set
of gates G generates a class C if G € C and every class containing G also contains C.
We introduce the notation () for the class generated by a set of gates. Similarly, we
say that G generates a specific gate g if g € (G).

Our goal is therefore to identify all Clifford gate classes, determine their generators,
and diagram the relationships between classes. As it turns out, there are 57 different
classes, which we have split across Figure 4-2 (which contains the classes with single-
qubit generators) and Figure 4-3 (which contains the multi-qubit classes). Each class
is labeled by a set of generators for that class, except for ALL, the class of all Clifford
gates; T, the class of all single-qubit Clifford gates; and 1, the class generated by the
empty set. Additionally, we abbreviate some class names in Figure 4-2:

® 0,.r,0, .0, .60 __, denote the single-qubit classes containing I'y,,, I'y__, T'_, |
and I'__, respectively, and three § gates each, as indicated by the gray lines.

e ., abbreviates 6,., or 6,_, (it contains both) and similarly for 8,, and §,,.

Some of the lines in Figure 4-2 are gray and dotted, not for any technical reason, but
because the lattice would be unreadable otherwise.

In Figure 4-3 each class includes the label of the single-qubit subgroup, even
when not all of the single-qubit generators are necessary to generate the class. This is
intended to make the relationship between the degenerate and non-degenerate lattices
clearer. For example, T4 generates the Pauli group, P, on its own (Lemma 40), but
‘we label the class (T4,P) to make it clear that the class (T4) is above (P) in the
lattice.
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4.4 Invariants

Until now, we have defined each class in terms of the generators for that class. It
turns out that each class can also be characterized as the set of all gates satisfying a
collection of invariants. Section 4.5 formalizes this equivalence. This section focuses
on the form of the invariants themselves.

Informally, an invariant is a property of a gate (or gate set), readily apparent from
the tableau, which is preserved by the circuit building operations. In other words, if a
collection of gates all satisfy a particular invariant then any circuit constructed from
those gates must also satisfy the invariant. All our invariants are formally defined
from the tableaux, but for now we give the following informal descriptions to make
the intuition for each invariant clear.

X-, Y-, or Z-preserving: We say a Clifford gate is Z-preserving if it maps Z-basis
states to Z-basis states, possibly with a change of phase. The Z-preserving gates
include all (classical) reversible gates (e.g., X, CNOT, and Ty), gates which only
manipulate the sign (e.g., Rz and CSIGN), and combinations of the two.

Symmetrically, there are X-preserving gates mapping X-basis states to X-basis
states, and Y -preserving gates gates mapping Y-basis states to Y-basis states.
Our definitions of classes, gates, invariants, etc., are completely symmetric with
respect to X, Y and Z basis, so if some gate or class is X-preserving (resp. Y-
preserving or Z-preserving), then there must be a corresponding gate or class
which is Y-preserving (resp. Z-preserving or X-preserving). We will often
appeal to this symmetry to simplify proofs.

Note that a gate can be any combination of X-, Y- and Z-preserving. For in-
stance, T4 is X-, Y-, and Z-preserving; CNOT is X -preserving and Z-preserving
but not Y-preserving (similarly C(X,Y) and C(Y,Z) fail to be Z-preserving
and X-preserving respectively); Rz is Z-preserving only (similarly Ry is X-
preserving and Ry is Y-preserving); and I" is not X-, Y-, or Z-preserving.

Egalitarian We say a gate is egalitarian if it is fixed (up to a Pauli operation on
each qubit) by the aforementioned X/Y/Z symmetry, that is, the symmetry
arising from conjugating all qubits by I' (which cycles X to Y, Y to Z, and Z to
X). In particular, this implies that if egalitarian operation U maps Pauli string
P to Q = UPUY' under conjugation, then U maps I'PT't to

UTLPT'UT o« TUTTPITUTY = TU PUTTT = TQI.
Not only are I' and the Pauli matrices themselves egalitarian, but so is Ty.

Degenerate: We say a gate is degenerate if each input affects only one output. More
precisely, when applying the gate to a string of Paulis, changing one Pauli in
the input will change exactly one Pauli in the output. All single-qubit gates are
degenerate, and all degenerate gates can be composed of single-qubit gates and
SWAP gates.
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X-, Y-, or Z-degenerate: A gate is Z-degenerate if it is Z-preserving and flipping
any bit of a classical (Z-basis) input to the gate causes exactly one bit of the
output to flip. The gate may or may not affect the phase. This class includes
several Z-preserving single qubit gates, like Rz, the Pauli operations, and x.y.
It also includes CSIGN because this gate only affects phase, but CNOT is not
Z-degenerate because flipping the control bit changes both outputs. Notice
that CSIGN is Z-degenerate, but not degenerate. We define X-degenerate and
Y -degenerate symmetrically.

X-, Y-, or Z-orthogonal: A gate GG is Z-orthogonal if it can be built from T4 and
Z-preserving single-qubit gates. The term “orthogonal” comes from the fact
that T, is an orthogonal linear transformation in the Z-basis, but not all Z-
orthogonal gates are literally orthogonal transformations in the Z-basis (see, for
example, Lemma 40). Similarly for X-orthogonal and Y-orthogonal.

Single Qubit Gates: There are thirty different classes of single-qubit gates. All
of these classes are degenerate, and some can be distinguished by the other
invariants above. However, many single-qubit invariants depend on the phase
bits of the tableau. For instance, the tableau of fx,y, 0x_y, and Rz all have
the same matrix part, (1), but generate three distinct classes. One can write
down explicit invariants for these classes where the phase bits are correlated
to the tableau entries, but in most cases we present a single-qubit class as a
subgroup of the symmetries of the cube/octahedron, as shown in Figure 2-1.

4.4.1 Formal invariants

An invariant is a property of tableaux which is preserved by the four circuit-building
rules.

Swap Rule: Every class contains the SWAP gate, so every invariant we propose

must be satisfied by the tableau for SWAP.

Composition Rule: If the invariant holds for two gates, then it must hold for their
composition. We have seen that the tableau for the composition of two gates
is essentially the matrix product of the two tableau, except for the phase bits
(which are significantly more complicated to update).

Tensor Rule: The tensor product of two gates satisfying the invariant must also
satisfy the invariant. Note that the tableau of the tensor product is the direct
sum of the tableaux, and phase bits are inherited from the sub-tableaux in the
natural way.

Ancilla Rule: The invariant must be preserved when some qubits are used as an-
cillas. It turns out the ancilla operation reduces the tableau to a submatrix (of
non-ancilla rows and columns) and under certain conditions, the correspond-
ing subset of the phase bits. This is somewhat technical, so we prove it in
Theorem 32 below.
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Theorem 32. Let G be a Clifford gate on n qubits, and suppose there exist states |1))
and [¢') such that

G(lz) @ [¥)) = H(|z)) @ [¢)

for all |x), for some unitary H on m-qubits. In particular, this is true if we use the
ancilla rule to reduce G to H, where [t) = |¢') is the ancilla state. Then

1. H s a Clifford operation,

2. M(H) is obtained by removing the rows and columns corresponding to the an-

cilla bits from M(G),

3. If every bit (in M(G) as a binary matriz) we remove from a row is zero, then
the phase bit for that row is the same in T(G) and T (H).

Proof. Let P € P,,. Then for all |z},
G(Plz) @) = H(P|z)) ®[¢').

On the other hand, G is a Clifford gate, so conjugating the Pauli string P ® I"™™ by
G produces Q ® R for QQ € P,,, and R € P,,_,,, . Equivalently,

G(P® I®("‘m)) =(Q® R)G.
It follows that

H(P|z)) ®[¢) = G(Plz) ®|4))
= (Q® R)G(|z) ® [1))
= (QeR) (H(|lz)) ® ')
= QH(|z)) ® R[¢'),

so up to phase, H(P|x)) = QH(|z)) for all |z), and |¢') = R|¢’). The first equation
implies HP = QH, or HPH' = (). Since P was arbitrary, the conjugation of a Pauli
string by H is always another Pauli string, so H is a Clifford gate.

In the special case that P (and therefore P®@I®(™ ™)) is a Pauli basis element, then
(? ® R is represented in row of the binary tableau of G. We keep the bits representing
Q in the tableau for H, since HPH' = @, which is why M(H) is a submatrix of
M(G). Clearly the phase of @ is the same as the phase of @ ® R if and only if R is
positive. In the special case R = I8 ™) it is easy to see that R is positive, otherwise

") = RIy') = -1 |g7) = ~ ')

is a contradiction. Hence, the phase for the corresponding row of 7(H) is inherited

from T(G). 0

As a direct consequence of these rules, our invariants take on a distinctly algebraic
flavor. Let us consider, for the sake of illustration, invariants that depend only on the
matrix part of the tableau and ignore the phase bits. Then an invariant is equivalent
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to a set of matrices closed under the four rules above. In particular, the matrices to
form a group under multiplication as a consequence of the composition rule (and the
fact that every gate has finite order).

On the other hand, not every group of matrices will correspond to an invariant.
For instance, due to the swap rule, the group of matrices must also be closed under
arbitrary reordering the rows and columns. This eliminates, e.g., the group of upper
triangular matrices. Similarly, the ancilla rule excludes the special orthogonal group.
In the end, we are left with just two kinds of matrix groups which lead to invariants:

Subring Invariants Matrices with elements restricted to a particular subring of R
(analogous to the real matrices, integer matrices, etc.)

Permutation Invariants Permutation matrices, except where each 1 entry can be
any one of a subset of invertible elements, and each 0 entry comes from a
collection of non-invertible elements.

Now we are ready to present formal definitions for these invariants, and show that
they really are preserved by the circuit-building rules.

4.4.2 Subring invariants

The first kind of invariant restricts the entries of the tableau to a subring of R. That
is, given a subring S ¢ R, a gate satisfies the invariant J(S) if and only if all entries of
the tableau are in S. There are twelve classes, all near the top of the lattice, of the
form

C = {All gates satisfying J(S)},

corresponding to all 12 subrings of R listed below.

e The entire ring, R, is technically a subring of itself, and J(R) is the trivial
invariant satisfied by all Clifford gates. Notice that not every matrix over R
gives a valid tableau because it must still be unitary.

e There are four maximal proper subrings of R:

RX :{(gzol):{a’c’d}e{()?l}}v
Ry ={(2%):{a,b,¢,d} €{0,1},a+b+c+d=0},
RZ={(3Z):{a,b,d}e{0,1}},
Re={(§.%):{a b} €{0,1}}.

Our formal definition for Z-preserving gates is the invariant J(Rz). The fact
that the lower left entry is 0 implies that the gate maps Pauli strings of I and
Z to strings of I and Z. Hence, Z-basis strings are mapped to Z-basis strings.
Similarly, the X-preserving and Y-preserving invariants are J(Rx) and J(Ry)
respectively. The egalitarian invariant, J(Rg), comes from the subring Rg.
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e The intersection of two subrings is itself a subring, giving us exactly four more
subrings (Rx NRy, Rx "Rz, Ry nRz, and Rx nRy nRyz) since the intersection
of Rg with any of the others is

Rx nRy nRz ={(88). (49},
the trivial ring.

e Three more subrings are obtained by taking only self-conjugate elements of Rx,
Ry, and Rz respectively. An element (2%) is self-conjugate if

(ea)=(ea)

or equivalently, a = d. These invariants correspond to the X-orthogonal, Y-
orthogonal, and Z-orthogonal classes (T4, P,Rx), {(T4,P,Ry), and (T4, P,Rz)
respectively.

Theorem 33. For any subring S ¢ R, the property I(S) is an invariant. That s, the
set of matrices over S respect the circuit building operations.

Proof. Every subring contains (3 9) and (3 9) by definition, and therefore the tableau
(phase bits omitted) of the SWAP gate,

0
0
1
0

satisfies J(S).

Matrix multiplication is a polynomial in the entries of the two matrices, so compo-
sition cannot produce entries outside the subring. Similarly, combining tableau with
tensor products or reducing tableau to submatrices via ancillas does not introduce
any new ring elements; those operations only use elements already present in the
tableau. We conclude that J(S) is an invariant for any subring S. O

4.4.3 Permutation invariants

The permutation invariants get their name from the matrix part of their tableaux,
which is required to have the structure of a permutation matrix. That is, every row
(or column) has exactly one element which is invertible, and the others are non-
invertible. Permutation invariants are also sensitive to phase bits. It is natural to
associate the unique invertible element in a row with the phase bits for that row,
giving the tableau of a single-qubit gate. A permutation invariant P(G,S) is defined
by the set of single-qubit gates G which can be obtained in this way, and the set
of non-invertible elements S used to fill the rest of the tableau. In other words, a
tableau satisfies P(G, S) if all entries are from S except exactly one entry per row

85



which, when combined with the phase bits for the row, is the tableau of some gate in
G.

Note that not all pairs of sets (G,.S) produce an invariant. For instance, circuit-
building operations will fail to preserve P(G,S) if G is not a group. The exact
relationship between G and S required to produce an invariant is difficult to write
down. Roughly speaking, products of elements in S should be zero, products of
elements in G should remain in G, and products between S and M(G) should be
manageable in some sense. Theorem 34 gives a list of P(G, S) invariants, which will
turn out to be exhaustive by Theorem 48, the culminating theorem of this chapter.

Theorem 34. We prove that the following permutation invariants are indeed invari-
ant under the circuit-building operations.

1. If G is a group of single-qubit gates then

P(G{(58)1)

is an invariant for (G). All thirty degenerate classes are characterized by in-
variants of this form.

2. If (X) c G < (P,Rx) is a group of single-qubit gates then

P(GA(88):(26)})

is an invariant for (C(X,X),G). These invariants characterize the five X-
degenerate classes.

3. If (Y) < G < (P,Ry) is a group of single-qubit gates then

PGA68), (11D

is an invariant for (C(Y,Y),G). These invariants characterize the five Y -
degenerate classes.

4. If (Z) < G < (P,Rz) is a group of single-qubit gates then

P(G{(56),(306)})

is an invariant for (C(Z,2),G). These invariants characterize the five Z-
degenerate classes.

Proof. Let P(G,S) be one of the invariants above. Let M = {M(g) : g € G} be the
set of matrices from tableaux in G. In all cases, S contains (§), and G contains the

single-qubit identity operation,
1 0/0
0 1(0 )

so SWAP satisfies the invariant. And clearly the direct sum of two tableaux in P(G, S)
is still in P(G, S) for any G and S.
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Now consider the composition of two gates. Each entry in the tableau is a dot
product of some row from one tableau with some column from the other. Hence,
the entry is a sum of S xS, Sx M, M x .S, or M x M products. Observe that the
S x S products are all zero (for the particular sets S above), so we may ignore those
products. Recall that the row and column each contain exactly one entry in M, so
depending on whether those entries align, we get either SM + MS ¢ .S or M? = M.
Furthermore, for any row in one tableau there is exactly one column in the other
such that the invertible entries line up. Therefore, exactly one entry in any row (or
column) of the composition is in M and the rest are in S. Clearly the matrix part of
the tableau has the correct form for the invariant.

We must also consider phase bits under composition. Recall that the phase bits
associate with the invertible entries of the matrix to produce single-qubit gates. When
we multiply two tableau, these single-qubit gates multiply to produce elements in G
(since G is a group), as you would expect. If the non-invertible elements are all zero,
then this is the only factor in determining phase bits, so the invariant is preserved by
composition.

Now consider the phase bits in the case where S contains nonzero elements, for

instance,
S={(50),(50)}-

Notice that in this case, both matrices in S have zeros in the bottom row, and the
invertible matrices are of the form ({¢). Hence, every even-indexed row of the tableau
(as a binary matrix) is all zeros except for one entry. Using the method of tableau
composition in Section 4.2, one can easily show that for these even-indexed rows, the
phase bits are exactly what one would get by composing the invertible elements as
gates in G. For the other half of the rows, the non-invertible elements may flip the
phase bits. But we assume G contains the Pauli element (in this case Z) which flips
that sign, so the invertible elements and associated phase bits are still in G, therefore
the invariant is preserved. The X- and Y-degenerate cases are similar.

Last, we show that P(G,S) is preserved under ancilla operations. Recall that
when we use ancillas, we remove the rows and columns corresponding to those bits.
Clearly the elements of the submatrix are still in M and S. There is a risk that the
invertible element for some row could be in one of the removed columns, but if the
submatrix is missing an invertible element in some row then the submatrix is not
unitary and the ancilla rule must have been misapplied. Hence, only elements in .S
are removed in the non-ancilla part of the tableau, and each row still contains exactly
one entry in M.

We appeal to Theorem 32 for the phase bits. The theorem says that removing the
ancillas can only change the sign for a row if there is a nonzero entry in the non-ancilla
bits of the row that are removed. For example, if S'={(39),($3)} then only the top
phase bit can change. But changing the top phase bit is the same as applying a Z,
and for this case Z is assumed to be in G, so the combination of the element in M
and the phase bits is still in G. Therefore the Z-degenerate P(G, S) are invariants,
and the X-degenerate and Y-degenerate invariants follow by symmetry.

1
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4.5 Equivalence of Generator and Invariant Defini-
tions

We have now defined each class by a set of generators, and by an invariant, but have
not yet shown that these definitions coincide. Below are a collection of lemmas which
prove this for all classes in our lattice. Note that one direction is always trivial: it
is easy to check that the generators defining a class satisfy a particular invariant,
and therefore everything they generate (i.e., the class) must satisfy the invariant. We
encourage the reader to check these invariants against, say, the tableaux in Table 2.2.

For the other inclusion (i.e., every gate satisfying the invariant can be generated
by the given generators), we start with an arbitrary gate g satisfying the invariant,
and apply gates in the class to g to simplify its tableau step-by-step until it is the
tableau of the identity operation. It follows that AgB = I for circuits A and B in the
class, which proves g = A~ B! is in the class. In many cases, the circuit derived this
way is a canonical form for the gate, and can be used to count the number of gates
on n qubits in a class.

Let us start with the degenerate classes.

Lemma 35. Let G be a group of single-qubit gates, and let g be a gate satisfying
the permutation invariant P(G,{(89)}). Then there is a circuit for g consisting of
a permutation of the inputs followed by layer of single-qubit gates in G.

Proof. Consider the tableau for g. Each row or column has exactly one invertible
element, so we can read off a permutation 7 from the positions of those elements.
Apply SWAP gates to g to remove this permutation, and put the invertible elements
on the diagonal. When we pair a diagonal element with the phase bits for that row,
we get a single-qubit gate g; in G. Applying the inverse of this gate to qubit ¢ will
zero the phase bits for that row, and make (} ¢) the diagonal entry. Once we do this
for each row, we have the identity tableau, therefore g is in (G) and has a circuit of
the desired form. O

Next, we consider the Z-degenerate classes and, by symmetry, the X-degenerate
and Y-degenerate classes.

Lemma 36. Let (Z) ¢ G < (P,Rz) be a subgroup of Z-preserving single-qubit gates.
Let g be any gate satisfying the permutation invariant P(G,{(8%),(33)}). Then
there is a circuit for g consisting of a layer of single-qubit gates (from G), a layer of
C(Z,2) gates, and a permutation.

Proof. Consider the tableau of g. We can read off a permutation 7, and a single-qubit
gate for each input. Assume we have removed those gates (i.e., we now consider the
tableau of gn~lg;'---g;!), so the tableau has (3 9) on the diagonal, all other entries
are either (§3) or zero, and the phase bits are zero.

The non-zero, off-diagonal entries in the matrix indicate the positions of C(Z,Z)
gates. Specifically, if the entry in row ¢ and column j is nonzero then there is a
C(Z,Z) on qubits 7 and j. Note that because the matrix part of the tableau is
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unitary, the symmetric entry in row j and column ¢ must also be non-zero. The
remainder of the circuit consists of the set of C(Z,Z) gates indicated by the non-zero,
off-diagonal entries. Notice that C(Z,Z) gates always commute, so their ordering does
not matter.. U

Now let us consider four Z-preserving classes which, when we consider symme-
try (i.e., the X-preserving and Y-preserving equivalents) cover all but two of the
remaining classes.

Lemma 37. For each of the four classes (T4, P), (T4,P,Rz), (C(Z X),P), and
(C(2,%),P,Ryz) is the set of all gates corresponding to a subring invariant, where
the subrings are (respectively)

S1={(56): (o 1)}

S2={(56):(56),(69), (6 D)}
S3={(606),(69),(61), (o)},
Sa={(66),(87):(66):(61),(68): (61 (506), (5 1)}

Proof. In all four classes, elements of the tableau are of the form (4%). Suppose
(§ 4, ) is the ith entry of some row, and ({ 4 ) is the jth entry in the same row, where
entries labeled by “7” are unconstrained. If we apply a CNOT gate from qubit 4
to j, these entries will be of the form ({4 ) and ({ 4,74, ) respectively. That is, the
bottom right bits change as though we applied the CNOT gate to those bits. Since
a T4 gate can be built from CNOT gates, it will (similarly) affect the bottom right
bits as though we are applying a T}.

Our strategy is to use either CNOT or T, gates (depending on the class) to perform
Gaussian elimination on the bottom right entries of the matrix elements. If we have
access to CNOT gates then we literally apply Gaussian elimination, using CNOT to
add one column to another, and using SWAP to exchange columns.

If we only have T, gates then we are in subring S; € Sy or Sg, so ({ 9) and (4 1) are
the only elements with a 1 in the bottom right position, and also the only invertible
elements. It follows that the number of bottom right bits set to 1 in a row is the
same as the number of invertible elements, which must be odd because the matrix is
unitary. To reduce the number, we apply a T4 to three 1 bits and a 0 bit (note: we
may add a zero bit by adding an ancilla, if necessary), which changes the 0 to a 1 and
the 1’s to 0’s, reducing the number of 1’s (or invertible elements) in the row by two.
When there is a single 1 left in the row, unitarity conditions imply that it is also the
only 1 left in that column, so we may ignore that row and column for the moment
and continue to eliminate the rest of the matrix.

Now suppose we have row reduced the matrix, using either CNOT or Ty, so that
the bottom right entry of every element is 0, except along the diagonal where that bit
1. At this point, the diagonal element is the only element in a row that can possibly be
invertible, therefore the diagonal elements are of the form (}%). Similarly, unitarity
conditions imply that the off-diagonal elements are of the form (3 8). In other words,
the remaining tableau is Z-degenerate, since there is only one invertible element per
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row or column, and the off-diagonal elements are in I = {(J9),(345)}. We can use
either Lemma 35 or Lemma 36 to find a circuit from the remainder, which is in either
(P) or (C(Z,2),P,Ryz), depending on the class. O

There are only two classes remaining, ALL and (T4, P,T"), which we handle spe-
cially. For the first, we appeal to Aaronson and Gottesman [4] who give an explicit
decomposition for any Clifford gate into layers of CNOT, Hadamard (fx,z in our
notation), and phase (Rz) gates.

Lemma 38. Any egalitarian gate g can be constructed from T4, P and I' gates.

Proof. Egalitarian gates satisfy the invariant that all elements are in the subring
{(88),(62),(16), (Y1)}

In fact, this subring is isomorphic to Fy, so it is a field. The unitarity of the matrix
in our sense translates to unitarity as a matrix over Fy.

Like the other T, classes, we use Gaussian elimination on the tableau of g. Con-
sider a row of the tableau. If the entry in some column is not the identity, then apply
I or I'"! to the corresponding qubit to make it the identity. By unitarity, there are
an odd number of identity elements in the row. We may remove pairs of identity
elements with a Ty, similar to Lemma 37, until there is only one left and the rest
of the row is zero. Unitarity implies the column below the identity element is also
zero, and we proceed to eliminate the rest of the tableau. Once the matrix part of
the tableau is the identity, we apply Pauli matrices to zero out the phase bits.

We conclude that all egalitarian gates are in (T4, P,T). O

90



4.6 Circuit Identities

In this section, we give necessary tools to prove that a set of gates generates, in some
sense, “all that one could hope for.” Formally, we wish to prove that the gate set
generates a particular class in the classification lattice when it is contained in that class
but fails to satisfy the invariants of all classes below it. To this end, we give several
useful circuit identities that will be used extensively in Section 4.7. For instance,
one can show that any circuit on two qubits can be reduced to an equivalent circuit
containing at most one generalized CNOT gate (see Section 4.9.4). The following
lemma gives only the aspect of that theorem that is necessary to the classification,
that is, the ability to extract single-qubit Clifford gates from the composition of
generalized CNOT gates.

Lemma 39. Let P.Q,R€P, and let TPT'f=Q and TQT'' = R. Then
e C(P,Q) and C(P,R) generate Rp.
e C(P,P) and C(P,R) generate Rp.
e C(P,P) and C(Q,R) generate T.
o C(P,P) and C(Q,Q) generate p.,q.

Proof. The first two inclusions come from the following identity, which holds whenever
I'QIT = R (i.e., regardless of P):

— PP~ —RpFP _
ancilla
I | h | rule T RP [
—rHe} —{ro]—-
Similarly, for the third identity, we get
— PP r— —rp—
- swap ancilla
] I a rule rule I'—
—\PrHRHPH S e D
and for the final identity
—PHQHPH Opq — — O t—
swap ancilla
I l - rule rule T QPQ
— PHQMP— Opq — — Opq |—

0

It might seem strange to reduce non-degenerate gates into less powerful single-
qubit gates, but we will eventually see that single-qubit generators are the most
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crucial. Once we have shown that a particular set of gates generates all single-qubit
operations, then that set of gates will generate the class of all Clifford operations
provided it contains any non-degenerate gate. All non-degenerate gates generate at
least one Pauli, often the entire Pauli group, which is why some single-qubit classes
do not appear as the single-qubit subgroup of a non-degenerate class. For instance,
consider the CNOT gate where the first qubit controls the second qubit. If we let the
first input be |1), then a X operation is always applied to the second qubit. Similarly,
if we let the input to the second qubit be |-), then a Z operation is always applied
to the first qubit. Under the ancilla rule, we now have X and Z operations, so we can
generate Y and the entire Pauli group. Clearly, the same is true for any heterogeneous
CNOT gate. However, surprisingly, the following lemma shows that even the T, gate
suffices to generate the entire Pauli group.

Lemma 40. T, generates the Pauli group.

Proof. Consider the following two circuits:

Ta Ta

) — Zlx) ) — X|x)

Under the ancilla rule, the first generates a Pauli Z operation while the second gen-
erates a Pauli X, from which we can clearly generate the Pauli group. O

There is another way to view the identity of Lemma 40 which will be useful later.
Since T is an affine gate over the computational basis states, Ty = C1C5...C, where
each C; is a CNOT gate. Furthermore, T4 and CNOT are their own inverses, so
Ty = C,,Cy_1...C1. Finally, because T, is symmetric when represented as a 4 x 4
matrix over Fy, Ty = CTCT ...CT. Notice that CT just represents the CNOT gate
C; where the control and target qubits are swapped. Therefore, leveraging the well-
known equivalence %>, c CNOT o §%% , = SWAP o CNOT o SWAP we arrive at the
following consequence:”

0% 2Ti0%.2 = Ta.

Similarly, by straightforward calculation, we get
RET,RE! = Ty.

It is now easy to extend old circuit identities into new ones. For instance, conjugating
the first circuit in the proof of Lemma 40 by 6%% , (which does not change the circuit
because of the above observations) and pushing the fx,z gates into the inputs, yields

"Recall that 0x.,z is commonly known as the Hadamard gate.
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the second circuit. This technique is in fact very general and is used in the proof of
the lemma below.

Lemma 41. Ty and C(P, P) generate Rp.

Proof. Figure 4-4 shows how to generate Rz with C(Z,Z). Using the argument by

conjugation above, T4 and C(P, P) generate Rp. O
00)+i11) ]
V2
E— ] Z —
To| 1
0y - Hz
lz) — Rz |z)

Figure 4-4: Generating Rz with T4 and C(Z, Z).

The following lemmas make precise our working assumption that single-qubit gates
can significantly bolster the power of non-degenerate gate sets.

Lemma 42. Suppose we have any C(P,Q) gate with any single-qubit gate G that
does not preserve the P-basis and any single-qubit gate H that does not preserve the
Q-basis. Then (C(P,Q),G, H) = ALL.

Proof. We will prove that the class (C(P,Q),G, H) contains all single-qubit gates.
Then, to prove that the class generates all Clifford operations, it is be sufficient to
show that it contains a CNOT gate. However, since all generalized CNOT gates are
conjugates of each other, this is immediate.

First suppose P = (). Since G does not preserve P-basis, we can use G to create a
C(R, R) gate where R # P. By Lemma 39, we can generate a fp, g gate. Conjugating
C(P, P) by 8p,r on the second qubit yields a C'(P, R) gate. Once again leveraging
Lemma 39, C'(P, R) and C(P, P) generate an Rp gate. Referring to the single-qubit
lattice (see Figure 4-2), we see that the class (P,0p,g, Rp) contains all single-qubit
gates.

Now suppose that P # ). Once again, since G does not preserve P-basis, we can
use G to create a C(R, Q) gate. If R = @, then by the logic above, we can use H to
generate all single qubit gates, so suppose R # (). By Lemma 39, we can use C'(P,Q)
and C(R, Q) to generate an Rg gate. Conjugating both C(P,Q) and C(R,Q) by
H appropriately, gives a C(P,S) and C(R,S) for some S # (), which we can once
again generate an Rg gate. Referring to the single-qubit lattice, we see that the class

(P,Rg,Rg) contains all single-qubit gates. L
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Lemma 43. T4 with the class of all single-qubit gates generates ALL.

Proof. 1t is well known that CNOT, fx.z, and Rz generate all Clifford circuits.
Therefore, it will be sufficient to show that T4 plus all single-qubit gates generate
CNOT. Under the ancilla rule, it is clear by Figure 4-5 that T4 and R suffice to
generate C(Z,Z). Conjugating one qubit of C(Z,Z) by fx,z yields a C(Z,X) = CNOT

gate, completing the proof. ]
T
— _— R‘Z _—
— Ry |— zHzph——
Ta Ta = I
— — Rz— — 2 Z—
I

— — Rz— ——ZH2Z}

Figure 4-5: Generating C(Z,Z) with T4 and Ry.
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Figure 4-6: Universal Construction €(G)

4.7 Universal Construction

Suppose G is an n-qubit Clifford gate. It turns out there is a single circuit €(G), the
universal construction, which can help us extract useful generators (e.g., single-qubit
gates, generalized CNOTs, etc.) from G. Specifically, the circuit €(G) (shown in
Figure 4-6) applies G to qubits 2 through n + 1, swaps qubits 1 and 2, then applies
G~! to qubits 2 through n + 1.

Note that after we apply G, all of the qubits but one go directly into G~1, which
should intuitively cancel out “most” of the effect G has on those qubits, isolating the
effect of G on the swapped qubit. The following theorem makes this intuition more
precise.

Theorem 44. Let G be an n-qubit Clifford gate. Then

M(E(G)) =T + (3}) (1 v*)

where v € R™1 is the first column of M(G).
Proof. Let M(G) = (4 B) with AeR, B e Rx(n-1) (' e R(-1Dx1 "and D e R(v-1)x(n-1),
Thus,

0 I C DJ\B* D* CA*+DB* CC*+DD*

(1 0 0\/0 1 0\/1L 0 O 0 A O
0 A BJ||1 0 0ofjj0o A+ C*|=|A BB* BD*
0 C D/J\O 0O 1J\0 B* D* C DB* DD
0

\
(
\

M(G)M(GT)=(1 0 )(A B)(A* C*):(AA*+BB* AC*+BD*)

which implies

M(E(G))

A (oA 1
A 1+AA* AC* | =La+|A|(1 A CY).
C CA* I,1+CC* C

[
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Tableaux of the form I, + vv* have relatively simple circuit decompositions in
terms of single-qubit generators and generalized CNOT gates, which is formalized in
the following theorem.

Theorem 45. Let v = {1,as,as,...,a9%,b1,...,be} € R where each a; is invertible
and each b; is singular, and let C be a Clifford circuit such that M(C) = I, + vv*.
Then C s equivalent to the circuit consisting of

e a Ty gate on the first 2k qubits,

o conjugated by G(a;,i) for alli in {2,...,2k},

e conjugated by CNOT(b;, 1,2k +1) for allie {1,...,¢}, and

e a final layer of Pauli gates (not conjugated) on every qubit.
That 1s, C 1s equiwvalent to the circuit in Figure 4-7.

