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Abstract

Recent technological advances have resulted in an explosive growth of various types of
“omics” data, including genomic, transcriptomic, proteomic, and metagenomic data.
Functional interpretation of these data is key to elucidating the potential role of
different molecular levels (e.g., genome, transcriptome, proteome, metagenome) in
human health and disease. However, the massive size and heterogeneity of raw data
pose substantial computational and statistical challenges in integrating and inter-
preting these data. To overcome these challenges, we need sophisticated approaches
and scalable analytical frameworks. This thesis outlines two research efforts along
these lines. First, we develop a novel three-tiered integrative omics framework for
integrating and functionally analyzing heterogeneous omics datasets across a group
of co-occurring diseases. We demonstrate the effectiveness of this framework in in-
vestigating the shared pathophysiology of autism spectrum disorder (ASD) and its
multi-organ-system co-morbid diseases (e.g., inflammatory bowel disease, asthma,
muscular dystrophy, cerebral palsy) and uncover a novel innate immunity connection
between them. Second, we develop a new end-to-end computational tool, Carnelian,
for robust, alignment-free functional profiling of whole metagenome sequencing reads,
that is uniquely suited to finding hidden functional trends across diverse data sets
in comparative analysis. Carnelian can find shared metabolic pathways, concordant
functional dysbioses, and distinguish microbial metabolic function missed by state-
of-the-art functional annotation tools. We demonstrate Carnelian’s effectiveness on
large-scale metagenomic studies of type-2 diabetes, Crohn’s disease, Parkinson’s dis-
ease, and industrialized versus non-industrialized cohorts.
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Chapter 1

Introduction

Recent advances in next-generation sequencing (NGS) technologies have revolution-

ized research in life sciences. The cost-effective and high throughput nature of

these technologies has enabled us to study biological systems in unprecedented de-

tail, generating massive amounts of genomic, transcriptomic, proteomic, epigenomic,

metabolomic, and metagenomic data. Each type of omics data on its own typically

provides some (associative) evidence of how a particular “ome” (e.g., genome, tran-

scriptome, proteome, metabolome, or metagenome) contributes to a particular pheno-

type (e.g., disease); but by integrating across omics data, we can identify true causal

relationships. However, integrating and interpreting omics data from a functional per-

spective faces challenges due to its high dimensionality and heterogeneity, the increas-

ing diversity of experimental techniques, the noise in high-throughput measurements,

and the nature of the underlying biology [1, 2]. These challenges require intelligent

and scalable analytic frameworks. This thesis focuses on designing computational

frameworks that (i) integrate heterogeneous omics data at different functional levels

to reveal insights about groups of complex diseases which arise together [3], and (ii)

enable a comparative functional analysis of large-scale metagenomic data from diverse

study populations to uncover hidden functional potential of the microbiome [4, 5].
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1.1 Types of omics data

The word “omics” when applied to a molecular term implies a comprehensive assess-

ment of a set of molecules (http://omics.org/). The goal of omics studies is to

understand the relationship between the genome and the functioning of cells. To this

end, scientists investigate different molecules that play vital roles in the central dogma

of life, namely DNA, RNA, and protein. DNA is transcribed into messenger RNA

(mRNA) which is translated by the ribosome into polypeptide chains (i.e., sequences

of amino acids) which singly or in complexes are known as proteins. Proteins fold into

low-energy structures which function as cellular machines. Certain types of RNAs also

function as cellular machines. Since proteins are dynamic and interacting molecules,

taking proteomic measurements is often challenging. Furthermore, proteins undergo

many post-translational modifications, and cannot be readily amplified; therefore,

characterizing them is difficult at best [6]. Fortunately, by measuring transcripts of

mRNA—the intermediate step between genes and proteins—we can bridge the gap

between the genetic code and the functional molecules that run cellular machinery.

In multicellular organisms, nearly every cell has the same genome, thus the same

genes. However, there is a wide range of physical, biochemical, and developmen-

tal differences observed among various cells and tissues. The expression patterns of

genes and the production of specific proteins determine these differences. Many chem-

ical compounds and proteins can attach to DNA and direct such actions as turning

genes on or off or controlling the expression of transcripts, and thereby the produc-

tion of proteins in particular cells. These compounds are collectively known as the

epigenome. Moreover, small molecules that are substrates or products of metabolism

constitute the metabolome—measurements of which can elucidate the underlying bio-

chemical activity and state of cells or tissues. Environmental factors also play a role

in influencing the biochemical processes in cells often through various microorganisms

(e.g., virus, bacteria, fungi) that inhabit the host’s body (i.e., the microbiome), poten-

tially giving rise to different phenotypes in the host. Recent advances in experimental

techniques have allowed us to build assays to deeply investigate every level of this
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process, resulting in a massive influx of different types of omics data (Box 1.1; [7]).

