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Abstract

I investigate three questions. The first belongs to game theory: When will people play
a Nash equilibrium? The second, to decision theory: Why maximize expected value?
The third, to the philosophy of language: How should we work out the meaning of
a sentence? What unites my dissertation is a decision-theoretic approach to games,
and a game-theoretic approach to meaning.

An epistemic characterization of a solution concept shows under what epistemic
conditions the players behave as the solution concept describes. Chapter 1 is about
epistemic characterizations of Nash equilibrium. First, I argue that theorists have
slipped between two interpretations of Nash equilibrium: strategic and doxastic. As

a result, they've drawn unwarranted conclusions from the characterizations. Second,
following a broader discussion of the role of solution concepts, I assess doxastic equi-
librium on its own merits. I argue that it doesn't deserve the attention it's received.

A key theme of Chapter 1 is the decision-theoretic approach to games: asking
what you should do in a game is just a special case of asking what you should do in a
decision problem. But what should you do in a decision problem? A standard answer
is that you should maximize expected value, because maximizing expected value does
best in the long-run. In Chapter 2, I adapt an idea well-known in economics but little-
known in philosophy-maximizing expected growth rate-to argue that the long-run
defense of maximizing expected value isn't sound.

In Chapter 3, I take for granted the decision-theoretic approach to games and
apply it in the philosophy of language. David Lewis showed how conventions arise

from repeated coordination games, and, as a special case, how meanings arise from
repeated signaling games. I build on Lewis's framework. I construct coordination
games in which the players can be wrong about their conventions, and signaling games
in which the players can be wrong about their messages' meanings. The examples put
pressure on the Elicitation Method, a typical method in semantic fieldwork, according
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to which we should work out the truth-conditions of a sentence by eliciting speakers'
judgments about its truth-value in different situations.

Thesis Supervisor: Vann McGee
Title: Professor of Philosophy
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Chapter 1

When will people play a Nash

equilibrium?

1.1 Overview

In classical game theory, the main analytical tool is the solution concept, a function

which takes a game and returns a set of strategy profiles, where a strategy profile is a

tuple of strategies, one for each player. A famous solution concept is Nash equilibrium,

which returns those strategy profiles in which no player improves in expectation by

unilaterally changing her strategy. Solution concepts are often taken to describe how

people will or ought to play.

In epistemic game theory, the main analytical tool is the game model, a represen-

tation of a particular play of the game. Game models represent not just what the

players do but also their epistemic states (for example, what they believe about each

other's actions, rationality and beliefs). They provide a formal framework in which

to think about how assumptions about players' epistemic states (for example, that

there is common belief in rationality) constrain how the players behave.

A bridge between the two approaches to game theory-classical and epistemic-

is provided by epistemic characterizations of solution concepts, which show under

what epistemic conditions the players behave as described by a given solution con-

cept. Epistemic characterizations are important. They reveal the scope of a solution
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concept: that is, the conditions under which its predictions are accurate or its pre-

scriptions apt. This paper is about epistemic characterizations of Nash equilibrium.

In classical game theory, it's standard to suppose that players can randomize over

their actions using their pocket randomizing devices. A randomization for player i

may be represented by a mixed strategy, a probability distribution over i's actions.

Some solution concepts, such as Nash equilibrium, return strategy profiles involving

mixed strategies. But randomizing doesn't fit easily into epistemic game theory,

because, from that point of view, randomizing looks bizarre: players never have any

reason to randomize, for example. How, then, to give an epistemic characterization

of Nash equilibrium?

A standard response to the problem is to reinterpret mixed strategies. On the old

interpretation, a mixed strategy for player i represents player i's randomization, and

Nash equilibria are strategic equilibria. On the new interpretation, a mixed strategy

for player i represents the other players' beliefs about i's action, and Nash equilibria

are doxastic equilibria. Strategic equilibria involve randomizing; doxastic equilibria

don't. So switching from the one to the other, by reinterpreting mixed strategies,

avoids the problem. Epistemic characterizations of doxastic equilibrium have been

given-notably, by Aumann and Brandenburger (1995).

Nash equilibrium is a fundamental concept in game theory. Theorists often claim

that people will or ought to play a Nash equilibrium. Under what conditions are

the predictions accurate or the prescriptions apt? An epistemic characterization can

tell us. But we have to interpret the characterization correctly: if we slip between

strategic and doxastic equilibrium, as people have done, we will misunderstand the

scope of our predictions and prescriptions.

First, I argue that the difference between strategic and doxastic equilibrium hasn't

been appreciated in the literature. As a result, people have drawn unwarranted

conclusions about when people will play a Nash equilibrium.

Second, I assess doxastic equilibrium on its own merits. A solution concept, like

any analytical tool, should be assessed by how well it performs its role. So I try to get

clearer about the role of solution concepts, and, as a byproduct, about randomization.

12



In light of that, I argue that doxastic equilibrium doesn't deserve the attention it has

received.

Here's the plan. In Section 2, I contrast decision theory, classical game theory,

and epistemic game theory. I also introduce the game models--type spaces-which I

use throughout. In Section 3, I describe why people have thought that randomizing

doesn't fit easily into epistemic game theory. In Section 4, I clarify and contrast

strategic and doxastic equilibrium. In Section 5, I describe Aumann and Branden-

burger's characterization of doxastic equilibrium. In Section 6, I argue that theorists,

including Aumann and Brandenburger, have drawn unwarranted conclusions from

that characterization about strategic equilibrium. In Section 7, I discuss the role

of solution concepts. In Sections 8 and 9, I argue that doxastic equilibrium doesn't

deserve the attention it has received. Section 10 sums up.

1.2 What is epistemic game theory?

Epistemic game theory is a decision-theoretic and descriptive approach to games.

What does that mean?

1.2.1 Decision theory

Consider a simple decision problem. You have an appointment across town. You can

either walk or take the bus. If it stays dry, you'd prefer to walk than take the bus;

if it rains, you'd prefer to take the bus than walk. What should you do? Well, it

depends. It depends on the strengths of your preferences and your beliefs about the

weather.

A decision theorist answers the question in three steps. First, she represents

the decision problem in a regimented form, say by using a payoff matrix to represent

numerically the strengths of your preferences. Second, she represents your beliefs, say

by using a probability matrix. The payoff and probability matrices make a formal

decision problem, a representation of all relevant features of your flesh-and-blood

decision problem.

13



dry rain dry rain
walk 2 0 walk 2/3_ 1/3

bus 1 1 bus 2/3 1/3

payoff matrix probability matrix

Figure 1-1: Walk or Bus

Third, she applies a decision rule, say Maximize Expected Utility, which identifies

what you should do. In our example, the expected utility of walk is . 2 + . 0 = 13 3 3

and of bus is s1+ .1 = 1. Since > 1, Maximize Expected Utility says you should

walk. So far, so familiar.

1.2.2 From decision theory to game theory

Now consider a simple interactive decision problem, or game. You and I are going

hunting. We can either hunt stag or hare. On the one hand, each of us prefers to

catch a stag than a hare; on the other hand, to catch a stag we must work together,

but either can catch a hare by herself. What should you do? Well, it depends.

As before, let's first represent the game in a regimented form, using a payoff

matrix, where the first components represent your preferences and the second com-

ponents mine.

Stag Hare
Stag 2,2 0,1
Hare 1,0 11

Figure 1-2: Payoff matrix in the Stag Hunt.

You have analogous preferences over outcomes in the Stag Hunt as you did in Walk

or Bus. However, in Walk or Bus, you were uncertain about the weather, whereas in

the Stag Hunt you are uncertain about my choice. Perhaps that means we shouldn't

continue as before, by supplementing the payoff matrix with a probability matrix and

applying a decision rule. Why not? Two reasons:

First. Perhaps you can't assign probabilities to my actions. You ask yourself, (a)

What will he do? Relevant to what I'll do is what I think you'll do. So before deciding

14



(a), you need to decide, (b) What does he think I'll do? Relevant to that is what I

think you think I'll do. So before deciding (b), you need to decide, (c) What does he

think I think he'll do? Relevant to that... And so on. Each of us is thinking about

the other, in the knowledge that the other is doing the same. Perhaps the reflexive

nature of our reasoning means that you can't assign probabilities to my actions.

Second. Suppose, somehow or other, you do assign probabilities to my actions, say

you believe with probability 1 that I'll hunt stag and with probability 1 that I'll hunt

hare. Then, similarly to Walk or Bus, Maximize Expected Utility says you should

hunt stag. But the probability matrix leaves out interesting features of your epistemic

state. For example, it doesn't represent whether you think that I'm rational, nor what

you think I think you'll do. Perhaps such features are worth making explicit so that

we can see how they constrain what you do. A probability matrix may be enough to

answer the question, What will orshould you do?, but it's blind to other interesting

features of the situation, features worth making explicit.

For whatever reason-see Section 7 for further discussion-classical game theorists

don't follow decision theorists by supplementing the payoff matrix with a probability

matrix and applying a decision rule. Instead, they proceed more directly: they iden-

tify strategy profiles and argue that people will or ought to do their bits of one of

the profiles. 1 The central analytical tools of classical game theory, then, are solution

concepts: functions which take a game and return a set of strategy profiles.

1.2.3 From game theory to epistemic game theory

Epistemic game theory is a decision-theoretic and descriptive approach to games.

It's decision-theoretic because it assumes that players do assign probabilities to each

other's actions. It's descriptive because it makes explicit other features of the agents'

epistemic states too, such as their beliefs about the others' rationality, and investigates

how these constrain what the players do.

'The prediction or prescription could take two forms. Is there a strategy profile such that everyone
ought to do her bit of that? Or ought each player do her bit of some strategy profile or other, maybe
different profiles for different players?
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Let's say that a play of a game is a complete way the game can turn out. For

example, a play of the Stag Hunt fixes not only what we do, but also: what each

believes about the other; what each believes the other believes about her; what each

believes about what the other believes about what the other believes about her, and

so on; what each knows about the other; what each knows the other knows about her,

and so on; our belief revision policies; our hopes, dreams, fears, and regrets; where

we play; the number of hairs on your head; the distance to the third-nearest canary.2

Some features of a play are relevant to predicting or evaluating the players' ac-

tions. Others aren't. We only care about features which are relevant to prediction or

evaluation, so we may identify plays which agree about all such features. 3

Let SG be the set of all plays of a game G. We can think about interesting subsets

of SG, perhaps picking out a subset using an epistemic concept (say, the set of plays

in which everyone believes that everyone is rational), or using concepts from classical

game theory (say, the set of plays in which no players' action is weakly dominated),

or using a mixture of the two. It's particularly interesting to compare how subsets

picked out using concepts from classical game theory relate to subsets picked out

using epistemic concepts.

In order to investigate the structure of SG, we need to find some way to represent

plays of a game, or, at least, those features of plays of a game which are relevant to

evaluating the players' actions. That's what a game model does.

1.2.4 Game models

There are many kinds of game models in the literature. I use the models from Aumann

and Brandenburger (1995) (henceforth AB). AB's models are not the best way to

represent plays: for example, they don't represent the players' belief revision policies.

2Games are played over time: it takes time to decide what to do, carry out that decision and
enjoy the consequences. But a play is a snapshot. So it's fair to ask, When do we click the shutter?
That's a hard question. Let's say it's the point at which the players have all decided but before their
decisions have been revealed, and not worry here about the problems with that formulation.

3 1t's controversial which features are relevant, and how best to represent them. For example, it is,
or was, controversial whether the players' belief revision policies are relevant, and how to represent
them. See Aumann (1995), Stalnaker (1998) and, for a helpful summary, Halpern (1999).
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But their kind of model is common in the literature, and the kind of model we use is

irrelevant to this paper's claims.

Let G = (N,{Ai,Ui}JEN) be a game in strategic form, where N = {1,... , n}

represents the players, Ai represents player i's actions,A= li A represents the set

of action profiles, and ui : Hi Ai -+ R represents player i's utility function. A model

for G represents a particular play of G. A model consists of: 4

a. for each player i, a set Si (i's types);

b. a designated member s c Si x ... x S, (the actual state);

and for each type si of i:

c. a probability distribution on the set S` of types of the other players (s's

theory), and

d. an action ai of i (s's action).

A state is a tuple of types, one for each player, or in other words a member

of S = Si x ... x S,. An event is a set of states. Let [si] be the set of states

where i's type is si. Each type's theory may be extended to a distribution p(.; si)

over S, as follows: for any event E, p(E; si) is the probability s's theory assigns

to {si E S` : (si, s-) E E}. 5 We say that i is rational at s if ai(s) maximizes

i's expected payoff given his theory. 6 We say that i believes an event E at s if she

assigns E probability 1, i.e. p(E; si) = 1.7 An event E is mutual belief at s if everyone

believes E at s, and is common belief if, at s, everyone believes it, everyone believes

that everyone believes it, and so on.

4AB's models also specify, for each type, a function gi: A -+ R (s's payoff function), which
lets them represent the players' uncertainty about the game itself. I drop this structure because it's
irrelevant to my point and clutters the exposition. But see n.12.

5 As usual, if r is a tuple of actions or action sets or mixed strategies or whatever, then ri is the
result of deleting the ith component, and (s; i-) is the result of replacing the ith component with
S.

6a(s) is i's action at state s, as determined by si, i's type at s.
7 AB interpret this as knowledge; but it's better interpreted as belief with probability 1, or just

belief for short, since it isn't factive. At any rate, I'll use the term belief without comment wherever
AB use knowledge, as do e.g. Bach and Tsakas (2014).
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A state is a tuple of types, one for each player. Each type is associated with an

action. So each state is associated with a tuple of actions, one for each player. In

particular, the actual state is associated with a tuple of actions, the outcome. The

rest of the model represents the players' beliefs: about actions, about rationality, and

about beliefs.

A type's theory is a distribution on the set of the others' types. To describe a

model we have to describe each type's theory. Writing down lots of theories is tedious.

Occasionally, we can save time and ink. A distribution P on S is a common prior

just if the conditional distribution of P given [si] is si's theory, for all types si. If a

model admits a common prior P then instead of writing down each type's theory we

can just write down P.8 Not all models admit a common prior, so we can't always

use this shortcut. But as it happens the only models I need in the paper do admit

a common prior, so that's what I write down. To work out a type's theory from the

common prior, conditionalize the prior on the type.

1.2.5 Example

Figure 3 is a model of the Stag Hunt-a representation of a way the game could go,

or at least, of all those features relevant to evaluation.

ts t', th
ts 2/9 0 1/9

tH 0

Figure 1-3: Model of the Stag Hunt.

You have three types: ts, which hunts stag, and tH, t', which hunt hare. I also

have three types: t, and t', which hunt stag, and th, which hunts hare. There are

3 x 3 = 9 states, one for each combination of types. The actual state is (t', th), in

bold. We both hunt hare, and get a payoff of 1.

'To say that a model admits a common prior P is not to say that P represents the agents' beliefs
at some earlier point in time, nor that the agents conditionalized the prior on the type. A common
prior, when it exists, is merely a compact way of specifying all the types' theories at once.
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The numbers describe our common prior, a distribution on the 9 states, from

which each type's theory is derived by conditionalizing on the type. For example, t' 's

theory, which is your actual theory, is derived by conditionalizing the prior on [t' ), or

in other words, setting all numbers not in the bottom row to 0 and re-proportioning

the numbers in the bottom row so that they add up to 1. Thus according to the model

you believe with probability 3/4 that I amth, and so hunt hare, and with probability

1/4 that I am t', and so hunt stag. Similarly, th's theory, which is my actual theory,

is derived by conditionalizing the prior on [th], or in other words, setting all numbers

not in the right-hand column to 0 and re-proportioning the numbers in the right-hand

column so that they add up to 1. According to the model, I believe with probability

3/4 that you're t'H, and so hunt hare, and with probability 1/4 that you're ts, and so

hunt stag. We each maximize expected utility given our theories, so we're rational.

Do I believe that you are rational? Well, I believe that you are either ts, which

hunts stag, or t' , which hunts hare. The theories of ts and t' are derived by con-

ditionalization. Both types are rational, since they maximize expected utility given

their theories. Hence I believe that you're rational. Do you believe that I'm rational?

Well, you assign positive probability to my type t. But t' hunts stag and believes

that you hunt hare. So t' isn't rational. Hence you don't believe that I'm rational.

We can continue working through the model, working out our higher-order beliefs

about the other's action, rationality and beliefs.

1.3 How to fit mixed strategies into epistemic game

theory?

1.3.1 Mixed strategies

In the Stag Hunt, each of us has two possible actions: hunt stag or hunt hare. In

classical game, it's standard to suppose that players can randomize: they can take

out their pocket randomizing devices, choose any probability distribution over their

actions, and commit to doing whatever action the device selects. The players choose
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not between actions, but between randomizations.

A randomization for i may be represented by a mixed strategy, a distribution over

Ai. 9 Each player's utility function is defined on action profiles, but we can extend it

to mixed strategy profiles by taking its expectation:

Expected utility. Ui()= E Au(a) . y(aj)

Perhaps randomizing seems an outlandish idea." In later sections, I discuss the

motivations behind it.

1.3.2 The problem

In standard game models players choose actions, not randomizations, in all states. So

standard game models don't represent plays in which the players randomize. We could

easily modify the models so as to represent plays in which the players randomize. In

type spaces, for example, we could specify, for each type si of i, a mixed strategy

rather than a particular action. But should we?

Models represent plays of a game, or ways a game could go. Suppose the players

can't randomize-that is, there aren't any plays in which they do randomize-perhaps

because they don't have pocket randomizing devices, or because they don't regard

randomizing as a live option. Then adding mixed strategies to the models isn't

helpful: it allows us to represent impossible plays, to no good end. It might be

answered that the player can randomize, since some deus ex machina might hand

them pocket randomizing devices. It's implausible, but no less plausible than some

plays we already admit; and besides, what's possible outstrips what's plausible."

'A mixed strategy is a mathematical object: a probability distribution. A randomization is an
interpretation of that object. The term 'mixed strategy' pushes us towards interpreting them as
randomizations, which is confusing when other interpretations are in the air. Later in the paper I
will use 'distribution' instead of 'mixed strategy'. Since 'mixed strategy' is standard, I'll stick with
it for the moment.

'It does happen. For example, poker players sometimes randomize. How? By using a watch (call
if the second hand is between 0 and 48 and fold otherwise), or a random number generator on their
computer, or whatever.

"The question of whether players can randomize is a special case of a more general question:
What are an agent's options? See Hedden (2012) for discussion.
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Even if the players can randomize, why would they? The expected utility of a

randomization is an average of the expected utilities of the actions in its support,

so never yields higher expected utility than choosing some action. So even if play-

ers can randomize, perhaps they won't." However, this argument is unconvincing.

Even though there's never an incentive to randomize, that's irrelevant to whether the

players can randomize. (There's never an incentive to choose a strictly dominated

strategy either, but we still represent plays in which people do.) Epistemic game

theory should represent every way a game can go, however strange.

In any case, the standard view is that in epistemic game theory, with its emphasis

on plays, mixed strategies are out of place. The problem, then, is how to make sense

of the solution concepts of classical game theory, which often involve mixed strategies,

in epistemic game theory.

1.3.3 A solution?

Stalnaker (1994: 57-8) describes the standard solution:

We should follow the suggestion of Bayesian game theorists, interpreting

mixed strategy profiles as representations, not of players' choices, but of

their beliefs.

Let oi be a distribution over player i's action set, Aj. On the classical interpreta-

tion, oi represents player i's strategy: a randomization, using his pocket randomizing

device, over his actions. On the doxastic interpretation, o- represents the other play-

ers' beliefs about i's action. Stalnaker, following the suggestion of Bayesian game

theorists, endorses the doxastic interpretation.

When we reinterpret mixed strategies, we thereby reinterpret solution concepts.

The next section explains how.

"This seems to be what Stalnaker has in mind (1994: 57): "One could easily weaken this as-

sumption [that players don't randomize], allowing players to choose blindly, withholding knowledge
of their own choices from themselves by turning the choice over to a randomizing device, but while

it might be harmless to permit this, players satisfying the cognitive idealizations that game theory
and decision theory make could have no motive for playing a mixed strategy."
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1.4 Strategic equilibrium and doxastic equilibrium

1.4.1 Uninterpreted formalism

Fix a game G = (N, {A , ui}iEN) in strategic form. A distribution profle is a tuple

0-= (o1, ... , o-,), where o-i is a distribution over Ai. 1 Don't think yet of a distribution

profile as representing the players' randomizations or beliefs. Think of it as a mathe-

matical object awaiting interpretation. A distribution profile 0- is a Nash equilibrium

just if:

(A) For any i and any distribution yi over Ai, Ui(pii; or-u) < Ui(-).

Nash equilibrium is a property, or set, of mathematical objects, namely, distribu-

tion profiles of a given game. We may also think of Nash equilibrium as a function

which takes a game and returns the set of distribution profiles which satisfy (A).