Proof. Notice first that because each q; is invertible, we can conjugate C by G(a;,?)
for each i € {2,...,2k}, yielding a circuit with the simpler tableau

Diag(1,as,...,a%,1,...,1)(I, + vv*)Diag(l,a3,...,a3;,1,...,1) = I, + v'0"*

where v’ = {1,...,1,b1,...,b,}. Furthermore, conjugating the circuit by the gate
CNOT(b;, 1,7 + 2k) corresponds to the simplification

CNOT(b;, 1,4 + 2k) (I, + v'0"*)CNOT(b;, 1,3 + 2k) = I, + "™

where v” is equal to v’ with the exception that entry i+ 2k is equal to zero. Repeating
this procedure for each i € {1,...,£}, we arrive at a circuit with a very simple tableau:

I,+{1,...,1,0,...,0}{1,...,1,0,...,0}T,

which is exactly the tableau of a Ty gate applied to the first 2k qubits. Notice,
finally, that by reversing the procedure and applying the appropriate Pauli gates to
each qubit, we can ensure that the tableau of the decomposition is that of €(G). [

Theorem 45 leads to a clean circuit decomposition of €(G). All that is left to
show is that we can actually generate each of the elementary gates that appears in the
decomposition under the ancilla rule. First, we will need the following useful lemma,
which will allow us to essentially disregard the Pauli operators in the decomposition
of the universal construction when applying the ancilla rule.

Lemma 46. Let G be a gate on n qubits which is stabilized by some state |a) on the
first k qubits and generates H on the remaining qubits. Furthermore, let P be any
gate on the first k qubits. Then Po G generates H® H™!.

Proof. By supposition we have that G(|a) ® [¢)) = |a) ® H |[¢)). Therefore P o G(|a) ®
[¥)) = Pla) ® H [¢)). Now apply the inverse of Po G to Pla) ® H |¢p) with the same
first k& qubits and n — k new qubits. In the middle, P cancels with P-1, and we can

remove those k qubits by using |a) as an ancilla. On the remaining qubits, we have
Heo H™L O
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Q(ag) ] ] g71(a2) Py —
G(as) [+ Ty, 9 '(as) Ps

g(a2k) g‘l(azk) Py —
- bf bf H Poks1 |

b3 b3 Popia |-

Figure 4-7: Decomposition of €(G).

We are finally ready to prove the main theorem of this section.
Theorem 47. Let G be a Clifford gate on n qubits. Furthermore, let
v= (1,(12,(13,...,02k,b1,...,bg) € Rnxl

be a vector where each a; is invertible and each b; is singular be some row of M(G).
Then G generates a gate G such that M(G) = a; for each i € {2,...,2k}, CNOT(b;)
forall je{1,...,¢}, and T gate.

Proof. From Theorem 44 and Theorem 45, we know that universal construction €(G)
can be decomposed as shown in Figure 4-7. The proof will proceed in the following
manner. Starting with the decomposition of €(G), we show that it generates some
elementary gate. We then use that gate to simplify the original decomposition of
¢(G), eventually generating all such gates in this manner.

First notice that for some input ¢ € {2k + 1,...,n}, the single-qubit Clifford state
|b;) serves to remove the effect of the generalized CNOT. By Lemma 46, we can remove
the last £ qubits with ancillas, at the expense of creating another (inverted) copy of
the remaining 2k bits. That is, we have H ® H~! where H is as shown in Figure 4-8.

Now let |¢) = % be the Bell state on two qubits. Notice that we can use |¢) as
an ancilla to remove two bits from Ty, (i.e., leaving a To,5). However, the Ty, occurs
in H conjugated by single-qubit gates, followed by Pauli operations. If we feed the
state G(a;,1)' ® G(a;, 7)1 |¢) to bits i and 7, the single-qubit gates transform it to [¢),
it removes two bits from the Ty, then it is transformed to P;G(a;,1)' ® P;G(a;,7)"|¢).
We can do the exact same thing to H-!, starting with P,G(a;,7)t ® P;G(a;, 7)1 |¢) and
going to G(a;,1)! ® G(a;,j)T|¢). Then we swap the two states, and use the ancilla
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—{G(a2) H — G Ha2) (P2 |-
—9(as) [ To Y9 (a3) (H P |-

G(ask) G (azk) H Pox |

Figure 4-8: The circuit H.

rule to remove them. The net result is that we can remove any two qubits of H, as
long as we remove the same pair of qubits from H-1.

Iterate this procedure to until H has been reduced to just the first two qubits, and
so has H-!. In particular, the Ty, gate in the middle is now a Ty, which we observe
is actually a SWAP gate. From H, the remaining circuit is

P
— g(ai) g_l(ai) — P —

and the inverse survives from H~!. Remove the swaps, and observe that we have
ancillas to remove any of the remaining single-qubit gates, so we can isolate each
single-qubit gate, in particular P; o G 1(a;), P, o G™'(a;) and their inverses. From
this point on, everything we do for H can be repeated for H-1, which culminates in
removing all the single-qubit gates, at which point we can remove the extra Ty, gate
easily. Hence, let us ignore H-!.

Now let us repeat the procedure above starting from the €(G), but stop short of
applying the ancilla rule to qubit 2k + 7. The result is the first circuit depicted below,
which is then simplified by an application of the swap rule, and gates P,oG(a;) and
Py oG Y a;):

— b bjrAPi— —G(a) b G (@) —
G(a;) G 1(a;) P— = bj
— b5 B b bj P

Notice that the topmost qubit is stabilized by G1(a;) [b;), from which we can see that
the ancilla rule immediately generates CNOT(b;). Finally, we exploit the identity,

Tgk(P ® I®2k-1)Tzk =I® P®2kvl,
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which holds up to a global phase. We have the following chain of consequences.

[P} L
1 L
T [ 19 () Tor T

X Erom) W R frn & 2y

The last implication comes from the fact that we already generated P, oG 1(a;) and
Py oG 1(ay). ]
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4.8 Completing the Classification

The final step in the classification is to demonstrate that the classes we have defined
are in fact the only classes that exist.

Theorem 48. Let S be some class in the classification, and let G be a collection of
gates. Suppose (G) € S, but (G) ¢S’ for all 8’ below S in our classification. That is,
for all such S’ there exists a gate g € G such that g ¢ S'. Then (G)=S§.

Proof. Let C be the class generated by G. There is a very general strategy for prov-
ing that the given class C is indeed one already stated in the classification. For each
invariant described in Section 4.4 that C fails to preserve, the universal construction
generates a (simple) gate which also fails to satisfy that invariant by Theorem 47.
Composing these gates using identities from Section 4.6, one can show that they al-
ways generate some class in the classification. This would complete the classification.

Nevertheless, we now give a complete sequence of tests to identify the class C.
First consider the degeneracy invariant. If C is degenerate, then by Lemma 35 we can
decompose each gate into a circuit of single-qubit gates and swap gates. Each single-
qubit gate can be extracted with an appropriate tensor product of single-qubit ancillas
on the rest. The question therefore reduces to the simple group-theoretic question
about the subgroups of single-qubit gates, which can be solved straightforwardly.
Therefore, assume C is non-degenerate.

Let us separate the remainder of the proof based on the X-, Y- Z-preserving
invariant. Let P, @, and R be distinct Pauli operations.

Suppose first that C is X-, Y-, and Z-preserving. Because every generalized CNOT
gate violates one such invariant and C is non-degenerate, some gate in C must have a
tableau with multiple invertible elements in some row. Therefore, from the universal
construction we extract a T4 gate. By Lemma 40, we have then that C = (T4, P).

Suppose now that C is P- and @Q-preserving but not R-preserving. Because C is
non-degenerate, it must generate either a heterogeneous CNOT gate, a homogenous
CNOT gate, or a T4 gate. We wish to show that C contains a C'(P, Q) gate, which
would imply C = (C(P,Q),P) as desired. First notice that no homogeneous CNOT
gate can be P- and @-preserving. Suppose then that from the universal construction,
C generates a T4 gate but no C(P, Q) gate. Since Ty is R-preserving, there must be
some single-qubit gate from the universal construction that is not R-preserving but
is P- and @Q-preserving. It is straightforward to check that no such single-qubit gate
exists, which implies that C must contain a C(P, Q) gate.

Suppose now that C is P-preserving but not Q- and R-preserving. This is the
most involved case and will require several more subdivisions. It will be first useful to
notice that all P-preserving single-qubit gates are also P-orthogonal. Therefore, if C
violates the P-orthogonality invariant, then the universal construction must produce
some non-degenerate gate which violates P-orthogonality. Therefore, C contains a
C(P,Q) gate or a C(P, R) gate. If it contains both via the universal construction,
then indeed C = (C'(P, @), Rp, P) by Lemma 39. Otherwise, the universal construction
produces some single-qubit gate which is P-preserving but not (- and R-preserving.
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Since all heterogeneous CNOT gates generate the Pauli group as well, the class of
single qubit gates must therefore contain an Rp gate.

Therefore let us now assume that C is P-orthogonal but not P-degenerate. Since
C is P-orthogonal, it cannot contain a C(P,Q) or C(P,R). However, because C
is P-preserving, it must contain a T4 gate; otherwise it would be P-degenerate.
Once again, since the T, gate generates the Pauli group and C is neither - nor
R-preserving, the class of single qubit gates must contain an Rp gate, implying that
C = (T4, RP, P)

Let us then assume that C is P-degenerate. Since C is non-degenerate, it must
contain a C'(P, P) gate. There are five P-degenerate classes, which are determined
by their single-qubit subgroup. Indeed, the five P-degenerate classes correspond to
the five P-preserving single-qubit classes containing P. Unlike previous cases, such
a diversity of classes exists because C'(P, P) does not suffice to generate the Pauli
group on its own. Once again, the universal construction allows us to extract the
C(P, P) gate along with single-qubit gates which suffice to generate every gate in
C. It is straightforward to see why the entire single-qubit group must arise from the
universal construction. If not, then each gate in C could be constructed by gates in a
smaller class, a contradiction. This completes the classification of all gates that are
P-preserving but not (- and R-preserving.

Assume then that C is neither P-,Q)-, nor R-preserving. If it is egalitarian, then
it must contain a T, gate because it is non-degenerate. Therefore it must contain a
single-qubit gate that is egalitarian, but not P-,()-, or R-preserving. The only such
single-qubit class which contains the Pauli group is (I', P). Therefore C = (T4, [, P).

Finally, let us then assume that C also violates the egalitarian invariant. That is,
C violates every invariant so should be equal to the class of all Clifford operations.
Suppose the only non-degenerate gate generated by the universal construction is the
T4 gate. In particular, this implies that class of single-qubit gates generated by C
must not be X-, Y-, Z-preserving, nor egalitarian. Therefore the single-qubit class of
C must contain all single-qubit gates. Therefore by Lemma 43 we generate all Clifford
circuits.

Similarly, Lemma 39 implies that if the set of generalized CNOT gates generated
by the universal construction fails to be P-, Q)-, or R-preserving, then C generates a
single-qubit gate which fails to be P-, -, or R-preserving, respectively. Combining
this fact with Lemma 42 implies that C = ALL. ]

Corollary 49. Given any set of gates G, there is a subset S € G of at most three
gates such that (S) = (G).

Proof. The result follows by a careful accounting of the gates used in the proof of
Theorem 48. We give the argument only for the degenerate classes.

Let G be a set of single-qubit gates with S ¢ G and such that (S) = (G). Suppose
S ={91,..-,9x} with k> 3. We can assume that each generator in the set S is not
contained in the subgroup generated by the other elements in S, otherwise we could
remove that generator, reducing the size of S. Therefore, there is an ascending chain
of subgroups Gy c G c ... c Gy, where G; = (91, ...,9;). Observing Figure 4-2, the
longest ascending chain has length four, and in particular, all chains of length four
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end at the class of all single-qubit gates. Furthermore, that chain must contain one
of the subgroups (P,Rx), (P,Ry), or (P,Rz), which we can assume is (P,Rz) by
syminetry.

Since not all gates in S are Pauli operators, we can assume that g; is not a Pauli
operator. In particular, g, € (P,Rz) ~ (P). That is, g; is one of Ry, RTZ, Ox.y, or
Ox_y. Therefore, the class Gy is either (Ryz) or (Z,0xy). Clearly, g4 ¢ (P,Rz) (i.e., it
does not preserve the Z-basis), and by a simple case analysis, it is easy to see that
(91,92, 94) is the entire class of single-qubit operations. O
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4.9 Consequences of the Classification and Related
Results

We have completed the classification of Clifford gates. Now we want to answer some
questions (e.g., how many m-qubit Clifford gates are there in each class, or how can
we better understand 2-qubit Clifford gates) using the new classification result, and
also answer some questions that came up while proving the classification (e.g., what
do the three-qubit gates generating (T4, T',P) look like).

4.9.1 Enumeration

Theorem 50. Let #(-),, denote the number of n qubit gates in a class. Then

#(G), = G|"n! for G a group of single-qubit gates,
#(C(2,2),G), =|G"2" "D for (Z) € G < (P,Rz) a group,

#(C(2 %), P), = 42" DR T (2 -

i=1
# <C(Z7 X), P, Rz>n = 8”2”(”71) H(2l B 1)
1=1
# (T4’ P)n = 4na(n)’
# <T4a P, RZ)n = 8"2”(”'1)/2 (n)

# (T4”P’ F)n — gnon(n-1)/2 H ( 1)
=1

# (ALL), =472 ﬁ(zﬁ -1),

i=1

where
( ) 2m ?111(221 - 1)v ,Lfn = 2m;
n .
e (22 -1), ¢n=2m+1.

Proof. Most of these numbers follow from the lemmas above. For example, consider
the class (C(Z,X),P,Rz). It follows from Lemma 37 that any gate in this class has
a circuit consisting of a layer of C(Z,X) gates, then a layer of C'(Z,Z) gates, then a
layer of single-qubit gates in G.

We would like to count the number of possible gates by multiplying the number
of possibilities for each layer, but we must be careful that there is no gate with two
circuit representations. Suppose for a contradiction that g; and g, generate the same
gate, but some layer of g; differs from g. Then g7'g, is the identity, since g; and go
generate the same transformation.

On the other hand, the C(Z,X) layers of ¢g; and g, meet in the middle of the
circuit for grlgs. If those layers do not generate the same linear transformation, then
the combination is some non-trivial linear transformation which is, in particular, not
Z-degenerate. The other layers of g; and go are Z-degenerate, so we conclude that
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91199 is not Z-degenerate (if it were, we could invert the outer layers to show that the
two middle layers are Z-degenerate). But gylgs = I is clearly Z-degenerate, therefore
the C(Z,X) layers of g; and g must generate the same linear transformation.

The C(Z,X) layers of g; and g, cancel (since we have shown they are equivalent),
so they effectively disappear, and we make a similar argument about the C(Z,Z)
layers, and then the single-qubit layers. That is, if the C(Z,Z) layers do not contain
the same set of C'(Z,Z) gates, then we obtain a contradiction because they produce a
non-degenerate layer in the middle, implying that g;'gs = I is non-degenerate. Once
we remove the C(Z,Z) layers, the single-qubit layers must be the same or they would
leave behind a non-trivial single-qubit gate. We conclude that all layers of g; and g
are actually the same, so the number of gates is the product of the number of choices
for each layer.

Now the problem is to count the number of choices for each layer. For the single
qubit layer, this is clearly just n independent choices of single-qubit gate from (P, Rz),
or 8. For the C(Z,Z) layer, there is a choice whether or not to place a C(Z,Z)
gate in each of the (g) possible positions, so 2%("~1)/2 choices for the layer. For
the C(Z,X) layer, observe that C(Z,X) generate precisely the set of invertible linear
transformations, of which there are

271(7%1)/2 H(2l _ 1)
i=1

by a classical argument. Multiplying the three layers, we have a total of
#(C(2,X),P,Rz), =8"2"" D ](2 - 1)
i=1

n-qubit transformations generated by C(Z,X), P, and R.

The numbers for (G), (C(Z,2),G), (C(Z,X),P), (T4,P), and (T4,P,Rz) follow
by a similar argument, although for the last two classes we need the fact that Ty
generates

(n) 2m® [T 1 (22 - 1), if n = 2m,
aln) = .
2m* T2 (2% - 1), ifn=2m+1.

orthogonal transformations on n qubits.

For the final two classes, we use known expressions (from [35]) for the number of
nxn unitary matrices over 4 (in the case of (T4, P,I")) and for the number of 2nx2n
symplectic matrices over Fy (in the case of ALL). We multiply by 4™ in both cases to
account for the phase bits, which are completely independent of the matrix part. [
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Theorem 51. The asymptotic size of each class is as follows.

log, # (G>n =nlog,(n|Gl/e) + %logz 27+ O (%) )
log, #(C(2,2),G),, = &2___1_) +nlog, (n|G|/e) + %log2 21 + O (l) ’
n
log, #(C(Z2,X),P), =n?+ 2n—a+0(27"),
log, #(C(2,X),P,Rz), = gng + gn—a+ o(2™),

log, # (T4, P), = ~n + 3n B+0(27™),
log, # (T4, P, Rz)n-n +3n B+0O(2™),
log, # (T4, P,I'), = n%+2n+~y+0(2™M),
log, # (ALL), =2n*+3n- 3 +0(4™).

where G is the same as tn Theorem 50, and

Q= logQ(I -2 % 1.7919,

Ms

.
"
—

> logy(1 - 477) ~ 0.53839,

Mg

B =

~.
1l
—

v = Zlog2(1 ~(-2)7") ~ 0.27587.
i-1

Proof. We take the logarithm of each class size, which we can separate into the
logarithm of each layer comprising that class, as in Theorem 50. For most layers this
is straightforward, except for the layer of permutations, orthogonal transformations,
or general linear transformations. The first we handle with Stirling’s approximation.
For the other two, ‘we factor out powers of two leaving a partial sum of a convergent
series, which we analyze with a Taylor expansion. The classes (T4, P,T),, and (ALL),
follow by similar techniques. U

Corollary 52. Let C be any class, and let G be an n-qubit gate chosen uniformly at
random from C. Then

Pr[G generates C] =1-0(27").

4.9.2 Classical reversible gates with quantum ancillas

In this section we describe what the classical reversible gate lattice of Aaronson et al.
[5] would have looked like had they allowed quantum rather than classical ancillas.
Classical reversible gates, the subject of the Aaronson et al. paper, are immediately
quantum gates. When we treat them as such, and allow quantum ancillas, the lattice
simplifies dramatically Figure 4-10.

Some of the collapses in the lattice are immediate. For instance, the class of gates
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(NOT ® NOT) collapses with (NOT) because NOT |+) = |+) can be used to cancel a
NOT gate. A similar collapse occurs for (CNOTNOT) and (CNOT), and so on for
all pairs of classes separated only by parity.

A more interesting collapse occurs between all mod-k-preserving classes for k£ > 2.
Consider the following gate G : {0,1}¥ - {0, 1}* of order 2 which preserves Hamming
weight mod k:

G(0%) =

G(1%) = ok
G(laob ) 19~ 10b+11
G(laob ) 1a+10b 10

where G acts as the identity on all other inputs. Since G preserves the Hamming
weight mod k, it must appear in the class. We will show that G can generate a NOT
gate. Let

|¢k Z|1 Ok i 1>

so, for example

|000) + |100) + [110) +|111)
) = ) .
Now, for b e {0,1}, G(|ox) b)) = [tx)|b & 1). Therefore, each mod-k-preserving class
for k > 2 collapses to the (Fredkin, NOT) class. Furthermore, Figure 4-9 shows that
the Fredkin and NOT gates are sufficient to generate a CNOT. Therefore, every
non-conservative non-affine class generates all classical reversible transformations.

) ’ — |z)
ly) |z ®y)
|+) NOT [—X%— [+)

Figure 4-9: Generating CNOT from Fredkin and NOT gates

We now only need to prove that the classes appearing in Figure 4-10 are distinct.
Notice, however, that the classes (CNOT), (T4), and (NOT) all have Clifford gen-
erators, which by the classification result of this chapter, generate distinct classes.
We only need to show then, that the (Fredkin) class is distinct from the remaining
classes. However, the invariant in [5] more or less functions to prove this separa-
tion. Namely, Fredkin conserves the Hamming weight of its input. Therefore the
sum of the Hamming weights of the computational basis states of the input state
is conserved. However, the NOT gate necessarily changes this sum, witnessing that
NOT ¢ (Fredkin), and therefore that the lattice is complete.

106



Figure 4-10: The inclusion lattice of classical gates using quantum ancillas

4.9.3 Three-qubit generator for (T4, T',P)

In this section, we point out a peculiar consequence of the classification. Namely,
that there exists a class whose smallest generator is on 3 qubits. Contrasted with the
affine gate sets of Aaronson et al. [5] which have minimal generators over 1, 2, 4, and
6 bits. The existence of such a class is an immediate consequence of the enumeration
in Section 4.9.1. That is,

# (T4, P,T), = 236-1)/2+2(3) f‘[(zf - (-1)) = 41472

# (T, P), = 12331 = 10368 -

# (T4, P), = 432" f](zﬂ ~1) = 384

#(P); =473 = 38;:1
so the non-degenerate gates in (T4,P,T"); outnumber the degenerate gates (i.e., the
class # (I', P),), contrasted with the class (T4, P), where this does not occur. Notice

that there are 4 cosets of (I, P), in (T4, P,I'), by Lagrange’s Theorem, corresponding
to 4 gates that are nonequivalent up to applications of elements in (I, P),. If we let
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e
I

(91) € R, then one such gate is described by the following tableau

—~ i~ D
~ D M~
0 o~ ~
o OO

By Theorem 48 it is clear that this gate indeed generates all of (T4, P, T').

4.9.4 Canonical form for 2-qubit circuits

In this section, we describe a very clean canonical form for 2-qubit Clifford circuits.

Theorem 53. Let C be any Clifford circuit on two qubits. Then, C is equivalent to
a circuit of at most depth 3 composed of the following sequence of gates

1. a SWAP gate, and
2. a tensor product of single-qubit gates, and
3. a generalized CNOT gate,

where we can choose at each step whether or not to include the gate. That is, C is of
the form of the circuit depicted in Figure 4-11.

Proof. Since C' is a Clifford circuit, it can be written as a product of CNOT, 6x.z,
and Ry gates.® Recall that conjugating a generalized CNOT gate by a single-qubit
gate is simply another generalized CNOT gate. Therefore, we can push all the single-
qubit gates left and all the generalized CNOT gates right. All that remains to show is
that we can coalesce the generalized CNOT gates into a single CNOT gate. We refer
to Table 4.3 for those equivalences, and note that identical generalized CNOT gates
cancel. Eventually, what remains is a circuit composed of single-qubit gates, SWAP
gates, and at most one generalized CNOT gate. We can push the SWAP gates to
the left (they collapse to either a single SWAP gate or the identity) and combine the

single-qubit gates, which completes the proof. ]
GrHHPIH—
l
H—Q

Figure 4-11: Canonical form of a 2-qubit circuit: optional SWAP gate, optional
C(P,Q) gate, and single-qubit gates G and H.

8Notice that we don’t need to include SWAP gates because of the equivalence SWAP(1,2) =
CNOT(1,2) oCNOT(2,1) o CNOT(1,2).
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Table 4.3: Rules for coalescing generalized CNOT gates, assuming I'PT'f
rQrt = R.
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4.10 Open Problems

Our classification of Clifford gates resolves an open problem of Aaronson et al. [5],
but leaves their central question, the classification of arbitrary quantum gates, com-
pletely open. It is unclear whether there is another piece of the full quantum gate
classification that can be peeled off. Other discrete quantum gate sets are known, but
none are known to have the rich structure and entanglement of Clifford gates (aside
from conjugated Clifford gates). So we ask: are there other interesting discrete gate
sets, and can they be classified like Clifford gates?

Another source of open problems is the choice of ancilla rule. As discussed, we
permit ancillas initialized to quantum states. We have determined that the classifi-
cation continues to hold under a stabilizer ancilla model if the following conjecture
holds:

Conjecture 54. For any single-qubit Clifford gate g, there exists a stabilizer state
[v)) and circuit of SWAP gates m such that g o ) = |v).

This is sufficient to remove single-qubit gates in situations where we would other-
wise use an eigenstate.

For many single-qubit gates, there is a trivial stabilizer state which stabilizes it.
For instance, X is stabilized by |+), Rz is stabilized by |0), and many other single-
qubit Clifford gates are conjugate to one of these cases. Now consider the gate Ox.,z,
whose eigenstates (unnormalized) (1++/2) |0)+|1) are not stabilizer states. How then,
given the gate 0x,7 ® 0x.z, does one generate the gate fx,z which acts only on one
qubit? Han-Hsuan Lin discovered the first explicit nine qubit stabilizer state for this
task.

Let 7 be a circuit that cyclicly permutes qubits 2 through 9, and suppose 0x, 7 is
applied to qubit 1. Let |¢)) be the state stabilized by the following commuting Pauli
strings,

+XXZXZIIII, +ZIXZXZIII, +XIIXZXZII, +ZITIIXZXZI,
+XITIIXZXZ, +ZZITIIXZX, +XXZIIIIXZ, +ZZXZIIIIX,
+YYITIYITII, -YIYIIIYII, +YIIYIIIYI, -YIIIYIIIY,

9 of which are independent. One can check that conjugating each generator by fx,zom
yields another element of the stabilizer group, so (0x,zom) |¢) = [¢). In other words,
Conjecture 54 holds for 0x. 7, and for all conjugates 0p.q¢ by symmetry.

All that remains to verify the conjecture is to find a similar state stabilizing the
eight remaining gates—the I' gate and its conjugates. It suffices to find a stabilizer
state |¢) and circuit C, constructed of SWAP gates and a single ' gate, such that

Cly) =1¥).
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Chapter 5

Low-Depth Quantum Circuits:
Separation from ACY

This chapter and the next are devoted to two results about shallow quantum circuits.
In other words, quantum circuits where the gates can be executed in parallel in a small
number of layers (specifically O(1) layers for us, but more generally polylog(n) layers
is considered shallow). Unlike the previous two chapters (on grid-based computation
and Clifford gates), these results are much more directly related to proving a quantum
advantage, and therefore inherently relevant to near-term quantum devices. Let us
take a step back for a moment and look at why shallow quantum circuits are important
for quantum computing in the near future.

First, shallow quantum circuits are well motivated from a practical perspective,
as we might actually be able to implement such circuits on near-term quantum com-
puters! In the current era of Noisy Intermediate-Scale Quantum (NISQ) computers,
there is a high error rate on each quantum gate (in the neighborhood of 1% for 2-qubit
gates [68]), as well as a rate of error just keeping idle qubits coherent (e.g., lifetimes
on the order of tens of microseconds in IBM devices [73]). We are limited to running
quantum algorithms for a short amount of time before errors accumulate and noise
overwhelms the signal. In the circuit model, limited time implies limited depth, so we
are motivated to find interesting problems that can still be implemented in shallow
depth.

Of course, we are far from the first to consider shallow circuits. Nick Pippenger’s
early work on classical shallow circuits was already recognized in 1979 with the nam-
ing of “Nick’s Class” [37], NC, and the field exploded in the following decade with a
series of unconditional impossibility results [6, 49, 122, 61]. It cannot be overstated
how rare it is in complexity theory to prove a natural problem cannot be computed in
some nontrivial complexity class, especially a non-uniform class; invariably the proof
is non-constructive (or the problem is unnatural, e.g., diagonalization), or is actually
a reduction to a previous complexity assumption, or only holds for an extremely weak
and/or uniform model of computation (c.g., showing a language is not a context-free
language). Indeed, constant-depth circuits remain the frontier of circuit lower bounds

OThis chapter is based on work from [120], and used with the permission the authors.
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and an active area of research in classical complexity theory today [121, 86].

On the quantum side, there has naturally been similar interest over the past 20
years in low-depth quantum circuits [84, 83, 54, 113, 47, 64, 46, 110|, in part for the
practically minded reasons above, but in part to see what happens when we turn a
celebrated classical model into a quantum model. Such circuits may be viewed as
parallel quantum computers with a constant running time bound. Several variations
on this theme have been studied (see [17] for a survey of older results), and in recent
years there has been a resurgence of interest [111, 19, 26, 38, 76] in constant-depth
quantum circuits. Our results are part of this resurgence, and in particular to a recent
exciting result of Bravyi, Gosset, and Konig [26].

Bravyi, Gosset, and Konig [26] defined a relation problem called the 2D Hidden
Linear Function (2D HLF) problem. (We define this problem in Section 5.5.) The 2D
HLF problem can be solved by a constant-depth quantum circuit that uses bounded
fan-in quantum gates, acting locally on a 2-dimensional grid of qubits, nicely com-
bining the themes of this thesis.

Furthermore, Bravyi, Gosset, and Konig [26] show that the 2D HLF problem can-
not be solved by any constant-depth classical circuit using unbounded fan-out and
bounded fan-in gates. Their lower bound even holds when the classical circuit is al-
lowed to sample from an arbitrary probability distribution on polynomially many bits
that does not depend on the input. (In complexity theory, this resource is called “ran-
domized advice.”) With the complexity notation from Chapter 2, we can summarize
the Bravyi et al. result as follows [26].

Theorem 55 (Bravyi, Gosset, and Konig). The 2D HLF problem can be solved exactly
by a QNC circuit on a 2D grid, but no NC°/rpoly circuit can solve the problem with
probability greater than 7/8 on every input. In other words, RelQNC® ¢ ReINC®/rpoly.

The fact that the separating problem is a relation problem and not a function
(or decision) problem is unavoidable, since the decision class QNC° is contained in
NC° any function in QNC® has output bits that only depend on a constant number
of input bits, due to the bounded fan-in gates, and hence such a function would also
be in NC°.

This result was also recently improved by Coudron, Stark, and Vidick [38], and
(independently) Le Gall [76], who extended the lower bound to an average-case lower
bound. As opposed to saying that no NC° circuit can solve the problem on all inputs,
an average-case hardness result says that no NC° circuit can solve the problem even
on some fraction of the inputs.! These results show that no NC° circuit can solve the
problem with input size n on an exp(-n®) fraction of the inputs for some a > 0.

5.1 Results

In this chapter and the next, we attempt to strengthen the weakest aspect of the
Bravyi, Gosset, Kénig result: they prove a separation from the classical class ReINC?,

!Note that [26, Appendix C.3] already shows mild average-case hardness for this problem.
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which is abysmally weak. It does not suggest any real world experiment that could
be done to demonstrate a quantum advantage, even though the quantum circuit is
almost ideal for implementation on near-term quantum devices.

Our result in this chapter extends the separation to RelQNC® ¢ RelAC, even using
the same problem (2D HLF). That is, even with unbounded fan-in AND and OR
gates, constant-depth classical circuits cannot compute the 2D HLF problem. This is
especially interesting because AC® circuits can compute functions that depend on all
bits, such as the logical OR of all its inputs, whereas NC° circuits cannot, and this
breaks the proof of Bravyi, Gosset, and Konig. Our main result is the following.

Theorem 56 (2D HLF). The 2D HLF problem on n bits cannot be solved by an
AC® circuit of depth d and size at most exp(nl/19). Furthermore, there erists an
(efficiently sampleable) input distribution on which any AC° circuit (or AC®/rpoly
circuit) of depth d and size at most exp(nt/194) only solves the 2D HLF problem with
probability at most exp(-n®) for some a > 0.

Thus our result proves a (still unconditional) separation against a larger complex-
ity class and implies the worst-case lower bound of Bravyi, Gosset, and Konig [26].
It also implies the average-case lower bounds of Coudron, Stark, and Vidick [38] and
Le Gall [76].

In the next chapter, we go beyond AC? circuits using an interactive simulation task.
There exist interactive tasks which a constant-depth quantum circuit can perform, but
are hard (in an unconventional, but well-defined sense) for NC' and @L to compute.
The precise definition of interactive tasks is in Chapter 6, but informally our strongest
result is as follows:?2

Theorem 142. There exists an interactive problem, wide-CliffSim[2], which can be
solved by constant-depth quantum circuits. However, any (interactive) classical algo-
rithm A solving wide-CliffSim[2] can be used to construct an oracle Oy, such that

oL c BPL.

For nearly all complexity classes C, the construction of O,y is such that A e C —
Orev € C. In particular, if L implements the interactive oracles then we have, morally,

ol c BPL" = BPL.

The containment &L € BPL is considered unlikely.

Furthermore, this problem is essentially the 2D HLF problem split into two rounds
to make it interactive. Omne way to interpret this result is for that any classical
algorithm simulating constant-depth quantum circuits, if the algorithm can be made
interactive then it can solve @lL-hard problems.

Again, this result is postponed until Chapter 6, and we continue now with the
high-level overview of the first result separating RelAC® and RelQNC®.

2We also give a similar result with NC'-hardness (a weaker class, but the result adds other
desirable properties, e.g., error correction, and better locality).
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5.1.1 High-level overview of QNC® vs. AC® result

We now describe the problems we study en route to proving Theorem 56 and give a
high-level overview of the proof.

