
Keep it Secret, Keep it Safe
Privacy, Security, and Robustness in an Adversarial World

by

Adam Benjamin Gelernter Sealfon

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

@Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted
A uth or

Department of Electrical Engineering and Computer Science

F August 30, 2019

Certified by.. Signature redacted
Shafi Goldwasser

RSA Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by.....Signatureredacted
MASSACHUSETTS INSTITUTE - V Leslie A. Kolodziejski

OFTECHNOLOGY Professor of Electrical Engineering and Computer Science

OCT 032019 Chair, Department Committee on Graduate Students

LIBRARIES

2

Keep it Secret, Keep it Safe
Privacy, Security, and Robustness in an Adversarial World

by

Adam Benjamin Gelernter Sealfon

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

The deployment of large-scale systems involving many individuals or devices necessitates
the design of computational frameworks that are resilient to failures or malicious actors.
This thesis introduces algorithms and definitions for a series of problems concerning robust-
ness, security, and privacy in the many-party setting. We describe protocols for maintaining
a stable configuration despite adversarial perturbations, for cryptographic tasks involving
secure multiparty computation and anonymity-preserving authentication, and for privacy-
preserving analysis of networks. The results presented span the fields of distributed algo-
rithms, cryptography, and differential privacy.

We first model and describe a protocol for the problem of robustly preserving a stable
population size in the presence of continual adversarial insertions and deletions of agents.
Turning to cryptography, we explore the possibility of leveraging an infrastructure for se-
cure multiparty computation, characterizing which networks of pairwise secure computation
channels are sufficient to achieve general secure computation among other sets of parties. We
next introduce a definitional framework and constructions for ring signatures that provide
more fine-grained functionality, explicitly delineating whether parties can convincingly claim
or repudiate authorship of a signature. Finally, we turn to differential privacy for graph-
structured data. We present efficient algorithms for privately releasing approximate shortest
paths and all-pairs distances of a weighted graph while preserving the privacy of the edge
weights. We also present efficient node-private algorithms for computing the edge density of
Erd6s-R6nyi and concentrated-degree graphs.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Firstly, I am grateful to my advisor, Shafi Goldwasser, for her tireless guidance throughout

my PhD. I've learned so much from her, and deeply appreciate her dedication, encourage-

ment, and mentorship.

I'd like to thank the other members of my thesis committee, Ron Rivest and Jon Ullman.

I am fortunate to have worked with each of them and to have learned from them in classes

and through research collaborations.

I'd also like to thank Adi Akavia, Yael Tauman Kalai, David Peleg, Alon Rosen, Salil

Vadhan, and Vinod Vaikuntanathan for mentoring me either at MIT or during research

visits to their institutions. I'd especially like to thank David and Salil for advising me as an

undergraduate.

Thanks to all of my other collaborators, including Ranjit Kumaresan, Rafi Ostrovsky,

Sunoo Park, Srini Raghuraman, Ron D. Rothblum, Alessandra Scafuro, and Katerina Soti-

raki, for the wonderful experience of working with them and for teaching me so much. This

thesis is based on papers coauthored with many of them.

Thanks to my labmates in MIT's Theory of Computation group for being such great

friends and colleagues over the years.

Finally, I'd like to thank my family for all of their support and love throughout my PhD,

before, and beyond. This thesis is dedicated to them.

5

6

Contents

1 Introduction

1.1 Distributed protocols robust to population dynamics

1.2 Infrastructure for secure multi-party computation

1.3 Fine-grained control for ring signatures

1.4 Differential privacy for network data

1.4.1 Shortest paths and distances under differential privacy

1.4.2 Private estimation of edge density

I Distributed algorithms

2 Population stability: regulating size in the presence of an adversary

2.1 Introduction

2.1.1 Contributions

2.1.2 Discussion and extensions

2.1.3 Technical overview .

2.1.4 Related work

2.2 The Population Stability Problem

2.3 The protocol

2.4 Analysis

2.4.1 Bookkeeping lemmas . . .

2.4.2 Bounded deviation

7

15

. 18

. 19

. 20

. 21

. 22

. 23

24

25

. 2 5

. 2 6

. 2 8

. 3 2

. 3 8

. 4 1

. 4 3

. 5 0

. 5 2

. 5 5

2.4.3 Correcting population drift .

2.4.4 Putting everything together .

II Cryptography

3 Network oblivious transfer

3.1 Introduction .

3.1.1 Our Model: Network Oblivious Transfer

3.1.2 Related Work and Our Contributions .

3.2 Preliminaries

3.2.1 Notation and definitions

3.2.2 Secure Computation . .

3.2.3 Oblivious Transfer . . .

3.3 Warm-ups

3.3.1 Case 1: Figure 3-2a

3.3.2 Case 2 :Figure 3-2b

3.3.3 Case 3 :Figure 3-2c

3.3.4 Case 4 :Figure 3-2d

3.3.5 Cases 1-4 are exhaustive

3.4 Lower Bound

3.5 Building Blocks

3.5.1 The t-claw Protocol . . .

3.5.2 The t-clique Protocol . .

3.5.3 Cascading

3.5.4 The 2-path graph

3.5.5 Combiners

3.6 The case t = n/2

3.7 The case t = n - 2

3.8 The General Case: t > n/2 . . .

8

57

60

62

63

63

65

. 6 7

. 7 2

. 7 2

. 7 3

. 74

. 7 6

. 7 7

. 7 8

. 7 9

. 8 0

. 8 1

. 8 1

. 8 3

. 8 3

. 8 5

. 8 7

. 8 8

. 8 9

. 9 0

. 9 4

. 9 7

3.8.1 General Protocol (Quasi-polynomial for t = n/2+ (1))

3.8.2 General Protocol (Efficient for t = n - 0(1))

3.9 Bounding the number of edges in - -unsplittable graphs.

4 Repudiability and claimability of ring signatures

4.1 Introduction .

4.1.1 Definitional contributions

4.1.2 Overview of our constructions

4.1.3 Other related work

4.2 Anonymity and unforgeability of ring signatures

4.2.1 Anonymity .

4.2.2 Unforgeability .

4.3 New definitions for ring signatures: (un)repudiability and

4.3.1 Repudiable ring signatures

4.3.2 Unrepudiable ring signatures

4.3.3 Claimable ring signatures

4.3.4 Unclaimable ring signatures

4.3.5 Repudiable-and-claimable ring signatures

4.4 Repudiable construction

4.4.1 Building blocks

4.4.2 Construction

4.4.3 Security proof

4.5 Claimable transformation

4.5.1 Building blocks

4.5.2 The transformation

4.6 Unclaimable construction

4.6.1 Lattice trapdoor sampling . . .

4.6.2 The basic construction of [BK10]

107

107

113

117

120

122

123

(un)claimability

126

127

127

130

132

. 135

. 139

. 14 0

. 14 0

. 14 3

. 14 6

. 15 4

. 1 5 4

. 1 5 6

. 16 9

. 16 9

. 1 7 1

4.6.3 Unclaimability for the full ring signature scheme of [BK10] 174

9

98

100

103

4.7 Definitions for repudiable-and-claimable ring signatures

4.8 Completing the proof of Lemma 4.4.7 .

4.9 Deferred proofs: anonymity of R-RS .

4.10 Explaining randomness of discrete Gaussian samples

III Differential privacy

5 Private shortest paths and distances

5.1 Introduction .

5.1.1 Differential privacy and our model

5.1.2 Our results

5.1.3 Previous work on graphs and differential

5.2 The privacy model

5.3 Prelim inaries

5.4 Computing distances

5.4.1 Distances in trees

5.4.2 Distances in bounded-weight graphs . . .

5.5 Finding shortest paths

5.5.1 Lower bound

5.5.2 Upper bound

5.6 Distances in the path graph

5.7 Other graph problems

5.7.1 Almost-minimum spanning tree

5.7.2 Low-weight matching

privacy

Background on

Our Results .

d6s-R6nyi graphs with node differential privacy 221

. 2 2 1

Node-Private Algorithms for Erd6s-R6nyi Graphs . . 223

. 2 2 4

10

176

177

181

183

187

189

189

189

190

193

196

198

199

200

205

208

208

211

214

216

216

218

6 Efficiently estimating Ei

6.1 Introduction

6.1.1

6.1.2

6.2 Prelim inaries . 225

6.3 An Estimator for Concentrated-Degree Graphs 228

6.3.1 T he Estim ator . 228

6.3.2 Analysis using Smooth Sensitivity . 229

6.4 Application to Erd6s-R6nyi Graphs . 234

6.5 Lower Bounds for Concentrated-Degree Graphs 236

11

12

List of Figures

3-1 Known impossibility results. Securely computing foT between A' and B' is

impossible for t = 1 in GCK and is impossible for t = 2 in GHIK. 76

3-2 Cases for n = 4 parties with t = 2 corruptions. 77

3-3 Illustrating the cascading protocol for Case 4 : Figure 3-2d; (a)- (b)- (c) 80

3-4 Building block networks. (a) t-claw graph (b) t-clique graph (c) 2-path graph 83

4-1 Summary of our results and assumptions relied on. VRF = verifiable random

function, RS = ring signature, FKE = full key exposure, SIS = short integer

solution problem . 117

5-1 The partition used in Algorithm 8 to separate a tree into subtrees of size at

m ost V /2. 202

5-2 The graph used for the lower bound of Lemma 5.5.2. 209

5-3 (Left) The graph used in the reduction of Lemma 5.7.2. (Right) A single

gadget in the graph used in the reduction of Lemma 5.7.5. 216

13

14

Chapter 1

Introduction

The computing landscape over the past decades has become increasingly globalized. The

online ecosystem has enabled the execution of joint computations performed in tandem by

many participants at physically dispersed locations, and has also facilitated the collection

and analysis of enormous datasets describing many millions of individuals. At the same time,

this increasingly decentralized paradigm for computing at scale raises novel challenges for

security, privacy, and robust accuracy, and motivates the development of new frameworks

for maintaining correctness and security for computations in the many-party setting.

Networked or decentralized computing involves a reliance on a greater number of compo-

nents, requiring system designers to take into account the potential failures of some of these

components. Systems deployed at scale should be resilient to failures of hardware and soft-

ware components, as well as adversarial unexpected behavior by some system components

caused either inadvertently, by deliberate attempts of participating parties to circumvent the

protocol, or as a result of infection by malware. Indeed, the recent adoption of blockchain

computing establishes a massively distributed computing environment in which anonymous

participants have no rationale to trust one another, and often have direct financial incentives

to circumvent the system.

The greater availability of large datasets-including those containing both personal in-

formation and information about relationships between individuals, as in a social network-

15

raises major challenges for protecting individual privacy. The existence of such datasets

allows sophisticated analyses to be performed, but privacy concerns arise from the publi-

cation of analyses based on personal information. However, large datasets also offer the

potential to release accurate population statistics while concealing the data belonging to

each individual.

This thesis describes a series of problems that focus on issues of security, robustness, and

privacy for computations involving many participants. The problems studied span the fields

of cryptography, differential privacy, and distributed algorithms. Broadly speaking, we will

be concerned with the following goals.

Selective release of information. How can we release some information while provably

preserving the secrecy of other information? What aggregate information is safe to reveal

without compromising individual privacy, and how accurately can we do so? These questions

underly key objectives of differential privacy and cryptography, which are concerned with

the disparate but conjoined goals of understanding what information is desirable to release,

and how it is possible to reveal only the evaluation of a particular function and no additional

information.

Robust computation in network settings. How can we design protocols that are re-

silient to the failure or malicious behavior of components or parties? How can systems of

distributed agents collaboratively perform tasks with only limited and possibly unpredictable

communication capabilities? How can agents with only local information about the state of

a system coordinate to respond to adversarial events? Understanding the capabilities and

limitations of collections of agents in the presence of failures or corruptions is integral to

designing resilient protocols and systems in both cryptography and distributed computing.

Overview of this thesis. This thesis is based on a collection of some of the works [Sea16,

KRS16, GOSS18, PS19, SU19] I authored or coauthored during my PhD.

Part I introduces a problem of stability in the context of distributed computing. In this

16

setting, a collection of agents with restricted memory and limited ability to communicate are

tasked with maintaining a consistent population size in the presence of an adversary that

may continually add or remove agents at some bounded rate. Chapter two describes this

problem in detail, and presents a protocol that maintains a population close to the target

value N, and is robust to nearly N1 4 adversarial insertions or deletions in each round of

communication.

Part II describes two problems in cryptography that deal with settings of many users.

The first, in chapter three, explores the problem of secure multiparty computation in a many-

party setting in which infrastructure facilitates rapid secure communication between some

pairs of parties, a scenario that could be realized either with precomputation of correlated

randomness or through use of spcial-purpose hardware. Given a network specifying pairs

of parties that have efficient pairwise secure computation capabilities, we study when it

is possible securely to compute general multiparty computations among all parties in the

network.

The second, in chapter four, presents new definitions and constructions for ring signatures

that provide more fine-grained control over the capabilities and anonymity guaranteed by the

signature scheme. Ring signatures are an anonymity-providing variant of digital signatures,

motivated in part by whistleblowing scenarios, in which a signature is produced with respect

to a "ring" or set of participants. Informally, they guarantee that the signature was pro-

duced by some member of the ring, while also ensuring that parties outside the ring cannot

determine which member of the ring was responsible for producing the signature. Chapter

four presents new definitions and constructions of ring signature schemes that provide ad-

ditional guarantees for whether a member of the ring is able to demonstrate authorship or

non-authorship of a signature.

Part III explores differentially private release of information in network settings. An

algorithm is differentially private if its output distribution is close in a particular sense

on any pair of neighboring databases, or databases that are identical except for the data

associated with a single individual in the dataset. Chapter five explores the question of

17

privately releasing shortest path and distance information while preserving the privacy of

edge weights, for a weighted graph whose topology is publicly known. The chapter introduces

the private edge weight model, provides algorithms and lower bounds for privately releasing

approximate shortest paths, and provides algorithms for private all-pairs distances in trees,

graphs of bounded weight, and general graphs.

Chapter six considers the established but challenging setting of node differential privacy,

in which neighboring databases may differ on the set of edges incident to any single vertex,

and explores the problem of privately and efficiently releasing the approximate edge density.

The chapter presents efficient optimal and near-optimal algorithms for private edge density

estimation for two special classes of graphs, graphs whose vertex degrees are contained in an

interval of bounded size and Erd6s-R6nyi graphs.

The remainder of the introduction provides an overview of the results described in each

of these sections.

1.1 Distributed protocols robust to population dynamics

The first part of this thesis introduces a coordination problem called the population stabil-

ity problem. The problem is inspired in part by the ability of complex biological systems

composed of a multitude of memory-limited individual cells to maintain a stable population

size in an adverse environment. Such biological mechanisms allow organisms to heal after

trauma or to recover from excessive cell proliferation caused by inflammation, disease, or

normal development.

In this problem, a system of agents each with limited memory and communication, as well

as the ability to replicate and self-destruct, is subjected to attacks by a worst-case adversary

that can at a bounded rate (1) delete agents chosen arbitrarily and (2) insert additional

agents with arbitrary initial state into the system. The goal is perpetually to maintain a

population whose size is within a constant factor of the target size N.

Chapter 2 describes a population stability protocol in a communication model that is a

synchronous variant of the population model of Angluin et al. [AAD+04]. In each round,

18

pairs of agents selected at random meet and exchange messages, where at least a constant

fraction of agents is matched in each round. This protocol uses three-bit messages and

slightly more than log 2 N states per agent and is robust against an adversary that can both

insert and delete agents.

Theorem 1.1.1 (Informal; see Theorem 2.1.1). For any a > 0 and E(N) E W(log 2 N), there

exists a population stability protocol with three-bit messages and E(N) states per agent that

is robust to K = O(N1/ 4) adversarial insertions or deletions per round and maintains the

population size between (1 - a)N and (1 + a)N with overwhelming probability.

The protocol relies on a novel coloring strategy in which the population size is encoded

in the variance of the distribution of colors. Individual agents can locally obtain a weak

estimate of the population size by sampling from the distribution, and make individual

decisions that robustly maintain a stable global population size.

1.2 Infrastructure for secure multi-party computation

The second part of the thesis is concerned with cryptographic protocols for many-party

settings. We first consider the setting of secure multiparty computation (MPC), in which a

set of N parties wish to compute a joint function of their inputs X 1 , . .. , XN, revealing only

the final answer and no other information about the individual inputs. Protocols for secure

MPC for general functions are well established [Yao86, GMW87, BGW88, CCD88], but

in the dishonest-majority setting, known protocols require relatively expensive public-key

operations.

In Chapter 3, we study the possibility of using an infrastructure to improve the efficiency

of MPC by avoiding the use of public-key cryptographic computations in the online phase.

We propose an infrastructure based on oblivious transfer (OT), which would consist of OT

channels between some pairs of parties in the network that could be established through

precomputation of correlated randomness shared between pairs of parties, or using special-

purpose hardware or other means. We devise information-theoretically secure protocols

19

that allow additional pairs of parties to establish secure OT correlations in the presence of a

dishonest majority. The main technical contribution is an upper bound that matches a lower

bound of Harnik, Ishai, and Kushilevitz [HIK07], who studied the number of OT channels

necessary and sufficient for MPC. In particular, we characterize which n-party OT graphs

G allow t-secure computation of OT correlations between all pairs of parties, showing that

this is possible if and only if the complement of G does not contain the complete bipartite

graph Knt,st as a subgraph.

1.3 Fine-grained control for ring signatures

Ring signatures, introduced by Rivest, Shamir and Tauman [RSTO1], are a variant of digital

signatures which certify that one among a particular set of parties has endorsed a message

while hiding which party in the set was the signer. Ring signatures are designed to allow

anyone to attach anyone else's name to a signature, as long as the signer's own name is also

attached.

But what guarantee do ring signatures provide if a purported signatory wishes to de-

nounce a signed message-or alternatively, if a signatory wishes to later come forward and

claim ownership of a signature? Prior security definitions for ring signatures do not give a

conclusive answer to this question: under most existing definitions, the guarantees could go

either way. That is, it is consistent with some standard definitions that a non-signer might

be able to repudiate a signature that he did not produce, or that this might be impossible.

Similarly, a signer might be able to later convincingly claim that a signature he produced is

indeed his own, or not. Any of these guarantees might be desirable. For instance, a whistle-

blower might have reason to want to later claim an anonymously released signature, or a

person falsely implicated in a crime associated with a ring signature might wish to denounce

the signature that is framing them and damaging their reputation. In other circumstances,

it might be desirable that even under duress, a member of a ring cannot produce proof that

he did or did not sign a particular signature. In any case, a guarantee one way or the other

seems highly desirable.

20

In Chapter 4, we formalize definitions and give constructions of the new notions of repudi-

able, unrepudiable, claimable, and unclaimable ring signatures. Our repudiable construction

is based on VRFs, which are implied by several number-theoretic assumptions (including

strong RSA or bilinear maps); our claimable construction is a black-box transformation from

any standard ring signature scheme to a claimable one; and our unclaimable construction is

derived from the lattice-based ring signatures of Brakerski and Kalai [BK10], which rely on

the hardness of the short integer solutions problem (SIS). Our repudiable construction also

provides a new construction of standard ring signatures.

1.4 Differential privacy for network data

The final part of the thesis is concerned with privacy-preserving data analysis for network-

structured data. Differential privacy, defined by Dwork, McSherry, Nissim and Smith [DMNS06],
requires that the output of an algorithm provides little advantage, measured by privacy pa-

rameters F and 6, for distinguishing between neighboring databases, which are thought of

as databases that differ on the contribution of one individual. In the most typical setting,

each row of the database consists of the data of a single individual, so a pair of databases

are neighbors if they are identical except for a single row. Complications arise in differen-

tial privacy for databases corresponding to graphs, since the graph structure generally does

not decompose naturally into the data contributions of each individual, and changing which

edges are incident to a single vertex may change the local topology of every other vertex as

well.

Under node differential privacy, individuals correspond to vertices, and neighboring

databases differ only in the set of edges incident to a single vertex. This model is natu-

ral for modeling social networks and many other settings in which vertices correspond to

individuals and it is desirable to hide the characteristics of any single individual. However,

many graph properties are highly sensitive to changes in the neighborhood of a single vertex,

and node-differentially private algorithms are known only for a relatively small set of graph

properties. A weaker but still interesting guarantee is provided by edge differential privacy,

21

in which neighboring databases may differ only the presence or absence of a single edge.

Chapters 5 and 6 are concerned with two problems concerning privacy-preserving analysis

of graphs, the latter in the setting of node differential privacy and the former in a setting in

which neither node-level privacy nor edge-level privacy is suitable.

1.4.1 Shortest paths and distances under differential privacy

Shortest paths and distances between the vertices of a graph are are among the most funda-

mental problems in graph algorithms. However, neither problem seems amenable to privacy-

preserving solutions under node or edge differential privacy. This is because the addition or

removal of even a single edge may drastically change connectivity and distances, and may

even disconnect the graph. For shortest paths the situation is even worse, since releasing

any valid path, however short, reveals a set of edges contained in the graph, violating both

privacy definitions.

Chapter 5 introduces a different model for differentially private analysis of weighted

graphs that captures desirable privacy constraints for many applications and in which short-

est path and distance queries can be performed privately. In this model, the graph topology

(V, E) is assumed to be public, and the private information consists only of the edge weights

w : E -+ R+. Two weight functions w, w' are considered to be neighboring if they have £I

distance at most one. This can model, for instance, congestion patterns on a known system

of roads, where the presence or absence of a single car can have a bounded influence on the

traffic along a road or set of roads.

In this setting we can study the problems of privately releasing a short path between a

pair of vertices and of privately releasing approximate distances between all pairs of vertices.

For the problem of privately releasing a short path between a pair of vertices, we prove a lower

bound of Q(n) on the additive approximation error for an n-vertex graph, for fixed privacy

parameters E, 6. We provide a differentially private algorithm that matches this error bound

up to a logarithmic factor and releases paths between all pairs of vertices, not just a single

pair. The approximation error achieved by our algorithm can be bounded by the number

22

of edges on the shortest path, so we achieve better accuracy than the worst-case bound for

pairs of vertices that are connected by a low-weight path consisting of o(n) vertices.

For the problem of privately releasing all-pairs distances, we show that for trees we can

release all-pairs distances with approximation error O(log2 5 n) for fixed privacy parameters

E, 6. For arbitrary bounded-weight graphs with edge weights in [0, M] we can release all

distances with approximation error O(/nM).

1.4.2 Private estimation of edge density

In Chapter 6 we consider one of the most basic queries about a graph, namely the edge density

E|/(). It is straightforward to release the edge density of an arbitrary graph under node

differential privacy with error roughly O(1/(en)), which is optimal for worst-case graphs.

However, it is still possible to achieve better accuracy over a restricted class of graphs while

still guaranteeing privacy in the worst case. We study two particular families of graphs,

Erd6s-R6nyi random graphs and arbitrary graphs satisfying the property that all vertices

have close to the same degree.

A recent result of Borgs, Chayes, Smith and Zadik [BCSZ18] shows that the parameter

p of an Erd6s-R6nyi graph G(n, p) can be estimated privately with error 0(1/n+I/(En")),

which is believed to be optimal. However, the result is based on general Lipschitz extensions

and consequently yields an exponential-time algorithm.

We give a simple, computationally efficient algorithm for privately estimating the pa-

rameter of an Erd6s-R6nyi graph (and also the edge density) with close to optimal accuracy.

Our algorithm has error 0(1/n + 1/(2n 2)). In particular, for E > 1/Vs/i, we achieve error

0(1/n), which (up to logarithmic factors) is optimal and matches both the nonprivate accu-

racy for the problem and the accuracy of the exponential-time algorithm of Borgs et al. More

generally, we give an optimal, computationally efficient, private algorithm for estimating the

edge-density of any graph whose degree distribution is concentrated in a small interval.

23

Part I

Distributed algorithms

24

Chapter 2

Population stability: regulating size in

the presence of an adversary

This chapter is based on joint work with Shafi Goldwasser, Rafail Ostrovsky, and Alessandra

Scafuro [GOSS18].

2.1 Introduction

A single fertilized mouse egg and human egg develop into organisms with vastly different

numbers of cells. How do cellular mechanisms regulate the number of cells in complex

biological systems? In order to function in adverse environments, organisms must maintain

stability and be able to recover from unplanned circumstances. For example, a lizard that

loses its tail can grow a new one, and internal organs require mechanisms to recover from cell

loss caused by injury or from execessive cell proliferation due to development or disease. But

how do individual cells know how to respond in order to reestablish the desired population

size?

Regulation of population size may be achieved through a combination of internal pro-

grams running within each cell and intercellular communication. One approach could be

for individual cells to count the population using a distributed protocol. But an interesting

25

question is how to control the population size if each cell lacks sufficient memory to count.

Understanding the mechanisms for regulating population size in an adversarial environment,

in light of memory constraints of individual agents, is a natural computational question.

In this work, we study the problem of robustly maintaining a stable population size from

the perspective of distributed computing. We introduce a new coordination question that we

call the population stability problem. Consider a population of agents with the ability

to replicate and self-destruct. How can such distributed systems detect and recover from

adversarial deletions and insertions of agents so as to maintain the desired population size?

Our focus is on systems that consist of huge numbers of agents, where each agent individ-

ually has very limited memory and connective capability and can directly communicate with

only a few other agents in the system. We model communication using a synchronous vari-

ant of the population model of Angluin et al. [AAD+06, AAE07]. In each round, a constant

fraction of agents is matched at random and can exchange messages, where the matched

agents are chosen independently in each round. Population size must be maintained in this

setting in the presence of an adversary that observes the entire state of the system and can

continually delete or insert agents. We describe the model in more detail below.

The population stability problem augments a growing body of work that uses the language

and ideas of distributed computing to model biological systems consisting of a collection of

resource-constrained components that collectively accomplish complex tasks. Naturally, we

do not claim direct relevance of our results to biological systems due to potential model-

ing differences. Regardless, the population stability problem makes sense in any system

consisting of individual components with the ability to reproduce.

2.1.1 Contributions

Our main contributions are as follows.

A New Problem in Distributed Computing: The Population Stability Prob-

lem. We introduce a new problem in distributed computing. A population of N memory-

26

constrained agents (i.e. processors with the ability to reproduce and self-destruct) is subjected

to adversarial attacks. Whereas many attacks can be envisioned, we consider a worst-case

adversary that can delete or insert agents at a bounded rate. The goal is to maintain a stable

population size within a small multiplicative factor of the original size N. This problem ap-

pears fundamentally different from the classical problems of distributed computing, such as

consensus, leader election, majority, common coin flipping, or computing general functions

of the joint state of the parties.

Models for Communication and the Adversary. The communication model we con-

sider is a synchronous variant of the population model of [AAD+06, AAE07]. That model

was designed to represent sensor networks consisting of very limited mobile agents with no

control over their own movement and whose goal is to compute some function of their in-

puts or evaluate a property of the system. Whereas [AAD+06] assumed that pairs of agents

can communicate via pairwise interactions as scheduled by a uniformly random matching

process, we assume in addition that agents are synchronized and interact with one another

in rounds. Within each round, at least a -y fraction of agents participates in pairwise inter-

actions, again scheduled uniformly at random. The agents additionally have the ability to

self-destruct and to reproduce by producing a second identical copy of themselves.

It is clear that we cannot allow the adversary to delete most or all of the agents in a

single round, since maintaining a stable population size in the presence of such an adversary

is impossible. Consequently, we give the adversary a budget of K alterations to perform in

each round, where an alteration consists of removing, inserting or modifying the memory of

a single agent. We allow the adversary to observe the memory contents of every agent before

determining its alterations for a round. Both y and K are parameters of the model. The

model is described in detail in Section 2.2.

Protocol for Population Stability. We present a protocol with three-bit messages

requiring polylog(N) states (i.e. E(loglogN) bits of memory) per agent that tolerates

K = Nl/ 4-" worst-case insertions or deletions in each round, for any constant E > 0. For-

27

mally, our main theorem is the following.

Theorem 2.1.1. Let , y, e be positive constants, where - is a lower bound on the fraction

of agents that is matched in each round. Then there exists a population stability protocol with

three-bit messages and polylog(N) states per agent and guaranteeing that if the adversary

inserts or deletes at most K = O(N 1 /4) agents in each round, then with all but negligible

probability the population will remain between (1 - a)N and (1 + a)N for any polynomial

number of rounds.

New Techniques. The main idea employed in our construction is to color the agents with

the values 0 and 1 in such a way that information about the population size is encoded in the

distribution of colors. That is, given a set of agents with assigned colors in {0, 1}, consider

the distribution specified by choosing an agent at random and observing its color. We are

able to assign colors to agents in such a way that approximate population size is encoded

in the variance of this distribution. Subsequently, each individual agent locally computes

a very weak estimator of whether the variance is too large or too small, and makes a local

decision of whether to reproduce or self-destruct. Although each individual agent's estimate

is noisy, we show that in the aggregate, the local decisions are globally able to maintain a

stable population size even in the presence of a powerful adversary.

We discuss the model and results further in Section 2.1.2. We provide a more in-depth

overview of our techniques in Section ?? below. The model is described in further detail in

Section 2.2. In Section 2.3 we provide a full description of the protocol, and in Section 2.4

we present the analysis.

2.1.2 Discussion and extensions

Challenges. The first obstacle we must confront in designing a protocol for population

stability is the memory constraint. Each agent does not have sufficient memory to store

a unique identifier or to count to the population target N. Yet collectively, they must

have a good approximation of N and must individually decide whether to replicate if the

28

population is too low or to self-destruct if the population is too high. Making their task

even more challenging, these memory-constrained agents must correct deviations in the size

of the population and make their decisions while the adversary is acting.

A second major challenge is that the adversary is very powerful. Although the number of

agents inserted or deleted in each round is bounded, the adversary can observe the complete

state of the system' before deciding on its actions, and may insert agents of arbitrary initial

state. These capabilities present difficulties for many standard techniques and abstractions

used in distributed computing. For instance, many protocols are based on leader election,

where a single leader processor is chosen to direct or facilitate the task at hand. However,

since our adversary is able to observe the state of every agent, the adversary can simply wait

for a leader to be chosen and then delete it. Furthermore, even without observing the internal

memory of agents, the adversary could insert many additional agents that are all identical

in state to the leader. Indeed, since agents can be in one of only polylog(N) distinct states

and the adversary is able to insert K = N c/~ E poly(N) agents per round, the adversary

can even insert many copies of every possible agent type in each round. Consequently any

approach that relies on the existence of agents of unique or extremely special state, such as

leader election, seems doomed to failure. This appears to render ineffectual a large part of

the distributed computing toolbox.

Adversarial insertions. Recall that we allow the adversary to insert new agents with

arbitrary initial state. Starting from that internal state, we assume that the inserted agents

execute the same protocol as honest agents. We could instead consider an even stronger ad-

versary that inserts agents running arbitrary malicious protocols specifying their subsequent

behavior. However, the population stability problem as described above is clearly impossible

in the face of this stronger adversary, since our model does not include the ability to destroy

agents that do not cooperate. A malicious agent can simply ignore all interactions with

other agents and replicate itself at every opportunity. Such malicious agents would quickly

replicate themseves out of control, rapidly exceeding the population target.

'That is, the adversary has the ability to read the memory contents of every agent.

29

One may consider a different model that allows agents not only to self-destruct but also

to remove other agents it encounters. In such a setting, our protocol can be extended to

achieve population stability even if the adversary is allowed to insert agents that execute

arbitrary malicious programs, as long as there is a bound on how frequently malicious agents

can replicate and an agent is able to detect when it encounters an agent whose program is

different from its own. However, that setting is not the focus of this work.

Correction and detection. The objective in the population stability problem is to main-

tain a population size that is close to a target value N, and to correct the population if

it deviates too far from this target. A closely related problem is that of simply detecting

whether the population has deviated too far from the target or whether it has exceeded some

threshold, objectives that seem very similar to the problem of approximate counting [Mor78].

It would be natural to try to solve our problem by first detecting whether the population is

too large or too small and then correcting appropriately. With a weaker adversary that can

only delete agents but not insert additional ones (and additionally is oblivious to the inter-

nal states and coin flips of agents), this approach can be made to work using approximate

counting techniques. In the adversarial model considered here, constructing approximate

counters and detecting changes in population size are interesting open questions.

Synchrony. In this work we study a synchronous model, where all agents communicate and

perform updates in rounds. As has commonly been the case across distributed computing,

it is natural to study a new problem first in a synchronous setting to distill key ideas and

techniques before adding additional complications in an asynchronous setting.

We note, however, that synchronization is far from an unreasonable assumption in biolog-

ical systems. Indeed, many multicellular systems do achieve synchrony either through regu-

lar external stimuli such as sunlight or through chemical control mechanisms. For instance,

heart cells maintained in culture were able to achieve a high degree of synchronization of their

rhythmic contractions [JMPT87]. Neuronal cells too exhibit highly synchronized behavior.

Even when grown in culture, specialized neuronal cells show the capacity to synchronize

30

the release of particular hormones at regular time intervals [DLECW92]. Bacterial popu-

lations have also been shown to have the capability of producing coordinated oscillations

[M009, DMPTH10].

Nonetheless, an extremely natural and interesting question is how to solve the popula-

tion stability problem in a setting without synchrony or with only partial synchrony. For

instance, one could consider a setting where agents have clocks that have bounded drift rel-

ative to one another. Related to this is the typical random scheduler setting of population

protocols [AAE07], in which a single pair of agents at a time is chosen to interact and update

state. By a concentration argument, this process allows agents to maintain clocks that do

not drift too quickly relative to one another.

While the construction in this paper requires synchrony, there are some known techniques

in the population protocol literature for maintaining approximate synchronization in a non-

synchronous setting; see, for instance, the recent work of [AAG18]. A natural extension is

to show whether our techniques can be combined with synchronizers to achieve population

stability in such settings.

Alternate communication models. Another very interesting question is to explore the

population stability problem under a different communication model. In this paper, pairs of

agents that communicate are chosen independently at random in each round. Alternatively,

one could consider settings in which the neighbors of an agent are consistent over time,

perhaps reflecting underlying geometric constraints.

One natural approach is to use a fixed sparse communication graph, for instance an ex-

pander. However, modeling problems arise in determining how connectivity changes upon

agent replication, insertion, or deletion. In various settings along these lines, it is straightfor-

ward for the adversary to disconnect the communication graph and consequently to violate

population stability. An alternate approach could be to associate agents with points in Rd,

and to allow each agent to communicate with a small number of the nearest other agents.

31

Population stability in the high-memory setting. We note that in the absence of

memory constraints, there is a trivial protocol both for approximate counting and for the

population stability problem if the adversary can only delete and not insert new agents.

Each agent simply flips N coins to generate a unique identifier id E {0, I}N. For an interval

of O(polylog(N)) rounds each agent broadcasts the set of identifiers it has received so far.

With high probability, all identifiers are unique and agents receive the identifiers of every

agent that was alive throughout the interval, so each agent learns a close approximation of

the population size and can make a decision of whether to self-destruct, replicate, or neither.

However, this protocol relies heavily on agents having very large memory, and does not yield

an approach to solve the problem in the low-memory setting.

A note about success probability. Theorem 2.1.1 states that our protocol maintains a

stable population for any polynomial rounds with all but negligible probability. Recall that

a function is negligible if it tends to zero faster than any polynomial. That is, a function

negl(x) is negligible if for any c E N there exists an zO such that |negI(x)| < 1/x° for all

sufficiently large x ;> O.

Throughout this paper, we use the phrases "with high probability" and "with overwhelm-

ing probability" to mean with probability 1 - negl(N) for some negligible function neg.

2.1.3 Technical overview

Preliminary attempts We first describe two preliminary attempts at protocols for the

population stability problem which, while unsound, will provide useful intuition toward the

design of our actual protocol.

Attempt 1: non-interactive leader election As a first attempt in the low-memory

setting, consider the following approach, which is based on an idea from [AAE+17]. Each

agent flips a biased coin where Pr[c = 1] = I, where outcome 1 means that the agent is

a leader. For O(polylog(N)) rounds, each agent sends any agent it encounters the bit 0 if

its coin was zero and it has not received the message 1, and the bit 1 if its coin was 1 or it

32

has received a 1 from another agent. In the absence of an adversary, this allows every agent

to learn whether a 1 was obtained in any of the initial coin flips. The probability of this

event differs noticeably depending on whether the population is too small or too large. After

repeating to amplify the signal, with high probability the agents can detect if the population

is too small or too large and can replicate or self-destruct accordingly. A protocol of this

form can be shown to work in the presence of an adversary that can only delete and not

insert agents, and is additionally oblivious to the coin flips made by the agents. However,

in the adversary model considered here with insertion as well as deletion and full knowledge

of the states of agents, the protocol will fail. The adversary can either insert an agent with

coin value c = 1 in each phase, or else identify the agent or agents with coin value 1 and

selectively remove these agents. Consequently the adversary can cause the population to

grow or shrink arbitrarily.

This attempt highlights a fundamental difficulty in designing protocols in our adversarial

model. The protocol relied on a non-interactive strategy related to leader election, where the

presence or absence of a leader could be used to infer the approximate size of the population.

However, as we have discussed above, the use of a special state with one or only a few agents

of that state (in this case agents with coin value c = 1) provides the adversary with an

easy avenue of attack, namely the deletion of agents of that state or the insertion of many

additional agents of that state. Consequently, constructions of this flavor seem to have little

promise in this adversarial setting.

Attempt 2: independent coloring As a next attempt, consider the simple protocol

in which each agent flips a fair coin, receiving at random a color c E {0, 1}. For each

agent, compare the colors of the next two agents encountered. If the colors are equal, then

split, and otherwise self-destruct. Observe that if an agent encounters the same agent twice,

the colors must be the same, while if an agent encounters two different agents, the colors

are independently random. Consequently if the population currently has size m, then the

probability of splitting is 1 + 6(1), which is slightly larger than the probability § - 0(L)

of self-destructing, and so this protocol would cause the population to increase slightly over

33

time. To compensate this, modify the protocol to split only with probability 1 - 6(1) if the

colors are equal while still self-destructing with probability 1 if the colors are unequal.2

Now, the population will stay the same size in expectation if its current size m is equal

to the target N, will decrease in expectation if m > N, and will increase in expectation

if m < N. Qualitatively, this is exactly the behavior that we want. However, tending

in expectation to correct itself is insufficient for maintaining a stable population. In fact,

despite a very weak bias to correct drifts in the population, the signal is overwhelmed by

the noise, and the size of the population under this protocol will behave very much like a

random walk. Even in the absence of an adversary, this protocol will cause the population

to drift extremely far from its initial size.

In some sense the protocol we have just outlined behaves even worse than the empty

protocol, in that it fails to maintain a stable population when there is no adversary at all.

However, the protocol does have one intriguing feature. It entirely lacks any "special" agent

types for the adversary to exploit. Consequently, if we could design a more sophisticated

protocol along these lines that could maintain a stable population in the absence of an

adversary, we might hope that it could do the same even in the presence of an adversary.

Overview of our protocol

We now describe our actual protocol. At a very high level, the idea behind our protocol is as

follows. Through some coloring process which we will discuss below, agents are colored with

the colors {0, 1}. After the agents are colored, agents run a step called the evaluation phase

in which agents make the decision of whether to reproduce or self-destruct. The coloring

process and evaluation phase are then repeated indefinitely. We will refer to each iteration

of the coloring process followed by the evaluation phase as an epoch.

During the evaluation phase, each agent that is matched with another agent in this round

compares its own color with the color of its neighbor (i.e. the agent to which it is matched). If

2 Another perspective on why the protocol without this step cannot maintain a stable population is that
the protocol run by each agent has no dependence on the population target N. Consequently, if agents are
added or removed (either by the adversary, or even as a result of random drift) then the protocol should
behave as if those agents were there to begin with and will not correct this deviation in the population.

34

the two agents have the same color, then the agent will replicate itself with some probability

Psplit. If the two agents have different colors, then the agent will self-destruct. Note that if the

coloring process consisted of every agent tossing its own coin, then this would be essentially

the same as Attempt 2 above. We will instead employ a more structured coloring process

that results in agent colors that are not generated independently at random.

The coloring process will consist of two phases, a (noninteractive) leader selection phase

and a recruitment phase. In the leader selection phase, E(1/V) of the agents will become

"leaders" 3 and each leader will choose a random color in {0, 1}. In the recruitment phase,

each leader will identify N uncolored agents and color each of them with its own color. We

note that the leader will not directly encounter each of these Nagents, but will directly

color some agents which in turn will color other agents. To begin with, each leader activates

the first inactive agent that it encounters, sharing its color with the new agent. Each agent is

subsequently responsible for recruiting N/2 inactive agents in the same manner, forming a

recruitment tree of depth 1 log N. By delegating the coloring in this manner, the recruitment

process can be performed in only O(log 2 N) rounds. 4

For each leader, at the end of the recruitment phase, N agents will have obtained a

color based on the original coin toss of that leader. We will refer to these Nagents as the

cluster associated with the leader, and we will sometimes describe agents as belonging to

the same cluster or different clusters. At the end of the recruitment phase and the beginning

of the evaluation phase, a constant fraction of the population will have been colored having

been recruited into the clusters of the various leaders, roughly half with color 0 and the other

half with color 1.

Consider a particular agent in the evaluation phase. If the agent meets another agent

from the same cluster, then they necessarily have the same color. If the agent meets an

agent from a different cluster, then their colors are independently random. Consequently, if

the current population size is m, then with probability +0(2) the two agents will have

3That is, each agent will become a leader with probability 8(1/ N).
4 1n order to achieve constant message size, our full protocol will be slightly different and will use additional

rounds for the recruitment process.

35

the same color, and with probability - 8(E) the two agents will have different colors.

We can choose the splitting probability Psplit = 1 - E(1/V) so that the expected change

in population is zero for m = N. For m » N the expected change in population will be

negative, and for m « N the expected change in population will be positive. Moreover,

unlike in Attempt 2 above, which behaved similarly to a random walk, here the effect is

strong enough to maintain the population in a small interval around the target value N,

with all but negligible probability.

Moreover, the adversary can do little to influence the result of the protocol. For a popu-

lation size m = O(N), the number of leaders selected is VI, and so the standard deviation

of the number of leaders with each color is roughly N1/4 . Consequently, an adversary that

can insert or delete o(N/ 4) agents can do little to influence the distribution of colors. Even

if the adversary selectively inserts or deletes agents that are leaders and have a particular

color, the effect of the adversary on the distribution of colors is dominated by the random

deviation of the sampling process. Unlike in Attempt 1 above, there are many leaders, and

so the adversary is unable to delete enough of them or to insert enough additional leaders to

overwhelm the protocol. As we will show, the adversary cannot cause substantial deviations

in the size of the population.

Note that one strategy the adversary may attempt is inserting agents that do not know

the correct round number within the epoch. In the protocol described so far, there is no

mechanism for detecting and correcting this, and so over many rounds, adversarial insertions

may lead to a population of agents attempting to execute different portions of the protocol.

In order to address this, agents can exchange which round they are in, and self-destruct

upon encountering an agent that is in a different round of the epoch. This results in the

self-destruction of any agent with the wrong round number as soon as it encounters an agent

with the correct round number. A corresponding number of correct agents are also destroyed,

but we will show that the number of correct agents removed in this manner is sufficiently

small.

As discussed briefly in Section 2.1.1, we can think of this protocol as encoding the pop-

36

ulation size in the variance of a distribution and then sampling from this distribution to

obtain a weak estimate of the variance. Since the variance of the fraction of successes in

many independent Bernoulli trials decreases as the number of trials increases, if the number

of leaders is larger, then the fraction of colored agents with color 0 will be more closely con-

centrated around 1/2. On the other hand, if the number of leaders is smaller, then we expect

the fraction of colored agents with color 0 to be farther from 1/2. Since the expected num-

ber of leaders is proportional to the current size of the population, an approximation to the

population size is encoded in the fraction of agents of each color. Consider the distribution

obtained by selecting an agent at random and reading its color. Comparing the colors of two

agents serves as a very weak estimate of the variance of this distribution, while aggregating

the results of many agents' individual choices of whether to replicate or self-destruct serves

to amplify the accuracy of this estimate.

Achieving constant-size messages. The protocol described above involves messages of

size 8(log log N) bits, essentially as large as the entire memory of an agent. We now outline

how to modify the protocol to use constant-size messages. The only large portions of the

messages described so far consist of the current round in the epoch and the depth in the

recruitment tree, each of which can be encoded in 8(log log N) bits.

The current round in the epoch is sent to prevent the adversary from confusing the

protocol by inserting agents with the wrong round number. However, rather than sending

the exact round, we will instead send the single bit specifying whether or not the agent

is currently in the evaluation round. If an agent is entering the evaluation round and its

neighbor is not, then both agents will self-destruct. We can show that this suffices to maintain

the invariant that a large majority of the agents are in the same round of the epoch.

The depth of the recruitment tree is sent to allow each leader to induce the recruitment

of the correct number of agents. Note that we cannot simply recruit for 1 log N rounds,

since recruiting agents may encounter other agents that are already colored and cannot

recruit them. However, we can slow down the recruitment process to allow the depth in

the recruitment tree to be determined as a function of the round number. To do this, we

37

recruit for E(log 3 N) rounds, divided into 1logN subphases of log 2 N rounds each.' In a

single subphase, a recruiting agent will recruit only the first inactive agent it sees even if it

encounters many inactive agents in the subphase. This allows agents to determine their depth

in the recruitment tree based on the round in which they were recruited. Since a subphase

consists of w(log N) rounds, we will show that an inactive agent will be encountered with

high probability.

This yields a population control protocol with constant-size messages, since messages

consist of four binary values, namely an agent's color, whether or not it is active, whether

or not it is recruiting, and whether or not it is currently in the evaluation round. In the

analysis we will see how to achieve the same result with only three-bit messages.

2.1.4 Related work

Population Protocols. The population protocol model was introduced by Angluin et

al. [AAD+04, AAD+06]. In this model a collection of agents, which are modeled by finite

state machines, move around unpredictably and have pairwise interactions. The original

definition considers a worst-case environment/scheduler, while later formulations [AAE07]

consider the case where each interaction occurs between a pair of agents chosen uniformly at

random. In a population protocol, agents start with an initial configuration, and the goal is

to jointly compute a function of this input. Previous works have tried to identity the class

of functions that can be computed in such a model [AAER07], and the tradeoffs between

the resources need to do so (e.g. [AAE+17]). In these works, the agents are always active

throughout the execution of the protocol.

Another line of work expands the population model to the case in which agents can crash

or undergo transient failures that corrupt their states. Delporte-Gallet et al. [DFGR06]

consider a setting in which agents must compute a function of their inputs in presence of

such failures. They construct a compiler that takes as input a protocol that works in the

5We actually only require that subphases are w(log N) rounds, so it is sufficient to recruit for w(log2 N)
rounds.

38

failure-free model, and outputs a protocol that works in the presense of failures as long

as modifying a small number of inputs does not change the function output. Angluin et

al. [AAFJ08] incorporated the notion of self-stabilization into the population protocol model,

giving self-stabilizing protocols for some classical problems such as leader election and token

passing. They focus on the goal of stably maintaining some property such as having a unique

leader or a legal coloring of the communication graph.

Unlike these works, in our work agents have the ability to reproduce and self-destruct,

and the goal of maintaining a consistent population size must be carried out in the presence

of an adversary with the corresponding capability to insert and delete agents.

Approximate Counting. The problem of maintaining the population size of a collection of

memory-constrained agents is related to the problem of counting N items when the available

memory of the agents is less than log N bits. Approximate counters were introduced by

Morris [Mor78] as technique to accurately approximate a value N using only 8(log log N) bits

of memory. Techniques for approximate counting in the population model were developed

in [ABBS16, AAE+17.

A sequence of works by Di Luna et al. [LBBC14b, LBBC14a] consider the problem

of estimating the size of a network of agents that communicate according to a dynamic

connection graph, in presence of an adversary that can add and remove edges in the graph.

Cellular Automata. Cellular automata were proposed by von Neumann [vN51] as a model

to reason about artificial self-reproduction. A cellular automaton consists of a regular grid

of cells, each assuming one of a finite number of states. Over time, the states of cells change

according to some fixed rule (e.g. a mathematical function) that determines the new state of

each cell in terms of the current state of the cell and the states of the cells in its neighborhood.

Conway's Game of Life [Gar70] is a cellular automaton that works with a simpler set of rules

than von Neumann's rules, and was shown to be Turing-complete by Berlekamp, Conway

and Guy [BCG04]. Cook [Coo04] proved that rule 110 (a binary, one-dimensional cellular

automata) is Turing-complete.

Our setting is crucially different from the cellular automaton setting, since agents in our

39

model do not simply change state but can be deleted from the system during the computation.

Another difference between our setting and the cellular automaton setting is that we consider

an adversarial model whereas in cellular automata cells deterministically change state. In

some sense, in Conway's game, death "plays by the rules" while in our game death is sudden

and unpredictable.

Dynamic Environments. A recent work of Goldreich and Ron [GR17] considers environ-

ments that evolve according to a fixed local rule. They define an environment as a collection

of small components of a large system which interact in a local level, and change state ac-

cording to a fixed rule. As an example, they focus on the model of a two-dimensional cellular

automata. They ask how many queries a global observer must make about local components

in order to test whether the evolution of the environment obeys a fixed known rule or to

predict the state of the system at a given time and location. Although their work seems

very different than ours, it bears some intellectual similarity in seeking information about a

global property of the system from local information. However, whereas in [GR17] a global

observer who can query a limited number of individual cells asks "does the global system

obey a specific evolution rule," in our case individual agents need to decide locally what they

should do to maintain the overall global property of population size.

Self-Stabilization. Also related to our question is the self-stabilization problem introduced

by Dijkstra [Dij74]. Given a system that starts in an arbitrary state, the goal of a stabi-

lization algorithm is to eventually converge to the correct state. In this setting, however,

deletion of system components is not considered. Super-stabilization [DH97] is the problem

of achieving self stabilization in dynamic networks, that is, network where nodes are dynam-

ically added and removed. While this setting is closer to ours, super-stabilization algorithms

make additional assumptions about the system, such as that each node in the system is

uniquely identified.