It's well-known and easily proved that (A) is equivalent to:

(B) For any i, if ui(a) > 0 then a E argmaxEAUi(a'; fl o).

So we may say, equivalently, that a distribution profile is a Nash equilibrium just

if it satisfies (B).

A distribution is pure if it assigns probability 1 to some action and mixed other-

wise; a distribution profile is pure if all its distributions are pure, and mixed otherwise.

Not every game has a pure Nash equilibrium. But, remarkably, every finite game has

at least one Nash equilibrium, either pure or mixed (Nash 1950).14

1.4.2 Classical interpretation

Fix a play of the game G. A play determines each player's strategy, and a strategy for

player i determines a distribution over Ai. Hence the play determines a distribution

profile (o-1, .. .,uo), the strategic profile, where -i represents i's strategy.

' 3 Earlier I called this mathematical object a mixed strategy profile. But we'll consider two in-
terpretations of it, one to do with strategies and the other to do with beliefs. It will help avoid
confusion if the terminology doesn't favour one interpretation over the other.

"A game is finite if it involves finitely many players and each player has finitely many actions.
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We may consider the set of plays in which the strategic profile is a Nash equi-

librium. Call that the set of plays with a strategic equilibrium, or STRATEGIES. We

can pick out that set of plays, STRATEGIES, in an equivalent but more illuminating

way. The most familiar way is to interpret (A) using the classical interpretation of

distributions, yielding:

Deviation Doesn't Pay. The set of plays in which no player gains in expec-

tation by unilaterally changing her strategy.

This is the classical interpretation of Nash equilibrium.

1.4.3 Doxastic interpretation

Fix a play of the game G. Let's say that i's overall conjecture is her belief about her

opponents' actions and i's individual conjecture about j is her belief about j's action.

So i's overall conjecture determines a distribution over A-i and for each j / i, i's

individual conjecture about j determines a distribution over Aj.

Suppose that the players' individual conjectures happen to agree." Then the play

determines a distribution profile (a,, ... , a), the doastic profile, where oi represents

the individual conjecture of i's opponents about i. Clearly, a play may determine one

strategic profile and another doxastic profile, and the distributions in the doxastic

profile may be mixed even when the players don't randomize.

We may consider the set of plays where the players' individual conjectures agree

and the doxastic profile is a Nash equilibrium. Call that the set of plays with a

doxastic equilibrium, or CONJECTURES.

It would be nice to pick out CONJECTURES in an equivalent but more illuminating

way, just as we did for STRATEGIES with Deviation Doesn't Pay. But how? The best

I've managed is to interpret (B) using the doxastic interpretation of distributions,

yielding:

"That is, for any players i, j, k, all different, i's individual conjecture about k is the same as j's
individual conjecture about k.
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Optimal Support. The set of plays such that the players' individual conjec-

tures agree and for each player i, if i's opponents assign positive probability to

i's action a then a is optimal given the overall conjecture canonically determined

by u-i.

This seems a little more illuminating. Perhaps there's a better way to pick out

CONJECTURES, one which makes it clear why we should be interested in it, just as

Deviation Doesn't Pay makes clear why we should be interested in STRATEGIES. But

I doubt it: see Sections 8 and 9.

1.4.4 Sets and functions, models and plays

Recall that, as defined here, Nash equilibrium is a set of distribution profiles of a

given game. We may also think of it as a function which takes a game and returns a

set of distribution profiles in that game.

By contrast, STRATEGIES and CONJECTURES are sets of plays of a given game. We

may, harmlessly, think of STRATEGIES and CONJECTURES as sets of models instead,

since models represent all the relevant features of plays. And we may also think of

each as a function which takes a game and returns a set of plays, or models, of that

game. How to think of them (sets or functions, of plays or models) should be clear

from the context.

1.4.5 Examples

Battle of the Sexes has three Nash equilibria: (U, L), (D, R) and(j U + - D,j

L + R). I'll give two models for the game: the first is in STRATEGIES but not

CONJECTURES and the second is in CONJECTURES but not STRATEGIES.

L R

U 21_ _0a
D 0,0 1, 2

Figure 1-4: Payoff matrix in Battle of the Sexes
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In the first model, the actual state is (tu, tL), in bold. So Rowena does U and Colin

does L. The strategic profile is a Nash equilibrium, and the model is in STRATEGIES.

Since Battle of the Sexes is a two-player game, individual conjectures and overall

conjectures come to the same thing. Rowena's conjecture is (j . L + - R). Colin's

conjecture is (I . U + D). Thus the doxastic profile isn't a Nash equilibrium, and

the model isn't in CONJECTURES.

t L tR

tu 3/8 1/8
tD 1/8 3/8J

Figure 1-5: First model for Battle of the Sexes.

In the second model, the actual state is (tU, tR), in bold. So Rowena does U and

Colin does R. The strategic profile isn't a Nash equilibrium, and the model isn't in

STRATEGIES. Rowena's conjecture is (. L + 2 -R). Colin's conjecture is (2 - U+ 1 -D).

So the doxastic profile is a Nash equilibrium, and the model is in CONJECTURES.

t/ tR
tu 1/6 2/6
tD 2/ 1/6

Figure 1-6: Second model for Battle of the Sexes.

1.4.6 Taking stock

(A) and (B) are equivalent: they pick out the same distribution profiles. By inter-

preting (A) using the classical interpretation of distributions, we get STRATEGIES.

By interpreting (B) using the doxastic interpretation of distributions, we get CON-

JECTURES. STRATEGIES and CONJECTURES are not equivalent: they don't pick out

the same plays.

(A) and (B) are two ways of looking at the same thing. STRATEGIES and CON-

JECTURES are got by interpreting (A) and (B). So perhaps STRATEGIES and CON-

JECTURES, even though not equivalent, are also two ways of looking at the same

thing, in which case an epistemic characterization of CONJECTURES will shed light
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on STRATEGIES. Not so. STRATEGIES and CONJECTURES are not two ways of looking

at the same thing, and epistemic characterizations of CONJECTURES don't shed light

on STRATEGIES. This hasn't been properly appreciated in the literature; as a result,

people have drawn unwarranted conclusions from characterizations of CONJECTURES

about the role of common belief in STRATEGIES.

For a given game, there are two domains in the air. One is the domain of dis-

tribution profiles; the other is the domain of plays. (A) and (B) are equivalent over

distribution profiles. STRATEGIES and CONJECTURES are got by interpreting (A) and

(B). STRATEGIES and CONJECTURES are not equivalent over plays. If you focus on

distributions it's easy to think, wrongly, that STRATEGIES and CONJECTURES are

two ways of looking at the same thing. When you focus on plays, you realize that

they aren't.

1.5 Epistemic characterizations of Nash equilibrium

To give an epistemic characterization of a solution concept F on the classical interpre-

tation of distributions is to prove a theorem of the form: For any game G and model

M, if M satisfies such-and-such conditions, then the strategic distribution in M is in

F(G); and for any distribution profile in F(G), there exists a model M' satisfying the

conditions which has that strategic distribution.16

To give an epistemic characterization of a solution concept F on the doxastic in-

terpretation of distributions is to prove a theorem of the form: For any game G and

model M, if M satisfies such-and-such conditions, then the players' individual con-

jectures in M agree and the doxastic distribution is in F(G); and for any distribution

profile in F(G), there exists a model M' satisfying the conditions which has that

doxastic distribution.

Either kind of characterization might more briefly be described just as an epis-

temic characterization of F. But that invites confusion. If we leave implicit how

"This the standard way to characterize a solution concept in epistemic game theory, but there
are others. See Perea (2007).
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the distributions are interpreted, we may confuse the two kinds of characterization,

drawing conclusions from one that would only be licensed by the other. Indeed, the

next section shows that that's what people have done.

AB give an epistemic characterization of Nash equilibrium on the doxastic inter-

pretation of distributions, or, for short, an epistemic characterization of CONJEC-

TURES. Here are their landmark results:

Theorem 1. For any two-person game G and model M, suppose that the rationality

of the players and their overall conjectures are mutual belief in M. Then the doxastic

distribution is a Nash equilibrium (that is, M is in CONJECTURES). And for any

Nash equilibrium, there exists a model A', satisfying the conditions, in which that's

the doxastic distribution.

Theorem 2. For any n-person game and model M, suppose the players have a com-

mon prior, that it's mutual belief that they're rational, and that their overall con-

jectures are common belief. Then the players' individual conjectures agree and the

doxastic distribution is a Nash equilibrium (that is, M is in CONJECTURES). And

for any Nash equilibrium, there exists a model M', satisfying the conditions, in which

the players' individual conjectures agree and that's the doxastic distribution.

AB also show that their results are tight. That is, if you delete any of the condi-

tions, or relax them in a natural way, the resulting claims are false.

1.6 Common belief and Nash equilibrium

Remember the motivating question: When will people play a Nash equilibrium? The-

orists often claim that people will or ought to play a Nash equilibrium. To answer

the question is to find out the scope of these predictions or prescriptions. But once

we distinguish between the classical and doxastic interpretation of distributions, the

question resolves into two: When will the play be in STRATEGIES ? and When will the
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play be in CONJECTURES ? The distinction hasn't been appreciated in the literature.

AB's characterization answers the second question. But people have taken it to an-

swer the first, and so have drawn unwarranted conclusions about when the strategic

profile will form a Nash equilibrium. This section describes one such unwarranted

conclusion, to do with the role of common belief.

Common belief plays a minor role in AB's characterizations of CONJECTURES: in

Theorem 1, it plays no role at all; in Theorem 2, common belief is assumed, but only

common belief in conjectures, not rationality." In subsequent generalizations of their

result (Barelli 2009; Bach and Tsakas 2014), common belief plays an even smaller

role.

AB and others take this to be a significant and surprising result.

In Theorem 1 ... ]common belief plays no role. This is worth noting,

in view of suggestions that have been made that there is a close relation

between Nash equilibrium and common belief-of the game, the players'

rationality, their beliefs, and/or their choices. [... I[In Theorem 2] com-

mon belief enters the picture after all, but in an unexpected way, and only

when there are at least three players. Even then, what is needed is com-

mon belief in the players' conjectures, not of the game or of the players'

rationality. (1162-3)

Or take Barelli (2009: 373): "One immediate comment [about the minor role of

common belief in his characterization] is that equilibrium behavior is not, after all,

too demanding in terms of epistemic conditions." Or Bach and Tsakas (2014: 48-

9): "AB's result challenged the widespread view that common belief in rationality

was essential for Nash equilibrium. ... We reinforce Aumann and Brandenburger's

intuition about common belief in rationality not being essential for Nash equilibrium,

"Actually, the situation is more subtle. AB's game models specify, for each type, a payoff function,
which lets them represent uncertainty about the game being played. Polak (1999) pointed out that
when the game is common belief, AB's conditions, even dropping the common prior condition,
entail common belief in rationality. I dropped the payoff functions for ease of exposition. Hence
AB's conditions do entail common belief in rationality in all my models. In any case, subsequent
generalizations of AB's results do not entail common belief in rationality, even when the game is
common belief.
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by showing that even mutual belief in rationality is not a crucial component." Or

Stalnaker (1994: 59): "Surprisingly, one can construct models for which common

belief in rationality fails, but that satisfy the epistemic conditions we have stated for

Nash equilibrium."

AB and other commentators have misinterpreted the result. They showed that

common belief isn't bound up with CONJECTURES; they didn't show that common

belief isn't bound up with STRATEGIES. It was thought that common belief was

bound up with STRATEGIES; it was not thought (why would it be?) that common

belief was bound up with CONJECTURES. In short: people did think that common

belief was bound up with STRATEGIES, but AB haven't shown otherwise; they did

show that common belief isn't bound up with CONJECTURES, but who thought it

was?

The mistake, which is common in the literature, is to assume, wrongly, that

STRATEGIES and CONJECTURES are two ways of looking at the same thing, and

to draw conclusions from a characterization of one that would only be licensed by a

characterization of the other. I'll give two more examples. AB again:

On the face of it, such a relation [between common belief and Nash equilib-

rium] sounds not implausible. One might have reasoned that each player

plays his part of the equilibrium "because" the other does so; he, in turn,

also does so "because" the first does so; and so on ad infinitum. This

infinite connection does sound related to common knowledge; but the

connection, if any, is murky. (1162-3)

AB have sketched a reason to believe that common belief is connected to STRATE-

GIES, not CONJECTURES. Their result shows that common belief plays a minor role

in CONJECTURES, not STRATEGIES.

Or take Pacuit and Roy (2015):

There is another important lesson to draw from AB's epistemic character-

ization result. The widespread idea that game theory "assumes common

knowledge of rationality", perhaps in conjunction with the extensive use
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of equilibrium concepts in game-theoretic analysis, has lead to the mis-

conception that the Nash equilibrium either requires common knowledge

of rationality, or that common knowledge of rationality is sufficient for the

players to play according to a Nash equilibrium. ... ]JThe above result

shows that both ofthese ideas are incorrect.

As is clear from their talk of "playing according to a Nash equilibrium", Pacuit and

Roy have confused STRATEGIES and CONJECTURES. The lesson they draw assumes

that AB's result is about STRATEGIES, not CONJECTURES; in fact, the result is about

CONJECTURES, not STRATEGIES.

1.7 What role for solution concepts?

(A) and (B) are equivalent. By interpreting (A) using the classical interpretation of

distributions, we get STRATEGIES. By interpreting (B) using the doxastic interpre-

tation of distributions, we get CONJECTURES. Still, it's a fallacy to infer that since

STRATEGIES has such-and-such property, so does CONJECTURES. For example, it's a

fallacy to infer that since STRATEGIES is interesting, so is CONJECTURES.

Fallacious arguments can have true conclusions. We should assess CONJECTURES

on its own merits. A solution concept, like any analytical tool, should be assessed by

how well it performs its role. So in order to assess CONJECTURES, we should first get

clearer about the role of solution concepts. That's no easy task. For despite being

the main analytical tool of classical game theory, their role is obscure. In this section,

I discuss some possible roles. By examining this broader issue, we also shed light on

a key concept of the paper: randomization.

1.7.1 Starting point

A useful starting point is the contrast between decision theory and game theory, which

I described in Section 2, using a simple decision problem, Walk or Bus, and a simple

game, the Stag Hunt. The contrast between the standard ways of analyzing the two
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situations is striking. After all, your situation in Walk or Bus is very similar to your

situation in the Stag Hunt. In both cases, you are choosing between two options (walk

or bus, hunt stag or hunt hare), you are uncertain about which of two states actually

obtains (dry or rain, I hunt stag or I hunt hare), and you have analogous preferences

over the four outcomes. And yet the standard ways of analyzing the situations are

very different.

In Walk or Bus, the payoff matrix by itself is taken to under-specify your situation.

The payoff matrix settles some features of your situation. But it leaves open other

features. What you should do depends on those other features: on some ways of

settling them, you should walk; on other ways, you should take the bus. Until we settle

the features, there is no answer to the question of what you should do. (Compare:

Given that a triangle has base 5cm, what is its area? What time is it in Europe? How

long is a piece of string?) Decision theorists settle the features by supplementing the

payoff matrix with a probability matrix. Then they apply a decision rule, a function

from the pair of matrices to actions.

In the Stag Hunt, by contrast, the payoff matrix by itself is not taken to under-

specify your situation. On the standard approach, game theorists don't supplement

the payoff matrix with a probability matrix and then apply a decision rule. Instead,

they just apply a solution concept, a function from the payoff matrix alone to strategy

profiles.

Why the contrast? In their textbook, Kevin Leyton-Brown and Yoav Shoham

explain it as follows (2008: 9):

In single-agent decision theory the key notion is that of an optimal strategy,

that is, a strategy that maximizes the agent's expected payoff for a given

environment in which the agent operates. [...] However, the situation is

even more complex in a multiagent setting. In this case the environment

includes-or, in many cases we discuss, consists entirely of-other agents,

all of whom are also hoping to maximize their payoffs. Thus the notion of

an optimal strategy for a given agent is not meaningful; the best strategy

depends on the choices of others.
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Leyton-Brown and Shoham point out the defining difference between decision

problems and games: in a game, the environment includes other agents; in a decision

problem, it doesn't. But it's not clear why it follows, as they suggest, that the notion

of an optimal strategy makes sense in decision problems but not games. They say that

the best strategy in a game depends on the choices of others. But equally well the best

action in a decision problem depends on the state of the environment. They must

think it makes a difference whether or not the environment includes other agents,

but they have yet to explain why that makes a difference. The contrast between

decision theory and game theory, and the role of solution concepts, still stand in need

of explanation.

1.7.2 Do solution concepts pick out solutions?

Here's the first idea:

Games have solutions. Solutions are optimal strategies. They are de-

termined by the game itself-the payoff matrix. The role of a solution

concept is to pick out the solutions of a game.

The term 'solution concept' encourages this idea, for what would a solution con-

cept aim to pick out if not solutions, and what could solutions be if not optimal

strategies? The folk often talk about 'optimal strategies' and 'optimal outcomes' of

a game. 8 Game theorists sometimes do it too.19 The idea is worth thinking about

seriously.

First, I'll suggest how the idea lets us make sense of some aspects of game theory.

Then I'll describe some games which, at first glance, do seem to have solutions. But

1 8For example: "von Neumann had also demonstrated mathematically that the optimum strategy
in poker is simply to place your bets in proportion to the odds" (Hoyle 1994: 276); "the Nash
Equilibrium is a concept of game theory where the optimal outcome of a game is one where
no player has an incentive to deviate from his chosen strategy after considering an opponent's
choice." (From Investopedia, a popular website about investment strategies and financial news. See
investopedia.com/terms/n/nash-equilibrium.asp.)

19 For example: "Cornerstone of Zermelo's (1913) proof that chess has optimal pure strategies,
[backward induction] subsequently played a vital role in the development of perfect equilibrium."
(Aumann 1995: 6)
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I'll argue that, on closer inspection, they don't, at least not in a sense which can

sustain the idea. So I think the idea is wrong.

A solution concept always exists just if, applied to any game, it returns a non-

empty set of strategy profiles. When thinking about a new solution concept, game

theorists typically care whether it always exists. Always existing is taken to be a virtue

of a proposed solution concept. Without Nash's existence theorem, Nash equilibrium

would not have become such a central concept in game theory. The idea above can

make sense of this attitude. For if you think that the concept of a solution makes

sense, it's natural also to think that every game has a solution. Just as you might

think there are no decision-theoretic dilemmas (decision problems where no action is

optimal), so too you might think there are no game-theoretic dilemmas (games where

no strategies are optimal). If games always have solutions, and the role of a solution

concept is to pick them out, then always existing is a virtue of a solution concept.

As noted earlier, not every game has a pure Nash equilibrium. But every finite

game has at least one Nash equilibrium, either pure or mixed. Perhaps, then, the

idea also reveals a motive for assuming the players can randomize. For if you think

that the solutions of a game are Nash equilibria, and every game has a solution, then

you might be tempted to assume that players can randomize, for else some games

have no solution.

But does the concept of a solution make sense? Let's think through some exam-

ples.

First example. In Nim, there are several piles of pebbles. Two players, in turn,

choose a pile and remove one or more pebbles from it. The winner is whoever removes

the very last pebble. Take a particular case: there are 3 piles consisting of 14, 5 and

7 pebbles. An elegant argument shows that the player who moves first has a winning

strategy: if she follows the strategy then, whatever the other player does, she'll win

(Binmore 2007: 56). More generally, the argument shows which of the two players has

a winning strategy, depending on the initial set-up. In that sense, there are optimal

strategies in Nim.

The argument about Nim doesn't just show which player has a winning strategy.
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It shows what that strategy is. Contrast, say, Hex (Binmore 2007: 57-9) or chess.

In Hex, it's known that the player who moves first has a winning strategy, but it's

not known what that strategy is. In chess, it's known that one or other player has

a non-losing strategy, but it's not known which player, let alone what the strategy

is. In any case, for a range of games, of which Nim, Hex and chess are well-known

examples, it's been shown that there are winning, or non-losing, strategies for some

player. In that sense, the games have optimal strategies.

Second example. My roommate reliably beats me at poker. Professional players

would reliably beat both of us. A recent Al, Pluribus, reliably beats even the top

professionals (Brown and Sandholm 2019). It seems harmless to rephrase this as

follows: my friend is better at poker than I am, professionals are far better at poker

than either of us, Pluribus is even better at poker than top professionals. Surely for

one person to be better at poker than another just is for the one's strategy to be

better than the other's. So some strategies are better than others. Perhaps, then,

some strategy is best, or more cautiously, some strategy is such that no other strategy

is better than it. That is an optimal strategy.