Theorem 56 is proved via a sequence of increasingly stronger results. We first in-
troduce a problem we call the Parity Halving Problem (PHP). PHP is not in RelQNC°,
but it can be solved exactly by a QNC%/gpoly circuit, which is a QNC° circuit with
quantum advice. Similar to randomized advice, a circuit class with quantum advice
is allowed to start with any polynomial-size quantum state that is independent of
the input, but can depend on the input length. For the Parity Halving Problem
(and other problems introduced later), the quantum advice state is a very simple

state called the cat state, which we denote by [8,) := —=(|0") +[1")). We denote the

subclass of RelQNC®/qpoly where the advice state is the cat state RelQNC®/&5,

Here’s a bird’s eye view of our proof: Our first result establishes that PHP is in
QNCO/@, but any nearly exponential-size AC® circuit only solves the problem with
probability exponentially close to 1/2. Next we define a new problem called the
Relaxed Parity Halving Problem on a grid (Grid-RPHP), which is indeed in RelQNC?,
but any nearly exponential-size AC® circuit only solves the problem with probability
exponentially close to 1/2. We then define parallel versions of these two problems,
which we call Parallel-PHP and Parallel Grid-RPHP. We show that Parallel-PHP ¢
RelQNC°/qpoly and Parallel Grid-RPHP € RelQNC?, but any nearly exponential-size
AC® circuit only solves these problems with exponentially small probability. Finally
we show that Parallel Grid-RPHP can be reduced to 2D HLF, and hence our lower
bound applies to 2D HLF as well. We now describe these problems and our proof
techniques in more detail.

Parity Halving Problem. In the Parity Halving Problem on n bits, which we
denote by PHP,,, we are given an input string x € {0,1}" promised to have even
parity: i.e., the Hamming weight of x, denoted |z|, satisfies |z| =0 (mod 2). The goal
is to output a string y € {0, 1} that satisfies

ly| = |x|/2 (mod 2).

In other words, the output string’s Hamming weight (mod 2) is half of that of the
input string. Note that |z|/2 is well defined above because |z| is promised to be even.
An alternate way of expressing this condition is that |y| =0 (mod 2) if |x| =0 (mod 4)
and [y| =1 (mod 2) if |z| =2 (mod 4).

We show in Section 5.2 that PHP can be solved with certainty on every input
by a simple depth-2 QNC®/E circuit. A quantum circuit solving PHPj is shown in
Figure 5-1. The circuit has one layer of controlled phase gates followed by Hadamard
gates on the output qubits, followed by measurement.

Although the problem is easy for constant-depth quantum circuits, we show that
even an exponential-size AC®/rpoly circuit cannot solve the problem on the uniform
distribution (over valid inputs) with probability considerably better than 1/2, which
is trivially achieved by the circuit that outputs the all-zeros string on all inputs.
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Theorem 57 (PHP). The Parity Halving Problem (PHP,,) can be solved ezactly by
a QNCO/@ circuit. But on the uniform distribution over all valid inputs (even parity
strings), any ACY[rpoly circuit of depth d and size at most exp(nﬁ) only solves the
problem with probability 5 + exp(-n®) for some a > 0.

Note that the parameters of the AC® lower bound in this theorem are essentially
optimal, since the parity function on n bits can be computed by a depth-d AC? circuit
of size exp(nﬁ) [61, Theorem 2.2|. Once we can compute the parity of the input
bits, it is easy to solve PHP.

Since the quantum circuit for PHP is simple, it is clear that the difficult part of
Theorem 57 is the AC? circuit lower bound. One reason for this difficulty is that
if we allowed the output string y in PHP to be of quadratic size, then there is a
simple depth-1 NC° circuit that solves this problem! The circuit simply computes
the AND of every pair of input bits and outputs this string of size (g) A simple
calculation shows that the Hamming weight of this string will be ('2‘), which satisfies
the conditions of the problem. Hence to prove the AC lower bound, the technique
used has to be sensitive to the output size of the problem. However, traditional AC’
lower bound techniques were developed for decision problems, and do not explicitly
take the output size of the problem into account. Hence we modify some known
techniques and establish the this lower bound in three steps.

First, we use Hastad’s switching lemmas [61, 62], or more precisely a recent refine-
ment of it due to Rossman [98]. However, directly using the result of Rossman off the
shelf gives us a weaker result than Theorem 57; we are only able to establish the the-
orem with a quasi-polynomially small correlation instead of the exponentially small
correlation in Theorem 57. To obtain the result we want, we refine Rossman’s result
to work better for multi-output functions (Lemma 70). This result is quite technical,
but the conceptual ideas already appear in the works of Hastad [62] and Rossman [98].
Applying this switching lemma reduces the problem of proving an average-case AC’
lower bound to that of showing an average-case NC? lower bound for a modified ver-
sion of the Parity Halving Problem. This modified version of the problem is similar
to PHP, except it has n inputs and slightly more (say, n!%1) outputs.

Our second step is to use a combinatorial argument to reduce this question to

it T
To Ta
X3 I3

— S H—~ A= W
) S HHA= ¥

SH—HFA Y3

Figure 5-1: Quantum circuit for the Parity Halving Problem on 3 bits, PHPj3.
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showing an average-case lower bound against NC° circuits with locality 1 (i.e., where
each output only depends on a single input) for a further modified version of PHP.

The third and final step is to show that NC? circuits with locality 1 cannot solve
this modifed PHP on a random input. We prove this by generalizing known lower
bounds in the literature on quantum non-local games. Specifically we generalize lower
bounds present in the work of Mermin [80], and Brassard, Broadbent, and Tapp [25].

This proof is presented in Section 5.2. We first prove the lower bound against
NCP circuits of locality 1 in Section 5.2.2, then show the lower bound against general
NC° circuits in Section 5.2.3, and finally introduce the switching lemma and conclude
the proof of Theorem 57 in Section 5.2.4. The switching lemma itself is proved in
Appendix A.

Now Theorem 57 is weaker than what we want (Theorem 56) in two ways. Aside
from the fact that the lower bound is for a problem different from the 2D HLF
problem, the problem in Theorem 57 is in ReIQNCO/@ and not RelQNC®, and the
correlation lower bound is close to 1/2 instead of being exponentially small. We now
tackle the first problem and get rid of the cat state.

Relaxed Parity Halving Problem. Since the cat state cannot be constructed by
QNCP circuits (proved in Theorem 72), we have to modify the Parity Halving Problem
to get by without a cat state.

Although we cannot create the cat state with QNC® circuits, we can construct a
state we call a “poor man’s cat state,” which is the state

1 _
ﬁﬂz) +lz)),

where z € {0,1}" is a bit string and z denotes its complement. When z = 0", this is
indeed the cat state, but in general this is some entangled state that can be converted
to the cat state by applying the X gate to some subset of the qubits.

Interestingly, we can create a poor man’s cat state (with a uniformly random z)
using QNC° circuits. Here is one simple construction. First arrange the n qubits on
a line and set them all to be in the |+) state. Then in a separate set of n — 1 qubits,
compute the pairwise parities of adjacent qubits. In other words, we store the parity
of qubit 1 and 2, 2 and 3, 3 and 4, and so on until qubit n — 1 and n. And then we
measure these n—1 qubits, and denote the measurement outcomes dy, ..., d,_1, which
we will call the “difference string.” It is easy to verify that if all the d; = 0, then the
resulting state is indeed the cat state. In general, for any d € {0,1}"!, the resulting
state is a poor man’s cat state, and z can be determined from the string d up to the
symmetry between z and z. Since z and Z are symmetric in the definition of the poor
man’s cat state, let us choose the convention that z; = 0. Now we can determine the
remaining z; from d using the fact that dy = 2y ® 29 = 23, ds = 22 ® 23, and so on until
dyp-1 = Zn-1® 2,. Note that because of this construction, some z; depend on many bits
of d;. For example, z, is the parity of all the bits in d.

This construction of the poor man’s cat state easily generalizes to graphs other
than the 1D line. We could place the n qubits on a balanced binary tree and measure

116



the parity of all adjacent qubits, and hence get one d; for every edge in the tree. If
we call the root node z; = 0, then the value of any z; will be the parity of all d; on
edges between vertex ¢ and the root. In this case each z; depends on at most logn
bits of d;. Similarly, we can choose a 2D grid instead of a balanced binary tree, and
set the top left qubit to be 2; = 0. Then each z; will depend on at most 2v/n bits of
d. This grid construction is described more formally in Section 5.3.1.

Now there’s an obvious strategy to try: Simply use a poor man’s cat in our quan-
tum circuit for PHP instead of using an actual cat state, and redefine the problem
to match the output of this quantum circuit! So we simply run the circuit in Fig-
ure 5-1 on a poor man’s cat state \/iﬁ(|z) + |2)) and see what the quantum circuit
outputs. Unfortunately the output depends on z, but the poor man’s cat state has
been destroyed by the circuit and we do not have a copy of z around. But we do
still have the string d from which it is possible to recover z, although this may not
be computationally easy since a single bit of z may depend on a large number of bits
of d. More subtly, a single bit of d may be involved in specifying many bits of z,
which is also a problem for circuits without fan-out, such as QNC? circuits. Instcad
of trying to recover z, we can just modify the problem to include d as an output.
The problem will now have two outputs, one original output y, and a second output
string d, which is the difference string of the z in the poor man’s cat state. This is
the Relaxed Parity Halving Problem, which is more formally defined in Section 5.3.2.

More precisely, the Relaxed Parity Halving Problem, or RPHP, depends on the
choice of the underlying graph, and is well defined for any graph. We choose the 2D
grid to get a problem that reduces to 2D HLF.? We call this problem Grid-RPHP.

We show in Section 5.3.2 that Grid-RPHP can be solved by the 2D QNC° circuit we
described, but even a nearly exponentially large AC® circuit cannot solve the problem
with probability significantly larger than 1/2 on the uniform distribution over valid
inputs.

Theorem 58 (Grid-RPHP). Grid-RPHP,, can be solved exactly by a QNC® circuit on
a 2D grid. But on the uniform distribution over all valid inputs (even parity strings),
any AC® circuit (or AC°[rpoly circuit) of depth d and size at most exp(n1/19d) can
solve the problem with probability at most & + exp(-n®) for some o > 0.

Note that just like Theorem 57, the lower bound here is essentially optimal, since
the parity function itself can be computed by a depth-d AC? circuit of size exp(nﬁ)
[61, Theorem 2.2]. Our separation essentially works for any graph with sublinear
diameter, such as the grid or the balanced binary tree, but not the 1D line. In fact,
when the underlying graph is the 1D line, RPHP becomes easy to solve, even for NC"
circuits.4

We prove Theorem 58 by showing a reduction from the Parity Halving Problem
with input size n and output size O(n3/2) to Grid-RPHP. This version of PHP is

3Picking the balanced binary tree would give better parameters, but qualitatively similar results.
We choose the 2D grid so that our problem can be solved by a constant-depth quantum circuit acting
on qubits laid out in 2D.

4One can output y = 0" and d; = z; for all i € {1,...,n -1} to solve the Relaxed Parity Halving
Problem on the 1D line.
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indeed hard for AC° circuits and this result follows from the work done in Section 5.2.
This reduction and theorem are proved formally in Section 5.3.2.

Now Theorem 58 is still weaker than what we want (Theorem 56). The correlation
lower bound is still close to 1/2 and not exponentially small. We now fix this issue
using a simple idea.

Parallel Grid-RPHP. Let Parallel Grid-RPHP be the problem where we are given
many instances of Grid-RPHP in parallel and are required to solve all of them cor-
rectly. For this problem the quantum circuit is obvious: Simply use the quantum
circuit for Grid-RPHP for each instance of the problem. Clearly if the quantum cir-
cuit solves each instance correctly, it solves all of them correctly. But since a classical
circuit only solves an instance with some probability close to 1/2, we expect that
solving many copies of the problem gets much harder.

Theorem 59 (Parallel Grid-RPHP). Parallel Grid-RPHP,, can be solved ezxactly by
a QNC° circuit on a 2D grid. But on the uniform distribution over all valid inputs
(even parity strings for each instance of Grid-RPHP), any AC® circuit (or AC°/rpoly
circuit) of depth d and size at most exp(n'/194) can solve the problem with probability
at most exp(-n®) for some o > 0.

As before, the difficult part of Theorem 59 is proving the classical lower bound.
While it seems intuitive that repeating the problem (in parallel) several times re-
duces the success probability, similarly intuitive statements can be false or difficult
to prove [95]. More precisely, what we need is a direct product theorem, which also
may not hold in some models of computation [102].

We consider the parallel version of the standard PHP, denoted Parallel-PHP,
and reduce Parallel-PHP to Parallel Grid-RPHP as above. We then establish a lower
bound for Parallel-PHP by using Vazirani’s XOR lemma [116]. Vazirani’s XOR lemma
is an intuitive statement about how a probability distribution that is “balanced” in
a certain sense must be close to the uniform distribution. The implication for our
problem is the following: To understand the probability that a circuit solves all the
instances of PHP in Parallel-PHP, or equivalently that it fails to solve 0 instances,
it is enough to understand the probability that it fails to solve an even number of
instances. This task turns out to be similar to the original PHP with larger input and
output size, but with some additional constraints on the input. The techniques we
have developed allow us to upper bound this probability, and hence (using the XOR
lemma) upper bound the probability that a circuit solves all instances correctly.

Now we are almost done, since Theorem 59 looks very similar to Theorem 56,
except that the hardness is shown for Parallel Grid-RPHP and not the 2D HLF
problem.

Reduction to the Hidden Linear Function problem. The final step of our
program is carried out in Section 5.5. First we show via a simple reduction in Theo-
rem 87 that the Relaxed Parity Halving Problem (for any graph G) can be reduced
to the Hidden Linear Function problem (not necessarily the 2D HLF). In particular,
our reduction reduces Grid-RPHP reduces to the 2D HLF problem, as we describe in

118



Corollary 90. So far this shows that one instance of Grid-RPHP reduces to the 2D
HLF problem. We then show, in Lemma 89, that we can embed multiple instances of
2D HLF in parallel into one instance of 2D HLF. Hence Parallel Grid-RPHP reduces
to 2D HLF as well, and hence Theorem 59 implies Theorem 56.

5.1.2 Additional results

We also consider the question of showing a separation between RelQNC” and an even
larger class, RelAC°[2], where recall AC°[2] is AC® with unbounded fan-in PARITY
gates. We implement the first two steps of the strategy above, where we come up with
a problem in RelQNC°/& that cannot be solved by an AC°[2] circuit, even on a o(1)
fraction of the inputs. Unfortunately, we do not know how to remove the reliance on
the cat state in this setting, so we only get the separation RelQNC®/& ¢ RelAC’[2].

Parity Bending Problem. In the Parity Bending Problem, which we denote
PBP,,, we are given a string z € {0,1}", and our goal is to output a string y € {0, 1}
such that if |z| = 0 (mod 3) then |y| = 0 (mod 2), and if |z| € {1,2} (mod 3) then
ly| =1 (mod 2). Our main result is Theorem 60, which says that PBP can be solved
with high probability by a QNC®/E3 circuit, but needs exponential-size AC°[2] circuits
to solve with probability significantly greater than half.

Theorem 60 (PBP). There exists a QNC®/8 circuit that solves the Parity Bending
Problem (PBP,) on any input with probability > 2. But there exists an input distri-

bution on which any AC’[2]/rpoly of depth d and size at most exp(nﬁ&) only solves
1

the problem with probability % + =50y -

As with the Parity Halving Problem, the quantum circuit that solves this problem
with bounded error is very simple as shown in Section 5.6. For this problem, the
classical lower bound is easier to show than before, and follows from the work of
Razborov and Smolensky [97, 108|, which shows that AC°[2] circuits correlate poorly
with the Mod 3 function.

As before, we can strengthen the separation to make the quantum circuit’s suc-
cess probability arbitrarily close to 1 and the classical circuit’s success probability
arbitrarily close to 0 by defining a new version of the Parity Bending Problem that
we call the Parallel Parity Bending Problem. In this problem, we are given many
instances of the Parity Bending Problem, and required to solve at least 2/3 of them.
Since QNC®/B can solve this problem with probability 3/4, it can solve more than
2/3 of the instances with high probability.

Theorem 61 (Parallel PBP). The Parallel Parity Bending Problem can be solved
with probability 1 - o(1) by a QNC’/apoly circuit, but any AC°[2]/rpoly circuit can
only solve the problem with probability n—ﬂlﬁ—)

At a high level this lower bound proceeds similar to Theorem 59, again employing
Vazirani’s XOR lemma [116], but there are technical difficulties caused by the fact
that the Boolean version of the Mod 3 function is unbalanced and easy to compute
on a 2/3 fraction of the inputs.
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5.1.3 Discussion and open problems

Our main results show that there is a search problem (either the 2D HLF problem
or the Parallel Grid-RPHP) in RelQNC? that is not in RelAC’, and that there is a
search problem (Parallel PBP) in RelQNC®/E that is not in RelAC°[2]. One open
problem is to generalize both separations and show that there is a search problem in
RelQNC® that is not in ReIACO[Z], or more generally RelAC°[p] for any prime p. This
is essentially the frontier of circuit lower bounds, and it will be difficult to go further
without radically new techniques.

One could try to achieve a quantum advantage using even weaker classes than
RelQNC® or classes incomparable to RelQNC®. For inspiration, the recent result of
Raz and Tal [96] exhibits a decision problem in BQLOGTIME (bounded-error quantum
logarithmic time) that is not in AC.

5.2 Parity Halving Problem

Recall the Parity Halving Problem from the introduction. We now define a more
general version of the problem with n input bits and m output bits.

Problem 62 (Parity Halving Problem, PHP,, ,,). Given an input z € {0,1}" of even
parity, output a string y € {0,1}™ such that

1
ly| = §|x| (mod 2).

Alternately, y must have even parity if |x| = 0 (mod 4) and odd parity if |z| = 2
(mod 4). We also define PHP,, to be PHP, ,.

The main result of this section is to show this problem is in QNC’/E, but not
AC®/rpoly. We now restate this result (Theorem 57) more formally:

Theorem 57. The Parity Halving Problem (PHP,,) can be solved exactly by a depth-2,
linear-size quantum circuit starting with the {@n) state. But on the uniform distribu-

tion over all valid inputs (even parity strings), any AC®/rpoly circuit of depth d and
size s < exp(nz_ld) only solves the problem with probability

% + exp(—nl"’(l)/O(log s)2d-D),

We prove this theorem in several parts. First we prove the quantum upper bound
in Section 5.2.1 (Theorem 63). The lower bound on AC® circuits via a sequence of
incrementally stronger lower bounds, culminating in the claimed lower bound. We
start in Section 5.2.2 by showing a lower bound (Theorem 64) for a very simple class of
circuits, NC° circuits of locality 1, i.e., NC? circuits where every output is an arbitrary
function of exactly one input bit. We then extend the lower bound to arbitrary NC°
circuits in Section 5.2.3 (Theorem 66), and to AC® circuits in Section 5.2.4 culminating
in the AC® lower bound for PHP,, ,,, in Theorem 71, from which the lower bound in
Theorem 57 follows straightforwardly by setting m = n.
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5.2.1 Quantum upper bound

Before we get into the details of the proof, let us motivate the problem. Observe that
the problem naturally defines an interesting n-player cooperative non-local game,
which we call the Parity Halving Game. In this game, there are n players, and each
player gets one of the n input bits and outputs a single bit, with no communication
with the other players. The input and output conditions are the same as in PHP,,:
The input is promised to be of even Hamming weight, and the players win the game
if their output’s parity satisfies the condition in Problem 62.

Because the players are not allowed to communicate, the strategies permitted in
the non-local game are far more restricted than an AC® circuit or even an NC° circuit
for PHP,, since each output bit is only allowed to depend on one input bit. We will
call this model NC° with locality 1.

Now that we have defined a game, we can study the probability of success for
classical players versus the probability of success for quantum players who share
entanglement before the game begins. In fact, when n = 3, the Parity Halving Game
coincides with the well-known Greenberger-Horne-Zeilinger (GHZ) game [55]. It is
known that quantum players sharing entanglement, and specifically the state [B3) =
%(IOOO) +|111)), can always win the GHZ game with certainty, but classical players

can win the GHZ game with probability at most 3/4.

This n-player generalization of the GHZ game is very natural and quantum players
can win the Parity Halving Game exactly using a [&,) state. This game has been
studied before, and we are aware of two other works that analyze this game: the first
by Mermin [80], and the second by Brassard, Broadbent, and Tapp [25]. Both papers
exhibit the quantum strategy that wins perfectly and argue that classical strategies
fail (as we do in the next section).

The strategy for winning the 3-player GHZ game generalizes to yield a perfect
strategy for winning the n-player game as well, which yields a depth-2 linear-size
quantum circuit for PHP,,. We now describe the quantum strategy and the corre-
sponding constant-depth quantum circuit.

Theorem 63 (Quantum circuit for PHP,,). The Parity Halving Problem (PHP,,) can
be solved exactly by a depth-2, linear-size quantum circuit starting with the I@n) state.

Proof. We describe this circuit in the language of the n-player Parity Halving Game
described above. The circuit is depicted in Figure 5-1 (on page 115). Let the input
to the ¢*h player in the Parity Halving Game be called x;, and their output be called
y;. In our protocol, the players will share an n-qubit cat state n) = \/Li (jory +1]17)),
and each player receives one qubit of the cat state at the beginning.

Each player starts by applying a phase gate, S = ((1) ?), to their qubit of the cat
state if their input bit is 1. If their input bit is 0, they do nothing. In other words,
the player applies a control-S gate with x; as the source and their qubit of the cat
state as the target. After this step, the cat state has been transformed to

_1_ n +Z|x n
\/§(|0 )+ 171 [1")).
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But since z has even parity, this state is either |[&,) or % (|or) = 1)), the “minus
cat state”. We will denote this state by Z P@") since this is the state one obtains by
applying the Z = ((1) _01) gate to any one qubit of the cat state. When |z| =0 (mod 4),
this state will be |&,) and when |z| = 2 (mod 4), this will be Z n). Note that ‘%ﬂn)
and Z ’@” are orthogonal states.

Finally, each player applies the Hadamard gate H = %( 1 _11) to their qubit of the
cat state, measures the qubit, and outputs that as y;. The operator H®" maps the
cat state |@n) to a uniform superposition over even parity strings, and maps Z|@n)
to a uniform superposition over odd parity strings. This follows from the following
equations:

1 1
H®M0") = — x), and  H®I") = —— 1)kl 5.1
"= 2 W) M- gm X GO 6

Thus, when the players measure their qubits, they will get either a random even
parity string when |z| = 0 (mod 4) or a random odd parity string when |z| = 2
(mod 4), as desired. O

Note that the idea of inducing a relative phase proportional to the Hamming
weight of a string is studied more generally and called “rotation by Hamming weight”
in [64].

5.2.2 Lower bound for NC° circuits of locality 1

We now discuss the success probability of classical strategies for the Parity Halving
Game. This was already studied by Mermin [80], and Brassard, Broadbent, and
Tapp [25|. Both papers argue that classical strategies only succeed with probability
exponentially close to 1/2 on the uniform distribution over even-parity inputs.

We reprove these lower bounds on the Parity Halving Game and also prove lower
bounds for a restricted version of the game. In the restricted version of the game
we only consider inputs consistent with some restriction of the input bits, i.e., where
the values of some input bits have been fixed and are known to all the players, and
we only consider all even-parity inputs consistent with this fixing of input bits. We
need this generalization later on in the proof since some input bits will be fixed by a
random restriction in the AC® lower bound argument.

Theorem 64 (Classical lower bound for Parity Halving Game). On the uniform
distribution over even-parity strings, the success probability of any classical strategy
for the Parity Halving Game with n players is at most 5 + 2-["/21.

Now constder the restricted Parity Halving Game with n players, where d of the
input bits have fized values known to all players. On the uniform distribution over
even-parity strings consistent with the fized input bits, the success probability of any
classical strategy is at most & + 271(n=d)/21,

Proof. We start with the lower bound for the unrestricted Parity Halving Game. Since
we consider classical strategies against a fixed input distribution, we can without loss
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of generality only consider deterministic strategies. This is because a randomized
strategy is simply a probability distribution over deterministic strategies, and we can
pick the strategy that does the best against the chosen input distribution. (This is
the easy direction of Yao’s minimax principle.)

Since each player only has one input bit z;, and one output bit y;, there are only
four deterministic strategies: output y; =0, y; = 1, y; = x;, or y; = x; ® 1. In any
case, each y; is a degree-1 polynomial (over IF3) in ;. It follows that the parity of the
outputs, @I, y;, can be expressed as multivariate linear polynomial in xy,...,z,, say
a+b-x for some a € Fy and b € F}. We want to upper bound the success probability
of any such strategy.

Now consider the function f(z) = Re(il*l). We have

1 if|z[=0 (mod4)
f(z)={-1 if|z|]=2 (mod 4)

0 otherwise.

The function f(z) matches the parity of the output bits (as +1) of the PHP,, function
on an input x. More precisely, f(xz) gives the correct parity (as +1) when x satisfies
the promise of PHP,,, and evaluates to 0 for inputs outside the promise.

It follows that the product (-1)**=f(z) is 1 if the strategy corresponding to
a+b-x is correct, —1 if it is incorrect, and 0 on inputs that are outside the promise.
We define the correlation x of a classical strategy as the absolute value of the fraction
of valid inputs on which it is correct minus the fraction of valid inputs on which it is
incorrect. We can compute this quantity as follows:

B xe]F":]ZE'ac:O[(_1)a+b.xf(x)] (52)
1 "
~ |2n1 > (1) Re (i) (5.3)
zelfy
1 b11'1+-~~+bnl‘n LA+ Ty
S 2n_1 Re (_]‘) -1 (5.4)
zely
= 2711_1 Re( Z (—1)b1x12'371‘.. Z (_l)bnmnimn) (55)
r1€lFy T eFy
1 1+ 4+
= g [Re (14872 (1+ a2 (5.6)

That is, we want to know the real part of a product of n terms, each of which is 1 +1.
Since 1+ is v/2 times a primitive eighth root of unity, the product is 27/2 times an
eighth root of unity. After factoring out the /2 from each term, we have to determine
the possible valucs of the product of n numbers of the form %(1 +4). When n is

even, their product must lie in the set {+1,+¢}, and when n is odd it must lie in the
£1si

set =7 In both cases, we see that the real part of the product is either 0 or +2l7/2]
so the correlation is x = 0 or x = 27[*/21*1, Since the success probability is (1 + x)/2,

123



this proves the first part of the theorem.

Now let us move on the to restricted version of the game and fix some of the
inputs. If some individual bit z; is restricted, then the term Zrier(—l)bJ“”i 7%/ in the
analysis above becomes either 1 or (~1)%%. This term is a fourth root of unity, so it
does not contribute to the magnitude of the product, since the fourth roots of unity
have magnitude 1. Furthermore, it does not change the set of potential phases, since
both the sets above are invariant under multiplication by a fourth root of unity. Since
the constraint also halves the number of possible inputs, the effect on the correlation
is the same as just removing that bit. In other words, x is at most 2-[(n-d)/2]+1 Tt
follows that the success probability of a classical strategy is

Lex _ 1, ooty 0
2
It is interesting to note that for the unrestricted game, Brassard, Broadbent, and
Tapp (25| show that there are strategies matching this upper bound.

5.2.3 From NC° circuits of locality 1 to general NC° circuits

We can view NC° circuits as a more powerful model of computation than the game
considered in the previous section. Now each player is allowed to look at the input bits
of a constant number of other players before deciding what to output. For example,
the players could band together into constant-sized groups and look at all the other
bits in the group to make a slightly more informed choice. However, intuitively it
seems that the players cannot do much better than before. We will show this formally
by proving that NC° circuits cannot solve PHP,,.

First, we define some terms. Fix a circuit C' and define the interaction graph of
the circuit C' to be a bipartite graph on the input bits and output bits where there is
an edge from an input bit x; to an output bit y; if there is a path from z; to y; in the
circuit C' (i.e., if z; can affect y; in C). The neighborhood of a vertex in this graph
is sometimes called its light cone. That is, the light cone of an output bit, LC(y;), is
the set of input bits which can affect it, and the light cone of an input bit, LC(z;)
is the set of output bits which it can affect. For example, if all gates have fan-in 2,
then the light cone of any output bit in a circuit of depth d is of size at most 2¢. In
general, we say that a circuit C has locality £ if the light cone of any output bit is of
size at most £.

Note that while the fan-in of gates sets an upper bound on the light cone of an
output bit, the fan-out sets an upper bound for the light cone of input bits. In all the
classical circuit classes we study in this chapter, fan-out is unbounded, hence even in
a constant-depth circuit one input bit can affect all output bits.

Proposition 65. Let C' be a circuit with n inputs, m outputs, and locality £. There
exists a subset of inputs bits S of size Q(min {n,e%zn—l}) such that each output bit
depends on at most one bit from S.

Proof. Since each output bit has a light cone of size at most ¢, the interaction graph
has at most ¢m edges. This implies that, on average, an input bit has a light cone
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m

of size =*. Our goal is to find a set of input bits S such that their light cones are
pairwise disjoint, since then the light cone of any output contains at most one element
of S.

Consider the intersection graph between input variables. That is, we consider
the graph on zy,...,z,, where z; is connected to z; if their light cones intersect.
A variable z; that had degree d in the original graph has degree at most d¢ in the
intersection graph, since each output vertex has locality ¢. Hence the average degree
in the intersection graph, denoted by D, is at most %’ﬂ. By Turéan’s theorem, in any
graph on n vertices with average degree at most D there exists an independent set of
size at least n/(1 + D). Thus, we get a set S C {z1,...,x,} of size Q(min{n, fz—;—})
such that the light cones of every pair of input bits in S do not intersect. ]

We are now ready to prove a lower bound on NCY circuits of locality £ solving
y p

PHP,, ...

Theorem 66 (PHP is not in ReNC?). Let C' be an NC° circuit with n inputs, m
outputs, and locality £. Then C solves PHP,, ,,, on a random even-parity input with

probability at most 5 + 2_Q(min{n’7%}).

Proof. Let the circuit C solve PHP,, ,,, on a random even-parity input with probability
p. By the previous theorem, there is a set of input bits with disjoint light cones, .S,
and |S| = (min {n, %}) For the remainder of this proof fix any such S.

Now consider choosing an arbitrary assignment for the bits outside .S and running
the circuit C on the distribution of random even-parity strings consistent with this
arbitrary assignment. The probability of success of circuit C may depend on the
arbitrary assignment chosen, but since the success probability for a random choice
is p, there exists one assignment for which the success probability is at least p. Let
us fix this assignment of bits outside S. Now we have an assignment for bits outside
S such that C' is correct with probability at least p on a random even-parity input
consistent with this assignment.

We will now argue that the circuit gives a strategy for the restricted Parity Halving
Game on n players with n —|S| restricted bits with probability of success at least p.
To do so, we assign a player for every input bit. Only the players assigned to bits in
S will have unrestricted inputs. Since the light cones of bits in S do not intersect,
a player with input bit in .S can compute the values of all outputs in its light cone
(since all the bits outside S are fixed and known to everyone). This player can now
output the parity of all these output bits. Some output bits may not appear in any
input light cone; we add the parity of these bits to an arbitrary player’s output. Now
the the parity of the players’ outputs is the same as the parity of the circuit’s output.
This gives a classical strategy for the restricted Parity Halving Game with n players
and n—|S| restricted bits with success probability at least p. Finally, from Theorem 64

we get that p < 5 + 2'9(““{"’75%}), O

Note that this theorem is essentially tight. It says that to achieve a high proba-
bility of success, we need n? = ©(¢£?2m). We can indeed achieve success probability 1
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at both extremes: when m = ©(n2?) and £ = 2, or when m =1 and ¢ = n. For the first
setting of parameters, as noted in the introduction, there is a simple depth-1 NC°

circuit of locality 2 that solves the problem when m = (g) The second parameter

regime is even simpler, since any Boolean function can be computed by an NC° circuit
of locality ¢ = n.

5.2.4 From NC° circuits to AC® circuits

In this section we finally extend our lower bound to AC® circuits as stated in Theo-
rem 5H7.

To do this, we use a technical tool known as a switching lemma [49, 6, 122, 61].
Informally, a switching lemma says that with high probability randomly restricting a
large fraction of the input bits to an AC? circuit produces a circuit with small locality.

Average-case reductions from NC® to AC® have previously appeared in the litera-
ture (cf. [117]), based on the original switching lemma [61]. In this chapter, we will
use multi-switching lemmas, which handle multiple output circuits much better, and
were recently proved by Héstad [62] and Rossman [98]. See Appendix A. Using the
multi-switching lemmas instead of Hastad’s original switching lemma [61] allows us
to improve the parameters dramatically.?

Preliminaries

We start with some definitions. In the following, we consider restrictions and random
restrictions. A restriction p € {0,1, *}" defines a partial assignment to the inputs
of a Boolean string of length n. For ¢ = 1,...,n, when p; € {0,1} we say that the
restriction fixes the value of the i-th coordinate, and when p; = * we say that the
restriction keeps the i-th coordinate alive.

A p-random restriction is a restriction sampled according to the following process:
for each 7 = 1,...,n independently, sample p; = * with probability p, p; = 0 with
probability (I - p)/2 and p; = 1 with probability (1 - p)/2. We denote by R, the
distribution of p-random restrictions.

For a Boolean function f: {0,1}" - {0,1}™ we denote by f|,: {0,1}» —» {0,1}™
the restricted function defined by

x; p; =* and

M@ =f5)  whee v {

p; otherwise.
Next, we give the standard definition of a decision tree. For an excellent survey
on this topic, please see [30].