Distributed Algorithms Explaining Ant Colony Behaviors. A single ant has very lim-

ited communication and processing power, yet collectively a colony of ants can perform com-

plex tasks such as consensus decision-making, leader election, and navigation. In [CDLN14]

40

Cornejo et al. give a mathematical model for the problem of task allocation in ant colonies,

and propose a very efficient protocol for satisfying this task. One of the main goals of their

paper is to provide a formal model enabling the comparison of the various task allocation

algorithms proposed in the biology literature. Similarly, in [GMRL15] Ghaffari et al. use

techniques from distributed computing theory in order to gain insight into the ant colony

house-hunting problem, where a set of agents need to identify potential nests, evaluate the

quality of candidates, and reach consensus in a distributed manner.

2.2 The Population Stability Problem

As discussed above, the population stability problem is concerned with a system of agents

with bounded memory and the ability to reproduce and self-destruct. The system is sub-

jected to adversarial attacks that delete or insert processors. The objective is to maintain

a stable population size despite these adversarial attacks. In this section we give a formal

description of the problem.

Parameters. The population stability problem is parameterized by the initial number of

agents N, the number of distinct memory states M each agent can be in, the number of

alterations K the adversary is allow to make in each round (where an alteration consists

of removing or inserting an processor), a value a specifying how tightly concentrated the

population size must remain around the target value N, and a value y specifying a lower

bound on the fraction of processors that are matched with other processors in each round.

Below we describe each of these components of the problem.

We note that one could consider separate parameters for the number of adversarial dele-

tions and insertions, allowing the adversary to make a different number of each. In this

paper we will consider both to be bounded by a single parameter K.

Agents. We consider agents with bounded memory. Each agent can be in one of M possible

states, so we can think of agents as having log M bits of memory. Agents can communicate

41

by message-passing as specified by the connectivity structure of the system, which will be

discussed further below. In our setting we will have M « N, so each individual agent

has insufficient memory to count the total population, to posses a unique ID, or to address

messages to a particular recipient. Each agent has the ability to flip unbiased coins, to split

into two identical agents, or to self destruct. That is, in any round an agent may choose to

split into two daughter agents which both inherit specified state from the parent agent, or

it can decide to delete itself from the system.

Connectivity. As discussed above, we consider a synchronous version of the population

model of Angluin et al. [AAD+04, AAE07], where we assume the existence of a global clock.

We assume that the pairs of agents that are able to communicate in each round are selected

by choosing a random matching of at least a y fraction of surviving agents. We think of the

parameter y as a constant (e.g. y = 1/4). That is, each agent is matched with at most one

other agent (that we call its neighbor) in each round, and there is no consistency from round

to round, since connectivity in different rounds is determined by sampling independently

random matchings. The schedule of these matchings is unknown to the adversary in advance.

Adversary. We consider a worst-case, computationally unbounded adversary that can

arbitrarily choose which agents to delete in each round and can insert agents with arbitrary

state in each round. The adversary also can observe the entire history of agent interactions,

including the memory contents of every agent. While the initial state of inserted agents is

determined by the adversary, the newly inserted agents are assumed to follow the protocol

(that is, the agents introduced by the adversary do not behave maliciously).

Objective. The goal in the population stability problem is to maintain a number of agents

within a small interval [(1 - a)N, (1-+ a)N] around the initial population size N. That is,

initially the system consists of N agents. In each round some agents may be removed or

inserted by the adversary, and some agents may decide to replicate or to self-destruct. Let

Ni denote the number of agents in the system after the ith round. The adversary wins in

42

round i if Ni ([(1 - a)N, (1 + a)N] at the end of the round. We say that protocol H is a

population stability protocol if for any polynomial p and any adversary, the probability that

the adversary wins in at most p(N) rounds is negligible in N.

2.3 The protocol

We now provide a formal specification of the main protocol (Algorithm 1). Agents continually

run the protocol throughout their lifetime. We will think of time as partitioned into epochs

of T = jlog 3 N rounds. Each epoch consists of three phases, the leader selection phase,

the recruitment phase, and the evaluation phase. The recruitment phase consists of 1log N

subphases each consisting of roughly Tiner = log2 N rounds. 6 We will elaborate on each of

these phases below.

Recall that agents have the ability to toss coins, to send and receive a message upon

encountering another agent, to reproduce by splitting into two identical copies of itself, and

to self-destruct. These capabilities are notated by the following functions. We denote flipping

an unbiased coin by x - {0, 1}. Agent splitting and death are implemented in commands

SPLIT() and DIEO. Finally, the command Z:= COMMUNICATE(X) sends message X to the

neighboring agent in the present round, if any, simultaneously receiving in response message

Z. 7 If the agent is unmatched in this round and has no neighboring agent, then the return

value is assumed to be -. In the protocol below, messages will consist of four boolean values

(inEvalPhase, active, color, recruiting). Upon receiving message Z, the value of each of these

variables can be accessed by writing Z.inEvalPhase, Z.active, and so forth. If Z = I then we

will follow the convention that each of these components will also have value I.

The main variables that describe the state of an agent are round E [0, T - 1] and four

boolean variables active E {0, 1} color C{O, 1}, recruiting E {0,1}, and inEvalPhase c {0, 1}.

The variable Nbr E {0,1}4 stores the most recent message received, consisting of four

6 More generally, we want T = Tinner - - log N for any Tinner = W(log N). The first and last subphase will

each be shorter by one round to account for the leader selection and evaluation phases.
7 Recall that an agent's neighbor is the other agent the agent is randomly matched with in this round and

that matchings in each round are independent and uniformly random.

43

boolean values (Nbr.inEvalPhase, Nbr.active, Nbr.color, Nbr.recruiting). An additional variable,

torecruit C [0, 1 log N], is not necessary for the protocol itself but is used in the analysis.

We emphasize that these variables are local to a single agent, so that different agents have

independent copies of each of these variables. Initially, at the onset of the system, for each

agent we will have that all variables are set to zero.

The variable round keeps track of which round it is within the epoch. The variable is

incremented modulo T after each round, ensuring that agents begin and end each phase and

each epoch at the same time.

The variables active and color specify whether an agent has been activated and colored,

as well as the color of the agent. In the first round of each epoch, some of the agents

will designate themselves as leaders and will become active, choosing at random a color

color - {0, 1}, while the rest of the agents remain inactive. During the recruitment phase,

additional agents will become active and will receive colors in {0, 1}, as inherited from a

leader. The value of variable color is only relevant for active agents.

The variable recruiting specifies whether or not an active agent is trying to recruit in the

present subphase. Each active agent should recruit only one additional agent in a single

subphase, so this variable specifies whether or not the agent is still looking for an inactive

agent to recruit in the subphase.

The variable inEvalPhase specifies whether the agent is currently in the evaluation phase,

which is true exactly when round = T - 1.

Finally, the variable torecruit specifies the number of additional followers an active

agent is tasked with recruiting directly, which is the logarithm of the total number of agents

that should be activated as a result of the given agent. When a new leader first becomes

active, it sets torecruit = !log N, indicating that it is tasked with recruiting a total of

2t°_recruit = /N agents. Each time a new agent is recruited, the value of torecruit is

decremented and shared with the newly recruited agent, indicated that each of the two is

responsible for recruiting only half of the total. For instance, after the first time a leader

recruits another agent, both agents will have torecruit = (Ilog N) - 1, and so each of

44

the two agents subsequently are responsible for recruiting only VN/2 agents. In this way a

leader can induce the recruitment of N agents in roughly a logarithmic number of rounds.

Although the variable is not used by the algorithm itself, we will refer to it in the analysis.

We first present the main procedure run by each agent in every round. Each agent

first exchanges messages with its neighboring agent in this round, if any. The agent then

performs a consistency check on its on state and the state of its neighbor. Then, depending

on the value of variable round modulo T, the program calls the appropriate subroutine for

the corresponding phase.

Algorithm 1 Main protocol

1: procedure MAINPROTOCOLSTEP

2: EXCHANGEMESSAGES()

3: CHECKRoUNDCONSISTENCY()

4: if round = 0 then > Handle initialization of leaders

5: DETERMINEIFLEADER()

6: round := round + 1

7: else if round < T - 1 then > Perform recruitment phase

8: RECRUITMENTPHASE(

9: round := round + 1

10: else > Final round of phase. Perform split or death.

11: EVALUATIONPHASE()

12: round := 0

13: end if

14: end procedure

We now describe the subroutine that exchanges messages with the neighboring agent, if

any. An agent simply computes the indicator value of whether it is in the evaluation phase,

and sends this information along with its activation state, color, and recruiting status. It

receives a corresponding message from its neighbor, or the value I if it has no neighbor in

45

this round.

Algorithm 2 Subroutine to send and receive messages with neighboring agent

1: procedure EXCHANGEMESSAGES

2: if round = T - 1 then

3: inEvalPhase 1

4: else

5: inEvalPhase 0

6: end if

7: MyStatus := (inEvalPhase, active, color, recruiting)

8: Nbr:= COMMUNICATE(MyStatus)

9: end procedure

We now describe the leader selection subroutine, which comprises the first round of each

epoch. This is an entirely non-interactive process in which each agent becomes a leader

with some fixed probability 1/(8N) by tossing its own coins, entirely independently of

each other agent. With overwhelming probability, if the total number of agents is E(N), the

number of leaders chosen in this phase will be E(v). Each newly activated leader chooses

a random color in {0, 1} and is tasked with recruiting N agents and assigning them this

color.

Algorithm 3 Leader selection phase subroutine

1: procedure DETERMINEIFLEADER

2: active:= TOsSBIASEDCOIN(log(8VN)).

c> active = 1 with probability 1/(8N), and otherwise active 0.

3: if active = 1 then

4: color+- {0, 1}

5: recruiting 1

6: torecruit := log(N)

7: end if

8: end procedure

46

The leader selection phase, as well as the evaluation phase below, requires the ability

to flip biased coins with bias 1/poly(N), in particular 1/8(N), where bias refers to the

probability of the coin having value 1 (so that a fair coin has bias 1/2). Recall that we

assume only the ability to toss unbiased coins. We now give a simple procedure to obtain

the desired bias using only O(loglog(N)) bits of memory, assuming that logN is an even

integer. More generally, we show how to obtain bias 2 -a for any integer a using 1+ [log a]

bits of memory. We note that it is sufficient to toss a coins and report 1 if they all landed

heads and 1 otherwise. This requires counting to a, which can be done with log a memory.

Algorithm 4 Subroutine to toss a biased coin that equals 1 with probability 2-a and equals
0 otherwise

1: procedure TOssBIASEDCOIN(a) > Flip a biased coin with bias Pr[c 1] =2-

2: c := 1

3: for i = 1 to a do

4: b 4-{0, 1}

5: if b = 0 then

6: c := 0

7: end if

8: end for

9: return c

10: end procedure

We now describe the recruitment phase, which is the second phase executed by each

agent in every epoch and is the main source of interaction in the protocol. The phase lasts

for T = 8(log 3 N) rounds, consisting of j log N subphases each of length Tin, = E(log 2 N)

rounds. As discussed above, during this phase each leader is tasked with finding N inactive

agents (i.e. with active = 0) and coloring each of them with the color of the leader. We note

again that the leader will not directly meet each of these N inactive agents, but rather that

this is done by propagation, where the leader will activate some agents and each of these

will activate additional agents. In each subphase each active agent will attempt to recruit

47

a single nonactive agent, which will then start to recruit in the following subphase. Since

there are 1 log N = log vN subphases, if each attempt to recruit is successful, then a single

leader will result in the activation of a total of /N agents.

Algorithm 5 Recruitment phase subroutine

1: procedure RECRUITMENTPHASE

2: if Nbr.active= 0 and recruiting = 1 then

3: recruiting 0

4: torecruit :=torecruit - 1

5: else if active = 0 and Nbr.recruiting = 1 then

6: active := 1

7: color := Nbr.color

8: recruiting :=0

9: to _recruit := log N - [(round-+-1)/Tlnnerl

10: end if

11: if round = -1 (mod Tinner) then

12: recruiting:=1.

13: end if

14: end procedure

> Other agent has been activated

> This agent must be activated

> Prepare for next round

The final phase of the algorithm is the evaluation phase, which occurs on the last round

of each epoch. In this phase, each matched active agent compares its color to that of its

neighbor and makes a decision of whether to replicate itself or to self-destruct.

48

Algorithm 6 Subroutine to perform splitting and self-destruction at the end of each phase

1: procedure EVALUATIONPHASE

2: if active = 1 and Nbr.active = 1 then

3: if Nbr.color = color then > Colors same: split with probability 1 - 16/v/N

4: c:= TossBIASEDCOIN(log(v/N/16))

5: ifc= 0 then

6: SPLIT()

7: end if

8: else > Colors different: self-destruct with probability 1

9: DIE()

10: end if

11: end if

12: active := 0

13: color: 0

14: recruiting := 0

15: end procedure

Finally, we give the subroutine invoked at the very beginning of each round, that performs

a consistency check on the round values of the agent and its neighbor. In the absence of

adversarial insertions this subroutine is unnecessary, since agents will always have the correct

round value in the epoch. However, it is necessary if the adversary is allowed to insert agents

with an incorrect round value. If left to increase unchecked, the presence of many agents with

different round values would interfere with the operation of the protocol. We will prevent this

from happening by causing agents to self-destruct as soon as they encounter an agent with

a different round value. However, implementing this exactly would require E(log log N)-bit

messages, since agents would need to exchange their round numbers. To avoid this, we will

instead have agents exchange only an indicator variable for whether or not they are in the

evaluation phase. An agent will self-destruct if it is in the evaluation phase and its neighbor

is not, or if its neighbor is in the evaluation phase and it is not. This process deletes a small

49

number of agents with the correct round number along with agents with the incorrect round

number. We will show in the analysis below that this will ensure that there are few agents

with the incorrect round number and that only a small number of agents with the correct

round number will self-destruct as a result of this procedure.

Algorithm 7 Subroutine to determine if agent knows the correct round

1: procedure CHECKROUNDCONSISTENCY

2: if Nbr /I _ and inEvalPhase # Nbr.inEvalPhase then

3: DIE()

4: end if

5: end procedure

2.4 Analysis

In this section we prove the main theorem.

Theorem 2.4.1. Let a,y,e be positive constants, where -1 < 1 is a lower bound on the

fraction of agents that is matched in each round. Then Algorithm 1 is a population stability

protocol using w(log2 N) states per agent and three-bit messages 8 guaranteeing that if the

adversary inserts and deletes at most K = O(N/ 4-) agents in each round, then with all

but negligible probability the population will remain between (1 - a)N and (1 +)N for any

polynomial number of rounds.

For ease of presentation, the version of the protocol described above uses four-bit mes-

sages. However, we can reduce the message size to three bits, as follows. If the agent is in the

evaluation phase (i.e. inEvalPhase = 1) then the message must contain the values active and

color, but need not contain recruiting. If inEvalPhase = 0, then the message must contain the

value color but not active if recruiting= 1 and the value active but not color if recruiting = 0.

Consequently, the desired information can be encoded in only three bits.

8 A straightforward implementation of the protocol described above would use E(log 4 N) states and four-
bit messages. We describe below how to achieve the improved bounds stated here.

50

For the memory requirements, logT bits are needed to store the variable round E{o, 1},

and the other variables stored by each agent consist of eight boolean values. The invocations

of the subroutine TossBIASEDCOIN() require log log N bits of local memory. However, the

subroutine is only invoked in two rounds of each epoch, the leader selection round and the

evaluation round. Consequently, using additional indicator bits to specify whether an agent

is in each of these those two rounds, the memory used to store the variable round can be

used as the helper memory for the subroutine, and so additional memory is not necessary.

For T = j log 3 N, the total number of states is therefore (log 3 N). However, it suffices to

have T = Tinne, -logN for anyTinner = W(log N), and so we can reduce the number of states

to W(log2 N).

Roadmap to proof We must show that the population size will remain close to the target

value N. We will do this by means of two key steps.

The first step is to show that in any single epoch the population size will be relatively

stable. That is, we show that the population in the middle or end of an epoch will not be

too much larger or smaller than the population at the beginning of the epoch. We achieve

this by showing that irrespective of the adversary's actions, with overwhelming probability

the number of agents of each color in the evaluation phase will be concentrated around one-

sixteenth of the total number of agents. This step is formalized in Lemmas 2.4.5 and 2.4.6

in Section 2.4.2.

The second step is to show that the population size will tend to correct itself if it has

deviated too far from the target value N. More precisely, we show that if the population is

far from N, then in expectation the population at the end of the phase will be substantially

closer to N than the population at the start of the phase. This step highlights a key tension of

the proof, namely the difficulty analyzing a system that contains both random components in

the matching schedule and worst-case components in the adversary's insertions and deletions.

Indeed, it is not even clear a priori what it means to discuss expectation in a system with a

worst-case adversary. This step is formalized in Lemma 2.4.7 in Section 2.4.3.

Putting these two steps together will enable us to conclude the proof of the theorem.

51

Consider the first epoch in which the population size lies outside the interval [(1 - 2)N, (1+

')N]. Since the population size does not deviate too much in a single epoch, the population

at the start of the next epoch will be close to (1± 2)N. But for each epoch in which the

population remains outside the interval [(1 - 2)N, (1 + 2)N], in expectation the change

in population will be in the direction of the target value N. Considering the next No 1

epochs, a Chernoff-Hoeffding bound then implies that with overwhelming probability the

population will return to the interval [(1 - 2)N, (1 + 2)N]. Since the population does not

change much in each epoch, it follows further that the population will remain inside the

interval [(1 - a)N, (1 + a)N] during these N° 01 epochs. We will conclude that with all but

negligible probability, the population will remain in the interval [(1 - a)N, (1+ a)N] for any

polynomial number of rounds.

We now outline the remainder of the section. In Section 2.4.1 we prove some preliminary

lemmas about the protocol. These lemmas provide us with invariants that we will need

in order to prove the two key steps above. In particular, we show that nearly every agent

knows the correct round in the epoch, that at least half of the agents are inactive (i.e. have

active = 0) at any point in the execution of the protocol, and that any leader selected in

the first round of the epoch will succeed in recruiting a full cluster of size VN unless either

the adversary deletes some agent in that cluster or an agent with the wrong round number

interferes with the recruitment.

In Section 2.4.2 we prove the first of the key steps, showing that with high probability

the population size does not deviate too much in a single epoch. In Section 2.4.3 we prove

the second of the key steps, showing that if the population has drifted too far from the

target value, then in expectation the population will correct itself. Finally, in Section 2.4.4

we conclude the proof of the main theorem.

2.4.1 Bookkeeping lemmas

We will first prove several bookkeeping lemmas to guarantee that with overwhelming prob-

ability, certain invariants continue to hold throughout the execution of the protocol. We

52

will subsequently use these invariants to prove stronger statements that will enable us to

conclude the correctness the protocol.

Recall that during the protocol, agents keep track of the current round within the epoch,

that is, the round number modulo T = log 3 N. However, the adversary is empowered to

insert new agents into the system with arbitrary initial state, and in particular may insert

agents with the incorrect round number. Our first lemma provides a bound on the number

of agents with the incorrect round number. Recall that ' = 0(1) is a lower bound on the

fraction of parties in each round that are matched. We can assume that a < 1/2, since the

desired statement is stronger for smaller a.

Lemma 2.4.2. For any t > 0, suppose that the population size remains above Nmin = N/2

for the first t rounds of the protocol. Then there exists some negligible function v such that

conditioning on this event, with probability 1 - t - v(N), all but (1 +-y')N / 4 of the agents

will have the same value for variable round in each of these t rounds.

Proof. We prove this by induction on the round number. Initially all agents have round = 0.

Assume for induction that at round r all but -N/ 4 of the agents have variable round = 0.

We will show that with high probability, the same statement holds at the start of round

r + T. The adversary may add an additional K agents in each of these T rounds, for a

total of KT N/ 4/8 agents. Note that each agent with the wrong round value may split

at most once in this epoch of T rounds, when it reaches its evaluation phase. If there

are v= 0(N1/4) agents which differ from the majority value for variable round, then the

probability of such an agent being matched with another such agent in its evaluation phase

is at most y - ' = - - O(N-3 / 4). It follows that with high probability, the number of

agents with the wrong round value that split during this epoch is at most NO. 01/8 < N1 /4 /8.

Consequently at any point in this epoch of T rounds, the number of agents with the wrong

round value will be at most -IyN 1 /4 + N 1 /4/4. Each agent with the wrong round value at

the start of the majority evaluation phase (i.e. round r + T - 1) has probability at least

-Y(Nmin - (7-1 + 1/4)N/ 4)/(Nmin) > -y - 3N- 3/ 4 of being matched with an agent starting

the evaluation phase, so with all-but-negligible probability, at most (1/' - 1/2)N 1 /4 of these

53

agents will not be matched with an agent with different round value and will survive the

round. It follows that at the start of round r + T, at most y-'N/4 agents have round value

different from 0. Consequently, by induction we have that with overwhelming probability, the

number of agents with variable round f 0 in any round r = 0 (mod T) is at most -4Nl/.

Since we showed above that the number of agents with the wrong round number that can

be added during the epoch is small with overwhelming probability, the lemma follows. E

Lemma 2.4.3. With high probability, if the population is in the interval [(1-a)N, (1+a)N]

at the start of an epoch, at any point in the epoch, at most 1/2 of the agents have active = 1.

Proof. Let m E [(1 - a)N, (1+ a)N] be the population at the start of the epoch. With all

but negligible probability the number of leaders chosen will be m/(8V'W) ± o(N 2 6) by a

Chernoff bound. Each leader may induce the activation of at most V total agents. During

the epoch, the adversary may insert an additional T-K < N 1/4 agents, which may each induce

the activation of \ total agents. Consequently at any point in the epoch, the number of

active agents will be at most m/8+o(N. 76). Prior to the evaluation step, the adversary can

have killed at most T - K < N1 / 4 agents. By the previous lemma, at most -'N1/ 4 agents

at the start of the epoch can have the wrong value for round, and at most T - K additional

such agents can be introduced during the protocol, so at most 0(7-'N'/4) = O(N1 /4) agents

can be killed in the CHECKROUNDCONSISTENCY() procedure. Consequently the population

throughout the epoch until the evaluation phase will be at least m- 0(N1 /4). The conclusion

follows. E

Lemma 2.4.4. Suppose the population is in the interval [(1 - a)N, (1 + a)N] at the start

of an epoch. Then with high probability, in the last round of the epoch, every active agent

entering the evaluation phase that was not inserted by the adversary during this epoch will

have torecruit = 0.

Proof. By Lemma 2.4.3, at most half of the agents are active in each round, so the probability

in each round of encountering an inactive agent at each round is at least Y/2 = E(1). With

overwhelming probability, in any sequence of w(logN) steps an agent will encounter an

54

inactive agent and will be able to recruit it. Applying a union bound, we have that in each

cycle of Tinner steps, each of the O(N) active agents attempting to recruit will be successful

in finding an inactive agent to recruit. Consequently each agent will be able to recruit the

desired number of additional agents, and the lemma follows. E

2.4.2 Bounded deviation

In this section we show that with high probability, the population size does not change by

too much in any single epoch.

Lemma 2.4.5. Let m be the population at the start of an epoch. For any constant 6 > 0,

with high probability, the number of agents with each color b G {0,1} at the start of the

evaluation phase will be m/16 ± o(N3/4+5).

Proof. Let m be the population at the start of the epoch. With all but negligible probability,

the number of leaders selected with color 0 at the beginning of the epoch will be m/(16 N)±

o(N1/ 4+6), and similarly for the number of leaders selected with color 1. In the absence of

adversarial deletions, each leader will recruit N followers with the same coin value, inducing

the presence of m/16 ± o(N3/ 4+6) agents of each color by the final round of the epoch.

The adversary may insert or delete K.T= O(N 1/4-E) agents over the course of the epoch.

Each inserted agent can induce the activation of at most N additional agents, and sim-

ilarly each removed agent could have activated up to N additional agents. Additionally, by

Lemma 2.4.2, at most 0(N/ 4) agents will be removed in procedure CHECKROUNDCONSISTENCY()

upon encountering an agent with a different value for variable round. Overall the actions

of the adversary can affect the number of agents of each color by at most O(N3/4-,). It

follows that despite adversarial action, the number of agents of each color at the start of the

evaluation phase will be m/16 ± o(N3/ 4+6) with all but negligible probability. El

Lemma 2.4.6. For any 6 > 0, with all but negligible probability, if the population is in the

interval [(1 - a)N,(1 + c)N] at the start of an epoch, the population will have deviated by

at most O(N 1/ 2+6) by the end of the epoch.

55

Proof. Let m E [(1 - a)N, (1 + a)N] be the population at the start of the epoch. By the

previous lemma, at the start of the evaluation phase the number of agents with color 0 will

be mo = m/16 ± O(N3 /4 6+) with all but negligible probability, and likewise the number of

agents with color 1 will be mi = m/16 ±O(N3 /4+6). We condition on these events. Since

the adversary can insert at most K agents in each of the T = log 3 N rounds for a total of

O(N1/ 4-E), and no other new agents with the correct value of variable round can be produced

until the evaluation phase, Lemma 2.4.2 implies that the total number of agents at the start

of the evaluation phase is at most m+ O(7'N/ 4). Similarly, since the adversary can have

directly removed at most K -T = K log 3 N agents, and at most 2((- 1 +1)N1/ 4 +K log3 N)

agents with the correct value of round may have been removed as a result of procedure

CHECKROUNDCONSISTENCY() after encountering an agent with a different value of round,

it follows that for y = 0(1), the total number of agents at the start of the evaluation phase

is m± O(N/ 4).

Consequently the communication graph for the evaluation phase is a random matching

of size q = Q(-yN) = Q(N). Sample such a matching by first choosing a set of q left vertices

and a set of q right vertices, and then associating corresponding vertices on the left and right.

Let qo = qmo/m' and qi = qmo/m'. With high probability the number of left (respectively,

right) vertices with color 0 will be qoO(vl), and similarly for vertices of color 1.

It follows that with all but negligible probability, the number of left-vertices of color

b that split after being matched with a right-vertex of color b is g/q ±O(N)foreach

b C {0, 1}. Similarly, the number of left-vertices of color b that self-destruct after being

matched with a right-vertex of color 1 - b is qbqi-/q ±O(N). Consequently will all but

negligible probability, noting that qo -qi = O(N3/4+ 6), we have that the change in population

during the evaluation phase is

-. (q2 + qI - 2qoqi) ± O(W) = O(N
q

yielding the desired result since o is an arbitrary positive constant.

EI

56

2.4.3 Correcting population drift

In this section we show that if the population has drifted too far from the target value N,

in expectation it will tend to correct itself.

Lemma 2.4.7. If the population is in the interval [(1 - ae)N,(1 - 2)N] at the start of an

epoch, then for any adversarial strategy, in expectation the population will increase by Q(N)

by the end of the epoch. If the population is in the interval [(1±+)N, (1+ a)N] at the start

of an epoch, then in expectation the population will decrease by at least Q(V) by the end

of the epoch.

Proof. The behavior of the system during the evaluation phase depends on the distribution

of coin values of active agents in this phase. We would like to argue that each pair of clusters

has its colors assigned by independent, fair coin flips. This is clearly true in the absence

of an adversary. However, in our setting, adversarial instertions and deletions can bias the

joint distribution of the colors of a pair of agents in different clusters.9 Nonetheless, we

will argue that the adversary's influence is limited, and that for most pairs of agents in

different clusters, we can think of the joint distribution of colors as unbiased and uniform.

We will label clusters as honest or adversarial, where the colors of a pair of honest clusters

can be regarded as independently sampled, and no assumption is made on the colors of the

adversarial clusters.

Consider any fixed adversarial strategy. Note that the adversary can insert or delete a

total of no more than 2 -T .K= O(N'-s) agents during the epoch, and consequently can

influence no more than this many clusters. Any strategy of the adversary during this epoch

can be emulated by deferring any deletions of colored agents (with the correct round value)

to the beginning of the evaluation phase, deleting instead an inactive agent. Recall that by

Lemma 2.4.4, each cluster not affected by the adversary will consist of N agents at the

beginning of the evaluation phase. At the beginning of the evaluation phase, we allow this

9 For instance, in the first round of the epoch, the adversary can instert additional leaders all with color
0, or can delete several leaders that have color 1. This difficulty arises because we allow the adversary to
observe the internal memory of all agents, including the results of coin tosses.

57

new adversary not only to delete the specified agent, but also to set active = 0 for any subset

of the v/N- 1 other agents in the cluster. Note that any attack that could be accomplished

by the original adversary can still be carried out by this new adversary that defers all of its

deletions of colored agents to the evaluation phase but is subsequently allowed to modify up

to O(N 3/4-e) agents in O(N/4-)different clusters.

Since we now defer deletions of colored agents to the beginning of the evaluation phase,

each cluster induced by a leader selected in the first round of the epoch will have the full

N members, and consequently these clusters are indistinguishable except for their color.

Consequently as long as the adversary can modify agents in O(N1 /4-,) clusters of each color,

which specific cluster of each color is irrelevant. Consider an arbitrary indexing of the agents

before the first round of the epoch, and consider the first O(N1/4E) leaders chosen in this

round. With all but negligible probability, this set will contain at least O(N1 / 4-o) agents

of each color color C{0, 1}, and so the strategy of the adversary can be carried out by

manipulating only the clusters of agents in this set. Let the clusters induced by these agents

be the adversarial clusters along with the clusters induced by any agents inserted by the

adversary, and let the remaining clusters be the honest clusters.

Now we have reduced to a setting in which we have achieved the desired property that each

honest cluster has size VN, and the coin flips of any two honest clusters are independent.

However, we ar.-now dealing with a modified adversary that can affect a larger overall

number of agents. Let m' be the number of agents at the start of the evaluation phase.

By Lemma 2.4.5, it follows that with all but negligible probability, the number of agents in

honest clusters is mh = m'/8 t o(N3/ 4+6), and the number of agents in clusters influenced

by the adversary is ma= O(N3-

Pick a random pair of vertices at the start of the evaluation phase. Then with probability

1/64 - O(N3/4+6/m') = Q(1) both agents will belong to honest clusters, with probability

O(N3/4 e /)one agent will belong to an honest cluster and the other to an adversarial

cluster, and with probability o(N3/ 2/m'2) both will belong to adversarial clusters.

A pair of vertices belonging to honest clusters will have the same color if they belong

58

to the same cluster, and independently random colors if they belong to different clusters.

Consequently the probability that such a pair of vertices will have the same color is 1 +

2
TN- O(-). It follows that the expected change in population resulting from the matching

of a pair of vertices belonging to honest clusters is

(N)(116 (N O(1 2N 16 O(1)
mh N/ mh mh mh N/ mh

Recalling that a < 1/2 is a fixed constant, for m < (1 - 2)N this quantity is 8(1/N),

and for m > (1 + ')N this quantity is negative, with magnitude 8(1/N).

The honest clusters consist of nearly the same number of agents of each color (m/16

o(N 3/4 6+) of each). It follows that the expected change in population resulting from the

matching of a vertex in an honest cluster and a vertex in an adversarial cluster has magni-

tude o(N- 1/4 +6). Making no assumption about the distribution of colors in the adversarial

clusters, the matching of two vertices in an adversarial cluster can have a change in popula-

tion of 0(1).

Consider a random pair of vertices at the start of the evaluation phase. For m < (1 -

')N, the expected change in population resulting from matching this pair of vertices is

Q(N- - o(N +6N 1/2 1) = Q(N- 1 / 2), where we choose 6 < F/2.

Since the number of matched pairs of vertices in the evaluation phase is -m' = O(N),

it follows from linearity of expectation that the expected change in population during the

evaluation phase is Q(N). Similarly, for m > (1 + 2)N we have that the expected change

in population during the evaluation phase is -Q(N). The adversary can delete or insert

only K. T = o(N/ 4) agents during the epoch, and Lemma 2.4.2 implies that 0(N1 /4) agents

will self-destruct during procedure CHECKROUNDCONSISTENCY() during the epoch, so the

other terms dominate, and the conclusion follows. EZ

59

2.4.4 Putting everything together

We now show that if the population size leaves the interval [(1 - 2)N, (1+ 2)N] during an

epoch, with high probability it will return to this interval during one of the next few epochs.

With this final lemma, we then conclude the proof of the theorem.

Lemma 2.4.8. Consider an epoch in which the population has drifted outside the interval

[(1 - 2)N, (1+ 2)N]. With all but negligible probability, the population will once again be in

the interval [(1 - 2)N, (1 +)N] at the start of one of the next t = N 0 ' epochs.

Proof. Assume to the contrary, and let epoch 0 denote the first epoch after the population

has exceeded the interval [(1 - c)N, (1 + 2)N]. For concreteness, suppose the population

has dropped below (1 - 2)N. By Lemma 2.4.6, with all but negligible probability the

population is still above (1- N - 0(N° 5 °1). For i E {1,... , t},let Xi be the random

variable denoting the difference in population between the start of epoch i and the start

of epoch i - 1, and let X = (X1 + - - - + Xt)/t. By Lemma 2.4.6, with all but negligible

probability, each random variable Xi is bounded in the range [-O(N0 5 0 1), O(N.5 01)]. Since

by assumption the population is below (1 - 2)N at the start of each epoch, Lemma 2.4.7

implies that E[X] = Q(VN). It follows by a Chernoff-Hoeffding bound that with all but

negligible probability, for any constant c, IX - E[X]| < cN, so with all but negligible

probability we have that X = Q(V) and X, + -- - + Xt = Q(No 5 1). Consequently the

population at the start of epoch t exceeds (1 - 2)N. The argument is identical when the

population has exceeded (1+ 2)N.

We now conclude the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Consider any polynomial f, and suppose that for some adversarial

strategy the population deviates from the interval [(1 - a)N, (1+ a)N] in f(N) rounds with

non-negligible probability. It follows that for some pair of epochs i < j E [1+ Lf(N)/TJ],

with non-negligible probability the population deviates from interval [(1 - a)N, (1 + a)N

for the first time in epoch jafter deviating from the interval [(1 - 2)N, (1+ 2)N] for the last

time in epoch i. We condition on this event. Lemma 2.4.6 implies that until epoch j, with all

60

but neligible probability the population will deviate in each epoch by at mostO(vN). But

then Lemma 2.4.8 implies that with all but negligible probability the population will return

to interval [(1 - f)N, (1+)N] within N°01 epochs, which is a contradiction. Consequently

the population will remain between (1 - a)N and (1 + a)N with high probability for any

polynomial number of rounds, as desired. l

61

Part II

Cryptography

62

Chapter 3

Network oblivious transfer

This chapter is based on joint work with Ranjit Kumaresan and Srinivasan Raghuraman {KRS16].

3.1 Introduction

Protocols for secure multiparty computation [Yao86, GMW87, BGW88, CCD88] allow a set

of mutually distrusting parties to carry out a distributed computation without compromising

the privacy of inputs or the correctness of the end result. As a research area, secure com-

putation has witnessed several breakthroughs in the last decade [ZRE15, KS08, IKNP03,

NNOB12, LP07, Lin13, HKE13, MR13, HKK+14, LR14]. However, despite a wide array of

potential game-changing applications, there is little practical adoption of secure computa-

tion today (with the notable exceptions of [BLW8, BCD+09]). Computations wrapped in

a secure computation protocol do not yet deliver results efficiently enough to be acceptable

in many cloud-computing applications. For instance, state-of-the-art semihonest 2-party

protocols incur a factor 100 slowdown even for simple computations.

In the absence of practical real-world protocols for secure computation which are secure

in the presence of any number of dishonest parties, there is a need for relaxations that

are meaningful and yet provide significant performance benefits. As an example, classic

protocols for secure computation [BGW88, CCD88, RB89] (with subsequent improvements

63

e.g., [DI06, BSFO12, BH08, DN07a, DIK+08, DIK10]) offer vastly better efficiency at the

cost of tolerating only a small constant fraction of adversaries. The resilience offered is

certainly acceptable when the number of participating parties is large, e.g., the setting of

large-scale secure computation [BCP15, DKMS12, ZMS14, BGT13]. Although large-scale

secure computation is well-suited for interesting applications such as voting, census, and

surveys, many natural settings involve computations over data supplied by a few end users.

In such cases, the overhead associated with interaction among a large number of helper

parties is likely to render these protocols more expensive than a standard secure computation

protocol among the end users. If the number of helper parties is small, security against a

small fraction of corrupt parties may be a very weak guarantee, since a handful of corrupt

parties could render the protocol insecure.

An orthogonal approach for reducing the online cost of secure computation protocols

is the use of preprocessing [Bea95, DPSZ12, BDOZ11, AIKW13]. This approach can dra-

matically reduce the cost of secure computation: for instance, given preprocessing [Bea95],
the ~ 100 factor slowdown for simple computations no longer applies. Recent theoretical re-

search has shown that many primitives can even be made reusable (e.g. [GKP+13]). Perhaps

the most important drawback of this approach (other than the fact that the preprocessing

phase is typically very expensive) is that the preprocessing is not transferable. Clearly, a

pair of parties that want to perform a secure computation cannot benefit from this approach

without performing the expensive preprocessing step. Moreover, this seems to hold even if

each of the two parties have set up the preprocessing with multiple others. Typically, the

cost of the preprocessing phase is quite high, presenting a barrier for the practical use of

preprocessed protocols. This is especially true in settings where parties are unlikely to run

many secure computations that would amortize the cost of preprocessing.

Motivated by the discussion above, we conclude that some directions that seem to offer

efficiency benefits for secure computation are (1) highly resiliant protocols that use only

a small number of helper parties, and (2) a preprocessing procedure that allows a notion

of transferability between users. Taken together, these two ideas have the potential to

64

provide an infrastructure for efficient secure computation. Some sets of parties might run

a preprocessing phase among themselves. These parties can then act as helper parties and

"transfer" their preprocessing to help users who want to run a secure computation protocol.

We informally describe some desiderata for such an infrastructure:

" Reusability/Amortization. Setting up an infrastructure component could be expensive,

but using it and maintaining it should be inexpensive relative to setting up a new

component.

" Transferability/Routing. It should be possible to combine different components of the

infrastructure to deliver benefits to the end users.

" Robustness/Fault-tolerance. Failure or unavailability of some components of the infras-

tructure should not nullify the usefulness of the infrastructure.

It is not hard to see that the above criteria are fulfilled for infrastructures that we use

in daily life, for instance the infrastructure for online communication consisting of undersea

transatlantic cables, routers, wireless access points, and so forth. What cryptographic prim-

itives would be good candidates for a secure computation infrastructure? In this work, we

explore the possibility of using oblivious transfer [Rab8l, EGL82] for this purpose.

3.1.1 Our Model: Network Oblivious Transfer

Oblivious transfer (OT) is a fundamental building block of secure computation [Kil88, IPS08].

As discussed in [IPS08], some of the benefits of basing secure computation on OT include:

" Preprocessing. OT enables precomputation in an offline stage before the inputs or

the function to be computed are known. The subsequent online phase is extremely

efficient [Bea95].

" Amortization. The cost of computing OTs can be accelerated using efficient OT ex-

tension techniques [Bea96, IKNP03, IPS08, NNOB12].

65

*Security. OTs can be realized under a wide variety of computational assump-

tions [PVW08, EGL82, Rab8l, NP01, C015] or under physical assumptions.

In this work, we consider n parties connected by a synchronous network with secure

point-to-point private communication channels between every pair of parties. In addition,

some pairs of parties on the network have established OT channels between them providing

them with the ability to perform arbitrarily many OT operations. We represent the OT

channel network via an OT graph G. The vertices of G represent the n parties, and pairs of

parties that have an established OT channel are connected by an edge in G. Since OT can

be reversed unconditionally [WW06], we make no distinction between the sender and the

receiver in an OT channel. This OT graph represents the infrastructure we begin with. The

OT channels could either represent poly(r,) 1-out-of-2 OT correlations for a computational

security parameter K, or a physical channel (e.g., noisy channel) that realizes, say 6-Rabin

OT [Rab8l].' We are interested in obtaining security against adaptive semihonest adver-

saries. We also discuss security against adaptive malicious adversaries under computational

assumptions.

Two parties that are connected by an edge can use the corresponding existing OT channel

to run a secure computation protocol between themselves. What about parties that are not

connected by an edge? Clearly, they can establish an OT channel between themselves via

an OT protocol [PVW08, C015] or perhaps using a physical channel. The latter option,

if possible, is likely to be expensive and the costs of setting up a physical channel may be

infeasible unless the two parties are likely to execute many secure computation protocols.

The former option is also expensive as it involves use of public-key cryptography which is

somewhat necessary in the light of IR8912 This motivates the question of whether additional

parties can use an existing OT infrastructure to establish an OT channel between themselves

unconditionally or relying only on the existence of symmetric-key cryptography. A positive

1Recall that K 1-out-of-2 OT correlations can be extended to poly(K) 1-out-of-2 OT correlations via OT
extension using just symmetric-key cryptography (e.g. one-way functions [Bea96] or correlation-robust hash

functions [IKNPO3]).
2As a rule of thumb, use of public-key cryptography is computationally around 4-6 orders of magnitude

more expensive than using symmetric-key cryptography [BHKR13].

66

result to this question would show that expensive cryptographic operations are not required

to set up additional OT channels which could be used for efficient secure computation. In

this work we construct OT protocols with information-theoretic security against a threshold

adversary.

The generality of an OT infrastructure. Consider the following candidate for an infras-

tructure. Suppose there is a channel between a pair of parties that allows them to securely

evaluate any function. Since OT is complete for secure computation, one can apply the

results of [IPS08, Kil88] to use the OT channel to implement a secure evaluation channel.

In the other direction, one can use a secure evaluation channel to trivially implement OT

channels. Consequently, such a channel is equivalent to an OT channel. The same argument

extends to channels that implement any 2-party primitive that is complete for secure com-

putation [MPR1O, BMM99]. Furthermore, the above argument also applies to the setting

where a set of parties have a secure evaluation channel. Such a channel is equivalent to an

OT graph where parties in the set have pairwise OT channels with everyone in the set.

Assuming a full network of secure channels. Secure channels between two parties

can be implemented either via non-interactive key exchange and hybrid encryption or via

a physical assumption. We emphasize that the one-time setup cost of emulating a secure

channel (e.g. via Diffie-Hellman key exchange) is much lower than the one-time setup cost

of emulating an OT channel that allows unbounded OT calls via an OT protocol even

using OT extension. Furthermore, our assumption of secure channels is identical to the

setting of [Kil88, GV87, IPS08], who show that secure computation reduces to OT under

information-theoretic reductions.

3.1.2 Related Work and Our Contributions

Related work. As mentioned previously, there is a large body of work on secure compu-

tation in the offline/online model (cf. [LPSY15, LOS14, DPSZ12, BDOZ11, NNOB12] and

references therein). These protocols exhibit an extremely fast online phase at the expense

of a slow preprocessing phase (sometimes using MPC [LPSY15] or more typically, OT corre-

67

lations [NNOB12] or a somewhat homomorphic encryption scheme [DPSZ12]). To the best

of our knowledge, the question of transferability of preprocessing has not been explicitly

investigated in the literature with the notable exception of [HIK071, which we will discuss

in greater detail below. There is a large body of work on secure computation against a

threshold adversary (e.g. [BGW88, CCD88, RB89, GMW87]). Popular regimes where secure

computation against threshold adversaries have been investigated are for t < n/3, t < n/2,

or t = n - 1. In this work we are interested in threshold adversaries for a dishonest majority,

that is, adversaries which can corrupt t out of n parties for n/2 < t < n.3 Such regimes were

investigated in other contexts such as authenticated broadcast [GKKO07] and fairness in

secure computation [BOO10, HLM13, IKLP06]. Infrastructures for perfectly secure message

transmission (PSMT) were investigated in the seminal work of [DDWY90] (see also [FFGS07]

and references therein). While the task of PSMT is similar to our question regarding OT

channels, there are inherent differences. For example, our protocols can implement OT even

between two parties that are isolated in the OT graph (i.e., not connected to any other party

via an OT channel).' In PSMT, on the other hand, there is no hope of achieving secure

communication with a node that is not connected by any secure channel.

Most relevant to our results is the work of Harnik, Ishai, and Kushilevitz [HIK07]. The

main question in their work is an investigation of the number of OT channels sufficient

to implement a n-party secure computation protocol. In a nutshell, they show against an

adaptive t-threshold adversary for t = (1 - 6)n, an explicit construction of an OT graph

consisting of (n + o(n))(F16) OT channels that suffices to implement secure computation

among the n parties. They note further that against a static adversary, (s261) OT channels

suffice, where s denotes a statistical security parameter. On the negative side, they show that

a complete OT graph is necessary for secure computation when dealing with an adversary

that can corrupt t = n - 1 parties. They derive this result by showing that in a 3-party

OT graph with two OT channels, it is not possible to obtain OT correlations between the

3When t < n/2, there is no need to rely on an OT infrastructure [RB89].
4Recall that the model considered in this work, we assume a full network of secure private communication

channels.

68

third pair of parties with security against two corruptions. Moreover they generalize their

3-party negative result to any OT graph whose complement contains the complete bipartite

graph Kast,,_t as a subgraph. In our paper we extend nd generalize the results of [HIK07],

fully characterizing the networks for which it is possible to obtain OT correlations between

a designated pair of parties. We now proceed to explain our contributions in more detail.

Our contributions. We introduce our main result:

Theorem (informal). Let G = (V, E) be an OT graph on n parties P1,... P?, so that

any pair of parties P, P which are connected by an edge may make an unbounded number

of calls to an OT oracle. Let A be the class of semihonest t-threshold adversaries which

may adaptively corrupt at most t parties.' Then two parties A and B in {P1,..., Pn} can

information-theoretically emulate an OT oracle while being secure against all adversaries

ADV E A if and only if

1. (honest majority) it holds that t < n/2; or

2. (trivial) A and B are connected by an edge in G; or

3. (partition) there exists no partition V1, V2, V3 of G such that all of the following condi-

tions are satisfied: (a) IV I= |V2 = n - t and |V3 = 2t - n; (b) A E V1 and B E V2;

and (c) for every A' c V1 and B' E V2 it holds that (A', B') E.

Our main theorem gives a complete characterization of networks for which a pair of

parties can utilize the OT network infrastructure to execute a secure computation protocol.

The first two conditions in our theorem are straightforward: (1) if t < n/2, then we are

in the honest majority regime, and thus it is possible to implement secure computation (or

emulate an OT oracle) using the honest majority information-theoretically secure protocols

of [RB89]; (2) clearly if A and B are connected by an OT edge then by definition they can

emulate an OT oracle.

'Combining our work with results from [HaiO8, GMW91], we can also obtain computational security
against malicious adversaries in both the nonadaptive and adaptive settings.

69

Condition (3) applies when t > n/2 and when A and B do not have an OT edge between

them. This condition is effectively the converse of the impossibility result of [HIK07], which

states that any n-party OT graph whose complement contains Kn-t,n-t as a subgraph can-

not allow a n-party secure computation that tolerates t semihonest corruptions. Condition

(3) implies that any n-party OT graph whose complement does not contain Kn-t,nt as a

subgraph can run n-party secure computations tolerating t semihonest corruptions.

Applying our main theorem. We first compare our positive results to those of [HIK07].

They investigate how to construct an OT graph with the minimum number of edges allowing

n parties to execute a secure computation protocol. They show a construction for a graph

with (n + o(n))(F11) edges which they prove is sufficient for resilience against an adversary

that corrupts (1 - 6)n parties. Our result provides a complete, simple characterization

of which OT graphs on n vertices are sufficient to run a t-secure protocol generating OT

correlations between all pairs of vertices for any t > n/2, which is sufficient to obtain a

protocol for secure computation among the n parties [Kil88, IPS08]. Our main theorem

also implies that determining the minimum number of OT edges needed to execute a secure

computation protocol for general n, t > n/2 is equivalent to an open problem in graph theory

posed by Zarankiewicz in 1951 [KST54].

Our results immediately imply that for some values of t, extremely simple sparse OT

graphs suffice for achieving secure multiparty computation. For n even and t = n/2, we have

that the t-claw graph (cf. Fig. 3-4a) has t edges and suffices to achieve t-secure multiparty

computation. For n odd and t = (n + 1)/2, the (t + 1)-cycle has t + 1 edges and suffices to

achieve t-secure multiparty computation. We show in Appendix 3.9 that these examples are

the sparsest possible graphs which can achieve L(n +1)/2]-secure multiparty computation.

Next, our results are also well-suited to make use of an OT infrastructure for secure

computation. Specifically, let G, denote the OT graph consisting of existing OT edges

between parties that are part of the infrastructure. Now suppose a pair of parties A, B not

connected by an OT edge wish to execute a secure computation protocol. Then they can

find a subgraph G of GI with A, B E G and |G| = n such that they agree that at most t out

70

of the n parties can be corrupt and the partition condition in our main theorem holds for G.

Since it is possible to handle a dishonest majority, parties do not have to settle for a lower

threshold and can enjoy increased confidence in the security of their protocol by making use

of the infrastructure. Surprisingly, it turns out the OT subgraph G need not even contain t

OT edges to offer resilience against t corruptions (cf. Fig. 3-2(c) with n = 4, t = 2).

A pair of parties may use the OT correlations generated as the base OTs for an OT

extension protocol and inexpensively generate many OT correlations that can be saved for

future use or to add to the OT infrastructure. In any case, it should be clear that our proto-

cols readily allow load-balancing across the OT infrastructure and are also abort-tolerant in

the sense that if some subgraph G ends up not delivering the output, then one can readily

use a different subgraph G'. Thus we believe that our results can be used to build a scalable

infrastructure for secure computation that allows (1) amortization, (2) routing, and (3) is

robust.