Third example. In the Coin Game, you and I each privately toss a fair coin and

then guess how the other's coin landed. If either of us guesses correctly, we win;

else, we lose. We're allowed to agree on a strategy ahead of time. What should we

do? For example, one strategy is for both of us to guess heads, in which case the

probability we win is 2. Another strategy is to guess at random, in which case the

probability we win is again 2. You might suspect that we can't do better. But we

can. For suppose you guess the same as your coin and I guess the opposite of mine. If

the coins land the same way, you'll guess correctly; if they don't, I'll guess correctly.

Either way, we'll win." In that sense, the Coin Game has an optimal strategy. For

2 0Note that the probability you guess correctly is still ., as is the probability I guess correctly.
We've boosted the probability that one or other of us guesses correctly, without boosting the prob-
ability that you guess correctly or that I guess correctly. Aside: Here's another surprising instance
of a similar phenomenon. Suppose a referee tosses a coin three times. You and I guess how it lands
each time. Your strategy is to always guess heads. My strategy is to guess heads, unless the previous
toss landed heads in which case I guess tails. The winner is whoever gets the most right. You might
suspect we're equally likely to win. But in fact I'll win with probability 3/8, draw with probability
3/8 and loses with probability 2/8.
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a more sophisticated example along the same lines, involving the popular card game

Hanabi, see Cox et. al. (2015).

On closer inspection, I don't think that these games have solutions-optimal

strategies-at least not in a sense which can sustain the idea above. I'll take the

examples in turn.

First, Nim, Hex, chess and so on. In these games, there are winning, or non-

losing, strategies for some player and they are determined by the structure of the

game. A perfectly reasonable aim is to discover what the strategies are-to discover,

for example, how to force a win or draw in chess. Early formal work in game theory

tended to focus on such games. However, such games are atypical. They make up

only a negligible fraction of the vast range of situations which game theorists hope

to analyze. If we take 'optimal strategy' to mean 'winning strategy' or 'non-losing

strategy', then games typically don't have optimal strategies and we fail to make sense

of game theorists' practice of using solution concepts. Anyway, we clearly should not

assess CONJECTURES by this standard.

It's worth emphasizing, too, that a player shouldn't necessarily play a non-losing

strategy. Take noughts-and-crosses. It might be that if I play the first few moves

of the non-losing strategy, my opponent will force a draw; but if I play the first few

moves of some other strategy, a strategy which opens me up in principle to defeat,

my opponent will slip up and I'll win. (When I used to play my cousin, that was

sometimes what happened.) In that case, I shouldn't play the non-losing strategy.21

Second, poker. For any two strategies in poker, o and p, there is a well-defined

probability, Pr(o, p), that someone who uses the first beats someone who uses the

second. Whether the one beats the other is probabilistic, not categorical, because of

poker's chance element: how the cards happen to fall. (I'm imagining poker between

two players, played until one player goes bust. But the same ideas hold of more

complicated versions.) Suppose Tom uses ol, Emma uses 2 , and Pr(oi, 92) = 90%.

So once in a while, when the cards fall her way, Emma beats Tom, but typically Tom

2 1 You might complain that when analyzing a game we should assume rationality, or even common
belief in rationality, in which case the scenario I described is irrelevant. See later sections and
Stalnaker (1998).
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beats Emma. Sick of losing her money, Emma reads a poker tutorial and switches to

using -3 , where Pr(U3 , Ou) = 70%. Emma now typically beats Tom. In that sense, her

strategy has improved. She might hope to improve it further, increasing her chance

of beating Tom, by reading another tutorial.

Is 0-3 better than 02 ? The question is ambiguous. On one reading, it asks: Is

Pr( 3 , c1) > Pr(o2 , ai)? The answer is yes, because 70% > 10%. On another reading,

it asks: Is Pr(a3 , 0 2 ) > 50%? That is, is someone who uses o3 more likely than not

to beat someone who uses -2 ? The answer isn't settled by what I've said. You might

think there is a third reading, not comparing o-3 and 0-2 against oor against each

other, but overall.

Compare: Suppose you're discussing three former snooker world champions, Ron-

nie O'Sullivan, Stephen Hendry and Steve Davis. You might ask: Is Ronnie O'Sullivan

better than Stephen Hendry? The question is ambiguous. On one reading, it asks:

Is O'Sullivan more likely to beat Davis than Hendry is? On another reading, it asks:

Is O'Sullivan more likely than not to beat Hendry? On a third reading, it asks: Is

O'Sullivan overall better than Hendry? (Whether O'Sullivan is more likely than not

to beat Hendry is relevant but may not settle the third question. After all, O'Sullivan

might be just as likely as not to beat Hendry, or Hendry might tend to beat people

who beat O'Sullivan but lose to O'Sullivan himself.) The picture lying behind the

third reading is of some yardstick of quality: measure O'Sullivan, measure Hendry,

and compare the numbers.

Poker strategies aren't snooker players. The third reading may well make sense for

O'Sullivan and Hendry but it doesn't make sense for 0 3 and -2 . In poker, there is no

yardstick of quality. The two-place function, Pr, makes sense: it takes two strategies

and returns the probability that someone who uses the first beats someone who uses

the second. A one-place function, which takes a strategy and returns a measure of

its quality, does not.

Don't try to extract a one-place function, Quality(a), from Pr, say by averaging

Pr(o-, p) over all strategies p. No doubt formally it can be done, but it would be

done to no purpose: a strategy which maximized Quality(a) wouldn't be an optimal
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strategy, in any reasonable sense of 'optimal'.

In some special cases, it does make sense to say that one strategy is overall better

than another. For example, it might be that for any strategy p, Pr(, p) > Pr(p, p). In

other words, a dominates p. In that case, it's reasonable to say that a is better than

p.But the case is atypical. It does not vindicate the concept of optimal strategies.

The point I'm making is straightforward. If it seems otherwise, it's because of

poker's complexity: chance moves, bluffs, bankroll management and so on. Take a

simple game instead, which I picked more or less at random:

L R
U 1,2 0,1

M 0,2 1,3
D 0,3 -1,0

Figure 1-7: Payoff matrix in the Simple Game.

Is, say, playing U better than playing M? If the column-chooser plays L, it is. If

the column-chooser plays R, it isn't. But what about overall? The problem is how to

make sense of that question. We can say that playing U is overall better than playing

D, since U dominates D: no matter whether column-chooser plays L or R, you do

better by playing U than D. But that doesn't show that it also makes sense to ask

whether playing U is overall better than playing l. Poker, with all its complexity,

obscures the problem. But the problem is no easier in poker than here.

Finally, the Coin Game. In the Coin Game, our interests coincide: if either

correctly guesses how the other's coin landed, we win; else, we lose. That feature is

unremarkable: it's perfectly kosher for players' interests to coincide. In the games

underlying paradigm conventions, for example, they typically do (Lewis 1969). When

the players' interests coincide, we can say, reasonably enough, that a strategy profile

is optimal just if it leads to the maximum payoff. Multiple strategy profiles may be

optimal on that definition. However, in typical games, the definition doesn't make

sense, because what yields the maximum payoff for one player doesn't for another.

Even when the definition does make sense, it's of little theoretical value. For example,
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saying that players in a coordination game do their bits of some or other optimal

outcome may be false as a prediction and misguided as a prescription.22

The Coin Game illustrates a further point. Not only do our interests coincide

but we're allowed to agree on a strategy ahead of time. The second feature, like the

first, is unremarkable: it's perfectly kosher to suppose the players have a chance to

agree on a strategy ahead of time, as long as we remember that the proper object

of analysis becomes the broader situation, which includes the pre-play communica-

tion. However, in combination the two features-coincidence of interest and pre-play

communication-make it tempting to treat the situation as a decision problem, not

a game. The earlier analysis of the Coin Game yields to that temptation. The anal-

ysis treats us, not as two interacting agents, but as a single agent. Our uncertainty

on that analysis is solely uncertainty about the environment, not about each other.

Furthermore, our uncertainty is derived from objective chances: how fair coins will

land. In such situations, the concept of an optimal strategy does make sense: it is

nothing more than the idea of maximizing expected utility. The strategy arrived at

above-you guess the same as your coin and I guess the opposite of mine-is just a

strategy which maximizes expected utility in the implicit decision problem, a decision

problem disguised as a game. The analysis of the Coin Game has little to tell us about

games.

So much for the idea that the role of solution concepts is to pick out solutions.

Except for a special class of games, such as Nim, Hex and chess, we've yet to see how

to make sense of the idea.

2 2An example I heard of from Robert Stalnaker: Suppose you say to the students in your class,
"Each of you write down the name of a state. If you all write down the same one, I'll give you
each $2, except if you all write down 'Massachusetts', in which case I'll give you each $1; else, you
get nothing." The optimal outcomes are those in which, for some state other than Massachusetts,
everyone writes down the name of that state. But to predict or prescribe that the students do their
bits of some or other optimal outcome would be a mistake. On natural ways of fleshing out the
scenario, each student will, and should, write down 'Massachusetts'.
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1.7.3 Do solution concepts describe how people will play under

particular conditions?

Here's a second idea:

The contrast between decision theory and game theory is superficial: in

both decisions and games, what the agent(s) will or should do is not

determined by the payoff matrix alone. However, when analyzing a game,

game theorists implicitly make assumptions about the epistemic states

of the players. The assumptions, in combination with the payoff matrix,

constrain what the players will or should do. The role of a solution concept

is to characterize the constraints: that is, to characterize how the players

might behave, given the implicit epistemic assumptions.

In decision theory, implicit assumptions about the epistemic state of the agent, in

combination with the payoff matrix, typically don't constrain what the agent will or

should do, unless the assumptions are outrageously specific. Take Walk or Bus. In

order to constrain what you should do, the assumptions would have to settle whether

walking or taking the bus maximizes expected value. But any such assumptions would

need to bring in the structure of Walk or Bus. The assumptions could not be general:

the kind of thing that decision theorists could assume across the board, independent

of any particular payoff matrix.

In game theory, it's more plausible that implicit assumptions about the epistemic

states of the players-assumptions which don't bring in the structure of the game at

hand-do constrain how the players behave. After all, players in a game have richer

beliefs: beliefs not just about what the others will do, but also about their rationality

and their beliefs. There is more scope for rich, general epistemic assumptions.

In epistemic game theory, we can represent players' epistemic states and check

how assumptions about their states constrain what they do. On one way of un-

derstanding the idea above, epistemic game theory merely formalizes classical game

theory: classical game theorists made informal implicit assumptions about the play-

ers' epistemic states and reasoned informally about how those assumptions constrain
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what the players do; epistemic game theory formalizes that practice. On that picture,

epistemic game theory stands to classical game theory as modern calculus stands to

the calculus of Newton and Leibniz. 2 3

I'm inclined to think that that picture is correct. However, the picture seems not to

reflect game theorists' actual attitudes, for epistemic game theory has not superseded

classical game theory, as modern calculus superseded the calculus of Newton and

Leibniz. That suggests that people who endorse the idea understand it differently.

The implicit epistemic assumptions they have in mind are not, it seems, the sort of

assumptions formalized in epistemic game theory.

What are they then? I'll briefly discuss two options. First, perhaps game theorists'

implicit epistemic assumption is that the players suffer from Knightian uncertainty

about each other (Knight 1921; see also Weatherson 2016). The idea is that the

players have no information about each other, beyond perhaps common knowledge

of rationality and of the payoff matrix, so their uncertainty about the other players'

strategies cannot be captured in the standard Bayesian way. (Compare: Did Paul

Scholes score the winner in the 1998 FA Cup Final? Is the number I just wrote on

my whiteboard prime? Does neutrinoless double beta decay ever happen? You might

worry that your uncertainty about these claims cannot be captured in the standard

Bayesian way.) The role of a solution concept, on this picture, is to characterize how

players might behave, given the assumption of Knightian uncertainty, an assumption

which cannot be captured in epistemic game theory. Epistemic game theory and

classical game theory are in different lines of work.

I'm not convinced that this picture makes sense. For one thing, it seems to confuse

the position of the theorist with the position of the players she is theorizing about:

the theorist may not assume anything about the players, but it doesn't follow that

the players themselves are similarly uncertain. Besides, the picture seems unstable:

"Stalnaker (1994) suggests another analogy: epistemic game theory stands to classical game
theory as model theory stands to axiom systems in modal logic. Model theory helps us better un-
derstand axiom systems, just as epistemic game theory helps us better understand solution concepts.
On Stalnaker's analogy, epistemic game theory doesn't supersede, but complements, classical game
theory. However, the analogy seems to me to be over-generous to classical game theory. For axiom
systems can be fruitfully investigated by other means too and are of interest beyond just the class
of models to which they correspond.
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the theorist assumes that the players are radically uncertain about what the others

will do, and argues on that basis to what the players might do; but if that approach

is coherent, then the players seem to be in a position to make the argument for

themselves, and so escape their radical uncertainty, undermining a premise of that

very argument. Even if the picture did make sense, solution concepts would turn

out to have very limited application. For on this picture solution concepts describe

what players might do in a special kind of situation, a situation which rarely obtains

in practice. After all, normally in games we are not radically uncertain about what

the other players will do. Kasparov didn't cease to play chess just because he was

confident and correct about what his opponent would do; I don't cease to play chess

just because I'm confident and incorrect about my opponent will do. Games aren't

played in a vacuum.

So much for the first option. Now for the second: perhaps game theorists' implicit

epistemic assumption is that the players are rational, not in the familiar decision-

theoretic sense of maximizing expected value, but in a distinctive game-theoretic

sense. This seems to be what Binmore (2007: 43) has in mind:

If Eve is rational, then she reasons optimally, and so Adam has only to

figure out his opponent's optimal line of reasoning to know precisely what

she will be thinking. If he has trouble in doing so, he can look the answer

up in a game theory book. Psychological questions therefore have no

place in a discussion of the rational play of games. If everybody played

poker rationally, there wouldn't be a world poker championship because

the winners and losers would be entirely determined by what cards the

players were lucky enough to be dealt.

By 'rational' Binmore presumably doesn't mean 'maximizes expected value'. For if

he did, then what he says would be obviously wrong: it's simply false that assuming

poker players are rational (in the sense of maximizing expected value) determines

their strategies. You can write down game models for poker in all of which Adam

and Eve are rational (in fact, have common knowledge of rationality), and yet they
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do different things in different models. Binmore must have another sense of 'rational'

in mind: a distinctive game-theoretic sense.

I deny that there is a distinctive game-theoretic sense of 'rational'. I've found no

argument for it in the literature. (Binmore doesn't supply one.) I'm also skeptical

that the distinction could be developed coherently. (Take cases where an agent's

uncertainty is generated by both the environment and other agents, or where the agent

is unsure whether the environment includes other agents.) I agree with Stalnaker

(1998: 36): "Explaining behavior in [a game] should require, not a new theory [of

rationality], but an application of the general theory to a specific situation."

1.7.4 Solution concepts and unexploitable advice

Here's a third idea:

The role of solution concepts is to identify uneploitable advice.

What is unexploitable advice? I'll build up to it.

An aim of game theory is to advise players in various games about what they

should do. Books about poker, for example, offer such advice. That's why poker

players buy the books. (Chen and Ankenman (2006) is a popular choice.) In principle,

game theorists could offer the advice in secret to one person only, so that no one else

knew what the advice was or who had received it. However, in practice, that's not

what happens: game theorists' advice tends to be public. That poses a problem. For

if you advise a player to play a particular strategy, and the other players know that

you have done so, then they may exploit the situation to their gain and your advisee's

cost.

Let's look at a simple example. Suppose Tom and Emma are playing Matching

Pennies. Each has a penny. They simultaneously put their pennies on the table,

either heads up or tails up: if the pennies match Tom wins; else, Emma wins.

Suppose you are trying to advise Tom how to play in Matching Pennies. If you

advise Tom to play heads, and Emma finds out that you have done so, then she may

play tails, so that when Tom follows your advice, Emma will win. Similarly if you
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heads tails
heads 1, 0 0, i

tails 0, 1 1, 0

Figure 1-8: Payoff matrix in Matching Pennies

advise Tom to play tails. Tom would be foolish to blindly follow either bit of advice

in Matching Pennies, when the advice is public.

Of course, Tom might be able to exploit the situation himself. For example, if you

advise Tom to play heads, he might let Emma think that he was going to follow the

advice, so that she would play tails, but in fact himself play tails, so that he wins. In

this case, receiving the advice benefits Tom indirectly: not by following the advice,

but by exploiting Emma's expectation that he'll follow it.

Tom's attempt might backfire. For Emma might see through his pretense and

herself play heads, so that she wins. And so on. The situation can ramify, with

Tom and Emma each trying to outguess the other about whether Tom will follow

the advice, in the knowledge that the other is doing the same, just as, in the initial

situation, Tom and Emma were each trying to outguess the other about how they'd

place their pennies, in the knowledge that the other was doing the same.

The situation is similar if the game theorist offers advice, not just to Tom, but to

both Tom and Emma. For whatever the advice is-(h,h), (h,t), (t,h), (t,t)-a player

who blindly follows it leaves himself open to exploitation.

The moral is not that public advice has no effect or should not be followed or will

never help the advisee: as we have seen, it might have an effect, in some situations

it should be followed, and it might help the advisee. The moral is instead that

public advice is merely a move in a broader game. Instead of allowing the player

to delegate the strategic thinking to a game theorist, the game theorist's advice is

just another feature of the player's situation, about which the player himself needs to

think strategically.

I've focused on problems which arise when the game theorist's advice is public.

But similar problems might arise even if the advice is private. For if you advise a
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player, privately, to play a particular strategy, and the player follows your advice

every time she plays the game, then, if she plays the game often, the other players

may work out her strategy and exploit it to their gain and your advisee's cost.

Back to Matching Pennies. Suppose you advise Tom, privately, to play heads.

If Tom and Emma play Matching Pennies repeatedly and Tom follows your advice

every time, then Emma will soon catch on. She will start playing tails and winning.

And similarly if you advise Tom to play heads. Tom would be foolish to persistently

follow either bit of advice, even though the advice was private.

Tom might be able to exploit the situation himself. For example, he might follow

the advice to play heads just long enough that Emma starts to play tails, and then

himself switch to tails. And he might continue playing tails just long enough that

Emma switches back to heads, and then himself also switch back to heads. But Tom's

attempt might backfire. For Emma might anticipate when Tom will switch and switch

herself. And so on. The situation can ramify, just as before.

The problem is that private advice, when followed persistently, becomes public.

When it has become public, the advisee is obliged to re-shoulder the burden of think-

ing strategically. The aim of delegating all strategic thinking to the game theorist is

frustrated.

An aim of game theory is to advise players in various games about what they

should do. An obstacle to realizing the aim, as we have seen, is that public advice is

merely a move in a broader game and private advice becomes public when followed

persistently. Either way, the game theorist fails to relieve the players of the burden

of thinking strategically. Still, we might hope to realize the aim by some more subtle

means. Perhaps we can come up with a special kind of advice, a kind of advice which

avoids the obstacle and does relieve the players of the burden of thinking strategically.

Call it unexploitable advice.

Back to Matching Pennies again. Matching Pennies has a unique Nash equilibrium

in strategies: Tom and Emma both randomize, choosing heads with probability i and

tails with probability 2, giving each expected payoff 1. Suppose you advise Tom to

do his bit of the equilibrium. If Tom follows the advice, his expected value is j, no
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matter what Emma does. It makes no difference to Tom's expected value whether

the advice is public or how persistently he follows it. In that sense, Tom is relieved

of the burden of thinking strategically and the advice seems to be a good candidate

for unexploitable advice.

Unexploitable advice needn't be the best advice. For example, Tom might be

confident that Emma will play heads. (Perhaps Emma tends to play the opposite of

what she played last time. Perhaps Tom has an informant in Emma's camp. Emma

might even randomize, playing heads when the second hand on her watch is in the

range 0-30, but Tom knows this and stole a glance at her watch as they prepared

to play.) In that case, Tom shouldn't follow the advice and randomize. He should

just play heads. The idea is not that unexploitable advice is the best advice but

that unexploitable advice relieves Tom of the burden of thinking strategically. (Tom

needn't worry, for example, about whether Emma planted the informant, or wants

him to think that she planted the informant, or wants him to think that she wants

him to think that she planted the informant.)

The randomization is essential: there is no pure strategy such that, if Tom uses

it, his expected value is insensitive to what Emma does. So randomization emerges

naturally on this picture. But it occupies a delicate position: not as something that

players have reason to do but as something that game theorists have reason to advise

them to do, if the game theorist's aim is to relieve the players of the burden of thinking

strategically.