Box 1.1. Omics Data Types

Genomics is the study of an organism’s linear DNA sequence i.e., the genome and its vari-

ants, and how these variants associate with diseases, response to treatment, or future patient

prognosis. Associated technologies include genotype arrays [8, 9], next-generation sequencing

(NGS) for whole genome sequencing [10], and whole exome sequencing (WES) [11].

Proteomics is the study of the proteins in a cell or tissue, their quantity, diversity, and inter-

actions. Mass spectrometry (MS) based approaches [12, 13] are commonly used to investigate

the proteome.

Transcriptomics focuses on the study of RNA levels genome-wide, both qualitatively (which

transcripts are present, identification of splice sites, RNA editing sites, etc.) and quantita-

tively (how much of each transcript is expressed). Associated technologies include probe-based

arrays [14] and RNA-Seq [15].

Epigenomics is the study of the epigenome which consists of chemical compounds and proteins

that can attach to DNA and direct such actions as turning genes on or off or controlling the

expression of transcripts and thereby the production of proteins in particular cells. Such data

often comes from the genome-wide characterization of reversible modifications of DNA or DNA-

associated proteins, such as DNA methylation or histone acetylation [16].

Metabolomics is the large-scale study of metabolites (small molecules that are substrates

or products of metabolism, such as amino acids, fatty acids, carbohydrates, etc.) and their

interactions within a biological system that elucidates the underlying biochemical activity and

state of cells or tissues. MS-based approaches are often used to quantify both relative and

targeted small molecule abundances [17].

Metagenomics is the study of the metagenome, i.e., the collection of genetic material from

all the microorganisms in a given environment, including bacteria, viruses, and fungi, collec-

tively known as the microbiome. Associated technologies include NGS for 16S ribosomal RNA

abundance and whole genome metagenomics quantification [18,19].
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1.2 Challenges in functional interpretation of omics

data

Tremendous amounts of omics data have been generated over the past few decades

and made available through public repositories such as Sequence Read Archive (SRA)

and Gene Expression Omnibus (GEO) at the National Center for Biotechnology In-

formation (NCBI), European Nucleotide Archive (ENA) and ArrayExpress at the

European Bioinformatics Institute (EBI), DNA Data Bank of Japan (DDBJ), Joint

Genome Institute (JGI), etc. The goal of functional interpretation of such data is

to determine how the individual components (i.e., “omes”) work together to produce

a particular phenotype (e.g., disease). Naturally, a systems-level understanding of

any phenotype requires looking at multiple omics levels in a large number of samples

simultaneously in an integrated fashion [1, 20, 21]. However, at present, there is a

significant lag in our ability to generate versus integrate and interpret omics data.

Since a single omics study often contains a small number of samples and has

limited statistical power, combining information across multiple studies is an intu-

itive way to increase sensitivity. However, integrating and interpreting omics data

across multiple studies face various biological and technical challenges, leading to the

possibility of missing potentially valuable insights. These challenges include: (i) in-

consistent nomenclature across different databases (e.g. gene, transcript, or protein

identifiers), (ii) data generated by different platforms using different protocols (e.g.

different array or next-generation sequencing (NGS) platforms, differences in sample

preparation, processing pipelines, or study design), (iii) tissue heterogeneity (i.e., data

generated from samples from different tissues), (iv) batch effect (i.e., technical dif-

ferences in sample handling between batches of experiments), (v) size of data versus

computational power and storage capacity, etc. All these contribute to the existing

shortage of effective and robust frameworks to integrate and analyze omics data across

different cell types, tissues, developmental phases, studies, and populations.