An important caveat regarding efficiency. In the special cases t = n/2 + 0(1) and

t = n - 0(1), determing whether a graph satisfies the partition condition requires at most

poly(n) time. However, in general the problem is coNP-complete, since it can be restated in

the graph complement as subgraph isomorphism of a complete bipartite graph [GJ79]. Our

protocols are efficient in n only for t = n/2 + 0(1) and t = n - O(1).6 In particular, our

protocol is quite efficient for small values of n, a setting in which computing OT correlations

in the presence of a dishonest majority may be especially useful in practice.

Organization After discussing preliminaries in Section 5.2, we give an overview of some

of our techniques in Section 3.3, where we show solutions for the simple case when n = 4

and t = 2. Following this we briefly sketch the lower bound in Section 3.4 and describe

the building blocks required for our upper bounds in Section 3.5. The rest of the paper is

devoted to proving the upper bound first for the specific cases of t = n/2 (Section 3.6) and

t = n - 2 (Section 3.7). We then use each of these protocols in two different solutions for the

6 For t = n/2 + 0(1), we achieve efficiency using computationally-secure OT extension (e.g. [Bea96,
IKNP03]). Our protocol with information-theoretic security is quasipolynomial-time for t = n/2+ 0(1). We
do, however, achieve information-theoretic security in polynomial time for t = n - 0(1).

71

general case of t > n/2 in Section 3.8 which are efficient for different values of the corruption

threshold t.

3.2 Preliminaries

3.2.1 Notation and definitions

Let X, Y be two probability distributions over some set S. Their statistical distance is

SD (X, Y) = max{Pr X E T - PrY E T}
TCS

We say that X and Y are e-close if SD (X, Y) < (and this is denoted by X Y. We say

that X and Y are identical if SD (X, Y) = 0 and this is denoted by X = Y.

All graphs addressed in this work are undirected. We denote a graph as G = (V, E)

where V is a set of vertices and E is a set of edges. We denote an edge e as e ={vi, v 2},

wherev 1 , v2 C V.

For n E N, let K, denote the complete graph on n vertices. Let A' denote the graph

G = (V, E) on 2a+ s vertices with V = VA U Vs O VB, where |VA| = VB = aand V s,

and

E ={{v 1 , v 2} : v1 ' VA V v2 ' VB}

We will sometimes consider subgraphs of As which preserve labels of vertices. In this case

we will always label the vertices so that vertex A C VAand vertex B C VB.

For two graphs G 1 = (V, E1) and G2 = (V, E2)with the same vertex set V, we say that

G 1 and G2 are (vi,..., v)-isomorphic, denoted by G1 ,..., G 2 , if the two graphs are

isomorphic to one another while fixing the labelings of vertices vi, . . . , ve c V, that is, there

exists an isomorphism o- such that o(vi) = vi for all i E [l.
Similarly, given graphs G 1 = (V 1, E1) and G2 = (V2, E2) with V1 C V2 and vi, v E V1,

we say that G 1 is a (vi,..., v)-subgraph of G 2, denoted G1 vl,...,I, G2, if G1 is (vi,..., oj)-

isomorphic to some subgraph of G2.

72

In particular, in the special case that graph G = (V, E) contains vertices A, B E V, we

say that G is an (A, B)-subgraph of As (or that GCA,B A) if there is an isomorphism o-

between G and a subgraph of As such that A is mapped into set VAand B is mapped into

set VB (that is, o-(A) E VAand o(B) E VB).

Call an n-vertex graph G = (V, E) k-unsplittable for k < n/2 if any two disjoint sets of

k vertices have some edge between them. That is, G is k-unsplittable if for all partitions of

the vertices V into three disjoint sets V1, V2 , V3 of sizes |V1 | = V2 = k and |V3|= n - 2k,

there exists some edge (u, v) E E with u E V1, v E V2 . It is immediate from this definition

that G is k-unsplittable if and only if G g An- 2k.

Similarly, call G (k, A, B)-unsplittable for k < n/2 and A, B E V if any two disjoint sets

of k vertices containing A and B, respectively, have some edge between them. That is, G is

(k, A, B)-unsplittable if for all partitions of the vertices of V into three disjoint sets V 1, V2, V 3

of sizes |V, = V2 = k and | V3= n - 2k such that A E V1 and B E V2, there exists some

edge (u, v) c E with u E V1 , v V2 . From this definition we have immediately that G is

(k, A, B)-unsplittable if and only if G gA,B An- 2k.

3.2.2 Secure Computation

Consider the scenario of n parties P1 ,..., P, with private inputs il,..., x, E D computing

a function f : D' -- D'. Let H be a protocol computing f. We consider security against

adaptive t-threshold adversaries, that is, adversaries that adaptively corrupt a set of at most

t parties, where 0 < t < n.7 We assume the adversary to be semihonest (i.e. honest-but-

curious). That is, the corrupted parties follow the prescribed protocol, but the adversary

may try to infer additional information about the inputs of the honest parties. As noted in

[HIK07], in the computational setting, using zero-knowledge proofs, it is possible to generi-

cally compile a protocol which is secure against semihonest adversaries into another protocol

which is secure against adaptive malicious adversaries [GMW91.8 This justifies our focus

7 Note that when t = n, there is nothing to prove.
8 We note that in the computational setting, it is also possible to transform, in a black-box way, a protocol

which is secure against semihonest adversaries into another protocol which is secure against static malicious

73

on the semihonest setting here.

For a PPT adversary A, let random variable REALxA.*x- consist of the views of the

corrupted parties when the protocol I is run on parties P1..., P with inputs x1 ,..., zn

respectively. In the ideal world, the honest parties are replaced with a simulator S that

does not receive input values and knows only the output value of each corrupted party in

an honest execution of the protocol. We define the random variable IDEAL". Xas the

output of the adversary A in the ideal game with the simulator when the inputs to parties

P1, . . . , Pn are X1 , .. . , Xn, respectively.

Definition 3.2.1. A protocol II is said to t-securely compute the function f if

" For all1,... , X E D party Pi receives yi, where (yi, ... , yn) = f(Xi, ... , X), at the

end of the protocol.

* For all adaptive semihonest PPT t-threshold adversaries A, there exists a PPT simu-

lator S such that for all x 1 ,.. . , n E D

{REAL .. } {IDEAL J"}

This definition is for secure computation with perfect information-theoretic security and

a nonadaptive adversary. By [CDD+01], in the semihonest setting with information-theoretic

security, any protocol which is nonadaptively secure is also adaptively secure. Consequently,

satisfying this definition suffices to achieve adaptive security.

In the discussion below, we will sometimes relax security to statistical or computational

definitions. A protocol is statistically t-secure if the random variables REAL A.Xn and

IDEAL X 1
1 jX are statistically close, and computationally t-secure if they are computation-

ally indistinguishable.

3.2.3 Oblivious Transfer

In this work OT refers to 1-out-of-2 oblivious transfer defined as follows.

adversaries [HaiO8].

74

Definition 3.2.2. We define 1-out-of-2 oblivious transferfoT for a sender A = P1 with

inputs xo, x 1 E {o, 1}m, a receiver B = P2 with input b C {0,1} and n - 2 parties P3,..., Pn

with input I as

foT ((XO,X), bi,1...,I) =(1, Xb,1,...,1)

Note that while OT is typically defined as a 2-party functionality, the definition above

adapts it our setting and formulates OT as an n-party functionality where only two parties

supply non-I inputs.

Definition 3.2.3. Let G be a network consisting of n parties A = P1,B = P2 , P3,., Pn-

Then a t-secure OT protocol fU~B is a protocol that t-securely computes the function foT

on the inputs of the parties with A as the sender and B as the receiever.

We note that OT is symmetric, in the following sense.

Lemma 3.2.1. WW06] If there exists a t-secure OT protocol H for ann-partynetwork

G with n parties A = P1, B = P2, P3,..., P, with A as the sender and B as the receiever,

then there exists a t-secure OT protocol for the same npartieswithBasthesender

and A as the receiever.

We represent parties as nodes of a graph G where an edge {A, B} indicates that parties

A and B may run a 1-secure OT protocol with A as the sender and B as the receiver. By

Lemma 3.2.1, the roles of the sender and receiver may be reversed, so it makes sense to

define G as an undirected graph.

We note the following result regarding the completeness of OT for achieving arbitrary

secure multiparty computation.

Lemma 3.2.2. [Kil88, GV87, IPS08 Consider the complete network G ~ on n vertices.

Then, for any function f : D" -+ R", there exists a protocol H which (n-1)-securely computes

f, where party i receives the ith input xi C D and produces the ith output (f (x)) E R.

75

C'

(a) GCK A B'

(b) GHIK

Figure 3-1: Known impossibility results. Securely computing foT between A' and B' is

impossible for t = 1 in GCKand is impossible for t = 2 in GHIK.

3.3 Warm-ups

Let G = (V, E) be an n-vertex graph representing a network with n parties, where an edge

{Pi, P} E E indicates that parties Pi and P may run a 1-secure 2-party OT protocol with

Pi as the sender and P as the receiver. Let t < n be an upper bound on the number

of corruptions made by the adversary. The central question considered in this work is the

following. For which graphs G and which pairs of parties A, B E V does there exist a t-secure

OT protocol with A as the sender and B as the receiver?

We begin by discussing some simple special cases of small networks. These will provide

useful intuition for our main results. For t < n/2, it is possible to obtain a t-secure OT

protocol for any n-vertex graph G = (V, E) between any A, B C V, since we can perform

secure multiparty computation without any pre-existing OT channels if there is an honest

majority [RB89]. It remains to consider the setting where t > n/2.

A few small cases have been resolved in prior work. For n = 2, t = 1, a 1-secure OT

protocol (with perfect security) between the vertices of the two-vertex graph G does not exist

unless the parties were already connected by an OT channel [CK89, Kus89]. This result is

illustrated in Figure 3-la.

For n = 3, t = 2, it is known that we can obtain a 2-secure OT protocol between a pair

of vertices A, B only if those vertices are already connected by an OT channel, even if there

are OT channels from both A and B to the third vertex C as depicted in Figure 3-1b. More

generally, for any n > 2 and t = n - 1, there exists a t-secure OT protocol with sender A

and receiver B only if those vertices are already connected by an OT channel, even if all

other () - 1 pairs of vertices are connected by OT channels [HIK07]. This also resolves the

76

P3 P3 P3 P3

A B A B A- •B A B

P4 P4 P4 P4

(a) G1 (b) G2 (c) G3 (d) G4

Figure 3-2: Cases for n = 4 parties with t = 2 corruptions.

question for n = 4, t = 3.

The remainder of this section is devoted to an exploration of the setting n = 4, t = 2.

This is the smallest case not resolved by prior techniques, and will illustrate many of the tools

used in subsequent sections to obtain our general protocols. The key cases for n = 4, t = 2

are shown in Figure 3-2. As discussed below, these cases are sufficient to completely resolve

the four-party setting.

3.3.1 Case 1 : Figure 3-2a

We first show that if G A,B G1 then there does not exist a 2-secure OT protocol for G with

A as the sender and B as the receiver.' This is a consequence of the impossibility result

of [CK89, Kus89]. An outline of the argument is as follows.

Consider components C1 = {A, P3 } and C2 = {B,P4} of G, and let H be a 2-secure

protocol computingfo in G with A as the sender and B as the receiver. Then we can

use 1 to construct a 1-secure protocol H' for the 2-party network GCK in Figure 3-1a with

A' as the sender and B' as the receiver. In protocol ', party A' runs H for both parties

of component C1 of G, and B' runs U for both parties of component C2 . OT channel

invocations can be handled locally, since all OT channels in G are between parties in the

same component. Since protocol U is 2-secure, in particular it is secure against corruptions

of parties in C1 or the parties in C2. Consequently H' is a 1-secure OT protocol for a network

9Recall that H -A,B H' for two graphs H, H' if there exists an isomorphism between H and H' preserving
the labels of vertices A and B.

77

G' -A,B GCKwith A' as the sender and B' as the receiver. However, from [CK89, Kus89],

we know that no such protocol exists with perfect security. Consequently there is no 2-secure

protocol I for a network G A,BG1.

Note that this impossibility holds not only for G A,B G1 but for any (A, B)-subgraph

of G1. In particular, if G = (V, E) is a four-vertex graph a single edge that is incident to

vertex A or vertex B, then G cannot have a 2-secure protocol computingfoTbetween A and

B except in the trivial case when there is already an edge {A, B}E E. This technique of

reducing to the known impossiblity results of [CK89, Kus89, HIK07] to obtain lower bounds

is described formally in Section 3.4.

3.3.2 Case 2 : Figure 3-2b

In this example we obtain a positive result, showing that there exists a 2-secure OT protocol

with A as the sender and B as the receiver. Since B has degree 2 in G 2, we have that either

B or one of its neighbors must be honest, and so one of the two OT channels must contain

an honest party. This suggests the idea of using secret-sharing to ensure security against 2

corruptions.

Consider the following OT protocol where sender A has inputs x, xi E {O, 1}' and

receiver B has input b E{O0, 1}. A computes 2-out-of-2 shares (x', x) and (XI, x2) of its

inputs xo, x 1 , respectively. A then sends shares x and x to party P3 and X and x 2to party

P4 . Parties P3 and B invoke their secure OT channel with inputs (x I, x) and b, and parties

P4 and B invoke their secure OT channel with inputs (4,x) and b respectively. B uses the

obtained shares xi, x to reconstruct Xb.

We informally argue the 2-security of this protocol assuming that exactly one of A and

B is corrupt. 1 0 Consider the case where A is corrupt and B is honest. The input of B is

10 An additional step is needed to address the case in which P3 and P4 are corrupt and A and B are
both honest. Then P3 and P4 can learn x 0 and x 1 , the inputs of A, in the protocol just described. This
can be handled with the technique of OT correction, using a one-time pad and the secure point-to-point
channel between A and B. Equivalently, we could run the protocol on random inputs, and then use method
of [Bea95] to obtain 1-out-of-2 OT from random OT. If A and B are both corrupt then there is nothing to
prove.

78

only used over secure OT channels, so by the 1-security of the OT channels with P3 and P4 ,

the corrupt parties can learn nothing about B's input bit b. Now consider the case where B

is corrupt and A is honest. Either P3 or P4 must be honest. If P3 is honest then the security

of OT channel {P3 , B} implies that B learns nothing about shareX ib, so the security of the

secret sharing scheme implies that the corrupt parties do not useXl-b. By symmetry, the

same argument applies if P4 is honest. This completes the argument.

Note that by Lemma 3.2.1, we can also obtain a 2-secure OT protocol from A to B

whenever A has degree 2 in OT network. Furthermore, we can extend this idea to construct

a t-secure OT protocol whenever either the sender or the receiver has degree at least t. We

call this protocol the t-claw protocol and describe it in detail in Section 3.5.1.

3.3.3 Case 3 : Figure 3-2c

Somewhat surprisingly, we can also show a positive result for graphs G-A,BG 3 even though

the OT network has no edges involving either the sender A or the receiver B. The protocol is

as follows. Since parties P3 and P4 have an OT channel between them, by Lemma 3.2.2, they

can perform 1-secure MPC between them. P3 and P4 use MPC to compute 2-outof-2 shares

of OT correlations with uniformly random inputs and send corresponding shares to A and

B, who can then reconstruct the correlations. More concretely, the MPC protocol computes

2-out-of-2 shares (r, r), (ri, r2) of two randomly sampled n-bit strings ro, ri, 2-out-of-2

shares (c, c2) of a random bit c E{0, l}, and independent 2-out-of-2 shares (s1,s2) of the

string rc. Party P3 receives the first share of each secret, and party P4 receives the second

share. Party P3 then sends shares rl, r' to A and s, Ic 'to B, while P4 sends shares r , r2 to

A and s2, c2 to B. A can then reconstruct ro and ri, and B can reconstruct c and rc. Parties

A and B have now established a random OT correlation, which they can use to perform OT

with their original inputs using OT correction [Bea95.1 1

We now informally argue the 2-security of this protocol. If A and B are both honest,

then the corrupt parties receive no information about their inputs, while if A and B are both

"This OT correction step can be performed as follows. Party B sends b' = b o c to A. A responds with

yO = X 0 G rb' and yi = X 1 (rl-b'. Finally, B computes yA e r = Xb.

79

P3 P3 P3

A B A B A B

P4 P4 P4

Figure 3-3: Illustrating the cascading protocol for Case 4 : Figure 3-2d; (a) -+ (b) -> (c)

corrupt then there is nothing to prove. Consequently we can assume that exactly one of A

and B is corrupt and that either P3 or P4 is honest. If A is corrupt and P3 or P4 is honest,

then the adversary learns nothing about c and r, since it only sees one of the two shares

of each. The OT correction phase uses these strings as one-time pads for inputs which are

unknown to the adversary, and consequently are information-theoretically hidden from the

adversary. Consequently A learns nothing about B. The case where B is corrupt and P3 or

P4 is honest follows by the same argument.

This construction can be extended to obtain a t-secure OT protocol whenever the OT

graph contains a t-clique consisting of t parties which are not the OT sender or receiver. We

call this protocol the t-clique protocol and describe it in detail in Section 3.5.2.

3.3.4 Case 4 : Figure 3-2d

We also obtain a positive result for graphs G A,BG 4 . We introduce here a technique we

call cascading. The idea is as follows. Using the protocol described in Section 3.3.2 for

network G2 of Figure 3-2b, we have 2-secure OT protocol with P3 as the sender and P4

as the receiver. This effectively gives us an OT channel between P3 and P4. Applying the

protocol from Section 3.3.3 on the augmented network, we obtain a 2-secure OT protocol

with A as the sender and B as the receiver. We describe this pictorially in Figure 3-3.

The 2-security of the protocol follows from the 2-security of the underlying protocols

of Sections 3.3.2 and 3.3.3. The technique of cascading for combining t-secure protocols is

described in detail in Section 3.5.3.

80

3.3.5 Cases 1-4 are exhaustive

Note that a t-secure OT protocol with sender A and receiver B in an OT network G trivially

yields a t-secure protocol for any network G' such that G CA,BG'. From cases 1 and 3, we

can securely computefoT in a network G containing at most a single edge if and only if the

edge is {A, B} or {P3 , P4}. From cases 1, 2, and 4, we can compute fOT in a network G

containing two or more edges including neither of {A, B} or {P3, P4 } if and only if there is

some vertex with degree at least 2 in the OT graph. This completes the characterization of

4-party networks with 2 corruptions.

3.4 Lower Bound

We now describe a family of impossibility results using a generic reduction to the impossiblity

result in [HIK07], which we restate in our language below.

Lemma 3.4.1. HIK07 Consider any three party network G with G A',B' GHIK, the graph

in Figure 3-1b. Then any 2-secure OT protocol with A' as the sender and B' as the receiver

can be used (as a black box) to obtain a 1-secure OT protocol for a network G' with G' A',B'

Gxu,, the graph in Figure 3-1a, with A' as the sender and B' as the receiver.

The theorem below describes an impossibility result over a family of networks. We note

that this result was observed in [HIK07]; we restate it our language and provide a formal

proof.

Theorem 3.4.2. Let n > 2 and n/2 < t < n, and let G be an n party network such that

G C A 2 t-n with P1 G VA and P2 E VB. Any t-secure OT protocol for G with P1 as the

sender and P2 as the receiver can be used (as a black box) to obtain a 1-secure OT protocol

for a network G' with G' A,B GCK with A' as the sender and B' as the receiver.

Proof. Let G be an n party network with G (V, E) such that G C A2t-n. Then, we may

write V = VA U Vs 0 VB, where VA B n -- and VS = 2t - n, with P1 E VA and

81

P2 E VBand E(VA, VB) = 0, where E(VA, VB) represents the set of edges with one endpoint

in VAand the other in VB.

Let H be a t-secure OT protocol for G with Pi as the sender and P2 as the receiver. If

t > n/2, then we can use H to construct a 2-secure OT protocol H' for any three party network

G' with G' A',B' GHIKwith A' as the sender and B' as the receiver below. Combining

this with Lemma 3.4.1, the conclusion follows. We describe the construction of 11' below. If

t = n/2, then we can use H to construct a 1-secure OT protocol H" for any two party network

G" with G" -A",B" GCKwith A" as the sender and B" as the receiver. The construction of

H" is exactly the same as that of H' and hence we omit its description here.

In protocol H', party A' simulates the parties of component VA, party C' simulates the

parties of component Vs, and party B' simulates the parties of component VB. Executions

of 1-secure OT protocols between parties of the same component are handled locally and

executions of 1-secure OT protocols between parties in different components are handled as

follows:

* If the parties are in components VAand VS, then executions of 1-secure OT protocols

between the parties are carried out using the OT edge {A', C'} in the network G'.

• If the parties are in components VBand Vs, then executions of 1-secure OT protocols

between the parties are carried out using the OT edge {B', C'} in the network G'.

Since G C A 2 _-, there are no executions of 1-secure OT protocols between parties in com-

ponents VAand VB in protocol H.

Correctness of H' is obvious. We now prove 2-security of H'. Intuitively, since H is t-

secure, in particular, it is secure against corruptions of parties VAU Vs or the parties VB U Vs.

Consequently protocol H' is secure against corruptions {A', C'} or {B', C'} and hence H' is

a 2-secure protocol.

Formally, we prove this as follows. Since H is t-secure, there exists a simulator S such that

for every PPT t-threshold adversary A, REALX1'I' '} {IDEAL ° '

where £o, xi E {0, 1} m and b E {0, 1}. The simulator S' for the protocol H' behaves exactly

the same as S while simulating the parties of component VAas A', those of of component VBas

82

P3 Pt+2

P4 P4t+

A-- B A-.-B •B

A B

Pt+1

Pt+2 P4

(a) Gaw (b)Gclique (c)Gi-path

Figure 3-4: Building block networks. (a) t-claw graph (b) t-clique graph (c) 2-path graph

B' and those of of component Vs as C'. It is easy to see that for any 2-threshold adversary A',

namely, one which corrupts {A', C'} or the one which corrupts {B', C'}, {REALox ,1b-

{IDEALoj ,') since 1I is secure against corruptions of parties VA U Vs or the parties

VB U VS. l

3.5 Building Blocks

In this section, we describe a few key protocols and techniques that we use in the subsequent

sections to prove our main theorem.

3.5.1 The t-claw Protocol

The first protocol we describe is the t-claw protocol, where the graph G describing the

network is such that G , Giaw. The protocol is described in Protocol 1. The protocol is

a straightforward generalization of the one described in Section 3.3.2. The idea is for A to

compute t-out-of-t shares of its inputs and distribute them among the t parties connected

to B. These t parties then perform OT with B so that B receives the shares to reconstruct

his output.

Lemma 3.5.1. Protocol 1 is an efficient t-secure OT protocol for a network G iaB Glw

with A as the sender and B as the receiver.

83

P-

Protocol 1: t-claw Protocol

Proof Intuition. The t-security of the procotol can be seen as follows. Steps 1, 2 and 7

perform OT correction, that is, they perform a transformation from random OT to 1-out-of-

2 OT. This transformation protects against the case that the parties P3, ... , Pt+2 (that is, all

but A and B) are corrupt. Suppose A were corrupt and B were honest. Clearly, A colluding

with any of the parties P3 ,. - - , Pt+2 provides A with no additional information since all they

possess are shares sent by A. Next, if A were honest and B corrupt, at least one of the

parties P3, .. ., P+2 must be honest. B has no information about those shares and hence

does not learn anything. Finally, if both A and B were corrupt, there is nothing to prove.

Proof. Let A be a t-threshold adversary which corrupts parties T, TI < t. We will construct

a simulator S which plays the role of the uncorrupted parties. If {A, B} C T then the

uncorrupted parties receive no input, so S can perfectly simulate the uncorrupted parties. If

{A, B} n T = 0 then S chooses arbitrary inputs x0 , x1 , b and runs the protocol, invoking the

OT simulator for each OT invocation with an uncorrupted party in step 5. Since corrupted

parties only learn secret shares of independently random values, the view of the adversary

is independent of the choice of x0 , x 1, b and is identical to the real world.

Otherwise, we have that the corrupted parties T include exactly one of A, B. If A E T but

B V T, then S chooses arbitrary input b and runs the protocol, invoking the OT simulator

84

Preliminaries:LetA, B, P3.., Pt+2 be the t + 2 parties in a network G ~)Gcaw. A has inputs
0, Xi oE {0, 1}m and B has input b E {O, 1}.

Protocol:

1. B chooses a random bit c E{0,1} and sends b' = b e c to A.

2. A chooses two random one-time pads ro, ri E {O, 1}m and sends yo Xo e rb' andyi =Xi e rI--b'
to B.

3. A then computes t-out-of-t shares (ro,..., ro) and (r......, r) of ro, ri, respectively.

4. For each i > 3, A sends shares r and r' to party P.

5. For each i > 3, parties Pi and B invoke the OT protocol U , 1 with inputs (r, r') and c
respectively.

6. B uses the obtained shares rel,..., rc to reconstruct rc.

7. B finally computes Yb e rc = Xb.

for each OT invocation with an uncorrupted party in step 5. Since the OT simulator does not

reveal the input c, and since the adversary only learns the direct sum of b with the random

bit c, the view of the adversary is identical regardless of the value of b and in particular is

identical to the real world.

Finally we have the case B E T, A (T. Here the simulator S is given the output value

Tb. S runs the protocol with (b, Tb) as the input to A, again invoking the OT simulator for

each OT invocation with an uncorrupted party in step 5. Since |T| < t and B E T, at most

t - 1of the t parties P3, ... , Pt+2 are corrupted. Consequently the adversary observes at most

t - 1shares of the random one-time pads ro, ri, so by the security of t-out-of-t secret sharing,

conditioned on the remaining shares being hidden, the distribution of the observed shares is

independent of ro, ri. The adversary learns the shares of rc, but by the security of the OT

channels, the view of the adversary in step 3 and onward is independent of the remaining

shares of r1lc and consequently is independent of the choice of r1 c. Consequently the view

of the adversary in step 3 and onward is independent of r1 c. In step 2, the adversary sees

Yb = Xb e rc and Yi-b = EibD ri-c,so by the security of the one-time pad, the view of the

adversary is independent of zlb. Consequently the overall view of the adversary is identical

in the real and ideal worlds. l

3.5.2 The t-clique Protocol

The next protocol we describe is the t-clique protocol, where the graph G describing the

network is such that G -A,BGiue. The protocol is described in Protocol 2. The protocol

is a straightforward generalization of the one described in Section 3.3.3. The idea is for the

parties P3 , - - -, Pt+2 to compute t-out-of-t shares of OT correlations and send them to A and

B respectively. The parties have a complete network of OT channels, so this can be done via

multiparty computation (Lemma 3.2.2). A and B then perform OT correction using their

secure channel.

Lemma 3.5.2. Protocol 2 is an efficient t-secure OT protocol for a network G A,BG ue

with A as the sender and B as the receiver.

85

Protocol 2: t-clique Protocol

Proof Intuition. The t-security of the procotol can be seen as follows. Steps 4, 5 and 6

perform OT correction, that is, they perform a transformation from random OT to 1-out-

of-2 OT. This transformation protects against the case that all of parties P3 ,... , Pt+2 (that

is, all but A and B) are corrupt. If one of A and B were corrupt, there exists at least one

honest party among the parties P3,..., Pt+2 . Hence, even by colluding, A or B would have

no information about those shares and would not learn anything. Finally, if both A and B

were corrupt, there is nothing to prove.

Proof. Let A be a t-threshold adversary which corrupts parties T, |TI < t. We will construct

a simulator S which plays the role of the uncorrupted parties. As above, if {A, B} c T

then the uncorrupted parties receive no input, so S can perfectly simulate the uncorrupted

parties. If {A, B} nT = 0 then S chooses arbitrary inputs xo, x1 , b and runs the protocol.

Since the only steps which depend at all on the inputs are on point-to-point channels between

A and B, the view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that the corrupted parties T include exactly one of A, B. If A E T

but B (T, then S chooses arbitrary input b and runs the protocol, invoking the MPC

simulator for the protocol in step 1 (the existence of this simulator follows from Lemma

86

Preliminaries: Let A, B, P3 ,.. -, Pt+2 be the t + 2 parties in a network G -A,B Gtcque. A has inputs
X0, X1 E {0, 1}' and B has input b E 0, 1).

Protocol:

1. Parties P3 ,, Pt+2 use their pairwise OT channels to run t-secure MPC for the function f using
the protocol from Lemma 3.2.2 for the function f described ahead. The function f is to securely
compute t-out-of-t shares (r,...,r), (ri,...,r') of two randomly sampled one-time pad keys

'ro, ri, (c ,..., ct) of a random bit c E{0,1}, and independent shares (s1 ,... ,s) of key rc, so
that party i + 2 receives only shares r , risI, i C'for each i.

2. Each party Pi+2 for i > 1 sends shares r', r' to A and s', c' to B.

3. A uses shares (rd,... ro) and (ri,... ,r) to reconstruct ro and ri.

4. B uses shares (c', ... , ct) and (s 1 ,..., s') to reconstruct c and rc and sends b' = b E c to A.

5. A computes yo xo e r', and y1 = x1 e ris- and sends both to B.

6. B computes Yb rc = Xb.

3.2.2). Since at least one of the parties P3,. - -, Pt+2 is uncorrupted, the security of the MPC

protocol implies that the view of the adversary is independent of the uncorrupted parties'

shares si and ci, and so by the security of the secret sharing scheme is independent of the

value of the bit c. The only message received by the adversary which depends on b is the

bit b' = b o c, so it follows that the view of the adversary is independent of the bit b and

therefore is identical in the real and ideal worlds.

Finally we have the case B E T, A (T. Here the simulator S is given the output value

Xb. S runs the protocol with (b, Xb) as the input to A, again invoking the MPC simulator

for the protocol in step 1. Since at least one of the parties P3 , -- -, Pt+2 is uncorrupted,

the security of the MPC protocol implies that the view of the adversary is independent of

the uncorrupted parties' shares r and riso by the security of t-out-of-t secret sharing,

conditioned on the remaining shares being hidden, the distribution of the observed shares is

independent of ro,,ri. The adversary learns the shares of rc, but by the security of the OT

channels, the view of the adversary through step 4 is independent of the remaining shares

of rlc and consequently is independent of the choice of rc. In step 5, the adversary sees

Yb = Xb @ rc and Y1-b= iX-bT D ric, so by the security of the one-time pad, the view of the

adversary is independent of zi-b. Consequently the overall view of the adversary is identical

in the real and ideal worlds. l

3.5.3 Cascading

The following building block is a generalization of the technique described in Section 3.3.4.

The technique describes a general method of combining protocols iteratively. In our context,

this can be thought of a tool for transforming a network described by a graph G to one

described by a graph G', where G Cv G' and G and G' are both graphs on the same vertex

set V. In other words, it describes protocols as adding new edges indicating the establishment

of OT correlations between new pairs of parties in the network. With this abstraction, it

is easy to view the technique of cascading as one which combines protocols iteratively to

transform the underlying network by adding new edges. This is described formally below.

87

Definition 3.5.1. Let G = (V, E) and G' = (V, E') be two graphs on the same set of vertices,

V, with G Cv G'. We say that a protocol U t-transforms a network G into the network G'

if for each {Pi, P} IE E' \ E, H is a t-secure OT protocol for a network G with Pi as the

sender and P as the receiver.12

Lemma 3.5.3. If H1 is a protocol that runs in time T1 and t-transforms network G1 into

G2, and H2 is a protocol that runs in time T2 and t-transforms network G2 into G3 , then

there exists a protocol H that runs in time T1 T2 and t-transforms G1 into G3 .

Proof. The protocol I simply runs H 2, running protocol H 1 to obtain the necessary corre-

lations whenever 2 invokes OT on an edge of G2 \ G1. Let Si andS2 be the simulators

associated with H1 and H2 respectively. The simulator for U simply runsS2, invoking S1 for

OT calls made on edges in G2 \ G 1.

Using OT extension [Bea96, IKNP03], we can also obtain a computationally secure ver-

sion of cascading with improved efficiency.

Lemma 3.5.4. Let A be a computational security parameter. Assuming one-way functions

or correlation-robust hash functions, if 1 is a protocol that runs in time T1 and t-transforms

network G 1 into G 2, andHU2 is a protocol that runs in time T2 and t-transforms network G2

into G3 , then there exists a computationally secure protocol H that runs in time A - T1 +T2

poly(A) and t-transforms G1 into G3 .

Proof. First, run protocol H1 A times on random inputs to obtain A independent OT corre-

lations for each edge of G2 \ G 1. Then run Protocol H 2 , using OT extension {Bea96, IKNP03]

to obtain OT correlations for OT calls made on edges in G2 \ G 1 . l

3.5.4 The 2-path graph

The protocol described in this section is a commonly used subroutine in several of the

protocols which follow. It is a particular combination of the tools encountered in Sections

"Note that a single protocol U may set up independent random OT correlations for several pairs of parties
{P, P} E' \ E. These correlations can be used to run 1-out-of-2 OT using OT correction.

88

Protocol 3: 2-path

Preliminaries: Let A, B, C, D be the parties, and let there exist OT channels (A, C) and (B, C). A
has input (xo, xi), and B has input b e {o,1}.

Protocol:

1. Invoke Protocol 1 (2-claw) on parties (D, C, A, B) to obtain OT correlations on edge (D, C).

2. By Lemma 3.5.3, we have an OT channel between D and C.

3. Invoke Protocol 2 (2-clique) on parties (A, B, C, D).

3.5.1, 3.5.2 and 3.5.3. The subroutine, which we call 2-path, is the same as the one described

in Section 3.3.4. It is used to obtain OT correlations between parties who have a common

neighbor in a four-party network with at most two corruptions (see Figure 3-4c).

Lemma 3.5.5. Protocol 3 is an efficient 2-secure OT protocol for a network G A,BG2-path

with A as the sender and B as the receiver.

Proof. This follows immediately from Lemma 3.5.3 and the 2-security of Protocols 1 and 2

for t = 2 (Lemmata 3.5.1 and 3.5.2). l

3.5.5 Combiners

OT combiners aim to combine several insecure candidate protocols for establishing OT cor-

relations between two parties into a single secure protocol. For a class of adversaries A,

it is possible to achieve this when the candidate protocols satisfy the property that a ma-

jority of them are secure against each advesary A E A. The following lemma is due to

[MPW07, HIKNO8], relying on prior work by [HKN+05, Wul07] and based on a construction

by [DKS99].

Lemma 3.5.6. /MPW07, HIKNO8! Let A be an adversary class. Suppose there exist m proto-

cols H1, . . . , H for foT (A, B, P1 , .. . , Pn) such that for any adversary A E A a majority of the

protocols are secure. Then, there exists a protocol U*(U1,..., n) for foT(A, B, P1,..., Pn)

which is secure against all adversaries A G A. Moreover, if each protocol U1 is efficient and

perfectly secure, then so is U*.

89

3.6 The case t = n/2

We now consider the specific case of t = n/2, that is, when at most half the parties are

corrupt. We note that this is the smallest value of t for which the question is non-trivial.

From the lower bounds proven in Theorem 3.4.2, we already have that for all n-party networks

G containing A and B such that G CA,BA 2 , there exists no n/2-secure OT protocol with

A as the sender and B as the receiver. Surprisingly Theorem 3.6.1 shows that these are

the only networks for which (n/2)-secure OT between A and B is impossible. Below, we

provide an explicit n/2-secure OT protocol between A and B whenever the network G is

(n/2, A, B)-unsplittable.

Theorem 3.6.1. Let G be an n-party network OT containing parties A and B. Then

Protocol 5 is an n/2-secure OT protocol between A and B if and only if G is (n/2, A, B)-

unsplittable.

We analyze the efficiency of the protocol in Theorem 3.6.3 below. The protocol as stated

runs in quasi-polynomial time. We can also obtain a computationally secure protocol which

runs in polynomial time. The protocol we describe proceeds in two stages. In the first

stage, the protocol transforms every connected component of the network into a clique. This

transformation is very specific to the case of t = n/2, and in particular, for t > n/2 a

connected component cannot in general function as a clique. This transformation is carried

out by means of repeatedly calling Protocol 4, which obtains OT correlations between a pair

of parties who have a common neighbour. This protocol uses the building block Protocol 3

from Section 3.5.4 along with machinery of OT combiners described in Section 3.5.5.

Lemma 3.6.2. Let G be an n-vertex OT network with edges {A, C} and { B,C}. Protocol 4
is an n/2-secure OT protocol for the network G with A as the sender and B as the receiver.

Proof. We consider cases depending on the number of corrupted parties in the set T =

{A, B, C}. If T contains at most one corrupted party, then each tuple (A, B, C, P) for

i > 4 contains at most 2 corrupted parties, so each protocol HIj in step 1 is secure. If T

contains two corrupted parties, then there are at most t - 2 = (n - 4)/2 corrupted parties

90

Protocol 4: Completing Triangles

Preliminaries: Let A, B, C, P4 ,..., P, be the n parties, and let there exist OT channels (A, C) and
(B, C). A has input (xo, xi), and B has input b E {0, 1}.

Protocol:

1. Run a combined protocol f*(4 ,..., ln) on the n - 3 protocols H 4 ,...,U,, where

•For each i > 4, g denotes an invocation of Protocol 3 (2-path) with the four parties
A, B, C, Pi with A as the sender and B as the receiver.

among P4 ,.. . , Pn, so a majority of these parties are honest. Consequently a majority of the

protocols Hg which are combined in step 1 are secure. Thus, in either case, by Lemma 3.5.6

the protocol is secure. Finally, if all three parties of T are corrupted, then all uncorrupted

parties receive no input, so the simulator S can perfectly simulate the uncorrupted parties

by running the honest protocol. Therefore Protocol 4 is n/2-secure. El

We now complete the proof of Theorem 3.6.1.

Proof Intuition (Theorem 3.6.1): It is easy to see that by invoking Protocol 4 repeatedly, one

can obtain OT correlations between any pair of parties in the same connected component.

In other words, using cascading (Lemma 3.5.3), we can assume that we are given a network

which consists of disjoint cliques. This is done in step 1 of Protocol 5. Hence, if A and B

were in the same connected component in G, this process would end up with correlations

between A and B and we can terminate the protocol (step 2).

If A and B are in different components, then a natural next step is to run the clique

protocol described in Section 3.5.2 with each of the cliques and parties A and B with the

intent of setting up OT correlations between A and B. However, the number of corruptions t

may be greater than the size of any clique, and so Protocol 2 may not be secure. However, for

an invocation to be secure, we only require that the clique contains at least one honest party.

A majority of parties must be in cliques containing at least one honest party, so if we invoke

Protocol 2 for each of the parties on their respective cliques, for any adversary a majority

of the invocations is secure. By Lemma 3.5.6 we can combine these candidate protocols to

obtain a single secure protocol. This is performed in step 5 of Protocol 5. Finally, we note

91

Protocol 5: n/2 corruptions

Preliminaries: Let Pi = A, P2 = B, P3 .. , Pn be the n parties in a network G = (V, E). A has input
(xo,x1), and B has input b c 0, 1.

Protocol:

1. While there exist parties Pi, Pj, Pk E V such that {P,, PI} E, {P, Pk} E , but {P, Pk} E:

(a) Let S be the set of triples of distinct vertices (X, Y, Z) E V 3 with {X,Y} F,{Y,Z} E E,
and {X, Z} V E.

(b) For each triple (X, Y, Z) e S, invoke Protocol 4 with independent random inputs (ro 'k)
and bi'k, to obtain OT correlations along edge {X, Z}.

(c) Invoking cascading (Lemma 3.5.3), we can add {X, Z} to the edge set E for all triples
(X,Y, Z) E S.

The OT network G now consists of disjoint cliques C1,... , Cf.

2. If A and B are in the same clique, then halt.

3. B samples a random bit c and sends b' = b D c to A.

4. A chooses random one-time pads ro, r1 and sends yo = £O e rb, and yi = x1 D rib' to B.

5. Let C1 be the clique containing A and C2 be the clique containing B. For each party Pi, i > 3,
let C(i) denote the clique containing party i, and let Pi,.. ., Pic denote the parties in clique

C(i).

Run a combined protocol *(1 ,..., Un) on the n protocols 1 1 , ... , ,where

•For each i E [n], Hi denotes an invocation of Protocol 2 on the IC(i)I + 2 parties
A, B, Pj,.. ., Pjc(, with inputs (ro,ri) and c.a

6. Finally, B computes Xb = yA e rc.

aIn the case C(i) C 1, A is both the OT sender and a member of the clique. A similar condition
holds for B in the case C(i) = C 2 -

that steps 3, 4 and 6 perform OT correction, that is, they perform a transformation from

random OT to 1-out-of-2 OT. This yields the n/2-security of Protocol 5.

Proof of Theorem 3.6.1. The "only if" part of theorem has been proven by virtue of the lower

bound of Theorem 3.4.2 with t = n/2. We now prove the "if" part. We note that in the case

where A and B are in the same connected component in the network G, by the n/2-security

of Protocol 4 and Lemma 3.5.3, we note that Protocol 5 is an n/2-secure OT protocol with

A as the sender and B as the receiver, thus proving the theorem.

We now proceed to the case where A and B are not in the same connected component in

92

G. We must show that the protocol is secure against t-threshold adversaries as long as the

vertices cannot be partitioned into two sets VA, VB each of size t = n/2 with A VA, B V

such that there are no edges between VA and VB. Let A be a t-threshold adversary which

corrupts parties T, |T < t. We will construct a simulator S which plays the role of the

uncorrupted parties.

If {A, B} c T then the uncorrupted parties receive no input, so the simulator can

perfectly simulate the uncorrupted parties. If {A, B} n T = 0 then S chooses arbitrary

inputs x0, x 1, b and runs the protocol. Since the only steps which depend on the input at all

are on point-to-point channels between A and B, the view of the adversary in the real and

ideal worlds is identical.

Otherwise, we have that the corrupted parties T include exactly one of A, B. If A E T but

B V T, then S chooses an arbitrary bit b and runs the protocol, invoking the OT simulator

for each invocation of Protocol 4. It follows that as long as the combined protocol f* in step

5 is secure against A, Protocol 5 is secure against A. It remains to show that a majority of

the n protocols H 1,..., HU, are secure against A. Since party B is honest, by Lemma 3.5.2,

protocol Hl is secure against A as long as at least one of the parties in clique C(i) is honest.

In particular, if party Pi is honest then protocol H is secure against A. At most t of the

parties P1, . . . , P, are corrupt, so the only protocols which may be insecure against A are the

t protocols Hi corresponding to the corrupted parties P. Assume that all t of these protocols

are insecure against A. Then the corrupted parties lie in completely corrupted cliques who

sizes sum to n/2. This then gives a set VA = T of n/2 parties containing A but not B such

that there are no edges from VA to the remaining vertices VB = T. However, we know that

G possesses no such partition. Hence, at most t - 1 < n/2 of the n protocols are insecure

against A and hence by Lemma 3.5.6, the combined protocol * in step 5 is secure and hence

Protocol 5 is secure against A.

The remaining case that B c T but A V T is similar. Here, the simulator S is given

the output value zb. S runs the protocol with (Xb, zb) as the input to A, again invoking the

OT simulator for each invocation of Protocol 4. As above, as long as the combined protocol

93

U* in step 5 is secure against A, Protocol 5 is secure against A. By the same argument,

the only protocols Hi which may be insecure against A are the t protocols corresponding to

the corrupted parties P. If all t of these protocols are insecure against A, we have a set

VA = T of n/2 parties containing A but not B such that there are no edges from VA to the

remaining vertices VB = T. However, we know that G possesses no such partition, so at

most t - 1 < n/2 of the n protocols are insecure against A. By Lemma 3.5.6, the combined

protocol 1* in step 5 is secure and so Protocol 5 is secure against A.

We now analyze the efficiency of Protocol 5.

Theorem 3.6.3. Protocol 5 runs in quasi-polynomial time. Assuming one-way functions,

we can obtain a computationally secure protocol which runs in polynomial time using com-

putationally secure cascading (Lemma 3.5.4).

Proof. Each iteration of step 1 decreases the length of a path between any pair of vertices

from f to [f + 11/2. Consequently, after O(logn) iterations the graph will consist of a

collection of disjoint cliques, and the protocol will move on to the next step. By Lemma 3.5.3

(Cascading), if each iteration can be performed in time at most T assuming the augmented

graph, then the full cascaded protocol runs in time at most T0(°9'). Since T = poly(n)

and each other step of the protocol is efficient, this implies that Protocol 5 runs in quasi-

polynomial time.

Replacing the cascading of step 1 with the more efficient but computationally secure

cascading of Lemma 3.5.4, we have the cascaded protocol runs in time O(Tpoly(A) - log n).

Since each other step of the protocol is efficient, this implies that assuming one-way functions,

we have a computationally-secure version of Protocol 5 that runs in quasi-polynomial time.

3.7 The case t =n-2

On account of the lower bound proven in [HIK07], we note that t = n - 2 is the largest

value of t for which the question is non-trivial. In this section we present an improved

94

Protocol 6: n - 2 corruptions

'We will only have OT security over this edge when at least two of the parties P, Pj, A, B are honest,
but we obtain the functionality of the edge regardless. We address security of the overall protocol in the
proof.

computationally efficient OT protocol between A and B for the special case t = n - 2 for all

(2, A, B)-unsplittable networks G.

Theorem 3.7.1. Let G be an n-party OT network containing parties A and B. Then

Protocol 6 is an efficient (n - 2)-secure OT protocol between A and B if and only if G is

(2, A, B)-unsplittable.

The protocol is built upon the following structural aspect of the network G under

consideration. Since G is (2, A, B)-unsplittable, for any two sets of vertices VAA and VBB

such that |VAl = |VBI = 2, there exists an edge from a vertexofVAtoavertex of VB. In

particular, this implies that for any two parties P, P where i, j > 3, the sub-network G,

induced by parties A, B, Pi and P is (2, A, B)-unsplittable. Then for any i, j, we also have

that the sub-network G, is (2, P, P)-unsplittable. Hence, we could try to obtain OT cor-

relations between every pair of vertices Pi, P by running Protocol 5 on every G, for n = 4

parties. Notice that if these invocations were secure, then we would obtain an (n - 2)-clique

in the network after which we can execute Protocol 2 in order to obtain OT correlations

between A and B. This is described in Protocol 6. However, each of the execution of

Protocol 5 is only guaranteed to be secure if at most two of the corresponding parties are

95

Preliminaries: Let Pi = A, P2 = B, P3 ,.. -, Pn be the n parties, and let graph G = (V, E) be the OT
network among the parties. A has input (xo, xi), and B has input b e{O0, 1}.

Protocol:

1. For all pairs of parties P, Pj E V with i, j > 3 such that {P, P7} V E:

(a) Invoke Protocol 5 (or any 2-secure protocol for n' = 4) on the induced OT subgraph
Gjj := G n {Pi, P, A, B} with independent random inputs (ri', r7'j) and bV', to obtain
OT correlations along edge {Pi, P}.

(b) By virtue of cascading (Lemma 3.5.3), we can add edge {Pi, Pj} to the graph G.'

The OT network G now contains a (n - 2)-clique among vertices P,..., P.

2. Invoke Protocol 2 (t-clique) with input (xo, xi) and b.

corrupt. This need not be true in general, and so we cannot directly leverage the security of

Protocol 5. Nonetheless, we will argue that Protocol 6 is secure against t = n -2 corruptions.

Proof Intuition (Theorem 3.7.1): In order to analyze the (n - 2)-security of Protocol 6, we

consider each invocation of Protocol 5 on a sub-network Gjj. If at most two of the four

parties in G2 3 are corrupt, then that invocation of Protocol 5 is secure and yields secure OT

correlations between parties Pi and P. Appealing to Lemma 3.5.3, we can augment G to

include edge {Pi, P}.

Each G, must contain at least one honest party since either A or B must be honest

(otherwise, there is nothing to prove). It remains to consider sub-networks Gj in which

three of the parties are corrupt. Since at least one of A or B is honest, this implies that

both Pi and Pj are corrupt. Thus, there is nothing to prove regarding the security of the

invocation of Protocol 5 on Gj since we are establishing OT correlations between a pair of

corrupt parties Pi and P. Combining these claims, we have that each of the invocations of

Protocol 5 is secure and yields secure OT correlations between the pairs of parties Pi, P for

all i, j > 3. By virtue of Lemma 3.5.3, we obtain an (n - 2)-clique in the network and the

(n - 2)-security of Protocol 2 with t = n - 2 proves the (n - 2)-security of Protocol 6.

Proof. The "only if" part of theorem follows from the lower bound of Theorem 3.4.2 with

t= n - 2. We now prove the "if" part. Let A be a t-threshold adversary which corrupts

parties T, |T < t = n - 2. If A and B are both corrupt then the uncorrupted parties receive

no input, so the simulator S can perfectly simulate the uncorrupted parties.

Otherwise we have that at least one of A or B is uncorrupted. We first show how to

simulate step 1. Since G is (2, A, B)-unsplittable, for each pair of parties Pi, P considered in

step 1, we have that Gjj is (2, A, B)-unsplittable. Since {Pi, P} (E, this implies that some

vertex among A, B, Pi, and P has degree at least 2 in G ,. In particular, we have G,j p,p

A, where A' is labeled so that Pi and P are in separate components. Consequently, by

Theorem 3.6.1, we securely obtain OT correlations between Pi and P whenever at most two

of the parties A, B, P, P are corrupt.

96

Since A and B are not both corrupt, if Pi and P are also not both corrupt, then at

most two of the four parties A, B, Pi, P are corrupt. Consequently we securely obtain OT

correlations between Pi and P. Otherwise, Pi and P are both corrupt, in which case there

is nothing to prove. More formally, there is a simulator which can perfectly simulate the

invocation of Protocol 5 in step la by executing the protocol of the honest parties, since the

honest parties receive no input. Consequently we securely obtain OT correlations between

the corrupted parties Pi and P. In both cases, by Lemma 3.5.3, we have an OT simulator

which can simulate subsequent invocations of the OT channel between Pi and Pj.