Binmore (2007: 19) expresses a similar idea and points out the key role for strategic

equilibrium:

Why should anyone care about Nash equilibria? [A] game theory book

can't authoritatively point to a pair of strategies (s, t) as the solution of a

game unless it is a Nash equilibrium. Suppose, for example, that t weren't

a best reply to s. Eve would then reason that if Adam follows the book's

advice and plays s, then she would do better not to play t. But a book

can't be authoritative on what is rational if rational people don't play as

it predicts.
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Binmore refers to the 'solution' of a game and to how 'rational' people will play

it. As I've argued, these ideas are confused: games don't have solutions in Bin-

more's sense; there is no distinctive game-theoretic sense of 'rational'; in the decision-

theoretic sense of 'rational', no more can be said about how rational players will play

than that they won't play a dominated strategy. However, when we strip away those

confusions, what remains is an interesting claim: that advising players to do their bit

of a particular strategy profile is unexploitable only if the profile forms a strategic

equilibrium.

I described the concept of unexploitable advice using Matching Pennies, a two-

player zero-sum game. It seems to me that such games are the most favorable setting

for making sense of the concept of unexploitable advice. If the concept makes sense

for any games, it makes sense for two-player zero-sum games. When we move to

multi-player games or games not of pure conflict, the concept is harder to make sense

of.

Remember the purpose of the section: to get clearer about the role of solution

concepts, the better to evaluate CONJECTURES. The role under consideration is that

solution concepts identify unexploitable advice. The concept of unexploitable advice,

although still murky, is clear enough for that purpose. For we can already see that

CONJECTURES is not even a candidate for identifying unexploitable advice. Why

not? Because CONJECTURES doesn't generate advice, let alone unexploitable advice.

CONJECTURES is the set of plays with a doxastic equilibrium. Game theorists cannot

advise players to do their bits of a doxastic equilibrium, for a doxastic equilibrium is

a pattern of beliefs, not of strategies. Even if this role for solution concepts makes

sense, CONJECTURES isn't fit to perform it. We should look for some other standard

by which to evaluate CONJECTURES.

1.7.5 Do solution concepts yield non-self-defeating predictions?

Roger Myerson (1991: 4) describes a fourth idea:

When we analyze a game, as game theorists or social scientists, we say
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that a player in the game is intelligent if he knows everything that we

know about the game and he can make any inferences about the situation

that we can make. In game theory, we generally assume that players

are intelligent in this sense. Thus, if we develop a theory that describes

the behavior of intelligent players in some game and we believe that this

theory is correct, then we must assume that each player in the game will

also understand this theory and its predictions.

There's something attractive about Myerson's idea. If we, the theorists, can pre-

dict the players' behavior, then surely the players themselves can do the same. If we,

the theorists, don't assume that the players we're theorizing about are as good at pre-

dicting the players' behavior as we are, then we're treating ourselves as exceptions to

our own theories. That's an uncomfortable situation. Game theorists' theories should

apply to butchers, bakers, candlestick makers-and game theorists themselves. Game

theorists are people too.

Myerson uses the idea to justify the emphasis on strategic equilibrium. Let 0-

(i,...-, On) be a strategy profile which is not a strategic equilibrium. Suppose you,

the theorist, argue that outcome will be o. Suppose further that your argument is

sound and the players are intelligent. Then each player can make that argument for

himself and arrive at the same conclusion. Since, by assumption, o is not a strategic

equilibrium, some component strategy a is not a best response to the others. So

player i won't play ai. (That step assumes that player i is rational. We might

flatter ourselves and take rationality to follow from intelligence or we might take it

as an independent assumption. I won't worry about that here.) So the prediction

is incorrect. So your argument for it is not sound. Contradiction. Hence: your

argument is not sound, if the players are intelligent. Generalizing, for any non-

equilibrium strategy profile a, no argument that the outcome will be 0 is sound, if

the players are intelligent.

Take a game, such as Matching Pennies, with no strategic equilibrium in pure

strategies. The theorist has two options on this picture: either we cannot predict

what intelligent players will do in the game, or the players can randomize. The
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second option might look more attractive than the first: to take the first option looks

like admitting defeat at the first sign of difficulty; to take the second option looks like

overcoming a technical obstacle by theoretical ingenuity. Thus if you're convinced by

Myerson's idea you might be led to suppose that the players can randomize.

Myerson's idea is sensible: game theorists typically shouldn't assume they are

cleverer than the players they are analyzing. However, in developing the idea, Myer-

son combines it with another assumption: that substantive things can be said, based

on the payoff matrix alone (perhaps plus the players' rationality), about what players

will do. In previous subsections, I've argued that that's a mistake: nothing can be

said, based on the payoff matrix alone, about what players will do; if the players

are rational, all that follows is that they won't play dominated strategies. Myer-

son assumes, wrongly, that more can be said. That leads him to overestimate the

consequences ofthe idea.

For example, take Myerson's conclusion above: for any non-equilibrium strategy

profile a, no argument that the outcome will be o is sound, if the players are intelli-

gent. Fully spelled out, the conclusion is in fact: (a) for any non-equilibrium strategy

profile o, no argument based on the payoff matrix alone that the outcome will be a is

sound, if the players are intelligent. That conclusion is correct. Now suppose for the

sake of argument that: (b) for some strategy profile o*, there exists a sound argument

based on the payoff matrix alone that the outcome will be o*. From (a) and (b) it

follows that: (c) the outcome will be a strategic equilibrium, if the players are intel-

ligent. In short, when we combine Myerson's idea with a strong assumption about

what we can predict based on the payoff matrix, we're led to conclude, wrongly, that

intelligent players will play a strategic equilibrium. You might go on to speculate, as

people do, whether we can further narrow down how they'll play.

Now, (b) is false. I don't mean to suggest that Myerson endorses it. But he does

seem to endorse a weakened version of (b), perhaps something like: (b') for some

small set of strategy profiles E, there exists a sound argument based on the payoff

matrix alone that the outcome will be in E. From (a) and (b'), (c) doesn't strictly

follow but it's very tempting to make the jump anyway. In short, even when we
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weaken the assumption about what we can predict based on the payoff matrix, when

we combine it with Myerson's idea, it's tempting to conclude again, wrongly, that

intelligent players will play a strategic equilibrium, and to go on to speculate whether

we can further narrow how they'll play.

To assume the players are intelligent is to assume that they're as clever as the

theorist. That's a slippery assumption, mixing up as it does the roles of the theorist

and the people she is theorizing about, but looks admirably humble: whatever we, the

theorists, can predict will happen based on the payoff matrix, the players themselves

can predict too. Fine, but when you also assume that you can make substantive

predictions based on the payoff matrix, you're led to overestimate the consequences

of this idea.

You might worry that if you treat games in the same way as decision problems,

by supplementing the payoff matrix with a probability matrix or similar, then you

can't assume the players are intelligent, because the theorist will know more about

the situation than the players. (For example, the theorist will know what each player

believes but the players typically won't know what each player believes.) That's a

mistake. To restrict your attention to cases where the players are in the same position

as you are is to slip from humility into egoism, for you are in effect refusing to talk

about anyone other than yourself.

1.7.6 Do solution concepts pick out interesting outcomes?

Leyton-Brown and Shoham claimed that it doesn't make sense to say that each player

in a game should maximize her expected payoff given her beliefs. That, I think, is a

mistake, as the development of epistemic game theory shows. In any case, Leyton-

Brown and Shoham also make a positive suggestion (2008: 9): "Game theorists deal

with this problem by identifying certain subsets of outcomes, called solution concepts,

that are interesting in one sense or another."

The role of solution concepts, on their view, is open-ended, for they don't try to

specify what qualifies as interesting. (Interesting to whom-topologist? philosopher?

poker player?) But I agree that some solution concepts pick out interesting outcomes,
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strategic equilibrium being a notable example. Payoff matrices in games have a richer

structure than payoff matrices in decision problems. Therefore there's more scope for

picking out, based on the payoff matrix alone, interesting outcomes.

Aumann (2008: 464) suggests a similar role for solution concepts:

The relationship of solution concepts to games is similar [to the relation-

ship of summary statistics to probability distributions.] Like the median

and mean, they in some sense summarize the large amount of information

present in the formal description of a game. The definitions themselves

have a certain fairly clear intuitive content, though they are not predic-

tions of what will happen. Finally, the relations between a game and

[various kinds of solutions of it] is best revealed by seeing where these

solution concepts lead in specific games and classes of games.

Aumann's suggestion, like Leyton-Brown and Shoham's, is open-ended. He invites

us to evaluate solution concepts case-by-case, with more emphasis on practice than

grand theory. I'm skeptical about whether Aumann's suggestion reflects the general

attitude among game theorists. For one thing, it clashes with remarks in plenty of

popular textbooks, several of which I've quoted here. For another, it doesn't account

for game theorists' emphasis on strategic equilibrium or existence.

The aim of this section was to get clearer about the role of solution concepts

so that we could assess doxastic equilibrium. Whether or not Leyton-Brown and

Shoham's or Aumann's suggestions reflect game theorists' actual attitudes, a role for

solution concepts along the lines they suggest does at least make sense. In the rest

of the paper, I evaluate doxastic equilibrium by that standard.

1.8 Doxastic equilibrium and correlated conjectures

I argue that CONJECTURES is not an interesting set of plays, and doesn't deserve the

attention it has received: it presupposes, objectionably, that players' beliefs about

the others are independent; and doxastic equilibria, unlike strategic equilibria, are
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in no way self-enforcing. I also apply the doxastic interpretation of mixed strategies

to another solution concept, Lewis's coordination equilibrium, in order to illustrate

that reinterpreting mixed strategies as conjectures can turn an interesting solution

concept into an arbitrary one.

1.8.1 Independence of conjectures

Recall that i's overall conjecture is represented by a distribution over A-i and, for

each j, i's individual conjecture about j is represented by a distribution over Aj.

Note that i's individual conjectures about her opponents canonically determine an

overall conjecture, namely, by taking the product:-= IHrgoj. But o- needn't be i's

overall conjecture, since i's beliefs about her opponents' actions may be correlated. If

i's overall conjecture is the one canonically determined by her individual conjectures,

then i's conjectures are independent; else, they are correlated.

1.8.2 Example

L R
U 10
D 0J

W

L R

D1

E

Figure 1-9: Payoff matrix in the Three-Player Game.

t£ tR

tv 1/6_ _1/12_

tF 1/12 1/6
tw

Figure 1-10: Model for

tL tR

to 1/61/12
tD

tE

the Three-Player Game.

Figure 9 is a three-player game between Rowena, Colin and Mattea. Figure 10 is

a model for it. According to the model, the actual state is (tu, tL, tE), in bold. The

outcome is (U, L, E), in which everyone gets payoff 0. Rowena's overall conjecture is
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(ILW + RW + LE + RE); and similarly for Colin and Mattea.14

Each player's individual conjectures assign equal weight to the opponent's actions.

For example, Rowena's individual conjecture about Colin is (IL + !R) and about

Mattea is (!W + 1E). Hence the doxastic distribution is a Nash equilibrium, and

the model is in CONJECTURES. The overall conjecture canonically determined by

Rowena's individual conjectures is (ILW+ 1LE+RW+!RE), which isn't Rowena's

overall conjecture. So her conjectures are correlated, as are Colin's and Mattea's.

1.8.3 Optimal support and doxastic equilibrium

Is CONJECTURES an interesting set of plays? Perhaps Optimal Support shows that

it is, for Optimal Support looks at first glance like an interesting property.

Not so. Take a model in CONJECTURES such that some player i's conjectures

are correlated-Figure 10, for example. Since the model is in CONJECTURES, if i's

opponents assign positive probability to an action a of i's, then a is optimal given

the overall conjecture determined by o-_i. That overall conjecture is not i's overall

conjecture, since i's conjectures are correlated. So why care if i's opponents only

assign positive probability to actions optimal given that overall conjecture?

Optimal Support seems to reveal why CONJECTURES is worth caring about. But

when we remember that players' conjectures may be correlated, so that the overall

conjecture canonically determined by oi needn't be i's overall conjecture, we see

that it doesn't.

It's easy to forget that the players' conjectures may be correlated. Consider Perea's

(2007: 252) description of CONJECTURES: "[The doxastic interpretation] states that

player i's belief about player j's choice should only assign positive probability to

choices that are optimal for player j, given j's beliefs about the other players' choices."

Perea's description is incorrect. The set he describes includes plays in which the dox-

astic distribution is not a Nash equilibrium. He's overlooked the fact that the players'

2 The overall conjectures are not common belief. For example, Colin assigns positive probability
to (tD, tL, tE), in which case Rowena's overall conjecture is (LW + RW + LE + RE), which
isn't her actual overall conjecture. Hence AB's Theorem 2 doesn't apply.
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conjectures may be correlated, and so makes CONJECTURES look more interesting

than it is.

1.8.4 Assuming and entailing independence

Let INDEPENDENCE be the set of plays in which the players's conjectures are indepen-

dent. To switch attention from CONJECTURES to CONJECTURES INDEPENDENCE is

to jump from the frying pan into the fire, for independence is an artificial restriction.

Correlated conjectures are not at all exotic, even when players' choices are causally

independent."

AB's epistemic conditions for CONJECTURES entail that all the players' conjectures

are independent. So do the subsequent weakenings of their conditions by Barelli

(2009) and then Bach and Tsakas (2014).26 Therefore we may view their results as

characterizing either CONJECTURES or CONJECTURES 0INDEPENDENCE. When you

are worried about overall conjectures, as you should be, you may view the results in

the second way; when you are worried about independence, as you should be, you

may view the results in the first way. But both worries must be confronted at once.

Switching points of view disguises, but does not avoid, the problem: either way, the

set of plays being characterized isn't interesting.

AB are well aware that independence is an artificial restriction. Consider what

they say about an alternative epistemic characterization of Nash equilibrium, one

which assumes independence and that players' individual conjectures agree:

We consider this result of limited interest in the context of this paper;

neither assumption has the epistemic flavor that we are looking for. More-

over, in the current subjectivist context, we find independence dubious as

"See Stalnaker (1998: 43-4) for discussion of this point. To modify one of his examples, suppose
my partner and I are in our voting booths on election day. How she votes is causally independent of
how I vote. You may have no idea how either of us will vote, but still be confident (and justifiably
so) that, however we vote, we'll vote the same way.

26Bach and Tsakas (2014: 49) pay lip service to the idea that the players' conjectures may be
correlated, saying "Note that [i's overall conjecture] is not necessarily a product measure." But their
epistemic conditions, like AB's, do entail that the conjectures are independent. They show this in
Appendix A, but don't mention it in the body of the paper.
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an assumption (though not necessarily as a conclusion). (1177, my italics)

I see little space between assuming independence and assuming things which entail

independence. (Would AB attach the same significance to their result if it assumed,

not common belief in rationality, but things which entailed common belief in ratio-

nality? Surely not.) Since assuming independence is dubious, so is assuming things

which entail independence.

Perhaps AB are distinguishing not between assuming independence and assuming

things which entail independence, but between characterizing CONJECTURES and

characterizing CONJECTURES n INDEPENDENCE. They are advising us to take their

result as characterizing CONJECTURES. Fine, but the criticism stands: however we

view the result, the set of plays being characterized isn't interesting.

1.9 Self-enforcing behaviour and coordination equi-

librium

1.9.1 Self-enforcing behaviour

In what sense, if any, are strategic equilibria and doxastic equilibria self-enforcing?

To fix ideas, recall Figures 5 and 6, two models for Battle of the Sexes. Figure 5 is in

STRATEGIES; Figure 6 is in CONJECTURES.

First consider Figure 5. Rowena plays U; Colin plays L. Suppose either player

learns what the other plans to do, or what both plan to do is publicly announced. In

either case, it won't change what they plan to do. The strategic profile will remain

a Nash equilibrium. Or suppose Rowena and Colin make a non-binding pre-play

agreement to do their bits of (U, L). The agreement is self-enforcing: to agree to

(U, L) is a reason to do (U, L). Or suppose a third-party recommends that they play

(U, L). The recommendation is not self-defeating. In some sense, then, the strategic

equilibrium is self-enforcing.

Now consider Figure 6. Rowena's conjecture is( L + R); Colin's conjecture is

(U+ D). If Rowena learns what Colin's conjecture is, she will learn that the state

54



is (tu, tp), and that Colin will play R. The doxastic profile will become (1 - R, 2 - U +

_ . D), which is not a Nash equilibrium. And similarly if Colin learns what Rowena's

conjecture is. If one player learns the other's conjecture, the doxastic equilibrium is

destroyed. Or suppose their conjectures are publicly announced. There's no reason

to expect that the resulting doxastic profile will be a Nash equilibrium. Finally, note

that talk of agreeing to a doxastic profile, or recommending a doxastic profile, is

misguided. You can't form beliefs by agreement, nor sensibly recommend what the

players should believe. In no sense, then, is the doxastic equilibrium self-enforcing.

Strictly speaking, these claims go beyond the models. The models represent what

the players do and believe. They don't represent what the players would do or

believe if they learnt the other's strategy or conjecture, nor how they would respond

to recommendations or agreements. However, on natural ways of fleshing out the

models, the claims hold.

Figure 5 illustrates a general phenomenon: there is a connection between STRATE-

GIEs and self-enforcing behaviour. The connection may be subtle." But theory and

practice both show that there is some connection. Figure 6 also illustrates a general

phenomenon: we have no reason to expect any connection between CONJECTURES and

self-enforcing behaviour. Neither theory nor practice suggests there is one. Strategic

equilibria are in some sense self-enforcing; doxastic equilibria are not.

1.9.2 Applying the doxastic interpretation to other solution

concepts

Many solution concepts involve mixed strategies, not just Nash equilibrium. It's

instructive to apply the doxastic interpretation of mixed strategies to them too, and

see what we get.

A case study: Lewis's concept of coordination equilibrium. A distribution profile

is a coordination equilibrium just if:

(C) For any i and any distribution i over Ai, U(pi; o) < U(o), for all j.
2 7Aumann (1990) argued that non-binding pre-play agreements to play Nash equilibria aren't

always self-enforcing.
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It's easily proved that (C) is equivalent to:

(D) For any i, if og(a) > 0 then a E argmaxA Uj(a'; lj 3 o9), for all j.

Consider the set of plays in which the strategic profile is a coordination equi-

librium. Call that the set of all plays with a strategic coordination equilibrium, or

CE-STRATEGIES. We can pick out that set of plays in an equivalent but more illu-

minating way, by interpreting (C) using the classical interpretation of distributions,

yielding:

No Resentment. The set of plays in which no player gains in expectation if

any player unilaterally changes her strategy.

This yields David Lewis's way of thinking about coordination equilibrium, which

plays a large role in his theory of convention and meaning. In STRATEGIES, no one

regrets her choice, given the others' choices; in CE-STRATEGIES, additionally, no one

resents another player's choice, given the choices of that player's opponents.

Now consider instead the set of all plays in which the players' individual conjec-

tures agree and the doxastic profile is a coordination equilibrium. Call that the set

of plays with a doastic coordination equilibrium, or CE-CONJECTURES. It would be

nice to pick out that set in an equivalent but more illuminating way. How? Let's try

interpreting (D) using the doxastic interpretation of distributions, yielding:

Universally Optimal Support. The set of plays such that, for each player i,

if i's opponents assign positive probability to i's action a, then for each player

j, a maximizes j's expected utility given the overall conjecture canonically de-

termined by o-i.

CE-CONJECTURES is a strange set of plays. It has no intuitive interest. CE-

STRATEGIES, by contrast, is a natural set of plays, of considerable intuitive inter-

est. Reinterpreting mixed strategies as conjectures turns an interesting solution con-

cept into an arbitrary one. As with CE-STRATEGIES and CE-CONJECTURES, so with

STRATEGIES and CONJECTURES.
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1.10 Conclusion

Reinterpreting a solution concept is not merely a change in point of view. It's the

plays that matter, not the distribution profiles. A play concept is a function which

takes a game and returns a set of models of the game. A solution concept F resolves

into multiple play concepts, as many as there are ways to interpret distributions.

For example, Nash equilibrium resolves into STRATEGIES and CONJECTURES, via

the classical and doxastic interpretations. Better, I suggest, not to think of many

interpretations of one solution concept, but simply of many play concepts. Working

with play concepts, rather than different interpretations of solution concepts, reminds

you that a change in interpretation is a substantive change, not merely a change in

point of view.

Doxastic equilibrium has been taken to be an approximation of strategic equilib-

rium in epistemic game theory. That's a mistake: it's a quite different concept, and

not an interesting one. Besides, strategic equilibrium doesn't need to be approxi-

mated. Either players can randomize or they can't. If they can, then game models

should represent randomizations. *If they can't, then better to forget about mixed

strategies than reinterpret them. Why cling to an old formalism when forced to give

up the interpretation for which the formalism was invented?

Epistemic characterizations of solutions concepts are a bridge between classical

game theory and epistemic game theory. They import the analytical tools of classical

game theory into the epistemic framework. To think about the classical theory in the

epistemic framework is helpful. That's not what we do when we reinterpret mixed

strategies as conjectures.
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Chapter 2

Against long-run defenses of decision

rules

2.1 The Gamble

I offer Mac a gamble on a coin toss. Here's how it works. Mac bets some amount

between $0 and $100. Then I flip a fair coin. If it comes up heads she gets back what

she bet plus twice the same again. If it comes up tails I keep what she bet. That is

The Gamble. For example, suppose she bets $50. If the coin comes up heads she gets

back her $50, plus an extra $100. If it comes up tails I keep her $50. Mac's utility

function is linear in dollars.1 How much should she bet?