Furthermore, when it comes to metagenomic data, these challenges present them-

selves on a much larger scale. Shotgun sequencing, which has revolutionized metage-

28



nomics, presents many additional unique challenges [22]. First, the sheer size of

shotgun metagenomic read data sets—which is typically much larger than data from

individual genomes, targeted amplicon sequencing of marker genes from microbial

communities (e.g., 16S ribosomal RNA), or other meta’omic experiments (e.g., meta-

proteomics, meta-metabolomics, etc.)—poses significant computational challenges [22,

23]. Secondly, shotgun reads often come from a mixture of genomes where the genome

from which each read comes is unknown and so is the position of the read within the

genome. Moreover, the vast majority of the microbial diversity is not represented in

any reference database or otherwise characterized in most environments [24–26]. Even

for species with sequenced genomes, reference databases do not capture the full col-

lection of genes and functions present across different strains [27–29]. Aside from the

reads that cannot be assigned to a taxon or gene or function, it is challenging to gen-

erate comparable estimates of abundance from the remaining reads due to a variety

of biological and technical biases related to study design, experimental protocols, and

bioinformatics pipelines that affect the relationship between true abundance in the

community and the number of reads observed for a taxonomic or functional category.

These challenges not only complicate answering the question: which taxa and func-

tions are present in a microbial sample, but also interfere with a useful comparison

of metagenomic profiles across samples, either within a study or across studies.

1.3 Prior work on these challenges

1.3.1 Study of groups of diseases in the literature

Although different diseases may appear unrelated at an organismal level, it is highly

unlikely that they arise completely independently from one another. They often share

molecular components so that perturbations causing disease in one organ system can

affect another [30, 31]. In neuropsychiatry, where many disorders do not have clear

boundaries in terms of their pathophysiology or diagnosis [32, 33], researchers have

pursued this line of thinking. Indeed, there is now growing evidence that rare vari-
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ants ranging from chromosomal abnormalities and copy number variations (CNV) to

single nucleotide variations (SNV) have implications for autism spectrum disorder

(ASD) and other neuropsychiatric conditions [34–41]. For example, single nucleotide

polymorphisms (SNPs), which overlap genes in common molecular pathways, such as

calcium channel signaling, are shared between ASD, attention deficit-hyperactivity

disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), and

schizophrenia [42]. Other investigators have integrated genomic data for multiple

immune-related diseases, revealing that there are shared molecular commonalities

between them [43]. These efforts have mainly focused on developing multinomial

models and statistical approaches for integrating genomic and genotype data from

multiple genome-wide association studies so that researchers can detect rare variants

with increased statistical power. However, efforts looking at groups of diseases have

so far remained confined to a single type of omics data, diseases of the same organ

system or diseases with a common theme (e.g., immune-related diseases, psychiatric

diseases) to avoid dealing with the underlying heterogeneity. Recent studies based

on electronic health records and database/literature mining have identified various

groups of co-occurring diseases [44–48]. For example, researchers have identified sev-

eral diseases spanning multiple organ systems that co-occur in ASD patients at a

high prevalence rate [44, 45]. These diseases include seizures [49, 50], gastrointestinal

disorders [51,52], ear infections and auditory disorders, sleep disorders [53], muscular

dystrophy [54–56], cardiac disorders, psychiatric illnesses [57, 58], etc. Thus, for un-

derstanding the molecular basis of a disease like ASD with a complex etiology, there

is a need to expand the omics exploration outside of one level and one organ system,

in particular, the brain to conditions related to other organ systems that co-occur

with it.
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1.3.2 Functional profiling of metagenomic reads and compar-

ative functional metagenomics

Functional profiling of metagenomic reads refers to the task of assigning reads to

known biological functions (e.g., catalytic action, functional domain categories, genes)

and estimating abundances of those functional terms. Traditional whole metagenome

functional annotation approaches assemble reads into large contigs, translate them

into open reading frames (ORF), and annotate them using protein sequence homol-

ogy, often using existing alignment tools such as BLAST [59], profile Hidden Markov

Models (HMMs), or position-specific weight matrices (PWMs). Such methods include

RAST [60], Megan4 [61], MEDUSA [62], Tentacle [63], MOCat2 [64], IMG4 [65], and

gene catalogue-based methods [66,67]. Since assembly is a slow, resource-heavy, and

lossy process, annotating translated reads directly via sequence homology or read-

mapping is used by another class of tools, including MG-RAST [68], HUMAnN [69],

ShotMap [70], Fun4Me [71], mi-faser [72], and HUMAnN2 [73]. However, alignment-

based read mapping remains time-consuming when comparing hundreds of samples

from different cohorts [74, 75]. HUMAnN2 and mi-faser significantly speed up the

alignment step by using a fast protein aligner, DIAMOND [76], and thus can accu-

rately and quickly capture functions from sequences corresponding to known proteins.