Therefore, by the end of step 1 we t-securely obtained an OT channel between every pair

of parties P, P for i, j > 3. Then by Lemma 3.5.2, the invocation of Protocol 2 in step 2 is

a t-secure OT protocol with A as the sender and B as the receiver, as desired. El

3.8 The General Case: t > n/2

In this section, we resolve the network OT question for general t > n/2. Note that from the

protocols in Sections 3.6 and 3.7 we already have tight answers for the special cases t = n/2

and t = n - 2. We address the general question from both ends of the spectrum, namely

for t larger than n/2 and t smaller than n - 2. These analyses yield two distinct protocols

which employ the protocols from Sections 3.6 and 3.7 as their respective base cases. The two

protocols we describe are efficient in different parameter regimes. Protocol 7 described in

Section 3.8.1 is quasi-polynomially efficient 1 3 when t = n/2-+0(1), and Protocol 8 described

in Section 3.8.2 is (polynomially) efficient when t = n - 0(1). Putting these protocols

together, we obtain a single protocol that is efficient under computational security when

either t = n/2 + 0(1) or t = n - 0(1). We note that the problem of recognizing whether

there exists a t-secure OT protocol is efficient in these cases, while the recognition problem

for general n, t is coNP-complete.

Bor polynornially efficient under computational security

97

3.8.1 General Protocol (Quasi-polynomial for t = n/2 + 0(1))

We now describe a t-secure OT protocol between A and B for all (n - t, A, B)-unsplittable

networks G. As a consequence of the lower bound described in Section 3.4, this result is

tight.

Theorem 3.8.1. Let G be an n-party OT network containing parties A and B, and let

t > n/2. Then Protocol 7 is a t-secure OT protocol between A and B if and only if G is

(n-tA,B)-unsplittable. The protocol achieves perfect security and runs in quasi-polynomial

time for t = n/2+ 0(1). Assuming one-way functions, we can also obtain a protocol which

achieves computational security and runs in polynomial time for t = n/2 + 0(1).

The protocol proceeds by recursion, reducing the problem of obtaining an OT protocol

on an n-vertex graph with t > n/2 corrupted parties to a number of instances of n'-vertex

graphs, a majority of which have at most t' corrupted parties, for n' = n - 1 and t' = t - 1.

As shown below, each n'-vertex subgraph G' has a structure similar to G in the sense that G'

is (n' - t', A, B)-unsplittable whenever G is (n - t, A, B)-unsplittable. We can now recurse

on these smaller problem instances, invoking an OT combiner to obtain the full protocol.

More precisely, the protocol constructs n - 2 subgraphs on n - 1 vertices, where each

subgraph is obtained by deleting a single vertex other than A and B. We can recursively

run a (t - 1)-secure OT protocol on each of the subgraphs. The final protocol invokes a

combiner on these n - 2 candidate protocols. It remains to be shown that a majority of the

subgraphs G' contain at most t - 1 corrupt parties.

Proof Intuition (Theorem 3.8.1): We may assume that at least one of A or B is honest.

As described above, we wish to argue that a majority of the subgraphs G' contain at most

t - 1 corrupt parties. Combining this with the claim that these subgraphs preserve an

unsplittability property of G and invoking Lemma 3.5.6 completes the proof.

However, this claim follows from the following observation. Since t > n/2, if exactly t

parties are corrupt then a majority of the subgraphs contain at most t - 1 corrupt parties

since A and B are not both corrupt. If strictly fewer than t parties are corrupt then all

98

Protocol 7: General Protocol I

Preliminaries: Let A, B, P3 ,.. . , Pn be the n parties in a network G and let t > n/2 be the maximum
number of corruptions. A has input (xo, x1), and B has input b e{0, 1}.

Protocol:

1. If t = n/2, then invoke Protocol 5 and halt.

2. Otherwise, run a combined protocol H*(11 3 ,..., 1n), where

•For each i > 3, Hl denotes the recursive invocation of this protocol on the n - 1 parties
excluding party Pi with the induced sub-network G \ {Pi} and t' = t - 1 corruptions.

of the sub-graphs contain at most t - 1 corrupt parties. In either case, for a majority of

subgraphs, at most t - 1 of the parties are corrupt.

We first present and prove a structure lemma.

Lemma 3.8.2. Given graph G = (V, E) and a vertex i, let G be the induced graph on the

n-1 vertices V\{i}. If G is (n-t, A, B)-unsplittable, then Gi is also (n-t, A, B)-unsplittable.

Proof. We will prove the contrapositive. Suppose that Gi CA,B A 2 tn-1. This means there

exists a partition of the vertex set of Gi as V \{i} = VA u Vs u VB with no edges between

VA and VB, where A E VA, B E VB, VA B n - t and V 2t - n - 1. But then

we can partition the vertex set of G as V = VA U V' U VB, where V4 = Vs U {i}. We have

that IVAl = IBI = n - t and I jl = 2t - n, and there are no edges between VA and VB, so

GCA,B A_2 t-n which is a contradiction. E

Using the lemma, we now prove Theorem 3.8.1.

Proof of Theorem 3.8.1: The "only if" direction follows from the lower bound of Theorem

3.4.2, and the efficiency claim follows immediately from Theorem 3.6.3. We now prove the

"if" direction by induction on 2t - n. The base case of 2t -n = 0 follows from Theorem 3.6.1.

Now assume for induction that the statement holds for n' = n - 1, t' = t - 1 with t > n/2.

Let A be a t-threshold adversary which corrupts parties T, |TI < t. If {A, B} C T

then the uncorrupted parties receive no input, so the simulator can perfectly simulate the

99

uncorrupted parties. Consequently it suffices to consider the case {A, B}nT < 1. By Lemma

3.8.2, each sub-network G\{P} is (n'-t', A, B)-unsplittable. For each i > 3, let Ti = T \{P}

denote the corrupted parties in sub-network G orPi{. If PTI < t then |Ti < ITI < t' for all

i. Otherwise, |TI = t. In this case, since {A, B} n T < 1, it follows that at least t - 1 of

the n - 2 parties P3 ,..., P, are corrupted. Since t > n/2, this is a majority of the parties

P3, .. , Pn. For each corrupted party P, |Ti = t'. Consequently in each case we have that

a majority of the sets T3,..., Tn satisfy |Ti < t'. Therefore by our inductive assumption, a

majority of the protocols 113,... , n in step 2 are secure against A. By Lemma 3.5.6, we

have that the combined protocol f* is secure against A, so by induction, the theorem holds

for all n, t with t > n/2. l

As an immediate consequence, the condition described in Theorem 3.8.1 is both necessary

and sufficient in order to obtain a complete network of OT channels and perform secure

multiparty computation among all parties in the network.

Corollary 3.8.3. Let G be an n-party network. For t > n/2, we can t-securely generate OT

correlations between all pairs of parties (thus, completing the OT network) if and only if the

G is (n - t)-unsplittable.

Proof. If G is (n - t)-unsplittable, then for all pairs of vertices A, B, G is (n - t, A, B)-

unsplittable and hence from Theorem 3.8.1, we can generate OT correlations between A and

B. Conversely, if G C At, then choosing vertics A E VA and B E VB, we have that

GCA,B ALI, and hence Theorem 3.8.1 rules out the existence of such a protocol. Hence,

there exist a pair of vertices between whom we cannot t-securely generate OT correlations.

This completes the proof.

3.8.2 General Protocol (Efficient for t = n - 0(1))

We now describe another t-secure OT protocol for all networks G with A as the sender and

B as the receiver whenever the network G is (n - t, A, B)-unsplittable. This protocol uses,

100

Protocol 8: General protocol II

Preliminaries: Let P = A, P2 = B, P3,..., P, be the n parties in a network G = (V, E). A has input
(xo, xi), and B has input b e {0,1}. Let k = n - t.

Protocol:

1. Invoke Protocol 6 with t' = n - 2 on the n'-node network G' with inputs (xo, x1) and b, where
n (-2) + 2, and

• S_ is the set of subsets of {P3,. . ., Pn} of size k - 1.

*The n' vertices of G' correspond to A, B, and the (-)subsetsofS .
•The edges of G' are defined as follows. Two subsets X, Y C Sk_1 will have an edge if either

X n Y # 0 or there exists a pair of parties Pi E X and Pj E Y with {P, P} E E.

*Invocation of OT over an edge {X, Y} in G' with inputs (zo, zi) and c is performed as
follows.

- If X n Y # 0, then choose some party Pi c X n Y. Pi E X and hence knows (zo, zi);
similarly, Pi C Y and knows c. Consequently Pi knows zc, and sends it to the other
members of set Y.

- If X n Y = 0, there is a pair of parties Pi e X, P c Y such that {Pi, P} E E. P
knows (zo, zi) and Pj knows c, so they can invoke OT over the channel (Pi, Pj) in G,
and P, can then send the value ze to the other members of set Y.

in spirit, a reduction in the opposite sense than the one described in Section 3.8.1. The

protocol is efficient whenever t = n - 0(1).

Theorem 3.8.4. Let G be an n-party OT network containing parties A and B, and let

t > n/2. Protocol 8 is a t-secure OTprotocol between A and B if and only if G is (n-t, A, B)-

unsplittable. The protocol is efficient for t = n - 0(1).

The idea behind this protocol is the following. We increase the size of the network in

order to obtain a large number N of well-connected additional simulated parties such that

at least one them is guaranteed to be honest. We may assume that at least one of A and

B is honest, as otherwise there is nothing to prove. Consequently there are at least two

honest parties in the augmented network. We will now apply the protocol from Section 3.7.

It remains to describe the construction of these simulated parties, to show that at least

one of them is honest, and to prove a structural lemma that if the original network G is

(n - t, A, B)-unsplittable then the augmented network G' is (2, A, B)-unsplittable.

101

Proof Intuition (Theorem 3.8.4): We first describe the new network generated by Protocol

8. The parties other than A and B in the newly constructed network consist of all subsets

of size n - t - 1 of the parties in G containing neither A nor B. Lemma 3.8.5 below shows

that this new network G' is (2, A, B)-unsplittable whenever G is (n - t, A, B)-unsplittable,

where the edges of G' are as described in Protocol 8. A party X in G' will be considered

honest if all constituent parties Pi E X from G are honest. Since one of A and B is honest

and at most t parties are corrupt, at least n - t parties are honest and in particular, at

least n - t - 1 of the parties other than A and B must be honest. This means that one of

the subsets is completely honest. Since A or B is also honest, G' is guaranteed to have at

least two honest parties. Combining these facts and invoking Theorem 3.7.1 completes the

argument.

We will use the following structural lemma about the network G' constructed in Protocol 8.

Lemma 3.8.5. If G is (n - t, A, B)-unsplittable, then G' is a (2, A, B)-unsplittable network

onn'= (") + 2 vertices, where G' is the network produced in Protocol 8.

Proof. We prove the contrapositive. Assume that G' A,B A-2. Letk= n- t, andfor

i E N, let Si denote the set of subsets of V \ {A, B} = {P3 ,. . . , Pn} of size i. Then there

exist vertices X,Y E Sk-1 such that there are no edges in G' between any of the parties in

{A, X} and any of the parties in {B, Y}. In particular, X n Y = 0, since otherwise {X, Y}

would be an edge of G'. This implies that we have 2k = 2(n - t) parties {A, B} U X U Y

such that there are no edges in G from the n - t parties {A} U X to any of the n - t parties

{B} U Y. By definition, this means that G CAB ABA-,t, which is a contradiction. Ol

Using this lemma, we will now prove the correctness of Protocol 8.

Proof of Theorem 3.8.4. As before, we only need to prove the "if" part. Let A be a t-

threshold adversary which corrupts parties T, TI < t. If A and B are both corrupt, then

the honest parties have no input, so the simulator S can perfectly simulate the uncorrupted

parties. If A and B are both honest, then S chooses arbitrary inputs xo, xi, b and runs

102

the protocol. Since the only steps which depend at all on the inputs are on point-to-point

channels between A and B, the view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that at most t -1 of the parties P3,-. -, P,, are corrupt and that either

A or B is honest. In particular, for k = n - t, there are at least k - 1 uncorrupted parties

among P3 ,... , P. Consequently, Sk-1 contains some set X consisting only of honest parties.

We treat a party X in G' as honest if all constituent parties Pi c X are honest. Since A and

B are not both corrupt, we have that G' contains at least two honest parties. By Lemma

3.8.5, G' is (2, A, B)-unsplittable. Consequently by Theorem 3.7.1 there is a simulator S'

which simulates the roles of the honest parties in the invocation of Protocol 6 on G' in step

1. We define a simulator S for Protocol 8 which behaves exactly as an honest party for

communication within each party X ESk-1 and invokes S' for any communication between

parties in G'. The behavior of this protocol is identical to the behavior of S'. Hence, by the

correctness of simulator S', we have that the view of the adversary is identical in the real

and ideal worlds.

3.9 Bounding the number of edges in ~ -unsplittable

graphs.

In this section we discuss the minimum number of edges in a graph which is (n - t)-

unsplittable for t = [(n + 1)/2]. We show that the minimum edge count is n/2 if n is

even and t = n/2, and (n + 3)/2 if n is odd and t = (n + 1)/2. These bounds give the

minimum number of OT channels required to obtain t-secure MPC among n parties in a

network for t = [(n+1)/2]. They constitute the first nontrivial cases, since no OT channels

are needed in the case of an honest majority.

Theorem 3.9.1. Let n be even and t = n/2. Then any (n - t)-unsplittable graph must

contain at least t edges. This bound is tight.

Proof. To show that the bound is tight, note that the t-claw graph (Figure 3-4a) (or any

graph with a tree on t +1 vertices and no other edges) has t edges and contains a connected

103

component consisting of t + 1 = n/2 + 1 vertices, so it is (n/2)-unsplittable. We now show

that every graph with fewer edges can be split.

Let G be a graph containing t - 1 edges. Let m be the number of connected components

of G, let C1, C2 , . , Cmbe the components in nonincreasing order of size, and let ai = |Ci1,

sothatai> a2 ->a ai = n. G is (n - t)-splittable if and only if there is

some subset I C [n] such that Eijr ai = n/2, that is, some subset of the values aj sum to

n/2.

For all natural numbers x, let ax = i i > x}| denote the number of connected

components with size at least x, and let bx =f{v : v E Ci \ a < x}| denote the number

of vertices in connected components with size smaller than x. Note that ax counts the

components of certain sizes, while bx counts the vertices contained in components of certain

sizes. Since a component of size s must contain at least s - 1 edges, for any x > 1 we have

that ax < (t - 1)/(x - 1) < n/(2x - 2). In particular, we have that a2 < n/2, a3 < n/4, and

a4 < n/6.

Since G has at most n/2 --1 edges, at least two vertices have degree zero, soa a2 = 1.

Consequently b2 > 2. A set of c components containing at most t - 1 edges can include at

most c + t - 1 vertices. Consequently, for any x > 1, we have that

n
b > n - (ax + t - 1) = - + 1 - ax.

2

In particular, we have that b 3 > + 1 and b4 > 1.

Since a ;> a 2 > a3 , the third largest component has size a3 < n/3. There are only

n/2 - 1 edges, so ai < n/2 for all i.

Consider the following greedy algorithm. Initially let S2 = C2 . For i from 3 to n, if

|S,_1 U Ci I n/2 then setS 2= S Si_ U Ci, and otherwise set Si = Si_1. We show that at the

end of this loop, the set Sm will always have size n/2.

Since |Cml < n/2, the sum of the sizes of the other components is at least n/2, so if

|Sj+1 U Cil < n/2 for every i considered in the loop then the loop must terminate with

|Si = n/2. Otherwise there is some i such that i_1 U Cil > n/2. Choose the last iteration

104

i for which this is true. Since i > 3, we must have that a as n/3. If ai > 3, then since

n/2 - Sl < ai - 1 < n/3 - 1 and b4 > +1, we reach a contradiction with the assumption

that i is the last such iteration, since there are enough vertices in components Cgi,. . ., Cm to

make some subsequent |S_1 Cj| > n/2. Otherwise ai < 3, so since n/2 -|Sl ai -1 < 2,

so since b2 > 2, we must have that |Sml = n/2.

Consequently at the end of the loop we always have that |Sml = n/2. Since Sm consists

only of entire connected components, Sm consists of n/2 vertices with no edges to the rest

of the graph, so G C A' cannot be (n/2)-unsplittable. l

Theorem 3.9.2. Let n be odd and t = (n+1)/2. Then any (n - t)-unsplittable graph must

contain at least t + 1 edges. This bound is tight.

Proof. To show that the bound is tight, note that the (t+1)-edge graph consisting of a cycle

on t + 1 vertices is (n - t)-unsplittable, since removing any vertex still leaves a connected

component of size t - 1. We now show that every graph with fewer edges can be split.

Let G = (V, E) be a graph containing |El = t edges. If the maximum degree is 1, then

G contains at most n/2 < t edges, a contradiction. Let v be a vertex of maximal degree

> 2. The induced subgraph on vertex set V \ {v} contains n - 1 vertices and at most

t - 2 < (n - 1)/2 edges. By Theorem 3.9.1 it cannot be ((n - 1)/2)-unsplittable, so G cannot

be ((n - 1)/2)-unsplittable either. L

105

0

106

Chapter 4

Repudiability and claimability of ring

signatures

This chapter is based on joint work with Sunoo Park [PS19].

4.1 Introduction

Ring signatures, introduced by [RSTO1, are a variant of digital signatures which certify that

one among a particular set of parties has signed a particular message, without revealing which

specific party is the signer. This set is called a "ring." Ring signatures can be useful, for

example, to certify that certain leaked information comes from a privileged set of government

or company officials without revealing the identity of the whistleblower, to issue important

orders or directives without setting up the signer to be a scapegoat for repercussions, 1 or to

enable untraceable transactions in cryptocurrencies (as in Monero [Mon]).

In a ring signature scheme, just as in a traditional digital signature scheme, any party

can create a key pair for signing and verification, and publish the verification key. Signers

can produce signatures that verify with respect to any set of verification keys that includes

'When it comes to national security issues, for instance, there may be some reluctance among law-makers
to "roll back" existing laws or reduce checking or surveillance measures, which could be due in part to the
risk of ending up a scapegoat upon any future national security incident like a terrorist attack.

107

their own, and unforgeability guarantees that no party can produce a valid signature with

respect to a set of verification keys without possessing a corresponding secret key.

But what guarantee does a ring signature scheme provide if a purported signatory wishes

to denounce a signed message-or alternatively, if a signatory wishes to later come forward

and claim ownership of a signature? Given the motivation of anonymity behind the notion

of a ring signature, a natural first intuition might be that parties should be able neither to

denounce nor to claim a signature in a convincing way. However, depending on the threat

model, we believe that the opposite guarantees-that is, to guarantee the ability to denounce

or claim signatures-may be useful too, as elaborated below. Furthermore, whatever one's

preference, a guarantee one way or the other seems more desirable than no guarantee either

way.

Prior security definitions for ring signatures do not conclusively provide these guarantees

one way or the other. That is, a non-signer might be able to repudiate a signature that he

did not produce ("repudiability"), or this might be impossible ("unrepudiability"). Similarly,

a signer might be able to later convincingly claim that a signature he produced is indeed his

own ("claimability"), or be unable to do so ("unclaimability").

The most detailed taxonomy of security definitions for ring signatures was given by

[BKM09], which presents a series of anonymity guarantees of increasing strength. A natural

anonymity guarantee defined by [BKM09], called "anonymity against adversarially chosen

keys," is informally described as follows: an adversary who controls all but t > 2 parties in

a ring, and who may produce his own malformed key pairs as well as corrupt honest parties'

keys, must have negligible advantage at guessing which of the t honest parties produced a

given signature. This anonymity definition might allow a party to ascertain whether a given

signature was produced by her own signing key, and perhaps also to convince others of this

fact-but it does not guarantee or prohibit either of these capabilities.

On the other hand, the strongest of the anonymity definitions of [BKM09] (called

"anonymity against full key exposure") requires that even if an adversary compromises every

single party in a ring, the adversary cannot identify the signers of past signatures. It is

108

relatively straightforward to see that under such a strong anonymity guarantee, Alice would

have no way to convince anyone that she did not produce the objectionable message; indeed,

she herself cannot tell the difference between a signature produced using her own signing

key and one produced using someone else's.

The ability to identify whether one's own signing key was used to produce a particular

signature can be a feature or a bug. To protect anonymity of past signatures against a very

strong adversary who might compromise all the secret keys in a ring, it seems desirable to

prevent distinguishing one's own signatures from those generated by someone else. On the

other hand, without the ability to distinguish, it would be virtually impossible to tell if

someone had stolen your signing key. Moreover, as discussed below, it could be beneficial

in certain circumstances for members of a ring to have the ability to disown signatures of

messages that they have strong reasons to denounce; and conversely, in some circumstances

the signer of a message might later wish to prove to the world that he was the one who

produced a particular signature in the past.

We have now identified four potentially useful notions for ring signatures: repudiability,

unrepudiability, claimability, and unclaimability. The main contributions in this paper con-

sist both of new definitions and constructions of each of these notions. Before diving into

an overview of definition and constructions, we provide some discussion of why each of these

notions-some of which directly oppose each other-may be meaningful and desirable: the

following scenarios explore a few of the circumstances in which various of the above guaran-

tees might be appropriate. Though some of the scenarios are phrased somewhat whimsically,

we believe that each scenario illustrates a meaningful threat model motivating the definition

concerned.

Scenario 1 (Repudiability) Let us consider a hypothetical tale, wherein two candidates

Alice and Bob are running for president in the land of Oz. Oz is notorious for its petty par-

tisan politics and its tendency to prefer whomever appears friendlier in a series of nationally

televised grinning contests between the main-party candidates. At the peak of election sea-

son, a disgruntled citizen Eve decides to help out her preferred candidate Bob by publishing

109

the following message, which goes viral on the social networks of Bob supporters:

I created a notorious terrorist group and laundered lots of money!

Signed: Alice or Eve or Alice's campaign chairman.

Of course, the virally publicized message does not actually incriminate Alice at all, since

any one of the signatories could have produced it. However, perhaps there is nothing that

Alice can do to allay the doubt in the minds of her suspicious detractors. As mentioned

above, ring signatures are deliberately designed to allow anyone to attach anyone else's

name to a signature, without the latter's knowledge or consent. Despite this, there could

be realistic situations in which non-signing members of a ring associated with a particular

message could suffer serious consequences through no fault of their own, perhaps due to the

real signer adversarially trying to damage their reputation. In light of this, perhaps it would

be desirable in some contexts for the owner of a verification key to be able to denounce

messages, e.g., to clear her name of a crime or hate speech accusation that might otherwise

impact her life in terms of reputation, job prospects, or incarceration.

Scenario 2 (Claimability) Our next story concerns a talented brewery employee who

developed new statistical techniques to test the quality of beers. Naturally, his employer was

protective of its competitive advantage since other breweries at the time may not have been

using similar statistical methods. Yet, in the interest of science, they allowed him to publish

his results-on condition of anonymity. 2 A credible way to prove authorship at a later date,

after the need for anonymity has ceased to exist, might be very useful-especially in case

of competing claims by impostors. As we see here, claiming authorship of an anonymous

work may become appropriate after a passage of time. The next example illustrates quite a

different type of situation in which claimability at the signer's discretion may be valuable.

Consider an employee Emily who is concerned about unethical practices at her company,

and takes it upon herself to expose what is going on and publish a critical commentary.

2 This is the true story of William Sealy Gosset's invention of the Student's t-test at Guinness Brewery
in 1908 [ManO0].

110

Concerned about her job security and possible retribution, as well as the credibility of her

allegations, she maintains her anonymity using ring signatures. It emerges, in fact, that

similar practices are prevalent across the industry: related revelations drive a wider move-

ment of reform. Some time later, after her company has substantially reformed its practices

and her fears of retribution have been allayed-perhaps by her promotion, or by a change

in leadership-Emily seeks to reveal her identity and add her voice to the growing move-

ment, providing her solidarity, legitimation, and follow-up story. In addition, if following

the reforms, those involved in the earlier unethical practices were subject to stigma or even

prosecution, claimability of her earlier ring signatures would allow Emily to exculpate herself.

Scenario 3 (Unrepudiability and unclaimability) Let us return to the government

of the fictional country of Oz. The parliament of Oz is mired in partisan gridlock, with

legislators from each party ruthlessly voting down any bills, however reasonable, proposed

by members of the opposing party-preventing any laws at all from being enacted and

effectively shutting down the government, which is in no party's interest. Suppose that

instead of directly proposing a new law, a legislator of Oz anonymously publishes the text

of the proposed bill using a ring signature scheme:

Proposed: that free ice cream shall be provided every Tuesday.3

Signed: a member of the Parliament of Oz.

If the signer used an unclaimable ring signature scheme, then she could not decide to reveal

her identity upon a later change of heart, allowing legislators of both parties to support or

oppose the bill on its merits without worrying about purely political considerations.

Unclaimability and unrepudiability may be particularly useful guarantees in scenarios

where the placement of whole groups of people under duress is a substantial concern. For

instance, in circumstances where an employer or authoritarian government may coercively

compel individuals to provide a repudiation or proof of authorship (e.g. signing randomness)

3 Even if each party might support this legislation, they may be unwilling to do so if it were proposed by
the other party, decrying their respective opponents as either fiscally irresponsible or in the pocket of Big
Ice Cream.

111

for a signature, the provable inability to do so convincingly may be essential. Unrepudiability

may also be desirable in situations in which members of a ring are likely to have conflicting

individual incentives but there is a possibility of collective benefit in case of cooperation, as

in a prisoner's dilemma scenario.

Summary of technical contributions. We formalize repudiability, unrepudiability,

claimability, and unclaimability of ring signatures, as well as strengthened anonymity and

unforgeability definitions which are compatible with each of these notions. We show that

unclaimability implies unrepudiability (intuitively, because a failed repudiation can be used

as a claim). Anonymity against adversarially chosen keys is the strongest anonymity notion

compatible with repudiability and claimability, and anonymity against full key exposure is

implied by unclaimability and equivalent to unrepudiability.

We provide three constructions based on different assumptions, one for each of the three

notions of repudiability, claimability, and unclaimability. Perhaps the most surprising of

these is unclaimability, which guarantees that the signer cannot later credibly convince others

that she produced a particular signature. A natural first intuition is that meaningful notions

of unclaimability might be impossible to achieve, since a signer can always remember the

signing randomness (and later present it as "proof" of having produced a signature). The key

insight for our definition and construction of unclaimable ring signatures is that the signing

randomness does not constitute a convincing claim if anyone in the ring can also produce

credible signing randomness for any signature in which they are implicated. Our construction

of unclaimable ring signatures is an augmentation of the lattice-based ring signature scheme

of [BK1O] that adds additional algorithms allowing anyone in the ring to generate credible

signing randomness; this capability is achieved via lattice trapdoors.

Our construction of repudiable ring signatures is based on verifiable random functions

(VRFs), which are implied by either the (strong) RSA assumption, assumptions on bilinear

maps, or NIWIs and commitments; see [Bit17, GHKW17] and references therein for more

detailed discussion of the assumptions that imply VRFs.4 Our construction does not use
4 Note that the ring signature construction of [BKM09] assumes the closely related assumption of NIZKs,

112

standard ring signatures as a building block, and as such can also be viewed as a new

construction of standard ring signatures. Our construction of claimable ring signatures, on

the other hand, is a simple and generic black-box transformation from any standard ring

signature scheme to a claimable one. We overview our contributions in more detail below.

4.1.1 Definitional contributions

Repudiability. We define a repudiable ring signature scheme as a ring signature scheme

that is equipped with additional algorithms Repudiate and VerRepud as follows. Repudiate

takes as input a signing key sk, a ring signature o, and a "ring" R (i.e., a set of verification

keys), and outputs a repudiation (. VerRepud takes as input a ring R, a signature o, a

repudiation (, and a verification key vk, and outputs a a single bit indicating whether or not

is a valid repudiation attesting that o was not produced by vk. The two requirements for

a ring signature scheme to be repudiable are, informally, as follows.

1. Correctness: Any member of a ring must be able to produce valid repudiations of any

signature that he did not produce.

2. Soundness: A cheating signer must not be able to produce a valid signature with

respect to a ring, and also be able to produce valid repudiations of that signature

under every verification key in that ring that he owns.

Once a ring signature scheme is equipped with these additional repudiation algorithms,

the standard definitions of unforgeability and anonymity against adversarially chosen keys

are insufficient to capture the natural guarantees that would be desired for a repudiable ring

signature scheme: we need the release of repudiations not to compromise the unforgeability or

anonymity of any future signatures. Accordingly, we modify the definitions of unforgeability

and anonymity for repudiable ring signatures (Definitions 4.3.4 and 4.3.5), by additionally

giving the adversary access to a repudiation oracle. This ensures that repudiations of past

which are implied by VRFs and also imply VRFs if the NIZK is subexponentially hard under a standard
derandomization assumption; see [Bit17] for details.

113

signatures do not affect the security guarantees of future signatures. See Section 4.3.1 for

formal definitions of repudiability.

Claimability. We define a claimable ring signature scheme as a ring signature scheme

equipped with additional algorithms Claim and VerClaim as follows. Claim takes as input

a signing key sk, a signature o-, and a ring R, and outputs a claim (. VerClaim takes a

input a ring R, a verification key vk, a signature a, and a claim C, and outputs a single bit

indicating whether or not (is a valid claim attesting that o was produced by vk. The three

requirements for a claimable ring signature scheme are, informally, as follows.

1. Correctness: Any honest signer must be able to produce a valid claim with respect to

any signature that he produced.

2. Soundness: No adversary can produce a valid claim with respect to a signature pro-

duced by an honest signer, even if the adversary can choose the message and ring with

respect to which the signature is produced, and can insert malformed verification keys

into the ring.

3. No framing: No adversary can produce a signature together with a valid claim of that

signature on behalf of an honest (non-signing) party.

As above, once a ring signature scheme is equipped with these additional claiming algo-

rithms, the standard definitions of unforgeability and anonymity against adversarially chosen

keys are insufficient. We modify the definitions of anonymity and unforgeability for claimable

ring signatures (Definitions 4.3.10 and 4.3.11), by additionally giving the adversary access

to a claim oracle. See Section 4.3.3 for formal definitions of repudiability.

Repudiability and claimability are compatible, i.e., a ring signature scheme can be both

repudiable and claimable. Indeed, our repudiable and claimable constructions together give

rise to such a scheme. Notably, the unforgeability and anonymity definitions corresponding

to the natural notion of a repudiable-and-claimable ring signature scheme are not the con-

junction of unforgeability and anonymity for repudiable ring signatures and for claimable

114

ring signatures. Rather, the unforgeability and anonymity definitions for a repudiable-and-

claimable ring signature scheme involve a stronger adversary which is simultaneously given

access to both a repudiation oracle and a claim oracle. See Section 4.3.5 for further discussion

on repudiable-and-claimable schemes.

Unclaimability We also introduce unclaimable ring signature schemes, in which the signer

provably cannot convincingly claim that she was the one who produced the signature. As

briefly mentioned above, while the signer can always save the signing randomness and reveal

it along with her secret key in an attempt to claim authorship of a signature, it is not always

true that this constitutes a convincing claim. In particular, such a claim is not credible if any

member of the ring can take a valid signature and produce fake randomness that produces

the desired signature using her own signing key.

The idea that a non-signer can adaptively produce fake randomness is reminiscent of

deniable encryption [CDNO97], in which an encryptor and/or recipient is required to produce

fake randomness "explaining" that a particular ciphertext is an encryption of an adversarially

chosen message.

We define an unclaimable ring signature scheme to capture just this requirement: that

is, any member of the ring must be able to produce fake signing randomness for a signature

that is distributed indistinguishably from real signing randomness. Intuitively, the only

information potentially possessed by a signer but not by the other members of the ring

is the signing randomness, so non-signers that can generate convincing simulated signing

randomness can also convincingly simulate any additional information that might be released

by the signer in an attempt to claim the signature. We consider a strong flavor of this

definition in which the indistinguishability property, described informally below, is statistical.

1. Indistinguishability: Any member of a ring must be able to produce fake signing ran-

domness given a signature. The signature and fake signing randomness must be dis-

tributed statistically close to an honestly generated signature and corresponding signing

randomness used by that individual to sign the same message, even given all verification

keys and signing keys.

115

We formally define unclaimability in Section 4.3.4.

Remark 1. Even under this definition, if the signer chooses a message to sign that corresponds

to a secret known only to herself, then she may still be able to convince others that she was

the signer. For instance, if the signed message is the output of a one-way function, she may

be able to convince others that she was the signer by subsequently revealing the preimage.

Even more flagrantly, the signed message could contain a signature using a standard (non-

ring) signature scheme, directly identifying the signer. This property is rather inherent: if

knowledge of the contents of the message itself at the time of signing are enough to identify

the signer, then no security property on the signature scheme can enforce that the signer

remains hidden, since the identification of the signer is unrelated to the signature and based

only on the signed message.

Indeed, ring signatures were not designed to provide anonymity for signers who want to

identify themselves, but rather for those who desire anonymity. Similarly, our unclaimability

definition does not guarantee unclaimability for those who want to identify themselves, but

rather provides credibility for a signer who wants to later be able to claim (e.g., under duress)

that she could not convincingly claim the signature even if she wanted to. In particular, even

an adversary with unlimited computational power who obtains the secret keys belonging to

every member of the ring and a purported signing randomness from an alleged signer, he

still will not be convinced of the identity of the signer, since fake signing randomness from

the right distribution can be produced for every member of the ring.

Unrepudiability Unclaimability intuitively guarantees that no member of the ring can

convincingly prove that she was the signer. A related, weaker notion that might be desirable

in some circumstances is that of unrepudiability, which guarantees that no member of the

ring can convincingly prove that she was not the signer. Unrepudiability is equivalent to

anonymity against full key exposure and is implied by unclaimability.

116

Repudiable VRF (Section 4.4)
RS anonymous against
FKE (Section 4.3.2)

Claimable Transformation from
any RS (Section 4.5)

UJnclimable~ SIS (Section46)_ _ __I________________I_ _(Section__4_6.

Figure 4-1: Summary of our results and assumptions relied on. VRF = verifiable random
function, RS = ring signature, FKE = full key exposure, SIS = short integer solution problem.

4.1.2 Overview of our constructions

Our repudiable construction Our construction relies on ZAPs (two-round public-coin

witness-indistinguishable proofs) and verifiable random functions (VRFs) as building blocks.5

Our building blocks have some overlap with those of the ring signature construction of

[BKM09], which uses ZAPs, public-key encryption (PKE), and a digital signature scheme.

Both our scheme and theirs use ZAPs to achieve anonymity of the ring signatures, but with

different approaches: the statements proven by the ZAPs are quite unrelated in the two

constructions. Moreover, in our scheme, we do not need PKE or signature schemes, and

instead use VRFs directly to achieve unforgeability and repudiability. The structure of our

construction is thus very different from that of [BKM09].

At a very high level, each signing key in our construction contains a tuple of four VRF

keys. A signature consists of the output of each of the signer's VRFs on the message, along

with a ZAP proof that (several of) the VRF values in the signature are correct w.r.t. the

VRF verification key of some member of the ring. A repudiation for individual i consists

of a ZAP proof that some of the VRF values in the signature are different from the correct

values for party i's VRFs evaluated at the message. One complication arises because we

must guarantee that the release of a repudiation for individual i on a message does not

subsequently allow a different member of the ring to produce a signature on the message

that cannot be repudiated by individual i. We overcome this difficulty by relying on the

witness indistinguishability property of the ZAP and ensuring that the repudiation does not

5VRFs imply ZAPs, so it suffices to assume VRFs. [G092, DN07b]

117

C laimable nelaimable

epudiabl Unrepudiable

reveal the actual VRF outputs of the repudiator; that is, the ZAP proof is produced with

the VRF proof as a witness. The specific statement proven by the ZAPs is that some specific

combination of at least two of the purported VRF outputs is correct. Although in the honest

usage of the scheme, all four are produced correctly, we design the specific structure of the

statements proved in order to allow a hybrid argument to argue indistinguishability between

signatures of different signers in a ring. This scheme of proving the correctness of VRF

outputs turns out also to imply unforgeability, not only repudiability, so we do not need to

rely on any underlying signature scheme as building block. (In other words, our scheme can

also be seen as a new construction of standard ring signatures based on VRFs.)

Our claimable construction We give a generic transformation from any standard ring

signature scheme RS to a claimable one. The transformation uses commitment schemes,

standard signatures, and PRFs (which are all achievable from one-way functions). The basic

idea is to take a signature JRS under RS and append to it a commitment c to (vk,RS)where

vk is the verification key of the signer. The verification algorithm simply checks whether

URS verifies. The claim consists of a decommitment revealing that c is a commitment to

(vk,URS). Intuitively, by the hiding property of the commitment scheme, the identity of the

signer is hidden until he chooses to publish a claim.

The simple transformation just described runs into a couple of problems when examined

in detail. First, what if a signer commits to (URS, vk') where vk' is not his own key but that

of someone else in the ring? This ability would violate equation (4.6) of Definition 4.3.9

(claimability). To prevent such behavior,~our construction actually commits to a standard

(non-ring) signature on (vk, JRS). The unforgeability property of standard signatures then

guarantees, intuitively, that a signer cannot convincingly make a claim with respect to any

verification key unless he knows a corresponding signing key.

A second issue encountered by the scheme thus far described is that the signer must

remember the commitment randomness in order to produce a claim. It is preferable that the

signer not be stateful between signing and claiming; indeed, Definition 4.3.9 requires this.

To resolve this, our construction derives commitment randomness from a PRF. For similar

118

reasons, the signing randomness for the standard (non-ring) signature in our construction is

also derived from a PRF.

Remark 2. Among the constructions presented in this paper, claimability is by far the sim-

plest. Moreover, as a generic transformation, it has the advantage of adding minimal effi-

ciency overhead to the existing state of the art in ring signatures. The simplicity of achieving

claimability is perhaps unsurprising in light of the natural intuition that claiming should be

possible simply by remembering the signing randomness. As evidenced by unclaimability,

this intuition is not strictly true in general, as in certain schemes, producing signing random-

ness may not prove authorship. In a nutshell, our generic transformation ensures that signing

randomness is indeed a convincing proof of authorship in the resulting scheme, and more-

over builds into the scheme a simple method of efficiently recovering the signing randomness

without storing it explicitly.

Our unclaimable construction Our construction of unclaimable ring signatures is an

extension of the SIS-based ring signature scheme of Brakerski and Kalai [BK10]. The con-

struction is based on trapdoor sampling. In this overview, we describe a simplified version

of the scheme. The full scheme is described in Section 4.6. The basic idea for obtaining un-

claimability is that each identity corresponds to a public matrix A, C Zm, sampled together

with a secret trapdoor Ti. A signature will consist of short vectors xi E Z' such that

where y is a target value. For this overview, we can think of y as the output of a random

oracle on the message; in the actual construction, y will be obtained as the sum of additional

matrix-vector products. In order to sign the message, signer i first samples short vectors xj

for each j f i. Then, using the lattice trapdoor Ti, he samples a short vector xi such that

the equation

xi = y - E Ajxj

isi

is satisfied. The signature is the list of vectorsoa (xi). Using properties of lattice trapdoors,

119

it follows that the distribution over (xi)i can be made statistically close no matter which

trapdoor was used to produce the signature. Moreover, given a vector x* to be produced,

we can sample random coins that will yield that vector under either the ordinary sampling

algorithm or the trapdoor sampling algorithm. Consequently, we obtain an algorithm that

can produce explanatory randomness for a signature under any identity in the ring.

Removing the random oracle to obtain ring signatures in the plain model (and un-

claimable ones) requires several complications. [BK1O] first describes a basic ring signature

scheme with weaker unforgeability properties, in which the target vector y is determined

using additional matrix-vector products for matrices that depend on the bits of the message.

They then amplify the security of the scheme through a sequence of transformations that

ultimately yield a scheme with full unforgeability. In Section 4.6, we first define an algo-

rithm for producing explanatory randomness for their basic scheme, and then describe how

to modify this algorithm for each modification of the basic scheme, ultimately yielding an

unclaimable ring signature scheme based on the SIS assumption.

Remark 3. The idea that a non-signer of a given signature can adaptively produce fake

signing randomness is reminiscent of deniable encryption [CDNO97], in which an encryptor

of a given ciphertext can adaptively produce fake randomness consistent with it being an

encryption of a different message. In this context, it may seem somewhat surprising that our

construction relies on a relatively standard assumption (SIS) while many natural definitions

of deniable encryption are not known to be achievable without heavier assumptions such as

indistinguishability obfuscation [SW14, CPP18]. A subtle difference that is significant here

is that a deniably encrypted message must still be recoverable by the honest decryptor, while

in the unclaimable ring signature setting, the signer's identity need not be recoverable by

anyone.

4.1.3 Other related work

Several constructions of ring signatures based on lattice assumptions have been proposed

(e.g., [BK1, MBB+13, BLO18]). The only other construction of ring signatures based on

120

1__11__._-9-,.,,.'- - , __f. , , VIM "FAROMW - __ - , - I'I"n"Mr _ , .. .,p -rmwm

ZAPs is [BKM09], to our knowledge. Numerous other ring signature constructions have been

proposed, mostly based on various assumptions on bilinear maps, many but not all of which

are in the random oracle model (e.g., [Ngu05, SS10, BCC+15]).

Two additional works in the lattice trapdoor literature bear mentioning: the seminal

[Ajt99], and the more recent [MP12]. The latter is more recent than [GPV08], whose trap-

doors our unclaimable construction relies on (this reliance is carried over from the [BK1OI

construction).

Ring signatures with additional guarantees Since the original proposal of ring signa-

tures by [RSTO1], various variant definitions have been proposed. For example, linkable ring

signatures [LWW4] allow identification of signatures that were produced by the same signer,

without compromising the anonymity of the signer within the ring. An enhancement to this

notion called designated linkability [LSW06] does not allow linkability by default, but instead

allows links to be revealed at will by a designated party. Another notion called traceable ring

signatures [FS07] considers a setting where signatures are generated with respect to "tags"

and each member may sign at most a single message (say, a vote) with respect to a particular

tag, or else his identity will be revealed. Accountable ring signatures [XY04, BCC+15] allow

a signer to assign the power to de-anonymize her signature to a specific publicly identified

party.

It may seem that some of these variants of ring signature schemes have properties that

would be useful for constructing claimable ring signatures as introduced in this paper. This

implication is unsurprising in the context of our results: all of the above types of ring

signature schemes in fact imply claimable ring signatures, since our construction of claimable

ring signatures is a generic transformation from any ring signature scheme. It is unclear if

leveraging the additional features of variant schemes would be more desirable than applying

our generic transformation, which has very low overhead and moreover can be applied to a

simpler, more efficient ring signature scheme that may lack these additional properties.

121

Group signatures Group signatures [CvH91] are a different type of signature that allow

signing w.r.t. a set of verification keys and provide anonymity of the signer within that set.

This concept differs most strikingly from ring signatures in that there is a central authority

that (1) sets up the group (i.e., set of signers) and issues keys to members of the group and

(2) has the power to revoke the anonymity of the signer of a signature. Notions such as

(un)linkability, described above, have been applied to the group signature setting as well.

Notably, there has also been proposed a notion of deniable group signatures [IEH+16], in

which the group manager may issue proofs that a particular group member did not sign a

particular signature. This bears a little resemblance to our notion of repudiability in ring

signatures; however, the presence of a central authority in the group signature setting means

these problems are technically rather disparate. [LNWX17] construct lattice-based deniable

group signatures; however, their technique for deniability is very different from ours, and

relies on zero-knowledge proofs of plaintext inequality for LWE ciphertexts, which do not

suffice in our setting.

4.2 Anonymity and unforgeability of ring signatures

This section overviews standard ring signature definitions: syntax, correctness, anonymity,

and unforgeability. We express the anonymity and unforgeability definitions differently from

prior work, as explained in their respective subsections. However, our definitions are equiv-

alent to the correspondingly named definitions from prior work. Throughout the paper, k

denotes the security parameter.

Definition 4.2.1 (Ring signature). A ring signature scheme is a triple of PPT algorithms

RS = (Gen, Sign, Verify), satisfying the three properties of correctness (Definition 4.2.2),

anonymity (Definitions 4.2.5-4.2.6), and unforgeability (Definition 4.2.8). The syntax of

Gen, Sign, and Verify follows.

• Gen(1k) takes k as input and outputs a verification key vk and a signing key sk.

• Sign(R, sk,m) takes as input a signing key sk, a message m, and a set of verification

122

keys R = {vk1,...,vkNj, and outputs a signature o-. The set R is also known as a

"ring."

•Verify(R, -, m) takes as input a set R of verification keys, a signature o, and a message

m, and outputs a single bit indicating whether or not a is a valid signature on m w.r.t.

R.

Where it may not be clear from context, we sometimes write RS.Gen, RS.Sign, RS.Verify to

denote the Gen,Sign,Verify algorithms belonging to RS.

Definition 4.2.2 (Correctness). A ring signature scheme RS = (Gen, Sign,Verify) satisfies

correctness if there is a negligible function E such that for any N = poly(k), any N key pairs

(vki, ski),.. . , (vkN, skN) <- Gen(1), any i E [N], and any message m,

Pr [Verify(R, Sign(R, ski, m), m) = 1] = 1 - E(k) , (4.1)

where R = {vk,..., vkN}. RS satisfies perfect correctness if (4.1) holds for E = 0.

Remark 4. Definition 4.2.2 considers only for honestly generated keys. One could also con-

sider a stronger requirement that verification be successful for honestly generated signatures

with respect to rings containing adversarial keys. Any scheme satisfying Definition 4.2.2 can

be transformed into one satisfying the stronger definition, by modifying original signature

algorithm Sign to a new algorithm Sign' that operates as follows. On input R, sk, m, for a

sufficiently large polynomial p:

1. o- <- Sign(R, sk, m)

2. bi, . . . , bp <- Verify (R, o, m)

3. if Vi E [p], bi = 1, output a; else, go back to step 1

4.2.1 Anonymity

Prior work, notably [RST01, BKM09], has presented a variety of anonymity definitions for

ring signatures. Two of the definitions from prior work are relevant to this paper: anonymity

123

against adversarially chosen keys, and anonymity against full key exposure.

This section presents a new, generalized anonymity definition which is parametrized by

oracle sets, and expresses the two relevant anonymity definitions as instantiations of the gen-

eralized definition. This generalized definition is useful to consolidate the existing definitions

and make clear their relationship to one another; it captures not only the two definitions

we rely on here, but also others from prior work. Moreover, the generalized definition will

be essential to concisely express the new anonymity definitions that we introduce in later

sections for anonymity of repudiable and claimable ring signature schemes (in Sections 4.3.1

and 4.3.3 respectively). In a nutshell, this is because the new definitions need to allow the

adversary access to additional oracles related to repudiation and/or claiming.

The generalized definition follows. It is parametrized by sets of oracles 01,02 and an

additional parameter a E {0, 1, 2} that limits the adversary's corruptions.

Definition 4.2.3 ((01,02, a)-anonymity). Let01,02 be sets of oracles, where each oracle

in the set is parametrized by a list of key-pairs. Define Corrk,,k),...,(vkN,SkN) totakeasinput

i G [N] and output wi <- Gen- 1 (vki, ski).6

A ring signature scheme RS = (Gen, Sign, Verify) satisfies (01, 02, a)-anonymity if for

any PPT adversary A and any polynomial N = poly(k), Pr[b' = b] in the above game is

negligibly close to 1/2. That is, formally, V PPT A = (A 1, A 2), N = poly(k), there is a

6 The function Gen 1 takes as input a verification key vk and signing key sk produced by Gen, and
produces the randomness used by Gen to produce this key pair. That is, it samples from the set {w :
Gen(1k; w) = (vk, sk)}. In practice we will only ever invoke Gen -1 on a key pair produced by Gen, so we
could invert efficiently by simply remembering the randomness used by Gen, but for the purposes of this
definition we will describe it as a sampling procedure. Upon the first invocation on an input i, Corr samples

+- Gen- (vki, ski), stores it, and outputs it. If Corr is queried twice on the same input i then it outputs
the same w that was previously stored.

124

negligible function E such that

(oki, ski), . . . , (okN, skN) <- Gen (1k)

((m*, i*, i*, R*), s) <- Ao1Corr (vkl,... , vkN)
1

Pr b -{O,1} b' = b A I{ig, i*}fnI <a <I +E(k),0 1 2
u- Sign (R* U {vki, vki , sk*, m*)

b'<- AO 2 ,Corr

(4.2)

where I is the set of queries to the corruption oracle; and the notation ACorr means that

for each oracle 0 in 0, A has oracle access to (vki, ski)...,(vkN,SkN) andAalsohasoracle

access to Corr(vak,ski).(vkN,SkN)'

Definitions 4.2.5 and 4.2.6 are instantiations of Definition 4.2.3. They are equivalent to

the correspondingly named definitions in [BKM09].

Definition 4.2.4 (Signing oracle OSign). For a ring signature scheme RS, the oracle

OSign(vk1 ,Sk1),.,(vkN,skN) isdefinedtotakeasinputiGn],amessagem,andasetR,and

output RS.Sign(R U {vk }, ski,im). When the oracle is invoked with respect to a single key

pair (i.e., OSignvk,sk)), we treat the oracle as taking only two inputs, m and R, since i is

superfluous in this case.

Definition 4.2.5 (Anonymity against adversarially chosen keys). A ring signature scheme

RS = (Gen, Sign, Verify) satisfies anonymity against adversarially chosen keys if it is

({OSign},0,0)-anonymous. Moreover, RS satisfies adaptive anonymity against adversar-

ially chosen keys if it is ({OSign},{OSign}, 0)-anonymous.

Definition 4.2.5 captures the guarantee that as long as there are at least two honest

parties in a ring (represented by i, i*), even if all other parties in the ring are corrupted by

an adversary, the adversary cannot tell which of the honest parties produced a signature.

One can also consider an even stronger definition where the adversary may corrupt all but

one or even all of the parties in the ring, as in Definition 4.2.6.

125

Definition 4.2.6 (Anonymity against full key exposure). A ring signature scheme RS =

(Gen, Sign, Verify) satisfies anonymity against full key exposure if it is ({OSign},0,2)-

anonymous.