The expected value of betting m dollars is 0.5 .2m - 0.5 - m, which is 0.5 - m. The

amount between $0 and $100 which maximizes this quantity is $100. So to maximize

expected value in The Gamble is to bet $100.

But should Mac maximize expected value in The Gamble? Some say she should,

because maximizing expected value does best in the long-run. 2 I argue that the

'I assume a linear utility function for convenience but nothing hangs on it.
2In Ray Briggs's survey in the Stanford Encyclopedia of Philosophy (2014), they discuss only two

defenses of maximizing expected value: the long-run defense and a defense based on the representa-
tion theorems. That suggests that the long-run defense is generally taken seriously. Looking through
popular textbooks (e.g. Hacking (2001: 81-2) or Bertsekas and Tsitsiklis (2008: 90)) provides fur-
ther evidence. Explicit appeals to the long-run defense are less common in recent research articles
than in surveys or textbooks. But they do happen. For example, after a careful and illuminating
discussion, Kenny Easwaran (2008: 633) concludes that "it might be reasonable to believe that the
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long-run defense isn't sound.

In Section 2, I describe the long-run defense. In Section 3, I suggest why it's worth

taking seriously, so is worth refuting. In Section 4, which is the heart of the paper, I

adapt an idea well-known in economics but little-known in philosophy-maximizing

expected growth rate-to show that a rival bet also has a long-run defense. The

long-run defenses are parallel but come to incompatible conclusions, so neither is

sound-or so I argue. In Section 5, I show how to formalize a new conjecture, a

conjecture with an interesting philosophical upshot: that many bets have a long-run

defense, so long-run defenses are cheap. In Section 6, I describe some work towards

resolving the conjecture.

2.2 The long-run defense of betting $100

Betting $100 in The Gamble does best in the long-run. Let's unpack what that means.

In the horizontal iteration of The Gamble, you face The Gamble repeatedly: on

Day 1, Day 2, Day 3, and so on forever. You have to bet the same amount between $0

and $100 every day. Suppose you bet m dollars. By the Weak Law of Large Numbers,

the probability that [the number of wins by Day n divided by n is within c of 0.5]

tends to 1 as n tends to infinity, for any c > 0. Therefore the probability that [your

average winnings by Day n are within c of the expected value] tends to 1 as n tends

to infinity, for any c > 0. Betting $100 maximizes expected value. Therefore-and

this is the key consequence-in the horizontal iteration of The Gamble, someone who

bets $100 eventually tends to make more money than someone who doesn't.

To state the key consequence more formally. Suppose in the horizontal iteration

you bet $100 and I bet some other amount. Then for any 6 > 0, there exists an N

such that for all n > N the probability that you've made more than me by Day n is

at least 1 - 6.3

value of an individual game is constrained by the long-run payout of repeated plays of the game."
3 f we apply the Strong Law instead of the Weak Law, we can show something stronger: that

with probability 1, eventually someone who bets $100 makes more money than someone who doesn't.
However, to apply the Strong Law we have to imagine a completed infinity of bets, because the
Strong Law requires assigning probabilities to infinite sequences. To apply the Weak Law, we need
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So much for the horizontal iteration of The Gamble. How does it bear on The

Gamble itself? Distinguish three claims:

(1) In the horizontal iteration of The Gamble, someone who bets $100 eventually

tends to make more money than someone who doesn't.

(2) Mac should bet $100 in the horizontal iteration of The Gamble.

(3) Mac should bet $100 in The Gamble.

(1) is true. If (1) is true, so is (2). If (2) is true, so is (3). Therefore (3) is true.

That's the long-run defense of betting $100 in The Gamble.

You might argue that the long-run defense isn't sound, on the basis that hypo-

thetical repetitions are irrelevant to a decision problem. After all, no decision will

actually be repeated indefinitely, most won't even be repeated often, some can't be

repeated often, and even those which will be repeated aren't independent. But I'll

argue on a quite different basis that the long-run defense isn't sound.

2.3 Motivating the long-run defense

In the next section, I argue that the long-run defense isn't sound. In this section, I

suggest why it's worth taking seriously, so is worth refuting, and draw connections

to broader issues about long-run defenses in other fields, dominance, and dynamic

choice.

2.3.1 Long-run defenses in other fields

Perhaps the long-run defense of betting $100 looks silly. But similar long-run defenses

are used in a wide range of other fields too. In Bayesian confirmation theory, the fact

that differences in priors are washed out as the number of data points tends to infinity

only imagine a potential infinity of bets (for each n, a sequence of n bets) because the Weak Law

only requires assigning probabilities to finite sequences. In short, applying the Strong Law yields a

stronger result, but also asks more of our imagination.
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is taken to ease worries about subjectivity now.4 In Neyman-Pearson hypothesis

testing, how a rule of statistical inference performs as the number of applications goes

to infinity is taken to bear on whether we should apply it in a particular instance. 5

In complexity theory, how an algorithm performs as the input size tends to infinity

is taken to bear on how it performs given an input of size, say, 25.6 In game theory,

what a player should do when the number of rounds tends to infinity is taken to bear

on what he should do when the game is just played once. 7 And so on.

Are these long-run defenses all on a par with the long-run defense of betting $100

in The Gamble? If they are, then a great deal hangs on properly evaluating any of

them. If they aren't, then the status of a long-run defense must depend on details of

the particular case. Either way, the long-run defense of betting $100 is worth taking

seriously.

To fix ideas, I'll spell out in more detail a long-run defense from another field:

estimation theory in frequentist statistics.

How can we estimate the bias of a coin, 9 E [0, 1]? Here's what the frequentist

statistician says. Flip the coin, so that the outcome X is either 1 (heads) with

probability 0 or 0 (tails) with probability 1 - 0. If you flip the coin n times then the

outcome is a sequence X 1 , X2,..., X,. An estimator is a function of the outcome.

For example, one estimator is , := X 1+. +Xn, the proportion of heads in n flips. The

estimate is the value yielded by the estimator after actually flipping the coin. For

example, take the estimator just defined and suppose you toss the coin five times. If

4 Take Strevens (2017: 84): "The most common and in many ways the most effective Bayesian
response to the subjectivity objection is the convergence response: although in the short term scien-
tists may disagree on the significance of the evidence, in the longer term their subjective probabilities
will converge on the same hypotheses, and so a consensus will emerge."

5 Take Neyman and Pearson themselves (1933: 291): "Without hoping to know whether each
separate hypothesis is true or false, we may search for rules to govern our behaviour with regard to
them, in following which we insure that, in the long run of experience, we shall not be too often
wrong."

6 Take Aaronson (2013: 265): "The polynomial-exponential distinction is open to obvious objec-
tions: an algorithm that took 1.00000001' steps would be much faster in practice than an algorithm
that took n10000 steps! [...] But empirically, polynomial time turned out to correspond to "efficient in
practice," and exponential time to "inefficient in practice," so often that complexity theorists became
comfortable making the identification."

7 Osborne and Rubinstein (1994: 38-9) discuss this idea, among others, when considering how to
interpret and justify the concept of Nash equilibrium.
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you happen to get, say, HTTHT then the estimate of the bias is i+++1+O- 2

A key question for the frequentist is: Which estimator should you use? Say that

an estimator is consistent if it eventually tends to give estimates close to the bias, no

matter what the bias is.8 As it happens, the estimator above is consistent.

Frequentist statisticians say, among other things, that you should use a consistent

estimator. 9 Why?

To bring out the issue more clearly, I'll first focus on a more specific question.

Say that an estimator is anti-consistent if it tends in probability to something other

than 0, for all 0. Why prefer consistent to anti-consistent estimators? The idea seems

to be that consistent estimators do better in the long-run. Let's unpack what that

means.

To estimate the bias of the coin, you'll flip it finitely many times-100, say-and

then make an estimate. That is an estimation problem. In an iterated estimation

problem, you flip the coin repeatedly: on Day 1, Day 2, Day 3, and so on forever.

You estimate the bias each day based on the flips so far.

Now distinguish three claims:

(A) In an iterated estimation problem, the estimate yielded by a consistent estimator

eventually tends to be closer to the bias than the estimate yielded by an anti-

consistent estimator, no matter what the bias is.

(B) A consistent estimator is preferable to an anti-consistent estimator in an iterated

estimation problem.

(C) A consistent estimator is preferable to an anti-consistent estimator in an esti-

mation problem.

(A) is true. There's no denying that: it follows from the definitions of 'consistent'

and 'anti-consistent'. If (A) is true, so is (B). If (B) is true, so is (C). Therefore

8That is, an estimator is consistent if it tends in probability to 0, for all 0.
9Take Fisher (1950: 11): inconsistent estimators "should be regarded as outside the pale of decent

usage". Or Neyman (1952: 188): "it is definitely not profitable to use an inconsistent [estimator]."

63



(C) is true. That's the long-run defense of preferring consistent to anti-consistent

estimators.

The original question was: Why prefer consistent over non-consistent estimators?

I focused on a more specific question: Why prefer consistent over anti-consistent

estimators? Focusing on the more specific question brings out the issue more clearly.

But we can answer the original question in a similar way. The only difference will

be in (A). When we expand the class of rivals to consistent estimators, from anti-

consistent to inconsistent, we have to weaken (A). But the argument still takes a

similar form.10

The long-run defense of preferring consistent estimators in an estimation problem

has the same form as the long-run defense of betting $100 in The Gamble. If you

reject one, it seems you should reject the other too.

You might well reject frequentist estimation theory for other reasons. In that case,

you won't mind rejecting the long-run defense of preferring consistent estimators,

since you'll think that the whole frequentist approach is wrong-headed. But similar

long-run defenses come up in other fields as well. To reject long-run defenses across

the board is a radical move. That's a reason to take seriously the long-run defense of

betting $100.

2.3.2 Dominance

Consider the following claim:

If with high probability option X yields higher utility than option Y then

X is preferable to Y.

The claim is false of course. For example, an option which yields $1000 with

probability 0.1 and nothing with probability 0.9 is preferable to an option which

yields $1 no matter, contrary to the claim. Furthermore, it's possible that with high

probability X yields higher utility than Y, and similarly for Y and Z, and similarly

0Alternatively, we could dismiss some estimators on other grounds, and then use a long-run
defense to argue that among the remaining estimators we should prefer consistent ones. The key
point is that a long-run defense will come in at some stage or other.
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for Z and X, in which case the claim implies, absurdly, that X is preferable to Y,

and Y to Z, and Z to X."

But compare:

If with probability 1 option X yields higher utility than option Y then X

is preferable to Y.

This claim is surely true. Replacing 'high probability' by 'probability 1' avoids

the earlier counterexamples.

Now, it might seem that a premise of the long-run defense-if (1) is true, so is

(2)-is an instance of the first claim, and therefore suspect. For the premise seems to

be saying: betting $100 is preferable to betting, say, $50 in the horizontal iteration,

because with high probability betting $100 yields more money than betting $50.

But in fact the premise, although not strictly an instance of either claim, is more

similar in spirit to the second, which is true, than the first, which is false. For the

premise actually says: betting $100 is preferable to betting, say, $50, because the

probability that betting $100 yields more money than betting $50 by Day n tends to

1 as n tends to infinity. That's another reason to take the long-run defense seriously.

2.3.3 Dynamic and one-off choices

When someone faces a sequence of choices, we can either view her as facing one big

decision problem or as facing many little decision problems. A natural idea, at first

glance, is that which perspective we take doesn't matter: whatever she should do in

the big problem will decompose into what she should do in each little problem, and

vice versa.

In fact, things are more complicated. Sometimes, it seems, the perspective does

matter: what the agent should do in the big problem comes apart from what she

should do in each little problem. 1 2 There are various theories about what the agent

should do in such cases. For a formal treatment, see McClennen (1990). Still, even if

"This is the phenomenon of non-transitive dice.
1
2 For a survey, see Andreou (2017). For examples involving infinite sequences of choices, as in the

horizontal iteration of The Gamble, see Rayo (2019: 66-69).
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the perspective sometimes matters, it doesn't always matter. If it turns out that the

perspective doesn't matter in the horizontal iteration of The Gamble, what follows?

Well, consider an abstract procedure for working out how much you should bet in

The Gamble. Suppose that the amount you should bet in The Gamble depends only

on X, Y, Z. Call that amount, whatever it is, a. Now imagine an infinite sequence

of gambles, all like The Gamble with respect to X, Y, Z. First, view the sequence as

many little decision problems. Conclude in each case that you should bet a. After

all, each case is like The Gamble with respect to X, Y, Z. Next, view the sequence as

one big decision problem. Suppose you work out, somehow or other, that you should

bet b in every case. So, assuming that the perspective-many little problems or one

big problem-doesn't matter, conclude that a = b.

We're assuming, for the sake of argument, that the perspective doesn't matter in

the horizontal iteration of The Gamble. So, I suggest, we can apply this abstract

procedure in order to support the long-run defense of betting $100, by supporting the

premise that if (2) is true then so is (3).

Indeed, assume for conditional proof that (2) is true. How much Mac should bet in

The Gamble-call it a-depends only on the payoffs, win probability and her utility

function. The horizontal iteration of The Gamble is an infinite sequence of gambles,

all like The Gamble with respect to these properties. So, viewing the sequence as

many little problems, on each day Mac should bet a. But, viewing the sequence as

one big problem, by assumption Mac should bet $100 every day. Given that the

perspective doesn't matter, a = $100. Mac should bet $100 in The Gamble. In other

words, (3) is true. Discharging our assumption, if (2) is true then (3) is true.

In short, a natural idea is thatwhat does best in a series of choices coheres with

what does best in each component choice. That idea doesn't always hold, but if it

does hold for the horizontal iteration of The Gamble, then it supports a premise of the

long-run defense of betting $100. That's a third reason to take the long-run defense

seriously.
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2.4 The long-run defense of betting proportion 0.25

The expected growth rate of betting proportion m of $100 is (1+2m)0 5 - (1-M) 0 5 . The

proportion of $100 which maximizes this quantity is 0.25. So to maximize expected

growth rate in The Gamble is to bet proportion 0.25 of $100, which is $25.

But should Mac maximize expected growth rate in The Gamble? You might say

she should, because maximizing expected growth rate does best in the long-run.13

Let's unpack what that means.

In the vertical iteration of The Gamble, you face The Gamble repeatedly: on Day

1, Day 2, Day 3, and so on forever. You have to bet the same proportion of your

bankroll every day.

What's your bankroll? Think about it like this. Before Day 1, you set aside $100

from your savings and put it in a pot. You resolve to draw all your bets from and

deposit all your winnings into this pot. Your bankroll is the money in the pot. Using

the pot means you won't get carried away and end up losing your savings, because

your maximum loss, as compared to your initial wealth, is the amount you put in the

pot to start with: $100. For that reason, gamblers often follow this approach.

For example, suppose you bet proportion 0.4. On Day 1, your bankroll is $100.

So you bet $40 and win, say. Your bankroll on Day 2 is $180. So you bet $72 and

lose, say. Your bankroll on Day 3 is $108. So you bet $43.20 and win, say. And so

on.

Suppose you bet proportion m. By the Weak Law of Large Numbers, the proba-

bility that [the number of wins by Day n divided by n is within c of 0.5] tends to 1 as

n tends to infinity, for any c > 0. Therefore the probability that [your growth rate on

Day n is within c of the expected growth rate] tends to 1 as n tends to infinity, for any

13 J. L. Kelly (1956) and H. A. Latane (1959) independently came up with the idea of maximizing
expected growth rate. The idea has generated a lot of discussion in economics. MacLean et al.
(2011) is a useful collection. Discussion of the idea in economics has focused, so far as I know,
on whether you should maximize expected growth rate when you actually face a long sequence of
decisions. (Think, for example, about an investor who has to decide how to manage their portfolio
over the years.) I'm using the idea for a different purpose: to give a long-run defense of maximizing
expected growth rate in a one-off decision. So I'm not pointing out a new result, but using an old
result for a new purpose.
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E > 0. Betting proportion 0.25 maximizes expected growth rate. Therefore-and this

is the key consequence-in the vertical iteration of The Gamble, someone who bets

proportion 0.25 eventually tends to make more money than someone who doesn't.

To state the key consequence more formally. Suppose in the vertical iteration you

bet proportion 0.25 and I bet some other proportion. Then for any J > 0, there exists

an N such that for all n > N the probability that you've made more than me by Day

n is at least 1 - 6."

So much for the vertical iteration of The Gamble. How does it bear on The Gamble

itself? Distinguish three claims:

(a) In the vertical iteration of The Gamble, someone who bets proportion 0.25

eventually tends to make more money than someone who doesn't.

(#)Mac should bet proportion 0.25 in the vertical iteration of The Gamble.

(-y) Mac should bet proportion 0.25 in The Gamble.

(a) is true. If (a) is true, so is (#). If (#) is true, so is (y). Therefore (y) is true.

That's the long-run defense of betting proportion 0.25 in The Gamble.

In the horizontal iteration, you bet the same amount between $0 and $100 every

day. Betting $100 is the replicable choice. In the vertical iteration, you bet the same

proportion of your bankroll every day. Betting proportion 0.25 is the sustainable

choice.

The long-run defenses of betting $100 and betting proportion 0.25 in The Gamble

are parallel. If one is sound, so is the other. But their conclusions are incompatible.

Therefore neither is sound.

To endorse one long-run defense over the other, you must break the symmetry: to

find a difference which makes a difference. I don't think that can be done.

You might say: "In The Gamble, you bet an amount between $0 and $100. In the

horizontal iteration, you do too, repeatedly. But in the vertical iteration, you don't:

"As before, applying the Strong Law yields a stronger result (that with probability 1, eventually
someone who bets proportion 0.25 makes more money than someone who doesn't) but also asks
more of our imagination.
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the amount you bet typically changes from day to day, and needn't be between $0

and $100. That breaks the symmetry. The iteration which matters when it comes to

The Gamble is the horizontal, not the vertical."

But that line of thought is wrong. When you face The Gamble, we can param-

eterize your options in two ways: as betting any amount between $0 and $100, or

as betting any proportion of your bankroll. The difference is in the representation,

not the represented. So you might equally well say: "In The Gamble, you bet a

proportion of your bankroll. In the vertical iteration, you do too, repeatedly. But

in the horizontal iteration, you don't." If the line of thought above seems plausible,

it's because you're privileging amounts over proportions. But there's no reason to do

that.

2.5 How cheap are long-run defenses?

A bet's having a long-run defense isn't a decisive reason in its favour. For at least

two rival bets ($100, proportion 0.25) have long-run defenses. Still, perhaps a bet's

having a long-run defense, even if not a decisive reason in its favour, is still a pro

tanto reason in its favour.

The more bets which have long-run defenses, the less defensible is that view. I

conjecture that many bets have long-run defenses. In this section, I formalize the

conjecture, turning it into a conjecture in probability theory.

A preliminary step. By definition, in the horizontal iteration of The Gamble, you

face The Gamble repeatedly: on Day 1, Day 2, Day 3, and so on forever. Let me

change that definition slightly. The change doesn't affect the substance of anything

I've said, but only the wording, and will make the coming material easier to follow.

Here's the change. In the horizontal iteration of The Gamble, an infinite sequence of

people A 1 , A 2 , A 3 , ... each face The Gamble in turn: A 1 on Day 1, A 2 on Day 2, A3

on Day 3, and so on forever. They all bet the same amount between $0 and $100.

On the old definition, one person faces The Gamble many times, bets the same

amount every time, and we care about how much money that person makes. On the
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new definition, many people face The Gamble once, all betting the same amount, and

we care about how much money the group makes. In the rest of this section, I'll use

the new definition.

Recall the key facts. On Day n in the horizontal iteration of The Gamble, Agents

1 to n have each bet once. People who bet $100 eventually tend to make more money

than people who don't. On Day n in the vertical iteration of The Gamble, Agent 1

has bet n times. Someone who bets proportion 0.25 eventually tends to make more

money than someone who doesn't. I conjecture that on other ways to iterate The

Gamble, other bets do best.

Now to formalize the conjecture. An iteration function takes a number, represent-

ing the day, and returns a list of numbers, representing how many times each agent

has bet on that day. All agents bet the same proportion of their bankroll each day,

and the same proportion as each other.15

For example, the horizontal iteration is represented in this scheme by the function:

H : n - [ 1, ... , 1]I

which takes a number n and returns a list of length n, representing that at the

end of Day nA 1 , ... , An have each bet once.