However, because they often use strict alignment criteria, they are challenged in cap-

turing shared features of functionally similar proteins that are not-so-sequence-similar,

multi-domain proteins, and remote homologs [77].

Naturally, predicting function without having characterized a protein experimen-

tally is difficult and runs the risk of false positives. For well-studied populations and

environments, there might not be a need to do so. However, when analyzing data

from less studied populations and environments—so often the case in metagenomic

analysis, a large fraction of reads sequenced do not directly correspond to genes of

known species [25, 26]. Thus methods that depend on alignment do not perform as

well. Techniques from the field of remote homology detection can be used to explicitly

guess at shared functions between an unknown protein and an existing one, but they
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operate at the level of entire protein sequences, rather than Whole Metagenome Shot-

gun (WMS) sequencing reads. Hence, functional profiling of metagenomic sequences

remains an open problem in metagenomics research [22,23,70,78].

The real power of metagenomic analysis lies in performing comparisons between

samples, within a study, or across multiple studies spanning different populations

and environments. Detecting differential changes in the functional capacities of mi-

crobial communities often requires larger sample sizes than are feasible within a single

study. Hence, meta-analyses and comparisons of new and existing cohorts are increas-

ingly becoming popular [67, 79–84]. These efforts have primarily sought to uncover

shared taxonomic dysbiosis (i.e., microbial imbalance) between study populations for

a given disease. However, these attempts have generally not found shared taxonomic

dysbiosis, probably because the healthy microbiomes used as the background differ

significantly in taxonomic composition, to begin with. Because different species may

fill the same ecological niche, the traditional focus on taxonomy can lose sight of the

functional relatedness of the microbiomes of two individuals—i.e., commonalities and

differences in the functional capabilities of microbial populations [25]. In the large

meta-analyses cited above [67,79–84], there was some attempt to perform functional

profiling (in addition to taxonomic profiling), but due to limitations in the study de-

sign and methods available, they were unable to find concordant pathways, which one

would expect from the same disease. Thus, better functional profiling is important

to uncovering trends in functional relatedness when comparing study cohorts; this

remains an unsolved challenge due to inconsistencies and incompleteness of annota-

tions of microbial genes across reference databases and the lack of comparability of

existing relative abundance statistics across samples and studies [23,78].

1.4 Outline

The remainder of this thesis is organized as two self-contained chapters, parts of

which have been previously published and parts, currently under review at a reputed

peer-reviewed journal, as well as some concluding remarks.

32



Chapter 2: Multi-level integrative omics analysis for ASD and

its comorbidities

Over the years, ASD has baffled researchers not only with its heterogeneity but also

its co-occurrence with many seemingly unrelated diseases of different organ systems

(known as comorbidities of ASD). In this chapter, we introduce a three-tiered, sta-

tistically robust, meta-analysis approach [3] to capture the shared signals at gene

and pathway levels that form the basis of ASD’s co-occurrence with other diseases.

Integrating heterogeneous transcriptomic data from 53 studies of 12 different diseases

at the gene, pathway, and disease levels, our pipeline reveals a novel innate immunity

connection between ASD and its comorbidities. Our statistical approach bridges the

gap between frequentist and Bayesian statistics. An analysis of this scale for studying

ASD and its comorbidities is unheard of as per our knowledge.

Chapter 3: Robust comparative functional metagenomics across

diverse study populations

In this chapter, we introduce Carnelian, a novel compositional tool for profiling the

metabolic functional potential of a metagenome from whole metagenome sequencing

reads, and an end-to-end pipeline that is uniquely suited to finding common functional

trends while comparing metagenomic data sets from different study populations [4,5].

Functionally similar proteins often share compositional (gapped 𝑘-mer) features in

their amino acid sequence, even across species. Carnelian builds on this observa-

tion and leverages low-density locality-sensitive hashing [85,86] with a gapped 𝑘-mer

classifier [87], which is better able to detect the ECs (Enzyme Commission terms

that classify proteins by their enzymatic action) present in non-annotated species,

while simultaneously avoiding forced spurious labels through training on a negative

set. When used with our in-house comprehensive reference protein database focused

on comparing metabolic functionality, as opposed to using typical protein databases

that contain non-prokaryotic and non-metabolic annotations, and a new read nor-

malization approach, Carnelian produces quantitative summaries of the microbial
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metabolic functional capacities that are readily comparable across samples. Finally,

we present a principled statistical approach for finding shared metabolic pathways

using Carnelian-generated functional profiles that enables the discovery of hidden

functional trends across diverse study populations. On a variety of simulated and

real datasets (both published and unpublished), we demonstrate Carnelian’s supe-

rior performance in finding shared metabolic pathways, concordant functional dys-

bioses, and distinguishing Enzyme Commission (EC) terms missed by state-of-the-art

metagenomic functional profiling tools.