Remark 5. Adaptive variants of anonymity were not given or discussed in prior work. ' In

this paper, we refer primarily to adaptive anonymity against adversarially chosen keys: this

is the strongest notion compatible with repudiability and claimability. To see this, observe

that knowledge of a single one (say, ski.) of the two challenge secret keys is sufficient to

violate anonymity in a repudiable or claimable scheme, since the challenge signature a was

producedby skiifandonlyifrepudiating(resp. claiming) o- using ski. yields an invalid

repudiation (resp. valid claim).

Definition 4.2.6 does not include an adaptive version because adaptivity does not give

the adversary any additional power when he can corrupt all the keys. 8

4.2.2 Unforgeability

The first unforgeability definition that follows is parametrized by an oracle set, taking a

similar approach to our anonymity definitions above. In this section, we only give one in-

stantiation of the parametrized definition of unforgeability. We will give other instantiations

of Definition 4.2.7 later in the paper, in defining unforgeability for repudiable and claimable

ring signature schemes (in Sections 4.3.1 and 4.3.3 respectively).

Definition 4.2.7 (0-unforgeability). Let 0 be a set of oracles, where each oracle in the set

is parametrized by a list of key-pairs. A ring signature scheme RS = (Gen, Sign,Verify) is

0-unforgeable if for any PPT A and any N = poly(k), there is a negligible functionE such

7This notwithstanding, the prior constructions of [RST01, BKM09, BK10] all achieve adaptive anonymity.
The constructions of [RSTO1, BK10] achieve perfect/statistical anonymity, respectively - the former, in the
random oracle model - so adaptivity follows. The proof of anonymity of [BKM09] construction essentially
suffices to prove adaptive anonymity, though the argument was not made in that paper since there was no
adaptive definition of anonymity.

8An intermediate notion between Definitions 4.2.5 (which sets a = 0) and 4.2.6 (which sets a = 2) is
anonymity against attribution attacks, defined in [BKM09], which effectively sets a = 1. Adaptive anonymity
against attribution attacks is not equivalent to the non-adaptive variant of the same.

126

1Wq1WP___ I . -1 1-11- . - -11-1 11 -1 -1 '-1-11_-_-11 -- ___ , - "- , -, - '_ _ , . ,, , '

that

(vki, ski),..., (vkN, skN) *- Gen(1k)

Pr (R*, m*, -*)< AoOSign,Corr(vki ... , vkN) 1
A Q n { (., m*, R*)} = 0

b <- Verify(R*, o-*, m*)

where the notation AOOSignCorr is defined as in Definition 4.2.3, and I and Q are the sets of

queries made to the corruption and signing oracles respectively.

We refer to the event that the conditions on the right-hand side of the colon in the above

probability expression are met as a "successful forgery."

Definition 4.2.8 (Unforgeability of ring signatures). A ring signature scheme RS =

(Gen, Sign,Verify) is unforgeable if it is 0-unforgeable.'

4.3 New definitions for ring signatures: (un)repudiability

and (un)claimability

4.3.1 Repudiable ring signatures

Repudiability addresses the question of whether or not members of a ring can prove that

they did not sign a particular message (when they in fact did not sign it).

Definition 4.3.1 (Repudiable ring signature). A repudiable ring signature scheme is a

ring signature scheme with an additional pair of algorithms (Repudiate,VerRepud), satis-

fying the four properties of correctness (Definition 4.2.2), repudiability (Definition 4.3.3),

anonymity (Definition 4.3.4), and unforgeability (Definition 4.3.5). The syntax of Repudiate

and VerRepud follows.

•Repudiate(R, sk,o-) takes as input a signing key sk, a ring signature o-, and a set of

verification keys R = {vkI, ... ,vkN }, and outputs a repudiation .

9 This is the definition described as unforgeability with respect to insider corruption in [BKM09], and is
the strongest of the three unforgeability definitions considered therein.

127

•VerRepud(R,vk, o-,) takes as input a set R of verification keys, a signature -, a repu-

diation €, and an identity vk, and outputs a single bit indicating whether or not is a

valid repudiation of signature -for identity vk.

Definition 4.3.2 (Repudiation oracle ORpd). For a repudiable ring signature scheme RS,

the oracle ORpd(k,Sk1),.,(VkN,SkN) is defined to take as input i e [n], a signature ", and a set

R, and output RS.Repudiate(R U {vk}, ski, a). When the oracle is invoked with respect to

a single key pair (i.e., ORpd(,sk,), we treat the oracle as taking only two inputs, o- and R,

since i is superfluous in this case.

Additionally, we define the oracle ORpd() to output -L when it Teceives the(vki,ski)..,(vkN,skN) totu~hnteevsh

signature o* as input, and otherwise to give the same response as ORpd(k,Sk),..,(vkN,SkN)'

Repudiability requires two conditions, expressed by equations (4.3) and (4.4) below.

Intuitively, (4.3) captures the requirement "good people can repudiate," i.e., that for any

(possibly maliciously generated) signature, an honest party who did not produce it should

be able to successfully repudiate. (4.4) captures the requirements that "bad people cannot

repudiate a signature they produced," i.e., addressing the case where the malicious signature

and repudiation are both produced using the key being verified, and thus we want the signer

to be unable to produce a valid repudiation.

Definition 4.3.3 (Repudiability). A ring signature scheme E = (Gen, Sign, Verify) satis-

fies repudiability if equipped with algorithms (Repudiate,VerRepud) such that the following

conditions hold.

1. (Non-signers can repudiate) Let 0 = {OSign}. For any (possibly adversarial) PPT

128

signing algorithm Asign, there exists a negligible function e such that

(vk,sk)+- Gen(1k)

(o-, m, R')<- A OoRpd(vk,sk)(vk)

(<- Repudiate(R', sk, o-)

b<- VerRepud(R', vk, a,)

b'<- Verify(R', -, m)

b = 1 V b' = 0

VQ n {(., m, R')} 0
>1- E(k) .

(4.3)

2. (Signer cannot repudiate) For any (possibly adversarial) sign-and-repudiate algorithm

AS&R, there is a negligible functionE such that for any N = poly(k),

(vki, ski), .. ., (vkN, skN) <- Gen(1k)

(0-, R', m,{{vk~vkCR'\R) - AS&R(R)

Vvk E R' \ R, bk<- VerRepud(R',vk,-, G)

b <- Verify (R', o,m)

R' n R = Ov

V bok =0
vkeR'\R

vb' = Ov

Q n {(-, m, R') } 0

where R = {vki,..., vkN}, 0 = {OSign, ORpd}, and Q is the set of queries to OSign.

Remark 6. Equation 4.4 guarantees that a party possessing a set of signing keys cannot

repudiate under all of these keys, as long as some key in the ring is honestly generated. If

the adversary generates all keys in the ring, then he may be able to produce a repudiation

under every key in the ring. However, this does not undermine the purpose of repudiability:

indeed, if presented with repudiations under every key in a ring, one can confidently conclude

that all keys in the ring were generated dishonestly, and thus that all parties in the ring

effectively colluded to produce each signature under that ring. Similarly, given repudiations

for a subset of the identities in a ring, one can conclude that either one of the remaining

identities in the ring produced the signature or all of the remaining identities in the ring

colluded maliciously to produce the signature. That is, either way, at least one of the

remaining identities is responsible for the signature.

129

Pr

Pr > 1- e(k)

(4.4)

Anonymity and unforgeability of repudiable ring signatures

The definitions of anonymity and unforgeability need to be adapted for repudiable ring

signature schemes, to incorporate a repudiation oracle as described next.

Definition 4.3.4 (Anonymity of repudiable ring signatures). A repudiable ring signature

scheme

(Gen, Sign, Verify, (Repudiate, VerRepud))

satisfies anonymity against adversarially chosen keys if (Gen, Sign, Verify) is

({OSign,ORpd},0,0)-anonymous (Definition 4.2.3) Moreover, the repudiable ring sig-

nature satisfies adaptive anonymity against adversarially chosen keys if (Gen, Sign, Verify)

is ({OSign, ORpd},{OSign, ORpd() },0)-anonymous, where o is the challenge signature in

the anonymity experiment (Equation 4.2).

Recall from Remark 5 that adaptive anonymity against adversarially chosen keys is the

strongest anonymity notion compatible with repudiability.

Definition 4.3.5 (Unforgeability of repudiable ring signatures). A repudiable ring signature

scheme

(Gen, Sign, Verify, (Repudiate, VerRepud))

is unforgeable if (Gen, Sign, Verify) is {ORpd}-unforgeable (Definition 4.2.7).

4.3.2 Unrepudiable ring signatures

We next consider a notion where it is not possible for a party to prove to others that he did

not produce a particular signature. In fact, though it may not be immediately apparent, a

natural formalization of this notion is expressed by the definition of anonymity against full

key exposure (Definition 4.2.6): that is, the strongest of the anonymity definitions given in

Section 4.2. The following paragraphs justify this claim with detailed intuition.

Recall that anonymity against full key exposure (FKE) preserves signer anonymity even

against an adversary that obtains all of the secret keys of all members of a ring. A ring

130

signature scheme that satisfies repudiability could not also satisfy anonymity against FKE,

because of the following attack: the adversary obtains all secret keys in the ring, attempts to

repudiate using each secret key, and identifies as the signer the one secret key with respect to

which the repudiation algorithm does not produce a valid repudiation. With overwhelming

probability, by definition of repudiability, there is exactly one such secret key.

This informal argument establishes that anonymity against FKE must imply any rea-

sonable notion of unrepudiability. The question then arises: are the two notions equivalent?

While there arguably exist meaningful definitions of unrepudiability that are weaker than

anonymity against FKE, we believe anonymity against FKE is the most reasonable definition

of unrepudiability, as explained next.

Any reasonable definition of unrepudiability should capture the intuitive requirement

that non-signers cannot behave distinguishably from signers. A little more precisely, for any

protocol that could be executed by a non-signer Nancy with respect to a signature - and

her verification key vk', the signer Sigmund of that signature must be able to engage in the

same protocol with respect to his own verification key vk and behave indistinguishably from

Nancy. In other words, we require that if Nancy's secret key were stolen, the thief would be

unable to tell whether o was produced by Nancy or by someone else. Indeed, if Nancy were

stateless and did not remember what signatures she had produced in the past, or simply

lent her secret key to someone else who used it to produce signatures, then she herself would

not be able to tell. The definition of anonymity against FKE embodies almost exactly this

requirement - but instead of requiring anonymity against the thief who steals just Nancy's

key, the definition makes the stronger requirement that anonymity must hold even against

a thief who has every secret key in the ring corresponding to o.

Is a weaker definition, which only rules out unilateral repudiations by a single party, a

meaningful definition of unrepudiability? Perhaps. However, it is more in keeping with the

intuitive goals and standard properties of ring signatures to protect against adversaries that

may have many or all secret keys in a ring: that is, to rule out even the possibility of multiple

ring members colluding to produce a repudiation for some ring member. Thus we arrive at

131

the following definition.

Definition 4.3.6 (Unrepudiable ring signature scheme). A ring signature scheme satisfies

unrepudiability if it satisfies anonymity against full key exposure (Definition 4.2.6).

4.3.3 Claimable ring signatures

Claimability addresses whether the actual signer can prove later that they were the signer,

without remembering the signing randomness.

Definition 4.3.7 (Claimable ring signature). A claimable ring signature scheme is a ring

signature scheme with an additional pair of algorithms (Claim,VerClaim), satisfying the four

properties of correctness (Definition 4.2.2), claimability (Definition 4.3.9), anonymity (Def-

inition 4.3.10), and unforgeability (Definition 4.3.11). The syntax of Claim and VerCaim

follows.

• Claim(R, sk,ao) takes as input a signing key sk, a ring signature o-, and a set of verifi-

cation keys R = {vk1,..., vkNI, and outputs a claim (.

• VerClaim(R,vk,o,() takes as input a set R of verification keys, a signature o-, a claim

(, and an identity vk, and outputs a single bit indicating whether or not (is a valid

claim of signature -for identity vk.

Definition 4.3.8 (Claim oracle OClaim). For a claimable ring signature scheme RS, the

oracle OClaim(,k1 ,k,). (vkN,SkN) is defined to take as input i c [n], a set R, and a signature

o-, and output RS.Claim(R,sk,o-). When the oracle is invoked with respect to a single key

pair (i.e., OCiaim (kk)),we treat the oracle as taking only two inputs, R and 0, since i is

superfluous in this case.

Additionally, we define the oracle OClaim ,1 -,) to output I when it(vkiski),..,(vkN, skN)to uptIwhni

receives the signature or* as input, and otherwise to give the same response as

OClaim(vi~ski5),...,(vkN,skN) *

132

-nw- , MWAWR--"

Claimability requires three conditions, expressed by equations (4.5), (4.6), and (4.7)

below. Informally, (4.5) requires that honest signers can successfully claim their signatures,

(4.6) requires that adversarial parties cannot successfully claim a signature that they did not

produce, and (4.7) requires that adversarial parties cannot produce a signature along with

a claim that appears to be produced by an honest party (that is, falsely framing the honest

party as the signer).

Definition 4.3.9 (Claimability). A ring signature scheme (Gen, Sign,Verify) is claimable if

equipped with algorithms (Claim,VerClaim) such that the following conditions hold.

1. (Honest signer can claim) There exists a negligible function E such that for any N

poly(k) and (vki,ski),..., (vkN,skN) <- Gen(1k) and any i e [N], it holds for any

message m that

Pr [o <- Sign(R,ski, m) : VerClaim(R, vki, o-, Claim(R, ski, a)) = 1] > 1 - E(k), (4.5)

where R = {vk1,..., vkN}- 10

2. (Non-signers cannot claim) Let 0 = {OSign}. For any (possibly adversarial) PPT

sampling-and-claiming algorithm Aclaim= (A 1, A2), there exists a negligible function E

such that

(vk, sk) <- Gen(1k)

(R', 7m, S) <- AO' ociaim(,k,'') (ok)

r o-- Sign(R' U {vk}, sk, m) b = A b' = 1k)' (4.6)
Pr <Oela). (4.6)

(Qvk') <- A , '(,k, (R' U {vk}, a, s) Avk' z vk

b<- VerClaim(R'U {vk}, k', o,

b'- Verify (R' U {vk}, o-, m)

3. (Malicious signer cannot frame an honest party) For any PPT adversary As&c, there

1 Like Definition 4.2.2, Equation 4.5 considers only honestly generated keys. See Remark 4 for further
discussion.

133

exists a negligible function E such that

(vk, sk) +- Gen(1k)

P (R', m, o,) - A ,Ccaim(vk,,k) (vk) b - 1Ab' <&(k). (4.7)

b -VerClaim(R'U {vk}, vk, , AQ n {(., o-)} = 0

b'- Verify(R'U {vk}, o, m)

where 0 ={OSign} and Q is the set of queries made to oracle OClaimvk,k.

Remark 7. Our definition and construction guarantee that all honestly generated signatures

can be claimed by the signer, and even malicious signers cannot frame non-signers. Our

definition does not guarantee that all signatures that verify can be claimed by someone;

requiring this would be a reasonable alternative definition, but we believe our claimability

definition is reasonable and sufficient in many settings. Since claimability is a notion designed

for the signer's benefit, it is not an "attack" that the signer can choose to waive the ability

to claim. If two ring members collude to produce a signature, then they are effectively both

signers; therefore, it is not an attack if two signers collude to produce a signature claimable

by one of them.

Our definition has a property that may be counterintuitive at first glance: namely, a single

party might be able to claim and repudiate the same signature. However, this possibility

is in fact fully consistent with our security guarantees, as follows. If the party does both

actions, we (the observers) know she is adversarial. If she claims, we know that she either

signed or was part of an adversarial group that signed. If she repudiates, we know that either

she didn't sign, or she was part of an adversarial group of which another member must be

unable to repudiate.

Anonymity and unforgeability of claimable ring signatures

The definitions of anonymity and unforgeability must be adapted for claimable ring signature

schemes, to allow the adversary a claim oracle as described next.

134

Definition 4.3.10 (Anonymity of claimable ring signatures). A claimable ring signature

scheme (Gen, Sign, Verify, (Claim,VerClaim)) satisfies anonymity against adversarially chosen

keys if (Gen, Sign, Verify) is ({OSign, OCIlaim}, 0, 0)-anonymous (Definition 4.2.3). Moreover,

the repudiable ring signature satisfies adaptive anonymity against adversarially chosen keys

if (Gen, Sign, Verify) is

({OSign, OClaim}, {OSign, OClaim("}, 0)-anonymous ,

where o- is the challenge signature in the anonymity experiment (Equation (4.2)).

Recall from Remark 5 that adaptive anonymity against adversarially chosen keys is the

strongest anonymity notion compatible with claimability.

Definition 4.3.11 (Unforgeability of claimable ring signatures). A claimable ring signature

scheme (Gen, Sign, Verify, (Claim, VerClaim)) is unforgeable if (Gen, Sign, Verify) is {OClaim}-

unforgeable (Definition 4.2.7).

4.3.4 Unclaimable ring signatures

An unclaimable ring signature scheme has the property that the signer cannot later convince

anyone of her identity. That is, for any function that the true signer can compute given

the signing randomness and the secret key, any other member of the ring can compute an

indistinguishable function. The result is that even an adversary holding all ring members

under duress cannot figure out who produced a given signature. This is true even if the ring

members under duress attempt to cooperate with the adversary.

To achieve this, it suffices for any member of the ring to be able to extract signing

randomness distributed indistinguishably from true signing randomness, that would produce

the given signature under their secret key. More formally, the following guarantee should

hold.

Definition 4.3.12 (Unclaimable ring signatures). A unclaimable ring signature scheme is a

ring signature scheme augmented with an additional algorithm ExtractRandomness as follows.

135

*ExtractRandomness(R, sk, o-, m) takes as input a ring R, a secret key sk, a signature o-

and a message m. If sk is one of the secret keys for ring R, and a is a signature on

m with respect to R, then it outputs randomness p.

ExtractRandomness must satisfy the following condition.

* (Statistical unclaimability) Let R be the distribution of signing randomness. For

any N = poly(k) there is a negligible function E such that the following holds. Let

(vk1,sk1),(vk 2,sk 2) <- Gen(1k). For any message m and any vk3 ,. . .,vkN and

sk3,..., skN, letfR= {vk1,...,vkN and S {(i,vk,ski)iC[N]. Let p- Z,

or1 - Sign(R, ski, m; p), and pi <- ExtractRandomness(R, sk2, a-1, m). Let P2 <- R

andO-2 <- Sign(R, sk2 ,m; p2). Then

(S, Pi, O-1) (S, P2, 2).

Definition 4.3.12 is unusual among the definitions in this paper, in that it gives a statistical

rather than a computational guarantee. We opted to give the statistical definition because it

is simpler, it is a stronger guarantee, and our construction in this case achieves the statistical

guarantee. One could also consider a computational definition.

Remark 8 (Claimability is not the opposite of unclaimability). According to these defini-

tions, unclaimability is not technically the opposite of claimability (even when ignoring the

fact that the formal definitions give a statistical guarantee for unclaimability but a compu-

tational guarantee for claimability). Claimability requires the ability to "voluntarily claim"

a signature without remembering the signing randomness, whereas unclaimability rules out

the ability to "claim under duress" even given the signing randomness. For voluntary claims,

the natural and' stronger definition is to guarantee the ability to claim adaptive, without

"planning ahead" and without the storage requirement of remembering the signing random-

ness. In contrast, when considering attempts to claim under duress, the natural and stronger

definition is to rule out the possibility of successful claims even in the presence of the signing

randomness.

136

Remark 9 (Unclaimability protects honest signers). An adversarial signer who wants to claim

can devise ways of credibly later claiming a ring signature, even when using an unclaimable

ring signature scheme." This does not decrease the utility of an unclaimable ring signaature

scheme for honest signers who want their signatures to be unclaimable.

Remark 10 (Secure erasure and rubber-hose adversaries). Our unclaimability definition does

not protect signers against adversaries that can unexpectedly compromise the internal state

of ring members, in the following sense: either the signer will have securely erased the signing

randomness, in which case the adversary will not be able to determine the signer's identity;

or she won't have erased the signing randomness, in which case the adversary will be able

to distinguish the signer from other ring members. In the first case, the signer's anonymity

comes from her diligent erasure, rather than from unclaimability; and the first case is only

possible assuming secure erasure is feasible.

We believe our unclaimability definition still has twofold value. First, even assuming

secure erasure, a system is stronger if it eliminates reliance on users to erase diligently.

Users often fail to use systems as they are supposed to; this is a major source of real-world

security failures. Our definition's security does not rely on any user actions beyond running

the honest signing algorithm.

Secondly, unclaimability is useful beyond the context of such powerful, real-time adver-

saries. Consider an honest signer who does not intend to claim at the time of signing, but

later is corrupted or changes her mind. Our definition guarantees that the signer's intent at

the time of signing is what matters: if she intended unclaimability when signing, she cannot

later claim that signature.

Unclaimability implies unrepudiability

Any unclaimable ring signature scheme is also unrepudiable. Recall that the definition of

unclaimability captures the idea that for any function that the true signer can compute given

"For example, an adversarial signer might use a PRG output as his signing randomness, or append it
to his message, and remember the preimage. If he later revealed the preimage, it would likely serve as a
credible claim to authorship of the signature.

137

the signing randomness and the secret key, any other member of the ring can compute an

indistinguishable function. Intuitively, the implication follows from the fact that repudiation

would require a non-signer to behave in a way that distinguishable from any possible behavior

of the actual signer.

Theorem 4.3.1. Any unclaimable ring signature scheme is also unrepudiable.

Proof. Recall that unrepudiability (Definition 4.3.6) is defined as anonymity against full

key exposure (Definition 4.2.6), which is ({OSign}, 0, 2)-anonymity under the framework

of Definition 4.2.3. Thus, a ring signature scheme is unrepudiable if for any adversary

A = (A, A2) and polynomial N, it satisfies (4.2) of Definition 4.2.3 for (01, 02, a) =

({OSign}, 0, 2). Note that since a = 2, we can consider without loss of generality only

adversaries that use the corruption oracle to learn all N secret keys in (4.2), and do not

make any queries to the signing oracle (since the adversary can produce signatures himself,

using the secret keys).

To establish the theorem, it suffices to show that for any unclaimable ring signature

scheme, the view of the adversary A is indistinguishable between the cases b = 0 and b = 1.

Unclaimability (Definition 4.3.12) directly implies that these two views are indistinguishable.

To see this, recall that the adversary's inputs in (4.2) of Definition 4.2.3 are an honestly

generated set of verification keys vki,. . . , vkN and a signature o produced by the honest

signing algorithm using a secret key corresponding to some vki, i E [N]. The theorem

follows. l

Remark 11. It is unclear that the reverse implication holds even for a computational defini-

tion of unclaimability. The main complication is that unclaimability must hold even if the

signing randomness is saved, while this is not an issue for unrepudiability. For instance, an

algorithm that appends a commitment to the signing randomness (or to a random nonce)

could be unrepudiable, but could be claimed by a signer who remembered the signing ran-

domness.

138

. _._-,_,__ WIMMMMW ,

4.3.5 Repudiable-and-claimable ring signatures

Suppose that (Gen, Sign, Verify) is a ring signature scheme, and there are algorithms

Repudiate, VerRepud, Claim, and VerClaim such that

(Gen, Sign, Verify, (Repudiate, VerRepud)) and (Gen, Sign, Verify, (Claim, VerClaim))

are a repudiable ring signature scheme and a claimable ring signature scheme respectively

(Definitions 4.3.1 and 4.3.7). The seven algorithms together do not necessarily satisfy the

natural notion of a "repudiable-and-claimable" ring signature scheme.

The reason, in a nutshell, is that Definition 4.3.1 (repudiability) does not allow the

adversary a claim oracle, and likewise Definition 4.3.7 (claimability) does not allow the

adversary a repudiation oracle. Indeed, it would not make sense even syntactically for the

"other oracles" to be provided: since each of Definitions 4.3.1 and 4.3.7 is defined with

respect to a quintuple of algorithms either containing Repudiate but not Claim, or vice versa,

the concept of the "other oracle" is undefined within the scope of each definition.

Thus, it could be that when an adversary has access to both a claim and a repudiation

oracle, the resulting scheme is no longer secure. Indeed, there are simple (though arguably

unnatural) examples of schemes where this happens, such as the following.

Example 1. Given any ring signature scheme, augment the signing key sk to a new signing

key sk' = (sk,j0o, 1) that additionally contains a pair rio,mq1 such that o is sampled uniformly

randomly and 1o e1l = sk. Sign works just as in the original scheme, using only sk

and ignoring 7o,rmi. Repudiate produces repudiations just as in the original scheme, but

additionally appends To to every repudiation. Claim produces claims just as in the original

scheme, but additionally appends r11 to every repudiation. This modified scheme would be

repudiable if the original scheme was, and also claimable if the original scheme was. However,

an adversary that could see both a repudiation and a claim would straightforwardly be able

to recover sk and thereby forge signatures.

The natural security definition for a repudiable-and-claimable ring signature scheme is

139

to include both repudiation and claim oracles throughout the repudiability, claimability,

anonymity, and unforgeability definitions. As the resulting formal definitions are somewhat

repetitive, we defer them to Appendix 4.7.

4.4 Repudiable construction

4.4.1 Building blocks

ZAPs ZAPs are two-message public coin witness indistinguishable proofs [DN07b].

Definition 4.4.1 (ZAP). A ZAP for an NP language L with witness relation is a

triple of algorithms ZAPL = (ZAP.SetupL, ZAP.ProveL, ZAP.VerifyL, where ZAP.Setup and

ZAP.Prove are PPT and ZAP.Verify is polynomial-time and deterministic, satisfying the fol-

lowing properties.

Public coin. For some polynomial f = f(k), ZAP.Setup is the algorithm that on input 1 k,

outputs a uniformly random element of {0, 1}'.

Completeness. For (x,w) E RL and any p E f{0,1}(k) we have

Pr [ZAP.Verify(p, 7r, x) = 11= 1.
7r<-ZAP.Prove(p,xw)

Adaptive soundness. There exists a negligible function E such that

Pr [3(x, 7) : x 0 L A ZAP.Verify(p, 7r, x)] < E(k).
p<-ZAP.Setup(1k)

Witness indistinguishability. For any sequences { pk}keN, {Xk}kGN, {Wo,k}kEN,

{Wi,k}kEN, where for all k, Pk E {0, 11}(k), Xk E L and (k, WOk), (k, Wi,k) E R-L,

140

.1-114"INIM1111"M I - 11 -17-- ,, '__ I

the following pair of ensembles is computationally indistinguishable:

{ZAP.Prove(pk, k, wO,k)}kEN {ZAP.Prove(pk, Xk, W1,k~kEN •

In this work, for simplicity, we will assume use of a ZAP for some NP-complete language

LNP (with witness relation RLNP) and for any L E NP with witness relation RL, we define

ZAP.ProveL and ZAP.VerifyL as follows.

" ZAP.ProveL takes as input a triple (p, x, w). If (x, w) (RL, then output _. Oth-

erwise, use an NP reduction on (X, w) to get a pair (NP, WNP) E RLNP, and output

ZA P.Prove(p, x, w).

" ZAP.VerifyL takes as input a triple (p, r, x), uses the same NP reduction to obtain XNP

(which is in LNP iff C L), and outputs ZAP.Verify(p,7, x).

Verifiable random functions (VRFs) [MRV99] are another main building block of our

construction. The important property of VRFs that we rely on is residual pseudorandomness,

i.e., that VRF outputs on inputs for which the adversary has not received proofs remain

indistinguishable from random.

Definition 4.4.2 (VRF). A verifiable random function (VRF) is a tuple of algorithms

VRF = (VRF.Gen, VRF.Eval, VRF.Prove, VRF.Verify), where Gen andVerify are PPT and Eval

and Prove are polynomial time and deterministic, satisfying:

Complete provability With probability at least 1 - 2-o(k) Over (pk, sk) <- VRF.Gen(1k),

we have for all inputs x that

Pr[VRF.Verify(pk, x, VRF.Eval(sk, x), VRF.Prove(sk, x)) = 1] > 1 - 2 (k)

Unique provability For all pk, X, Y1, y2, T1,72 with yi Y Y2, for either i = 1 or i= 2 it

141

holds that

Pr[VRF.Verify(pk, x, yiT r) = 1] < 2

Residual pseudorandomness Let A = (A 1, A2) be a probabilistic polynomial-time ad-

versary, where both A 1 and A2 get oracle access to the VRF evaluation and prove

algorithms. Let (pk, sk)<- VRF.Gen(1k) , and let

(x,) <- A'fRF.Eva(sk,-),VRF.Prove(sk,-) (Ik

Let b <- {0,1}, and let v be either VRF.Eval(sk,x) or uniformly random, depending

on the choice bit b. Let

= A RF.EvaI(sk,-),VRF.Prove(sk,-) (1k V,

Then there is a negligible function E such that Pr[b = b' and x $ Q] < 1/2 + E(k),

where Q is the set of oracle queries made by A to either oracle.

For simplicity, we assume that Eval takes inputs x of any length, i.e., x C{,1}*.

Definition 4.4.3. The verification failure probability of a VRF VRF is

Pr[
(pk, sk) <- VRF.Gen(1k)

b - VRF.Verify(pk, x, VRF.EvaI(sk, x), VRF.Prove(sk, x))
b = 0

The residual pseudorandomness property of the VRF still holds even if the adversary

gets to query many key pairs at once, and gets to adaptively choose to learn some of the

secret keys (in this case, residual pseudorandomness holds for the uncorrupted keys only).

Lemma 4.4.1 (Parallel VRF Game). Let VRF be a a VRF. Then V PPT A = (A 1 , A 2) and

142

all N = poly(k), there is a negligible function E such that

(pki, ski), ... -, (pkN, skN) +- VRF.Gen (11)

(M* AV) <-ACorr (vki,... -, okN)

Vi [N], y,o<- VRF.Eval(ski, m*)

ViE [N], yi, 1 - $

b- {0, 1}

b' <-A2(i, (yi,b)iG[N]\C)

b= b'A

Vi E [N) \ C,

(i, mn*) (Q

< 1/2+ E(k) , (4.8)

where V is an oracle that takes as input a pair (i, m) and outputs

(y, r) = (VRF.Eval(ski, m), VRF.Prove(ski, m))

and Corr is an oracle that takes as input an index i e [N] and outputs ski, and C denotes

the set of queries made to the corruption oracle, and Q denotes the set of the queries to V.

We will refer to the game described by (4.8) as the Parallel VRF Game.

4.4.2 Construction

Construction 4.4.2. Our construction R-RS is parametrized by ZAP, VRF, and M, where

• ZAP is a ZAP;

• VRF is a VRF with input domain {0,1}*, whose Verify algorithm takes v bits of ran-

domness and whose verification failure probability (Definition 4.4.3) is e;12

" M is a polynomial satisfying M > (v + k)/log 2 (1/E) 1 3

We first present the Gen algorithm of our ring signature scheme R-RS.

12Eneed not be explicitly known, as discussed in footnote 13.
1 3This inequality is required in order to invoke Corollary 4.4.6. As explained in Remark 13, a satisfactory

value of M can be set even without knowledge of . If E happens to be known, a smaller value of M can be
chosen.

143

Pr

R-RS.Gen(1k)

1.(kRF i o RF) ..''. VRF VRF)4 R .e (k

Let VkVRF= (vklR, vk ,<~)nsVRF' (skRF..Let kVRF RF, - - RF) and sk VR sRF, - -- 3RF -

2. p- ZAP.Setup(lk).

3. = (ai,... , a)<- ({O,1}"0)M

4. Output vk = (vkVRF, P,a) and sk = (skVRF,vk).' 4

In the rest of the section, we (implicitly) use the following convention to parse a ring R.

WriteR= {vk1,... ,vkN}- ()

For each i C [N], write vki= (vkVRF = (vkF, ... ,vkaF) api, i = (, . . . , 4).

Definition 4.4.4. Let L be the following NP language.

{ (R, m, p, (yi, Y2, Y3, Y4))

where Vj E {1, 2, 3,4}, b =

: ,T1, T 2,T3,T4, Y s. t. (b 1 V b2) A (b 3 V b4)

A VRF.Verify(vkQ*F, (R, m, (p), y,,T; a 9 7).

We now present the Sign and Verify algorithms of our construction.

R-RS.Sign(R, sk, m)

1. Parse R as described above and sk = ((skyR,...,sk),vk).

2. If vk R output I and halt.

3. Define i' C [N] such that vkj. =vk.

4. -Y<- {O,1}'. (This is used as part of the ZAP witness in Step 6.)

5. < <- {0,1}k. (This is used as a salt for the VRF input in Step 7, and output in

Step 8.)
14 We include the verification key in sk so that the Sign procedure can identify the verification key in the

ring corresponding to the signing key.

144

iE[N],jE[M]

6. For q C {1, 2,3, 4}, let y7

VRF.Prove(skVRF, (R, m, o))

Let g=(yi,..., y4).

7. For each i E [N], let 7ri - ZAP.ProveL(Pi, (R, m, o,), (i*,T 1 , rT,y)).

Let '= (7,..., N).

8. Outputo-:= (wyp).

R-RS.Verify(R, o-, m)

1. Parse R as above and o- = ((7r, -.-.-, FN), Y p).-

2. Output Aie[N] ZAP.VerifyL (pi, -ri, (R, m, o, 9)).

Now that we have described the main algorithms of R-RS, we proceed to describe the

repudiation algorithms for R-RS.

Definition 4.4.5. Let L' be the following NP language:

{(R, m, , (yi,.. . Y4), vk = (vkVRF, P, I . . . , , , .. r , 7 sIt.

((b'1 A b') V (b' A b)) A ok = oki-, where Vq E {1, 2,3,4}

b'= y' y, A A VRF.Verify(ok'D, (R,'m, o), y', r'
\ iE[N],jE[M]

R-RS.Repudiate(R, sk, o)

1. Parse R as above, sk = ((skVRF, .- , 4 vk),RandRF= (7,#p).

2. If vk $ R output I and halt.

3. Define i* E [N] such that vkj* =vk.

4. For q E {1, 2}: let y' = VRF.Eval(skVRF, (R, m, o))

VRF.Prove(skVRF, (R,m,so)).

5. 7 - {o,1}'. (This is used as part of the ZAP witness in Step 6.)

145

}

and let r'

=VRF.Eval(sk'VRFI (R, m, o)) and

6. For each i C [N]:

Let i <-ZA P.ProveL(pi, (R, m, p, g, k), (i*y'i, y, 1, 1, T, T,1, 1,)).

7. output (=(1 .,N)

R-RS.VerRepud(R, vk, o,

1. Parse R as above. If vk V R, output 1 and halt.

2. Parse o = (7, ', p), and =

3.OutputAie[N]ZAP.VerifyL(pi, (R, m, , , vk)).

Remark 12. As written, the size of the VRF input (R, m, o) scales with the size of the ring R,

and we have assumed that the VRF has input domain {0, 1}*, i.e., can take variable-length

inputs. When this is not the case, or when it is desirable for efficiency reasons to evaluate

the VRF on a smaller input, the scheme can be straightforwardly modified by employing

a collision-resistant hash function, and evaluating the VRF on the hash of (R, m, p) rather

than on (R, m, p) directly. We have presented the version of the scheme without the hash

function, for simplicity of exposition.

4.4.3 Security proof

Theorem 4.4.3. Let VRF be a VRF and ZAP be a ZAP. Then R-RS is a repudiable ring

signature scheme.

Proof. Follows directly from Lemmata 4.4.4 (correctness), 4.4.7 (repudiability), 4.4.8 (un-

forgeability), and 4.4.9 (anonymity). E

Lemma 4.4.4 (Correctness of R-RS). R-RS satisfies correctness (Definition 4.2.2).

Correctness is immediate so we omit the proof. Before presenting the proof of repudia-

bility, we establish the following supporting lemma and corollary, which proceed according

to an argument of [DN07b].

146

Lemma 4.4.5. Let V be a randomized algorithm that takes v bits of randomness and outputs

one bit. Let 3 G {0,1} be a bit, and let x be an input such that for some negligible E,

Pr [V(1, x) = 0] > 1 - E . (4.10)

Let M be a polynomial such that M (v+k)/ log 2 (1/ E). (Note that the right-hand side is at

most polynomial since the numerator is polynomial and the denominator is super-constant.)

Then the following probability is overwhelming:

(4.11)Pr]z-[V {01}, E [M] s. t. V(, x; ac,)= 1].
(a ,..a)<-({0, 1}")" 0 1

Proof. Fix any y E {0,1}". Let Vi,, = a (D -for each i E [M]. Since the a are distributed

randomly and independently, the distribution of (i,,)ic[M] is uniform over ({0, 11}") even

when conditioned on -. Therefore, conditioned on any given -,

Pr [Vi E [M], V(1k, X; iy) /] < E

There are 2" possible values of 1, so by a union bound,

Pr [] E {0, 1}" s.t. Vi C [M], V(k, X /; V, / < 2".

Since M l (v + k)/log 2(1/E)= log,(2-(v+k)) by assumption, the right-hand side is at most

2-k, which is negligible. The lemma follows. l

The next corollary states that the implication established in Lemma 4.4.5 in fact goes

both ways.

Corollary 4.4.6. Let V be a randomized algorithm takes v bits of randomness and outputs

one bit. Let / E {0,1} be a bit, and let E be a negligible function. Let M be a polynomial

such that M > (v + k)/ log2(1). Then (4.10) holds if and only if (4.11) is overwhelming.

lProof. Follows from applying Lemma 4.4.5 for both / = 0 and # = 1.

147

Remark 13. For all large enough k, Corollary 4.4.6 holds for any M > v + k. This is

because if (4.10) holds for some negligible E, then for all large enough k, (4.10) also holds

for E = 1/2 (or indeed, any constant E). Substituting E= 1/2 into M > (v + k)/log 2 (1/E)

yields M > v + k. In particular, this means that a satisfactory M can be chosen without

knowledge ofE.

Next, we give the proof of repudiability of R-RS.

Lemma 4.4.7 (Repudiability of R-RS). R-RS is repudiable (Definition 4.3.3).

Proof. Suppose, for contradiction, that R-RS is not repudiable. Then by Definition 4.3.3, it

must be that either (4.3) or (4.4) does not hold. We consider these two possibilities in turn.

Suppose first that (4.3) does not hold for R-RS. Then there is a PPT Asign that generates

a valid signature o with respect to some ring R, so that o is not repudiable by some honest

party in the ring. That is, the following probability is non-negligible:

(vk,sk)<- Gen(1k)

(, m, R) 4-- Asgn(vk)
rl I igb =0 A b' =I

Pr (+- Repudiate(R, sk, o) : , (4.12)
AQ0n{(-, m,R')} =0

b+- VerRepud(R, vk, o-,

b'+- Verify(R, o-, m)

where Q is the set of queries to OSign.

Based on Asign,we build an adversary A for Parallel VRF Game (defined in Lemma 4.4.1),

as follows. A first invokes R-RS.Gen(1) to obtain (vk, sk). The vk is a tuple (vkVRF, p)

where vkVRF can be parsed further as (vkRF ''Vk4RF)'

A obtains two verification keys vkFvk F from the VRF challenger, and replaces kRF

and vkRF with these keys, setting

vk' = ((vk'RF,vk RF,vk ok 4F p,

148

Let sk F, s F be the VRF secret keys corresponding to v k F vk F, respectively. 1 5

Next, A runs Asign(k'), answering Asign's oracle queries as follows.

" On query (n", R") to OSign: A runs the honest signing algorithm R-RS.Sign on input

(R" U{vk'}, sk, m"), with the following modification: in step 6, instead of using skVRF

and skRF to generate Y3, 73, and y4,T4 , A invokes its VRF oracle.

• On query (", R") to ORpd: A runs the honest repudiation algorithm R-RS.Repudiate

on input (R" U {vk'}, sk, o"). (Note that skRF and skV RFare not used in algorithm

R-RS.Repudiate, so we don't need to invoke the VRF oracle here.)

Let (a, m, R) be the output of Asign. A parses a = (7,T ,Y) and '= (Yi,..., y4). Then A

sends (R, m, o) to the VRF challenger, receiving responses y and y. If y 3 y or y4 = Y'

A outputs 0. Otherwise, A outputs a random bit. Let us now consider A's behavior in the

two cases where the VRF challenger's bit b is equal to 0 and equal to 1.

Case b = 0 in Parallel VRF Game. In this case, the view of Asign is identical to the

view in (4.12), so by assumption Asign will win the game - i.e., produce a signature that

verifies but is not repudiable by an honest party - with non-negligible probability. Note

that whenever Asign wins the game, the condition Q n {(., m, R')} 0in (4.12) implies that

A has not previously made an oracle query on the VRF challenge message (R, m, p) during

the query phase. Let us suppose that Asign wins the game described in (4.12), and consider

the implications.

By definition, if R-RS.VerRepud rejects (with non-negligible probability) on an honestly

generated repudiation (= (i)iE[JiJl generated with respect to k', then

]i E [lR|] s.t. ZAP.VerifyL(pi, (i, (R, m, p, ,v k')) = 0. (4.13)

By the completeness of the ZAP and the complete provability of the VRF, since (is hon-

estly generated with respect to k', the statement -,b' V ,b' then holds with overwhelming

3* 4" 5Note that skV'RF, skVF are generated bythe VRF challenger and not accessible byA

149

probability, where b', b are as defined in Definition 4.4.5. Expanding the definition of b, b,

and again using that (is honestly generated, we have that

7 {3,4}, i' E [I RI], j' E [M], y s.t.

VRF.Verify(vk'F(R mI* i0VRF.Prove(skF,(R,m,p));c ',)= 0.
(4.14)

Since vk' E R is honestly generated by assumption, we have that the a = (Cl,...,. OI)

within vk' is distributed uniformly over ({0,}'). Then applying Corollary 4.4.6 (setting

the algorithm V to be VRF.Verify): (4.14) implies either

3, E {3, 4} andT s.t.
(4.15)

Pr[VRF.Verify(ok'*F, (R, m, p), yg, T) = 1] is overwhelming,

or a negligible probability event occurred. By the complete and unique provability of the

VRF, (4.15) implies that

Ya = VRF.Eval(sk F, (R, m,))ory4= VRF.Eval(sk F, (R,m,p)) (4.16)

Chaining together the implications, we conclude that (4.16) holds with all but negligible

probability conditioned on the non-negligible-probability event of Asign winning the game

described in (4.12).

Finally, by definition of Parallel VRF Game, when b = 0,

(4.17)y = VRF.Eval(sk ' F, (R, m, p)) and y' = VRF.Eval(sk 'F,(R3mp))•

From (4.16) and (4.17): when b = 0, there is a non-negligible probability that

Y3 = Y' or y4 = Y' (4.18)

Recall that (4.18) is the trigger condition for A to output 0. Therefore, when b = 0, A

outputs 0 with non-negligible probability (and outputs a random bit the rest of the time).

150

Case b= 1 in Parallel VRF Game. In this case, yand yareuniformlyrandomand

independent of the rest of the experiment, so they will be distinct from y3 and y 4 with

overwhelming probability. Consequently, in this case, with all but negligible probability A

outputs a random bit.

Thus, A wins Parallel VRF Game with non-negligible probability. This contradicts the

security of the VRF. Therefore, R-RS satisfies (4.3).

It remains to show that R-RS satisfies (4.4). The argument for this part of the proof

follows a somewhat similar outline to the argument already presented. The rest of the proof

is deferred to Section 4.8. E

Lemma 4.4.8 (Unforgeability of R-RS). R-RS is unforgeable (inthesenseofDefinition

4.3.5).

Proof. This proof is very similar to the second half of the proof of Lemma 4.4.7.

Suppose that-this is not the case. Then there exists some N = poly(k) and some PPT B

such that the following probability is non-negligible, where I and Q are the sets of queries

made to the corruption and signing oracles respectively:

(vki, ski),..., (vkN, skN) <- Gen(1k) b 1AR*Cfvki,... vkN}\I

Pr (R* m* o-*) LBosign,ORpd,Corr(vkl , ... ,vkN) AQn{(.,m*,R*)}=0
b -- Verify(R*, o-*, m*)

(4.19)

We build an adversary A to the Parallel VRF Game of Lemma 4.4.1. A first samples

(vki, ski),..., (VkN, skN) -- Gen(1k)

and parses each vki and ski as follows:

vki = (vkVRF = (vk vk ,vk a),pi,&i)

Is i2 i3 i 4ski = (skVRF = (skiRF sk)Fsk RFsk R)vki)

151

Then A chooses a random i*- [N], obtains a pair of verification keys vk* F vk F from the VRF

challenger, and lets

vk*= (vI (vk ok i,2 vk* 3 vk p ,vk vVRF - vVRF' VRF1 VRF'I VRF),i)

Let sk sk 4 denote the VRF secret keys corresponding to vk vk* 4 respectively.VRF' VRFdeo VRF' VRF'

Let vki. = vk* and let vk* = vki for every i 0i*. Let R* ={vk*,. . ,k}. A then runs B on

input R*, answering B's oracle queries as follows.

" On query (i", m", R") to OSign: A runs the honest signing algorithm R-RS.Sign on input

(R" U {vki*}, ski,, n"), with the following modification if i = i*: in step 6, instead of using

sk 43 and sk*4 to generate y3, 3, and y4, T4 , A invokes its VRF oracle.

• On query (i", a", R") to ORpd: A runs the honest repudiation algorithm R-RS.Repudiate on

input (R" U {vki,}, ski,, o"). (skVRF and skVRF are not used by R-RS.Repudiate, so A does

not need to invoke the VRF oracle here.)

• On each invocation of Corr on some index i E [N]: if i = i* then A outputs a random bit and

aborts; otherwise, A responds to B with ski.

Let (R', m, a) be the output of B. A parses a = (7, -, o) andg (yi,..., y4),andsubmits

(R', m, o) to the VRF challenger and then receive responses y and y'. If y= y3 or y = y4, A

outputs 0. Else, A outputs a random bit.

It remains to show that A distinguishes with non-negligible advantage, in the parallel VRF

security game, between VRF outputs and random values.

Let us consider the behavior of A in the two cases where the VRF challenger's bit is equal to 0

and equal to 1.

Case b = 0 in Parallel VRF Game. In this case, the response that A receives to the challenge

(R', m) consists of VRF outputs on input (R', m) with respect to the keys k* vk* 4

ticular, whenever B does not query Corr on i*, the view of B is identical to the view in (4.19). So,

conditioned on B not corrupting i*, B will win the game - i.e., produce a valid signature - with

non-negligible probability, by assumption.

Let us consider the probability that B queries Corr for input i*. Recall that this event causes A

152

...... wow--

to abort and output a random bit. The distribution of the view (i.e., verification keys and oracle

responses) of B is unaffected by A's choice of i*, until the point at which B submits an oracle query

to Corr for input i* (if at all). The condition R* C {vki,.. okN } \Iin (4.19) ensures that if B

wins the game with non-negligible probability, then B leaves one or more keys uncorrupted with at

least that non-negligible probability. Since i* is chosen at random by A, it follows that Pr[i* (I]

is non-negligible.

Let E' denote the event that A does not abort (i.e., i* I) and B's output signature verifies

(i.e., R-RS.Verify(R', o-, m) = 1). We have established that E' occurs with non-negligible probability.

Then, by the same argument given from (4.28) to (4.32) in the proof of Lemma 4.4.7, we have that

either

Ij* E [R'l],ii E {3, 4}, andT s.t.

Pr VRF.Verify(vkr`, (R', m, p), yr, r) = I is overwhelming,

or a negligible probability event occurred. When j * i, this moreover implies

y3 = VRF.Eval(sk* F,(R',i,))ory4 VRF.Eval(sk*F, (R',m,)). (4.20)

Let us consider the probability that j* = i*. As also observed above, the distribution of the view

(i.e., verification keys and oracle responses) of B is unaffected by A's choice of i*, until the point at

which B submits an oracle query to Corr for input i* (if at all). Since i* is chosen at random by A

(and is thus independent of j*), and i*,j* E [IR'l], Pr[* = j*] must be non-negligible. Therefore,

(4.20) holds with non-negligible probability.

Finally, by definition of the Parallel VRF Game, whenever the challenger's bit b is 0,

VRF.Eval(sk*F, (R', m, o)) or y = VRF.EvaI(sk*'F,(R',m,p)). (4.21)

From (4.20) and (4.21) we have that with non-negligible probability,

y3= or y4= . (4.22)

Recall that (4.22) is the trigger condition for A to output 0. We conclude that when the VRF

153

challenger's bit b = 0, the trigger condition for A to output 0 is met with non-negligible probability;

and by construction, A outputs a random bit the rest of the time (i.e., when the trigger condition

is not met).

Case b = 1 in Parallel VRF Game. In this case, the response that A receives to the challenge

message (R, m, ep) consists of truly random strings instead of VRF outputs, and so Pr[y = y3V y'=

y4] is negligible. Thus, A outputs a random bit with overwhelming probability.

We have shown that A's output is non-negligibly different depending on the VRF challenger's

bit, and so A must win the Parallel VRF Game with non-negligible probability. This contradicts

the security of the VRF. Therefore, R-RS is unforgeable. E

Lemma 4.4.9 (Anonymity of R-RS). R-RS satisfies adaptive anonymity against adversarially

chosen keys (Definition 4.3.4).

Proof (sketch). The proof is a hybrid argument using the security of VRFs and ZAPs to

change the values Y2 and y4 within the signature first to truly random values, then to VRF

outputs w.r.t. party i* rather than i. Then the same procedure is applied to y1 and y 3 , so

that finally Y1,..., y4 are all VRF outputs w.r.t. party i*. Details of the proof are deferred

to Section 4.9.

4.5 Claimable transformation

In this section, we give a simple black-box transformation from any ring signature to a

claimable ring signature scheme. The transformation relies on one-way functions. If the

original scheme was repudiable, the resulting scheme is moreover claimable-and-repudiable.