And the vertical iteration is represented in this scheme by the function:

V : n - [n]

which take a number n and returns a list of length 1, representing that at the end

of Day n, A 1 has bet n times.

Other iterations suggest themselves. For example, consider a function:

' 5 Formally, an iteration function h takes a number and returns a list of numbers. The ith entry
of h(n) represents the number of times Ai has bet at the end of Day n. We insist that for n < M,
the length of h(n) is less than or equal to the length of h(m), and each entry of h(n) is less than
or equal to the corresponding entry of h(m). The constraints reflect the facts that as the days
pass the number of agents who have bet doesn't decrease and the number of times an agent has
bet doesn't decrease. The definition also enforces a helpful book-keeping constraint: that Ai starts
betting before Ai 1 .
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which takes a number n and returns a list of length n, representing that at the

end of Day n, Ak has bet n + 1 - k times.

Imagine a grid of points (i, j) E N 2 . Circling point (i, j) represents that Ai has bet

at least j times. We can visualize an iteration function as an expanding collection of

points on the grid. The horizontal iteration is an initial segment of the grid's bottom

row. The vertical iteration is an initial segment of the grid's leftmost column. The

example just above is a triangle of points, with vertices at (n, 1), (1, n), and (1, 1).

We've now defined a wide class of ways to iterate The Gamble. You can think of

them as 'weighted averages' of the horizontal and vertical iterations.

Fix an iteration function, f. Let's say that proportion mi does better than pro-

portion m2 in f just if the probability that [on Day n, people who bet mi have made

more money than people who bet M2 in f] tends to 1 as n tends to infinity. Let's also

say that proportion m does best in f just if for every other proportion m', proportion

m does better than proportion m' in f. We know that proportion 1 does best in H

and proportion 0.25 does best in V.

We can now state the conjecture formally:

Conjecture. For many proportions m, there exists an iteration function

f such that m does best in f.

If the conjecture is true, then long-run defenses are cheap, in which case a bet's

having a long-run defense is only a weak reason in its favour, or perhaps no reason

at all.

2.6 Towards resolving the conjecture

The conjecture is about how bets do in the long-run: on Day n, as n tends to infinity.

You can get a sense, short of a proof, of how a bet does in the long-run by seeing how

it does in the short-run: up to Day 1000, say. I wrote two simple computer programs
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for that purpose. In the first program, the user specifies an iteration function, a

number n, and some bets, and then the program simulates n coin tosses and returns

a plot showing how each bet did from Day 1 to Day n. The user can also change the

win probability and payoff odds in order to see how bets do, not only in iterations of

The Gamble, which has win probability 1 and payoff odds 2:1, but also in iterations

of other gambles. In the second program, the user specifies an iteration function, a

number n, two bets and a number of trials t, and then the program simulates n coin

tosses t times and returns the number of times the first bet was doing better than the

second on Day n. When t is large, that number is a guide to the probability that the

first bet does better than the second by Day n. You can access the programs here:

github.com/cosmo-grant/long-run-and-short-run.

Of course, short-run behaviour doesn't settle long-run behaviour: one bet can

tend to do better than another on Day 100, or Day 1000, or Day 10,000, or whatever,

but still do worse asymptotically. You might question whether short-run behaviour

is even evidence of long-run behaviour. For example, suppose that out of 100 trials,

proportion 0.4 was doing better than proportion 0.6 on Day 1000 a majority of times.

Is that evidence that proportion 0.4 does better than proportion 0.6 in the long-run?

This paper has been about whether the long-run bears on the short-run. Thinking

about the simulations brings out the converse question: whether the short-run bears

on the long-run. All I'll add here, about the simulations, is that in a wide range

of fields people do take the short-run to bear on the long-run, just as they take the

long-run to bear on the short-run. So if you take the simulations to bear on the

conjecture, you're in good company.

Still, proofs are better than simulations. Let f be an iteration function such that,

at the end of Day nA 1 , ... , An have each bet n times. (So, thinking about the grid

of points (i,j) C N2 , f is an expanding square, with side-length incrementing by 1

each day.) Here's a proof, due to Ewain Gwynne, that proportion 0.25 does best in f.

Let B'" be Ai's bankroll at the end of Day n assuming she bets proportion m (and,

for convenience, assuming her initial bankroll is $1 instead of $100). By applying

Hoeffding's Inequality to the number of times Ai has won by the end of Day n, we

72



have that with probability at least 1 - 2e-2 2 n

(1- m)n(!+_(1) 2m)n(-e B (1- m)n(- +2m)n(!+±)

for any c, n, and each i = 1,...,n. By the union bound, we have that with

probability at least 1 - 2ne 2
2 n, all the B" lie within these bounds simultaneously.

So, letting Sn" be the agents' total bankroll at the end of Day n, with probability at

least 1 - 2ne-2 2
n:

n(1 - m)n(!+,)(1 + 2m)"-~) S* n(1 - m)n( _ )(1 - )n(I+c

for any c, n. Furthermore, if (1 - m)(1 + 2m) > (1 - m')(1 + 2m') then for

sufficiently small c (depending on m, m') and any n:

ni-(1- m)n(-I > n - (1 - m') -(1 + 2m

That is, the lower bound for S" is higher than the higher bound for Sn"'. So with

probability at least 1 - 2ne 2 2n, we have S">S'.Finally,notingthatforany6,

1 - 2ne-2,2 n 1 as n - oc and maximizes (1 - m)(1 + 2m) over m c [0, 1], we

have the result.

Note that Gwynne's form of argument establishes two more general facts as well.

First, it establishes what proportion does best in f when we vary the win probability

and payoff odds: it's the proportion which maximizes expected growth rate. Second,

take any iteration function such that at the end of Day n, g(n) agents have each bet

n times. (So, thinking about the grid of points again, g is an expanding rectangle,

with height increasing by 1 each day and length controlled by g.) Then some m #
does best only if g grows at least exponentially. So Gwynne's result narrows down

the search space for resolving the conjecture.

The informal conjecture is that many bets have a long-run defense. In the previous

section, I formalized that conjecture, turning it into a conjecture in probability theory,

and therefore opening it up to simulations and to proofs like Gwynne's. But let's

briefly return to the informal conjecture.
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Remember the horizontal iteration: at the end of Day n, A1 , ..., A, have each bet

m dollars once. Let k be the number of agents who win. Then their total bankroll is:

k - (100 + 2m) + (n - k) (100 - m)

and their average bankroll is:

k n - k- . (100 + 2m) + (100 - m)
n n

By the Weak Law of Large Numbers, § eventually tends to be close to 1, so then 2'

average bankroll eventually tends to be close to (100+2m)+ (100 -n). It follows

that what does best in the horizontal iteration is what maximizes that quantity, which

is $100.

Now the vertical iteration: at the end of Day n, Ai has bet n times, betting

proportion m of her bankroll each time. Let k be the number of times she wins.

Then her final bankroll is:

100.(1+2m)k. (1- m)nk

and her growth rate is:

(1 + 2,m) ` - (1 - m) '

As before, by the Weak Law of Large Numbers, eventually tends to be close to

so the growth rate eventually tends to be close to (1+2m)0-5 . (1 - M) 0 5 . It follows

that what does best in the vertical iteration is what maximizes that quantity, which

is 0.25.

The recipe is clear: imagine a way of iterating The Gamble (horizontal, vertical);

find a suitable measure of the agents' performance (average, growth rate); apply the

Weak Law of Large Numbers to find what does best ($100, 0.25). So instead of

trying to show what does best in this or that iteration function, as per the formalized

conjecture, we can try to follow this recipe. The challenge is to find fresh ingredients.
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Chapter 3

Mistakes about conventions and

meanings

3.1 Overview

The Standard View is that, other things equal, speakers' judgments about the mean-

ings of sentences of their language are correct. After all, we make the meanings, so

how wrong can we be about them? I put pressure on the Standard View: for quite

straightforward reasons, speakers can be radically mistaken about meanings.

Lewis (1969) gave a theory of convention in a game-theoretic framework. He

showed how conventions could arise in repeated coordination games. He also intro-

duced a special kind of coordination game, a signaling game, and showed how, as

a special case of his theory, conventional meanings could arise in repeated signaling

games.

I put pressure on the Standard View by building on Lewis's framework. I construct

coordination games in which the players can be wrong about their own conventions.

The key idea is simple: knowing your own strategy and payoff needn't determine

what the others do, so leaves room for false beliefs about the convention. Guided by

the coordination games, I consider the special case of signaling games, and construct

signaling games in which the players can be wrong about their messages' meanings.

We make the meanings, but we can still be wrong about them.
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Perhaps we already know that speakers can be wrong about meanings, because

of Twin Earth cases, or semantic deference, or the like (Putnam 1975; Burge 1979).

Still, the examples I give are interesting: they are simple, explicit, new in kind, and

based on an independently plausible meta-semantic story.

Section 2 describes Lewis's game-theoretic framework. Sections 3-4 describe and

discuss coordination games which leave room for mistakes about conventions. Section

5 shows that the Standard View is no straw man. Sections 6-7 describe and discuss

signaling games which leave room for mistakes about meanings. Section 8 sums up.

3.2 Lewis's game-theoretic framework

3.2.1 A paradigm coordination game

Each day at noon, you and I play a game. You're the row-chooser: you play U or D.

I'm the column-chooser: I play L or R. If we play UL or DR, we get lunch that day;

else, we go hungry. Call this the Simple Game.

L R

D 0

Figure 3-1: Payoff matrix in the Simple Game

Imagine the first day we play the game. What will we do? No strategies suggest

themselves. If I knew that you would play U, I would play L. If you knew that I

would play R, you would play D. But neither of us knows how the other will play.

More or less at random, you play U and I play R. We go hungry. Each thereby learns

about the other. For example: you learn that I played R and I learn that you played

U. 1

The next day, we play again. What will we do? What we learned yesterday might

help. If you think I'm stubborn, sticking with R, you will switch to D. If I think

you're accommodating, switching to D, I will stick with R. But it might not help. If

'Perhaps we learn more than this. You learn that I learn that you played U; I learn that you
learn that I played R. And so on, up the hierarchy.
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each of us is stubborn, or each thinks the other is accommodating, each of us will

stick, and we'll go hungry again. If each of us is accommodating, or each thinks the

other is stubborn, each of us will switch, and we'll go hungry again. Each of us uses

what she learned yesterday, together with what she already knows about the other,

to predict how the other will play, knowing that the other is doing the same.

Eventually, by good luck and good sense, we coordinate: you play U and I play

L. The next day the memory of our success is fresh in our minds, and we repeat

it. Success breeds success. We soon cease to worry. We coordinate day after day,

each happy with her own choice and confident of the other's. We have established a

convention: play UL.

3.2.2 A paradigm signaling game

Nature flips a coin and shows you the result. You then slip a note under my door,

reading either # (pound) or & (amp). Then I have to guess how the coin landed. If

I'm right, we get lunch that day; else, we go hungry. Each of us wants me to guess

correctly. We must attempt this indirectly, by coordinating our strategies. Call this

the Coin Game.

The first day, Nature flips the coin and it lands heads. You must either send me

# or &, trying to signal how it landed so that I'll guess correctly. But which to send?

Imagine it. Neither message will be much help. So you send one at random, #

say. Now I must guess. Your message was no help. So I guess at random, tails say.

We go hungry. As before, we each thereby learn about the other. And as before, each

of us uses what she learns, together with what she already knows about the other, to

predict how the other will play, knowing that the other is doing the same.

Eventually, more or less by chance, we coordinate: the coin comes up heads, you

send #, and I guess heads. We eat. When the coin comes up heads again the next

day, our success is fresh in our minds, and we repeat it. When the coin comes up

tails, what will we do? If we're sensible, surely you'll switch your message and then

I'll switch my response. Success breeds success. Through good luck and good sense,

we've fixed on complementary strategies: you send # when heads and & when tails;
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I guess heads given # and tails given &. We soon cease to worry. We coordinate day

after day, each happy with her own choice and confident of the other's.

When we started playing the game we chose our moves more or less at random. In

the course of playing the game over and over again, we have established a convention,

and the messages have acquired meanings: # means the coin landed heads and &

means the coin landed tails.

3.2.3 Taking Lewis's theory as a starting point

Lewis (1969) showed how conventions could arise from repeated coordination games,

and, as a special case, how meanings could arise from repeated signaling games. I

use Lewis's game-theoretic framework, and take his theory of convention as a starting

point. But I don't endorse all the details of the theory. What I say about the examples

in Section 3 conflicts with his theory, and the signaling games in Section 6 generalize

his. I flag the differences as we go along. See Section 4.6 in particular. Here, I'll

briefly discuss two worries about taking Lewis's theory as a starting point.

First worry. You might worry that small-scale interactions, like those in the

Simple Game or the Coin Game, don't give rise to conventions. After all, if I make

the coffee and my partner makes the eggs every morning, though we could equally well

have done the reverse, it's unnatural to say that we have established a convention.

Reply. First, I agree it's unnatural to say that my partner and I have established a

convention. But I suggest that it's unnatural, not because of the scale (two people, low

stakes), but because of other features, perhaps that, unlike in the Simple Game or the

Coin Game, neither my partner nor I had to reason about the other in deciding what

to do. Second, a range of theorists do think that even small-scale interactions, like

those in the Simple Game and Coin Game, can be conventions. Take, for example,

Hume's rowers (2000, 3.2.2) or Margaret Gilbert's walkers (1990b). Third, even if

small-scale interactions don't give rise to conventions, that doesn't undermine the

main claims of this paper. For the examples in the paper can easily be scaled-up, so

that they involve lots of people and high-stakes situations. Fourth, I say with Lewis
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(p. 3) that "what I call convention is an important phenomenon under any name."2

Second worry. When we communicate, we do more than play signaling games-

much more.

Reply. Meaning in signaling games is a simple example of linguistic meaning. A

simple example is still an example; a special case is still a case. Signaling games

are not simplified models of meaning; they are simple cases of meaning. (Compare:

heredity in pea plants is a simple case of heredity, not a simplified model of heredity.)

In studying signaling games, we have not changed the subject.

Here's Lewis:

If we endow a hypothetical community with a great many [...signaling

conventions [where the messages are written or spoken] for use in various

activities, with verbal expressions suitably chosen ad hoc, we shall be

able to simulate a community of language users-say, ourselves--rather

well. An observer who stayed in the background watching these people

use conventional verbal messages as they went about their business might

take a long time to realize that they were not ordinary language users.

[... IYet it remains true that our hypothetical verbal signalers do not do

anything we do not do. We just do more. Their use of language duplicates

a fragment of ours. (pp. 142-3.).

Lewis's hypothetical signalers don't do anything we don't do. We just do more. If

the hypothetical signalers can be wrong about the meanings of their own messages,

so can we. If they can be radically wrong, so can we.

3.3 Mistakes about conventions in coordination games

Conventions arise in repeated coordination games. As a special case, meanings arise in

repeated signaling games. Before focusing on the special case of meanings, I consider

conventions in general. This section shows how players can be wrong about their own

2A11 orphan page numbers refer to Lewis (1969)
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conventions. I describe four games-the Three-Player Game, the Five-Player Game,

the Nature Game, and the Cycle Game-and how each might turn out. I assume

throughout that the structure of the situation is common knowledge, the players play

repeatedly, and each player knows her own move and payoff but doesn't observe the

other players' moves.

Each game leaves room for the players to be wrong about their own convention:

on some ways things might turn out, the players establish a convention but are wrong

about which. The key idea is simple: knowing your own move and payoff needn't

determine what the others do, so leaves room for false beliefs about the convention.

The four examples are abstract. That helps make them clear and concise. But

ordinary practical situations have the same structure as the examples. See Section

4.3. The examples are not mere theoretical curiosities.

3.3.1 First example: the Three-Player Game

Rowena, Colin and Mattea are playing a coordination game. Rowena is the row-

chooser: she plays Up or Down (U or D). Colin is the column-chooser: he plays Left

or Right (L or R). Mattea is the matrix-chooser: she plays West or East (W or E). If

they play ULW or DRW or DLE or URE, each gets lunch; else, nothing.3 Call this

the Three-Player Game.

L R L R

W E

Figure 3-2: Payoff matrix in the Three-Player Game

Imagine the first day Rowena, Colin and Mattea play the game. What will they

do? No strategies suggest themselves, and they play more or less at random: URW,

say. They go hungry. Each thereby learns about the others. For example, Rowena

3I give the actions different labels: 'U' or 'D' for Rowena, 'L' or 'R' for Colin, 'W' or 'E' for
Mattea. That makes things easier to follow. But different labels needn't mean different actions. For
example, U, L, and W can all be the same action. See Section 4.3 for an example.
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learns that Colin and Mattea either played RW or LE.4

The next day they play again. What will they do? What they learned yesterday

might help. If Rowena knows that Colin and Mattea are stubborn, sticking with their

strategies, then she will switch to D, so that they will coordinate next time. But it

might not help. If Rowena doesn't know how Colin and Mattea will react, then she

won't know how to react either.

They play the game day after day, learning about each other as they go. Eventu-

ally, by good luck and good sense, they coordinate: Rowena plays U, Colin plays L,

Mattea plays W. The next day, the memory of their success is fresh in their minds,

and they repeat it. Success breeds success. They coordinate day after day, each happy

with her own choice and confident of the others'. They have established a convention:

play ULW. So far, so familiar.

The structure of the game is common knowledge. Each player knows her move

and payoff. But that's not enough for each player to work out what the others are

doing. Take Rowena. She knows that she plays U and that she gets lunch every time.

But for all she knows, Colin and Mattea could be playing LW or RE. And similarly

for Colin and Mattea.

None of the players knows what the convention is. Still, they may have beliefs

about it. Suppose that, for one reason or another, Rowena believes that the conven-

tion is play URE; Colin, that it's play DLE, Mattea, that it's play DRW. Section 4.1

explains why they might have these beliefs.

Take Rowena again. If you asked her what the convention is, she'd say, "it's play

URE"; if she were to switch roles with Colin, she would play R and expect him to

play U; she would bet at long odds that Colin and Mattea play RE.

4A warning. After the players make their moves, each gets a payoff-lunch, for example. The

numbers in the matrices-utilities--represent the players' preferences over the payoffs. Utilities are

coarser-grained than payoffs: if a player is indifferent between two payoffs (chicken and beef, say),
then those payoffs have the same utility, even though the player may be able to tell apart the outcome

in which they get the one (chicken) from the outcome in which they get the other (beef). Now, for

the games in this paper, it matters which outcomes the players can tell apart. So the payoffs matter,
not just the utilities. Therefore-and this is the key point-in all the games interpret the utilities in

the matrices as normal, as representing the players' preferences over the payoffs, except also assume

that where the utilities are the same, the payoffs are the same too.
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As it happens, they're all wrong, for the convention is play ULW. Every player is

wrong about the convention.

3.3.2 Second example: the Five-Player Game

A, B, C, D, and E are playing a coordination game. Each player has two actions: 0

or 1. The outcome 10101, for example, is the outcome in which A, C, E play 1 and B,

D play 0. If they play 00000, 11000 or 11111, each gets positive payoff; else, nothing.

Call this the Five-Player Game.

They play day after day. Eventually they coordinate on 00000, each happy with

her own choice and confident of the others'. They have established a convention: play

00000.

The structure of the game is common knowledge. Each player knows her own

move and payoff. The only outcome consistent with A's move and payoff is 00000,

and similarly for B. A and B know that the convention is play 00000. But C, D, E

don't. For all they know, they could be playing 00000 or 11000.

C, D, E don't know what the convention is, but they may still have beliefs about

it. Suppose that, for one reason or another, they believe, wrongly, that the convention

is play 11000. Then a majority of players (C, D, E) have the same mistaken belief

about their own convention.

3.3.3 Third example: the Nature Game

Roland and Col are playing a coordination game, but they're not sure which. Nature

chooses the West Game or East Game at random. The game, once chosen, is fixed.

Then Roland and Col play that game repeatedly. Roland chooses U or D; Col chooses

L or R. Call this the Nature Game. The Nature Game is the two-player analog of the

Three-Player Game, where Mattea's role has been taken by Nature, and Nature only

gets to choose once.5

5The Nature Game is known as a Bayesian game, because Roland and Col have incomplete
information about the payoffs.
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L R L R

D 0 1D 110

West Game East Game

Figure 3-3: Payoff matrices in the Nature Game

As it happens, Nature chooses the West Game. Roland and Col play day after

day. Eventually they coordinate on UL, each happy with her choice and confident of

the other's. They have established a convention: play UL.

The structure of the situation is common knowledge.6 Each player knows her

move and payoff. As before, that's not enough for either to work out what the other

is doing. So neither player knows the convention. But they may still have beliefs

about it. Suppose that, for one reason or another, they believe they're in the East

Game, so Ro believes the convention is play UR and Col believes it's play DL. Both

are wrong.