Chapter 4: Conclusion

Here we summarize the central themes of the previous chapters.
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Chapter 2

Multi-level integrative omics analysis

for ASD and its comorbidities

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that

tends to co-occur with other diseases, including asthma, inflammatory bowel dis-

ease, infections, cerebral palsy, dilated cardiomyopathy, muscular dystrophy, and

schizophrenia. However, the molecular basis of this co-occurrence, and whether it

is due to a shared component that influences both pathophysiology and environmen-

tal triggering of illness, has not been elucidated. To address this, we introduce a

three-tiered omics analysis pipeline [3] that functions at the gene, pathway, and dis-

ease levels across ASD and its comorbidities. Our pipeline reveals a novel shared

innate immune component between ASD and all but three of its comorbidities that

were examined. In particular, we find that the Toll-like receptor signaling and the

chemokine signaling pathways, which are key pathways in the innate immune re-

sponse, have the highest shared statistical significance. Moreover, the disease genes

that overlap these two innate immunity pathways can be used to classify the cases of

ASD and its comorbidities versus controls with at least 70% accuracy. This finding

suggests that a neuropsychiatric condition and the majority of its non-brain-related

comorbidities share a dysregulated signal that serves as not only a shared genetic

basis for the diseases but also as a link to environmental triggers. It also raises the

possibility that treatment and prophylaxis used for disorders of innate immunity may
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be successfully used for ASD patients with immune-related phenotypes.

2.1 Introduction

While at an organismal level, two or more diseases may appear unrelated, at the

molecular level, it is unlikely that they arise entirely independently of one another.

Studies of the human interactome—the molecular network of physical interactions

(e.g., protein-protein, gene, metabolic, regulatory) between biological entities in cells—

demonstrate that gene function and regulation are integrated at the level of an organ-

ism. Extensive patterns of shared co-occurrences also evidence molecular commonal-

ities between seemingly disparate conditions [30].

Indeed, different disorders may share molecular components so that perturbations

causing disease in one organ system can affect another [31]. However, since the

phenotypes appear so different from each other, medical sub-disciplines address the

conditions with sometimes wildly differing treatment protocols. If investigators can

uncover the molecular links between seemingly different conditions, the connections

may help explain why certain groups of diseases arise together and assist clinicians

in their decision-making about the best treatments. Knowledge of shared molecular

pathology might also provide therapeutic insights for the repositioning of existing

drugs [88].

Such thinking has emerged most recently in the field of neuropsychiatry where,

many such illnesses do not have clear boundaries in terms of their pathophysiol-

ogy or diagnosis [32, 33]. Indeed, there is now growing evidence that rare variants

ranging from chromosomal abnormalities and copy number variation (CNV) to single

nucleotide variation (SNV) have implications in ASD and other neuropsychiatric con-

ditions [34–41]. For example, single nucleotide polymorphisms (SNP) which overlap

genes in common molecular pathways, such as calcium channel signaling, are shared

in autism spectrum disorder (ASD), attention deficit-hyperactivity disorder (ADHD),

bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia [42].

CNVs, especially the rare ones, can explain a portion of the risk for multiple psy-
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chiatric disorders [38, 41]. For example, the 16𝑝11.2 CNV encompassing around 600

kb (chr 16:29.5 - 30.2 Mb) has been implicated in multiple psychiatric disorders with

the deletions being associated with ASD, developmental delay and intellectual dis-

ability (ID) and duplications being associated with ASD, schizophrenia, BD, and

ID [38, 41, 89–93]. However, researchers have observed pathogenic variations in only

about 30% of the ASD affected individuals [40, 94–97] and these variations often fail

to explain the idiopathic (non-syndromic) ASD cases as well as why ASD affected

individuals suffer from many other non-neuropsychiatric conditions.