4.5.1 Building blocks

We assume familiarity with the standard notions of commitment schemes, standard signa-

tures, and PRFs, and simply establish syntax in this subsection. 6 For simplicity, we denote a

16 We refer to any standard textbook (e.g., [KL14]) for the relevant security definitions.

154

..................... _111- , 1 _, -1",qM,1',,MM"___ "_.. - - "RT_

commitment scheme by a single algorithm Com, and assume that the decommitment simply

consists of the commitment randomness.

Definition 4.5.1 (Commitment scheme). A commitment scheme Com has the following

syntax: Com takes as input a message p and randomness r and outputs a commitment c.

Sometimes we leave r implicit and write Com(p) instead of Com(P;r). The decommitment

of c is the randomness r.

A commitment scheme must satisfy the following properties.

• Hiding: For all PPT adversaries A = (A 1 , A 2),] negligible E s.t. Vk N,

(po, pi, sj) <- A1(1k)

b- {0, 1}

c<- Com(pN)

b' +- A(C, S)

: b' = b < 1/2 + E(k) .

•Binding: For all PPT adversaries A, 3 negligible E s.t. Vk G N,

Pr (c, p, r, p' ,r') <- A(1k) : p#p'ACom(pQ;r)= c=Com(p';r') < E(k)

Definition 4.5.2 (Standard signature (syntax)). A signature scheme is a triple of PPT

algorithms E = (Z.Gen, E.Sign, E.Verify) with the following syntax:

• E.Gen(lk) takes as input the security parameter k and outputs a verification key vk

and a signing key sk.

" E.Sign(sk, m) takes as input a signing key sk and a message m, and outputs a signature

0~.

• E.Verify(vk,o-,m) takes as input a verification key vk, a signature o-, and a message

m, and outputs a single bit indicating whether or not o- is a valid signature on m w.r.t.

vk.

155

Pr (4.23)

Definition 4.5.3 (PRF (syntax)). A pseudorandom function (PRF) is a pair of algorithms

PRF = (PRF.Gen, PRF.Eval), where:

" PRF.Gen is a PPT algorithm that takes as input 1 k and outputs a PRF key skpRF, and

" PRF.Eval is a polynomial-time deterministic algorithm that takes as input a PRF key

skpRF and x E {0,1}* and outputs a string r.

For simplicity, we assume PRFs that take arbitrary-length inputs (i.e., {o,1}*).

4.5.2 The transformation

Our transformation builds on any ring signature scheme, RS, to construct a claimable ring

signature scheme C-RS. The basic idea is to take a signature 9RS under RS and append to

it a commitment c to (vk, 9RS) where vk is the verification key of the signer. The verifica-

tion algorithm simply checks whether URS verifies. The claim consists of a decommitment

revealing that c is a commitment to (vk, RS). Intuitively, by the hiding property of the

commitment scheme, the identity of the signer is hidden until he chooses to publish a claim.

The simple transformation just described runs into a couple of problems when examined

in detail. First, what if a signer commits to (URS, vk') where vk' is not his own key but that

of someone else in the ring? This ability would violate equation (4.6) of Definition 4.3.9

(claimability). To prevent such behavior, our construction actually commits to a standard

(non-ring) signature on (vk, 9RS). The unforgeability property of standard signatures then

guarantees, intuitively, that a signer cannot convincingly make a claim with respect to any

verification key unless he knows a corresponding signing key.

A second hurdle encountered by the scheme thus far described is that the signer must

remember the commitment randomness in order to produce a claim. It is preferable that

the signer need not be stateful in between signing and claiming; and indeed, recall that

Definition 4.3.9 formalizes this property. To resolve this, our construction derives commit-

ment randomness from a PRF. For similar reasons, the signing randomness for the standard

(non-ring) signature in our construction is also derived from a PRF.

156

The formal description of the transformation follows.

Construction 4.5.1. Our transformation C-RS is parametrized by the following:

" RS, a ring signature scheme,

• Y, a standard signature scheme,

" Com, a commitment scheme, and

" PRF, a PRF.

For convenience, and without loss of generality, we assume that the commitment randomness

of Com, the signing randomness of E, and the output of PRF.Eva\ all have the same length

of v bits.

C-RS.Gen(1k)

1. Let (vkRS, skRS) <- RS.Gen(1').

2. Let (vkE, skE) *- E.Gen(1k).

3. Let skPRF<- PRF.Gen(1k).

4. Output vk (vkRS,vk) and sk = (vk, skRS, sk, skPRF).

In the rest of the construction, we implicitly parse verification keys and signing keys of

C-RS as vk = (vkRS,vk) and sk = (vk, skRS,skE,skpRF) respectively. Also, for a ring

R = (vki = (vk'S,vk),..., vkN= (vkN N))

we write RS(R) to denote (vk's,... , vkN

C-RS.Sign(R, sk, m)

1. Let oRS <- RS.Sign(RS(R), skRS, M).

2. Let rE = PRF.Eval(skPRF, (vk, o RS, 0))-

157

3. Let o- = E.Sign(skE, (vk, uRS); r,).

4. Let rcom = PRF.Eval(skPRF, (vk, uRS, 1))-

5. Let c= Com((vk, o-r); rcom).

6. Let o= (o-RS, C).

7. If C-RS.VerClaim(R, vk, o, C-RS.Claim(R, sk, o-))= 1,output o-.

8. Otherwise, output (I,).

C-RS.Verify(R, o- = (oRS, c), m)

1. If URS= I, output 0.

2. Otherwise, output RS.Verify(RS(R),URS, i).

C-RS.Claim(R, sk, or =(o-RS, C

1. Let r = PRF.Eval(skPRF, (vk,oRS,0))-

2. Let rom = PRF.Eval(skPRF,(ok,oRS,1)).

3. Let o- = E.Sign(skE, (vk, ORS) r').

4. If C # Com(o- , rhom), output =.

5. Otherwise, output(= (r, o-).

C-RS.VerClaim(R, vk, o = (-RS, C), (romo))

1. Let c' = Com((vk, o-); r)om).

2. Output (c = c') /\ E.Verify (okE, o-', (ok, OrRS) -

RS is a repudiable

(Repudiate, VerRepud),

ring signature scheme equipped with algorithms

then we additionally define C-RS.Repudiate and C-RS.VerRepud

to simply run the Repudiate and VerRepud algorithms of RS, as follows.

C-RS.Repudiate(R, sk, o- = (o-RS, C))

158

If

1. Output RS.Repudiate(RS(R),sk, RS).

C-RS.VerRepud(R, vk, o- = (o-RS, C),)

1. Output RS.VerRepud(RS(R),sk, o-RS,

Theorem 4.5.2. C-RS is a claimable ring signature scheme (Theorem 4.5.3). Moreover,

if RS is a repudiable ring signature scheme, then C-RS is repudiable-and-claimable (Theo-

rem 4.5.8).

Proof. Follows from Theorems 4.5.3 and 4.5.8. El

Theorem 4.5.3 (Claimability of C-RS). C-RS is a claimable ring signature scheme.

Proof. Follows from Lemmata 4.5.4-4.5.7, which establish the properties of correctness,

claimability, unforgeability, and anonymity, respectively. E

Lemma 4.5.4 (Correctness of C-RS). C-RS satisfies correctness (Definition 4.2.2).

Correctness is immediate, so we omit the proof.

Lemma 4.5.5 (Claimability of C-RS). C-RS is claimable (Definition 4.3.9).

Proof. We show that C-RS satisfies each of the three conditions of Definition 4.3.9. The first

condition is immediate by the correctness of the signature scheme E, since the use of the PRF

ensures that the values (r', r,') computed in Claim are the same as the corresponding

values computed in Sign and that the commitments c, c' match.

For the second condition, assume for contradiction that there exists some PPT malicious

claiming algorithm AcIaim = (A1,,A2) that is able to claim a signature produced by a different

party. That is, that the following probability is non-negligible:

(vk, sk)<- C-RS.Gen(1k)

(R',I m) <- A (vk)

P - <- C-RS.Sign(R'U {vk}, sk, m) b = 1 A b' = 1
Pr , (4.24)

((vk') +- A 2 (R' U {vk}, -) Avk' # vk

b<- C-RS.VerClaim(R' U {vk}, vk', o-,()

b- C-RS.Verify(R'U {vk}, o, m)

159

where (= {OSign, OClaimek,,k}. We will produce an adversary 13 that breaks the binding

property of the commitment scheme. Let B first run the experiment in Equation 4.24,

invoking the malicious claiming algorithm Aclaim and using its knowledge of the secret key sk

to answer the oracle queries of Aclaim. Let B then compute ('= C-RS.Claim(R'U {vk}, sk, 0)

and b" = C-RS.VerClaim(R'U {vk}, vk, a, ('). Since the signature verifies correctly with non-

negligible probability, the check on line 7 of C-RS.Sign must pass, and so we must have

that b"= 1 whenever b' = 1. Conseqently with non-negligible probability we have that

b = 1 = = 1 and vk v k'. Conditioning on this event, we have that a = (URS, C), (=

(rcom, ou), and(' = (rom, ') are such that c = Com((vk, aE), rcom) = Com((vk', ok), r'om).

But vk v ok', so with non-negligible probability 13 generates two different openings to the

same commitment, breaking the binding property of the commitment. This concludes the

proof of the second property of Definition 4.3.9.

For the third condition, assume for contradiction that there exists some PPT malicious

signing-and-claiming algorithm As&c that produces a signature and claims it on behalf of a

different party. That is, assume that the following probability is non-negligible:

(vk, sk) +- C-RS.Gen(1k)

Pr (R',m, , - AOOCiaim(,k,,k) (vk) b =1Ab' = (4.25)
b<- C-RS.VerClaim(R'U {vk}, vk, a,() AQ n {(-,r)} 0

b'<- C-RS.Verify(R' U {vk}, a, m)

where0= {OSign} and Q is the set of queries made to the oracle OClaim(k,,k). We will

construct an adversary B that breaks the unforgeability property of the signature scheme E.

13first requests a verification key vk* from the challenger for E. It samples keys (vk, sk)+-

C-RS.Gen(1k) as in the beginning of the experiment in Equation 4.25, but replaces vkE with

vk* and skE with _ in vk and sk, respectively. It then invokes the adversary As&c on inputs

(1k, vk) to produce values (R', m, , (), using the challenger for the signature scheme E to

respond to the oracle queries of As&c as follows:

e When As&c queries oracle OSign on input (m, R), algorithm B first computes 0RS

160

M' 7 - 11 -1 1.-1 11 7. - --- I- -, T", - - . - - , ---- - - - - , -- ' , _'_ '. .- P, _'. "MR , , "r - 1 -111- -- - -M--MPRM M,

as in C-RS.Sign. It then invokes the challenger for E on message (vk,URS), receiving

signature o-r. (If the challenger has already been queried on this message (vk, JRS) in

a previous invocation of OSign, then instead of querying the challenger again, use the

same value o-E sent by the challenger in the previous invocation.) It then proceeds as

in steps 4-8 of algorithm C-RS.Sign computing value rcom and commitment c, testing

whether C-RS.VerClaim succeeds (where in the inner invocation of C-RS.Claim we set o'

to be the challenger-produced signature aE instead of running E.Sign), and returning

o-= (URS, C).

•When As&c queries oracle OClaim(,skk) on input (R, o), algorithm B first tests whether

o- was an output returned by a previous invocation of the oracle OSign. If not, it

immediately returns _. If it is, then let or be the signature returned by the challenger

for E on that invocation of OSign. Compute value rcom as in algorithm C-RS.Claim,

and output (= (rcom,0r).

Finally, algorithm B parses (= rm') and outputs or as its forgery.

We now outline a hybrid argument to show that this adversary B breaks the unforgeability

property of the signature scheme.

Hybrid 1. The experiment with adversary B as just described.

Hybrid 2. Instead of the signature scheme challenger using actual randomness to generate

the signatures in the oracle queries to OSign, use pseudorandomness obtained by a PRF

invocation rE = PRF.Eval(skPRF, (vk, o~RS, 0))

Hybrid 3. Instead of responding to both types of oracle queries as above, use actual invoca-

tions of C-RS.Sign and C-RS.Claim, using the secret key skE known to the challenger for the

unforgeability game.

Indistinguishability of Hybrids 1 and 2 follows from the pseudorandomness of the PRF.

For Hybrids 2 and 3, note first that the two experiments behave identically on invocations

of the oracle OSign. It remains to consider invocations of the oracle OClaim. By the binding

property of the commitment scheme and the pseudorandomness of the PRF, with all but

161

negligible probability adversary AS&c in Hybrid 3 will be unable to find an input to the

oracle OClaim that does not yield output _, except for inputs that were previously produced

as output to the oracle OSign. Consequently, except with negligible probability, the oracle

OClaim will behave identically in Hybrids 2 and 3. But Hybrid 3 is exactly the experiment in

Equation 4.25, so with non-negligible probability adversary Askc in this experiment produces

asignature a = (ORS, c) and claim(= (r, or) such that o was not a query to oracle

OClaim(k,k and E.Verify(vkE, a', (vk, URS)) Outputs 1, i.e. a verifies as a valid signature

of the message (vk, URS) under key vkE. By the hybrid argument, it follows that with non-

negligible probability, B successfully produces a valid signature for message (k,URS).

It remains to argue that this signature is a valid forgery, i.e. that its message is distinct

from each of the signatures produced by the challenger. To achieve this, we will make a

small modification to the adversary B; call the new adversary B'. Let L = L(k) be a

(polynomial) upper bound on the number of queries made by B to the oracle OSign, and

choose at random an index i* -[L] On the i*th query to OSign, rather than invoking the ring

signature challenger to obtain aE and computing commitment c, instead choose a random

string a* and compute the commitment with respect to that. By the hiding property of

the commitment scheme, as long as the oracle OClaim is not queried on this signature, the

output of the modified adversary B' is indistinguishable from that of B. We already have by

assumption that with non-negligible probability As&c wins the experiment in Equation 4.25,

but moreover we have with non-negligible probability that in addition either the signature

o produced by ASsc was never the output of oracle OSign (and that i* is greater than

the number of queries made to oracle OSign) or that it was the output of the i*th query

to OSign (and no earlier query). In the latter event, since As&c wins the experiment in

Equation 4.25, this signature cannot have been a query to oracle OClaim, and so in either

case, the behavior of B' is indistinguishable from B. But in either case, the signature a in the

experiment with B' was not produced by invoking the challenger to the signature scheme,

so it follows that (except with negligible probability), the signature o from the claim (

was not produced by the signature scheme challenger. Putting everything together, we have

162

that with non-negligible probability, the adversary ASac in the experiment with B' produces

a valid signature for a message distinct from any message signed by the signature scheme

challenger. This violates the unforgeability property of the signature scheme and yields a

contradiction, and so the third property of Definition 4.3.9 is also satisfied. O

Lemma 4.5.6 (Unforgeability of C-RS). C-RS is unforgeable (in the sense of Defini-

tion 4.3.11).

Proof. The proof is by reduction to the unforgeability of RS. 7 Suppose, for contradiction,

that there is a PPT adversary A that violates unforgeability of C-RS (Definition 4.3.11).

Then we construct another adversary B that violates unforgeability of RS without having

access to a OClaim oracle. On input (vki,..., vkN) which are verification keys of RS, B

behaves as follows.

1. For each i C [N]:

• Sample (vkL, skL) <- E.Gen(1k).

" Sample sk RF<- PRF.Gen(1k).

Let vk = (vki,vk4) and sk* = (ski, sk', skR).

2. Run A on input (vk*,..., vk*), answering A's oracle queries as follows.

(a) For each query (i, m, R) to C-RS.OSign:

" Query RS.OSign on (i, m, R) and receive responseo-RS

•Let rE = PRF.Eval(sk RF,(vi oRS, 0))-

* Let o-r = E.Sign(sk', (vk*, o-RS); rE).

*Let rcom = PRF.Eval(sk RF,(ki, URS, 1)).

" Let c = Com(o-; rcom).

17 Note that the unforgeability guarantee we have on RS is standard unforgeability of ring signatures
(Definition 4.2.8), which does not give the adversary a OClaim oracle. If we had the stronger guarantee
that RS were unforgeable in the presence of a OClaim oracle, then the unforgeability of C-RS would follow
immediately, since signatures of C-RS contain signatures of RS.

163

0 Output o = (URS, C).

(b) For each query (i, R, o) to C-RS.OClaim:

• Parse o as (URS, C).

*Let r = PRF.Eval(sk RF,(vo-RS, 0)).

• Let rOm = PRF.Eval(sk RF, (vk, RS, 1)).

" Let '= E.Sign(sk', (vk',oRS);rT).

*Output(= (r'om, ')-

3. Upon receiving an output (R',I m', o') from A: parse o' as (o-'S, c'), define R" {vki

vk* C R'}, and output (R", m', o'S).

By construction of C-RS and B, whenever A successfully forges with respect to C-RS, B

successfully forges with respect to RS. Moreover, B's responses to A's oracle queries are, by

construction, distributed identically to the oracle responses in the unforgeability experiment

for C-RS. Therefore, A's probability of successful forgery is the same when B runs A in

the above reduction, as in the unforgeability experiment. By our supposition, A's forging

probability in the unforgeability experiment is some non-negligible F, so it follows that A's

forging probability in the above reduction is alsoE, and therefore B's forging probability with

respect to RS is in turnE. This contradicts the unforgeability of RS. The lemma follows. D

Lemma 4.5.7 (Anonymity of C-RS). If RS satisfies anonymity (resp., adaptive anonymity)

against adversarially chosen keys (Definition 4.2.5), then C-RS satisfies anonymity (resp.,

adaptive anonymity) against adversarially chosen keys (Definition 4.3.10).

Proof. We give the proof that C-RS satisfies adaptive anonymity whenever RS satisfies adap-

tive anonymity. The non-adaptive version of the statement has a slightly simpler proof: the

proof follows the same structure, but certain steps of the proof become unnecessary. In the

rest of the proof, we write "anonymity" to mean "adaptive anonymity against adversarially

chosen keys."

164

We begin with a hybrid argument. Recall the anonymity experiment (Definition 4.2.3)

for anonymity against adversarially chosen keys (Definition 4.3.10), shown below as "Hybrid

0."

Anonymity experiment (Hybrid 0)

(vki, ski),. . ., (okN, skN) <- Gen (1')

b- {0, 1}

o+- Sign(R* U {vkg, vki }, skig, m*)

b' AoSign,ociaim),Corr

We now define two signing algorithms Signi and Sign 2 which are slight variants of

C-RS.Sign. For t c {1, 2}, we define Hybrid t to be the same as Hybrid 0 except that

the invocation of Sign in the fourth line of the experiment is replaced by an invocation of

Sign. In the descriptions of Signi and Sign 2 below, changes from the preceding hybrid are

marked in blue, and steps which are entirely removed are "crossed out" and shown in red.

Sign I(R, sk, m)

1. Let URS <- RS.Sign(RS(R), skRS, m).

2. Let rE = PRF.Eval(skPRF, (vk,URS, 0)).-

3. Let oE = E.Sign(skE, (vk,aRS); rE).

4. Let 'Com+ {0. 1}.

5. Let c = Com(ar ; rcom).

6. Output a = (URS, c).-

Sign 2(R, sk, m)

1. Let URS <- RS.Sign(RS(R), skRS, m).

2.Lev

3. Let ffj, =.Sign(ak, (vk, c,,); vr).

4. Let rcom +{0, I".

5. Let c = Com(0; rcom).

6. Output o = (URS, c).

165

Hybrid 1 is indistinguishable from Hybrid 0. This follows from PRF security as long

as there are no other variables in A's view that are correlated with the PRF output in

Hybrid 0, namely, rcom = PRF.Eval(skPRF, (vk, URS, 1)). Since PRF security guarantees that

PRF outputs on different inputs are computationally indistinguishable from uniform and

independent strings, it suffices to establish that nowhere else in the anonymity experiment is

the PRF evaluated on the specific input (vk, URS, 1). The only PRF evaluations during the

experiment are to compute the rE and rcom values used by the OSign oracle when responding

to oracle queries. The PRF inputs used to compute rE values are distinct, by construction,

by from those used to compute rcom values (since the former end in 0 and the latter end in 1).

The PRF inputs used to compute rcom values for OSign queries are also, with overwhelming

probability, distinct from the challenge input (vk, URS, 1). Since each such PRF input is of

the format (vk', a's, 1) where a's is an honestly generated signature under RS, this follows

from the following two observations.

1. The anonymity of RS implies that multiple honestly generated signatures under the

same key pair must be distinct with overwhelming probability. (Otherwise, the adver-

sary could break anonymity by querying a signature under every key in the ring on

many messages, and then checking the challenge signature for equality with any of the

preceding signatures.)

2. The unforgeability of RS implies that honestly generated signatures under an honestly

generated key pair (vk, sk) are distinct from honestly generated signatures under any

other - possibly adversarially generated18 - key pair.

Hybrid 2 is indistinguishable from Hybrid 1. This follows from the hiding property

of the commitment, since all that has changed from Hybrid 1 is the value committed to by

C.

The rest of the proof gives a reduction between Hybrid 2 and the anonymity of RS.

Note that the anonymity guarantee we have on RS is anonymity of standard ring signatures
18 With knowledge of k but not sk.

166

(Definition 4.2.8), which does not give the adversary a OCaim oracle.

Suppose, for contradiction, that there is a PPT adversary A = (A 1, A2) that violates

anonymity of C-RS (Definition 4.3.10). Then we construct another adversary 3 (B1, 132)

that violates anonymity of RS without having access to a OClaim oracle. On input

(vki, ... , vkN) which are verification keys of RS, B1 behaves as follows.

1. For each i c [N], construct vk* = (vki, vk) and skj = (ski, ski, skiRF)eXaCtlyas

described in Step 1 in the proof of Lemma 4.5.6.

2. Run A on input (vk*,...,vk*), answering A's oracle queries exactly as described in

Step 2 in the proof of Lemma 4.5.6.

3. Upon receiving an output ((m',o, i, R'), s') from A: define R" {vki vk E R'}, let

S" be all of 13's internal state, and output ((m', ,i, R"), ").

Then, on input (s", URS) 132 behaves as follows.

1. Let c= Com(0; r) for truly random r.

2. Let = (URS, C).

3. Run A 2 to obtain b' - A2 (s',).

4. Output b'.

A's view between the reduction run by B is identically distributed to A's view in the

experiment of Hybrid 2. Moreover, by construction, B2's guess is correct exactly when

A 2 guesses b' correctly. Therefore, B's success probability in the anonymity experiment

of RS is negligibly close to A's success probability in the anonymity experiment of C-RS.

By supposition, the latter probability is non-negligibly greater than 1/2. It follows that B

violates the anonymity of RS, which is contradiction. The lemma follows. E

Theorem 4.5.8 (Repudiability-and-claimability of C-RS). If RS is repudiable, then C-RS is

a repudiable-and-claimable ring signature scheme. (Definition 4.7.1).

167

Proof (sketch). Suppose RS is repudiable. We need to prove that C-RS satisfies the def-

initions (which are given in Appendix 4.7) of repudiability, claimability, anonymity, and

unforgeability of repudiable-and-claimable ring signature schemes.

The proofs of anonymity and unforgeability are essentially identical to the proofs of Lem-

mata 4.5.7 and 4.5.6, respectively. Those proofs reduce the anonymity/unforgeability of C-RS

to the anonymity/unforgeability of RS (as defined in Section 4.2), respectively, under the as-

sumption that RS is a standard (i.e., not necessarily repudiable) ring signature scheme. The

same proof structure suffices to argue that in the case that RS is a repudiable ring signature

scheme, that the anonymity/unforgeability of C-RS reduces to the anonymity/unforgeability

notions for repudiable ring signature schemes (as defined in Section 4.3.1), which by assump-

tion are satisfed by .RS.

It remains to prove repudiability and claimability of C-RS, according to Definitions 4.7.2

and 4.7.3, respectively.

Repudiability We reduce the repudiability of C-RS to the repudiability of RS. Suppose,

for contradiction, that C-RS did not satisfy Definition 4.7.2. Then the repudiability of RS

could be violated by an adversary A that instantiates its own commitment and signature

schemes and PRF, and runs the adversary B that breaks the repudiability of C-RS, while:

" augmenting each signature under RS with a corresponding commitment so that it

appears indistinguishable from a signature under C-RS in B's view; and

" remembering the commitment randomness for any such commitments; and

" answering oracle calls to OClaim by producing the appropriate decommitments (using

the remembered commitment randomness); and

* answering oracle calls to ORpd by passing them to its own ORpd oracle for RS.

Claimability The proof structure for claimability is very similar to that of Lemma 4.5.5,

which argues that C-RS satisfies each of the three conditions of Definition 4.3.9 in turn.

168

" The argument for the first condition (i.e., that honest claims are validated by VerClaim)

goes through unchanged.

* The argument for the second condition (i.e., that non-signers cannot successfully claim)

also goes through unchanged: the adversary B constructed in the proof of Lemma 4.5.5

has knowledge of the secret key sk, which it can use to answer ORpd queries using the

honest repudiation algorithm.

* The argument for the third condition needs to be augmented with a description of how

B responds to oracle queries to ORpd that are made by A. Just as above, B answers

these oracle queries by running the honest repudiation algorithm. E

4.6 Unclaimable construction

In this section we show how to construct unclaimable ring signatures from lattice as-

sumptions. The scheme is exactly the SIS-based ring signature scheme of Brakerski and

Kalai [BK1O], augmented with an additional algorithm ExtractRandomness.

We first give a very brief summary of necessary background on lattice trapdoors; see

[GPV8] and Appendix 4.10 for details.

4.6.1 Lattice trapdoor sampling

Let q E N, m' C N, and # E Z be functions of security parameter n. The (inhomogeneous,
average-case) short integer solution (SISq,m,) assumption states that given A +- Znxm'

qq
q)- g" it is computationally hard to find x E Z'"' such that Ax = v and ||x|| < 0. For

polynomial m', # and prime q ;> #.(v/n log n), the SIS problem is known to be as hard as

approximating worst-case lattice problems, in particular the Shortest Independent Vectors

Problem (SIVP), to within a factor of3.O(V n) [MR07, GPV08].

Let DA,,,c denote the discrete Gaussian distribution over n-dimensional lattice A, centered

at c C R" and with parameter s. We note the existence of the following algorithms, described

169

in [GPV08]I9.

" There is an algorithm TrapdoorSamp that on input a security parameter I1 produces

amatrix A E Z" and a trapdoor T, where A is statistically close to uniform and T is

a short basis for the lattice A'(A).

" There is an algorithm SampleDist sampling from the discrete Gaussian distribution

Dzm',s,,O

* There is an algorithm SampleCond that on input a matrixA, trapdoor T, parameter

s and vector u, produces a sample x distributed statistically close to the discrete

Gaussian distribution Dzm',So conditioned on Ax = u. We have that ||x||2< sv/j with

probability 1.

We will also require additional algorithms that given output values of the algorithms

SampleDist and SampleCond, respectively, sample randomness under which the algorithm

produces the desired output.

" There is an algorithm ExplainDist that on input an image vector x and parameter s,

samples randomness p that yields output x under algorithm SampleDist, i.e. samples

from the distribution {plSampleDist(s; p) = x}.

* There is an algorithm ExplainCond that on input matrix A, trapdoor T, parameter

s, vector u and image vector x, samples randomness p that yields output x un-

der algorithm SampleCond with inputs (A, T,s,iu), i.e. samples from the distribution

{plSampleCond(A, T, s, U; p) = X}.

We describe the algorithms ExplainDist and ExplainCond in Appendix 4.10. We will use a

slight modification of the SampleCond algorithm of [GPV08] that uses the basis randomiza-

tion technique of [CHKP10]. We need the following lemma.

1 9These are given by thealgorithms TrapGen, SampleD and SamplelSIS in [GPV08].

170

Lemma 4.6.1. Let (A1, T1) and (A 2 , T2) be sampled from TrapdoorSamp, let y c Z', and let

s > max(|| 1 ||, || 2 ||) - w(logn), where the tilde denotes Gram-Schmidt orthogonalization.

Sample vectors x1 and x'2 from SampleDist. Let X2 +- SampleCond(A 2, T2 ,s, y - Aixi), and

let x' - SampleCond (A 1, T 1, s, y - A 2 X'). Then the distributions (A1, T1 , A 2 , T2 , X 1 , X 2) and

(A 1, T1, A 2,T2 ,x', x') are statistically close.

Intuitively, this lemma says that the sampled vectors are distributed the same indepen-

dently of which of the two trapdoors was used. This follows immediately from Lemma 3.3

of [CHKP1O].

4.6.2 The basic construction of [BK10]

We now describe the construction of [BK10]. 2 0 Brakerski and Kalai first construct a base

version of their scheme that satisfies a weaker security notion, and augment it to fully secure

ring signatures in a series of steps.

Let the message space be {0, 1}, and let X = {x C Zq : |I|2 < svm} for some

s = w(fn log nlog q) be the set of "short" vectors.

The key generation algorithm samples a matrix with an SIS trapdoor, and an additional

set of 2f matrices, two corresponding to each bit of the message. It additionally samples a

target vector y, and outputs the matrices and target vector as the verification key and the

trapdoor as the signing key.

BK-RS.Gen(1k)

1. Let (A, T) <- TrapdoorSamp(lk).

2. For (i,b) E [f] x {0,1},letAi,b - nXm'

q*q
3. Lety +-Z.

4. Output vk = (A, (Aj,b)(,b)E[f]X{o,11, y) and sk = (vk, T).
20 The original presentation of [BK10] introduces an abstraction they call ring trapdoor functions, and

instantiates this abstraction from biliear group assumptions as well as the SIS assumption. We present their
SIS-based construction more explicitly, without the additional layer of abstraction, in order to make the role
of the SIS trapdoor more apparent.

171

The signing algorithm proceeds as follows. A target vector y is selected from the lexi-

cographically first verification key. For each identity in the ring, short vectors are sampled

for matrices corresponding to each bit of the message to be signed, as well as the additional

matrix. Finally, the trapdoor in the signing key is used to obtain a short vector, which is

sampled from the same distribution conditioned on having a particular product with the

matrix Ai. corresponding to the signer, i.e., conditioned on Equation 4.26 being satisfied.

The signature consists of the list of short vectors for each identity and each index of the

message.

BK-RS.Sign(R, sk, m; p)

1. Parse R = (vkl,...,vkN) and sk = (vk, T).

2. For i E [N], parse vki = (Ai, (A())(j,b)E[ex{o,1},yi).

3. Let y = yi, where i C [N] is the index for which vki is lexicographically first.

4. If vk i R, output I and halt.

5. Define i* E [N] be such that vki-= vk.

6. Using the trapdoor TA for Ai-, we can sample ()iE[N],j{}U[e] such that

A z + E A(-= y. (4.26)
iC[N] iC[N]

That is, for (i, j) E [N] x {} U [f] other than the pair (i*, 0), we invoke algorithm

SampleDist to sample oe E independently from the discrete Gaussian distributiona

X. Finally, we invoke algorithm SampleCond use the trapdoor T for Ai. to sample

(') from a distribution statistically close to the distribution X conditioned on

Equation 4.26 being satisfied.

7. Output = (Xo))iE[N]jE{}U[]•

The verification procedure simply checks that each vector in the signature has short

entries and that Equation 4.26 is satisfied.

172

BK-RS.Verify(R, o-, m)

1. Parse R = (vkl,..., vkN).

2. For i C [N], parse vki = (Ai, (A()(j,b)E[ex 10,11, Yi).

3. Parse o- = (xz)iE[N]JE{}U[] .

4. For each x(for i E [N],I j E {0} U [], if x(X then immediately reject.

5. Let y = yi, where i E [N] is the index for which Ai. is lexicographically first.

6. Accept if Equation 4.26 above is satisfied, and otherwise reject.

Thus far we have simply described the basic ring signature scheme of [BK1O]. We augment

this scheme by providing an ExtractRandomness algorithm. In order to do so, we must pro-

duce "explaining randomness" that maps to the desired output vector under the algorithms

SampleDist and SampleCond. We do this using algorithms ExplainDist and ExplainCond, as

described in Appendix 4.10.

BK-RS.Extract Randomness(R, sk, o, m)

1. Parse R = (vkl,...,vkN) and sk = (vk, T).

2. For i E [N], parse vki = (Ai, (A)(j,b)e[fxfO,1, yi).

3. Parse or-= (xz)iE[N]jE{O}U[f].

4. If vk V R, output -L and halt.

5. Define i'* E [N] be such that vki- = vk.

6. For (i, j) C [N] x {0} U [f] other than the pair (i*, 0), invoke algorithm ExplainDist

to sample random coins p that produce output xo under the discrete Gaussian

sampling algorithm.

7. Invoke algorithm ExplainCond to sample random coinspo thatproduceoutput
(j*)

X0 under the conditional random sampling algorithm using trapdoor T.

8. Output (p)

173

Theorem 4.6.2. Under the S\Sqm 0assumption, BK-RS is a unclaimable ring signature

scheme satisfying a weak notion of unforgeability in which the challenge is sampled at random

at the beginning of the experiment.

Proof (sketch). Completeness, anonymity and unforgeability are proven in [BK10]. It re-

mains to show that the scheme is unclaimable. Consider the experiment described in Defini-

tion 4.3.12. The components of the signature corresponding to matrices with no trapdoor are

distributed identically on the two sides of the experiment. By the correctness of algorithm

ExplainDist, the components of Pi and P2 corresponding to identities other than vki, vk 2 are

distributed statistically close, jointly with S and the corresponding components of the sig-

nature. It remains to consider the portions of the signature corresponding to identities vki

and vk 2. But Lemma 4.6.1 implies that the distribution of vectors (X), (2)) is statistically

close, regardless of which trapdoor was used to sample. By the correctness of algorithm

ExplainCond, the corresponding components of pi and P2 are also statistically close, even

conditioned on the other values in the experiment. The conclusion follows. E

4.6.3 Unclaimability for the full ring signature scheme of [BK10]

The ring signature scheme just described satisfies a weak notion of unforgeability, in which

the message on which a signature must be forged is sampled at random by the challenger and

sent to the forger in the beginning of the experiment. To achieve full unforgeability, [BK10]

proceed through a sequence of four reductions to construct schemes satsifying successively

stronger notions of unforgeability. We now provide a brief overview of these reductions and

describe how to modify the ExtractRandomness algorithm for each scheme.

The first modified scheme appends a description of the ring to the message to be signed.

This only affects that message, so the ExtractRandomness algorithm is unchanged and is

simply invoked on a different message.

The second modification is the most complicated, and introduces a variant of chameleon

hash functions. A chameleon hash function h is sampled during Gen and is included as part

of the verification key vk. During the Sign algorithm, randomness r is sampled from some

174

distribution, 2 and a value y = h(m, r) is computed, where m is the message to be signed

and h is the hash function corresponding to the lexicographically first identity in the ring.

The previous signature scheme is invoked on message y, and the signature is augmented

to include the randomness r as well. Observe that the only randomness to explain is the

choice of r and the randomness used in the invocation of the previous signature scheme.

Consequently the only modification to ExtractRandomness is that it now must also provide

random coins resulting in a particular choice of the vector r, which is straightforward.

The third modification simply computes a signature under the previous scheme of every

prefix of the message to be signed, and outputs a list of these |ml signatures as its signature.

We can invoke the previous ExtractRandomness algorithm for the previous scheme on each

of these Iml messages. The final modification produces a random pad o as part of the Gen

algorithm, and computes the signature on the exclusive or of the original message with the

pad corresponding to the lexicographically first identity in the ring. This is the full ring

signature scheme of [BK10]. As above, this only affects the message to be signed, and so the

ExtractRandomness algorithm is simply invoked on a different message.

Given the ExtractRandomness algorithm for the weakly-unforgeable ring signature scheme

in the previous section, the modifications we have just described yield a ExtractRandomness

algorithm for the fully-unforgeable ring signature scheme of [BK10]. It is not difficult to

see that this scheme satisfies Definition 4.3.12 and is an unclaimable ring signature scheme.

Consequently, we obtain the following theorem.

Theorem 4.6.3. Under the SSq,f 0assumption, the ring signature scheme of BK10] com-

bined with the ExtractRandomness algorithm described above is an unclaimable ring signature

scheme.

2 The distribution over which r is generated is uniform over the set of vectors with bounded£2 norm, i.e.,
{r C Zm : 0 < |r||12 < } for some m',#.

175

4.7 Definitions for repudiable-and-claimable ring signa-

tures

Definition 4.7.1 (Repudiable-and-claimable ring signature). A repudiable-and-claimable

ring signature scheme is a ring signature scheme with an additional quadruple of algorithms

(Repudiate, VerRepud, Claim, VerClaim) ,

satisfying the five properties of correctness (Definition 4.2.2), repudiability (Defini-

tion 4.7.2) claimability (Definition 4.7.3), anonymity (Definition 4.7.4), and unforgeability

(Definition 4.7.5).

The syntax of (Repudiate,VerRepud) and (Claim,VerClaim) are as defined in Defini-

tions 4.3.3 and 4.3.9 respectively.

Definition 4.7.2 (Repudiability of repudiable-and-claimable ring signatures). A ring sig-

nature scheme E = (Gen, Sign,Verify) satisfies repudiability if equipped with algorithms

(Repudiate, VerRepud, Claim, VerClaim)

such that for any (possibly adversarial) PPT signing algorithm Asign, there exists a neg-

ligible function E such that (4.3) and (4.4) (from Definition 4.3.3) are satisfied when

0 = {OSign, ORpd, OClaim}.

Definition 4.7.3 (Claimability of repudiable-and-claimable ring signatures). A ring signa-

ture scheme E = (Gen, Sign,Verify) satisfies claimability if equipped with algorithms

(Repudiate, VerRepud, Claim, VerClaim)

such that conditions 1, 2, and 3 of Definition 4.3.9 hold when 0 = {OSign, ORpd}.

Definition 4.7.4 (Anonymity of repudiable-and-claimable ring signatures). A repudiable-

176

and-claimable ring signature scheme

(Gen, Sign, Verify, (Repudiate, VerRepud, Claim, VerClaim))

satisfies anonymity against

fadversarially chosen keys, attribution attacks, full key exposure]

if (Gen, Sign, Verify) is ({OSign, ORpd, OClaim}, 0, a)-anonymous (Defnition 4.2.3) for, re-

spectively,

SE{2, 1, 0}

Moreover, the claimable ring signature satisfies the adaptive variants of the above anonymity

definitions if (Gen, Sign, Verify) is ({OSign,ORpd,OClaim},{OSign,ORpd,OClaim},a)-

anonymous for a c {2, 1, } respectively.

Definition 4.7.5 (Unforgeability of repudiable-and-claimable ring signatures). A

repudiable-and-claimable ring signature scheme

(Gen, Sign, Verify, (Repudiate, VerRepud, Claim, VerClaim))

is unforgeable if (Gen, Sign, Verify) is {ORpd, OClaim}-unforgeable (Definition 4.2.7).

4.8 Completing the proof of Lemma 4.4.7

Proof (continued). It remains to show that R-RS satisfies (4.4). Suppose not, for the sake of

contradiction. Then there is a PPT algorithm A&R such that the following probability is

non-negligible:

177

(vki , ski), ... , (vkN, skN) -- Gen (Ik)

(0-, R', m, {kvkeR'\R) +- As R

Vvk E R'\ R, bok +- VerRepud(R', vk, o-, Gk)

b'+- Verify (R', o, m)

R' n R # 0 A A bvk = 1

okcE '\n

Ab'= 1 A Q n {(., m, R')} = I
(4.27)

where R {vki,..., vkN }, 0 {OSign, ORpd}, and Q is the set of queries made to oracle

OSign.

Based on AS&R, we construct another adversary A' to Parallel VRF Game for 2N keys,

as follows. A' first samples

(vki, ski),... , (vkN, SkN) +- Gen(1k)

and parses each vki as

vki (v14,RF (vk"F vk' 2 vk' 3 vk'F)Ap2
vk viRF VRFI RFI RFI RF) i

Next, A' obtains 2N verification keys from the VRF challenger. For notational conve-

nience in the rest of the proof, let these 2N keys be denoted by {vk F3, k iE[N]. Let the
f,3* ,4* 22corresponding 2N secret keys be denoted by {skV ' skRF iE[N]-

Define vk* as

7,.(j 2 (.21 i2 i3,* i4*
Vk* V- =RFk k' VF' VF' vk") pi, 6i)

k RF; =R v vk ' VRF VRF

That is, vk* is identical to vki except that vkvF and vk Fare replaced by vk Fvk .

Let R* = {vk*,..., vk*}. A' then runs As&R on input R*, answering its oracle queries

as follows.

e On query (i", M", R") to OSign: A' runs the honest signing algorithm R-RS.Sign on

2 2 Notethat{skd'F)F }iE[N] are generated by the VRF challenger and not accessible by A'.

178

Pr

input (R" U {vki~}, skin, m"), with the following modification: in step 6, instead of

using skil to generate Y3,T 3 , andy4, T 4 , A' invokes the corresponding VRF oracle for

keys vk "*,Vki 4 *.
VF VRF

•On query (i",",R") to ORpd: A' runs the honest repudiation algorithm

R-RS.Repudiate on input (R" U {vki/}, ski,, a"). (As noted above, skVRF and skVRF

are not used in algorithm R-RS.Repudiate, so A' does not need to invoke the VRF

oracle here.)

Let (a, , n, R') be the output of AS&R. A' parses a = (, ', p) and (Yi, ... ,y4), then

submits (R' m, ip) to the VRF challenger and, for each i c [N], receives responses y,i, Y4,i

corresponding to . If there exists any index i E [N] such that y3,i = y3 or y4,i = y4, A'

outputs 0. Otherwise, A' outputs a random bit. Let us now consider the behavior of A' in

the two cases where the VRF challenger's bit b is equal to 0 and equal to 1.

Case b = 0. In this case, the view of AS&R is identical to the view in (4.27), so by as-

sumption AS&Rwins the game described in (4.27) with non-negligible probability. Note that

whenever AS&Rwins the game, the condition Q n I{(, m, R')} , 0 in (4.27) implies that A

has not previously made an oracle query on the VRF challenge message (R', m, p) during

the query phase. Let us suppose that AS&Rwins the game described in (4.27) and consider

the implications.

By definition, if R-RS.Verify accepts (with non-negligible probability) on input (R' a, m),

then

Vi c [lR'l], ZAP.VerifyL (pi, 7i, (R', m,,))= 1 . (4.28)

R'n R # 0 from our assumption that AS&Rwins the game described in (4.27), and therefore

we have that at least one pi corresponding to some vk' c R'n R is honestly generated. Thus,

the soundness of the ZAP holds w.r.t. this pi, and (4.28) implies that (R', m,1 , W) E L.

Moreover, by the definition of L,

(R', m, 0, Y) E L -- (b 3 V b4), (4.29)

179

where b3 , b4 are as defined in Definition 4.4.4. Expanding the definitions of b3, b4 , we have

that the right-hand side of (4.29) implies:

r/E {34},* E [R'|], ri, .. ., 4, Y s.t. Vi' E [lR'|], j' [M],

VRF.Verify (vk$*44*, (R', m,), y, r; o e) =1 .

Then applying Corollary 4.4.6 (again setting the algorithm V to be VRF.Verify):

implies either

3r/ E {3, 4} and r s.t.

(4.30)

(4.30)

(4.31)
Pr VRF.Verify(vk(*4y*, (R', m, o), yT) = I is overwhelming,

or a negligible probability event occurred. By the complete and unique provability of the

VRF, (4.31) implies that

Ya = VRF.Eval(sk F*,(R', m,))ory4= VRF.Eva(sk *, (R',m,)) (4.32)

Chaining together the implications, we obtain that (4.32) holds with all but negligible prob-

ability conditonioned on the non-negligible-probability event of A&R winning the game

described in (4.27).

Finally, by definition of Parallel VRF Game, when b = 0, for all i c [N],

Y3i=VRF.Eva(sk 3,(R mcp)ady,= VRF.Eva(sk 4 , (R', mI)

It follows that conditioned on b = 0, there is a non-negligible probability that

ei* E [N] s.t. Y3 = Y3,* or Y4 . (4.33)

Recall that (4.33) is the trigger condition for A' to output 0. Therefore, when b = 0, A'

outputs 0 with non-negligible probability (and outputs a random bit the rest of the time).

180

Case b = 1. In this case, y and y are uniformly random and independent of the rest of

the experiment, so with overwhelming probability, they will be distinct from y3,i and y4, for

every i E [N]. Consequently, in this case, with all but negligible probability A outputs a

random bit.

Thus, A' wins Parallel VRF Game with non-negligible probability. This contradicts the

security of the VRF. We therefore conclude that R-RS satisfies (4.4). The lemma follows. LI

4.9 Deferred proofs: anonymity of R-RS

Lemma 4.4.9. R-RS is satisfies adaptive anonymity against adversarially chosen keys (Defi-

nition 4.3.4).

Proof. Suppose that this is not the case. Then there exists some N = poly(k) and PPT

A = (A1, A2) such that the following probability is non-negligibly greater than 1/2, where

I is the set of queries to the corruption oracle and 0 = {OSign, ORpd}:

(vki, ski),..., (vkN, skN) <- Gen(1k)

((m*, iiR*),s)+- Acorr(k, . . . , vkN)

Pr b - {0, 1}

o- Sign(R* U {vkg, vki }, skig, m*)

b' - 2A(corr(I)

We proceed via a sequence of hybrids.

Hybrid 1. The honest experiment, with b = 0.

: b' = bA \{ig, i*} n I = 0

Hybrid 2. Identical to the above, but in the generation of signature a-= (,(yi, ... , y4)), Y2

and y4 are generated at random while yi and y3 are still generated using the VRFs for party

*Z

By the security of the VRF, this hybrid is indistinguishable from Hybrid 1.

181

Hybrid 3. Identical to the above, but in the generation of signature o = (7, (yi,. Y4)),

y2andy4 aregenerated using the VRFs for party i* rather than i*. That is, parsing sky=

((skd}',... ,sk. k),vki), we set

Y2 = VRF.Eval(skilj,(R,m,p))

and

Y4 = VRF.Eva(ski, (R,m,

By the security of the VRF, this hybrid is indistinguishable from Hybrid 2.

Hybrid 4. Identical to the above, but in the generation of signature -, the ZAPs in the

Sign procedure are proven with respect to the witnesses for party i rather than i*. That

is, parsing sk. = ((sk i1 ,... ski 4),vkq), in the invocation of Sign to generate -, let

= VRF.Prove(skRP, (R, m, p)) and T = VRF.Prove(sk'*, (R, m, p)). For each i E [N],

in step 7 of Sign, generate ,i by invoking

ZAP.Prove(pi, stnt, (it1 ,I,'1,',))

instead of using the witness for i.

By the witness indistinguishability property of the ZAP, this hybrid is indistinguishable

from Hybrid 3.

Hybrid 5. Identical to the above, but in the generation of signature o- = (,(yi, ... , y4)), y1

and y3 are generated at random while Y2 and y4 are still generated using the VRFs for party

i*.

By the security of the VRF, this hybrid is indistinguishable from Hybrid 4.

Hybrid 6. Identical to the above, but in the generation of signature o- = (', (yi, ... , y4)), yi

and y3 (as well as Y2 and y 4) are now generated using the VRFs for party i*.

By the security of the VRF, this hybrid is indistinguishable from Hybrid 5.

182

Hybrid 7. The honest experiment, with b = 1.

By the witness indistinguishability property of the ZAP, this hybrid is indistinguishable

from Hybrid 6. l

4.10 Explaining randomness of discrete Gaussian sam-

ples

Our construction requires "explaining" algorithms ExplainDist and ExplainCond. ExplainDist

must, on input (x,1y), output p distributed according to the conditional distribution

p I SampleDist(; p) = y }

Similarly, ExplainCond must, on input (x,y), output p distributed according to

{p | SampleCond(; p) = y }

In this appendix, we outline how this "explaining randomness" is able to be efficiently

computed according to the required distribution.

In our underlying instantiation, as in the original construction of [BK10]:

• SampleDist is instantiated by the function SampleD(B, s, c) defined in [GPV07, §4.21.

" SampleCond is instantiated by the function SampleSIS(A, T, s, u) defined in [GPV07,

§5.3.2].

We first recall the basis randomization technique of [CHKP1O]. In the following, tildes

denote Gram-Schmidt orthogonalization.

Lemma 4.10.1 (Lemma 3.3 in [CHKP10]). There exists a probabilistic polynomial-time

algorithm RandBasis(T, s) that takes as input a basis T of an m'-dimensional integer lattice

and a parameter s ;> ||I' -w(v logn), and outputs a basis T' for the same lattice, such that:
23We cite the full version here for the detailed description of the function; the conference version is [GPV08].

183

1. With overwhelming probability, || RandBasis(T, s)|| < s - y

2. For any pair of bases T1,T2 for the same lattice and any s > max(||i||, ||t2|) -

w(v/logn), the outputs of RandBasis(T1 ,s) and RandBasis(T2,s) have negligible sta-

tistical distance.

We now describe the relatively simple algorithms SampleD and SamplelSIS in order to out-

line how one can efficiently compute randomness to explain any particular output. SampleISIS

invokes SampleD, and SampleD in turn invokes a simpler algorithm SampleZ which is also

defined in [GPV07]. We describe these three algorithms in the order they are listed in the

preceding sentence.

Definition 4.10.1. SamplelSIS takes as input (A,T, s,u) where A and T are matrices, s is

a Gaussian parameter, and u is a vector.

1. Let T' +-- RandBasis(T, s).

2. By Gaussian elimination, choose an arbitrary t such that At = u (mod q).

3. Sample v +- SampleD(T', s, -t).

4. Output e = t + v.

Claim 4.10.2. There is an efficient algorithm for ExplainCond if there is an efficient algo-

rithm for ExplainDist.

Proof. Essentially, the claim follows from the fact that Step 3 is the only randomized step in

SamplelSIS. Recall that ExplainCond needs to correctly sample the randomness distribution

of SampleCond (i.e., SamplelSIS) conditioned on a particular input and output. Given the

input, t (Step 2) can be computed deterministically. Finally, given the output e and t,

it remains only to explain the randomness of SampleD conditioned on input (T, s, -t) and

output e - t. E:1

Definition 4.10.2. SampleD takes as input (B,s,c) where B = (b 1,...., b) is a matrix

describing a lattice basis, s is a Gaussian parameter, and c is a vector.