3.3.4 Fourth example: the Cycle Game

Rosie and Colt are playing the Cycle Game. 7 Rosie chooses U, M or D; Colt chooses

L, C or R.

L C R
U 1 1 0
M 0 1 1
D 1 0 1

Figure 3-4: Payoff matrix in the Cycle Game

They play day after day. Eventually they coordinate on UL, each happy with her

choice and confident of the other's. Have they established a convention? Unlike the

previous examples, either player can unilaterally deviate from UL (Rosie, by playing

D; Colt, by playing C) without losing out. Perhaps that means that play UL is not

6The situation includes the initial choice by Nature. The game is either the West Game or East
Game. The structure of the game is not common knowledge, since the players don't know which

game Nature chooses. The structure of the situation is common knowledge.
7Daniel Rothschild suggested this kind of example, but I don't mean to imply that he agrees with

what I say about it.
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a convention. (Lewis thought so.) If so, strike out the example and jump to the next

section. If not, I say that Rosie and Colt have established a convention: play UL.

As before, neither player knows the convention, but they may still have beliefs

about it. Suppose that, for one reason or another, Rosie believes the convention is

play UC and Colt believes that the convention is play DL. Both are wrong.

3.3.5 Further examples

The key idea behind all four examples is that knowing your own move and payoff

needn't determine what the others do, so leaves room for false beliefs about the

convention. The examples exploit that idea differently: in the Three-Player Game,

every player is wrong, although wrong in different ways; in the Five-Player Game, a

majority of players are wrong in the same way, although some are right; in the Nature

Game, both players are wrong, because they are wrong about the payoff structure;

in the Cycle Game, both players are wrong, assuming that the Cycle Game can give

rise to conventions.

The idea applies generally. For example, can we find a game which leaves room

for every player to be wrong about the convention and most of the players to have

the same mistaken belief about the convention? Yes, it's not hard.I The recipe is

simple. Pick your pattern of mistakes and cook up a game to match.

3.4 Discussion of examples

3.4.1 Why the false beliefs?

In each example, some of the players don't know the others' choices. Take Rowena

in the Three-Player Game: for all she knows, Colin and Mattea could be playing LW

or RE. Even so, in the scenario I've described, she believes that they're playing RE.

8Suppose, for example, that there are eight players, each with two actions, 0 or 1. If an even
number of players choose 1, all get lunch; else, nothing. Suppose they all eventually play 0, getting
lunch every time, but, for one reason or another, two believe that they both play 0 and the other
six play 1, while the six believe that those two play 1 and they all play 0.
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Why? Her belief seems to be unreasonable. And as with the Three-Player Game, so

with the others.

Not so. On perfectly ordinary ways of fleshing out the scenarios, the players'

beliefs about the conventions, although false, are reasonable. I'll focus on Rowena

but what I say carries over to the other players and the other games.

Carelessness

Perhaps Rowena is careless, not realizing that her evidence is consistent with LW as

well as RE. The more complicated the game, the more excusable the carelessness.

Careless people can establish conventions. If you and I reasoned sloppily in the

Simple Game in coming to coordinate, that does not undermine our convention play

UL. If Rowena, Colin and Mattea reason sloppily in the Three-Player Game, that

does not undermine their convention play ULW.

False antecedent beliefs

Perhaps Rowena started the game with false beliefs about Colin and Mattea. For

example: that Colin is stubborn and Mattea is accommodating; or that Colin wrongly

thinks that Mattea is accommodating. Her antecedent beliefs, even if false, may be

justified. Perhaps they're all friends. In any case, her antecedent beliefs, together with

how things happen to go in the early rounds, lead her to believe that the convention

is URE. Successive iterations reinforce her belief.

Or Rowena might have false beliefs, not about her opponents' styles of play (ac-

commodating, or stubborn, or whatever), but about what choices they'll make. For

example: that Colin will play R and Mattea will play E; or that Colin and Mattea will

either play UR or LW.9 Her antecedent beliefs may be justified. Perhaps one outcome

is salient. In any case, as before, they lead her to believe that the convention is URE.

Sometimes in game theory we assume that the players start from a position of

9The belief that Colin and Mattea will either play UR or LW won't lead Rowena to a false
belief about the convention. I mention it just to point out that a player may have correlated beliefs
about her opponents' actions. In other games, correlated beliefs may lead to false beliefs about the
convention.
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radical uncertainty about each other. What exactly that assumption amounts to

isn't always clear, but in any case it excludes the sort of antecedent beliefs I've been

describing. However, the assumption is optional, not required. It's perfectly legiti-

mate to suppose that the players have antecedent beliefs about each other. Kasparov

didn't cease to play chess because he had true antecedent beliefs about what his op-

ponent would do; I don't cease to play chess because I have false antecedent beliefs

about what my opponent will do. We're not going beyond standard game theory by

imagining that Rowena has the sort of antecedent beliefs I've been describing.

Even Rowena's being sure of what her opponents will do or having correlated

beliefs about her opponent's choices, are perfectly consistent with standard game

theory. In particular, such beliefs are perfectly consistent with the assumption that

the players' choices are causally independent (and that causal independence is com-

mon knowledge). 10

False antecedent beliefs about the others don't undermine a convention. If when

we play the Simple Game you wrongly think I'm accommodating, or that I'll play

R, that doesn't undermine our convention. Given Rowena's false antecedent beliefs,

impeccable reasoning might lead her to believe that the convention is URE. Her

antecedent beliefs don't undermine the convention. Impeccable reasoning doesn't un-

dermine it either. So nor does the end result: her mistaken belief that the convention

is URE.

3.4.2 Are the regularities conventions?

If the regularities in the examples are not conventions, then the examples don't show

that people can be mistaken about their own conventions, for there are no conventions

for them to be mistaken about. But the regularities in the examples are conventions.

Again, I focus on the Three-Player Game but what I say carries over to the other

examples.

ioSee Stalnaker (1998: 43-4) for discussion of this point. To borrow one of his examples, suppose
my partner and I are in our voting booths on election day. How she votes is causally independent of
how I vote. You may have no idea how either of us will vote, but still be confident (and justifiably
so) that, however we vote, we'll vote the same way.
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First argument

If Rowena, Colin and Mattea established some convention or other in the Three-

Player Game, then the regularity play ULW is a convention. They did establish some

convention or other. Therefore the regularity play ULW is a convention.

To defend the first premise, suppose Rowena, Colin and Mattea established a

convention other than ULW. What is it? A convention is, in particular, a regularity

in behaviour. No outcome other than ULW is a regularity in behaviour. So no

outcome other than ULW is a convention. Could the convention be some regularity

other than an outcome of the game? I don't see what. If they established some

convention or other, the regularity play ULW is a convention.

To defend the second premise, consider the similarities between the Simple Game

and the Three-Player Game: the players' interests coincide; the players initially choose

more or less at random; each uses what she learns, together with what she already

knows about the others, to predict how the others will play in the knowledge that

they are doing the same; several outcomes yield the preferred payoff; eventually, the

players settle on actions, each happy with her own and confident of the others'; if

anyone deviates, nobody benefits.

The Simple Game leads to a paradigm convention. The Three-Player Game re-

sembles the Simple Game both in structure and game-play. The Three-Player Game

leads to a convention too.

Second argument

Here's a happier way the Three-Player Game might turn out. Each player believes

that the convention is ULW. Their beliefs are justified, for they started the game

with justified antecedent beliefs about the others. Contrast that with how things

actually turn out. Rowena wrongly believes the convention is URE; Colin, that it's

DLE; Mattea, that it's DRW. Perhaps they were careless; or perhaps they had false

antecedent beliefs about the others.

In the happier case, each player believes that play ULW is the convention. They're
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correct, and not by luck. Each started the game with true beliefs about the others

(say, that Colin is stubborn and Mattea is accommodating). Their true antecedent

beliefs, together with how things happen to go in the early rounds, lead them to

believe that play ULW is the convention. Perhaps they're not in a position to know

that play ULW is the convention. Nevertheless, their beliefs are reasonable. It's not

a requirement on conventions that you only believe what you're in a position to know.

That would be absurdly demanding. The regularity play ULW is a convention in the

happier case. Don't punish the players for reasoning well about each other.

Back to the actual case: each player is mistaken about the convention, because

of carelessness or false antecedent beliefs or whatever. Conventions don't depend on

how attentive the players are, nor on how well they know each other. If the regularity

play ULW is a convention in the happier case, it's a convention in the actual case

too.

Putting things together, I conclude that the regularity play ULW is a convention

in the actual case, as required.

3.4.3 Concrete examples

The four examples are abstract. That makes them clean, clear and concise. They

may also seem contrived. But they aren't. For ordinary practical situations have the

same structure as the abstract examples and could easily turn out in the same way.

To dismiss the examples as mere theoretical curiosities is a mistake.

Concrete example for the Three-Player Game

Take the Three-Player Game. Suppose Rowena, Colin and Mattea all work in the

same restaurant kitchen. At about 6pm each day, the chef puts two trays of squash

in the oven to roast, one on top and one on bottom. After twenty minutes or so

the trays need to be swapped, else the top one will burn and the bottom one won't

caramelize. Swapping the trays is up to Rowena, Colin or Mattea, but it's one task

among hundreds in a hectic kitchen and it isn't clear which of them will do it.
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Imagine it. If none of them swaps the trays, the squash will be ruined. If just

one of them does, it'll be fine. More is true. If two of them swap the trays in turn,

neither realizing the other's plan, the trays will end up back where they started and

the squash will be ruined. Similarly, if all three of them swap the trays in turn, it'll

be fine. Of course, if all three of them swap the trays some effort is wasted, but that's

small fry compared to roast squash.

The situation has the same structure as the Three-Player Game. U and D cor-

respond to Rowena's swapping and not swapping the trays, and similarly for L and

R, and W and E. In four outcomes (URE, DLE, DRW, where only Rowena or Colin

or Mattea swap the trays, and ULW, where all three do), the squash is fine. In the

other four outcomes (DRE, where none of them does, and URW, DLW, ULE, where

two of them do), the squash is ruined.

What might happen? Here's one way things might go. At first, each of Rowena,

Colin and Mattea thinks that one of the others will swap the trays. So no one does,

and the squash is ruined. When the chef shouts at them they realize what happened

and in the heat of the kitchen each goes away thinking that she alone will swap the

trays from now on. The next day all three swap them, and the squash is fine. The

kitchen is hectic and none of them sees the others do it. Their mistaken beliefs are

reinforced. And so it goes on, each happily swapping the trays and confident that she

alone is doing so. They have established a convention, all swap the trays, but each is

wrong about what the convention is.

Concrete example for the Nature Game

Or take the Nature Game. Suppose Roland and Col are each trying to schedule a

departmental reading group on Mondays. Roland's can start at 9am or 2pm; Col's

at 11am or 4pm. Reading groups last two hours. Roland and Col are rivals and, out

of pride, won't attend each other's group nor even coordinate times directly.

If the groups meet at 9am and 4pm, or 11am and 2pm, there'll be a break in

between. If they meet at 9am and 11am, or 2pm and 4pm, there won't be. Roland

and Col aren't sure which is best. On the one hand, four hours is a long time to
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concentrate. So if there is a break, maybe attendance will be higher, because most

people will attend both. On the other hand, it's useful to have an uninterrupted

morning or afternoon. So if there's a break, maybe attendance will be lower, because

few people will attend both.

The situation has the same structure as the Nature Game. U and D correspond to

9am and 2pm; L and R correspond to 11am and 4pm. If a break is better, Roland and

Col are in the East Game; if no break is better, they're in the West Game. Whether

or not a break is better depends on people's preferences, which Roland and Col aren't

sure about.

What might happen? Here's one way things might go. As it happens, no break is

better. The first week, Roland's group meets at 9am and Col's at 4pm. Attendance

is low. Roland suspects, wrongly but reasonably, that a break is better and that

Col's group met at 11am. But, being stubborn, he sticks with 9am. Col suspects,

wrongly but reasonably, that a break is better and that Roland scheduled his group

for 2pm. And, being pragmatic, she switches to 11am. The next week, attendance

is high. Roland and Col's mistaken beliefs are reinforced. And so it goes on, each

happy with her own group's time and confident of the other's. They have established

a convention, meet at 9am and 11am, but each is wrong about what the convention

is.

3.4.4 Belief about regularities and belief about conventions

Distinguish two claims: Rowena believes that the regularity is play URE; Rowena

believes that the convention is play URE. I've glossed over the difference. But in fact

the claims are independent. Rowena might believe that the convention but not the

regularity is play URE, because she might mistakenly believe that a convention doesn't

require a regularity. She might believe that the regularity but not the convention is

play URE, because she might mistakenly believe that the structure of the Three-Player

Game rules out conventions.

I assume that whenever a player believes the regularity is play such-and-such, the

player believes the convention is play such-and-such. The assumption isn't true in
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general. All I claim is that the four examples might turn out that way. The examples

leave room for mistakes about conventions. They don't force mistakes.

3.4.5 Mistakes about conventions on the cheap

Suppose again that Rowena believes wrongly that the structure of the Three-Player

Game rules out conventions. Perhaps she's a philosopher in the grip of a false theory

of convention. And suppose as before that each player, including Rowena, does her

bit of URE, happy with own choice and confident of the others'. Then the regularity

play URE is a convention but Rowena believes it isn't. She's mistaken about her own

convention.

Or suppose that each day when it's time to make her move Rowena plays U but

afterwards forgets her choice, believing she played D. Perhaps conventions can survive

this selective forgetfulness. Except when she makes her move, Rowena believes the

convention is, say, play DLE; in fact, it's play ULW. Most of the time she's mistaken

about her own convention.

Or suppose Rowena lacks the concept of a convention, so although she correctly

believes that the regularity is play ULW, she doesn't believe that it's a convention.

These are mistakes about conventions on the cheap, relying on fussy details or ex-

otic situations. The examples in Section 3 are abstract in order to make the structure

clear. They are not fussy; they are not exotic.

3.4.6 How do the examples fit with Lewis's theory?

Are my claims about conventions sanctioned by Lewis's theory? No. This section

spells out the details of his theory and shows why, according to it, my examples are

not examples of conventions. So Lewis's theory is wrong.

We need some preliminary definitions. A strategy profile is a tuple of strategies,

one for each player. A strategy profile is a Nash equilibrium if, for each agent, if

she alone had done otherwise, she would be no better off. A strategy profile is a

coordination equilibrium if, for each agent, if she alone had done otherwise, no one
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would be better off. In a Nash equilibrium, no one wishes that she alone had done

otherwise ('no regret'); in a coordination equilibrium, no one wishes, of any one else,

that she alone had done otherwise ('no resentment'). A strategy profile is a proper

coordination equilibrium just if, for each agent, if she alone had done otherwise, no

one would be better off and someone would be worse off." A coordination problem is

a situation of interdependent decision by two or more agents in which their interests

largely coincide and which has two or more proper coordination equilibria.

Here is Lewis's first pass at a theory of convention." A regularity R in agents'

behaviour when in a recurrent situation S is a convention if and only if, in any

instance of S,

(1) everyone conforms to R;

(2) everyone expects everyone else to conform to R;

(3) everyone prefers to conform to R on condition that the others do, since S is

a coordination problem and uniform conformity to R is a proper coordination

equilibrium in S.

How do my examples fit with Lewis's theory? Well, all four are situations of

interdependent decision by two or more agents in which interests coincide. In the

Cycle Game, there are three coordination equilibria, but none is proper; and the

definition of coordination equilibrium doesn't apply to the Nature Game. So the

regularities in these games are not conventions, on Lewis's theory.

In the Three- and Five-Player Games, there are two or more proper coordination

equilibria. But the regularities aren't conventions, according to Lewis's theory, for

another reason.

Take the Three-Player Game. Everyone conforms to the regularity play ULW. So

(1) is true. And everyone prefers to conform to that regularity on condition that the

"Gilbert (1981) pointed out that the term 'proper coordination equilibrium' is ambiguous, and
Lewis didn't make clear which he intended. Gilbert reports that Lewis clarified in private commu-
nication that this is what he had in mind.

1 2 p. 42
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others do. So (3) is true. But not everyone expects everyone else to conform to it. For

example, Rowena expects Colin and Mattea to do RE, not LW. (Rowena does expect

the others to conform to what she takes to be the actual regularity, URE, but she

doesn't expect the others to conform to what is in fact the actual regularity, ULW.)

So (2) is false. Therefore the regularity play ULW is not a convention, on Lewis's

theory.

In short: according to Lewis's first pass at a theory of convention, none of the

regularities in my four examples is a convention. Lewis's final theory is more com-

plicated.13 But the complications don't change things: on his final theory, too, the

regularities are not conventions.

If Lewis's theory is correct, the examples don't show you can be wrong about

your own conventions, for the examples are not examples of conventions. But Lewis's

theory isn't correct. As I've argued, the regularities in the examples are conventions.

Lewis provided a clear and simple framework, and he brought to light significant

features of conventions. But not all the details of his theory are correct.

I don't have a replacement in mind. One could look for a minimal departure from

Lewis's theory according to which the examples are examples of conventions. But

that's not a profitable line of inquiry, since Lewis's theory is questionable in other

respects too, like his insisting on a proper coordination equilibrium. (See Gilbert

(1981, 1983) and Vanderschraaf (1998) for prominent criticisms.) Developing a theory

of convention would support my argument, but it isn't essential.

3.5 Motivating The Standard View

In Sections 3-4, I described coordination games which, for quite straightforward rea-

sons, leave room for mistakes about conventions. In Sections 6-7, I consider the

special case of signaling games, and describe signaling games which leave room for

mistakes about meanings. These games put pressure on the Standard View that,

other things equal, speakers' judgments about the meanings of sentences of their lan-

3 p. 78
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guage are correct. This section motivates the next two by showing that the Standard

View is not a straw man.

3.5.1 Language mavens

Steven Pinker devotes a chapter of his book The Language Instinct to criticizing

language mavens, those self-appointed authorities on usage, who pull people up for

using 'who' instead of 'whom', saying 'very unique', confusing 'disinterested' and

'uninterested', and the like. Pinker is concerned with syntax, not semantics, but the

issues are parallel. Here's how the chapter starts:

Imagine that you are watching a nature documentary. The video shows

the usual gorgeous footage of animals in their natural habitats. But the

voiceover reports some troubling facts. Dolphins do not execute their

swimming strokes properly. White-crowned sparrows carelessly debase

their calls. Chickadees' nests are incorrectly constructed, pandas hold

bamboo in the wrong paw, the song of the humpback whale contains

several well-known errors, and monkeys' cries have been in a state of chaos

and degeneration for hundreds of years. Your reaction would probably

be, What on earth could it mean for the song of the humpback whale to

contain an "error"? Isn't the song of the humpback whale whatever the

humpback whale decides to sing?

He continues:

To a linguist or psycholinguist, of course, language is like the song of

the humpback whale. The way to determine whether a construction is

''grammatical" is to find people who speak the language and ask them.

(Pinker 1995: 370)

As with syntax, so with semantics: to determine whether a construction is gram-

matical, find people who speak the language and ask them; to determine what a

sentence means, find people who speak the language and ask them.
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To find out the meaning of 'literally', or 'decimate', or 'enormity', or the other

favourites of the language mavens, don't argue from the armchair, nor fixate on

etymology-just ask people! Only a language maven would disregard the judgments

of ordinary speakers. After all, we make the meanings, so how wrong can we be about

them? Other things equal, implies Pinker, speakers' judgments about meanings are

correct.

3.5.2 The Elicitation Method

How should we work out the truth-conditions of a sentence? Here is the Elicitation

Method: Describe scenarios and ask many speakers whether the sentence is true

relative to each scenario. If the speakers judge that the sentence is true relative to a

scenario, the sentence is true relative to that scenario, or in other words the scenario

does belong to the sentence's truth-conditions. If the speakers judge that the sentence

isn't true relative to a scenario, the sentence isn't true relative to that scenario, or in

other words the scenario doesn't belong to the sentence's truth-conditions.

We could refine the Elicitation Method in all sorts of ways: ask only native speak-

ers; instead of asking the speakers for a binary judgment (whether the sentence is true

relative to a scenario), ask them for a graded judgment (how well the sentence fits

a scenario); instead of asking about one sentence, ask about lots of sentences of the

same form; instead of describing the scenarios in the same language as the sentence,

use another language, or use pictures or videos; help the speakers distinguish infelicity

from falsehood; avoid asking speakers who are corrupted by theory (semanticists, for

example); add filler questions so as to obscure the experiment's purpose; randomize

the order of the questions...

The Elicitation Method, or some refinement of it, is a standard method in semantic

fieldwork. Take Altshuler et. al. (2019, Chapter 1): "We will judge our progress in

terms of how closely the system we develop tracks the intuitions speakers have about

the truth of a sentence in different situations." Or Winter (2016, p. 16): "Just

as intuitive judgments about sentence grammaticality have become a cornerstone

in syntactic theory, intuitions about entailments between sentences are central for
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natural language semantics." (Winter uses judgments about entailments, not about

truth-conditions, but the approaches are equivalent.) Or Matthewson (2004, p. 369):

"direct elicitation (including asking consultants for judgments) is an indispensable

methodological tool." For thorough discussion, see Matthewson (2004) or Bochnak

and Matthewson (2015).