Definition 67 (Decision Tree). A decision tree is a rooted ordered binary tree T,
where each internal node of T is labeled with a variable z; and each leaf is labeled

SBased on the original switching lemma, we can show that PHP is hard to compute by AC®
circuits on more than 1/2+1/nf(°8™) of the inputs. On the other hand, based on the multi-switching
lemmas, we will show that PHP is, in fact, hard to compute on more than 1/2 + exp(—nl_o(l)) of
the inputs.
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with a value 0 or 1. Given an input x € {0, 1}", the tree is evaluated as follows. Start
at the root. If this is a leaf then stop. Otherwise, query the variable z; that labels
the root. If x; = 0, then recursively evaluate the left subtree, if z; = 1 then recursively
evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf
that is reached eventually. Note that an input x deterministically determines the leaf
reached at the end, and thus the output. We say a decision tree computes [ if its
output equals f(z), for all z € {0,1}". The complexity of such a tree is its depth, i.e.,
the number of queries made on the worst-case input. We denote by DT(¢) the class
of functions computed by decision trees of depth at most t.

Note that the decision tree complexity of a function f is also called the determin-
istic query complexity of f.

Definition 68 (F-Decision Tree). Suppose F is a class of functions mapping {0, 1}"
to {0,1}™. An F-partial decision tree is a standard decision tree, except that the
leaves are marked with functions in F (instead of constants). Given an input z €
{0,1}7, the F-Decision Tree is evaluated as follows. Starting from the tree’s root, we
go along the path defined by the input z until we reach a leaf. Then, we evaluate the
function f, € F that labels the leaf v on the input z, and output its value, f,(z). We
denote by DT(t) o F the class of functions computed by F-decision trees of depth at
most .

Note that F-decision trees compute functions from {0,1}" — {0, 1} where n and
m are the input and output lengths for the functions in F, respectively.

Definition 69 (Tuples of functions classes). Suppose F is a class of functions map-
ping {0,1}" to {0,1}. We denote by F™ the class of functions F : {0,1}" - {0,1}™
of the form F(z) = (fi(z), f2(z),..., fm(z)), where each f; € F. That is, F™ is the
class of m-tuples of functions in F.

The multi-switching lemma

The main lemma that we are going to use is a slight adaption of Rossman’s lemma
[98], which combines both switching lemmas of Hastad [61, 62]. The lemma claims
that a multi-output AC® circuit mapping {0,1}" - {0,1}™ would reduce under a
random restriction, with high probability, to a function in the class DT(2t) o DT(q)™
(for some parameters ¢ and q).

Let us pause for a second to spell out what is the class DT(2t) o DT(¢)™. This
is the class of depth-2t decision trees, whose leaves are labeled by m-tuples of depth-
g decision trees, one per output bit. In other words, these are functions mapping
{0,1}™ to {0,1}™ that can be evaluated by adaptively querying at most 2t coordinates
globally, after which each of the m output bits can be evaluated by making at most
q additional adaptive queries. Note that while the first 2¢ queries are global, the last
g queries could differ from one output bit to another. We would typically set the
parameters so that ¢ is much larger than ¢ (for example, t = n!=°(1) and ¢ = o(logn)).
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Lemma 70 (Multi-switching lemma). Let f: {0,1}" - {0,1}™ be an AC° circuit of
size s, depth d. Let q € N be a parameter, and set p=1/(m'9-O(logs)4 ). Then

Vt: PE{ [fl, ¢ DT(2t) o DT(q)™] < s-27".
p~Rp

We defer the proof of Lemma 70 to Appendix A as this is an adaptation of Ross-
man’s lemma [98].

We would use the lemma as follows. First, we apply a p-random restriction that
reduces the AC? circuit to a DT(2t) o DT(g)™ function with high probability. Then,
we further query at most 2t coordinates, and fix their values, by following a path in
the common partial decision tree. After which, the restricted function would be an
m-tuple of depth-¢q decision trees. Then, using the simple fact that a depth-g decision
tree is a function with locality at most 29, we reduced an AC® circuit to an NC° circuit
with locality at most 27 with high probability.

On the choice of parameters. We have the freedom to choose ¢ and t when
applying Lemma 70 in Theorem 71. First, we discuss the choice of q. We would
like the lemma to yield on one hand an NC° circuit with small locality, and on the
other hand to keep many input variables alive. To get small locality, ¢ should be
small, say ¢ = o(logn). To keep many variables alive, pn should be large, and since
p = 1/0(m4(log s)* 1), we would like ¢ to be large, say ¢ = w(1). Balancing these
two requirements leads to the choice q = ©(y/logn).

Once q is set, we would like to make t as large as possible, as it controls the failure
probability in Lemma 70, but on the same time we want the number of alive variables
after the two-step restriction process above to remain high. Since this number is
roughly pn — ¢ we would choose ¢ to be a small constant fraction of pn (which is
nt-°(1)), With these choices, we would be left with at least Q(pn) variables alive and
locality at most 29 with extremely high probability.

AC’ lower bound

Theorem 71 (PHP is not in RelAC®). Let n < m <n2. Any AC°/rpoly circuit F of
depth d and size s < exp(nfloi) solves PHP,, ,, on the uniform distribution over valid
inputs (even parity strings) with probability at most
1
5t exp(—n2/(m1+°(1) -O(log s)2(* D).
Proof. Since we have a fixed input distribution, we can without loss of generality
prove the lower bound against an AC® circuit (instead of an AC®/rpoly circuit), since
an ACO/ rpoly circuit defines a distribution over AC? circuits and we can simply pick
the one that does the best against our input distribution.

Suppose that F' solves the Parity Halving Problem on a random even-parity input
with probability § +e. We shall show that e < exp(-n?/(m!*°(}) . O(log s)2(4-1)).
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We defer the choice of ¢ for later, to optimize the parameters. However, we will
use the fact that ¢ = o(logm) and that q =w(1). We set

p=1/(mY7-0O(logs)*1), t =pn/8.

Note that under this choice of parameters s < 2%/2) by the following calculation: using
the assumption that s < exp(n!/24) twice, we have

272 = exp(Q(pn)) = exp(Qm oW - pldD/24)) 55 exp(n/2?) > 5.
Let p be a p-random restriction. Denote by £ the event that:

1. F|,eDT(2t) o DT (g)™.
2. p keeps alive at least pn/2 variables.

Using Lemma 70 and Eq. (5.2.4), Item 1 holds with probability at least 1 —s-27t >
1-2%2>1-exp(-Q(pn)). Item 2 holds with probability at least 1 — exp(-Q(pn))
by Chernoff’s bound. Thus, by a simple union bound

Pr[€] > 1 - exp(-Q(pn)).

If Pr[€] < 1-¢/2, then we are done as Eq. (5.2.4) implies £/2 < exp(-Q2(pn)).
Going forward, we may assume that Pr[€] > 1 —¢/2. In such a case, we claim that
there exists a fixed restriction p that satisfies £, under which F|, solves the Parity
Halving Problem on at least 1/2 + £/2 fraction of the even-parity inputs consistent
with p. Assume by contradiction otherwise. Under our assumption:

e For restrictions satisfying &, the success probability of F' on the even-parity
inputs consistent with p is at most 1/2 + /2.

e For other restrictions, the success probability of F' on the even-parity inputs
consistent with p is at most 1.

The key idea is that sampling a p-random restriction, and then sampling an input
with even parity consistent with this restriction (if such an input exists), gives the
uniform distribution over even-parity inputs. Thus, under the above assumption, the
probability that F' solves the Parity Halving Problem on a uniform input with even
parity, is at most

Pr[€]-(1/2+¢/2) +Pr[-€]-1 < 1-(1/2+¢/2) + (¢/2)-1 = 1/2+¢,

yielding a contradiction.

We get that there exists a restriction p keeping at least pn/2 of the variables alive,
under which F|, € DT(2t) o DT(q)™, such that the success probability of F' on the
even-parity inputs consistent with p is at least 1/2 + ¢/2.

In the next and final step, we will focus on a single leaf of the partial decision tree
for F|,. For each leaf \ consider the further restriction of FJ|, according to the path
leading to A. This yields a new function, denoted F, , € DT(g)™. That is, F, is a
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tuple of m decision trees of depth ¢q. Moreover, for each A, the number of variables
left alive in F), ) is at least pn/2 — 2t > pn/4.

We claim that there must exists a A such that F, ) solves the Parity Halving
Problem on even-parity inputs consistent with p and A with probability at least
1/2 + /2. This follows by an averaging argument similar to the one we performed
above. Indeed, to uniformly sample an input with even-parity consistent with p, we
can first uniformly sample a root-to-leaf path along the partial decision tree resulting
in a leaf A, and then uniformly sample an even-parity input consistent with (p,\).
Since we succeed with probability at least 1/2+¢/2 on uniform inputs with even-parity
to F,, we also succeed with probability at least 1/2+¢/2 on the inputs to some F), ).

We get that there exists a restriction defined by (p,\), leaving at least pn/4
variables alive, under which each output bit of F' can be computed as a depth-q
decision tree, and therefore depends on at most 29 input bits. Furthermore, F, \
solves the Parity Halving Problem on even-parity inputs consistent with p and A with
probability at least 1/2 + /2. Applying Theorem 66 we get that

gf2 < exp(—Q( (pn)® )),

m - 224

and by Eq. (5.2.4), plugging p = 1/(m!4- O(log s)41),

gf2< exp( -’ ) (5.7)

m - 224 -O(log s)2(d-1) . m2/a

Recall that we have not set ¢ yet. To minimize 227 - m?/¢ we pick q = \/logm. This
gives

—n2
<
£ exp(m - O(log 5)2(d-1) . 24Vlogm )’

which concludes the proof. O

5.3 Relaxed Parity Halving Problem

In this section we deal with the issue that the QNC° circuit for PHP (Problem 62)
needs a cat state, but QNC° circuits cannot create a cat state.

In Section 5.3.1, we first prove that a QNC° circuit cannot create a cat state. But,
as we show, QNC° circuits can construct what we call a “poor man’s cat state." This
is a state of the form %ﬂz) +]z)) for some uncontrolled z € {0,1}" alongside classical
“side information” about z that allows us to determine it. In Section 5.3.2 we show
the poor man'’s cat state lets us solve a relaxed version of the Parity Halving Problem,
which is nevertheless hard for AC° circuits.

The goal of this section is to establish Theorem 58, which will follow from Theo-
rem 77 and Theorem 78.
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5.3.1 A poor man’s cat state

We start by proving our claim that a QNC® circuit cannot construct a cat state in
constant depth.

Theorem 72 (Cat states cannot be created in QNC°). Let C' be a depth-d QNC°
circuit over the gates set of all 2-qubit gates that maps |0™™) to |¥§n) ® |0m). Then
d > (logn) /2.

Proof. Since C is a depth-d QNC° circuit over the gate set of 2-qubit gates, each
input and output bit has a light cone of size 2¢. Similar to proposition 65, consider
the intesection graph of the first n output bits, which hold the cat state. In this
graph, the n output bits are the vertices, and two output bits are adjacent if their
light cones contain a common input. Since the maximum number of input bits in the
light cone of an output bit is 2¢, and each input bit can have at most 2¢ output bits
in its light cone, the maximum degree of an output bit in this intersection graph is
224, Assume toward a contradiction that d < (logn) /2. Then the maximum degree of
the graph is less then n, and there must exist two disconnected vertices in the graph.

Let two such output qubits of |@n) be called y; and y;. These qubits depend
on disjoint sets of input bits. Now we focus on the output of the the circuit C' on
these two qubits. Since they are part of the cat state, on measuring these in the
computational basis, we will see either 00 or 11, with equal probability. Since the
gates that are not in the light cones of these two qubits do not affect this, let us
delete all these gates. Since the light cones were disjoint, we are now left with a
circuit composed of two disjoint parts, one acting on a set of qubits that contains
y; and another acting on a set of qubits that contains y;. Consider the cut between
these two sets of qubits. Observe that the initial state, |[0"*™), is separable across this
cut, but the output state is correlated across this cut although we have not performed
any gates that cross the cut. This is impossible, and hence d > (logn) /2. ]

Now although QNC° circuits cannot create the cat state, we show that QNC°
circuits are able to construct states of the form % (]z) +|2)), where z is some string
in {0,1}" and Zz the complement of z. Note that this state is exactly the cat state
when z = 0" or z = 1*. The circuits that create this state also output an auxiliary
classical string d such that z can be determined from d, up to the symmetry between
z and Z. There is actually a family of QNC° circuits which construct these states,
which we now describe.

Theorem 73 (Poor man’s cat state construction). For any connected graph G =
(V, E) with mazimum degree A, there is a depth A +2 QNC° circuit which outputs a
[V| qubit state —1\/5- (|z) +12)), along with a bit string d € {0,1}F. Indexing the bits of z
by vertices of V' and the bits of d by edges of E, z and d satisfy the property that

Zu+zo=  », de (mod 2) (5.8)

e P(u,v)

for any two wvertices u,v € V, and any path P(u,v) from u to v. Note that this
condition also implies that the sum of d. along any cycle in the graph is 0 (mod 2).
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Proof. We first describe the QNC° circuit. Begin with |V|+|E| qubits in the state |0),
and identify each of the qubits with either an edge or a vertex of the graph. Apply
the Hadamard transform for each vertex qubit. Now the state is |+)" ®(0)'¥!. Then,
for every edge e = (u,v) in the graph, XOR the qubits indexed by u and v onto the
edge qubit indexed by e (i.e., let the edge qubit store the parity of the two vertex
qubits). Explicitly, this can be done by implementing CNOT gates from qubits u, v
onto qubit e. (As discussed below, this can be done in A + 1 parallel local steps.)
Finally, measure all edge qubits in the standard basis.

To complete this proof we need to establish two claims: First, that the circuit
leaves the unmeasured vertex qubits in the state % (]z) +12)), while the measured
edge qubits give the classical bitstring d. Second, that the circuit can be implemented
in depth A + 2.

We begin with the first claim. Imagine that we first only measure the n -1 edges
of some spanning tree T'. Before measurement, the vertex qubits were in a uniform
superposition over all possible 2" states. Each measurement on an edge qubit had two
equally probable outcomes, and observing the result of this measurement reduced the
number of states in the superposition by half. More precisely, measuring the qubit
for edge e = (u,v) yields a bit d, € {0,1}, which gives a linear equation on the state:
2y ® 2, = do. Thus, after all edges in the spanning tree are measured, the vertex qubits
must be left in some two state superposition. Furthermore, after the spanning tree
is measured any two vertex qubits u and v must differ by the parity of the observed
measurements on edge qubits along the path from u to v. This shows the vertex
qubits must be in the state % (]z) +|2)), with the measurements on the edge qubits
so far consistent with the requirements of Theorem 73. Now for any edge e = (v, w)
not in the spanning tree, the XOR measurements on the associated edge qubit is fixed
to be equal to the XOR of edge qubit measurements along the path in 7" from v to
w. This shows this measurement must also be consistent with the requirements of
Theorem 73 and cannot affect the state of the vertex qubits. The establishes the first
claim.

The second claim is more straightforward. The first layer of our QNC° circuit
consists of Hadamard gates applied to all vertex qubits. It remains to show that we
can implement all the desired CNOT gates in depth A+ 1. To show this we introduce
a new graph G’ with |V|+ |E| vertices, that is obtained from G by replacing each
edge e = (a,b) in F with a vertex v, connected to its two end-points, a and b. Note
the edges of G’ are in one to one correspondence with the CNOT gates we want to
implement in our circuit. By our assumptions on GG, G’ has degree at most A, and so
Vizing’s theorem tells us the edges of G’ can be colored using at most A + 1 colors.
Since the edges in each color class are non-overlapping we can apply all the CNOT
gates in one color class simultaneously, and thus apply all the CNOT gates in depth
A+1. O

We will apply Theorem 73 when G is a spanning tree of a 2D grid, with diameter
2\/n as depicted in Figure 5-2, which also describes the associated QNC° circuit.
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This QNC° circuit has the nice feature that it is spatially local,® while any bit of z is
specified by relatively few, O(y/n), bits of d. This graph has constant degree A = 3.

NG

Figure 5-2: Grid Implementation of a Poor Man’s Cat State. Black vertices are
“edge" qubits, and are used to measure the parity of their neighbors. White vertices
are “vertex" qubits. They are initialized in the |+) state, and make up the poor man’s
cat state after the edge qubits are measured.

It is worth mentioning that if we relax the requirement that our implementation
be spatially local, we can improve on the number of bits of d required to specify any
bit of z. In particular, applying Theorem 73 to a balanced binary tree gives an output
string d with at most logn bits of d required to specify any bit of z. This version of the
problem would lead to slightly better parameters in Theorem 58, but then our final
problem would not longer be solved by a 2D quantum circuit and would no longer
reduce to the 2D HLF problem. Hence the construction illustrated in Figure 5-2 will
be sufficient for our purposes.

5.3.2 The Relaxed Parity Halving Problem

Having constructed a poor man’s cat state, a natural idea would be to try and use
this state instead of the cat state to solve the Parity Halving Problem. For example,
we can feed the poor man’s cat state into the quantum circuit (instead of a true cat
state) and hope for the best. Unsurprisingly, this does not solve the Parity Halving
Problem.

However, we can define a new problem from this failed attempt, which has QNC°
circuits by construction. We call this problem the Relaxed Parity Halving Problem,
although we will see that the precise definition of the problem depends on how the
poor man’s cat state is constructed.

Theorem 74 (PHP circuit applied to a poor man’s cat state). The quantum circuit

for PHP,, applied to the state |Z\;I; , where z € {0,1}" (instead of the cat state), and

SHere spatially local means here that circuit may be implemented in hardware with the qubits
placed on a 2D grid and CNOT gates allowed only between neighbouring qubits.
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an input z € {0,1}" of even parity, yields an output string y € {0,1}"™ such that
1
o= 2l (z.0) (mod 2),

where (z,1) 1= Yien) 2 - Ti. Note that this is the same condition as for PHP, (Prob-
lem 62) except for the addition of the (z,x) term.

Proof. Let us apply the quantum circuit solving PHP (as depicted in Figure 5-1) to
the poor man’s cat state. We first apply a phase gate (S gate) to qubit ¢ of the poor
man’s cat state if x; = 1. This yields the state

o) ¢ D E) L e ) ) s ()R )
V2 V2 V2
Up to a global phase, which can be ignored, the state is %ﬂz) + (~1)lel/2~=2) | 7).

The next stage of the algorithm applies Hadamard gates to all input qubits. Thus we
have

gen ( |z) + (—1i|/_x|2/2—(z,w) ‘E)) _ 21n+1 ye{%?l}n ((_1)(y,z) " (_1)(y,z)(_1)i:r|/2A(z,z)) ly).
| (5.9)

On measuring this state in the computational basis, we get only those y whose co-
efficient is nonzero. Hence we get a uniform distribution over all strings y satisfying
(y,2) =(y,z) +|z|/2 - (2,2) (mod 2) or equivalently,

= el + {5,2) (mod 2). =

We now define a new problem based on this observation.

Problem 75 (Relaxed Parity Halving Problem for graph G). Fiz a connected graph
G = (V,E). Given an input x € {0,1}V promised to have even parity, the Relaxed
Parity Halving Problem or RPHP outputs y € {0,1}V and d € {0,1}¥, such that there
exists a z € {0,1}V with the property

V(u,v) € E, 2z,® 2z, =d(yy), and (5.10)
1
ly| = §|:L’| +(z,z) (mod 2). (5.11)

Note that in the definition above, a string z satifying the first constraint exists if
and only if the parity of d along every cycle is 0. If there are no cycles, then there
always exists a z. When z does exist, it is unique up to complement, which does not
change the second condition in the problem statement because (z,z) = (Z,z) (mod 2).
To see this, recall that  has even parity, and hence 0 = (1,z) = (2,z) +(Z,z) (mod 2).

To fully specify the problem, we need a family of graphs with |V| = n for infinitely
many n. We are primarily interested in the 2D grid (so that the quantum circuit
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is specially local) and some reasonable (say, diameter O(y/n)) spanning tree of this
graph. This gives us the Grid Relaxed Parity Halving Problem below. We use a
spanning tree rather than the grid graph itself because deleting edges from G only
makes the problem easier (since we can drop the corresponding bits of the output
string d), which makes our lower bounds stronger. Additionally, choosing a spanning
tree ensures that a string z satisfying the constraints of the problem always exists. It
turns out the upper bounds (i.e., QNC° circuit we construct) can be easily modified
to solve the problem on the entire 2D grid without deleting edges.

Problem 76 (Grid Relaxed Parity Halving Problem). Consider the 2D grid of size
Vn x/n and fit an n vertex spanning tree G = (V, E) of low diameter. For con-
creteness, fix the spanning tree which takes the first row of edges and all columns (as
depicted in Figure 5-2). Then the Grid Relaxed Parity Halving Problem is the RPHP
assoctated with G. That is, given x € {0,1}V, output y € {0,1}V and d € {0,1}¥ such
that

V(u,v) € E, 2, ® 2y =d(yy), and (5.12)
1
ly| = 5]3:[ +(z,z) (mod 2). (5.13)

As discussed, we can use other graphs instead of the grid to define different variants
of this problem. For instance, a balanced binary tree has lower diameter, which leads
to slightly better parameters, but we use the grid to achieve a spatially local quantum
circuit.

A path graph (sometimes called the line graph) is even simpler than the grid or
tree. Unfortunately, the Relaxed Parity Halving Problem corresponding to the path
graph can be solved by an NC° circuit (see section 5.1.1), which makes it unsuitable
for proving a separation against ReNCC.

5.3.3 Quantum circuit and AC’ lower bound

In this section we establish Theorem 58, which states that Grid-RPHP can be solved
in RelQNC?, but it is average-case hard for AC? circuits. We start by establishing the
quantum upper bound.

Theorem 77 (Grid-RPHP is in RelQNC®). There exists a depth-5 spatially local QNC°
circuit that exactly solves Grid-RPHP.

Proof. Let G = (V, E) be a O(y/n)-diameter spanning tree of the \/nx+/n grid graph
with |V|=n and |E| =n - 1. This graph has degree A = 3. As shown in Theorem 73,
there is a spatially local QNC circuit of depth A + 2 to construct a random poor
man’s cat state % (for some z € {0,1}V) and the associated string d € {0,1}£ for
graph GG such that

d(uﬂ,) =2y D 2y

for all (u,v) € E. We run the QNC® circuit for the Parity Halving Problem as per
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Theorem 74, and get an output y € {0, 1}V such that
1
ly| = §|x| +(z,z) (mod 2).

We have defined Grid-RPHP so that it is not necessary to compute z, just a vector d
consistent z, which we have from the construction of the poor man’s cat state. Hence,
we return y and d satisfying the condition, and we are done. O

This result is not surprising, since the relaxed parity halving problem is a relax-
ation of the parity halving problem explicitly constructed with the goal of having a
QNCP circuit.

The nontrivial direction of the argument is to show that AC® cannot solve the
Grid-RPHP problem. We accomplish this by exhibiting an NC° reduction to the
Grid-RPHP problem from an instance of PHP,,,, with m = ©(n®?), which is still
hard for RelAC®. Note that although our reduction is an NC° reduction, it cannot be
carried out with a QNC° circuit, so we are not showing that PHP,, ,,, is in RelQNC°.
While this might seem mysterious, the reason is that NC° has one ability that we
have not given QNC° unbounded fan-out. Our reduction uses the fact that NC° can
make unlimited copies of the output of a gate, whereas QNC° cannot do so.

Theorem 78 (Grid-RPHP is not in RelAC®). There is an NC® reduction from the
problem PHP, 5,322y to Grid-RPHP,. In particular, an AC® circuit of size s <
exp(n'/2(@+1)) and depth d cannot solve Grid-RPHP,, with probability better than

1 1

2 _1/2-0(1) 2d

5 +exp( n /O(logs) )
on a uniformly random input with even parity.

Proof. Suppose we want to solve an instance of PHP, 5,32y, and we can solve
Grid-RPHP,,. Let T = (V, F) be a O(y/n)-diameter spanning tree of an n vertex
grid graph.

Take the input z € {0,1}" from the PHP instance as input for a Grid-RPHP,, in-
stance, mapping the n bits arbitrarily to vertices of the grid. Solving this Grid-RPHP
instance gives us two outputs y € {0,1}V and d € {0,1} such that

ly| = |x|/2 + (z,2) (mod 2),

where z € {0,1}V satisfies the parity constraints in d. In particular, if we fix z; = 0
then each z; is the parity of all d; along a path from z; to z; in the graph. Let D; ¢ |E|
denote the edges in the path from 2; to z;. Then we can write

(z,x) =)z (5.14)
=2, 2, dizi. (5.15)



Since the diameter of the grid graph is O(y\/n), we may assume each D; has size at
most O(y/n). Thus, we have expressed (z,z) as a sum of O(n3/?) terms of the form
d;x;. Note that any such term d;z; is easy to compute with a single AND gate, since
we have the string = (our input) and string d (the output of the Grid-RPHP circuit)
available.

We now create O(n%?) new output bits, one for each term d;jz; that appears in
the sum above. If we call this string of length O(n3/?) y’, then our final output for
PHP,, 5(n2/2) is the string y (the output of the Grid-RPHP circuit) concatenated with
the string y’. We claim this is a correct solution to our PHP,, 5,32y instance. This
is because |y’| = (z,r) by construction, and hence the output to PHP,, 5,32, which
is the concatenated string (y,y’), has parity

lyl+ [y = |2l/2 +(2,2) + [y'| = |2]|/2  (mod 2),

which satisfies the output condition of PHP,, 5,32

Note that using this reduction, if Grid-RPHP is solved by an AC® circuit of size s
and depth d, then we get an AC° circuit for PHP,, o(n372) of size s+ O(n*?) and depth
d+1. Applying Theorem 71 gives the required bound assuming s < exp(n!/2(d+)). [

5.4 Parallel Grid-RPHP

A common way to decrease the success probability of a problem is to repeat it in
parallel and require success on every instance. We define the Parallel version of
Grid-RPHP to simply be some number of copies of Grid-RPHP where the correctness
condition is that all outputs must be correct. Obviously if there is a QNCY circuit for
Grid-RPHP then there is one for Parallel Grid-RPHP. So the RelQNC® upper bound
in Theorem 59 is clearly true. The remainder of this section is devoted to proving
the lower bound in Theorem 59.

We need to show that Parallel Grid-RPHP becomes harder for ACY circuits, but
let us start with showing that a parallel version of the Parity Halving Problem gets
harder with more copies, and then we will reduce Parallel Grid-RPHP to this. Note
that although the copies of the game are played in parallel, this does not represent
a so-called “parallel repetition result" for Grid-RPHP because different copies of the
game are played by different players.

5.4.1 Parallel Parity Halving Problem

We now define the parallel version of PHP, with £ copies of the problem.

Problem 79 (Parallel Parity Halving Problem, PHPS,’fn). Given k strings xy,...,Ty €
{0,1}" of length n as input, promised that each x; has even parity, output k strings
Y1, - Uk € {0, 1} of length m such that

1
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forall1<i<k.

In other words, PHP;?ffn is simply k independent copies of the Parity Halving

Problem, and the players win if they solve all of the subgames simultaneously. Clearly
a QNC° circuit will have no problem solving this, given k cat states.

Proposition 80. There is a depth-2, linear-size QNC°/qpoly circuit which solves

PHPS’; with certainty. More specifically, the quantum advice is k cat states of size n,

=Rt

The classical lower bound, however, will require some new ideas. It is not always
easy to show that solving many independent instances of a problem is as hard as
solving all of them independently, because of the possibility of correlating success in
one instance with success in another. We use Vazirani’s XOR Lemma [116] to attack
this problem indirectly.

Lemma 81 (Vazirani’s XOR Lemma). Let D be a distribution on F3* and ps denote
the parity function on the set S ¢ [m], defined as ps(z) = ®ics ;. If [Erep[(~1)Ps(®)]| <
e for every non-empty subset S ¢ [m], then D 1is £-2™/2 close (in statistical distance)
to the uniform distribution over F3.

Note that this bound is very intuitive when € = 0. It says that if a distribution
has the property that on every subset of bits, if the induced distribution places equal
mass on even and odd parity strings, then this distribution must be the uniform
distribution.

To get an effective bound in Lemma 81 we need to guarantee that ¢ < 27™/2,
The following simple lemma handles bigger ¢ effectively, but only guarantees that the
probability to sample the all zeros input is small, as opposed to guaranteeing that
the distribution is close to uniform.

Lemma 82 (Special case of the XOR Lemma). Let D be a distribution on Fy. If
[Eren[(~1)Ps®)]| < € for every mon-empty subset S ¢ [m], then, Pr,.p[z = 0™] <
27+ e,

Proof. Fix y € F5*. Let f: {0,1}™ - {0,1} be the indicator function that checks
whether a given input is equal to 0™.
m (1)
f(x) = H ()—H =9 m Z (_1)ps(r) =9 m9g-m Z (_1)ps(w)
i=1 2 Sc[m] @#S5c[m]

Thus,

Priz=0"]=E,.p[f(z)] <2™+2™ > |E,p[(-1)Ps®]|<2™+e. O

oD z+5c[m]

The relevance of the XOR lemma is the following: Consider the task of solving
k instances of some problem with some class of circuits. Say we know that solving
1 instance of the problem is hard, in the sense that no circuit from our class solves
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the problem with probability significantly greater than half on some hard distribution
over inputs. For our task with £ instances we will choose the input distribution to be
this hard distribution on all instances independently. Now define a single bit random
variable for each instance that indicates whether a given circuit correctly solved that
instance on our chosen distribution. We know that for 1 instance this bit, the random
variable we defined, is essentially a coin flip. If we can prove that each bit is essentially
a coin flip, and furthermore that the XOR of any subset of bits is essentially a coin
flip, then we will get that the distribution is essentially uniform. Which means the
probability of getting the all zeros output, which corresponds to the circuit correctly
solving all instances, is exponentially small.

Consider an instance of PHPfffﬁn. If we solve all the instances correctly, then the
parity of the entire output of length Am (all instances included) is the same as half
the entire input’s Hamming weight mod 2. This just follows from the definition of
PHP. If we solve all but one instance correctly, then this condition will not hold. In
general, we fail on an even number of subgames if the parity of the entire output is
the same as half the entire input Hamming weight mod 2. But that is just the usual
condition for the Parity Halving Problem on an input of size kn and output of size
km. The only difference is that each instance additionally has an even-parity input.
Thus we need a stronger version of Theorem 64 which allows for parity constraints
on the input. As in Theorem 64, we prove this theorem in the language of non-local
games.

Theorem 83. Consider the constrained Parity Halving Game on n players, in which
the inputs of dy players are fized, and the remaining n—d, players are partitioned into
dy parts (of size > 2) with each part constrained to some fized parity. The probability
of winning this version of the problem is

Pr[Win] < % + 9 (n-d1)/2+d>

Proof. The proof builds on Theorem 64. The main change is that we need a different
function f, to capture the different promise. Suppose for now that d; = 0. Say the
input bits are divided into sets Sy,..., Sy and constrained to have parity pq,...,pq €
{0,1}. We define f such that

f(x) = 513]1:[1 (iZSk + (_1)Pd(_i)ZSk)

The idea is that 1 (iZ5 + (—3)Z5k) is exactly Re(iZ5+), so it is 0 if the parity on Sy is
odd and 7X Sk otherwise. Similarly, £ (iZ5k — (=4)Z5) is 0 if the parity on Sy is even
and 1% otherwise. Altogether, this means that f(z) is 0 if the promise is violated
and 7%l otherwise.

On the other hand, if we expand f(z), we see that it is a convex combination of
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terms of the form +(+¢)®1(+4)%2---(x¢)®, and we have essentially already argued that

(1) T () () ™| < 272,

It follows that the correlation of (-1)?*** and f(z), denoted by x, is at most g:ﬁ =

2-n/2+d_

The probability of winning the game on a random input satisfying the promise is

1

Pr[Win] < = +27/2+d-1,

DN} =

Plugging d; and ds back in, we have

Pr[Win] <= 49 (n-d )/2+d2—1,

N =

as desired. .

With this result we can now show that the Parallel Parity Halving Problem is
hard for AC® circuits.

Theorem 84 (Parallel PHP is not in RelAC®). Let k = n and m € [n,n2]. Any AC°
circuit F': {0,1}% —» {0, 1} with depth d and size s < exp((kn)1/2?) solves PHPE¥,
with probability at most exp(n?/(m!+°() . O(log s)X4-1)).

Proof. Much like Theorem 71, we assume F’ solves the problem and randomly restrict
it. We pick parameters g = v/log(mk), p = 1/(O(logs)¢! - (mk)1/?) that are similar
to the ones picked in Theorem 71, but adjusted to the input and output lengths. We
apply p-random restrictions. Most of the time this will simplify F' to the point that
F|, e DT(pnk/4) o DT (g —1)™* and p keeps at least pnk/2 variables alive. However,
with probability exp(—Q(pnk)) the restriction will fail, and we are forced to assume
(pessimistically) that F'|, solves the problem perfectly in these cases. This probability
of failure is negligible compared to exp(-n2/(m!*°(1) . O(logs)?41)).