184

1. Let v, := 0 (the zero vector) and c, := c. For i = n, ... , 1:

(a) Let c := (ci, b)/(6, 6) E R ands= s/|bill2 > 0-

(b) Sample zi +- SampleZ(s', c').

(c) Let c := ci - zibi and let vi- := vi + zibi.

2. Output vo.

Claim 4.10.3. There is an efficient algorithm for ExplainDist if there is an efficient algorithm

to "explain SampleZ" - i.e., an efficient algorithm that, on input (s,c, x), samples from the

following distribution:

{p I SampleZ(s, c; p) = x. (4.34)

Proof (sketch). Each output of SampleDist on a given input induces a unique set of zis - in

other words, as noted in [GPV07], there is a bijective correspondence between the random

choices of the zis and the output. After recovering these zis, it remains only to explain the

randomness of SampleZ conditioned on inputs (s' , c') and outputs zi for each i. l

Definition 4.10.3. SampleZ takes input (s,c) where s is a Gaussian parameter and c G R.

In the following, t(n) E w(log(n)) is some fixed function, say, t(n) log(n); Ber(p)

denotes the Bernoulli distribution with probability p of outputting 1; and ps() is the Gaussian

measure, defined as p,(x) = exp(-7||x||2/s2)

1. Let X = Z n [c -s -t(n), c + s -t(n)] and sample uniformly x *- X.

2. Sample b +- Ber(p,(x - c)).

3. If b = 1, output x. Else, go back to step 1.

Claim 4.10.4. There is an efficient algorithm that, on input (s,c,x), samples from the

distribution described in (4.34).

Proof (sketch). SampleZ consists of rejection sampling based on a biased coinflip, where the

bias depends on the present sample x. The randomness p to explain a particular output of

185

SampleZ can be thought to consist of a series of "rejected" samples x 1,..., xf_1 followed by

the "accepted" sample x (which must be equal to x). The length f of this sequence follows a

geometric distribution parametrized by the expected bias #over the entire domain X. That

is,

ps(z - C).

Once a value of £ is sampled from the appropriately parametrized geometric distribution, it

remains only to sample the "failed attempts" xi, ... ,o-1. This can be done by the following

procedure. For each i E [f - 1]:

1. Sample uniformly x' <- X.

2. Sample b <- Ber(p,(x' - c)).

3. If b = 0, then set xi := x' and continue. Else, go back to Step 1.

F-1

186

Part III

Differential privacy

187

188

Chapter 5

Private shortest paths and distances

This chapter is based on the work [Sea16].

5.1 Introduction

5.1.1 Differential privacy and our model

Privacy-preserving data analysis is concerned with releasing useful aggregate information

from a database while protecting sensitive information about individuals in the database.

Differential privacy [DMNS06] provides strong privacy guarantees while allowing many types

of queries to be answered approximately. Differential privacy requires that for any pair of

neighboring databases x and y, the output distributions of the mechanism on database x

and database y are very close. In the traditional setting, databases are collections of data

records and are considered to be neighboring if they are identical except for a single record,

which is thought of as the information associated with a single individual. This definition

guarantees that an adversary can learn very little about any individual in the database, no

matter what auxiliary information the adversary may possess.

A new model We introduce a model of differential privacy for the setting in which

databases are weighted graphs (9, w). In our setting, the graph topology g = (V, S) is

189

assumed to be public, and only the edge weights w : 8- R+ must be kept private. Indi-

viduals are assumed to have only bounded influence on the edge weights. Consequently, two

weight functions on the same unweighted graph are considered to be neighbors if they have

f1 distance at most one.

The model is well suited to capture the setting of a navigation system which has access

to current traffic data and uses it to direct drivers. The travel times along routes provided

by the system should be as short as possible. However, the traffic data used by the system

may consist of private information. For instance, navigation tools such as Google Maps and

Waze estimate traffic conditions based on GPS locations of cars or based on traffic reports by

users. On the other hand, the topology of the road map used by the system is non-private,

since it is a static graph readily available to all users. We would like to provide information

about paths and distances in the network without revealing sensitive information about the

edge weights. In this paper we introduce a variant of differential privacy suitable for studying

network routing, and provide both algorithms and lower bounds.

5.1.2 Our results

We will consider two classic problems in this model which are relevant for routing. First,

we are interested in finding short paths between specified pairs of vertices. We cannot hope

always to release the shortest path while preserving privacy, but we would like to release

a path that is not much longer than the shortest path. Here the approximation error is

the difference in length between the released path and the shortest path. Second, we would

like to release distances between pairs of vertices. The approximation error here is the

absolute difference between the released distance and the actual distance. As we discuss

below, releasing an accurate distance estimate for a single pair of vertices in our model is a

straightforward application of the Laplace mechanism of [DMNS06]. We focus on the more

difficult problem of releasing all-pairs distances privately with low error.

Interestingly, all of our error bounds are independent of the sum of the edge weights

||w1li, which corresponds most naturally to the size of the database under the usual setting

190

for differential privacy. Instead, they depend only on the number of vertices |V| and edges

|El in the graph and the privacy parameters E and 6. Our error bounds constitute additive

error. Consequently, if the edge weights are large, the error will be small in comparison.

Approximate shortest paths We consider the problem of privately releasing an approx-

imate shortest path. We provide a strong reconstruction based lower bound, showing that

in general it is not possible under differential privacy to release a short path between a pair

of vertices with additive error better than Q(IVI). Our lower bound is obtained by reducing

the problem of reconstructing many of the rows of a database to the problem of finding a

path with low error.

We also show that a simple E-differentially private algorithm based on the Laplace mech-

anism of [DMNS06] comes close to meeting this bound. If the minimum-weight path between

a pair of vertices s, t consists of at most k edges, then the weight of the path released by

our algorithm is greater by at most O(k log|VI)/E. Since k < IVI, the weight of the released

path is O(|V log|VI)/E greater than optimal. Note that when the edge weights are large,

the length of a path can be much larger than (|V log|VI)/s, in which case our algorithm

provides a good approximation. Moreover, for many networks we would expect that shortest

paths should be compact and consist of few vertices, in which case the accuracy obtained

will be much greater. The algorithm releases not only a single path but short paths between

every pair of vertices without loss of additional privacy or accuracy.

Approximate all pairs distances For the problem of privately releasing all-pairs dis-

tances, standard techniques yield error O(|V log|V|)/ for each query under E-differential

privacy. We obtain improved algorithms for two special classes of graphs, trees and arbitrary

graphs with edges of bounded weight.

For trees we show that a simple recursive algorithm can release all-pairs distances with

error O(log 2 3|VI)/E. Implicitly, the algorithm finds a collection C of paths with two proper-

ties. Every edge is contained in at most log |V| paths, and the unique path between any pair

of vertices can be formed from at most 4log|V paths in C using the operations of concate-

191

nation and subtraction. The first property implies that the query consisting of the lengths

of all of the paths in C has global C1 sensitivity log|VI, so we can release estimates of the

lengths of all paths in C with error roughly log|VI using the standard Laplace mechanism

[DMNS06]. The second property implies that we can use these estimates to compute the

distance between any pair of vertices without too much increase in error. We first reduce

the approximate all-pairs distances problem to the problem of approximating all distances

from a single fixed vertex. We then solve the single-source problem recursively, repeatedly

decomposing the tree into subtrees of at most half the size.

In the special case of the path graph, releasing approximate all-pairs distances is equiva-

lent to query release of threshold functions on the domain X = S. The results of [DNPR10]

yield the same error bound that we obtain for computing distances on the path graph. Con-

sequently our algorithm for all-pairs distances on trees can be viewed as a generalization of

a result for private query release of threshold functions.

For bounded-weight graphs we show that we can generate a set of vertices Z C V such

that distances between all pairs of vertices in Z suffice to estimate distances between all

pairs of vertices in V. The required property on Z is that every vertex v E V is connected to

a vertex z, E Z by a path consisting of few vertices. Since we can always find a set Z that

is not too large, we can release distances between all pairs of vertices in Z with relatively

small error. The distance between a pair of vertices u, v E V can then be approximated by

the distance between nearby vertices z, z, E Z. In general, if edge weights are in [0, M]

for- < ME < |VI, then we can release all pairs shortest paths with an additive errorLvi
of O(vlMoE-110g(1/)) per path under (E,6)-differential privacy for any E,6 > 0. Note

that the distance between a pair of vertices can be as large as IVI - M, so this error bound

is nontrivial. For specific graphs we can obtain better bounds by finding a smaller set Z

satisfying the necessary requirements.

Additional problems We also consider two other problems in this model, the problem of

releasing a nearly minimal spanning tree and the problem of releasing an almost minimum

weight perfect matching. For these problems, the approximation error is the absolute dif-

192

- 1 1- -l I . - . 11 ;R1!1"pjF'O

ference in weight between the released spanning tree or matching and the minimum-weight

spanning tree or matching.

Using a similar argument to the shortest path results of Section 5.5, we provide lower

bounds and algorithms for these problems. Through a reduction from the problem of recon-

structing many rows in a database, we show that it is not possible under differential privacy

to release a spanning tree or matching with error better than Q(IVI). Using a simple algo-

rithm based on the Laplace mechanism of [DMNS06], we can privately release a spanning

tree or matching with error roughly (lV log|VI)/s. These results are presented in Appendix

5.7.

Future directions In this work we describe differentially private algorithms and lower

bounds for several natural graph problems related to network routing. We would like to

explore how well our algorithms perform in practice on actual road networks and traffic

data. We would also like to develop new algorithms for additional graph problems and to

design improved all-pairs distance algorithms for additional classes of networks. In addition,

lower bounds for accuracy of private all-pairs distances would be very interesting.

Scaling Our model requires that we preserve the indistinguishability of two edge weight

functions which differ by at most 1 in f1 norm. The constant 1 here is arbitrary, and the

error bounds in this paper scale according to it. For instance, if a single individual can only

influence edge weights by 1/V| rather than 1 in f1 norm, then we can privately find a path

between any pair of vertices whose length is only O(log|V|)/s longer than optimal rather

than O(|V log|V|)/e. The other results in this paper can be scaled similarly.

5.1.3 Previous work on graphs and differential privacy

Why a new model? The two main models which have been considered for apply-

ing differential privacy to network structured data are edge and node differential privacy

[HLMJ09, BBDS13, KNRS13, KRSY14]. Under edge differential privacy, two graphs are

considered to be neighbors if one graph can be obtained from the other by adding or remov-

193

ing a single edge. With node differential privacy, two graphs are neighbors if they differ only

on the set of edges incident to a single vertex.

However, the notions of edge and node differential privacy are not well suited to shortest

path and distance queries. Consider an algorithm that releases a short path between a

specified pair of vertices. Any useful program solving this problem must usually at least

output a path of edges which are in the graph. But doing so blatantly violates privacy under

both the edge and node notions of differential privacy, since the released edges are private

information. Indeed, an algorithm cannot release subgraphs of the input graph without

violating both edge and node differential privacy because this distinguishes the input from

a neighboring graph in which one of the released edges is removed.

What if we simply want to release the distance between a pair of vertices? In general

it is not possible to release approximate distances with meaningful utility under edge or

node differential privacy, since changing a single edge can greatly change the distances in

the graph. Consider the unweighted path graph P and any pair of adjacent vertices x, y

on the path. Removing edge (x, y) disconnects the graph, increasing the distance between

x and y from 1 to oc. Even if the graph remains connected, the removal of an edge does

not preserve approximate distances. Consider any pair of adjacent vertices x, y on the cycle

graph C. Here, removing edge (x, y) increases the distance between x and y from 1, the

smallest possible distance, to IV| - 1, the largest possible distance. Hence, the edge and

node notions of differential privacy do not enable the release of approximate distances. This

inadequacy motivates the new notion of differential privacy for graphs introduced in this

work.

A histogram formulation A database consisting of elements from a data universe U can

be described by a vector D E NA, where the ith component of the vector corresponds to

the number of copies of the ith element of U in the database. More generally, we can allow

the database to be a point in RI1I, which corresponds to allowing a fractional number of

occurrences of each element. Since an edge weight function w is an element of R' and the

notions of sensitivity coincide, we can rephrase our model in the standard differential privacy

194

framework.

Consequently, we can use existing tools for privately answering low sensitivity queries

to yield incomparable results to those presented in this paper for the problem of releasing

all-pairs distances with low error. If all edge weights are integers and the sum 1wlli of the

edge weights is known, we can release all-pairs distances with additive error

O(V/lw l1 - log |VI log"(1/6)/6)

except with probability 6 using the (E, 6)-differentially private boosting mechanism of

[DRV1O]. The assumption that ||wl1i is known is not problematic, since we can privately

release a good approximation. We can also extend the algorithm to noninteger edge weights

for the queries in our setting, although we obtain a worse error bound. We do this by

modifying the base synopsis generator of [DRV10] to produce a database in (N)I whose

fractional counts are integer multiples of T = a/(2|VI), where a will be the obtained

additive approximation. The modified algorithm releases all-pairs distances with error

O(/||wfl - IV I log 4 / 3 (1/5)/2/3).

This error bound has a better dependence on |V| than the algorithms for all-pairs dis-

tances in general and weighted graphs described in Section 5.4. However, it has a substantial

dependence on jjw1li, while the error bound for all algorithms in the remainder of this pa-

per are independent of ||w||1. In addition, the running time of the algorithm of [DRV1O]

is exponential in the database size, while all algorithms described below run in polynomial

time.

Additional related work While the private edge weight model explored in this work is

new, a few previous works have considered problems on graphs in related models. Nissim,

Raskhodnikova and Smith [NRS07] consider the problem of computing the cost of the min-

imum spanning tree of a weighted graph. They introduce the notion of smooth sensitivity,

which they use to compute the approximate MST cost. In their work, edge weights are

bounded, and each weight corresponds to the data of a single individual. In contrast, we

195

allow unbounded weights but assume a bound on the effect an individual can have on the

weights.

Hsu et al. [HHR+14] consider the problem of privately finding high-weight matchings in

bipartite graphs. In their model, which captures a private version of the allocation problem,

two weightings of the complete bipartite graph are neighbors if they differ only in the weights

assigned to the edges incident to a single left-vertex, which correspond to the preferences of

a particular agent. They show that the problem is impossible to solve under the standard

notion of differential privacy. They work instead under the relaxed notion of 'joint differential

privacy," in which knowledge of the edges of the matching which correspond to some of the

left-vertices cannot reveal the weights of edges incident to any of the remaining left-vertices.

A series of works has explored the problem of privately computing the size of all cuts

(S,S) in a graph. Gupta, Roth and Ullman [GRU12] show how to answer cut queries with

O(VI") error. Blocki et al. [BBDS12] improve the error for small cuts. Relatedly, Gupta

et al. [GLM+101 show that we can privately release a cut of close to minimal size with error

O(log|VI)/, and that this is optimal. Since the size of a cut is the number of edges crossing

the cut, it can also be viewed as the sum of the weights of the edges crossing the cut in a

{0, 1}-weighting of the complete graph. Consequently the problem can be restated naturally

in our model.

As we have discussed, the problem of approximating all threshold functions on a totally

ordered set is equivalent to releasing approximate distances on the path graph. In addition

to the work of Dwork et al. [DNPR1O] described above, additional bounds and reductions

for query release and learning of threshold functions are shown in Bun et al. [BNSV15].

5.2 The privacy model

Letg= (V, S) denote an undirected graph with vertex set V and edge set , and let

w : 8 R+ be a weight function. (The shortest path results in Section 5.5 also apply to

directed graphs.) LetV= IV| and E = |El be the number of vertices and edges, respectively.

196

Let P% denote the set of paths between a pair of vertices x, y E V. For any path P E Pxy,

the weight w(P) is the sum EEp w(e) of the weights of the edges of P. The distance dw(x, y)

from x to y denotes the weighted distance minE-p w(P). We will denote the unweighted

or hop distance from x to y by h(x, y) = minFspx (P), where the hop length f(P) of path

P = (vo, . . . , vf) is the number f of edges on the path. Let the shortest path SP"(x, y) denote

a path from x to y of minimum possible weight w(SPw(x, y)) = d,(x, y).

We now formally define differential privacy in the private edge weight model.

Definition 5.2.1. For any edge set S, two weight functions w,w' : S - R+ are neighbor-

ing, denoted w - w', if

w-w'||1= |w(e) - w'(e)| 1.
eGE

Definition 5.2.2. For any graph = (V, E), let A be an algorithm that takes as input a

weight function w : S -+ R+. A is (F,6)-differentially private on g if for all pairs of

neighboring weight functions w,w' and for all sets of possible outputs S, we have that

Pr[A(w) E S] < e Pr[A(w') C S] + 6.

If 6 = 0 we say that A is E-differentially private on g.

For a class C of graphs, we say that A is (E, 6)-differentially private on C if A is (E, 6)-

differentially private on for all ; C C.

We now define our accuracy criteria for the approximate shortest paths and distances

problems.

Definition 5.2.3. For the shortest path problem, the error of a path P E Py between

vertices x, y is the difference w(P) - dw(x, y) between the length of P and the length of the

shortest path between x and y.

Definition 5.2.4. For the approximate distances problem, the error is the absolute differ-

ence between the released distance between a pair of vertices x, y and the actual distance

197

d,(x, y).

5.3 Preliminaries

We will now introduce a few basic tools which will be used throughout the remainder of this

paper. A number of differential privacy techniques incorporate noise sampled according to

the Laplace distribution. We define the distribution and state a concentration bound for

sums of Laplace random variables.

Definition 5.3.1. The Laplace distribution with scale b, denoted Lap(b), is the distribu-

tion with probability density function given by

1
p(x) = exp(-zl /b).

2b

If Y is distributed according to Lap(b), then for any t > 0 we have that Pr[|Y| > t -b] = e-t.

Lemma 5.3.1 (Concentration of Laplace random variables [CSS10). Let X1 ,... , Xt be

independent random variables distributed according to Lap(b), and let X = 2 Xi. Then for

all yc(0,1) we have that with probability at least 1 -- ,

|X| < 4bvdln(2/) = O(bV'log(1/y)).

One of the first and most versatile differentially private algorithms is the Laplace mech-

anism, which releases a noisy answer with error sampled from the Laplace distribution with

scale proportional to the sensitivity of the function being computed.

Definition 5.3.2. For any function f : X -+ Rk, the sensitivity

Af = max ||f (w) - f (w')|1,

is the largest amount f can differ in £I norm between neighboring inputs.

198

In our setting we have X = (R+)'.

Lemma 5.3.2 (Laplace mechanism [DMNS06]). Given any function f : X - Rk, the

Laplace mechanism on input w c X independently samples Y1,..., ,Y according to Lap(Af /E)

and outputs

Mf,(w) = f (w) + (Y1.., Y).

The Laplace mechanism is E-differentially private.

Finally, we will need the following results on the composition of differentially private

algorithms.

Lemma 5.3.3 (Basic Composition, e.g. [DKM+06]). For any E, 6 > 0, the adaptive com-

position of k (E,6)-differentially private mechanisms is (kE, k0)-differentially private.

Lemma 5.3.4 (Composition [DRV1, DR13]). For any E, 6,6' > 0, the adaptive composition

of k (E, 6)-differentially private mechanisms is (E', k0+ ')-differen-tially private for

E' = VI2k In(1/o') - E + kE(eE - 1)

which is O(klIn(1/6') - E) provided k < 1/2. In particular, if E' e (0,1),6,6' > 0, the

composition of k (E, 6)-differentially private mechanisms is (8', k+6')-differentially private

for8 O('/k kln(1/6')).

5.4 Computing distances

In this section we consider the problem of releasing distance oracle queries in the private

edge weights model. Since neighboring weight functions differ by at most 1 in f1 norm, the

weight of any path also changes by at most 1. Consequently, a single distance oracle query is

sensitivity-1, and so we can use the Laplace mechanism (Lemma 5.3.2) to answer it privately

after adding noise proportional to 1/. However, what if we would like to learn all-pairs

distances privately?

199

There are V 2 pairs (s, t) of vertices, so we can achieve E-differential privacy by adding to

each query Laplace noise proportional to V 2/. We can do better using approximate differ-

ential privacy (6 > 0) and Lemma 5.3.4 (Composition). Adding Laplace noise proportional

to 1/E' to each query results in a mechanism that is (V' 2ln(1/)+V2 ,,(CE - 1), 6)-

differentially private for any 6 > 0. Taking E' = E/O(V ln 1/) for E < 1, we obtain a

mechanism that is (E, 6)-differentially private by adding O(V Vln1/6)/E noise to each query.

The other natural approach is to release an E-differentially private version of the graph

by adding Lap(1/E) noise to each edge. This will be the basis for our approach in Algorithm

10 for computing approximate shortest paths. With probability 1- , all E Laplace random

variables will have magnitude (1/E)log(E/), so the length of every path in the released

synthetic graph is within (V/IE) log(E/-) of the length of the corresponding path in the

original graph. Therefore with probability 1 - - we have that all pairs distances in the

released synthetic graph will be within (V/&)log(E/y) of the corresponding distances in the

original graph.

Both of these approaches result in privately releasing all pairs distances with additive

error roughly V/I. It is natural to ask whether this linear dependance on V is the best

possible. In the remainder of this section we present algorithms which substantially improve

on this bound for two special classes of graphs, trees and arbitrary graphs with edges of

bounded weight. For trees we can obtain all-pairs distances with error polylog(V)/E, and for

graphs with edges in [0, M] we can obtain all-pairs distances with error roughly VVM/s.

5.4.1 Distances in trees

For trees it turns out to be possible to release all-pairs distances with far less error. We will

first show a single-source version of this result for rooted trees, which we will then use to

obtain the full result. The idea is to split the tree into subtrees of at most half the size of

the original tree. As long as we can release the distance from the root to each subtree with

small error, we can then recurse on the subtrees.

The problem of privately releasing all-pairs distances for the path graph can be restated

200

as the problem of privately releasing threshold functions for a totally ordered data uni-

verse of size E = V - 1. Dwork et al. [DNPR1O] showed that we can privately maintain

a running counter for T timesteps, with probability 1 - 7 achieving additive accuracy of

O(log(1/'y)log 2 5T/E) at each timestep. This algorithm essentially computes all threshold

queries for a totally ordered universe of size T, which is equivalent to computing the distance

from an endpoint to each other vertex of the path graph. We match the accuracy of the

[DNPR1] algorithm and generalize the result to arbitrary trees.

In Appendix 5.6 we provide an alternate algorithm for the path graph which achieves

the same asymptotic bounds. This result can be viewed as a restatement of the [DNPR1O]

algorithm.

Theorem 5.4.1 (Single-source distances on rooted trees). Let T = (VE) be a tree with

root vetex vo, and let E > 0. Then there is an algorithm that is E-differentially private on T

that on input edge weights w : S - R+ releases approximate distances fromv0 to each other

vertex, where with probability 1 - y the approximation error on each released distance is

O(log'-5 V - log(1/Y))/E

for any y E (0, 1).

Proof. Given the tree T and root vo, we will partition V into subtrees of size at most V/2

as shown in Figure 5-1 and recursively obtain distances in each subtree. There exists some

vertex v* such that the subtree rooted at v* contains more than V/2 vertices while the

subtree rooted at each child of v* has at most V/2 vertices. The topology of the graph is

public, so we can release vertex v*. Let vi, . . . , vt be the children of v*, and let T = (Vi, S)

be the subtree rooted at vi for each iE [t]. Let To = (Vo, So) be the subtree rooted at vo

consisting of the remaining vertices V \ (V 1 U ... U Vt).

We can compute and release distances between the following pairs of vertices, adding

Lap(log V/I) noise to each distance:

201

- o - - •

TO: V0

V*

Figure 5-1: The partition used in Algorithm 8 to separate
V/2.

I V2 *.

I Vt *.

a tree into subtrees of size at most

•(vo,v*)

S(v*, vi) for each i E [t]

Since v* is the parent of vi,...,vt in the tree rooted at vo, the path from vo to v* in T

contains none of the edges (v*, vi) for i E [t], so the function which releases these t + 1

distances is sensitivity-1.

We then recursively repeat the procedure on each subtree T,... , 7until we reach trees

containing only a single vertex, adding Lap(log V/IE) noise to each released value. Each

subtree has size at most V/2, so the depth of recursion is bounded by log V. The subtrees

,... , 7 are also disjoint. Consequently the function which releases all of the distances at

depth d in the recursion has sensitivity 1 for any d. Therefore the function which releases

all distances queried in this recursive procedure has sensitivity at most log V. Since we add

Lap(logV/E) noise to each coordinate of this function, the algorithm outlined above is an

instantiation of the Laplace mechanism (Lemma 5.3.2) and is e-differentially private.

We now show how these queries suffice to compute the distance from root vertex vo to

each other vertex with small error. The algorithm samples at most 2V Laplace random

variables distributed according to Lap(log V/E), so by a union bound, with probability 1 -7

all of these have magnitude O(log V log(V/'))/e. Consequently to obtain an error bound of

202

Algorithm 8 Rooted tree distances

1: Inputs: Tree T = (V, S), root vo E V, edge weights w : S - R+, and number of vertices
n of original tree.

2: Let v* be the unique vertex such that the subtree rooted at v* has more than V/2 vertices
while the subtree rooted at each child of v* has at most V/2 vertices.

3: Let v, ... , v be the children of v*.

4: Let 7 be the subtree rooted at vi for i E [t], and let To T \ {7 , .. .
5: Sample XV*,T - Lap(log V/I) and let d(v*, T) = d.(vo, v*) + Xv-,.
6: Let d(vo, T) = 0.
7: for each i E [t] do
8: Sample XiT +- Lap(log V/)
9: Let d(vi, T) = d(v*, T)+w((v*,vi)) + X±,7.

10: end for
11: Recursively compute distances in each subtree To,..., T.
12: for each vertex v E V do
13: if v E , then
14: Let d(v, T) = d(vi, T) + d(v, T).
15: end if
16: end for
17: Release d(v, T) for all v E V.

roughly O(log 3 V)/E it suffices to show that any distance in T can be represented as a sum

of O(log V) of the noisy distances released in the algorithm. We will use Lemma 5.3.1 to

obtain a slightly better bound on the error terms.

Let set Q consist of the pairs of vertices corresponding to distance queries made by the

algorithm above. We prove the following statement by induction. For any vertex u E V,

there is a path from vo to u in the graph (V, Q) consisting of at most 2log V edges. The base

case V= 1 is vacuous. For V > 1, note that since subtrees To,. . . , T partition the vertex

set, a must lie in one of them. If u E Ti, then by the inductive assumption on Ti, there is a

path fromvi to a in (V, Q) consisting of at most 2log(V/2) = 2log V - 2 edges. If i = 0 this

already suffices. Otherwise, if i > 0, note that (vo, v*) C Q and (v*, vi) E Q. Consequently

there is a path in (V, Q) from vo to u consisting of at most 2log V edges.

This means that there is a set of at most 2log V distances queried such that the distance

from vo to u consists of the sum of these distances. Consequently by adding these distances

we obtain an estimate for the distance from vo to u whose error is the sum of at most 2log V

203

independent random variables each distributed according to Lap(log V/IE). By Lemma 5.3.1,

we have that with probability at least 1 - y, we compute an estimate of d"(vo, u) with

error O(log 1 5 V. log(1/_))/E for any y E (0, 1). Since differentially private mechanism are

preserved under post-processing, this algorithm satisfies E-differential privacy and computes

distances from v* to each other vertex in T, where with probability at least1- each

distance has error at most O(log1 5 V- log(1/_Y))/E.

We now extend this result to obtain all-pairs distances for trees.

Theorem 5.4.2 (All-pairs distances on trees). For any tree T = (V, S) and E > 0 there is an

algorithm that is E-differentially private on T and on input edge weights w : S -+ R+ releases

all-pairs distances such that with probability 1- , all released distances have approximation

error

O(log2" V.- log(1/_/))/E

for any -y (0, 1). For each released distance, with probability 1 - Ithe approximation error

is O(log" 5 V- log(1/_y))/E.

Proof. Arbitrarily choose some root vertex vo. Use the E-differentially private algorithm of

Theorem 5.4.1 to obtain approximate distances from vo to each other vertex of T. We now

show that this suffices to obtain all-pairs distances.

Consider any pair of vertices x, y, and let z be their lowest common ancestor in the tree

rooted at vo. Then

d,(x, y)= d,(z, x) + d,(z, y)

d. (vo, x) + d.(vo, y) - 2d. (vo, z).

Since with probability 1 - 3- we can compute each of these three distances with error

O(logl. 5 V . log(1/)/E), it follows that we can compute the distance between x and y with

error at most four times this, which is still O(log 1 5 V . log(1/y))/E. By a union bound, for

any 7 E (0, 1), with probability at least 1 - y each error among the V(V - 1)/2 all-pairs

distances released is at most O(log1 5 V log(V/Y))/E = O(log 2 5 V. log(y/.))/.E

204

5.4.2 Distances in bounded-weight graphs

Theorem 5.4.3. For all g, 6, -, M, and E E (0, 1), if 1/V < ME < V then there is an

algorithm A that is (E,6)-differentially private on g such that for all w : E - [0, M], with

probability 1 - y, A(w) outputs approximate all-pairs distances with additive error

0 (V ME-1 - log(1/5) - log(VME/k))

per distance. For any E > 0, g,y, M, if 1/V < ME < V 2 then there is an algorithm B that

is E-differentially private on such that for all w : S -+ [0, M], with probability 1 -y, 3(w)

outputs approximate all-pairs distances with additive error

0 ((VM) 2/3E- 1/3 log(VMe/_y))

per distance.

Algorithm 9 Bounded-weight distances

1: Inputs: g = (V, 8), w : 8 -+ R+, k, M, y,6 ' > 0, k-covering Z.
2: for y,z E Z do

3: Sample Xy,z <- La p(|Z|/') and let ay, :=d,(y, z) + Xy,2
4: end for

5: For v C V, let z(v) E Z denote a vertex in Z with h(v, z(v)) < k.
6: The approximate distance between vertices u, v E V is given by az(),z(v).

To achieve this result, we will find a small subset Z of V such that every vertex v E V is

near some vertex z E Z. We will need the following definition, introduced in [MM75].

Definition 5.4.1. A subset Z c V of vertices is a k-covering if for every v C V there is

some z E Z such that h(v, z) < k, where h is the hop-distance.

A k-covering is sometimes called a k-dominating set (e.g. in [CN82]). The following

lemma shows that we can find a sufficiently small k-covering for any graph g.

Lemma 5.4.4. [MM75 If V > k +1, then g has a k-covering of size at most [V/(k+1)].

205

Proof. Consider any spanning tree T of g and any vertex x E V that is an endpoint of one

of the longest paths in T. For 0 <i <k, let Zi be the subset of V consisting of vertices

whose distance from x in T is congruent to i modulo k +1. It can be shown that each Zi is

a k-covering of T and therefore of . But the k +1 sets Zi form a partition of V. Therefore

some Zi has Zil < [V/(k + 1)], as desired.

Theorem 5.4.5. For any g = (V, S), k, 6 > 0, and y, eE (0, 1), let Z be a k-covering of

g, and let Z = |Z|. Then there is an algorithm A which is (E, 5)-differentially private on g

such that for any edge weight function w : S -± [0, M], with probability 1 - , A(w) releases

all-pairs distances with approximation error

0 (kM + ZE-1 log(Z/y) flog(1/)

per distance.

Proof. There are Z2 pairwise distances between vertices in Z. We can compute and release

noisy versions of each of these distances, adding Lap(Z/E') noise to each. For any Y E (0, 1),

with probability 1- -y we have that each of these Z2 noise variables has magnitude at most

(Z/E') log(Z2/-). By Lemma 5.3.4, for any 6 > 0 releasing this is (E, 6)-differentially private

for'= E O(E/ln 1/6).

But this information allows the recipient to compute approximate distances between any

pair of vertices x, y E V, as follows. Since Z is a k-covering of g, we can find z, z E Z

which are at most k vertices from x and y. Since the maximum weight is M, the weight of

the shortest path between x and z, is at most kM, and similarly for y and zy. Consequently

|d.(x, y) - d.(z., zY)| <2kM.

But we have released an estimate of d.(z,, zy) with noise distributed according to Lap(Z/s).

Consequently with probability1- each of these estimates differs from d"(z, zy) by at

most (Z/s) log(Z 2/-Y). El

206

IRWM --'P I

We obtain a slightly weaker result under pure differential privacy.

Theorem 5.4.6. Letg (V, S). For any k > 0 and 7 E (0, 1), if Z is a k-covering of g of

size Z, then there is an algorithm A that is E-differentially private on g such that for any

w : S -* [0, M], with probability 1- 7, A(w) releases all-pairs distances with approximation

error

O(kM + Z 2E-I log(Z/y))

per distance.

Proof. There are at most Z 2 pairwise distances between vertices in Z, so we can release

approximations of each distance, adding Lap(Z2 /) noise to each distance. With probability

1 - - each of these Z 2 noise variables has magnitude at most (Z2/s) log(Z 2 /y). By Lemma

5.3.3, releasing these distances is E-differentially private. As above, since Z is a k-covering

of g, we can find z,, zy E Z which are at most k vertices from x and y. Consequently

d.(x, z,) < kM and d,(y, zy) kM, so

|d.(x, y) - d.(zx, zy)| I 2kM.

But the released estimate for d.(zx, zy) has noise distributed according to Lap(kM), so with

probability 1--y each of these estimates differs from d,(x, y) by at most O(Z 2 Elog(Z 2/y)),

as desired. F]

We now conclude the proof of Theorem 5.4.3.

Proof of Theorem 5.4.3. Combine Lemma 5.4.4 with Theorem 5.4.5 for k L V/(ME) J
and combine Lemma 5.4.4 with Theorem 5.4.6 for k = [V 2/ 3 /(Me)i/ 3J. l

Note that if we are only interested in the V - 1 distances from a single source, then

directly releasing noisy distances and applying Lemma 5.3.4 yields (E, 6)-differential privacy

with error distributed according to Lap(b) for b= O(Vlog1/6)/e, which has the same

dependence on V as the bound provided by the theorem for releasing all pairs distances.

207

For some graphs we may be able to find a smaller k-covering than that guaranteed by

Lemma 5.4.4. Then we can use Theorems 5.4.5 and 5.4.6 to obtain all-pairs distances with

lower error. For instance, we have the following.

Theorem 5.4.7. Let be the 1 x Y grid. Then for any E, y (0,1) and 6 > 0, we can

release with probability 1 - yall-pairs distances with additive approximation error

VI/3 - O(M + E4 log (V/Y) /log 1/6)

while satisfying (e,6)-differential privacy.

Proof. Let V = [\] x [I], and let Z C V consist of vertices (i, j) E V with i, j both

one less than a multiple of V1 /3. Then Z is a 2V/ 3-covering of g, and also IZ < V1 /3.

Consequently Theorem 5.4.5 implies the desired conclusion. LI

5.5 Finding shortest paths

5.5.1 Lower bound

In this section we present a lower bound on the additive error with which we can privately

release a short path between a pair of vertices. The argument is based on a reduction from

the problem of reconstructing a large fraction of the entries of a database. We show that an

adversary can use an algorithm which outputs a short path in a graph to produce a vector

with small Hamming distance to an input vector, which is impossible under differential

privacy. To that end, we exhibit a "hard" graph g = (V, 8) and a family of weight functions,

and provide a correspondence between inputs x E {0, 1}' and weight functions w : -

{0, 1}.

Theorem 5.5.1. There exists a graphg= (V,) and vertices s,t E V such that for any

algorithm A that is (E,6)-differentially private on g, there exist edge weights w : S -+ {0,1}

for which the expected approximation error of the path A(w) from s to t is at least a=

(V - 1) - -). In particular, for sufficiently small E and 6, a > 0.49(V - 1).

208

(1) (1) (1) e(1) e(1) (1)
1 2 3 4 n-1 en

(0) (0) (0) (0) (0) (0)
eI e2 e3 e4 n-1 en

Figure 5-2: The graph used for the lower bound of Lemma 5.5.2.

Consequently, any differentially private algorithm for approximate shortest paths must

on some inputs have additive error proportional to the number of vertices. Let g = (V, S)

be the (n + 1)-vertex graph with vertex setV= {O,..., n} and two parallel edges e) and

e between each pair of consecutive vertices i- 1, i, as shown in Figure 5-2. (For simplicity

we have defined this is a multigraph, but it can be transformed into a simple graph with the

addition of n extra vertices, changing the bound obtained by a factor of 2.)

Lemma 5.5.2. Let g = (V, S) be the graph defined in the previous paragraph. For any

a, let A be an algorithm that is (E,6)-differentially private on g that on input edge weights

w : 9 -+ {0, 1} produces a path from vertex s = 0 to vertex t = n with expected approximation

error at most a. Then there exists a (2E,(1+e`)6)-differentially private algorithm B which

on input x E {0,1}1 produces y E {0,1}" such that the expected Hamming distance dH (X, y)

is at most a.

Proof. Given an input x E {0, 1}", the corresponding edge weight function wx is given by

WX (e)) = 0 and wx(e(1xi) - 1. That is, for each pair of consecutive vertices i - 1, i, one

of the edges between them will have weight 0 and the other will have weight 1 as determined

by the ith bit of the input x.

The algorithm B is as follows. On input x E {0, 1}, apply A to (!, wx), and let P be the

path produced. Define y E {0, 1} as follows. Let yj = 0 if e E P and y2 = 1 otherwise.

Output y.

We first show that this procedure is differentially private. Given neighboring inputs

xx ' E {0, }l which differ only on a single coordinate xi : x', we have that the associated

weight functions wx and wx, have f1 distance 2, since they disagree only edges e (0 and e(.

209

Consequently, since A is (E, J)-differentially private, we have that for any set of values S in

the range of A,

Pr[A(w,) c S] < e"(e' Pr[A(w,,) G S] +) +3

= e2E Pr[A(wx,) E S] + (1 + ee)>

But algorithm B only accesses the database x through A. Consequently by the robustness of

differential privacy to post-processing, we have that B is (2E, (1+e))-differentially private.

We now show that the expected number of coordinates in which y disagrees with x is at

most a. The shortest path from s to t in g has length 0, so the expected length of the path

P produced by A is at most a. Consequently in expectation P consists of at most a edges

e(1 -x). But yj f xi only if exi) E P, so it follows that the expected Hamming distance

dH(x, y) < a. L

We will now prove two simple and standard lemmas concerning the limits of identifying

rows of the input of a differentially private algorithm. In the first lemma, we show that a

differentially private algorithm cannot release a particular row of its input with probability

greater than +. In essence, for 3 = 0 this can be interpreted as a statement about the

optimality of the technique of randomized response [War65].

Lemma 5.5.3. If algorithm 13 {0, 1}n _ {0, 1} is (E, 6)-differentially private, then if we

uniformly sample a random input X <- Un, we have that for all i,

- +ePr[B(X) / Xi] ;>
1+ eIF

Proof. We have that Pr[B(X) = Xi] is given by

I Pr[B(X-i, 0) = 0] + - Pr[B(X-i, 1)= 1]
2 2

< e- . (Pr[B3(X-i, 1) = 0] + Pr[B(X_j, 0)= 1]) + 62

= e6 Pr[B(X) # Xj] +6

210

so since Pr[B(X) = Xi] = 1 - Pr[B(X) $ Xi],

Pr[B(X)# Xi] 1.1+ e

This immediately implies the following result.

Lemma 5.5.4. If algorithm B : {0, 1}"-' {0, 1}" is (E, 6)-differentially private, then for

some x G {0,1}" we have that the expected Hamming distance dH B(X), X) is at least (1-6)1+eE*

Proof. By Lemma 5.5.3, projecting onto any coordinate i, the probability that Pr[3(X)i #

Xi] for uniformly random X <- Un is at least 1-. Consequently the expected number of

coordinates on which B(X) differs from X is E(dH(B(X), X))> Since this holds for
- 1+eE

X uniformly random, in particular we have that there exists some x E{0, 1}" such that

E(dH(13(X),)) n(1 - 8)
1+e

We now conclude the proof of Theorem 5.5.1.

Proof of Theorem 5.5.1. Assume that there is some algorithm which is (F, 6)-differentially

private on g and always produces a path of error at most a between s and t. Then by

Lemma 5.5.2 we have that there is a (2F, (1I + e'))-differentially private algorithm B which

for all x E {0, 1}" produces y E {0, 1}" such that the expected Hamming distance dH (, y) is

less than a. But by Lemma 5.5.4, for some x the expected Hamming distance E(dH(x, y))

Ie = a, yielding a contradiction.

5.5.2 Upper bound

In this section we show that an extremely simple algorithm matches the lower bound of the

previous section up to a logarithmic factor, for fixed E, . Consider a direct application of the

211

Laplace mechanism (Lemma 5.3.2), adding Lap(1/F) noise to each edge weight and releasing

the resulting values. With high probably all of these E < V 2 noise variables will be small,

providing a bound on the difference in the weight of any path between the released graph

and the original graph. Consequently we can show that if we take the shortest path in the

released graph, with 99% probability the length of the same path in the original graph is

O(V log V)/ longer than optimal.

This straightforward application of the Laplace mechanism almost matches the lower

bound of the previous section. Surprisingly, with the same error bound it releases not just a

short path between a single pair of vertices but short paths between all pairs of vertices.

One drawback of this argument is that the error depends on the size of the entire graph.

In practice we may expect that the shortest path between most pairs of vertices consist of

relatively few edges. We would like the error to depend on the number of hops on the shortest

path rather than scaling with the number of vertices. We achieve this with a post-processing

step that increases the weight of all edges, introducing a preference for few-hop paths. We

show that if there is a short path with only k hops, then our algorithm reports a path whose

length is at most O(k log V/I) longer.

Theorem 5.5.5. For all graphs g and y (0,1), Algorithm 10 is e-differentially private on

G and computes paths between all pairs of vertices such that with probability 1 - , for all

pairs of vertices s,t G V, if there exists a k-hop path of weight W in (G,w), the path released

has weight at most W + (2k/s) log(E/-y).

In particular, if the shortest path in g has k hops, then Algorithm 10 releases a path only

(2k/i) log(E/-y) longer than optimal. This error term is proportional to the number of hops

on the shortest path. Noting that the shortest path between any pair of vertices consists of

fewer than V hops, we obtain the following corollary.

Corollary 5.5.6. For any C E (0,1), with probability 1- -y Algorithm 10 computes paths

between every pair of vertices with approximation error at most (2V/E) log(E/-y).

212

Algorithm 10 Private shortest paths

1:
2:

3:

4:

Inputs: g = (V, E), w : S - R+, y > 0.
for each edge e E E do

Sample Xe - Lap(l/E)
Let '(e) = w (e) + Xe + (1/) log(E/y), where E = I F

5: end for
6: Output w.
7: The approximate shortest path between a pair of vertices x, y E V is taken to be the

shortest path SP.(x, y) in the weighted graph (9, w').

Proof of Theorem 5.5.5. Each random variable Xe is distributed according to Lap(1/F), so

with probability 1 - y we have that IXe I < (1/I) log(1/-) for any y E (0, 1). By a union

bound, with probability 1- -y all E < V 2 of these random variables have magnitude at

most (1/) log(E/7). Conditioning on this event, for each edge e C 8, the modified weight

computed by the algorithm satisfies

w(e) < w'(e) < w(e) + (2/F) log(E/).

Therefore, for any k-hop path P we have that

w(P) < w'(P) < w(P) + (2k/) log(E/y).

For any s, t E V, if Q is the path from s to t produced by the algorithm and Q' is any path

from s to t, then we have that Q is a shortest path under w', so

w(Q) < w'(Q) < w'(Q') < w(Q') + (2f(Q')/) log(E/-y).

F-1

213

5.6 Distances in the path graph

In this section we give an explicit description of the private all-pairs distance algorithm for the

path graph P = (V, E) with vertex set V = [V] and edge set S = {(i, i+1) : i C [V -1]}. This

result is a restatement of a result of [DNPRI1O], and is generalized to trees in Section 5.4.1.

This alternate argument for the special case of the path graph is included for illustration.

The idea behind the construction is as follows. We designate a small set of hubs and store

more accurate distances between consecutive hubs. As long as we can accurately estimate

the distance from any vertex to the nearest hub and the distance between any pair of hubs,

we can use these distances to obtain an estimate of the distance between any pair of vertices.

Given any pair of vertices x, y E V, in order to estimate the distance dist(X, y), we first find

the hubs hx and hy nearest to x and y. We estimate the distance dist(x, y) by adding our

estimates for the distances dist(x, hr), dist(h, hy), and dist(hy, y).

Instead of simply using a single set of hubs, we will use a hierarchical tree of hubs of

different levels. There will be many hubs of low level and only a small number of hubs of

high level. Each hub will store an estimate of the distance to the next hub at the same level

and every lower level. Hubs higher in the hierarchy will allow us to skip directly to distant

vertices instead of accruing error by adding together linearly many noisy estimates. In order

to estimate the distance between a particular pair of vertices x, y C V, we will only consider

a small number of hubs on each level of the hierarchy. Since the total number of levels is

not too large, this will result in a much more accurate differentially private estimate of the

distance between x and y.

Theorem 5.6.1. Let 7 = (V, S) be the path graph on V vertices. For any E > 0, there

is algorithm A that is E-differentially private on P that on input w : S - R+ releases

approimate all-pairs distances such that for each released distance, with probability 1 -- Y

the approximation error is O(log 5 V log(1/_))/E for any ye(0, 1).

Proof. For fixed k, define nested subsets V = So D SiD ... D Sk_1 of the vertex set V= [V]

as follows. Let

Si = {x x {V] : Vi/k x }

214

That is, So consists of all the vertices, and in general Si consists of one out of every Vi/k

vertices on the path. Then |Sj| = V(k-i)/k. Let si,, si,2- ., si,[sj denote the elements of

Si in increasing order, for each i. Using the Laplace mechanism (Lemma 5.3.2), release

noisy distances between each pair of consecutive vertices sij, si,j+1 of each set, adding noise

proportional to Lap(k/E). Note that since the vertices in each Si are in increasing order,

each edge of P is only considered for a single released difference from each set. Consequently

the total sensitivity to release all of these distances is k, so releasing these noisy distances is

E-differentially private. Using post-processing and these special distances, we will compute

approximate all-pairs distances with small error.

For any pair of vertices x, y, consider the path P[x, y] in P between x and y, and let i

be the largest index such that Si contains multiple vertices of P[z, y]. We must have that

Si n P[x, y] < 2V /k, since otherwise Si+1 would contain at least two vertices on P[x, y].

Let xi, yj denote the first and last vertices in Si n P[x, y]. For j < i, let xj denote the first

vertex in S n P[x, xz] and let yj denote the last vertex in S n P[yi, y]. There are at most

1 + VI/k vertices of Sj in P[xj, xj+1], since otherwise this interval would contain another

vertex of S+1. Similarly, there are at most 1I + V/k vertices of Sj in P[yj+ 1,]. Therefore

we can express the distance from xz to xj+1 as the sum of at most V/k distances which were

estimated in Si, and similarly for the distance from yj+1 to yj.

Putting this all together, we can estimate the distance from x = zo to y = yo as the

sum of at most 2(i+1)V/k < 2kVl/ approximate distances which were released. But each

of these distances is released with noise distributed according to Lap(k/E). Consequently

the total error on the estimated distance from x to y is the sum of at most 2kVl/k random

variables distribued according to Lap(k/E). Taking k = log V, the error is the sum of at most

4log V variables distributed according to Lap(log V/IE). By Lemma 5.3.1, with probability

at least 1 - ythe sum of these 4log V variables is bounded by O(log. V log(1/-y))/ for any

7 E (0, 1). Consequently this is anE-differentially private algorithm which releases all-pairs

distances in the path graph P such that for any 7 E (0, 1), with probability at least 1 - -

the error in each released distance is at most O(log" V log(1/))/E. l

215

5.7 Other graph problems

In this section we consider some additional queries on graphs in the private edge weights

model.

5.7.1 Almost-minimum spanning tree

We first consider the problem of releasing a low-cost spanning tree. The work of [NRS07]

showed how to privately approximate the cost of the minimum spanning tree in a somewhat

related privacy setting. We seek to release an actual tree of close to minimal cost under our

model. Using techniques similar to the lower bound for shortest paths from Section 5.5.1, we

obtain a lower bound of Q(V) for the error of releasing a low-cost spanning tree, and show

that the Laplace mechanism yields a spanning tree of cost O(V log V) more than optimal.

Note that in this section edge weights are permitted to be negative.

Theorem 5.7.1. There exists a graph g = (V, 8) such that for any spanning tree algorithm

A that is (E,)-differentially private on g, there exist edge weights w : E -- {0,1} such that

the expected weight of the spanning tree A(w) is at least

ae = (V - 1).
1 + e2e

longer than the weight of the minimum spanning tree. In particular, for sufficiently small e

and 6, a > 0.49(V - 1).

Figure 5-3: (Left) The graph used in the reduction of Lemma 5.7.2. (Right) A single gadget
in the graph used in the reduction of Lemma 5.7.5.

216

We first prove a lemma reducing the problem of reidentifying rows in a database to

privately finding an approximate minimum spanning tree. Let g = (V, S) be the (n + 1)-

vertex graph with vertex set V = {0,..., n} and a pair of edges ef and ef between vertex

0 and each vertex i > 0, as shown in Figure 5-3. (As in Lemma 5.5.2, this is a multigraph,

but we can transform it into a simple graph by adding n extra vertices, changing the bound

obtained by a factor of 2.)

Lemma 5.7.2. Let g be the graph defined in the previous paragraph, and let E, ;6> 0.

For any a, let A be an algorithm that is (E,6)-differentially private on g that on input

w : S -+ {0,1} produces a spanning tree whose weight in expectation is at most a greater

than optimal. Then there exists a (2E,(1+eo)6)-differentially private algorithm B which on

input x e {0,1}1 produces y E {0,1}" such that the expected Hamming distance dH (X, y) is

at most a.