The Elicitation Method is not the only way to work out the truth-conditions of

a sentence. Other techniques are available. For example, you might gather texts or

record conversations and extract truth-conditions from patterns of use. Or you might

ask bilingual speakers to translate a sentence of the language under study into another

language. And so on. Still, there is no question that eliciting speakers' judgments is

a standard method in semantic fieldwork. The Standard View justifies the Elicitation

Method. By better understanding how speakers' judgments about meanings can go

wrong, we will better understand the limits of the Elicitation Method.

3.5.3 Lewis on knowledge of conventions

According to Lewis, participants in a convention are in a position to know what the

convention is. As with conventions in general, so with conventions of language in

particular: speakers of a language are in a position to know what their linguistic

conventions are, or in other words, to know the meanings of their terms.

Lewis tempers the claim by pointing out that you may be in a position to know

the convention without actually knowing it, that you may not be able to put what you

know into words, and that snap judgments about the convention, like snap judgments

about anything, may be wrong." Still, other things equal, speakers' judgments about

meanings are correct.

A view held by Lewis is a view worth taking seriously. In Sections 3-4, I argued

that Lewis's view is wrong: participants in a convention may fail to know, or even be in

a position to know, what the convention is; they may believe of some other regularity

that it's the convention; they may easily state their mistaken belief verbally; they

"He describes a further qualification, too, involving Abelard's distinction between beliefs and
expectations in sensu composito and in sensu diviso. See pp. 64-8.
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may stand by their mistaken belief even after careful reflection. In Sections 6-7, I

argue that Lewis's view is wrong about conventions of language in particular.

3.6 From coordination games to signaling games

It's easy to come up with coordination games which leave room for mistakes about

conventions. Remember the key idea: knowing your own move and payoff needn't

determine what the others do, so leaves room for false beliefs about the convention.

A signaling game is a special kind of coordination game. Signaling games are

particularly interesting, since they give rise to meanings. In this section I apply the

key idea to the special case of signaling games. I construct signaling games which

leave room for mistakes about meanings.

Just as the examples from Section 3 go beyond the Simple Game, our paradigm

coordination game, so too the examples in this section go beyond the Coin Game,

our paradigm signaling game. We must be careful, when we go beyond the Coin

Game, to ensure that a Lewis-style analysis of the messages' meanings still applies.

Our examples must balance two desiderata: on some ways the game can turn out,

the messages have meanings; and the players can be mistaken about the meanings.

The first desideratum pulls us towards the Coin Game, for a Lewis-style analysis of

meanings is most straightforward in games like that. The second desideratum pushes

us away from the Coin Game, for games like that leave little room for mistakes about

meanings. See Section 7.1 for further discussion.

I describe four games-the ABC Game, the Two-Sender Coin Game, the Coin

Game with Nature, the Signaling Cycle Game-and how each might turn out. I

assume as in Section 3 that the structure of the situation is common knowledge, the

players play repeatedly, and each player knows her own move and payoff but doesn't

observe the other players' moves. Each game leaves room for the players to be wrong

about the messages' meanings: on some ways things might turn out, the messages

acquire meanings but some players are wrong about some meanings.

Remember Lewis's hypothetical verbal signalers. They don't do anything we don't

97



State Sienna Reg Rae Roy Payoff
A ! A C B 1
B & C B A 1
C # B A C 1

Table 3.1: Actual strategies in the ABC Game.

do. We just do more. If the hypothetical signalers can be wrong about the meanings

of their own terms, so can we. If they can be radically wrong, so can we.

3.6.1 The ABC Game

Sienna, Reg, Rae, and Roy are playing a signaling game. Sienna is the sender;

Reg, Rae and Roy are receivers. Nature chooses one of three states-A, B, C-

at random. Sienna observes the state. She sends one of three messages, ! (bang), &

(amp), # (pound), to the receivers (the same message to each). Then the receivers

independently guess the state. If at least one guesses correctly, they all get positive

payoff; else, nothing.

They play the game day after day. Eventually, they coordinate. Their strategies

are represented in Table 1. For example: Sienna sends ! when A, & when B, # when

C; Reg guesses A given !, C given &, B given#. Each receiver guesses correctly given

one of the messages (Reg given !, Rae given &,Roy given #) but incorrectly given

the other two. Since someone guesses correctly no matter what the state, everyone

always gets positive payoff. Each is happy with her own strategy and confident of the

others'. The messages have acquired meanings: ! means A, & means B, # means C.

No receiver knows what Sienna is doing. Still, they may have beliefs about it, and

corresponding beliefs about the messages' meanings. Suppose each is cocky, believing

he always guesses correctly. For example, Reg believes Sienna sends ! when A, #

when B, & when C, and so believes that ! means A, # means C, & means B. And

similarly for Rae and Roy. (See Section 7.2 for further discussion.)

Sienna knows the meanings: she knows her own strategy and the meanings are

determined by that. (See Section 7.3 for further discussion.) The receivers don't.
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Reg is right about the meaning of ! and wrong about the meanings of & and #.

And similarly for Rae and Roy. All receivers are wrong about the meanings of two

messages. For each message, a majority of receivers (two of three) are wrong about

the message's meaning.

Since there are as many receivers as states, if the receivers guess differently, one of

them is bound to guess correctly. If any receiver guesses correctly, all get the preferred

payoff. So, if the receivers could confer among themselves, they could make sure to

guess differently given each message, and so ensure they get the preferred payoff

every time, regardless of Sender's strategy. If that were what happened, perhaps the

messages wouldn't be meaningful. But that's not what happens. The receivers don't

confer among themselves. The fact (if it is a fact) that if they were to confer the

messages wouldn't be meaningful doesn't undermine the claim that the message are

meaningful, given that the receivers don't confer.

3.6.2 The Two-Sender Coin Game

Nature flips two coins. Sender 1 sees how the first coin landed and sends a message,

mi or M2 , to Receiver; Sender 2 sees how the second coin landed and sends a message,

m 3 or M4 , to Receiver. The senders act independently. After receiving the messages,

Receiver guesses how each coin landed. If she gets both right, everyone gets positive

payoff; else, nothing.

They play day after day. Eventually, they coordinate: Sender 1 sends mi when

heads, M2 when tails; Sender 2 sends m 3 when heads, m 4 when tails; and Receiver's

strategy' complements theirs, so she always guesses correctly. The messages have

acquired meanings: m1 and M3 mean the coin landed heads, m 2 and m 4 mean the

coin landed tails.1 5

The structure of the game is common knowledge. Each player knows her strategy

and payoffs. That's enough for Receiver to work out the senders' strategies. And

it's enough for each sender to work out how Receiver responds to his messages. But

5 Or perhaps m1 means the first coin landed heads andm 2 means the second coin landed heads,
and so on. We needn't decide the matter here.
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it's not enough for either sender to work out the other sender's strategy, nor how

Receiver responds to the other sender's messages. For all Sender 1 knows, Sender 2

might sendm4 when heads andm 3 when tails, and Receiver guess heads given m 4

and tails givenim3 . And similarly for Sender 2.

Still, each sender may have beliefs about the other sender's strategy, and corre-

sponding beliefs about the messages' meanings. Suppose each sender flips the other's

strategy, so Sender 1 believes thatrm3 means tails andim4 means heads, and Sender

believes that mi means tails and m2means heads. Each is wrong about the meanings

of the other's messages.

3.6.3 The Coin Game with Nature

Sender and Receiver are playing a signaling game, but they're not sure which. Nature

chooses the West Game or the East Game at random. The game, once chosen, is fixed.

Then Sender and Receiver play that signaling game repeatedly.

In either game, Nature flips a coin and Sender sees the result. Sender sends a

message, # or &, to Receiver, who then guesses how the coin landed. In the East

Game, the players are rewarded if Receiver guesses correctly; in the West Game, the

players are rewarded if Receiver guesses incorrectly.16

guess H guess T guess H guess T
H 0 1 H 1 0
T 1 0 T 0 1

West Game East Game

Figure 3-5: State-response correspondences in the Coin Game with Nature

As it happens, Nature chooses the East Game. Sender and Receiver play day

after day. Eventually they coordinate: Sender sends # when heads and & when tails;

Receiver guesses heads given # and tails given &. Each is happy with her strategy

and confident of the other's. The messages have acquired meanings: # means the

coin landed heads and & means the coin landed tails.
16Note that the matrices don't represent the games in strategic form; rather, they represent the

payoffs for each state-act pair, from which the strategic forms may be derived, given a probability
distribution over the states.
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As before, neither player knows the other's strategy. Still, they may have beliefs

about it, and corresponding beliefs about the meanings. Suppose they believe Nature

chose the West Game, so Sender believes Receiver guesses tails given # and heads

given & and Receiver believes Sender sends # when tails and & when heads. In short:

each player is wrong about the game and flips the other's strategy.

Sender, despite his mistake, knows that # means heads and & means tails, since

he knows his own strategy. Receiver is not so lucky: she believes that # means tails

and & means heads.

3.6.4 The Signaling Cycle Game

Nature chooses one of three states (s 1, s2 , or s 3) at random. Sender observes the state

and sends a message (Mi, M 2 , orM3 ) to Receiver. Then Receiver chooses a response

(r, r 2 , or r3 ). The payoffs for each state-response pair are given below:

rTi 2 r3
Si 1 1 0

S2  0 1 1

S3  1 0 1

Figure 3-6: State-response correspondence in the Signaling Cycle Game

Sender and Receiver play day after day. Eventually they coordinate: Sender sends

M 2 when si, M 3 when S2, mi when S3; Receiver does r1 given m 1, r2 givenim 2 , r3

givenim 3 . Each is happy with her strategy and confident of the other's.

Have the messages acquired meanings? Unlike the previous examples, for each

state there are two responses which yield the preferred payoff. Therefore each player

could unilaterally change her strategy without losing out. Perhaps that means the

messages don't acquire meanings. If so, strike out the example and jump to the next

section. If not, I say that mi means s3 , n 2 means Si, m3 means S2.

As above, neither player knows what the other is doing, but they may have be-

liefs about it, and corresponding beliefs about the meanings. Suppose each player

permutes the other's strategy. Sender, despite his mistake, knows that mi 1 means S3,

m2 means s1 , m 3 means S2, since he knows his own strategy. Receiver is not so lucky:
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she believes that mi means Si, m 2 means S2, m 3 means S3. She is wrong about the

meaning of every message.

3.7 Discussion of examples

3.7.1 Why go beyond basic signaling games?

In a basic signaling game, like the Coin Game, there are two players: Sender and

Receiver. One of n possible states, si,... , is chosen by Nature with equal prob-

ability. Sender observes the state; Receiver doesn't. Sender sends one of n possible

messages, m 1 ,..., mn, to Receiver, who then chooses one of r responses, r,.... , rn.

The payoffs depend on the state and the response. If Receiver does ri in si, Sender

and Receiver each get equal positive payoff. Otherwise, each gets nothing.17 A strat-

egy for Sender is a function from states to messages. A strategy for Receiver is a

function from messages to responses. Both players want Receiver to guess correctly.

They must attempt this indirectly, by coordinating their strategies.

The four examples in Section 6 go beyond basic signaling games in all sorts of

ways: in the ABC Game, there is one sender and several receivers, only one of whom

has to guess right; in the Two-Sender Coin Game, there are two senders and one

receiver, who has to guess how both coins landed; in the Coin Game with Nature,

the players are unsure about the state-response correspondence; the Signaling Cycle

Game relaxes the payoff structure.

Why go beyond basic signaling games? Because basic signaling games leave little

room for mistakes about meanings. Take the Coin Game, a basic signaling game with

two states, messages and responses. The messages acquired meanings. You know your

strategy and payoffs. That is enough to work out my strategy. I know my strategy

and payoffs. That is enough to work out your strategy. Since each of us can work

out the other's strategy, each of us can work out what the messages mean. The Coin

1
7 Isn't it obvious what the players should do, namely, send mi in si and do ri given si? No. That

confuses a property of our representation (how we label the states, messages and responses) with a
property of what we're representing.
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Game doesn't leave room for mistakes about meanings.

Now consider a larger basic signaling game, say with ten states, messages and

responses. Here's one way things might turn out. Sender and Receiver play day after

day, learning about each other as they go. They eventually settle on strategies, each

happy with her own and confident of the other's. In states si, . ., ss their strategies

match up: Sender sends mi in si and Receiver does ri given mi. These messages have

acquired meanings: mi means si (i = . . . , 8). In states sq and s1 0 , their strategies

don't match up: Sender sends mg in sq and mi 1 o in s1, but Receiver does ro given m

and re given mio. By good luck, Nature doesn't choose sq or sio. The players believe,

wrongly but with good reason, that their strategies would match up no matter the

state.

It's not clear whether mg and mi. are meaningful. If they are meaningful, then

Mg means sq and mio means sio (although see Section 7.5). Whether meaningful or

not, we may suppose that Receiver believes, wrongly, that m9 means sio and mio

means sq. Basic signaling games do, thus, leave room for mistakes about meanings.

I don't rely on examples like this. The example depends on an unlikely event (that

Nature doesn't choose two of the states). More importantly, the players' beliefs are

not robust: with probability 1, eventually Nature will choose sq or sio, and then the

players will correct their mistakes. If they're mistaken about meanings, they won't

be for long. The examples in Section 6, by contrast, don't depend on unlikely events,

nor need the players ever realize their mistakes.

When conditions are strange enough (the players are fantastically unlucky, or

selectively forgetful, or dazed and confused, or philosophers), no doubt they can be

mistaken about meanings. Examples like that aren't interesting. The aim is not just

to find signaling games which leave room for mistakes about meanings, but to find

games which leave room for mistakes about meanings in a simple, straightforward way.

You don't need outlandish set-ups to be mistaken about meanings. The examples in

Section 6 are artificial, in order to make the structure clear. They are not fussy; they

are not exotic.
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3.7.2 Belief about regularities and belief about meanings

Consider, say, Reg in the ABC Game. Distinguish two claims: (a) Reg believes Sienna

sends! when A, # when B, & when C; (b) Reg believes that! means A, # means B, &

means C. I've glossed over the difference. But in fact the claims are independent: you

might have (a) without (b), if Reg (mistakenly) believes that messages in a signaling

game can't acquire meanings; you might have (b) without (a), if Reg (mistakenly)

believes that meanings don't require a regularity.

I've assumed that by the time the players coordinate, each happy with her own

strategy and confident of the others', if a player believes that a sender sends message

m in state s, she also believes that m means s. The assumption isn't true in general.

All I claim is that the four examples might turn out that way. The examples leave

room for mistakes about meanings; they don't force mistakes.

3.7.3 Sender is not wrong about meanings

The meaning of a message, given that it's meaningful, is determined by Sender's

strategy. Look back at the examples: the meaning of a message, given that it's

meaningful, is the state in which Sender sends that message.

Suppose m means s. Since m. is meaningful, the players coordinate, each happy

with her own strategy and confident of the others'. Since m means s, Sender sends

m. whenever the state is s. Sender knows his strategy. Hence Sender knows that he

sends m in s. Given the assumption stated in the previous subsection, it follows that

Sender believes that m means s. Generalizing, Sender is right about the meanings

of his own messages, if they're meaningful at all. The key idea-that knowing your

own strategy and payoff needn't determine what the others do-doesn't leave room

for Sender to be wrong about the meanings of his own messages.

When there are multiple Senders, each Sender may be wrong about the meanings

of the other Senders' messages, as in the Two-Sender Coin Game. But each Sender

still knows the meanings of his own messages. That is a limitation of the examples.
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3.7.4 Switching roles

In all the examples, the players' roles are fixed. In particular, senders never become

receivers and receivers never become senders. In actual languages, of course, things

aren't like that. People sometimes speak and sometimes listen. No problems arise in

actual languages from switching roles. The conventions of meaning in actual languages

are robust to role-switches.

Is the same true of the conventions of meaning in the examples? The short answer

is: typically not. In each case I assume, naturally enough, that a player behaves in

a new role as she believes the player she is taking over from behaved. Now, take

the Signaling Cycle Game. Suppose Sender and Receiver swap roles. Then Receiver,

now in Sender's role, will send mi when Si, m2 when S2 and m 3 when S3. And

Sender, now in Receiver's role, will do r3 given mi, ri given m2 and r2 given m 3.

The result? They'll get zero payoff no matter the state. Swapping roles leads them

to anti-coordinate. The situation is similar for the Two-Sender Coin Game and the

ABC Game. 1 8 As it happens, in the Coin Game with Nature, the players can switch

roles without any problem arising. But typically the conventions of meaning in the

examples are not robust to role-switches. That is another limitation of the examples.

Still, it's worth noting that the coordination game examples from Section 3 are

more robust to role-switches. Take the Three-Player Game. If any two players switch

roles (Colin becoming the matrix-chooser and Mattea becoming the column-chooser,

say) then no problems will arise. But if all three players switch roles, they'll get zero

payoff. Similarly, the Five-Player Game is robust to many, but not all, role-switches.

The Nature Game is robust to the two players' switching roles. The Cycle Game

isn't.

The conventions in the coordination games are often, but not always, robust

to role-switches, even when the players are wrong about the convention. That is

evidence-even if only weak evidence-that conventions of meaning can be robust to

1 8 For the ABC Game, things are not completely straightforward, because we don't know what
Sienna will do as a receiver. But if we suppose that she behaves the same way no matter which
receiver she swaps with, then things will go wrong.
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role-switches too, even when the players are wrong about the meanings.

3.7.5 Indicative meanings and imperative meanings

Recall the Coin Game: you send # when heads and & when tails; I guess heads given

# and tails given &. We coordinate day after day, each happy with her own strategy

and confident of the other's. I said that # means the coin landed heads and & means

the coin landed tails. These are the indicative meanings of the messages.

As Lewis pointed out, there's an alternative interpretation: # means guess heads

and & means guess tails. These are imperative meanings of the messages. An in-

dicative meaning gives information about the state. An imperative meaning gives an

instruction about the response.

You might take the imperative meaning of a message to be determined by Sender's

strategy, just like the indicative meaning: the imperative meaning of m is to make

the appropriate response, whichever it is, to the state in which Sender sends m. Or

you might take the imperative meaning to be determined by Receiver's strategy: the

imperative meaning of m is to respond however Receiver does respond given m. In

basic signaling games, these coincide; in more complicated games, they may not.

Taking the meanings to be indicative, Sender is in a privileged position; taking the

meanings to be imperative, Receiver is in a privileged position.

When should we interpret messages as indicative and when as imperative? It's

not clear. In these simple settings, either interpretation may be acceptable.19 If

we interpret the messages one way, we may get one pattern of mistakes about the

meanings; if we interpret them the other way, we may get another.

The distinction between indicative and imperative meanings might help leave room

for Sender to be wrong about the meanings of his own messages, despite knowing his

own strategy, for he could be wrong about the imperative meanings, as determined by

Receiver's strategy. But better to find examples which don't rely on choosing between

indicative and imperative meanings. And better to find meanings which every player

1
9 Lewis suggests when we should interpret them as indicatives and when as imperatives. See pp.

143-7. See also Millikan (1995).
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is wrong about (the same meanings for all), rather than find, for each player, a type

of meaning which that player is wrong about.

3.8 Conclusions

People can be wrong about their own conventions; in particular, people can be wrong

about the meanings of their own messages. The examples are simple, explicit, new in

kind and based on an independently plausible meta-semantic story. They're artificial,

in order to make the structure clear, but not fussy and not exotic. If you want to

observe mistakes about conventions or meanings first-hand, then grab some friends,

feed them a little misleading information, and let them play the games in the paper.

Imagine a large community of signalers who are radically wrong about the mean-

ings of their messages. Send a field linguist among them to discover the semantics of

their language using standard techniques like the Elicitation Method. The linguist

will be radically misled.

Suppose Method X is taken to be a reliable test for Disease D. It's then discov-

ered that Method X is unreliable when the subject has Condition C. Condition C is

a common-or-garden condition, not involving genetic quirks or strange diets or ra-

diation exposure. How should we react? I say: we shouldn't endorse Method X as

confidently as before in cases where Condition C doesn't obtain; we should re-examine

the reliability of Method X even when Condition C doesn't obtain. As with Method

X and Disease D, so too with the Elicitation Method and meanings.

I don't say that we should give up the Elicitation Method; nor that the key idea

behind the examples is responsible for mistakes about meanings in natural languages.

I do say that if speakers can be wrong about meanings for such straightforward rea-

sons, then we should reconsider the reliability of speakers' judgments about meanings

more generally.
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