Let us assume the random restriction did its job, and now F|, is computed by
common partial decision tree followed by a forest of depth-¢g decision trees. By aver-
aging argument, it suffices to show that for each leaf A in the partial decision tree,
F), ) solves the Parallel Parity Halving Problem on the legal inputs consistent with
(p, A) with exponentially small probability.

For each leaf in the partial decision tree, A, the circuit F,, has pnk/4 inputs,
mk outputs, and locality 29. By Proposition 65, we may further restrict down to a
subset of Q((pnk)?/(mk229)) inputs so that each output bit depends on at most one
input bit. Finally, we restrict one more time to eliminate subgames where fewer than
say, half the average number of inputs (which is Q((pn)2?/(m227)) are unrestricted.
Subgames with too few inputs may be too easy to win and prevent us from using the
XOR Lemma. This last step kills at most half of the input bits that were alive before
this step.

The remaining circuit, which we will call C, satisfies the following:
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e C has Q((pn)2k/(m?229)) unrestricted inputs.
e Each output bit depends on at most one input bit.

e Each subgame is either fixed or has at least n’ = Q((pn)?/(m22¢)) unrestricted
bits.

Note that there are at least ¢ = Q(p?nk/(m221)) = Q(n') remaining subgames. We
shall show that the probability to win the remaining subgames is at most 2-%(%").

Define a distribution D on ¢ bit strings which runs the circuit C on a random
input satisfying the promise, and outputs a string of bits, w € {0, 1}¢, one bit for each
of the remaining ¢ subgames, which is 0 if the circuit wins the subgame and 1 if the
circuit loses the subgame. We will argue that

[Euep[(-1)7=]] < 27907

for each non-empty S ¢ [¢]. That is, the parity of any non-empty subset of the games
is exponentially close to a coin flip. Once we show this, Lemma 82 applies and says
that the probability to sample 0¢ from D is at most 27¢ + 2-%n") < 2-2(') Thus, we
win with probability 2-%("") which dominates the exp(-£2(pnk)) probability that the
restriction fails.

All that remains to show is that for any non-empty subset of subgames, the
circuit loses an even number of subgames with probability exponentially close to %
Notice that losing an even number of subgames is equivalent to winning a constrained
Parity Halving game on the combined inputs and outputs of the subgames, where the
constraints ensure each subgame has even parity input. For a subset S ¢ [£] of the
subgames, Theorem 83 says that the probability of winning is at most 3 +2-2(5In)+I5l,
since there are at least |S|n’ inputs and at most |S| relevant constraints. This is
maximized when |S| = 1, where we get that the probability of winning is at most
1/2 + 279",

To finish we note that n’ = Q((pn)2/(m224) > n2/(m1+1) . O(log s)2(¢-1)). O

5.4.2 Parallel Grid-RPHP

We are now ready to prove the lower bound for Parallel Grid-RPHP by reduction
to Theorem 84. As before, we define Grid-RPHP®* to be the problem where we are
given k copies of Grid-RPHP,,, and the correctness condition is that all copies are
correct. We are now ready to show the lower bound.

Theorem 85 (Parallel Grid-RPHP is not in RelAC®). Choose k =n. Any ACY circuit
of size s and depth d for Grid—RPHng succeeds on a random input with probability
at most exp(-n'/2-0(1) |O(log 5)24).

Proof. We use the reduction from PHP, 5,32y to Grid-RPHP,, (Theorem 78) on
each of the k instances. Note that the reduction does not change the inputs, and
only manipulates the output bits. Assume C' is a circuit of size s and depth d for
Grid—RPHPSk that succeeds with probability £ (over the uniform distribution over
inputs that satisfy the promise). Then, there exists a circuit C’ of size poly(s) and
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depth d + 1 that succeeds with probability at least € on the same input distribution.
By Theorem 84, with m = O(n3/2), we get that

e< exp(—nl/Q"’(l)/O(log s)Zd),
which yields the bound stated in the theorem. O

This implies the second part of Theorem 59 and completes its proof.

5.5 Relation to Hidden Linear Function Problems

Finally, to establish our main result (Theorem 56), we have to show that our final
problem, Parallel Grid-RPHP, reduces to the 2D HLF problem. Since we have already
established the required hardness for Parallel Grid-RPHP in Theorem 59, we will then
be done.

We start by recalling the general Hidden Linear Function problem (HLF) defined
by Bravyi, Gosset, and Konig [26].

Problem 86 (Hidden Linear Function problem). We are given as input a symmetric
matriz A € {0,1}™" and vector b € {0,1,2,3}". From these, define a quadratic form
¢Fy » Zy as q(u) :=uT Au+bTu (mod 4). Define L, as follows:

£,={ueF3: Vo eF}, quov) =q(u) +q(v) (mod 4)}.

Bravyi et al. [26] show that (i) L, is a linear subspace of FYy, (i) for all u € Ly,
q(u) €{0,2}, and (i) q is linear on L,. Since q is linear on L, there exists a p € F3
such that q(u) = 2pTu (mod 4) for all u € L,. The goal is to output any string p
satisfying this condition.

Theorem 87. There is an NC° reduction from RPHP on any graph G to the HLF
problem.

Proof. As discussed, the Relaxed Parity Halving Problem is well defined for any
connected graph G = (V, E) (Problem 75). Given an even-parity vector z € {0,1}V,
the goal is to output y € {0,1}V and d € {0,1}¥, such that the parity of d on any cycle
is 0, and the unique (up to complement) z € {0,1}V satisfying the parity conditions
implied by d also satisfies
ly| = % +2'z  (mod 2).

Note that if we take the complement of z instead, the condition does not change
because (27 +z7)z =17z = |2/ =0 (mod 2).

We now describe our reduction from RPHP on G = (V, E) to the HLF problem.
In our reduction, n = |V| + |E|. We define the input A € {0,1}™" to HLF from the
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graph G, and the input b € {0,1,2,3}" to HLF from the input z € {0,1}V to RPHP.
Let M € IF|2V "E be the incidence matrix of the graph GG. Then we define A and b as

0 M x
A:(JWT 0), andb-(o),

where the 0 above refers to the all zeros matrix or vector as appropriate. The solution
to this HLF problem is some vector p, which we claim solves the Relaxed Parity

Y

Halving Problem with the identification p = d

). Let us verify this claim.

With this choice of A and b, the quadratic form ¢ becomes

Up
= 2ul, Mug + vhz  (mod 4). (5.17)

q (uv) zupMug + ub, M uy + 27wy (mod 4) (5.16)

Now note that since G is connected, M has rank |V| - 1. Specifically, the column
span {Mw : w € IF!QEI} cF |2V| is the set of all vectors of even parity. Since our input

to RPHP, x ¢ IF|2V', has even parity, there exists a w € IE"QEI such that z = Mw. Let us
show that the vector u is in £,, where

(1)

and 1 is the all ones vector of size |V/|. This means we want that for all v, g(u®v) -

q(u) —g(v) =0 (mod 4). Let us verify this for an arbitrary vector v = ;U)V) using the
E

following calculation (performed modulo 4):

(o) o (o)) -ole) () oo

=2(levy) " Mweve)+(1ewvw) z-21"Mw) - 1"z - 20T Mvg - vl

(5.19)
=2(1+vy) " M(w+vg) + (lovy) 'z - 201" Mw) - 172 - 20T Mvg —-vlz  (5.20)
= 21" Muvg) + 20X Mw + (1@ vy)Tz - 1Tz —vlx (5.21)
=20lz+(lovy) z-1Tr -0l (5.22)
=20fz+ (1-wy) 2 -1z -0vl2 (5.23)

(5.24)

=0.

In eq. (5.20), we used that for a,b € {0,1}, we have 2(a ® b) = 2(a + b) (mod 4).
In eq. (5.22) we used Mw = z (mod 2) and that 17 M = 0 (mod 2), since M is an
incidence matrix and any column has exactly two ones. In eq. (5.23) we used that for
any a € {0,1}, 1®a=1-a.
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Since u € £, and g is linear on £,, we have

g(u) = 2pTu =2 (Z)T (110) = 2(y"1 + d"w) (mod 4). (5.25)

To prove that the output of HLF on our chosen inputs is a valid output for RPHP,
we need to verify the two conditions in Problem 75. The first condition requires d
to be related to some z € {0,1}V; the entries of d are differences (along edges) of
two entries in z. If such a z existed, then we would have d = M72. As noted after
Problem 75, for z to exist it suffices to show that the parity of d along any cycle is
0. In other words, we need to show that if ¢ € {0,1}# is the indicator vector of any
cycle, then dTc =0 (mod 2).

To show this, note that for any cycle we have Mc = 0 (mod 2). Since ¢(9) = 0,
we also have

q ((zg) ® (2)) = 2ul, M(ug ®c) +ulx  (mod 4) (5.26)
= 2ul Mug + 2uE Me + ubx  (mod 4) (5.27)
= q(Z;) +q(2) (mod 4). (5.28)

In other words, (9) is in £, for all cycles. Thus,

T
0=gq ((C)) =2 (chl) (g) =2dT¢ (mod 4),

which implies that d7c =0 (mod 2).

Now that we know d = M7z for some z, it follows that d"w = 2T Mw = 27z, and
therefore from eq. (5.25) we have q(u) = 2(|y| + 27z). On the other hand, we can also
evaluate ¢(u) from the quadratic form definition, eq. (5.17), which gives

q(u) =2(1TMw) + 172 (mod 4) (5.29)
=3Jz| (mod 4) (5.30)
= |z| (mod 4), (5.31)

where the last equivalence follows from the fact that x has even parity.

Thus solving the HLF problem on our chosen inputs produces a solution such that
2ly| + 22Tz = |z| (mod 4), which satisfies the second condition of problem 75. Hence
the outputs to HLF, y and d (and implicitly z), satisfy the conditions of the Relaxed
Parity Halving Problem. O

The main problem studied in Bravyi, Gosset and Konig [26] is actually a version
of HLF on an N x N grid called the 2D Hidden Linear Function problem (2D HLF).
More specifically, in 2D HLF, the matrix A is supported only on the grid in the sense
that A;; = 0 if there is no edge from vertex ¢ to vertex j on the 2D grid. The reduction
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in Theorem 87 roughly preserves the topology of the graph, so it is not difficult to
show a reduction from Relaxed Parity Halving on the 2D grid to the 2D HLF.

Corollary 88. There is an NC° reduction from Grid-RPHP to 2D HLF.

Proof. The plan is use the same reduction to HLF as above, and observe that the
reduction actually creates a 2D HLF instance. Obviously, RPHP on a grid starts
from a grid graph. The reduction creates a matrix with |V|+ |E| rows and columns
from this graph on V| vertices. We can think of the reduction as transforming the
graph by creating a new vertex for each edge, then splitting each edge into two,
both incident at the new vertex. The matrix A is then supported on this transformed
graph. Fortunately, the transformation takes the nxn grid graph to a subgraph of the
(2n=1)x(2n-1) grid graph. This means the HLF instance constructed when starting
from a 2D graph is actually a 2D HLF instance, which completes the proof. L]

Furthermore, we can solve multiple instances of Grid-RPHP by solving a single
instance of 2D HLF.

Lemma 89. Consider an instance of HLF with input A € {0,1}™" and b€ {0,1,2,3}"
such that A is block diagonal with blocks Ay, ..., Ay (all square matrices of various
sizes), and the corresponding division of b is by,...,by. Then any solution p to the
instance (A,b) is a direct sum of solutions p; to instances (A;,b;) of HLF.

Proof. It suffices to prove the result for k£ = 2 blocks, since we can break up k& blocks
into two blocks of size 1 and k£ -1 and prove the claim by induction.

Now let u = (u1,uz). Then the block structure of A gives q(u) = q1(uy) + ga(us)
(mod 4), where

() =uf Ajug +bTu; (mod 4), and  go(ug) := ul Aguy + bTuy  (mod 4).
(5.32)

Suppose we have u = (uy,u3) € £,. By definition, for all v = (vy,vy) € {0,1}" we
have
q(u1 ® v, up ® v2) = q(ur, ug) + q(v1,v9)  (mod 4).

By rearranging the terms, we have
g(ur ®@v1) = qr(ur) + qr(vr) + @a(ug) + go(v2) — ga(ug ®v2)  (mod 4).
In particular, if v = 0 then for all v; we have
q1(uy ®v1) =qi(uy) + 1 (vy) (mod 4),

which proves u; € £,,. Similarly, us € £,,, and so we have that £, =L, & L,,.
Finally, suppose p = (p1,p2) is a valid solution to HLF on input (A,b). For all
u = (uy,ug) € L, we have

qi(uy) + qz(ug) = q(u) = 2pTu = 2p{u1 + 2p§ru2 (mod 4).
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In particular, for all u; € £,, we have (u;,0) € £, and hence
q1(uy) =2pTu;  (mod 4)

for all u; € £,,. It follows that p; is a solution to HLF on the instance (A, b;), and
(by symmetry) p, is a solution to HLF on the instance (As, bs).

Conversely, if p; and p, are solutions to (Ag,b1) and (Asg,bs), then p = (p1,p2) is
a solution to (A, b) since

q(u) = q1(ur) + g2(ug) = 219{“1 + nguz = 2PTU (mod 4),

and u € L, implies u; € L, and ug € L, . O
Corollary 90. Parallel Grid-RPHP reduces to 2D HLF.

Proof. The parallel version of Grid-RPHP is just many instances of RPHP which we
are expected to solve simultaneously. If we reduce each instance to a 2D HLF problem,
then combine the instances as in the lemma above, then solving the combined HLF
instance gives solutions to all the individual HLF instances, and hence solutions for

all the parallel Grid-RPHP instances. O

5.6 Parity Bending Problem

We now move on to the Parity Bending Problem discussed in the introduction.

Problem 91 (Parity Bending Problem, PBP,,). Given an input x € {0,1}", output a
string y € {0,1}™ such that

ly=0 (mod2) if |£|=0 (mod 3) and (5.33)
ly=1 (mod 2) otherwise. (5.34)

Our goal is to prove a quantum advantage for QNC° /8 circuits. Theorem 60 states
our main results about this problem.

Theorem 60. The Parity Bending Problem (PBP,) can be solved by a depth-2,
linear-size quantum circuit starting with the [B,,) state with probability at least 3/4 on
any input. But there exists an input distribution on which any AC°[2]/rpoly circuit of
depth d and size at most exp(nﬁ) only solves the problem with probability % + Fil(l_)

Most of this section is devoted to a proof of Theorem 60. We begin by introducing
the quantum circuit that solves this problem (Theorem 92) in Section 5.6.1, and then
prove the classical lower bound (Theorem 96) in Section 5.6.2. Finally, in Section 5.6.3
we establish Theorem 61, which shows that a parallel version of the game can further
separate the success probabilities of classical and quantum circuits.
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5.6.1 Upper bounds

As in the previous section, the QNC° circuit solving the Parity Bending Problem can
be thought of as an implementation of a quantum strategy for a cooperative non-local
game. In the Parity Bending Problem, the players are each given one bit of an n-bit
string, and want to give an output satisfying the same criterion as in Problem 91.
It is known that a quantum strategy can win this game with probability larger than
classically possible, although even quantum players cannot achieve probability 1 [14].
We now describe the quantum strategy:.

Theorem 92 (Quantum circuit for PBP,). There is a quantum strateqy for the
Parity Bending Problem which wins with certainty on inputs with Hamming weight
0 (mod 3) and with probability 3/4 on any other input. For an n-player game, this
strategy only requires an n-qubit cat state, [&,).

Proof. The quantum strategy for this game is similar to the one for Problem 62
described in Theorem 63 and Figure 5-1, except that the controlled-S gates, which
add a phase of i if both qubits are 1, are replaced with controlled-R,(27/3) gates,
which add a phase of €2™/3 when both qubits are 1. We define R,(27/3) to be the
matrix ((1) 62,9”3 )

We now describe the strategy in more detail. Each player starts with their input
bit x; and a single qubit of the [&,) state. If their input bit is z; = 1, they apply a
rotation R,(27/3) to their qubit of the cat state, otherwise they do nothing. This is
equivalent to applying a controlled-R,(27/3) gate with x; as the control qubit and
their qubit of the cat state as the target. Then they apply a Hadamard gate to their
qubit of the cat state and measure that qubit.

Given an input string z, after the controlled rotations and before the Hadamard
gate, the cat state has been transformed into

n z; L ny 4 1" _L ny 4 ex 27TZ|$| n
g(Rz(zw/B) )ﬂ(m 1 >)_ﬁ(|0) p( 2 )|1 )). (5.35)

If |z] =0 (mod 3) this state is just the cat state. As noted in Section 5.2

V2

where |Weyen) is a uniform superposition over all even parity n-bit strings. So we see
the players win the game with probability 1 on an input with Hamming weight 0
(mod 3).

If |z|] = 1 (mod 3) or |z| = 2 (mod 3), the state after rotation and before the
Hadamard gates is given by

Hen (i(|0”> . |1">)) - Weven) (5.36)

L
V2

Note that this state lives in the span of the states \/ii(|0") +[1)) and %([U") -[17)),

(10") + exp(27i/3) 11"}).

147



and that
Ho* (%00’1) ; |1">)) - o), (537)

with |W,qq) being the uniform superposition over odd parity n-bit strings. Then
the players win the game given input with Hamming weight 1 or 2 (mod 3) with

probability exactly
2 3

= l(2 +2cos(+27/3)) = 1

4

5071 (17) (07) + exp(=2rif3) 1) -

It is clear that the strategy described in Theorem 92 can be implemented by a
QNCO/@ circuit. By the analysis given above it is also clear that this circuit succeeds
at Parity Bending with worst case probability 3/4, and probability 5/6 against inputs
drawn from a uniform distribution.

5.6.2 Lower bounds

The main tool used in this section is a reduction from the Parity Bending Problem
to the Mod 3 problem. We begin with a formal definition of the Mod 3 problem.

Problem 93 (Mod 3). Given an input x € {0,1}", output y € {0,1} such that y =0
if |x] =0 (mod 3), and y = 1 otherwise.

For our purposes, the key feature of Mod 3 problem is that it is hard to solve for
AC°[2] circuits, as shown by Smolensky [108]:

Theorem 94 (Mod 3 is not in RelAC°[2]). Any AC°[2] circuit of depth d that com-
putes the Mod 3 function (Problem 93) must have size exp(Q(nﬁ)).

From this worst-case lower bound it is not too hard to obtain an average-case
lower bound.

Lemma 95 (Average-case lower bound for Mod 3). There ezists an input distribution

on which any AC°[2]/rpoly circuit of depth d and size at most exp(nﬁ) only solves
the Mod 3 function (Problem 93) with probability § + —ay -

Proof. Toward a contradiction, assume that for all input distributions there exists
an AC°[2]/rpoly circuit of depth d and size exp(nﬁld) that solves the Mod 3 problem
with probability 1/2 + ¢ for £ = 1/n°(1).

Then by Yao’s minimax principle, there exists a probability distribution over
AC°[2]/rpoly circuits, or equivalently over AC°[2] circuits, that solves the Mod 3
problem with probability 1/2+¢ on every input. By sampling O(1/£2) AC°[2] circuits
from this probability distribution and taking the majority vote of their outcomes, we
get a new ACD[Z] circuit that solves the Mod 3 problem with probability at least 0.99
on every input. Now 1/g2 =n°1)  and it is easy to construct a depth-d circuit of size
exp(mO/?) to compute the majority of m variables [61]. Hence this majority circuit
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has depth d and size exp(n°(t/), which doubles the depth and does not significantly
increase the size of our circuit.

Now we can amplify success probability 0.99 to 1 — exp(—n) by again sampling
O(n) circuits that succeed with probability 0.99 and taking their majority vote. This
majority vote can be performed in AC®, since we only need to perform an approximate
majority as constructed by Ajtai and Ben-Or [7].

Since this distribution over AC’[2] circuits fails with probability less than 2-7,
there exists one circuit in the distribution that works for all inputs. This yields
an AC’[2] circuit of depth 2d + O(1) and size exp(nﬁ) computing Mod 3, which
contradicts Theorem 94. O

We can finally use this average-case bound to show our lower bound for the Parity
Bending Problem.

Theorem 96 (PBP is not in RelAC’[2]). There exists an input distribution on which
any AC°[2]/rpoly circuit of depth d and size at most exp(nﬁ) only solves PBP,, with
probability % + ﬁ

Proof. Observe that any AC°[2] circuit which solves the Parity Bending Problem with
some probability can be extended to one that solves the Mod 3 problem with the same
probability by adding a final parity gate over the output of the original circuit. The
result then follows from Lemma 95. O

5.6.3 Parallel Parity Bending Problem

Now our goal is to establish Theorem 61, which strengthens the separation shown
above. In this section we will consider input and output strings over the ternary
alphabet {0,1,2}. Since we are talking about Boolean circuits manipulating these
symbols, we actually mean that we encode these trits in binary using some canonical
encoding, e.g., {0 » 00,1 » 01,2 » 11}. For a vector z € {0,1,2}” we denote by
|z = ¥ty 2.

To simplify our lower bounds, we modify the Parity Bending Problem to accept
inputs drawn from {0,1,2}" when we move to the parallel version of the problem.

Problem 97 (k-Parallel Parity Bending Problem). Given inputs xy,. ..,z with x; €
{0,1,2}™ for all i € [k], produce outputs yi,...yx € {0,1}" such that y; satisfies:

[yl =0 (mod 2) and |z;]=0 (mod 3) or (5.38)
lyil=1 (mod 2) and |z;]#0 (mod 3) (5.39)

for at least a 2 +0.05 fraction of the i € [k].

This problem is & copies of a problem very similar to PBP, except that the inputs
are now in {0, 1,2} instead of being in {0, 1}. But the quantum algorithm described in
Section 5.6.1 can be easily modified to work in this case, by applying a controlled gate
that applies the phase exp(27i/3) when the control and target are 11, and applies
the phase exp(47i/3) when the control and target are 21. By using this strategy for
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each individual gate, we get a QNC®/qpoly circuit which solves any given instance of
the Parity Bending Problem with probability at least 3/4. Since the Parallel Parity
Bending Problem only requires 2/3 + 0.05 of the instances to be solved correctly, by
using this quantum strategy for each instance independently, the quantum circuit
solves the Parallel Parity Bending Problem with probability 1-o0(1). This establishes
the quantum upper bound in Theorem 61.

We now show that this problem is hard for AC°[2]/rpoly circuits. We start by
introducing a related problem:

Problem 98 (3 Output Mod 3). Given an input x € {0,1,2}", output a trit y €
{0,1,2} such that y = |z| (mod 3).

As expected, an AC°[2] circuit cannot solve this problem. In fact, on the uniform
distribution, an AC°[2] circuit succeeds with probability close to 1/3, which is trivially
achieved by a circuit that just outputs 0. The easiest way to see this is by using
random self-reducibility.

Lemma 99 (Worst case to average case). Suppose there is an AC°[2]/rpoly circuit
C of size S and depth d that solves Problem 98 on a uniformly random input with
probability 1/3 + € for some €. That is,

Pr [C(z)=lz] (mod3)]= é +e.

xe{0,1,2}"

Then there exists an AC°[2]/rpoly circuit C' of depth d+O(1) and size S+O(n) such
that for any x € {0, 1,2},

Pr[C'(z) =|z| (mod 3)]==+¢, and (5.40)

e C»J"—‘

Pr[C'(z) =|z|+1 (mod 3)]=Pr[C'(z)=|z|+2 (mod 3)]=

(5.41)

W=
N ™

Proof. Although AC® circuits cannot compute |z| mod 3 for a ternary input string
x € {0,1,2}", it is possible for an AC° circuit to sample a uniformly random vector
be{0,1,2}" and its Hamming weight mod 3, |b| mod 3, as follows.

Sample random trits” ¢ € {0,1,2}™ and set b; = ¢;;1 —¢; forall 1 <i<n-1 and
b, = —¢,. We claim that b is a uniformly random string over {0,1,2}". To see this,
observe that b, equals a uniformly random trit, and furthermore for every 7 € [n - 1],
b; is uniformly random over {0,1,2}, even conditioned on c¢;,1, ..., ¢,, and therefore b,
is also uniformly random conditioned on b;,1,...,b,. It follows that b is a uniformly
random string over {0, 1,2}". However, the advantage of this method of producing a
random string (as opposed to simply sampling a random string) is that we know [j|

since
n—1

b= bi= ) (cis1 —ci) —cn=-c1 (mod 3).
i=1

i=1

"Technically, an ACY circuit cannot sample a trit with probability exactly 1/3, but the probability
can be made exponentially close to 1/3.
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Now we use a random self-reduction to construct the claimed circuit C’. The
circuit C” first samples a random a € {1,-1} and a random b € {0, 1,2}" with known
Hamming weight |b|, as described above. Then let C’ output

_ C(a-z+bmod 3) — |b|
a

C'(x) (mod 3).
It is clear that |a -z + b = alz| + [ mod 3, and that a -z + b is uniformly random
regardless of a and z, so we have

Eg[C’(az) = |z|+k (mod 3)]= I;br[C(a ~x+b)=alr|+|bl+ak (mod3)]  (5.42)
=§£[C(a~x+b) =la-x+bl+ak (mod3)] (5.43)
= Pr [C(y)=y|+ak (mod 3)]. (5.44)

ye{0,1,2}" a

In particular, when k£ = 0 we have
Pr[C"(x) =fs] (mod 3)] = Pr[C(y) =|y| (mod 3)] = % ‘e

When k£ # 0, we observe that ak # 0 is uniformly random and independent of y, so

1
Pr[C'(z) =|z|+1 (mod 3)]=Pr[C'(z) =|z|+2 (mod 3)]= 3~ %
Observe that the sampling circuit above is of constant depth and linear size. The
modular arithmetic performed in section 5.6.3 can be performed by a constant-sized
circuit. Overall this reduction increases the depth by a constant and the size by

O(n). d

Lemma 100 (Average-case lower bound). An AC°[2]/rpoly circuit of depth d and
stze at most exp(nﬁld) solves Problem 98 on a uniform distribution with probability
at most 5 + —ary.

Proof. Let A be the circuit that solves Problem 98 on the uniform distribution with
probability % + . By the worst-case to average-case reduction in Lemma 99, we get
an AC°[2]/rpoly circuit (of similar size and depth) that succeeds with probability 1+
on every input, and outputs each wrong answer with probability % -5

Construct a circuit for the Mod 3 Problem (Problem 93) such that on input z,
e with probability i, it outputs 0,
e with probability 2, it outputs 0 if A(z) =0 and 1 otherwise.

If |z| mod 3 = 0 then the circuit outputs 0 w.p. 1 +3(3 +¢) =4 + 2. If |z mod 3+ 0
then the circuit outputs 1 w.p. 2(3+e+3—-%5) = 5 + 3e. In other words, the circuit
solves the Mod 3 Problem with probability at least % + %6 on arbitrary inputs. By
Lemma 95, this implies € = ng—l(l) 1

00| W |
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From this we get the following corollary.

Corollary 101. Let C be an AC°[2]/rpoly circuit outputting a trit. For any fixed x €
{0,1,2}", we denote by C(z) the random variable giving the output of the randomized
circuit C' on input . Then, for all i€ {0,1,2}

1

g—n‘WJsmgzwicuo-mzi mmd@]s%+nﬂﬂl (5.45)
Proof. Since
2
> Pr [C(x) —lz|=4 (mod 3)] =1, (5.46)
i=0
it suffices to show
Pr[C(x)-lel=i (mod3)]< é + 00 (5.47)

for ¢ € {0,1,2}. For ¢ = 0 this claim is exactly the statement of Lemma 100. For
i€ {1,2} we note a circuit satisfying

1
Pr[C(z)-|zl=i (mod3)]> g+ (5.48)
can be converted to one violating Lemma 100 by subtracting ¢ from every output. U

We need an analog of Vazirani’s XOR Lemma for finite groups [91, Lemma 4.2].

Lemma 102 (XOR lemma for finite abelian groups). Let X be a distribution on
a finite abelian group G such that |E[¢(X)]| < € for every non-trivial character 1.
Then X is e\/|G| close (in statistical distance) to the uniform distribution over G.

We now consider the parallel version of the previous problem and show that it is
hard.

Problem 103 (k-Parallel 3 Output Mod 3). Given inputs x1, ...,z € {0,1,2}" for
all i € [k], output a vector g € {0,1,2}* such that

yi = || (mod 3) (5.49)
for at least a 5 +0.01 fraction of the i € [k].

Theorem 104. There exists a k € ©(logn) for which any AC°[2]/rpoly circuit solves
the k-Parallel 3 Output Mod 8 Problem (Problem 103) with probability at most n~1).

Proof. Our proof is be similar to that of Theorem 61: we will first prove that solving
the sum of any subset of subgames is hard, and then apply Lemma 102 to deduce
that winning more than 1/3 + 0.01 fraction of the games is hard.
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Let C' be an AC°[2]/rpoly circuit trying to solve Problem 103. Let yi,...,yx be
its k output trits. We consider the distribution X over k trits defined by

k

@i|%| -y (mod 3)
for a uniform input z € {0, 1,2}*. We shall show that the distribution X is close to
the uniform distribution over {0, 1,2}*.

Let x, be a non-trivial character of F¥. That is x4(z) = wZt1%% where w is a
third root of unity, and a € F5. To show that X is close to uniform it suffices to
show that the expectation of x,(X) is small for all non-zero vectors of coeflicients
ap,...,ax €{0,1,2}.

Given a € {0, 1,2}* let S be the support of a, i.e., the set of indices on which a; # 0.
Given strings 1, ...z € {0,1,2}" finding trits yi, ... yx satisfying

Y ailzi| =Y ay; (mod 3) (5.50)
€S i€S
is at least as hard as solving the 3 Output Mod 3 Problem on the concatenated input
(a;x;)ies. This is true since any circuit solving the former can be converted into a
circuit solving the latter by adding an depth-2 circuit with exp(|S]) < exp(k) < poly(n)
gates that adds the |S| trits a;y; modulo 3. However, the concatenated input (a;z;)ics
is a uniform vector in {0, 1,2}™5!. Corollary 101 then gives that

Y ailleil - y:) (mod 3) (5.51)

€S
has an #; distance at most n~**1) from the uniform distribution over {0,1,2}. Thus,
[E[xo(X)]| < n?.

Applying Lemma 102 with G = Z¥ and X the distribution of the random variables
®F |zi| — y; (mod 3) gives that X has ¢; distance

n~2) . \/3k (5.52)

from the uniform distribution on {0, 1, 2}*.

To finish the proof, we note that by Chernoff’s bound, the probability of drawing
a string from the uniform distribution over {0, 1, 2}* with more than a £ +0.01 fraction
of its outputs 0 is bounded by exp(-€(k)). Then we see the probability of drawing
a string from X with more than % +0.01 fraction of zeros is bounded above by

=) \/3E 4 pm0k) = m Q1)+ (210g5(n)) 4 o-K) (5.53)

To complete the proof, we note there is some k € ©(logn) for which the above sum is
bounded above by n=(1), O

Theorem 105. There exists a k € O(logn) for which an AC°[2]/rpoly circuit succeeds
on the k-Parallel Parity Bending Problem with probability at most n~1),
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Proof. We show a circuit solving the Parallel Parity Bending Problem can be reduced
to one solving Problem 103 with success probability close to % the original success
probability.

This reduction is straightforward : given a solution y1,...y; to Problem 97 we
convert to a solution y{,...,y; to Problem 103 by setting v/ = 0 if |y;| = 0 (mod 2),
and y! equal to a random choice of 1 or 2 if |y;| = 1 (mod 2). The expected number
of successes is at least half the number of successes in the original instance, since a
success on input ¢ with |z;] = 0 (mod 3) remains a success with probability 1, and a
success on an input ¢ with |z;| (mod 3) € {1,2} remains a success with probability 3.
Concentrating around this value completes the proof. ]

This establishes the classical lower bound in Theorem 61.
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Chapter 6

Low-Depth Quantum Circuits:
Interactive Simulation

6.1 Introduction

This is the second of the two chapters on low-depth quantum circuits. Shallow circuits
are a good place to look for a quantum advantage, since the current error rates of
quantum devices cripple their ability to implement deep quantum circuits. Separately,
low-depth quantum circuits are also studied for their connection to low-depth classical
circuits, which have proven a fruitful area of study. All of our arguments for low-depth
circuits can be found at the start of Chapter 5.

The two chapters share a connection to a recent result of Bravyi, Gosset, and
Konig [26] which offers the first practical, unconditional quantum advantage, between
RelQNC® and RelNC®. The relation problem they introduce is called the “2D Hidden
Linear Function Problem” (2D HLF), and it can be implemented by a quantum
circuit of constant depth, using only classically controlled Clifford gates, between
adjacent qubits on a grid (simultaneously hitting all of our themes). Furthermore,
they show that a comparable classical circuit cannot solve 2D HLF, without making
any assumptions.