To complement the evidence of genome-wide pleiotropy across neuropsychiatric

diseases, rather than looking at one neurodevelopmental disease (ASD) and compar-

ing it to other seemingly, brain-related diseases, we expand our exploration outside

of the brain to conditions related to other organ systems that co-occur with ASD.

Recent studies based on electronic health records [44, 45], have identified various co-

morbidities in ASD, including seizures [49, 50], gastrointestinal disorders [51, 52], ear

infections and auditory disorders, developmental disorders, sleep disorders [53], mus-

cular dystrophy [54–56], cardiac disorders and psychiatric illness [57, 58]. We intro-

duce an integrative meta-analysis pipeline to identify the shared pathophysiological

component between ASD and eleven other diseases, namely, asthma, bacterial and

viral infection, chronic kidney disease, cerebral palsy, dilated cardiomyopathy, ear in-

fection, epilepsy, inflammatory bowel disease, muscular dystrophy, schizophrenia, and

upper respiratory infection, that have at least 5% prevalence in ASD patients [44,45].

We ask the question, “Do these disease states - that are not included in the defini-

tion of ASD but co-occur at a significantly high frequency – illuminate dysregulated

pathways that are important in ASD?” We reasoned that such pathways might offer

previously hidden clues to shared molecular pathology.

Other investigators have integrated genomic data from genome-wide association

studies (GWAS) and non-synonymous SNP studies for multiple immune-related dis-

eases, revealing that combining genetic results better identified shared molecular com-

monalities [43]. We believe that adopting an integrative approach not only at the gene

level but also at the biochemical pathway and disease levels will power the results
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still further.

In our three-tiered, meta-analysis approach, we: (i) look for statistically significant

differentially expressed genes in every disease condition; (ii) identify their enrichment

in canonical pathways; and (iii) determine the statistical significance of the shared

pathways across multiple conditions. We are unaware of any analyses that go from

population-based comorbidity clusters of ASD to a multi-level molecular analysis at

anywhere near this breadth.

Our results unearth several innate immunity-related pathways - specifically, the

Toll-like receptor and chemokine signaling pathways - as significant players in ASD

and all but three of its examined comorbidities. Candidate genes in these two path-

ways significantly overlap in conditions of ASD, asthma, bacterial and viral infection,

chronic kidney disease, dilated cardiomyopathy, ear infection, inflammatory bowel

disease (IBD), muscular dystrophy, and upper respiratory infection. Candidate genes

did not appear to be significantly shared in cerebral palsy, epilepsy, and schizophre-

nia. Notably, although bacterial and viral infection, respiratory infection, ear in-

fection, IBD, and asthma have well-known connections with the immune system, we

demonstrate that innate immunity pathways are shared by ASD and its comorbidities

irrespective of whether they are immunity-related diseases or not.

Since both Toll-like receptor signaling and chemokine signaling pathways play

crucial roles in innate immunity, the results suggest that this first-line defense system

(that protects the host from infection by pathogens/environmental triggers) might be

involved in ASD and specific comorbidities. If the profiles of genetic susceptibility

pathways in relation to environmental triggers can be ascertained, they might help

define new treatments such as vaccination [98] or other tolerization therapies [99].

Those might help individuals and families that are at high-risk for ASD to prevent

and treat immune-related phenotypes of the illness.
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2.2 Results

2.2.1 Overview of the three-tiered integrative omics pipeline

To integrate and interpret heterogeneous transcriptomic data across ASD and eleven

of its comorbidities (Table 2.1) at gene and pathway levels, we introduce a novel three-

tiered meta-analysis pipeline (Figure 2-1). Our meta-analysis starts at the gene level,

in which we first identified the genes that are differentially expressed among cases and

controls for a given disease. We then extend this analysis to the pathway level, where

we investigate the pathways that are significantly enriched in candidate genes for a

given disease. Finally, we identify the pathways that are significant across multiple

diseases by newly combining pathway-level results across diseases and performing

Bayesian posterior probability analysis of null hypotheses for pathways in each disease

as well as in the combined case (Methods).