Proof. The outline of the proof is the same as that of Lemma 5.5.2. For input x C 0,1}1,

the corresponding edge weight function wx is given by wx(exi)) = 0 and wx(e Xi) 1,

where xi is the ith bit of x.

We define algorithm B as follows. On input x C {0, 1}, apply A to (, wx), and let T

be the tree produced. Define y C {0, 1}" by setting y, = 0 if e C T and y= 1 otherwise.

Output y.

It is straightforward to verify that B is (2E, (1 + eE6)-differentially private. We now

bound the expected Hamming distance of x and y. The minimum spanning tree in g has

weight 0, so the expected weight of T is at most a and T must consist of at most a edges

e '. But yi xi only if e E T, so in expectation dH(, y) < w(T) < a-

We now complete the proof of Theorem 5.7.1.

Proof of Theorem 5.7.1. Assume that there is some (E, 6)-differentially private algorithm

which on all inputs produces a spanning tree with expected weight less than a more than

optimal. By Lemma 5.7.2, there is a (2E, (1+e)6)-differentially private algorithm which for

all x E {0, 1}" produces y E {0, 1}' with expected Hamming distance less than a. But then

217

Lemma 5.5.4, for some x the expected Hamming distance E(dH(,)) n(1-(e)6)

yielding a contradiction. E

We now show that the Laplace mechanism (Lemma 5.3.2) almost matches this lower

bound.

Theorem 5.7.3. For any , -y> 0 andg (V, S), there is an algorithm A that is E-

differentially private on g that on input w : .- R releases with probability 1 -Y a spanning

tree of weight at most ((V - 1)/E) log(E/y) larger than optimal.

Proof. Consider the algorithm that adds noise Xe distributed according to Lap(1/E) for each

edge e C S and releases the minimum spanning tree on the resulting graph (!, w'). This is

E-differentially private, since it is post-processing of the Laplace mechanism. We now show

that the resulting error is small. By a union bound, with probability 1 - y we have that

JXej < (1/) log(E/) for every e E 8. Consequently, conditioning on this event, if T is the

spanning tree released by the algorithm and T* is the minimum spanning tree, then we have

that

w(T) w'(T) + - log(E/7)

< w'(T*) + - 1 log(E/-y)

2(V - 1)
< m (T*) + -log(E/7).

5.7.2 Low-weight matching

We now consider the problem of releasing a minimum weight matching in a graph in our

model. As for the minimum spanning tree problem, a minor modification of the lower bound

for shortest paths from Section 5.5.1 yields a similar result. For comparison, [HHR+14

use similar reconstruction techniques to obtain a lower bound for a matching problem on

bipartite graphs in a somewhat different model in which all edge weights are in [0,1] and

218

neighboring graphs can differ on the weights of the edges incident to a single left vertex. We

show a lower bound of Q(V) for the error of releasing a low-weight matching tree, and show

that the matching released by the Laplace mechanism has weight O(V log V) greater than

optimal.

The theorems in this section are stated for the problem of finding a minimum weight

perfect matching. We can also obtain identical results for the problem of finding a minimum

weight matching which is not required to be perfect, and for the corresponding maximum

weight matching problems. Our results apply to both bipartite matching and general match-

ing. Note that in this section edge weights are permitted to be negative.

Theorem 5.7.4. There exists a graph = (V, 8) such that for any perfect matching algo-

rithm A which is (F,)-differentially private on g, there exist edge weights w : - {0, 1}

such that the expected weight of the matching A(w) is at least

V1- (1 + e9 6
4 1 + e26

larger than the weight of the min-cost perfect matching. In particular, for sufficiently small

E, 6, a;> 0.12.- V.

The following lemma reduces the problem of reidentification in a database to finding a

low-cost matching. Letg (V,) be the 4n-vertex graph with vertex set V {(bi, b2, c)

bi, b2 E {,1}, c c [n]} and edges from (0, b, c) to (1, b', c) for every b, b' E {0, 1}, c c [n].

That is, 9 consists of n disconnected hourglass-shaped gadgets as shown in Figure 5-3.

Lemma 5.7.5. Let g = (V,E) be the graph defined in the previous paragraph. For any a,

let A be an algorithm that is (E,)-differentially private on g that on input w : 8 - {0,1}

produces a perfect matching of expected weight at most a greater than optimal. Then there

exists a (2s, (1+eF))-differentially private algorithm B which on input x E {0, 1}" produces

y C {0,1}" with expected Hamming distance to x at most a.

Proof. For any input x E {0, 1}, the corresponding weight function w, assigns weight 1 to

the edge connecting vertex (0, 1, i) to (1, 1 - xi, i) for each i C [n], and assigns weight 0 to

219

the other 3n edges. The algorithm B is as follows. On input x E {o, 1}", apply A to (Q, wx),

and let M be the matching produced. Define y E{O0, 1} as follows. Let y = 0 if the edge

from (0, 1, i) to (1, 0, i) is in the matching, and y, = 1 otherwise. Output y.

Algorithm B is clearly (2E, (1+eo)6)-differentially private. We will have that yj / xi only

if the edge from (0, 1, i) to (1, 1- xi, i) is in the matching, so the expected Hamming distance

is at most the expected size of the matching produced by A, which is at most a. l

We now conclude the proof of Theorem 5.7.4.

Proof of Theorem 5.7.4. The result follows by combining Lemma 5.7.5 with Lemma 5.5.4.

Using the Laplace mechanism (Lemma 5.3.2), we obtain a nearly-matching upper bound.

Theorem 5.7.6. For any , -y > 0 and g = (V, 8) containing a perfect matching, there is

an algorithm A that is E-differentially private on g that on input w : S -+ R releases with

probability 1 -- a perfect matching of weight at most (V/E) log(E/m) larger than optimal.

Proof. Consider the algorithm that adds noise Xe distributed according to Lap(1/E) for

each edge e E E and releases the minimum-weight perfect matching on the resulting graph

(!, w'). This is E-differentially private, since it is post-processing of the Laplace mechanism.

We now show that the resulting error is small. With probability 1 - Y we have that IXe
(1/) log(E/-y) for every e E 8. Consequently, conditioning on this event, if M is the

matching released by the algorithm and M* is the minimum-weight matching, then we have

that

w(M) < w'(M) + - log(E/y)
2E

<w/(M*) + - log(E/-y)
2E

V
< w(M*) + - .log(E/).

E

60

220

Chapter 6

Efficiently estimating Erd6s-Renyi

graphs with node differential privacy

This chapter is based on joint work with Jon Ullman {SU19].

6.1 Introduction

Network data modeling individuals and relationships between individuals are increasingly

central in data science. However, while there is a highly successful literature on differentially

private statistical estimation for traditional iid data, the literature on estimating network

models is far less well developed.

Early work on private network data focused on edge-differential-privacy, in which the

algorithm is required to "hide" the presence or absence of a single edge in the graph (see,

e.g. [NRS07, HLMJ09, KRSY14, GRU12, BBDS12, XCT14, KS16], and many others). A

more desirable notion of privacy is node-differential privacy (node-DP), which requires the

algorithm to hide the presence or absence of an arbitrary set of edges incident on a sin-

gle node. Although node-DP is difficult to achieve without compromising accuracy, the

beautiful works of Blocki et al. [BBDS13] and Kasiviswanathan et al. [KNRS13] showed

how to design accurate node-DP estimators for many interesting graph statistics via Lips-

221

chitz extensions. However, many of the known constructions of Lipschitz extensions require

exponential running time, and constructions of computationally efficient Lipschitz exten-

sions [RS16, CD18, CKM+19] lag behind. As a result, even for estimating very simple graph

models, there are large gaps in accuracy between the best known computationally efficient

algorithms and the information theoretically optimal algorithms.

In this work we focus on what is arguably the simplest model of network data, the

Erdois-Ryi graph. In this model, denoted G(n,p), we are given a number of nodes n and

a parameter p E [0, 1], and we sample an n-node graph G by independently including each

edge (i,) for 1< i < j < n with probability p. The goal is to design a node-DP algorithm

that takes as input a graph G ~ G(n, p) and outputs an estimate P of the edge density

parameter p.

Surprisingly, until an elegant recent work of Borgs et al. [BCSZ18j, the optimal accuracy

for estimating the parameter p in a G(n, p) via node-DP algorithms was unknown. Although

that work essentially resolved the optimal accuracy of node-DP algorithms, their construc-

tion is again based on generic Lipschitz extensions, and thus results in an exponential-time

algorithm, and, in our opinion, gives little insight for how to construct an efficient estimator

with similar accuracy.

The main contribution of this work is to give a simple, polynomial-time estimator for

Erd6s-Rnyi graphs whose error very nearly matches that of Borgs et al.'s estimator, and

indeed matches it in a wide range of parameters. We achieve this by giving a more gen-

eral result, showing how to optimally estimate the edge-density of any graph whose degree

distribution is concentrated in a small interval.

222

6.1.1 Background on Node-Private Algorithms for Erd6s-

Ranyi Graphs

Without privacy, the optimal estimator is simply to output the edge-density PG = |E|/C)

of the realized graph G ~ G(n,p), which guarantees

p(l - p)
E [(P - PG -n

The simplest way to achieve E-node-DP is to add zero-mean noise to the edge-density with

standard-deviation calibrated to its global-sensitivity, which is the amount that changing the

neighborhood of a single node in a graph can change its edge-density. The global sensitivity

of PG is 0(1/n), and thus the resulting private algorithm Anafe satisfies

E [(p - Anaive(G)) 2] 2 n2G I)2

Note that this error is at least on the same order as the non-private error, and can asymp-

totically dominate the non-private error.

Borgs et al. [BCSZ18] gave an improved e-node-DP algorithm such that, when both p

and E are > log(n)/n,

E [(p - Abcsz(G)) 2] Al-P) + 2(P

non-private error overhead due to privacy

What is remarkable about their algorithm is that, unless E is quite small (roughly E < n-1/2),

the first term dominates the error, in which case privacy comes essentially for free. That is,

the error of the private algorithm is only larger than that of the optimal non-private algorithm

by a 1+ o(1) factor. However, as we discussed above, this algorithm is not computationally

efficient.

The only computationally efficient node-DP algorithms for computing the edge-density

apply to graphs with small maximum degree [BBDS13, KNRS13, RS16], and thus do not

223

give optimal estimators for Erdos-R6nyi graphs unless p is very small.

6.1.2 Our Results

Our main result is a computationally efficient estimator for Erd6s-Rnyi graphs.

Theorem 6.1.1 (Erd6s-R6nyi Graphs, Informal). There is an O(n2)-time e-node-DP algo-

rithm A such that for every n and every p > 1/n if G - G(n, p) then

E[(p - A(G)) 2 +
G,A (n)_23 E_44

non-private error overhead due to privacy

The error of Theorem 6.1.1 matches that of the exponential-time estimator of Borgs et

al. [BCSZ18] up to the additive (1/E4n4) term, which is often not the dominant term in

the overall error. In particular, the error of our estimator is still within a +(1) factor of

the optimal non-private error unless E or p is quite small-for example, when p is a constant

and E > n-

Our estimator actually approximates the edge density for a significantly more general

class of graphs than merely Erd6s-R6nyi graphs. Specifically, Theorem 6.1.1 follows from a

more general result for the family of concentrated-degree graphs. For k E N, defineg,, to

be the set of n-node graphs such that the degree of every node is between d-- k and j+ k,

where d= 21E|/n is the average degree of the graph.

Theorem 6.1.2 (Concentrated-Degree Graphs, Informal). For every k E N, there is an

O(n2)-time e-node-DP algorithm A such that for every n and every G c Gn,,

[(PG - A(G)) 2] =0 k + 4

where PG = |E|/(') is the empirical edge density of G.

Theorem 6.1.1 follows from Theorem 6.1.2 by using the fact that for an Erds-

R6nyi graph, with overwhelming probability the degree of every node lies in an interval

224

of width O(Vpin) around the average degree.

The main technical ingredient in Theorem 6.1.2 is to construct a low sensitivity estimator

f(G) for the number of edges. The first property we need is that when G satisfies the

concentrated degrees property, f(G) equals the number of edges in G. The second property

of the estimator we construct is that its smooth sensitivity [NRS07] is low on these graphs

G. At a high level, the smooth sensitivity of f at a graph G is the most that changing the

neighborhood of a small number of nodes in G can change the value of f(G). Once we have

this property, it is sufficient to add noise to f(G) calibrated to its smooth sensitivity. We

construct f by carefully reweighting edges that are incident on nodes that do not satisfy the

concentrated-degree condition.

Finally, we are able to show that Theorem 6.1.2 is optimal for concentrated-degree graphs.

In additional to being a natural class of graphs in its own right, this lower bound demonstrates

that in order to improve Theorem 6.1.1 we will need techniques that are more specialized to

Erd6s-R6nyi graphs.

Theorem 6.1.3 (Lower Bound, Informal). For every n and k, and every e-node-DP algo-

rithm A, there is some G Eg,, such that

E ((PG- A(G)) 2] = (k 2 +44A (E2n4 sEn4

The same bound applies to (F,)-node-DP algorithms with sufficiently small 6 < E.

6.2 Preliminaries

Let g, be the set of n-node graphs. We say that two graphs G, G' E !n are node-adjacent,

denoted G ~ G', if G' can be obtained by G modifying the neighborhood of a single node i.

That is, there exists a single node i such that for every edge e in the symmetric difference

of G and G', e is incident on i. As is standard in the literature on differential privacy, we

treat n as a fixed quantity and define adjacency only for graphs with the same number of

225

nodes. We could easily extend our definition of adjacency to include adding or deleting a

single node itself.

Definition 6.2.1 (Differential Privacy [DMNS06]). A randomized algorithm A +- gn -+ R

is (E,6)-node-differentially private if for every G ~ G' E g and every R C R,

P [A(G) E R] e' -IP [A(G') E R] +6

If = 0 we will simply say that A is e-node-differentially private. As we only consider node

differential privacy in this work, we will frequently simply say that A satisfies differential

privacy.

The next lemma is the basic composition property of differential privacy.

Lemma 6.2.1 (Composition [DMNS06]). If A 1, A 2 +- gn R are each (E,6)-node-

differentially private algorithms, then the mechanism A(G) (A, (G), A 2(G)) satisfies

(2E, 26)-node-differential privacy. The same holds if A 2 may depend on the output of A1.

We say that two graphs G, G' are at node distance c if there exists a sequence of graphs

G = Go - G1...Ge_1 ~ ... Ge = G'

The standard group privacy property of differential privacy yields the following guarantees

for graphs at node distance c > 1.

Lemma 6.2.2 (Group Privacy [DMNS06]). IfA- g-+ R is (E, 6)-node-differentially-

private and G,G' are at node-distance c then for every R C R,

P [A(G) E R]< eEP [A(G') E R] +ceE6

Sensitivity and Basic DP Mechanisms. The main differentially private primitive we

will use is smooth sensitivity [NRS07]. Let f <- gn -+ R be a real-valued function. For a

226

graph G E 9, we can define the local sensitivity of f at G to be

LSf(G) = max |f (G) - f (G)|
G':G'~G

and the global sensitivity of f to be

GS5 = max LSf(G) = maxIf(G) - f(G)|
G G'~G

A basic result in differential privacy says that we can achieve privacy for any real-valued

function f by adding noise calibrated to the global sensitivity off.

Theorem 6.2.3 (DP via Global Sensitivity [DMNS06). Let f : -+R be any function.

Then the algorithm

A(G)= f(G) + GSf - Z,

where Z is sampled from a standard Laplace distribution, satisfies (E,0)-differential privacy.1

Moreover, this mechanism satisfies E [(A(G) - f(G)) 2]= O(GSfE), and for all t > 0 we
A

have that

P [IA(G) - f(G) ;> t - GS/E] < exp(-t).
A

In many cases the global sensitivity of f is too high, and we want to use a more refined

mechanism that adds instance-dependent noise that is more comparable to the local sensi-

tivity. This can be achieved via the smooth sensitivity framework of Nissim et al. [NRS07].

Definition 6.2.2 (Smooth Upper Bound [NRS07]). Let f : 9, R be areal-valued function

and /3 > 0 be a parameter. A function S : g- - R is a O-smooth upper bound on LSf if

1. for all G E 9, S(G) > LSf(G), and

2. for all neighboring G ~ G' E g, S(G) e0 - S(G').

The key result in smooth sensitivity is that we can achieve differential privacy by adding

noise to f(G) proportional to any smooth upper bound S(G).

'The standard Laplace distribution Z has E [Z] = 0, E [Z2] = 2, and density p(z) cxe-I.

227

Theorem 6.2.4 (DP via Smooth Sensitivity [NRS07, BS19]). Let f : g -+ R be any

function and S be a 3-smooth upper bound on the local sensitivity of f for any / <__ E. Then

the algorithm

A(G) = f (G)+ S()- Z,

where Z is sampled from a Student's t-distribution with 3 degrees of freedom, satis-

fies (O(E),0)-differential privacy.2 Moreover, for any G E g, this algorithm satisfies

E [(A(G) - f(G)) 2] = O(S(G) 2 c 2).
A

6.3 An Estimator for Concentrated-Degree Graphs

In this section we describe and analyze a node-differentially-private estimator for the edge

density of a concentrated-degree graph.

6.3.1 The Estimator

In order to describe the estimator we introduce some key notation. The input to the estimator

is a graph G = (V, E) and a parameter k*. Intuitively, k* should be an upper bound on the

concentration parameter of the graph, although we obtain more general results when k* is

not an upper bound, in case the user does not have an a priori upper bound on this quantity.

For a graph G = (V, E), let PG E I/(') be the empirical edge density of G, and let

dG = (n - l)PG be the empirical average degree of G. Let kG be the smallest positive

integer value such that at most kG vertices of G have degrees differing from JG by more than

' := k* + 3kG. Define IG [dG - , dG + k']. For each vertex v c V, let tv = min{t|

degG(V)± t IG} be the distance between degG(v) and the interval IG, and define the weight

2 The Student's t-distribution with 3 degrees of freedom can be efficiently sampled by choosing
X, Y, Y2 , Y3 ~K(O,1) independently from a standard normal and returning Z = X/'Yi2+ Y2

2 + Y3
2 . This

distribution has E [Z] = 0 and E [Z 2] = 3, and its density is p(z) oc 1/(1 + z 2)2.

228

WtG(v) of v as follows. For a parameter 3 > 0 to be specified later, let

WtG(v)= - Btv

0

if tv 0

if to (0, 1/]

otherwise.

That is, wtG(v) = max(0, 1 - 13t,). For each pair of vertices e = {u, v}, define the weight

wtG(e) and value vaIG(e) as follows. Let

wtG(e) = min(wtG u), wtG(v))

and let

vaIG(e) = wtG(e) X Xe + (1 - wtG(e)) PG

where xe denotes the indicator variable on whether e E E. As above, define the function f

to be the total value of all pairs of vertices in the graph,

f(G) = E vaIG(U, v}),
u,vCv

where the sum is over unordered pairs of distinct vertices.

Once we construct this function f, we add noise to f proportional to a -smooth upper

bound on the sensitivity of f, which we derive in this section. Pseudocode for our estimator

is given in Algorithm 11.

6.3.2 Analysis using Smooth Sensitivity

We begin by bounding the local sensitivity LSf(G) of the function f defined above.

Lemma 6.3.1. LSf(G) = O((kG + k*)(1 + #kG) -) -

Proof. Consider any pair of graphs G, G' differing in only a single vertex v*, and note that

the empirical edge densities PG and PG' can differ by at most < 2 so dG and dG' can

229

Algorithm 11 Estimating the edge density of a concentrated-degree graph.

1: Input: A graph G E 9, and parameters E > 0 and k* > 0.
2: Output: A parameter 0 < P < 1.
3: Let pG = e xe and JG = (n - 1)PG•

4: Let/3= min(E, 1//k*).
5: Let kG > 0 be the smallest positive integer such that at most kG vertices have degree

outside [JG - k* - kG, dG + k* 3kG]-
6: For v E V, let t, = min{t| : degG(v) ± t [G - - 3kG G + k* + 3kG]} and let

WtG(v) = max(0, 1 - to).

7: For each u, V E V, let WtG({U, v}) = min(wtG(u), WtG(v)) and let vaIG(e)= wtG(e) X Xe +

(1 - wtG(e))PG.

8: Let f(G) = valG({U, v}), where the sum is over unordered pairs of vertices.

9: Let s = max>o ce- (kG + f + k* + (kG + f)(kG +f+k*)+1/#), where c is the constant
implied by Lemma 6.3.1.

10: Return - (f(G) + (s/I) - Z), where Z is sampled from a Student's t-distribution with

three degrees of freedom.

differ by at most 2. Moreover, for any vertex v / v*, the degree of v can differ by at most 1

between G and G'. Consequently, by the Triangle Inequality, for any v / v*, IdG - deG (V)

can differ from |dG' - degG'(v) by at most 3 and WtG(v) can differ from WtG'(v) by at most

30. It follows from the former statement that kG and kG' differ by at most 1.

Let FarG denote the set of at most kG vertices whose degree differs from dG by more

than k' = k* + 3kG. For any vertices u, v (FarG U FarG' U {v*}, we have that WtG({Uv)

WtG'({, v}) = 1, and so vaIG(u, v}) = vaIG'({u, v}), since the edge {u, v} is present in G if

and only if it is present in G'.

Now consider edges {u, v} such that u, v z v* but u E FarG U FarG' (and v may or may not

be as well). If degG(U)[G- , G+k] for k" = k'+1/+3, then WtG(U) = WtG'(U)= 0 and

so |vaIG({u, v}) - vaIG'(UV)= PG - PG' 2/n. Otherwise, degG(u) E G - k", dG + k"].

We can break up the sum

fu(G) := vaIG({u, v}) WtG(U, v}) X{u,v} + (1 - WtG({U, v}))PG.
V:?u v:Au v:AU

230

Since at most kGother vertices can have weight less than the weight of u, we can bound the

first term by

WtG(U)X{u,v} kGWtG(u) = degG (U)WtG(U)± kGWtG(U)
v 4u

and the second term by

PG (n-1) - WtG({u }) =dG- dGWtG(U)±PGkGWtG(U).

so the total sum is bounded by

fu(G) = G-+ (deg(U) - JG)WtG (U)±2kGWtG(U)-

Since |WtG(U) - WtG'(U) I 3, it follows that

Ifu(G) - fu(G')| I 7 + 33(k" + 3) + 9# + 6kG = 0(1 + (kG+ k*)).

Since there are at most kG+kG 2kG+1 vertices in u E FarGUFarG'\{v*}, the total difference

in the terms of f(G) and f(G') corresponding to such vertices is at most O(kG + kG(kG +

k*)). However, we are double-counting any edges between two vertices in u C FarG U FarG;

the number of such edges is O(k), and for any such edge e, IvaIG(e) - valG'(e) E O().

Consequently the error induced by this double-counting is at most O(3k), so the total

difference between the terms of f(G) and f(G') corresponding to such vertices is still O(kG +

(kG(kG + k*)).

Finally, consider the edges {u, v*} involving vertex v*. If WtG(V*) = 0 then

fv.(G) = vaIG({v*, v}) = (n - 1)pG = dG-
v54v*

231

If WtG(V*) 1then degG(*) E dG- k', dG+ k'],so

fv. (G) = vaIG ({V, I)

= degG(V*)+ kG

= G± k±kG-

Otherwise, degG(V*) [G dG- k'- 1 dG+ k'+1/]. Then we have that

fv-(G) = ZvaIG({VV})

= dG+ (degc(V*)- dG)WtG(V)±kGWtG(v*)

= dG ±(deg(V*)- dG) ±kG,

so in either case we have that fv(G) C G- O(kG k* +1/0),d+ O(kG+k*+1/)].

Consequently |fv.(G) - fv.(G')| I O(kG+k*+1/0).

Putting everything together, we have that LSf(G) = O((kG+ k*)(I-F3kG)-F1/3). El

We now compute a smooth upper bound on LSf(G). From the proof of Lemma 6.3.1, we

have that there exists some constant C > 0 such that LSf(G) < C((kG +k*)(1F G)+ -

Let

g(kGk C((kG k*)(1+ +kG) +

be this upper bound on LSf(G), and let

S(G) = max e-f g(kG f, k,)

Lemma 6.3.2. S(G) is a 3-smooth upper bound on the local sensitivity of f. Moreover,

S(G)= O((kG +k*)(1 +F kG) -

232

Proof. For neighboring graphs G, G', we have that

S(G') = max e-3g(kG'+ , k*,43)
e>0

<max e-/g(kGf)-1k*,3)
£>0

= e max e -g(kG + fk
e>1

<eo max eEg(kGf, k*
e>0

= e 3S(G).

Moreover, for fixed kG, k* 0, consider the function h(f) = e-3g(kG+ f, k*0), and consider

the derivative h'(f). We have that

h'(f) = C4e~6(kG + f)(1- 0(kG f k*)).

Consequently the only possible local maximum for f > 0 would occur for £ = 1/4 - kG-

note that the function h decreases as f - oc. Consequently the maximum value of h occurs

for some f 1/0, and so

S(G) = max h(f)
e>0

= max ce- (kG f+k*-+(kG G)(k0 F -+k*)43+1/3)

C (kG- 1/03+Fk*+(kG ±1//3) (kG G1/43-+k*)43 1/43)

= C (3kG 2k* G 43 G(kG-Fk*)-F3/0)

=0((kG+k*)(1+ kG)+1/)

as desired. El

Theorem 6.3.3. Algorithm 11 is (O(E),0)-differentially private. Moreover, for any k-

concentrated n-vertex graph G = (V, E) G g, with k > 1, we have that Algorithm 11

233

satisfies

E -_Ak(G) O +)
A (n) E2n 4 E 4n4

Proof. Algorithm 11 computes function f and releases it with noise proportional to a 0-

smooth upper bound on the local sensitivity for 0 < E. Consequently (O(E), 0)-differential

privacy follows immediately from Theorem 6.2.4.

We now analyze its accuracy on k-concentrated graphs G. If G is k-concentrated and

k* > k, then wtG(v)= 1 for all vertices v E V and vaG({U, v})= x{u,} for all u, v E V, and

so f(G)= IE1. Consequently Algorithm 11 computes the edge density of a k-concentrated

graph with noise distributed according to the Student's t-distribution scaled by a factor of

S (G)/(n()).

Since G is k-concentrated, we also have that kG = 1, and so S(G) = O(k + #(k + 1) +

1/#) < O(k + 1/) by Lemma 6.3.2. The variance of the Student's t-distribution with three

degrees of freedom is 0(1), so the expected squared error of the algorithm is

(k + 1/)2) k 2
e274 32 4 E44

Elas desired.

6.4 Application to ErdOs-Renyi Graphs

In this section we show how to apply Algorithm 11 to estimate the parameter of an Erd6s-

R6nyi graph. Pseudocode is given in Algorithm 12.

234

Algorithm 12 Estimating the parameter of an Erd6s-Rnyi graph.

1: Input: A graph G E gn and parameters E, a > 0.

2: Output: A parameter 0 < 5 1.

3: Let' +- E :re + (2/En) - Z, where Z is a standard Laplace

4: Let 5<-' + 4 log(1/a)/En and +- pn log(n/a)

5: Return P <- Ak(G) where Ak, is Algorithm 11 with parameters k andE

It is straightforward to prove that this mechanism satisfies differential privacy.

Theorem 6.4.1. Algorithm 12 satisfies (0(E),0)-node-differential privacy.

Proof. The first line computes the empirical edge density of the graph G, which is a function

with global sensitivity (n - 1)/(') = 2/n. Therefore by Theorem 6.2.3 this step satisfies

(E, 0)-differential privacy. The third line runs an algorithm that satisfies (0(), 0)-differential

privacy for every fixed parameter k. By Lemma 6.2.1, the composition satisfies (0(E), 0)-

differential privacy. D

Next, we argue that this algorithm satisfies the desired accuracy guarantee.

Theorem 6.4.2. For every n E N and - > p 0, and an appropriate parameter a > 0,2-

Algorithm 12 satisfies

p(1 A - P) ~max p, ;} 1 n
[(p - A(G)) 2

- ax ,
G~G(np),A (2n 3 44)

Proof. We will prove the result in the case where p, l 1°. The case where p is smaller willn

follow immediately by using lgn as an upper bound on p. The first term in the bound isn

simply the variance of the empirical edge-density p. For the remainder of the proof we will

focus on bounding E [(p - p)2].
A basic fact about G(n,p) for p > logn is that with probability at least 1 - 2a: (1)

|p-pl < 2log(1/a)/n, and (2) the degree of every node i lies in the interval [d± pn log(n/a)]

where d is the average degree of G. We will assume for the remainder that these events hold.

235

Using Theorem 6.2.3, we also have that with probability at least 1 - a, the estimate P'

satisfies |p - 'l ' 4 log(1/a)/En. We will also assume for the remainder that this latter

event holds. Therefore, we have p 5 and p > P - 8 log(1/a)/En.

Assuming this condition holds, the graph will have k-concentrated degrees for k as spec-

ified on line 2 of the algorithm. Since this assumption holds, we have

E [(p - Ak,(G)) 2] = + I44

(2n4 E4n4
Spn +1 n(E2n4 E4 4

=O + 1
6 En

0 2 4 44

To complete the proof, we can plug in a suitably small a = 1/poly(n) so that the O(a)

probability of failure will not affect the overall mean-squared error in a significant way. D

6.5 Lower Bounds for Concentrated-Degree Graphs

In this section we prove a lower bound for estimating the number of edges in concentrated-

degree graphs. Theorem 6.1.3, which lower bounds the mean squared error follows by ap-

plying Jensen's Inequality.

Theorem 6.5.1. For every n, k E N, every E E[,] and 6 3, and every (, 6)-node-DP

algorithm A, there exists G E n,k such that E[\pG- A(G)]= Q (k + 1)

The proof relies on the following standard fact about differentially private algorithms.

Since we are not aware of a formal treatment in the literature, we include a proof for com-

pleteness.

Lemma 6.5.2. Suppose there are two graphs Go,G 1 Cn,k at node distance at most from

236

one another. Then for every (E,)-node-DP algorithm A, there exists b E {O,1} such that

E [|pGb - A(Gb)|= Q (pGo - PGi1)-

Proof. Let A be any E-node-DP algorithm. Since Go, G 1 have node distance at most by

group privacy (Lemma 6.2.2), for every set S and every b E {0, 1}

P [A(G) E S] Pe P [A(G-b) ±E S1 +61

Now, let Sb {y :y - PGb I<IPo - PG1|} and note that So and S1 are disjoint by con-

struction. Let p = min{P [A(Go) c So], P [A(G 1) C S1]}. Then we have

1 - p > P [A(Go) So]

" P [A(Go) Si]

" eIP [A(G 1) E Si] -

e p-16

from which we can deduce p < 1. Therefore, for some b C{0, 1}, we have

APIb - A(b) > PGo- ~PG1]I

from which the lemma follows. D

We will construct two simple pairs of graphs to which we can apply Lemma 6.5.2.

Lemma 6.5.3 (Lower bound for large k). For every n, k E N and E > 2/n, there is a pair

of graphs Go, G1 E n,k at node distance 1/E such that |PGo - PG1 -

Proof. Let Go be the empty graph on n nodes. Note that PGo 0, dGO = 0, and Go is in

gfl,k.-

We construct G 1 as follows. Start with the empty bipartite graph with nodes on the

left and n - .nodes on the right. We connect the first node on the left to each of the first
E

237

k nodes on the right, then the second node on the left to each of the next k nodes on the

right and so on, wrapping around to the first node on the right when we run out of nodes.

By construction, PG 1 = k/()dG1 = 2k/n. Moreover, each of the first nodes has degree

exactly k and each of the nodes on the right has degree

k/E k
±1 = i 1

n - 1/E en - 1

Thus, for n larger than some absolute constant, every degree lies in the interval [dG 1 k] so

we have Gi E En,k -

Lemma 6.5.4 (Lower bound for small k). For every n > 4 and E E [2/n, 1/4], there is a

pair of graphs G o, G1 G9, 1 at node distance 1/ such that |PGo - PG 1 1

ProofLeti= [rland let Go be the graph consisting of i disjoint cliques each of size Ln/ii

or [n/i]. Let G1 be the graph consisting of i + 1 disjoint cliques each of size Ln/(i + 1)] or

[n/(i + 1)]. We can obtain Go from G1 by taking one of the cliques and redistributing its

vertices among the i remaining cliques, so Go and G1 have node distance £ := [n/(i+1)] <

1/. For 1/4 > F > 2/n we have that f [1/2E] > 1/4E. Transforming G1 into Go involves

removing a clique of size f, containing () edges, and then inserting these £ vertices into

cliques that already have size £, adding at least £2 new edges. Consequently Go contains at

least £2 - £(£ - 1)/2 = £(£ + 1)/2 more edges than G1 , so

(n+) n2

as desired. l

Theorem 6.5.1 now follows by combining Lemmas 6.5.2, 6.5.3, and 6.5.4.

238

[AAD+04]

[AAD+06]

[AAE07]

Dana Angluin, James Aspnes, Zo8 Diamadi, Michael J. Fischer, and Ren6
Peralta. Computation in networks of passively mobile finite-state sensors. In
PODC, 2004.

Dana Angluin, James Aspnes, Zo8 Diamadi, Michael J. Fischer, and Ren6
Peralta. Computation in networks of passively mobile finite-state sensors. Dis-
tributed Computing, 18(4):235-253, 2006.

Dana Angluin, James Aspnes, and David Eisenstat. A simple population pro-
tocol for fast robust approximate majority. In DISC, 2007.

[AAE+17] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L.
Rivest. Time-space trade-offs in population protocols. In SODA, pages 2560-
2579, 2017.

[AAER07] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The compu-
tational power of population protocols. Distributed Computing, 20(4):279-304,
2007.

[AAFJO8] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-
stabilizing population protocols. TAAS, 3(4):13:1-13:28, 2008.

[AAG18] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in
population protocols. In SODA, 2018.

[ABBS16]

[AIKW13]

[Ajt99]

James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time
and space optimal counting in population protocols. In OPODIS, 2016.

B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions
with constant online rate or how to compress garbled circuits keys. In Crypto,
2013.

Mikls Ajtai. Generating hard instances of the short basis problem. In ICALP,
1999.

[BBDS12] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-
lindenstrauss transform itself preserves differential privacy. In FOCS, 2012.

239

Bibliography

[BBDS13] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially
private data analysis of social networks via restricted sensitivity. In ITCS,
2013.

[BCC+151 Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth,
and Christophe Petit. Short accountable ring signatures based on DDH. In
ESORICS, 2015.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Kreigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft.
Secure multiparty computation goes live. In FC, 2009.

[BCG04] E. R Berlekamp, John Horton Conway, and R. K. Guy. Winning ways for your
mathematical plays. In A K Peters 1st Ed. 2001-2004.

[BCP15] E. Boyle, K-M. Chung, and R. Pass. Large-scale secure computation: Multi-
party computation for (parallel) ram programs. In Crypto, 2015.

[BCSZ18] Christian Borgs, Jennifer T. Chayes, Adam D. Smith, and Ilias Zadik. Reveal-
ing network structure, confidentially: Improved rates for node-private graphon
estimation. In 59th Annual IEEE Symposium on Foundations of Computer
Science, FOCS '18, pages 533-543, Paris, France, 2018.

[BDOZ11] Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Eurocrypt, 2011.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Crypto, 1995.

[Bea96] D. Beaver. Correlated pseudorandomness and the complexity of private com-
putations. In STOC, 1996.

[BGT13] E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure
multi-party computation - how to run sublinear algorithms in a distributed
setting. In TCC, 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In STOC, 1988.

[BH08] Zuzana Beerliovi-Trubniovi and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In TCC, 2008.

[BHKR13] M. Bellare, V.T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling
from a fixed-key blockcipher. In IEEE Security and Privacy, 2013.

240

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In TCC, 2017.

[BK10] Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signatures,
ring signatures and identity based encryption in the standard model. IACR
Cryptology ePrint Archive 2010/086, 2010.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. J. Cryptol-
ogy, 22(l):114-138, 2009.

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical lattice-
based one-time linkable ring signatures. Cryptology ePrint Archive 2018/107,
2018.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In ESORICS, 2008.

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of
two-party secure computation. In Crypto, 1999.

[BNSV15] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private
release and learning of threshold functions. arXiv preprint arXiv:1504.07553,
2015.

[B0010 Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss
with dishonest majority. In Crypto, 2010.

[BS19] Mark Bun and Thomas Steinke. Smooth sensitivity, revisited. Manuscript,
2019.

[BSFO12] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In Crypto, 2012.

[CCD88] David Chaum, Claude Cr6peau, and Ivan Damgird. Multiparty uncondition-
ally secure protocols (extended abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, 1988.

[CD18] Rachel Cummings and David Durfee. Individual sensitivity preprocessing for
data privacy. arXiv preprint arXiv:1804.08645, 2018.

[CDD+01] Ran Canetti, Ivan Damgird, Stefan Dziembowski, Yuval Ishai, and Tal Malkin.
On adaptive vs. non-adaptive security of multiparty protocols. In Eurocrypt,
2001.

241

Alejandro Cornejo, Anna R. Dornhaus, Nancy A. Lynch, and Radhika Nagpal.
Task allocation in ant colonies. In DISC, 2014.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable
encryption. In CRYPTO, 1997.

[CHKP1O] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or
how to delegate a lattice basis. In Eurocrypt, 2010.

[CK89] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended
abstract). In STOC, 1989.

[CKM+19] C16ment L. Canonne, Gautam Kamath, Audra McMillan, Jonathan Ullman,
and Lydia Zakynthinou. Differentially private identity testing for multivariate
distributions. Manuscript, 2019.

[CN82] GJ Chang and GL Nemhauser. The k-domination and k-stability problem on
graphs. Techn. Report, 540, 1982.

[C015] T. Chou and C. Orlandi. The simplest protocol for oblivious transfer. In
Latincrypt, 2015.

[Coo04] Matthew Cook. Universality in elementary cellular automata, 2004.

[CPP18] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully bideniable interactive
encryption. IACR Cryptology ePrint Archive, 2018:1244, 2018.

[CSS10] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of
statistics. In Automata, Languages and Programming, pages 405-417. Springer,
2010.

[CvH91] David Chaum and Eugne van Heyst. Group signatures. In Eurocrypt, 1991.

[DDWY90] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure
message transmission. In FOCS, 1990.

[DFGR06] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Rup-
pert. When birds die: Making population protocols fault-tolerant. In DCOSS,
2006.

[DH97] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic dis-
tributed systems. Chicago J. Theor. Comput. Sci., 1997.

[DI06] Ivan Damgird and Yuval Ishai. Scalable secure multiparty computation. In
Crypto, 2006.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communcations of the ACM, pages 643-644, 1974.

242

[CDLN14]

[DIK+08] Ivan Damgird, Yuval Ishai, Mikkel Kroigaard, Jesper Buus Nielsen, and
Adam D. Smith. Scalable multiparty computation with nearly optimal work
and resilience. In Crypto, 2008.

[DIK10]

[DKM+06]

[DKMS12]

[DKS99]

[DLECW92]

[DMNS06]

[DMPTH10]

[DN07a]

[DN07b]

[DNPR10]

Ivan Damgu'rd, Yuval Ishai, and Mikkel Kreigaard. Perfectly secure multiparty
computation and the computational overhead of cryptography. In Eurocrypt,
2010.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
Eurocrypt, 2006.

V. Dani, V. King, M. Movahedi, and J. Saia. Brief announcement: breaking
the o(nm) bit barrier, secure multiparty computation with a static adversary.
In PODC, 2012.

Ivan Damgard, Joe Kilian, and Louis Salvail. On the (im) possibility of basing
oblivious transfer and bit commitment on weakened security assumptions. In
Eurocrypt, 1999.

G Martinez De La Escalera, AL Choi, and Richard I Weiner. Generation
and synchronization of gonadotropin-releasing hormone (gnrh) pulses: intrinsic
properties of the gt1-1 gnrh neuronal cell line. Proceedings of the National
Academy of Sciences, 89(5):1852-1855, 1992.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, 2006.

Tal Danino, Octavio Mondrag6n-Palomino, Lev Tsimring, and Jeff Hasty. A
synchronized quorum of genetic clocks. Nature, 463(7279):326, 2010.

Ivan Damgrd and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Crypto, 2007.

Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6), 2007.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differen-
tial privacy under continual observation. In STOC, 2010.

[DPSZ12] I. Damgard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Crypto, 2012.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Theoretical Computer Science, 9(3-4):211-407, 2013.

243

[DR13]

[DRV10] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential
privacy. In FOCS, 2010.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. In Crypto, 1982.

[FFGS07] M. Fitzi, M. Franklin, J.A. Garay, and H.V. Simhadri. Towards optimal and
efficient perfectly secure message transmission. In TCC, 2007.

[FS07]

[Gar70]

[GHKW17]

[GJ79]

[GKKO07]

[GKP+13]

[GLM+101

[GMRL15]

Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In PKC,
2007.

Martin Gardner. The fantastic combinations of john conway's new solitaire
game "life", 1970.

Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A
generic approach to constructing and proving verifiable random functions. In
TC, 2017.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round
complexity of authenticated broadcast with a dishonest majority. In FOCS,
2007.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In STOC, 2013.

Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal
Talwar. Differentially private combinatorial optimization. In SODA, 2010.

Mohsen Ghaffari, Cameron Musco, Tsvetomira Radeva, and Nancy A. Lynch.
Distributed house-hunting in ant colonies. In PODC, 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, 1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity for all languages in NP have zero-knowledge proof systems.
J. ACM, 38(3):691-729, 1991.

[G0921 Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-
interactive zero-knowledge proofs are equivalent (extended abstract). In
Crypto, 1992.

244

[GOSS18] Shafi Goldwasser, Rafail Ostrovsky, Alessandra Scafuro, and Adam Sealfon.
Population stability: Regulating size in the presence of an adversary. In PODC,
2018.

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. IACR Cryptology ePrint Archive
2007/432,2007.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, 2008.

[GR17] Oded Goldreich and Dana Ron. On learning and testing dynamic environments.
Journal of the ACM (JACM), 64(3):21, 2017.

[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions
and private data release. In TCC, 2012.

[GV87] Oded Goldreich and Ronen Vainish. How to solve any protocol problem - an
efficiency improvement. In Crypto, 1987.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way.
In TCC, 2008.

[HHR+141 Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven
Wu. Private matchings and allocations. In STOC, 2014.

[HIK07] Danny Harnik, Yuval Ishai, and Eyal Kushilevitz. How many oblivious transfers
are needed for secure multiparty computation? In Crypto, 2007.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-
combiners via secure computation. In TCC, 2008.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party com-
putation using symmetric cut-and-choose. In Crypto, 2013.

[HKK+14] Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. Malozemoff. Amor-
tizing garbled circuits. In Crypto, 2014.

[HKN+051 Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On
robust combiners for oblivious transfer and other primitives. In Eurocrypt,
2005.

[HLM13] M. Hirt, C. Lucas, and U. Maurer. A dynamic tradeoff between active and
passive corruptions in secure multi-party computation. In Crypto, 2013.

[HLMJ09] Michael Hay, Chao Li, Gerome Miklau, and David Jcnsen. Accurate estimation
of the degree distribution of private networks. In ICDM, 2009.

245

[IEH+16] Ai Ishida, Keita Emura, Goichiro Hanaoka, Yusuke Sakai, and Keisuke Tanaka.
Group signature with deniability: How to disavow a signature. In CANS, 2016.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining
privacy with guaranteed output delivery in secure multiparty computation. In
Crypto, 2006.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Crypto, 2003.

[IPSO8] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In Crypto, 2008.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of one-way permutations. In STOC, 1989.

IJMPT87] HJ Jongsma, M Masson-Pevet, and L Tsjernina. The development of beat-
rate synchronization of rat myocyte pairs in cell culture. Basic research in
cardiology, 82(5):454-464, 1987.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, 1988.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014.

[KNRS13] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. Analyzing graphs with node differential privacy. In Theory
of Cryptography, pages 457-476. Springer, 2013.

[KRS16] Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon. Network obliv-
ious transfer. In Crypto, 2016.

[KRSY14] Vishesh Karwa, Sofya Raskhodnikova, Adam D. Smith, and Grigory Yaroslavt-
sev. Private analysis of graph structure. ACM Transactions on Database Sys-
tems, 39(3):22:1-22:33, 2014.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
XOR gates and applications. In ICALP, 2008.

[KS16] Vishesh Karwa and Aleksandra Slavkovi6. Inference using noisy degrees: Dif-
ferentially private -model and synthetic graphs. Annals of Statistics, 44(1):87-
112, 2016.

[KST54] Tamis Koviri, Vera Ss, and Pil Turn. On a problem of k. zarankiewicz. In
Colloquium Mathematicum, volume 1:3, pages 50-57, 1954.

[Kus89] E. Kushilevitz. Privacy and communication complexity. In FOCS, 1989.

246

[LBBC14a]

[LBBC14b]

[Lin13]

[LNWX17]

[LOS14]

[LP07]

Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis
Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic
networks. In ICDCN, 2014.

Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis
Chatzigiannakis. Counting in anonymous dynamic networks under worst-case
adversary. In ICDCS, 2014.

Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert
adversaries. In Crypto, 2013.

San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based
group signatures: Achieving full dynamicity with ease. In ACNS, 2017.

E. Larraia, E. Orsini, and N.P. Smart. Dishonest majority multi-party compu-
tation for binary circuits. In Crypto, 2014.

Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Eurocrypt, 2007.

[LPSY15] Y. Lindell, B. Pinkas, N.P. Smart, and A. Yanai. Efficient constant round
multi-party computation combining bmr and spdz. In Crypto, 2015.

Y. Lindell and B. Riva. Cut-and-choose yao-based two-party computation with
low cost in the online/offline and batch settings. In Crypto, 2014.

[LSW06] Joseph K. Liu, Willy Susilo, and Duncan S. Wong. Ring signature with desig-
nated linkability. In IWSEC, 2006.

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous
anonymous group signature for ad hoc groups (extended abstract). In ACISP,
2004.

[Mano0]

[MBB+13]

[MM75]

[Mo09]

[Mon]

R. Mankiewicz. The story of mathematics. The story of mathematics. Princeton
University Press, 2000.

Carlos Aguilar Melchor, Slim Bettaieb, Xavier Boyen, Laurent Fousse, and
Philippe Gaborit. Adapting lyubashevsky's signature schemes to the ring sig-
nature setting. In Africacrypt, 2013.

A Meir and JW Moon. Relations between packing and covering numbers of a
tree. Pacific J. Math, 61(l):225-233, 1975.

Joseph S Markson and Erin K O'Shea. The molecular clockwork of a protein-
based circadian oscillator. FEBS letters, 583(24):3938-3947, 2009.

Monero. Monero: Private digital currency.

247

[LR14]

[Mor78] Robert Morris. Counting large numbers of events in small registers. In Com-
munications of the ACM, pages 840-842, 1978.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Eurocrypt, 2012.

[MPR10] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law
for cryptographic complexity with respect to computational UC security. In
Crypto, 2010.

[MPW07] Remo Meier, Bartosz Przydatek, and Jiirg Wullschleger. Robuster combiners
for oblivious transfer. In TCC, 2007.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM J. Comput., 37(1):267-302, 2007.

[MR13] P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More
efficient and secure two-party computation. In Crypto, 2013.

[MRV99] Silvio Micali, Michael 0. Rabin, and Salil P. Vadhan. Verifiable random func-
tions. In FOCS, 1999.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics
in Cryptology - CT-RSA, 2005.

[NNOB12] J. Nielsen, P. Nordholt, C. Orlandi, and S. Burra. A new approach to practical
active-secure two-party computation. In Crypto, 2012.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA,
2001.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In STOC, 2007.

[PS19] Sunoo Park and Adam Sealfon. It wasn't me! repudiability and unclaimability
of ring signatures. In Crypto, 2019.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. In Crypto, 2008.

[Rab8l] M. 0. Rabin. How to exchange secrets with oblivious transfer. In Technical
Report TR-81, Aiken Computation Lab, Harvard University, 1981.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty pro-
tocols with honest majority (extended abstract). In STOC, 1989.

248

[RS16] Sofya Raskhodnikova and Adam D. Smith. Lipschitz extensions for node-
private graph statistics and the generalized exponential mechanism. In 57th
Annual IEEE Symposium on Foundations of Computer Science, FOCS '16,
pages 495-504, New Brunswick, NJ, USA, 2016.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
Asiacrypt, 2001.

[Sea16] Adam Sealfon. Shortest paths and distances with differential privacy. In PODS,
2016.

[SS10] Sven Schsge and J6rg Schwenk. A cdh-based ring signature scheme with short
signatures and public keys. In FC, 2010.

[SU19] Adam Sealfon and Jonathan Ullman. Efficiently estimating erdos-renyi graphs
with node differential privacy. CoRR, abs/1905.10477, 2019.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In STOC, pages 475-484, 2014.

[vN51] John von Neumann. The general and logical theory of automata, 1951.

[War65] Stanley L Warner. Randomized response: A survey technique for eliminat-
ing evasive answer bias. Journal of the American Statistical Association,
60(309):63-69, 1965.

[Wul07] Jiirg Wullschleger. Oblivious-transfer amplification. In Eurocrypt, 2007.

[WW06] Stefan Wolf and Jiirg Wullschleger. Oblivious transfer is symmetric. In Euro-
crypt, 2006.

[XCT14] Qian Xiao, Rui Chen, and Kian-Lee Tan. Differentially private network data
release via structural inference. In 20th ACM International Conference on
Knowledge Discovery and Data Mining, KDD'14, pages 911-920, 2014.

[XY04] Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card
approach. In CARDIS, pages 271-286, 2004.

[Yao86] Andrew Yao. How to generate and exchange secrets (extended abstract). In
FOCS, 1986.

[ZMS14] M. Zamani, M. Movahedi, and J. Saia. Millions of millionaires: Multiparty
computation in large networks. In ePrint 2014/149, 2014.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Eurocrypt, 2015.

249