This work spurred a number of follow-up papers [38, 76, 27, 120|, and two in
particular motivate this work: Bravyi, Gosset, Konig, and Tomamichel [27], and Bene
Watts, Kothari, Schaeffer, Tal [120] (which is the subject of the previous chapter). In
[27], the authors give a new problem solvable by a one-dimensional (i.e., the qubits
are arranged in a line) constant-depth quantum circuit, but remains impossible for
classical constant-depth circuits. Then they show how the problem (and others like it)
can be transformed to one solvable by noisy quantum circuits with high probability,
albeit on a 3D array of qubits. Bene Watts et al. show that 2D HLF is hard for a
slightly more powerful family of circuits, AC®, consisting of constant-depth circuits
of polynomial size with unbounded fan-in AND and OR gates. This result is also
unconditional.

The goal of this chapter is to further investigate the complexity of 2D HLF and
related problems, and offer new hard problems which minimize the dimensionality,
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number of qubits, circuit depth, etc. as much as possible. The main result is an
interactive task which can be solved by a constant-depth classically-controlled Clifford
circuit, but which we argue is ®L-hard to simulate classically!. Note that for our
purposes, simulation means returning any string of measurement outcomes which
occurs with nonzero probability in a genuine execution of the circuit, resulting in
a relation problem (output any string satisfying the above relation) rather than a
sampling problem. Unfortunately, we conjecture that there is no black-box hardness
reduction to prove that these problems are classically hard. That is, we believe
a quantum device executing the circuits does not help solve any classically hard
problem, but a classical simulation of the circuit does require the power of NC' or
L.

To leverage the difference between classical and quantum simulation, we must
slightly strengthen our notion of simulation to be interactive. Specifically, we are
interested in a task where the quantum device (or classical simulator) is told to
implement a constant-depth Clifford circuit and measure all but O(1) qubits. Then
in a separate second round of interaction, once the device has revealed (or at least
committed to) the measurement outcomes, it is told how to measure the remaining
O(1) qubits. We believe this is a reasonable task for a quantum device, in the sense
that if the device can execute constant-depth circuits then all we are asking is for a
tiny portion of the qubits to be measured apart from the rest.? Under this interactive
model, we use the fact that we can rewind the classical simulator to an earlier state,
an idea common in security proofs for (interactive) cryptographic protocols. The
ability to rewind is not physical, and is the key that separates a quantum device from
a classical simulation, which allows us to prove the main hardness result.

6.1.1 Proof Outline and Main Ideas

We give two hardness results based on the same general framework:

1. Simulating a sequence of Clifford gates is computationally hard, in the sense
that the final quantum state contains the solution to a hard decision problem.

2. Using ideas from measurement-based quantum computation, we can collapse a
sequence of Clifford gates to a constant-depth circuit, but we introduce Pauli
errors on the final quantum state.

IWe also have an NC*-hard interactive task, which is weaker than the ®L result since NC! c L ¢
®L, but the problem has other advantages like error correction, and weaker topological requirements
on the qubits/gates.

2 A fair objection is that the qubits of the device could have a limited lifespan, and then a device
capable of executing constant-depth circuits might fail if there is too much delay between the rounds
of interaction. For example, if the second round input is determined by a lengthy computation on
the first round output, then it might delay the second round long enough that the qubits expire
and the quantum device fails. One can define the task such that the delay is short, say by requiring
that the second round input only depends on the first round in a way that can be computed very
efficiently, e.g., in constant depth. It turns out that in our hardness reductions, we ignore the first
round output (i.e., it is only important that the simulator/device commits to a string, not the string
itself) and choose the second round input at random.
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3. Make the problem interactive, so that the classical simulator (but not the quan-
tum device) gains the ability to rewind.

4. Show how the classical simulator can recover information about the quantum
state by rewinding, even though a quantum device cannot learn anything.

5. Use random self-reducibility to repeat the process and accumulate enough in-
formation about the state to solve the decision problem.

The first result (in Section 6.4) proves NC'-hardness for a classical simulating a quan-
tum device as it measures a cluster state on 2 x n qubits. This is the conceptually
easier of the two results, so we put it first to introduce the techniques.? The second
result (see Section 6.5) proves @L-hardness for a classical simulation of measuring a
state on an poly(n) x poly(n) grid of qubits. Let us walk through the main proof ideas
one at a time.

We build our hardness results on the difficulty of classically-controlled Clifford
circuits, i.e., a sequence of classically-controlled Clifford gates as described in Chap-
ter 2. That is, there is a fixed sequence of Clifford gates and a classical input which
tells us whether or not to apply each gate in the sequence, much like a branching
program. The problem is to simulate (i.e., output a string of measurement outcomes
with nonzero probability) the sequence on a fixed input state, and clearly the diffi-
culty of this problem varies depending on the number of qubits and the gate set (we
may take only a subgroup of the Clifford gates). We show that simulating a sequence
of Clifford gates on two qubits is NC*-complete, by first characterizing the group of
two-qubit Clifford gates and applying a result of Barrington and Thérien [13]. We
also show that simulating a sequence of CNOT, CSIGN, and Rz gates on n-qubits
is ®L-hard, by a simple reduction from known éL-hard problems, e.g., in Damm [39]
(recall Section 2.4). On the other hand, we slightly extend a Clifford simulation result
of Aaronson and Gottesman [4] to claim that classically controlled Clifford gates can
be simulated in @L (even sampled, assuming randomness is available).

However, the simulation problems outlined above are unsuitable because the
natural quantum implementation (i.e., literally executing a sequence of classically-
controlled Clifford gates, then measuring) is not constant depth. We need to ad-
just the problem to make it solvable in constant depth.* We use an observation of
Raussendorf, Browne, and Briegel [94] that their procedure for measurement-based
quantum computation works without adaptivity for Clifford circuits. Ordinarily their
technique introduces errors in the form of Pauli operators (they call them byproduct
operators), which must be fixed adaptively, with a layer of adaptivity (or more) for

3The NC! result is not just included for presentation; the result is also on a one-dimensional grid
of qubits, uses far fewer qubits per simulated gate, and the hardness result carries over when the
classical simulator can err with some small probability.

4Interestingly, it is known that any Clifford circuit has a constant depth implementation (using
©(n?) ancillas) using unbounded fan-in parity gates (or equivalently, fan-out gates). This is an
easy consequence of Moore and Nilsson [84], where they show how to implement CNOT circuits in
constant depth (actually ©(logn)-depth, but only because they insist on expanding the unbounded
fan-in gates as trees of constant fan-in gates), and the Aaronson-Gottesman decomposition of Clifford
circuits into constantly many layers of single qubit gates and CNOT circuits.
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each layer of the original circuit. When all the gates are Clifford, however, the Pauli
errors can by pushed (via conjugation relations) through the gates to the end. In prin-
ciple, the final Pauli errors can be computed (in ®L), but since this is too expensive
for our hardness reductions, the Pauli error is unknown to us.

Interactivity is a critical component of our result. Recall that we want to find
some task which a constant-depth quantum circuit can solve, but such that a classi-
cal simulator for the task solves hard problems. One way to prove this would be to
show that any oracle for the task, quantum or classical, can be used to solve compu-
tationally hard problems. Alas, we conjecture the exact opposite: a constant-depth
quantum circuit cannot perform any computation that would help solve NC!-complete
problems, let alone @L-complete problems. Our hardness proof must therefore use
the fact that the simulator is classical at some point. We achieve this by making the
task interactive, which gives us the following key difference. In between rounds of the
protocol, one can look inside the device, quantum or classical, at its internal state.
Quantum state famously cannot be copied or cloned, but classical state can, meaning
that, for classical devices only, one can save the internal state and restore it at a later
time. This immediately gives any classical simulator the additional power to rewind,
in our case from the end of the interaction to beginning of the second round. With
this power, we can measure (in simulation) the same O(1)-qubit state many times,
and even in different bases.

The power to measure a state repeatedly, under multiple different bases, would
seem to be sufficient to learn the state by tomography. However, recall that we define
simulation to be returning measurement outcomes that are possible (i.e., occur with
nonzero probability), rather than sampling measurement outcomes. In particular,
the classical simulator may be designed adversarially to thwart our attempt to learn
the state, or prove a hardness result in general. Standard tomography results de-
pend on measurement outcomes being random, not adversarial, so they break under
this model. Instead, we show we can use measurements from the magic square game
[81] to force the classical simulator measure both outcomes for some Pauli measure-
ment. This proves the state is not stabilized by the Pauli operator (or its negation),
which rules out a small number of Clifford states. In this way, we can learn a small
piece of information about the state, even if the measurement outcomes are chosen
adversarially.?

Finally, we have the ability to learn a non-stabilizing Pauli operation for the state,
but it could be adversarially chosen. In particular, if we need to decide whether a
state is, e.g., [00) or |++), then there are many choices of Pauli operators which do
not distinguish the two (e.g., YI stabilizes neither).

5 Alternatively, one could define the task to simulate in the sampling sense and use conventional
tomography to skip this step. However, the result would be weaker (any kind of error-free sampling
would imply our relational simulation) and it is somewhat difficult to define sampling so that it
interacts correctly with interactivity and rewinding. To make it work, we need the second round
to take fresh bits of randomness (so they can be changed after rewinding) and sample a random
measurement outcome each time. Weaker notions of sampling will not suffice.
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6.2 Background

In this section, we introduce the necessary background that has not already been
covered in Chapter 2. We will briefly discuss how the Clifford group interacts with
phase, and the rest of the section is an introduction to measurement-based quantum
computation, and a lengthy analysis via the ZX-calculus.

6.2.1 Clifford modulo Pauli, and Pauli modulo Phase

Due to the limitations of measurement based quantum computation (which we de-
scribe in more detail in the next section), our results will usually implement Clifford
operations up to a Pauli correction. That is, instead of implementing C' € C,,, we im-
plement C'P for some P € P,,. In principle, we can compute P from the measurement
outcomes, and for a fixed circuit it is always an affine function of the measurements.
However, in all the cases we are trying to prove hardness, the problem of computing
P is just as hard as the problem we are trying to reduce to, so we are unable to
compute P in the reduction. Instead, we must be content to perform any Clifford
operation in the same coset as the one we asked for, and we must talk about Clifford
operations, Clifford states, and Pauli stabilizers modulo P,,. Naturally, this leads us
to work with several quotient groups.

Since P, is normal in C,,, the quotient group C,,/P,, is well-defined. When we
assert that two Clifford operations C1, Cy € C,, are equivalent modulo Paulis, or write
C, = Cy (mod Py,), we really mean that the cosets C1P,, and CyP,, are equal, or
equivalently, C,C;! € P,,,. Another way to characterize equivalent Clifford operations
is by their action (by conjugation) on the Paulis.

Lemma 106. Define the homomorphism ¢c: Py = P where ¢pc(Q) = C o Q for
CeCp and Q € Pp,. Two Clifford operations C1,Cy € C,, are equivalent modulo Paulis
if and only if their action on Pp,[ 2., i.e., ¢y (Q) = dc, (Q) (mod Z,,) for all Q € P,,.

Proof. Let C € C,, be a Clifford operation. First, it is clear that the map ¢c: P,,, = Pp
such that ¢c(Q) := C e @ is a homomorphism. Since Z,, commutes with C, we have
dc(Zm) = Zm. Hence, modding out by Z,, gives q;c:Pm/Zm - P/ Zm. The formal
claim is that ¢\ and Cy are equivalent modulo P,, if and only if <IBCI = <Z>Cz. This
reduces to checking that C' = C;C,! is equivalent to I---I (i.e., C isin P,,) if and only
if do = pr..1 (i.e., if bc is the identity permutation).

It is a fact that PQPT = +Q for any P,Q € P,,. Hence, if C € P, then ¢c(Q) =
+(), so gZSC is the identity permutation. This means there are at least 4™ Clifford
operations C (i.e., the Pauli operations) for which b¢ is the identity. In the tableau
representation, these operations all have the same 2m x 2m matrix, and only differ in
the phase bits. Since we know 2m phase bits suffice, there are at most 22 = 4™ such

Clifford operations, so they must be exactly the Pauli operations. ]

Next, we want an analogous notion of equivalence for Clifford states modulo P,,.
We say [1)1) = [¢p2) (mod P,) if there exists P such that [tp5) = Plw;). It is not hard
to check that this is an equivalence relation, and that equivalence is preserved under
equivalent Clifford operations.
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Lemma 107. Two Clifford states |11) and |12) are equivalent if and only if their
stabilizer groups contain all the same Pauli operations up to sign. That is, if P is in
Stabyy,y then +P is in Stabyy,).

Proof. The calculation
(C e P)Cy) = CPC'Cy) = CP ) = Clp)

shows that C e P is a stabilizer of C'|¢)) if P is a stabilizer of ), where C € C,, and
P e P,,. So, if |1)2) = Q|¥1) and P is a stabilizer of [¢1) then Qe P = QPQ' = +P is a
stabilizer of [t)q). O

Finally, let us discuss Pauli measurement. Given a Pauli string P € P,,/Z,,, the
associated measurement projects onto the two eigenspaces of P and reports the corre-
sponding eigenvalue, +1 or —1. For the vast majority of our applications, the property
of Pauli measurement we use is that any Pauli string appearing in the stabilizer group
has a deterministic measurement outcome, and all other Pauli measurements have in-
herently random outcomes. Thus, we will bend terminology and say P € Py/2Z5 is a
stabilizer of ) if P has a deterministic outcome on [). Any other element of Pa/Z,
is a non-stabilizer, and will have a uniformly random outcomes. We will also abuse
notation and write, e.g., |[¢) = U |++) for U € C3/P,, even though [¢) is not a state,
since U is a coset of unitaries.

These notions of equivalence will be important throughout the paper, so let us
recap. Clifford operations C;,Cy are equivalent modulo Paulis if C;C5! is a Pauli
operation, and equivalent Clifford operations induce the same permutation of P,/ Z,,.
Clifford states |11) and 1)) are equivalent if they have the same stabilizer group up
to signs, i.e., for any Pauli P in Stabyy,), +P € Staby,).

6.2.2 Measurement-based computation

One of the main techniques used throughout this paper is a model of computation
developed by Raussendorf, Browne, and Briegel known as one-way quantum com-
putation [93, 94]. For reasons that will soon be clear, this is also sometimes called
measurement-based computation on cluster states. At a high level, measurement-based
computation allows for the simulation of any quantum computation by performing a
sequence of adaptive single-qubit measurements on a certain highly-entangled initial
state.

First, let us describe the initial state. Let G = (V, E) be an undirected graph with
n vertices. Define the graph state for G as

>, [T (n)miz).

ze{0,1}™ (uw)eFE

G)

Notice that any graph state can be constructed from the all zeros state by applying a
Hadamard gate to each qubit, and then applying a CSIGN gate between each pair of
qubits representing an edge. Thus, the any graph state can be constructed in depth
equal to the maximum degree of the graph plus one (by edge coloring arguments).
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A cluster state is a special case of a graph state where the graph is a 2D grid.
Importantly, the cluster state can be constructed in constant depth, using at most 4
layers of CSIGN.

Measurement-based computation consists of a sequence of measurement opera-
tions that result in a gate-by-gate simulation of a quantum circuit. For a given gate
U and an initial state [¢), there is a measurement procedure that applies U to 1) by
consuming a constant-size graph state |G):

1. Prepare the state |[¢) ® |G).
2. Apply CSIGN between [tp) and the leftmost grid points of |G).

3. Measure each input qubit of |1)) and all but the rightmost grid points of |G) in
either the Z-basis or the {|0) + ¥ 1) }-basis.

The unmeasured qubits after the above procedure will be in the state PU |¢)) where P
is some Pauli string that depends on the measurement outcomes. To apply multiple
gates, we simple string together multiple instances of the above procedure. Fortu-
nately, each application of the CSIGN gate commutes with all previous measurements,
so we can view the simulation of the entire circuit as a sequence of single-qubit mea-
surements on some sufficiently large cluster state. Unfortunately, there are Pauli
errors between each of the gates. Therefore, in general one must adaptively apply the
measurements for one gate to compensate for the Pauli errors made in the application
of the previous gate.

In this paper, we will focus only on quantum circuits which are composed of
Clifford gates. Therefore, no such adaptivity is needed since all Pauli errors can
be pushed to the end. We will also use that fact that every Clifford operation can
be applied using only X, Y, and Z-basis measurements. This yields the following
theorem:

Theorem 108 (Raussendorf, Browne, and Briegel [94]). For any m-qubit Clifford
circuit C' with n local gates, there exists a pattern of X, Y, and Z single-qubit mea-
surements on an O(m)xO(n) cluster state such that the unmeasured rightmost qubits
of the cluster are in the state PC|+)™, where Pauli P € Po(m) is a function of the
measurement outcomes.

In the following, we will modify the constructions of Raussendorf, Browne, and
Briegel to minimize the number of qubits we require. Although such constructions
only save a constant fraction of qubits, we feel as though it is desirable to get the
simplest possible circuit. One of the easiest ways to verify and explain these con-
structions is to appeal to the ZX-calculus of Coecke and Duncan [34]. We will not
attempt to give a formal introduction to this topic, and instead refer the reader to
their paper as it is quite clear and thorough. However, we will lay out the basics in
the following section.

6.2.3 ZX-calculus

The ZX-calculus is a graphical language for reasoning about linear maps between
qubits. It consists of a small set of generators (Table 6.1), which are graphical de-
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scriptions of states, operations, isometries, and projections, and a set of local replace-
ment rules (Table 6.2). We only describe those generators and rules that we will
use throughout this paper (and these are insufficient to completely describe all of
quantum computation).

Type Generator Meaning

state (&— |0) + efx|1)

unitary —(a)— |0) (0] + et |1) (1]

unitary - [+) (0] + |-) (1]

projection —@) (0] + et (1]

spider n m | [0)®™(0|®" + et |1)®™ (1™

Table 6.1: Generators for the ZX-calculus. For each green generator listed above for
the Z-basis, there is an analogous red generator for the X-basis. By convention, a
solid green/red circle implies that a equals 0.

Rule name Rule

Spider fusion

Identity rule —0— =

Color change

mT-COpYy

Table 6.2: Rules for the ZX-calculus. In every rule, red and green nodes can be
exchanged.

We will primarily use the ZX-calculus to determine the affect of the X and Y
measurements on graph states.® First, one can verify that the following diagram
represents a CSIGN gate:

6Using the ZX-calculus to analyze measurement-based computation is not new. For instance,
see references [34] and [43].
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Using this fact and the spider fusion rule from Table 6.2, it is easy to prove the
following lemma:

Lemma 109. Every graph state |G) for G = (V,E) is represented by a |V|-qubit
ZX-calculus diagram where two qubits in the diagram are connected by edge with a
Hadamard gate iff they share an edge in the graph G.

For instance, the triangle graph on three vertices is represented by the diagram

et

We now want to show the effect of X and ¥ measurements on the graph. In the
subsequent discussion, we will actually refer to projections, rather than measurements.
Let us briefly justify this choice. First, recall that Pauli measurement on a single qubit
for Pauli P € P; projects the state onto either the +1 or -1 eigenspace of P. The
key observation is that the net result of the measurement can always be described by
applying a Pauli operator, projecting the qubit onto the +1 eigenspace, and applying
another Pauli operator. There are two cases: if the Pauli measurement would have
resulted in a projection into the +1 eigenspace, then do nothing; if it would have
projected into the —1 eigenspace, then apply Pauli @ such that @ # P, project into
the +1 eigenspace, and apply Pauli Q again. This is justified by the following equation:

5-o(5)e

To be clear, in the following Z X -calculus diagrams we will make no explicit mention
of the Pauli () operation mentioned above, which is required to accurately describe
the state if the measurement projects the state onto the —1 eigenspace. However,
using the m-copy rule from Table 6.2, these phases can easily” be pushed to the end
of the circuit. These phases determine the Pauli correction operation which appears
in Theorem 108 (and, in fact, all measurement-based computation schemes).

With this out of the way, let us discuss measurements in the context of the ZX-
calculus. To measure a qubit in the X-basis, we will apply the green projection
generator in Table 6.1 to the corresponding qubit. To measure in the Y-basis, we
first apply a m/2-phase gate to the corresponding qubit, and then project onto the
X-basis. Since

—®o = —@

by the spider fusion rule, we get that each measurement corresponds to a Z-projection
with a = 0 for X measurements, and a Z-projection with a = 7/2 for ¥ measurements.

"On the other hand, such calculations will not be “easy” for sufficiently weak machines, which
in some sense is the basis for the hardness results of Section 6.4 and Section 6.5.
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6.2.4 Single-qubit Clifford

This section will be devoted to proving the following theorem:

Theorem 110. Let G be the line graph on 3n+ 2 vertices. Given single-qubit Clifford

gates qgi,...,gn € Cl, there exist projections Py, ..., Py,,1 such that
e D, is either the projection 42 or &L onto the ith qubit,

e PP®..®FP;,1® I|G) = W)) ® H?:lgi |+):
e P is an X projection, and

e Forie[n], Psi1, Psi, and Py, depend only on g; € Ci and whether or not i is
even.

It is a standard result that every single-qubit gate can be decomposed into ro-
tations R, (63)R.(62)R.(6,), and for Clifford operations 6; € {0,7/2,m,37/2} for all
i. Three single-qubit X and Y measurements on the line suffice to mimic such a
decomposition using measurement-based computation (see e.g., [11]). We show this
relationship in Figure 6-1.

i) H A
H — Rz(al) —/7<
P
= i) — Ru(61)R.(62) Rao(83) — |ypo
R L= [9") —{ Ra(01) R (02) Ra (03) | [v™)
G)
— H [ R:(63) -~
W,out)

Figure 6-1: Generating any single-qubit Clifford by measuring graph state for line
graph GG on 4 vertices. The choice of basis in the middle three qubits, determines the
gate applied to input [¢/") up to a Pauli correction.

Let us prove this statement using the ZX-calculus. By Lemma 109, we can repre-
sent the 5-qubit line graph state as the following diagram in the ZX-calculus:

bodadadad

Recall that the generator for measurement is —@ , where a = 0 for X measurement
and a = 7/2 for Y measurement. Using this fact and the color changing rule from
Table 6.2, we get

@ @ @
.l.l.l.l.
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Suppose we wished to apply more than one single-qubit gate. We now only need to
observe that any single-qubit gate can be decomposed into either R, (03)R,(62) R, (6,)
or R,(03)R.(02)R.(6,) where 6; depends on which type of decomposition is used.
When using 3 qubits to generate a gate within a longer chain of qubits, the decompo-
sitions alternate. For example, the following diagram shows the application of gates
g1 = RZ(GS)RZ(QSZ)Rx(al)a g3 = Rz(ﬁ3)Rz(ﬁ2)Rz(ﬁl)a and gs = Rx(’YS)Rz(PYZ)RI(FYl)
using a chain of length 11.

0N g2 g3

The generalization is clear, so this concludes the proof of Theorem 110.

6.2.5 Two-qubit Clifford

The analysis for the two-qubit case will be very similar to the single-qubit case, except
that we will obviously require a more sophisticated initial graph state. The analogue
to the line graph on five vertices will be the following graph on eight vertices:

*-——— & 9 @

We call this graph H; since it has one | . graph as a subgraph. In general, we
define the graph Hj to be the graph on 4k + 4 vertices with k such subgraphs:
H k =

k

For convenience, we number the qubits of Hy from top to bottom, and then from left
to right. We can now state the main theorem of this section:

Theorem 111. Given two-qubit Clifford gates g1,...,gn € Co, there exist projections
Py, ..., Pignsa Such that

e D is either the projection 55X or &Y onto the ith qubit,

e P®...® P16n+2.® II|H4n) o< Iw) ® I_I?:I gi |++).‘
e P and Py are X projections, and

e For i€ [n], Pii-13,---, Pieisz depend only on g; € Co and whether or not i is
equal to n.

Once again, start by using the ZX-calculus to represent the graph state |H;):
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Using the same ideas as in the previous section, we get the following after measure-
ments:

In other words, the measurements induce a circuit with C'(X, X), followed by single
qubit gates R,(v)R.(a) ® R.(6)R.(8), followed by H ® H. Recall that C(X,X)
is the analogue of the CSIGN gate for the X-basis. Notice that the extra H ® H
operation can be pushed into the next copy of the | . gadget for larger |H}) states.
So, for example, the state |[H,) after measurement is the following;:

This is example is particularly relevant given the following fact, which can be proved
through computational brute force.

Fact 112. Every two-qubit Clifford operation can be decomposed as

4
. ([Rz('}'i)Rx(ai) ® Rz((si)Rw(ﬁi)]C(X, X)) .

1

fOT ai,ﬂi,%, (S,, € {0,?T/2,7T, 37"/2}

Therefore, if we have some large |H}) state, we can measure 16 consecutive qubits
to implement any two-qubit gate. The exception is the final 16 qubits which will
have an extra H ® H applied to the end. However, instead of setting the ay, 5, Vi, 0;
parameters to generate some gate g, we can set them to generate Hg. Combining the
above observations completes the proof of Theorem 111.

6.2.6 Multi-qubit Clifford

When reasoning about larger Clifford circuits, it will be more difficult to assess the
effects measurements have on large states. Thus, it will be useful to split a large
Clifford operation into smaller gates, and argue about the correctness of the imple-
mentations of the individual gates instead of the operation as a whole. Implicit in
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such an argument is a way to stitch together measurement-based computation gadgets
so that two gates can be composed.

Let us first state what we mean by measurement-based computation gadget for a
Clifford U. Each measurement gadget is defined by an m-qubit initial state [¢), a
graph state |G), and a set of measurements S on |G). The qubits of the graph state
are partitioned into three sets: m input qubits, body qubits, and m output qubits.
Starting with the state [)) ® |G) ® |+)®™, apply a CSIGN gate applied between the
ith qubit of |1/} and the ith input qubit of |G), and between the ith output qubit of
|G) and the ith qubit of [+)®™. Measure each qubit of |¢) in the X-basis and each
qubit of |G) in the basis according to S. The guarantee of the measurement gadget
is that the qubits that were initially in the state |+)®™ are now in the state PU [¢))
for some Pauli P depending on the measurement outcomes.

As it turns out, there is a simple procedure to compose measurement gadgets.

Lemma 113 (Raussendorf, Browne, and Briegel [94]). Let |Gi) be the graph state
which implements the gate g, € Cp, via the set of measurements My, and let |G,) be the
graph state implementing g, € C,, via the measurements M. Let G be the composition
graph: Gy, followed by a layer of n auziliary vertices, followed by Gy. The ith auziliary
vertex has two edges: one to the ith output qubit of G, and one to the ith input qubit
of Go. Let M be the set of X -basis measurements on those auziliary qubits. Then, the
measurements M, U My U M on the state |G) implement the transformation gag:.

Sketch. This is easy to see from the ZX-calculus. Consider the qubit in |G) which is
at the interface of the input and output qubits of G, and Gs:

output input

The X-measurement teleports the output qubit of the first gadget to the input qubit

of the next.

output input output input

6.3 Model

In this chapter, we are exploring the computational complexity of a classical sim-
ulation of an interactive protocol with a low-depth quantum computer. Before we
discuss interactive protocols, let us explain why we do not expect relation problems
to give us, e.g., a ReINC'-hardness result for a problem in RelQNC".

First, although complexity theorists know how to prove specific problems are not
in ReINC° (via light cones, for instance), AC” (e.g., using the switching lemma), or even
AC°[2] (see Razborov and Smolensky [97, 108]), proving unconditional circuit lower
bounds for even slightly larger classes (e.g., TC% is beyond our current tools. The kind
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of hardness we hope to prove (i.e., NC'-hardness or ®L-hardness) should therefore be
conditional on complexity theoretic assumptions. For example, if we could prove by
a reduction that a constant-depth quantum circuit solves an NC!-complete problem,
then we could say TC® ¢ QNC° conditional on the (widely assumed) conjecture that
TCY ¢ NC.

However, we think it is unlikely that oracle access to RelQNC® circuits can help
solve NC!-hard problems. In fact, we make the following precise conjecture.

Conjecture 114. Let QNCS = QNC°[fanout] be the family of QNC® circuits aug-
mented with a unbounded fan-out gate. Fan-out is the classical reversible gate which
XORs a single control bit into any number of target bits (it can be constructed from
a deep but straightforward network of CNOTs from the control to each target). Let
BQNC? be the class of decision problems solved by bounded-error QNC(} circuits.

We conjecture that (as decision classes) NC' ¢ BQNC?«.

We can think of this as an extension of the conjecture that TC® does not contain
NC!, because a result of Hoyer and Spalek [64] shows how to construct majority gates
in QN C?«, and therefore TC? circuits can be implemented directly in QNC(}. We make
the conjecture on the basis that the Hoyer and épalek result has not been extended
to NC! in the intervening 15 years, perhaps because their work depends on executing
sequences of commuting gates, but we know NC! can compute products over non-
abelian groups.

The informal consequence of the conjecture is that an oracle for some relation
problem in RelQNC? cannot help solve NC'-hard problems.

Corollary 115. Suppose A is a relation problem in RelQNC®. Under the conjecture,
(TC)4 does not contain NC.

Proof. Suppose for a contradiction that (TC®)4 solves some NC'-hard problem, and
therefore NC' is contained in (TC?)4. We argue that the (TC®)4 circuit can be trans-
lated to a QNC(f) circuit with bounded error, since majority gates can be constructed
(with bounded error), fan-out gates are assumed, and QNC° gates are part of QNC?«
by definition. It follows that

NC' ¢ (TC")4 c BQNCY,
contradicting the conjecture. O

The key point is that this conjecture and the corollary above rule out a black
box hardness reduction. We want a task in A € ReIQNC® such that a classical im-
plementation of A solves NC!-hard problems, but the conjecture implies a quantum
implementation of A does not solve NC*-hard problems. The only way to have both
results is to open up the oracle (i.e., black box) and have the proof depend on whether
the internals are classical. For example, the sampling problems separating quantum
and classical machines (e.g., Aaronson-Arkhipov [2]) use the fact that the classical
machine may be assumed WLOG to be deterministic, with the random bits fed into it
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as a string. Taking out the randomness allows us to estimate probability amplitudes
via approximate counting, where no similar idea is possible with a quantum machine.

However, we were unable to find an idea to separate classical and quantum devices
for relation problems. Instead, we switch to interactive problems. Notice that this
does not overcome the black box argument above; we do not expect an oracle solving
the interactive task to assist in solving NC'-hard problems. What interactivity gives
is an easy way to extract more power (and thus solve hard problems) from a classical
simulation of the task than from an actual quantum device performing the same task.

Let us imagine two parties: a prover (who is supposed to give answers that are
consistent with a low-depth quantum computer), and a challenger. Suppose that the
low-depth quantum computer starts the protocol with the graph state |G) where G
is a subgraph of a 2D grid. Let |¢o) = |G). The ith round of the protocol consists of
the following:

e The challenger chooses a set of non-overlapping, local, Clifford gates on |;_1).

e The prover returns an outcome consistent with first applying the set of gates
and then measuring those qubits in the Z-basis. Let [¢;) be the state on the
unmeasured qubits consistent with the measurement results.

It is worth stressing here that the measurement results of the prover do not need to
be uniformly chosen from the possible outcomes. There simply must be some positive
probability that a quantum computer faithfully executing the protocol returns those
answers.

We now ask what the computational complexity is for passing such a protocol.
As a first observation, notice that if the protocol has polynomially many rounds,
then the challenger can force the prover to simulate measurement-based computation
on cluster states, and thus simulate an arbitrary Clifford circuit. The prover would
then necessarily need to have the power of L. At the other extreme, if we only ask
for a single-round of measurements, then this problem reduces to the Hidden Linear
Function (HLF) problem of Bravyi, Gosset, and Konig. As discussed above, since a
constant-depth quantum circuit solves the HLF problem, we conjecture that an oracle
solving the problem does not help solve NC!-hard problems.

Naturally we want a protocol with constantly many rounds so that we may still
claim the circuit is “constant depth”, otherwise we would just implement measurement-
based quantum computation in full. We focus on interactive protocols that have two
rounds, the minimum non-trivial number of rounds. Our goal will be to show that any
classical model of computation solving the two-round cluster statement measurement
problem can also solve problems that are thought to be computationally harder (e.g.,
problems in @L).

Consider the CCC circuit for the two round protocol in Figure 6-2. After the first
round, the remaining unmeasured qubits of the graph state are in some state |i1).
However, if we were to rerun the protocol on the quantum computer, the remaining
qubits are in some state P|i¢y) where P is some Pauli operator depending on the
measurement results. This corrupts the state so that measurements outputs from
multiple invocations of the protocol are not easily compared.
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There are a few ways one might try to circumvent this issue. First, one might
hope to process the measurement results from the first round to recover P and there-
fore recover |G1). Unfortunately, such a calculation is prohibitively computationally
expensive, being as hard as our original problem (i.e., NC' hard or &L hard). Alter-
natively, one might hope to duplicate the state after the first round to measure again.
Of course, duplicating a state violates the no-cloning theorem, and running multiple
copies of the procedure will produce different errors and thus different states.

________________________

|
|

1

I

" !
1

|

|

|

|

|

Round 2

Figure 6-2: CCCP circuit for two round protocol for gates C4, ..., Cj, in the first round,
and gates Dq,..., D, in the second round.

We model the interactive protocol with a quantum computer by an oracle O. The
oracle takes the set of gates for the first round and outputs a consistent measurement
result, and then the oracle takes a set of gates for the second round and outputs
measurement results consistent with both the first round measurements and the given
set of gates. Once the oracle returns an answer for the second phase, you cannot ask
it a different question for the second round.

Now consider a classical circuit which passes the two-round measurement protocol.
Unlike the quantum model, the no-cloning theorem does not prevent us from copying
the state of the classical machine after the first round. That is, after the second
round of the machine, we can rewind the classical machine back to the beginning of
the second round. We model this interaction with an oracle O,.,. There are two ways
to query the oracle:

1. Given a set of gates for the first round, the oracle returns consistent measure-
ment results for the first round, or

2. Given a set of gates for the second round and a set of gates/measurement results
in the first round, the oracle returns a consistent measurement result for the
second round. Such oracle queries are only guaranteed to be correct when the
oracle has previously returned those first round measurements on that particular
set of first round gates.

Under almost any kind of classical circuit or classical Turing machine, the rewind
oracle can be implemented by the same computational device as the original oracle.

Proposition 116. Suppose O is an oracle for a 2-round interactive task. If O € InterC
where C € {AC®, AC°[p], TC°,NC%, L/poly, ®L/poly} is one of several types of circuit or
Turing machine, then the rewind oracle, Oy, is in InterC.
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Problem 117 (2-Round Clifford Simulation (CliffSim[2])). Let 2-Round Clifford Sim-
ulation be the task of passing the interactive protocol above in the special case of 2
rounds. Later, we will further specialize this problem to be more specific about

e the geometry of the starting graph state,
e the precise encoding of the challenges, and

e the acceptable rate of error (if any).

See Problem 121 and Problem 137 below for the specializations.

6.3.1 Upper bounds

Let us now address the question of the complexity of Clifford sampling problems.
A theorem of Jozsa and Van den Nest shows that sampling Clifford circuits and
calculating marginal probabilities are in polynomial time [67], but we would like
to show that measurement statistics of Clifford circuits can be calculated in L.
Also recall that the @L procedure of Aaronson and Gottesman for simulating Clifford
circuits only suffices for measurement on a single qubit [4]. Since our protocol involves
sampling from many qubits, we must extend those arguments.

Problem 118 (Multi-qubit Clifford Measurement). Given n generators for an n-
qubit stabilizer state [v) and an integer m < n, output a measurement of the first m
qubits of [¢) in the Z-basis and a corresponding set of generators for the measured
state.

Problem 119 (Postselected Multi-qubit Clifford Measurement). Given n genera-
tors for an n-qubit stabilizer state [1b) and p € {0,1}™, output n generators for the
projection of [p) (p| ® I™™ onto |}, or report that projection is empty.

Let us define some useful notation for the following theorem. Recall that we
can write any Pauli string g € P, as a (2n + 1)-length binary vector: the Pauli-X
components, the Pauli-Z components, and the sign bit. For this reason, let us define
the characteristic function for the X Paulis of g as g(*) where g](m) =1 if the jth Pauli
is X or Y, and 0 otherwise. Similarly, define the characteristic function for the Z
Paulis of g as ¢g(*) where gJ(-Z) =1 if the jth Pauliis Z or Y. Let Z; € P, be the Pauli
operator which applies Pauli-Z to the jth qubit.

Theorem 120. The Multi-qubit Clifford Measurement Problem and the Postselected
Multi-qubit Clifford Measurement Problem are in relational ®L.

Proof. We will use the fact that a problem is in &L if it is computable by an L machine
with access to a @L oracle [63]. Let us assume that our initial state has generators
91,92, -, 9n € Pn. To keep track of the characteristic Pauli-X and Pauli-Z vectors
of the generators, we define the matrix G = { gl(?)} for i € [s] and j € [t], and Ggft)
similarly. We divide any multi-qubit measurement into two steps: measurement on a
subset of the qubits where the outcomes will be random, and then measurement on

the remaining qubits where the outcome is deterministic.
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Step 1: Measurements which return a random outcome

When measuring multiple qubits at a time, we first identify a maximal set of qubits
that yield a random outcome when measured.® To do this, let us first recall the
procedure for measuring the a single qubit [4, 53]. If we measure qubit j and there
exists a generator g; such that gi(;) = 1, then the measurement outcome is random.
We can construct a new set of generators as follows:

e For all £ # ¢ such that g(m) =1, replace gy with gxg;,

e Replace g; with 0;Z; where o; is a random sign in {-1,+1}.

Thus, the positions of the nondeterministic measurements are a function of the
matrix Ggf% In fact, the number of random measurements is equal to the rank of
G,% since the single-qubit measurement procedure described above row reduces on
this submatrix. It may seem that simulating these row reductions is an inherently
sequential process, and therefore not in @L. However, this is not true. We can break

the row reduction into two @L steps: choosing a basis, and selecting new generators.
First, we select a basis B = {by,...,b} € G such that |B| = rank(G{%, ) and the

row space of Bﬁm is equal to the row space of Gn,)n, where the matrix B t) is once

again defined as {b(m)} for i € [s] and j € [t]. We select this basis in the following
way:
gi€ B rank(G(x)) > rank (G 1m)

Notice that we can construct this set with L machine with access to an oracle for rank
(which is in ®L).

The next step is to compute a new set of generators such that their characteristic
Pauli-X vectors are in row echelon form. First, define vectors f; = (0,...,0,1) of
length j. Notice that there are exactly r different f; such that f; is in the row space

of B@). This comes directly from the row echelon form of Bﬁ)l Once again, we can
find thcse r vectors in @L by comparing the rank of B ( ) to the rank of f; appended
to Bﬁfcj). Let F'={f;:fj€ rowsp(B(m))} be this set

For each f; € F', solve the linear equation :rBTY o = f; where z € {0, 1} is unknown,
and add []}_; zxbr to the new list of generators. For each generator g; € G\B not in
the basis, solve the linear equation a:Br(gf% = (gfj), A )) and add g; [Tj_; zxbx to
the new list of generators. Let us return to the issue of computlng these products in
oL later.

The final stage of the random measurements procedure depends on whether or not
there is postselection. For the Multi-qubit Clifford Measurement Problem, we replace
each generator corresponding to a vector f; € F' by a new generator ¢;Z; where o;
is a random sign in {-1,+1}. For the Postselected Multi-qubit Clifford Measurement
Problem, we perform the same replacement, but set o; = (-1)?7 where p; was the
intended value of the postselected bit.

|00)+]11)

81t is worth noting here that this choice is not unique. Consider the state . Measuring

either the first or second qubit results in a random outcome, but measuring one qubit after the other
results in the same measurement outcome.
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Step 2: Measurements with deterministic outcome

Now that the random measurement outcomes are fixed, we must compute the out-
comes of the deterministic measurements. Since these measurements do not affect
the state, we already know what the final generators for the state are (except in the
postselected case, where the projection may be empty). Let G be the set of generators
for the state after measurement in the first step. Supposing the outcome on qubit
J is deterministic, it must be that some product of the generators in G yields Z; or
~Z;. We only need to report which is true for each j € [m].

Let e; to be the all-zeros vector of length n which has a 1 at position j. Solve
the equations zG(*) = e; and zG®) = (0,...,0) for x € {0,1}*", and let o; =
sgn([Tx-; Tkgx). For the Multi-qubit Clifford Measurement Problem, output ;. For
the Postselected Multi-qubit Clifford Measurement Problem, report that the projec-
tion is empty if o; # (-1)Ps.

All that remains to complete the theorem is to show that we can compute products
of generators in ®L. The first thing to note is that we cannot keep an entire generator
g € P, in memory. Each time we need the jth Pauli of g, we recompute it from
scratch. Notice that calculating the product of polynomially many elements of P;
can performed in L. Since we are computing each Pauli locally, we must also keep
track of a local sign bit in {+1,+i}. To compute the sign of a generator (which will
necessarily be either +1 or —1), we compute the product of each of the local sign bits,
which once again is an operation in L. This completes the proof. O

6.4 NC!'-hardness

Recall the 2-Round Clifford Simulation problem, and specialize it as follows.

Problem 121 (Narrow Cluster Clifford Simulation (narrow-CliffSim[2])). Let A €
{0,1}2x6n+1) gnd B € {0,1}2%9 be binary matrices. Let Narrow Cluster Clifford Simu-
lation be the problem of passing the CliffSim[2] protocol with initial state |Hy,.4) and
the following two rounds of challenges:

e Round 1 Challenges: prover measures qubit (i,7) in X-basis if A;; = 0; other-
wise, prover measures qubit (i,7) in Y -basis.

e Round 2 Challenges: prover measures qubit (2,5 +8n+1) in X-basis if B;; =0;
otherwise, prover measures qubit (i,j +8n+ 1) in Y -basis.

Our main result for this section will be as follows.

Theorem 133. Let O be the rewind oracle for the 2-round Clifford simulation
described above (Problem 121). Then

NC' c (AC?)Orev,

As a consequence, if there is, e.g., a TC® circuit implementation of @, then by
Proposition 116 there is also a TC? circuit for Oyey, implying NC! ¢ (ACY)InterTC® = TCY,
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contradicting a standard complexity conjecture: TC? ¢ NC*'. We take this as evidence
that there is no classical implementation of @ with TC? circuits.

The high level outline of the proof is as follows. First, we establish that it is
NC!-complete to compute the product of a sequence of 2-qubit Clifford gates, even
up to unknown Pauli corrections. Problem 121 is precisely the task of simulating (via
MBQC) a sequence of 2-qubit Clifford gates (modulo Paulis) on the state |++). In
round two, we can use rewinding to measure the state in several bases to perform a
kind of tomography. In particular, through the use of non-contextuality, we must learn
at least one Pauli string which is not a stabilizer of the state. Finally, by randomizing
the reduction we can obfuscate the state and learn a random non-stabilizer Pauli
string each time, and repetition allows us to learn the state.

6.4.1 Hardness and 2-Qubit Clifford Gates

Recall that the Clifford gates form a discrete group under composition, and the two-
qubit Clifford gates are a finite subgroup. Computing the product of a sequence of
gates is therefore a special case of the group product problem considered by Barrington
and Thérien [13], so we will use their results to prove hardness as soon as we identify
Cs, the group of two-qubit Clifford gates.

It turns out that there are exactly 11520 two-qubit Clifford gates (i.e., |Co| = 11520)
in C, € SU(2) [4]. Among these are the 16 (again, up to phase) elements of the Pauli
group, Py. As discussed in Section 6.2, we can only implement a sequence of these
Clifford operations modulo the Pauli group, so we are actually interested in the group
Ca/ P, of order 720. Recall from Section 6.2 that the Clifford operations modulo Paulis
can be represented by 4 x 4 symplectic matrices over Fy. It is known [44] that the
symmetric group Syx.2 is contained in the symplectic group of 4k x 4k matrices over
Fy, and by counting we see that it must be the whole group when k£ = 1, so we have
the isomorphism Co/Py = Sg. However, to keep this result as self-contained as possible,
we give a proof below, with an explicit description of the isomorphism.

Lemma 122. The group of two-qubit Clifford gates, up to Pauli corrections, is iso-
morphic to Sg. That is, Co/Py = Sg. Figure 6-3 shows how a permutation of six
vertices induces a permutation of the edge labels (in P2fZ2) and thus specifies an
element of Co/Ps.

Proof. Recall from Section 6.2 that Clifford gates act on the Pauli group by conjuga-
tion U e P = UPUY for any U € Cy, and P € Py,. Furthermore, each Clifford operation
induces a permutation of P,,/Z,,, namely ¢y: P/ Zm = P/ Zm, where

P (PZn) = (U e P)Z,.

Moreover, recall that the kernel of this homomorphism is P,,, so there is an injective
homomorphism from C,,/P,, into the symmetric group on P,,/Z,,. Unfortunately, this
symmetric group is much too big (even for the special case m = 2) since |Py/ 25| = 16.

Clearly not all permutations of 16 elements are in the image of g% For instance,
every unitary commutes with I®™ so I®™Z,, is fixed by all permutations. Another
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Figure 6-3: Sg = Cy/P; isomorphism

constraint is that two Pauli operations P, € P,, either commute or anti-commute,
Le, [P,Q] =+I®" and this is preserved by conjugation:

[UePUeQ]=Use[PQ]=[P,Q]

Also note that the commutator does not depend on the sign of P or @, i.e., [P,Q] =
[aP, Q] for «, f € {1, +i}. These commutation constraints drastically limit the set
of possible permutations of P,,/Z,,. To understand the permutation we define the
following six sets of pairwise anti-commuting Pauli operations.

M, = {XI,Y1,ZX,2Y,2Z}, M, ={XI,ZI,YX,YY,YZ}, M;={YI,ZI, XX, XY,XZ},
My = {IX,1IY,XZ,YZ,2Z}, Ms={IX, 1Z XY,YY,ZY}, M= {IY,1Z XX, YX,ZX}.

In Figure 6-3, each vertex corresponds to an M;. The edges incident to that vertex are
labeled with the Pauli strings of M;. Not only are the elements in each set pairwise
anti-commuting, but they are the only pairwise anti-commuting subsets of size five.
Since any Clifford operation U preserves commutation relations, qBU must permute
these six sets/vertices.

In this way, each element of C;/P; maps to a permutation of Py/Z,, which has
an associated permutation in Sg. This map injective because of Lemma 106 and
the fact that each Pauli string occurs on exactly one edge (so we can recover the
permutation of Py/Z; from a permutation of vertices). Since |[Co/Ps| = 720 = |Sg|, the
homomorphism is an isomorphism. O

Since Cy/P5 is isomorphic to Sg, there is a normal subgroup within it corresponding
to Ag. We call the elements of this subgroup even since they are isomorphic to even
permutations within Sg.

It follows immediately that it is hard to compute the product of many two-qubit
Clifford gates.
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Corollary 123. Given Uy,...,U, € Co/P,, the problem of computing Uy---Uy|++)
(modulo Pauli operations) is NC'-complete. The problem remains hard if Uy, ..., U,
are promised to be even and if Uy---U,, is promised to be either II or H ® H € Cy/Ps,
50 Uy---Uy |++) is either |++) or |00) (modulo Pauli operations).

Proof. By definition, the even elements in Co/P; form a subgroup isomorphic to Ag.
Since Ag is not solvable, a result of Barrington and Thérien [13] says that computing
products in the group is NC'-complete. That is, it is NC'-complete to compute the
product U;---U,. In fact, the problem remains hard if the product is promised to be
either I® I or U, for any choice of U. Let us take U = H ® H € Co/P,. Note that we
can express H ® H as

H®H=(H®I)oSWAPo(H®I)oSWAP,

using two SWAP gates and two H ® I gates, so it must be an even gate.
Since the product of the elements is either I® I or H ® H, the state will be either
|++) or |00), and it follows that distinguishing these states is NC'-complete. O

6.4.2 Tomography and the Magic Square Game

Recall that in the context of our task, Problem 121, the first round essentially com-
putes the state Up---Up, |++) with Pauli corrections, in the sense that the state is in
the last two unmeasured qubits.? The obvious next step is to measure the two-qubit
state repeatedly (i.e., rewinding and applying a different Clifford circuit each time) in
different bases, and infer the state from the measurements. Under a slightly different
definition of Problem 121, this would be a straightforward application of quantum
tomography (in our case, Clifford state tomography [82]). Unfortunately, traditional
tomography depends on getting random samples, but a classical algorithm solving
Problem 121 is allowed to answer challenges with any outcome that occurs with non-
zero probability. This makes it impossible to infer even one stabilizer of the state.
For example, suppose we are promised that the state is either |00) or |++). They
have disjoint stabilizers (ZI, IZ, ZZ vs. XI, IX, XX), so learning even one would
determine the entire state. However, the states are not orthogonal, so no measurement
can perfectly distinguish the states. For any measurement we make, there must be
some outcome that could be observed for both |00) and |++), and an adversarial
classical algorithm may choose to answer with that outcome for every measurement.
Nonetheless, it is possible to learn something about the state from measurements.
We claim that it is not possible to answer all 2-qubit Clifford measurements in a
way which is consistent with all 2-qubit stabilizer states. In fact, we have something
stronger from the theory of quantum contextuality: there is a collection of 2-qubit
Pauli measurements such that it is impossible to give a consistent answer to all of them
that does not depend on context, i.e., which other commuting Pauli measurements we

9Recall that the Pauli corrections can be computed from the measurement outcomes, but that
computation is already NC!-complete (exercise to the reader), so we will not be able to compute the
corrections as part of the NC!'-hardness reduction.
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apply in the same measurement set. We can use this to force the classical simulator
to answer inconsistently on some Pauli measurement, and thus learn that the Pauli
string is not a stabilizer.

Before we go further, let us formalize what kind of measurements we perform.
For any stabilizer state |¢)) (which are the only states we consider in this chapter),
and any P € P,,/Z,,, the Pauli measurement associated to P projects onto the +1
or -1 eigenspace of the canonical (i.e., positive) Pauli operation in P, and gives a
corresponding +1 or —1 outcome. As previously discussed, we call P a stabilizer of
|v) if the outcome of this measurement is deterministic. Given pairwise commuting
measurements Py, ..., P, € Py,/2Z,, the order of measurement does not affect the
outcomes. Furthermore, the outcome of measuring any product (which commutes
with all the individual measurements) will be the product of the outcomes for the
individual measurements.

To measure Paulis P and @@ we apply a Clifford operation which maps P
ZI, @ — IZ and then measure both qubits in the Z basis. Although we cannot
directly measure Pauli PQ), we can infer its measurement outcome by multiplying the
two measurement outcomes from P and (). We will call any set of three pairwise-
commuting Pauli strings { P, @, R} multiplying to +II a Pauli line. By the above, a
two-qubit Clifford measurement gives us outcomes for P, ), and R on some Pauli
line {P,Q, R}.

The geometry of Pauli lines on two-qubits is important in what follows, so let us
list a few facts.

Fact 124. There are 15 Pauli lines, and they correspond to the perfect matchings
in Figure 6-3. Le., the three Pauli strings in the line correspond to the labels of the
three edges in the matching. Symmetrically, there are 15 Pauli strings and each one
15 contained in 3 Pauli lines. It is possible to partition the Pauli strings across 5
non-intersecting Pauli lines, e.g., as

{XI, IX XX} {YI IY,YY},{ZI, 12,22}, {XY,YZ ZX},{YX ZY, XZ}.

A particularly nice structure of Pauli lines and Pauli strings is the magic square
game, given below.

Definition 125. The magic square game, independently discovered by Mermin [81]
and Peres [89] defines a 3 x 3 grid (see Figure 6-4) of Pauli measurements on two
qubits. Each row and column is a Pauli line. Moreover, the product of each column
is +IT and the product of each row is ~II, so the measurement outcomes multiply to
1 for a column or —1 for a row.
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The reader may be familiar with a different grid under the name “magic square”.
There are many choices for the nine Pauli measurements which work (e.g., simply
apply any Clifford operation to all Pauli strings, and the new ones are guaranteed to
satisfy the same commutation relations) and most references, including Mermin [81]
and Peres [89], opt for a different magic square. The reason we choose this one is that
there is a particularly nice form for row or column measurements.

Lemma 126. The first row of the magic square above (Figure 6-4) corresponds to
measurement of the qubits in the Bell basis. Measuring any other row or column is
done by applying a single qubit Clifford gate to one of the qubits and then measuring
in the Bell basis.

We have already alluded to how we will use the magic square, but let us state it
formally:

Theorem 127. There is a procedure to make six measurements (on siz copies) of
an unknown two-qubit quantum state 1) and learn, with certainty, some Pauli string
which does not stabilize |1)).

Proof. As one might guess, we measure each copy of the state with a different row
or column of the magic square. That is, apply appropriate single qubit gates for the
row/column (as in Lemma 126), then measure in the Bell basis.

Each Pauli string is measured exactly twice: once in a row and once in a column.
We can construct two tables of outcomes, one from the row measurements and one
from the column measurements. In the column table, the product of all elements is +1
(since each column multiplies to 1) and in the row table, the product of all elements is
—1. We conclude that the tables must be different, so there exists some Pauli string in
the magic square for which we have contradictory measurement outcomes. This Pauli
string does not stabilize |¢), otherwise it would have to measure consistently. O

It is clear that the above procedure (in Theorem 127) can only output Pauli strings
that appear in the magic square. Even if we learn whether each Pauli string of the
magic square stabilizes [¢), it may not be enough to learn |¢) itself. As discussed,
there are several magic squares with the properties we need (e.g., conjugate each
Pauli by any U € C3), so we can ask about a random magic square. However, we
run into the same problem as before: the prover’s answers may be adversarial, and
it is possible to answer in such a way that we cannot determine [¢)). Consider the
following fact:

Fact 128. Every magic square grid intersects every Pauli line, i.e., there exists some
Pauli string in both the line and the grid.

No matter what magic square we measure, the classical algorithm can arrange for
YI, IY, or YY to be the only Pauli strings with inconsistent answers, and since all
of these are non-stabilizers of both |[00) and |++) (among other stabilizer states), we
cannot deduce [1)).
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6.4.3 Randomization and Self-Reduction

We have argued that by repeated measurement in round two of Problem 121, we can
force the prover to reveal a non-stabilizer of the two-qubit state |¢) being measured.
Of course, this is not enough to determine the state.!'® The only way to make progress
is to start over in round one with a different instance of the task, constructing a new
state |¢') which is related to |1)), so that we can carry over what we learn about [¢')

to [1).

Let us first consider a naive approach on input Ui,...,U,. By the standard
approach, the prover returns a non-stabilizer P of U---U,, |++). To generate a different
non-stabilizer ), we could give the prover the input Uy, Uy, ..., U, for random Uy €

Cy2/P,. That is, Us' e Q is a non-stabilizer Uy---U, [++). If U;' e Q + P, we have
learned new information. Unfortunately, an adversarial prover may anticipate this
approach and return ) = Uy e P, so we learn no new information. To force the prover
to reveal something new, we need a more thorough randomization procedure, which
begins with an idea of Kilian [69].

Theorem 129 (Kilian Randomization). Let G be a group. Given g1,...,g, € G, there
s a procedure to sample uniformly random ¢i,..., gl € G subject to g1---gn = g1l

We will need to extend Kilian’s idea slightly below.

Corollary 130. Let G be a group and let H < G be a normal subgroup. Given
91,---,9n € G, there is a procedure to sample uniformly random gi,..., g, € G subject
to g1gn = 9195 and g;H = g/H for all i as follows:
function KILIANg (¢1,...,9n)

h17 ceey hn—l ~ Umf(H)

g1 < gilu

gl < hilgih; fori=2,....n-1

9 < hylign

return (gi,...,9,)

Note that Kilian randomazation is the special case H = G.

Proof. 1t is clear that cancellation gives gy---gn, = g1---g,. It is also easy to see that
9:H = g; H using the fact that

9{ = hitgihi = g:(g7 hit g hs

and g;'h; ! gi€ g Hg; = H.

It remains to show that g1,..., g}, are uniformly random subject to the constraints.
By definition, h; is a uniformly random element of H, so ¢{ is a uniformly random
element of the coset gy . Fori=2,...,n-1, we see that g/ is uniformly random con-
ditioned on gi,..., g/ ; since h; is uniformly random and independent of gi,...,g; ;.

10 ven if we were to make all possible Pauli measurements, an adversarial prover need only reveal
three non-stabilizers of the state. By Fact 128, the prover can return non-stabilizers YI, IY, or YY.
However, this information still does not distinguish |00) and |++).
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Finally, given gf,...,g/,_;, there is a unique choice of g/ satisfying the constraints,
namely g;, == (g1gn_1) " 91" n- [

We can use this technique to randomly self-reduce algorithms that take a list of
group elements. After applying this randomization step, the naive idea from earlier
(i.e., multiplying by a random element and conjugating the result by the inverse)
actually works. We will state the theorem in the abstract (with a finite group (G,-)
acting on a set S as :Gx S — S where (gh) ez =ge(hex)), but it is a complicated
theorem and it may help to keep an example in mind. For this section, the relevant
setting of parameters!! is G = H = F = Cy/P,, acting on the set of Pauli strings
S =P,/ Z, by conjugation, U e P := UPU".

Theorem 131. Let A:G* - S be a randomized algorithm which takes lists of group
elements as input and outputs an element of some set S. Suppose G acts on S by
o:G xS —S. Let G have subgroups F, H such that F' < H < G. Consider the following

randomized algorithm:

function B(g1,-,g,)
f~ Unif(F)
917 s 7g’l”L <« KILIANH(fgl>g2> cee agn)
return f~1e A(gl,...,q,).

The output distribution of B(gy,...,gn) 5 (91°9n) ® D(Fg1-gn, 1 H, ..., g H)
where D(Fgy---gn,g1H, ..., gnH) is the average of (g}---g,)" 1 ® A(gy,...,g,) over all
9%, ---,9; such that gi---g, € F'g1---9, and g;H = g/H for all 1.

Proof. Kilian randomization (in the form of Corollary 130) samples a uniformly ran-
dom gj,...,g, subject to fgigo-gn = 919, and fg.H = g1H = g1H, g.H = g;H,

.., gnH =g/ H. Since f is uniformly random in F, fg;---g, is a uniformly random
element of Fg;---g,, so we are actually sampling a uniformly random gf, ..., g} such
that gi---g;, € Fg1---g, and g/H = g;H for all 7. Instead of returning the result of
A(g},...,g,) directly, Algorithm B outputs,

fleA(gl,...,90)=(f"g1g,) e (gigh) " ® A9, 90)
= (g1-gn) ® (91--9,) L o A9l .- -, 90)

=(g1gn) o P
where P is a sample from (gj---g,) ' e A(gy,...,95,) where gi,...,g, are uniformly
random subject to ¢, = g/H and g}---g) € Fg1---gn. That is, P is drawn from the
distribution D(Fg1--gn, 1 H, ..., g, H). O

Let us interpret the result in the concrete setting we need for this section: G = H =
F =Cy/P; and S = Py/ Z, under conjugation, U e P := UPUt. We imagine Algorithm
A as adversarially outputting P € P,/ 2, which does not stabilize [¢) = Uy---U, |[++).

H1In Section 6.5 we use Theorem 131 in full generality to prove the ®L result.
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Recall that P stabilizes U;---U, |[++) if and only if (U;---U,,) ! e P stabilizes |++) because

Up--Up |++) = PUy---U, |++)
[++) = (Uy--Uy) ' PU U, |++)
= ((Up+Uy,) o P)|++).

This fact gives meaning to the expression (U{---U.)! e A(U{,---,U}): it is the non-
stabilizer for |++) we get by rolling back the unitaries U{---U; on whichever non-
stabilizer A returns for U]---U} |++). It makes sense to average these distributions
(as in, e.g., D(Fg1--gn,91H,+-, g, H)), since they are all non-stabilizers of the same
state. Since G = H = F, all the parameters of this distribution have only one value,
G. Hence, Theorem 131 defines only one distribution, D,, := D(F'g1gn, 91.H, -+, gn H),
which is an average over all lists of n two-qubit Clifford operations. Hence, in our
example, Algorithm B is equivalent to sampling P from D, and conjugating it by
U,---U, to make it a non-stabilizer of Uy---Up, |++).

All that being said, we have not attained our original goal of sampling a random
non-stabilizer P € Py/Z,. If Algorithm A is adversarial, it may be that Algorithm
B always returns the same answer, e.g., (U;-+-U,) ® YY, because the distribution D,
may have support on only one element (e.g., YY). Information theoretically, this kind
of distribution actually gives us more information about Us---U, than a random non-
stabilizer, but since it is more difficult to analyze, we will instead apply another layer
of random self-reduction.

Theorem 132. Let [¢)) be an m-qubit Clifford state. Suppose Algorithm B takes
a list of Clifford operations Uy, ... U, € Cpn/Pm and outputs a Pauli string from a
distribution (U;---U,) @ D, where D, is a distribution over Pauli strings depending

only on n.
Define Algorithm C as below.

function C(Uy,...,U,)

Vo~ Unif({V € Con 1 V [9) = [90)})
return B(Uy,..., U, 1,U,V)

Algorithm C outputs an element of Pp/Zm at random from (Uy---U,) e D!, where D,
1S a distribution such that

Pr[P stabilizes |¢)|P ~ D;,] = Pr[ P stabilizes 1)|P ~ D],

and D}, is uniform over the stabilizers of |vp) and uniform over non-stabilizers of |1)).

Proof. By symmetry, it suffices to prove the result for any Clifford state [¢)); let us set
|v) = [0™). Any Clifford operation stabilizing [0™) fixes the Pauli subgroup {I,Z}™,
and therefore the tableau must be of the form

o

for arbitrary A, B € {0,1}™™ subject to the conditions that A is full rank and BAT is
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symmetric. Given an arbitrary Pauli string P = X*Z* expressed as bits z, z € {0,1}™
for the X and Z components respectively, the tableau above will map it to the Pauli
string VPVt = X% Z% where

o #]-[z 2] [g‘ A?T]:[m vB+zAT)]

Clearly |0™) is stabilized by strings with only Z component, i.e., where z = 0. If
P is a stabilizer then it follows that z = 0 and thus 2/ = xA = 0. Clearly a random
invertible transformation A (or A=T) will map a non-zero z # 0 to a uniformly random
non-zero z', so VPVT is a uniformly random stabilizer of |0™). On the other hand,
if P is not a stabilizer of |0™) then z # 0, and by the same argument as above,
z' = A is a uniformly random non-zero vector. Then 2zA~T is not uniformly random
conditioned on z’, but we assert that =B is uniformly random. Recall that S := BAT
is a uniformly random symmetric matrix, and by rearranging, B = SA-T. Note that
if £ is non-zero, then xS is a uniformly random vector, and therefore zB = zSA™T
is uniformly random because invertible linear transformations preserve the uniform
distribution. We conclude that 2’ is a uniformly random vector, and hence V PV is
uniformly random non-stabilizer of |0™). O

We now have all the pieces for this section’s main result:

Theorem 133. Let O, be the rewind oracle for the 2-round Clifford simulation
described above (Problem 121). Then

NC'/rpoly € (AC®)%r /rpoly,

where rpoly denotes randomized advice,'? that is, a bit string sampled from a distri-
bution dependent only on the input length.

Proof. Our goal is to use the rewind oracle to determine the state Uy---Uy, |++), modulo

Pauli operations, given unitaries Uy,...,U,.
First, we construct Algorithm A from the rewind oracle. Algorithm A applies
the oracle to Uy,...,U, in the first round, then measures magic square rows and

columns (all of them, by rewinding) in the second round. From these measurements,
Theorem 127 says we can identify a non-stabilizer of the state |¢)) being measured. If
there is more than one measurement with inconsistent results, choose one arbitrarily
to return. By Theorem 111, the initial state is |++) and then U,,...,U, are applied
(U, first) to the state by measuring appropriately, so the final two qubits are in state
[t} := Uy---U, |++), modulo the Pauli group.

Next, we use Kilian randomization and related ideas in Theorem 131 and Theo-
rem 132 to construct Algorithm C', which makes calls to Algorithm A and returns a
uniformly random Pauli string P not stabilizing |)). Although it is not stated explic-
itly, Algorithm C makes exactly one call to Algorithm A (which is in turn making

12Really the advice is a distraction from the core theorem, but technically the reduction is ran-
domized so we must include it.
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constantly many calls to the rewind oracle), and the reduction can be computed in
AC? since it only has to sample from the group, multiply constantly many in the
group, and translate the two-qubit Clifford elements to measurements.

Finally, we run Algorithm C' sufficiently many times (i.e., O(logn)) to collect all
non-stabilizers of |10} with high probability, and thereby deduce |t)). This solves an
NC' decision problem in Corollary 123. O

This is evidence for the hardness of computing O, although it takes some work
to see. Suppose O is in InterTC® for this problem. That is, there exist TC® circuits
which implement the interactive task in Problem 121. By Proposition 116, the rewind
oracle O,y is also in InterTCY. The AC? and TCP circuits can all be simulated in TC®,
so the theorem says NC'/rpoly ¢ TC’/rpoly. However, Bennett and Gill [16] show
that (among other containments) TC’/rpoly = TC®/poly and NC'/rpoly = NC'/poly,
so NC'/poly ¢ TC%/poly. We do not believe TC® contains NC', non-uniformly or
otherwise, so we conclude that @ is probably not in Inter TC.

The remainder of this section is devoted adding error tolerance to the result, which
unfortunately complicates the proof somewhat.

6.4.4 Error Tolerance

Suppose the classical simulation is faulty and outputs incorrect (possibly adversarial)
responses for some fraction of interactions. That is, for uniformly random inputs
(i.e., unitaries Uy, ..., U, chosen randomly from C, in the first round, and a uniformly
random Clifford measurement in the second round), the classical simulation fails the
task with probability € > 0. It turns out that for sufficiently small €, we can still solve
an NC'-hard problem, given access to a rewind oracle. Let us give a simple version
of the result.

Theorem 134. Let O,e, be the rewind oracle for a 2-round Clifford simulation which
performs the task in Problem 121 and fails on a uniformly random input with proba-
bility less than € for some € < % Then

NC'/rpoly € (AC®)%r /rpoly.

Proof. Construct Algorithm A from the rewind oracle as before, but make all possible
Pauli line measurements in round two. Let § be the probability that Algorithm A
fails, by outputting a stabilizer of |¢)) := Uy---U, |++) instead of a non-stabilizer, on a
uniformly random input. That is, ¢ is the probability that any of the second round
measurements made by Algorithm A fails for a uniformly random first-round input.

Algorithm A queries all 15 possible Pauli lines (recall Fact 124), so if Algorithm
A fails, it is because one of the 15 queries failed. Since that query has a % chance of
being chosen uniformly at random, we conclude that 1% < €.

Now construct Algorithm C' from Algorithm A using Theorem 131 and Theo-
rem 132, as above. These theorems preserve the error rate; the probability of out-
putting a stabilizer for a uniformly random input (6) is the same for Algorithms A, B,
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and C. Note that if Algorithm C outputs a non-stabilizer then it is still a uniformly
random non-stabilizer, and if it outputs a stabilizer then it is also uniformly random.

Algorithm C outputs one of three stabilizers with probability §, and one of twelve
non-stabilizers with probability 1 — §. That is, we see a particular Pauli string with
probability g if it is a stabilizer and probability 1—1’2—5 if it is a non-stabilizer. Aslong as g
is less than % (or equivalently, ¢ < %), we can discern the difference in frequency over
poly(n) samples with high probability. That is, the three least-frequently reported
Pauli strings are, with high probability, the stabilizers.

Finally, we take € < :,13 to guarantee that < 15¢ < % O
However, with some deliberate effort to correct errors, we can do better.

Lemma 135. Let v:Py/2Z, - {+1,-1} be an assignment of measurement outcomes
to the canonical (i.e., positive) Pauli string in each coset. For any such assignment,
at least 3 of the 15 Pauli line constraints are violated.

Proof. This may be verified by brute force enumeration of the 215 = 32768 different
assignments. It is tight because, e.g., assigning all Pauli strings to +1 only violates
three lines: {XX,YY,ZZ}, {XY,YZ,ZX}, and {XZ, YX,ZY}. O

Theorem 136. Let O, be the rewind oracle for a 2-round Clifford simulation which
performs the task in Problem 121, and fails on a uniformly random input with prob-
ability less than e for some € < % Then

NC' ¢ (AC?/rpoly)©rev.

Proof. We construct an Algorithm A which uses the rewind oracle to return a Paul:
line, rather than an individual Pauli. In the first round, the algorithm sets up state
|¢) := Uy---Up, |++) in the last two qubits, then makes all possible Clifford measurements
in the second round, using the rewind oracle. Recall that these measurements give
three outcomes for each Pauli string, so we may construct v:Py/Z5 — {+1, -1} where
v(P) is the majority of the three measurement outcomes for P. By Lemma 135, this
assignment of outcomes violates at least three Pauli line constraints, e.g., PQR = +I1
but v(P)v(Q)v(R) = -1. Return one violated Pauli line at random.

Let ¢ be the unique Pauli line such that all Pauli strings stabilize [¢). If there
are no errors, then the outcomes for any P € ¢ are all the same, and the Pauli line
constraint for ¢ is satisfied, so Algorithm A will output some other line. Moreover, it
would require at least two measurement errors involving a stabilizer P € ¢ to change
the value of v(P), so Algorithm A will not output ¢ in case of one error.

When there are two or more errors, we assume the adversary may arbitrarily
change v so that the constraint for £ is violated, in addition to at least two other
lines. Hence, the probability of outputting ¢ is still at most %

We randomly self-reduce Algorithm A (by Theorem 131 and Theorem 132) to
produce an Algorithm C. The self-reductions map stabilizers to stabilizers and non-
stabilizers to non-stabilizers, so Algorithm C outputs the line ¢ for a particular input
with the same average probability as Algorithm A.
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Finally, we run Algorithm C' many times and count how many times each line is
reported. There are three classes of Pauli line:

Cr={f},
C = {lines incident to €}\{¢},
Cs5 = {lines not incident to ¢}.

By the random self-reduction, the probability Algorithm C returns a line is uniform
within each class, so the distribution of lines it returns is uniform on three subsets of
size |C1] = 1, |Cy| = 6, and |Cs| = 8. With O(n) samples, we recover the distribution to
accuracy O(1/y/n), and thus also recover the three uniform subsets unless elements
from two or more classes occur with the same frequency (to within O(1/\/n)). How-
ever, even if two of the classes are indistinguishable, the third will give us ¢, since
either the class is £ itself, or ¢ is the unique Pauli line incident to all lines in the class,
or ¢ is the unique Pauli line not incident to all lines in the class. Thus, the only way
O(n) samples fail to recover ¢ is if Algorithm C outputs Pauli lines uniformly. We
argue this is not possible when € < Z.

Let 0 be the probability the rewind oracle makes more than 2 errors among the 15
second round measurements, for a uniformly random first round input. Immediately

we have € > 2§, so if € < 2 then § < % Observe that Algorithm C outputs ¢ with

159 75
probability at most g. Since g is a constant less than 1—15, the distribution is noticeably
different from uniform with O(n) samples. O

6.5 oL-hardness

The purpose of this section is to obtain a ®L hardness result for the CliffSim[2]
problem. First, we will necessarily need to modify the CliffSim[2] protocol from the
previous section to make it more computationally challenging. Since an NC! circuit
can pass the CliffSim[2] protocol on any grid of constant width, we will use larger
graph states in this section in order to apply more complicated gates. For now, let
us only roughly describe the initial state as some graph state |G, ;) where G, ,, is
some subgraph of an m x O(mn) grid. The exact details of G, ,, will be given in
Section 6.5.4. The formal statement is as follows:

Problem 137 (Wide Cluster Clifford Simulation (wide-CliffSim[2])). An instance of
Wide Cluster Clifford Simulation s defined by two binary matrices A € {0,1}mxeimn
and B € {0,1}m*2. Let the problem be to pass the CliffSim[2] protocol with initial
state |Gn.m) and the following two rounds of challenges:

e Round 1 Challenges: prover measures qubit (i,7) in X-basis if A;; = 0; other-
wise, prover measures qubit (i,7) in Y -basis.

e Round 2 Challenges: prover measures qubit (2,5 + cymn) in X-basis if B, ; = 0;
otherwise, prover measures qubit (i,j +cymn) in Y -basis.
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Theorem 142. Let O,., be the rewind oracle for wide-CliffSim[2]. Then
oL ¢ BPLO™,

Once again, this implies strong complexity theoretic evidence that certain highly-
parallel and low-depth classical models of computation cannot solve wide-CliffSim[2].
For example, if the oracle is in InterL/poly, then there is an L/poly classically controlled
Clifford circuit computing it each round of interaction, and similarly for O, since
it is a classical class. The oracle is non-uniform, so we can make &L non-uniform as
well:

oL /poly ¢ BPL-/PoY

But BPL is contained in L/poly as a consequence of Bennett and Gill [16], so @L/poly ¢
L/poly, which would be unexpected.

The proof of @L-hardness in Theorem 142 follows the same general outline as the
proof of NC'-hardness in Theorem 133. We show that outputs from a conditional dis-
tribution of a QNC? circuit can be combined by a logarithmic-space machine to solve
a ®L-hard problem. The QNC° circuit will be nothing more than a straightforward
implementation of measurement based-computation of some Clifford computation.
However, because we must choose a larger and more computationally challenging
group of Clifford operations to implement, we will need a few key new ideas, espe-
cially with respect to the randomization procedure.

6.5.1 Formal statement of problem

The starting point for Theorem 142 is the problem of computing the product of
matrices A, ..., A, € GL(m,2), which is a well-known &L-complete problem for m =
poly(n) (see e.g., [39]). The problem is known to remain @L-hard when each matrix
represents some CNOT(7,7) gate between bits 4,5 € [m] (see e.g., Lemma 15 in
Section 2.4). In fact, we will need yet another modification to this problem for the
purpose of randomization.

To see this, let us recall the randomization procedure required for the NC'-hardness
result and show why it is insufficient here: given a product of group elements g;---g, €
C, we construct the product (hogihi)(hitgahs) ... (R, g,) with random h; € C;. To
randomize this product for @L-hardness, each h; term would be an arbitrary element
of GL(m,2). There are two main issues:

1. Local measurement statistics such as those obtained from the magic square
game are insufficient to reconstruct (hogih1)(hi'gahs) ... (L, g.) |+)%™, a (po-
tentially) highly entangled state.

2. Inverting a matrix A € GL(m,2) is ®@L-complete, so even implementing the ran-
domization seems to make the reduction too powerful. The simpler procedure
of generating a random pair of matrices A, A~! € GL(m,2) is also not know to
be in L to the authors’ knowledge.

Because of these issues, we choose a different approach—namely, we perform the
randomization with group that is normalized by GL(m,2). Let us now carefully
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define the groups we will be concerned with in this section. The largest group we will
need is the group (CNOT,CZ, R,),,, which are those transformations generated by
CNOT, CZ, and R, on m-qubits. More formally, the group contains those operations
obtained by composing finitely many transformations on m qubits from the set

{CNOT(i,3) i # j e [m]}U{CZ(i,j) i % j € [m]y U {R.(i) ci € [m]}

where CNOT(4, 7) denotes the CNOT gate from qubit ¢ to qubit j, CZ(i,j) denotes
a controlled-Z gate from qubit ¢ to qubit j, and R.(¢) denotes a R, gate on qubit
1. We will only be concerned with transformations modulo the Pauli operations. For
this reason, we define the group G,, := (CNOT,CZ, R,)n/Pm. Notationally, when we
refer to an element g € G,,, we are referring to an actual transformation generated by
CNOT,CZ, and R,. However, when discussing equality,!® we say that g = h for some
h € G,, if the coset gP,, equals the coset hP,,.

Let H,, be the normal subgroup!* of G,, consisting of those transformations gener-
ated by CZ and R, only. That is, Hy, := (CZ, R, ) /Pm. The fact that H,, is a normal
subgroup of G, can be checked by straightforward calculation using the identities in
Figure 6-5.

Another useful property of H,, is that it is abelian, so an arbitrary element of H,,
can be represented by a layer of R, gates followed by a layer of CZ gates, where no
CZ(3, j) gate appears more than once. In fact, since RZ = I modulo Pauli operations,
we can assume that there is at most one R, gate per qubit as well. Thus, for each
h € Hy,, we associate a symmetric m x m binary matrix A such that

h=T]CZ(i,5)% [ R.(i)"

i<j H

where the equality is modulo Pauli operations. We will call this representation its
canonical decomposition.

Notationally, we will be somewhat sloppy when writing out products of elements
in G, and H,,. We write gh for g € G,, and h € H,, to refer to the product of g and h
in the group G,,. We will write CNOT,, for the set consisting of single CNOT gates
on m qubits—i.e., CNOT,, = {CNOT(¢,5) : 4,5 € [m] and ¢ # 5}.

Theorem 16. Given gy,...,g, € CNOT,,, it is ®L-hard to compute g19o---g, under
DLOGTIME reductions. The problem remains ®L-hard if g1---g, is promised to be
either a cycle on the first three qubits (Cs) or the identity transformation (id).

13These equivalence classes are well defined since G,,, normalizes P,,.
“Formally, it may be easier to verify that P,, 9 (CZ,R,)m < (CNOT,CZ, R.).,,. Then, by the
third isomorphism theorem, we have that H,, < G,,, and
Gpn  (CNOT,CZ, R.)m/Pm _ (CNOT,CZ, R.)m

— ~

Hyn  (CZ,R.)m/Pm (CZ,R.)m
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Figure 6-5: Conjugating CZ and R, by CNOT.

6.5.2 Tomography and the Magic Pentagram Game

Our goal is to distinguish two states based on the product of gq,...,9,. Since g;---g,
is promised to be a permutation, we can commute the product through to such
that the comparison will come down to distinguishing hy [+)*™ and hy |+)®™ for some
hi,hy € Hy,. For concreteness, suppose h; = R,(1) and hy = R,(2). Since the resulting
states are both product states, it suffices to learn the state of the first two qubits—that
is, are the stabilizer generators {XI,IY} or {YI, IX}?

One might then be tempted to try to repeat the magic square measurements from
the previous section to eventually learn this state. Suppose, however, that the magic
square measurements always reveal that some element from the Pauli line {ZI, IZ,ZZ}.
Since each element of the Pauli line is a non-stabilizer of both possible states, we learn
nothing about our state. On the other hand, we gain nothing from our randomization
procedure since the Pauli line is fixed under conjugation by CZ and R, gates. Finally,
every magic square game must contain at least one of ZI, IZ, or ZZ, ensuring that
every magic square may return a result which is useless for distinguishing our two
states.

This argument generalizes, and for this reason, we switch to a different set of
contextual measurements shown in Figure 6-6 known as the magic pentagram [81].
Each vertex in the magic pentagram is labeled by a Pauli operator in the set

#r:= {YII, IYI, IIY,XII, IXI, IIX, YYX, YXY, XYY, XXX}.

Each line consists of 4 commuting operators which multiply to the identity, except
for the dashed red line which multiplies to minus identity. One can easily verify that
there is no +1 assignment to the vertices that multiply to 1 along the solid black lines
and to —1 along the dashed red line. Thus, we have the following:

Theorem 138. There is a procedure to make five measurements (on five copies) of an
unknown three-qubit quantum state [v) and learn, with certainty, some Pauli string
which does not stabilize [v)). Furthermore, the Pauli string is in the set .

The proof is virtually identical to that of Theorem 127, so we omit it.
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Figure 6-6: Magic pentagram.

6.5.3 Randomization and Self-Reducibility

In this section, we will slightly abuse notation and let Hs < H,, be the subgroup of
H,, of CZ and R, gates on the first three qubits. Let Hf < H3 be the subgroup of Hj
that only contain those transformations with an even number of R, and CZ gates.
Let S:= HY e% = {heP:he HY and P € %} represent the set of possible Pauli strings
obtained by measuring the first three qubits using magic pentagram measurements
(conjugated by some element in HY).

Suppose we have some randomized algorithm A which takes ¢i,..., ¢, € Gy, as in-
put, and outputs a Pauli string P € S such that P does not stabilize [¢)) = g1---gn =,
Let algorithm B be obtained from Theorem 131 where F' = HY, H = H,,, and A is
the algorithm defined above. That is, on input gy, ..., gm € G, Algorithm B returns
a Pauli (g;---gn ) ® P, where P € Py, is drawn from a distribution of Pauli strings which
do not stabilize |+)™.

We would now like to use B to solve the CNOT multiplication problem (see
Theorem 16). Recall that the product of CNOT gates is either the three-cycle or the
identity. Since any Pauli P which non-stabilizes |+)*° also non-stabilizes C5 |+)®*, the
output of B is not very meaningful. On the other hand, in the following theorem, we
will show how an L machine can smuggle an element of HS into the product of the
CNOT gates. Since the two permutations act differently on elements of HY, the L
machine will be able to extract meaningful statistics.

Theorem 139. Let gq,...,9, € CNOT,, for m >3 be such that g;---g, = ™ is some
permutation on the first three qubits. Let f € HY. Define Algorithm C' as below.

function C(f,q1,...,9.)
return B(g1,...,9n, f1 Gn,- --191)

Then the output distribution of C(f,g1,...,gn) is (mfn1)eD(g1Hp, ..., gnHm) where

D(g1Hpm, .-, gnHp) is the average of (g---g5,) " ® A(g}....,95,) over all gi,..., g5,
such that g'Hp, = giHy, and g', . Hy, = gn-is1 Hy for all i € [n] and gi---g5, € Hy.
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Proof. By Theorem 131, we have that C' will sample from the distribution

(glgnfgngl) b D(Hg)glgngngla ngma oo agnHma gnHma s angm)

where D(H g1+ 9ngn 91, G1Hms - - -y GnHumy Gn Hm, - - -, 91 Hy) 1s the average of the con-
jugation (g1,...95,) ' ® A(g},...,9%,) over all ¢i,..., g5, subject to the condition
gi"'gén € H:?gl"'gnfgn”'gl and gl(Hm = g;Hm and g:HiHm = Gn-i+1Hp for all 7 €
{1,...,n}. Observe that g = g7! for all ge CNOT,,, so

HY g1 gnfgn-g1 = HY gr-guf (91" 957" )t = HEmfr~' = HY

for any f € HY. That is, for fixed gi,...,gn, Algorithm C samples from the same
distribution (7w f71') ¢ D for some fixed distribution D regardless of the choice of
feHs. O

Theorem 140. Let A be a randomized algorithm which takes g1,...,9, € G as
input, and outputs a Pauli string P € S such that P does not stabilize g1---9y, |+)®m.
Then, given gi,...,gn, there exists a randomized algorithm in BPL? which computes
g1-:gn, Promised that it is either the three-cycle on the first three qubits or the identity
transformation.

Proof. Fix g1,..., g, such that g;---g, = 7, and let Algorithm C be obtained by com-
posing Theorem 131 and Theorem 139. By construction, C' outputs a non-stabilizer
Pauli (nfr 1) e P e S of wfr1|+)*" where P ~ D = D(g1Hy,...,9nHy). In
other words, D(P) is a probability distribution over non-stabilizers of |+)®™, and
Drg:=(mfr ') eD is the conjugated probability distribution over non-stabilizers of
7 fr1|+)®™. The algorithm works in two steps:

1. Query algorithm C(II1I,g¢y,...,9,) to draw O(logn)-many samples from D.

2. Choose f € HY based on query results, and query C(f,g1,...,9,) to draw
O(logn)-many samples from D, ;. This will reveal 7 with overwhelming prob-
ability.

Let us now show how we should choose f in the second step. In particular, we
will show that there exists f € Hy such that the distribution Diq s is not equal to
De,,r. We will argue by contradiction: if there is no such f, then the support of D is
empty. Our starting point will be the fact that D does not have any support on the
stabilizer group of |+)®*, which generated by XII, IXI, and IIX. That is, we know a
priori that D(XII)=D(IXI)=D(IIX) =0.

Suppose we have some f € HP which does not distinguish the two permuta-
tions. To be concrete, let f = R, ® R, ® I. We have Djq ;(YII) = D(XII) = 0 and
De, r(YIT) = D(YII). Since f does not distinguish the two permutations, it must be
that Diq f(YII) = D¢, s(YII), so

0="Dig¢(YII) = Dg, f(YII) = D(YII).

That is, D cannot have any support on Pauli YII. More generally, consider any Pauli
P e S. If there is no f € H?EB distinguishing Did,f from 'chyf, then Did’f(P) = DCg,f(P)
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PeS feH? [ Csf'c3t f C3fC3lfeP
YII R.(1)-R,(2) R.(1)-R.(3) XII
XZI CZ(1,3)-CZ(2,3) CZ(1,2)-CZ(2,3) XII
YZI CZ(1,3)-CZ(2,3) - R,(1)- R,(2) | CZ(1,2)-CZ(2,3) - R.(1) - R.(3) XII
X2z CZ(1,2)-CZ(2,3) CZ(1,2)-CZ(1,3) XII
YZZ CZ(1,2)-CZ(2,3)-R,(1)- R,(2) | CZ(1,2)-CZ(1,3) - R.(1)- R,(3) XII
YYX R.(2)-R,(3) R, (1) -R.(2) XXX

Table 6.3: Operations f € Hy which distinguish Diq y from D, ;. We omit P € S that
are equivalent up to permutation.

and so

D(f ' e P)=Diqs(P) =Dc, s (P) = D(Csf'C5' o P).

In other words, D(P) = D(C5fC;'f o P) for all P € S (recall that f = f-! for all
f € Hy). We can now systematically show that D(P) = 0 for every P € S. More
precisely, for every P € S, there exists a function f € HY such that D(C3fC;!f e P)
is a stabilizer of |+)®°. We show the complete enumeration in Table 6.3.

To conclude, we simply observe that there must exist (possibly multiple) Pauli
P ¢ S such that D(P) > ﬁ > c¢. With high probability, we sample such P in the
the first step of the protocol. Let f e HY be the associated function from Table 6.3.
There is a single Pauli @ := f e P which reveals the permutation 7. Suppose 7 = id,

then
D 1(Q) =Dias(Q) =D(f ¢ Q) =D(P).
On the other hand, if 7 = C3, then

Dw,f(Q) = ch,f(Q) = D(Csfc3 hd Q) = D(C3f03f o P) =0.

Thus, in O(logn) queries to Dy, we will see @ with high probability if 7 = id.
Otherwise, we conclude that 7 = Cj. O

6.5.4 Initial state details

Our initial graph state |G, ,,) will be arranged for the measurement-based computation
of the product of CNOT gates g, ..., 9, € CNOT,,. In fact, recall that due to the ran-
domization procedure, we will actually need to compute the product g,hig2hagphir,
where h; € H,,,. For elements of H,,, we can apply the corresponding layer of R, gates
in constant depth by Theorem 110, so we will omit these from the discussion below.

Let us focus now on the application of a single CNOT gate from qubit ¢ to j. In
Section 6.2.5, we saw a general procedure to implement any transformation in C, on a
2x16 grid. If we wished the apply the same construction in a circuit of m qubits, then
we would need to know ¢ and j in advance. That is, we want to construct some fixed
graph such that there exists some measurement pattern that implements CNOT (4, 7)
for all possible values of i and j. Importantly, we would also like the graph to be
embeddable in the grid.

191



Figure 6-7: Even-Odd sorting network: given any permutation, there is some subset
of the SWAP gates above that implements that permutation.

The most straightforward way to ensure that the graph state is grid-like is to only
apply local operations. We accomplish this by swapping far-away qubits until they
become adjacent. For instance, any CNOT(4, j) gate can be applied by swapping the
1th bit until it adjacent to bit j, applying the gate, and then reversing the swaps.
There are two downsides to this procedure:

e An element of H,, could consists of (m?) many CZ gates. So if we extended
this swap architecture to apply an element of H,,, we would needed §(m?)
copies, adding a nontrivial overhead to the entire procedure.

e Which SWAP gates are applied depends on both 7 and j. This complicates the
choice of measurement basis for some qubit in the measurement-based appli-
cation of some CNOT(4, ;) gate. Ideally, this choice of basis is a simple local
operation.

We solve both issues with the same construction. The key idea will be to use a
sorting network, which is a fixed network of SWAP gates on m qubits that can be
toggled to implement every permutation of those qubits. That is, for every permuta-
tion, applying some subset of the SWAP gates in the network yields the permutation.
Remarkably, there are O(m)-depth sorting networks such that every SWAP gate is
applied locally.

We will use the even-odd sorting network [58] of depth-m shown in Figure 6-7.
That is, on the kth layer, there are SWAP gates between qubits (2¢,2i+ 1) for k even,
and qubits (2¢ —1,2i) for £ odd. We now claim that the even-odd sorting network
implies a m x O(m) grid implementing any transformation in CNOT,, or H,,. First,
we use the sorting network to reverse the order of the list qubits, so qubit 1 becomes
qubit m, qubit 2 becomes qubit m -1, and so on. It is simple to see that since all
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operations are local, at some point every pair of qubits must have been swapped. At
that point, we can also apply any two-qubit gate using Theorem 111. Importantly,
for both CNOT,, and H,,, there is only a single gate that we might want to apply
at a given location, so these chosen basis depends only on a single bit of the input
(where the specific choice of encoding is given below). Once the qubits are in reverse
order, we can simply reverse the order again to complete the transformation.

In conclusion, we let G, ,, be the m x ©(nm) graph obtained by combining the
above observations. This yields the following theorem:

Theorem 141. Let gq,...,g9, € CNOT,, and h,,...,h, € H,, be given. Fach ele-
ment h; € H,, is encoded by a matriz representing its canonical decomposition. Each
element g; € CNOT,, is encoded by a binary m x m matriz whose only non-zero en-
try (i,j) represents the CNOT gate from qubit i to qubit j. There exist projections
Py, ..., Po(nmz) such that

e P, is either the projection £* or &L onto the ith qubit,

e PI®...® P@(an) ® I Ign,m) o< W)) ® grhi1g2ha - gnhn I+>®m

o P, ..., Py are X-projections, and

e For all i, P, depends on at most a single bit of the input.

6.5.5 Main theorem

We now have all the ingredients to prove the main theorem.
Theorem 142. Let Oyey be the rewind oracle for wide-CliffSim[2]. Then

oL c BPLYr.

Proof. Our goal is to use the rewind oracle to determine the product g;---g,, modulo
Pauli operations, given unitaries g¢q,...,¢9, € CNOT,,. By Theorem 16, we will use
that it is @L-hard to determine this product promised that it is the three-cycle or the
identity transformation.

First, we construct Algorithm A from the rewind oracle. Algorithm A applies
the oracle to g¢{,...,¢, € Gy, in the first round, then measures the five lines of the
pentagram (all of them, by rewinding) in the second round. The first round mea-
surements are specified by Theorem 141. Recall that the measurements in the second
round may require some entangling operations on the first three qubits (not simply
X and Y-basis measurments). However, we can simulate these gates by yet more
measurement-based computation using Theorem 111. Since the depth of these com-
putations is constant, an L verifier can apply the appropriate recovery operation to
the oracle’s answer in the second round. From these measurements, we identify a
non-stabilizer P € % of the state by Theorem 138.

From Algorithm A, we construct Algorithm B from A (Theorem 131), and then
Algorithm C from B (Theorem 139). We must now check that an L machine can
perform these randomization steps. Algorithm B queries Algorithm A with elements
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highs for hy,hy € H,, and g € CNOT,,. However, since Theorem 141 requires that
each input be specified by a local input encoding, we must show that we can calculate
the encoding of the product h;ghy given the individual encodings of hy, g, and hs.
However, since H,, is abelian and conjugation by CNOT gates is locally computable
(see Figure 6-5), preparing the final encoding is in BPL.

Finally, we use Algorithm C' to compute g;---g, using Theorem 140, which com-
pletes the proof. ]

As previously discussed, if there were a L implementation of the oracle, this would
imply &L < BPL, which is considered unlikely. We conclude that O is probably not in
InterL, and more generally, O is essentially Inter & L-complete.
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Appendix A

Proof of the multi-switching lemma
(Lemma 70)

This appendix gives the proof of Lemma 70, an adaptation of Rossman’s lemma [98]
to the case of multiple outputs. As discussed in the main text, we need this to get
the best parameters for Theorem 71, and thus for Theorem 56 as well.

We follow the notation that was set up by Rossman in [98] and define the following
classes of Boolean functions. One difference is that we consider functions with multiple
outputs {f:{0,1}" - {0,1}™}, instead of {f:{0,1}™ —» {0,1}}.

e DT(k) is the class of depth-k decision trees with a single output bit.

e CKT(d;s1,s9,...,584) denotes the class of depth-d ACP circuits with s; nodes at
height 7 for all 4 € {1,...,d}. Note that these circuits compute functions with
S§q¢ many output bits.

o CKT(d;s1,82,...,84) o DT(k) is the class of circuits in CKT(d; sy, s2,...,54)
whose inputs are labeled by decision trees in DT(k).

o DT(t)oCKT(d; sy, $2,...,54)oDT(k) is the class of depth-t decision trees, whose
leaves are labeled by elements of CKT(d; s1,...,s4) e DT(k). (Note that these
are functions with s; output bits)

e DT (k)™ is the class of m-tuples of depth-k decision trees. That is a function
F e DT (k)™ is a tuple of m functions F' = (f1,..., fm) where each f; e DT (k).

e DT(¢t) o DT (k)™ is the class of depth-t decision trees, whose leaves are labeled
by m-tuples of depth-k decision trees, one per output bit.

Recall that DT(¢) o DT(k)™ is the class of functions mapping {0,1}" to {0,1}™
that can be evaluated by adaptively querying at most ¢ coordinates globally, after
which each of the m output bits can be evaluated by making at most & additional
adaptive queries. Note that while the first ¢ queries are global, the last k queries
could be different for each output bit.

The next lemma shows that under random restriction with high probability objects
of the form DT(-)oCKT(d;...)oDT(-) reduce to objects of the form DT(-)o CKT(d-
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1;...) o DT(-), where the depth of the circuit reduces by one. Applying this lemma
for d iterations would reduce the depth of the circuit to 1.

Lemma 143 (|98, Lemma 24|). Let d,t,{,k,s1,...,84 € N, d > 2, p € (0,1). If
¢>log(sy) +1 and f e DT(t-1) o CKT(d; s1,...,54) e DT(k), then

Pr [fl, ¢ DT(t~1) o CKT(d - 1355, 5a) o DT(6)] < 51(200pk)"* . (A1)

p~Rp

Lemma 144 (Multi-Switching Lemma [62], for this formulation see [112, Theo-
rem 40]). Let m,k,q,t €N, pe (0,1). If f e CKT(1;m) o DT(kK), then

Pr [fl, ¢ DT(t-1) o DT(g-1)"] < mi+ta. (25pk)t . (A.2)
p~Rp

Lemma 145 (Multiple output AC® circuits under random restrictions). Let the
following parameters be integral: d.t,q.k,si,...,8q-1 € N, p1,...,pa € (0,1). Let

f € CKT(d;s1,...,84.1,m) be a circuit of depth d, n inputs, m outputs, and the
given size constraints. Let s=S1+ ...+ Sq.1+m. Let p=py-pa--pg. Then

Pr [fl, ¢ DT(2t - 2) o DT (g - 1)™]
p~Bp
d-1 .
S S1° O(pl)t/2 + (Z Si . O(p’t log S)t/z) + m1+t/q 5 O(pd l()g S)t.
1=2
(A3)

Proof. Let s4 = m for ease of notation. Let £ = [log(s)]+1. We think of p~ R, as a
composition of d random restrictions pjo...opg where each p; ~R,,. Fori=1,...,d-1
we let &; be the event defined by

E < flpoop; € DT(t —1) o CKT(d - %; Sis1, - - -, 8a) o DT(£), (A.4)
and denote by £; the event that
Es < flpo.opy € DT(2t-2) o DT (g - 1)™ (A.5)

We shall show that £ A...AE; happens with high probability. We start with the first
event &£;. Since f e CKT(d;sy,...;5sq4), it also holds that

feDT(t-1)o CKT(d;s1,...,84) o DT(1). (A.6)

Thus, we may apply Lemma 143 with k=1 and get

Pr[-wgl] <81+ O(pl)t/z. (A?)
For i=2,...,d -1, using Lemma 143 again, we have
Pl"[ﬁ(%'gl VANAN gi-l] <s;- O(pz . E)t (A8)
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We are left with the last event — showing that Pr[-&4& A ... A€y 1] is small. We
condition on py, ..., pg-1 satisfying £ A...AEy_1, and denote by g = f,0. 0p,.,- Under
this conditioning, we have that

geDT(t-1) o CKT(1;m) o DT(¥). (A.9)

For each leaf A of the partial decision tree of depth at most ¢ — 1 for g, denote by g,
the function g restricted by the partial assignment made along the path to A\. Note
that for each leaf A, the function gy is in CKT(1;m) o DT(¢). By Lemma 144, for
each leaf A,

Prgil,, ¢ DT(t-1)oDT(¢g-1)"] < mli+ta. O(pq-0)*. (A.10)

Since there are at most 2!-! leaves, by union bound, the probability that there exists
a leaf A for which the switching does not hold is at most

21 9. O(py - 0)* . (A.11)

In the complement event, the function g|,, = fls0..0p, 15 in DT(t -1) o DT(t - 1) o
DT(gq-1)™ and thus &; holds. Thus, we showed that

Pr[-&g&r Ao AEg 1] <281 mI* 9. O(py - £)t < m* M9 O(pg - £)*. (A.12)

Overall, we got that the probability that one of &,...,E; does not hold is

ISY

Pr[—vgl V...V -ﬂgd)] = Z Pr[—-5i|€1 AL gi*l] (A13)
i=1
d-1
<s1-0(py)? + (Z si-O(p; .e)t/Q) +m. O(pg - 0)t, (A.14)
i=2
as promised. O

We are now ready to restate and prove Lemma 70. (Note that the formulation
here is slightly stronger than what we used in Section 5.2.4, as we replace 2t and ¢
with 2¢ - 2 and ¢ - 1, respectively.)

Lemma 146. Let f : {0,1}* » {0,1}™ be an AC® circuit of size s, depth d. Let
p=1/(mY7-O(logs)?1). Then

Pr [fl,¢DT(2t-2)oDT(¢-1)"]<s-27" (A.15)
p~Rp

Proof. We apply Lemma 145 with p; = 1/O(1) and ps = ... = pg_1 = 1/O(log s) and
pq = 1/O(m1-log s). O
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