Using our pipeline, we examined ASD and eleven of its most common comorbidi-

ties (Table 2.1). Differential analysis of transcriptomic data using Empirical Bayes

method [118] from 53 microarray studies (Appendix A: Table A.1) related to the

twelve disease conditions revealed different numbers of genes that show significant

differential changes in expression per disease depending on different false discovery

rate (FDR) corrections (Table 2.2; https://tinyurl.com/GenePValues). We se-

lected the most informative FDR correction test by looking at the accuracy of the

classification of cases vs. controls for each disease using the significant genes selected

under different FDR corrections. We found the Benjamini-Yekutieli (BY) adjustment

as the most informative and accurate—classification accuracy being at least 63% per

disease using the genes selected under BY adjustment as features for support vector

machine (SVM) classifier (Figure 2-2).

Hypergeometric enrichment analysis on individual pathway gene sets from Kyoto

encyclopedia of genes and genomes (KEGG), BioCarta, Reactome, and pathway inter-

action database (PID) collections, as well as on the combined gene set of all canonical

pathways helped us reveal the significantly dysregulated pathways in each of the dis-

eases in question (https://tinyurl.com/PathPValues). Combining the 𝑝-values per
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Figure 2-1: Three-tiered integrative omics pipeline. (A) Data preparation: select
GEO Series relevant to ASD and comorbid diseases. (B) Three tiers: 1. For each disease,
select significant genes from differential expression analysis of GEO series with a Fisher’s
combined test with 𝑝 < 0.05 after Benjamini-Yekutieli (BY) FDR adjustment. 2. For each
disease, select significant pathways from hypergeometric enrichment analysis with 𝑝 < 0.05.
3. Identify significant shared pathways across diseases using Fisher’s combined test with
𝑝 < 0.05 after Bonferroni FDR correction. Exclude the non-significant pathways in ASD.
(C) Post analysis: 1. Using the gene expression data from a healthy cohort, generate a null
distribution of pathway 𝑝-values and calculate prior probabilities of pathways being signif-
icant by chance. 2.1. Using the prior probabilities, pathway 𝑝- values in each disease, and
the Fisher’s combined 𝑝-values of significant pathways across diseases, calculate minimum
Bayes factors and minimum posterior probabilities of null hypotheses for each significant
pathway in each disease as well as in the combined case. 2.2. Combine the pathway 𝑝-value
distribution of each disease with the average null distribution of 𝑝-values using Fisher’s
combined probability test and compare the combined 𝑝-value distribution with background
chi-squared distribution using QQ-plot for significance. Identify the significant pathways,
using the combined 𝑝-values, minimum posterior probabilities, and QQ-plots.
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pathway across all the diseases using Fisher’s combined probability test [119] and cor-

recting for multiple comparisons using Bonferroni correction, we measured the shared

significance of pathways across ASD and its comorbidities. Any pathway that had a

Bonferroni corrected 𝑝-value < 0.05, was termed as ‘significant’ and pathways that

were not significant in ASD, were filtered out.

To confirm that the presence of multiple significant pathways among ASD and

its comorbidities was due to shared biology, we estimated minimum Bayes factors

(BF) and minimum posterior probabilities of the null hypothesis for each of the sig-

nificant KEGG pathways in ASD and its comorbidities. The priors for the path-

ways were estimated from the null distributions of 𝑝-values generated by differen-

tial expression analysis and pathway analysis performed on permutations of gene

expression data of a healthy cohort (GEO Accession: GSE16028). For the sig-

nificant pathways shared between the diseases, the posterior probabilities of the

𝑝-values being significant by chance were always less than 5% (Table 2.3; https:

//tinyurl.com/BayesianPosteriorAnalysis). The quantile-quantile (QQ) plot of

combined 𝑝-values of pathways across ASD and its comorbidities show marked en-

richment of significant 𝑝-values indicative of shared disease biology captured by the

pathways tested (Figure 2-3(a)). The QQ-plots of hypergeometric 𝑝-values of path-

ways in ASD and its comorbid diseases against theoretical quantiles also show sig-

nificant enrichment (Figure 2-4). For contrast, we combined pathway 𝑝-values from

each disease separately with the null 𝑝value distribution. When the pathway 𝑝-value

distribution in a disease is combined with null 𝑝-value distribution, the QQ-plots do

not show much deviation from the background distribution (Figure 2-5), indicating

both that there is a lack of shared biology (as expected) and that our analysis does

not cause a systematic inflation.
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Table 2.1: Comorbidities of Autism Spectrum Disorders

Disease Group Clinical Manifestations References
Multi-system Disorders Asthma Becker, 2007 [100];
(Congenital Anomalies, Doshi-Velez, Ge,
Auditory Disorders, and Kohane, 2014 [45];
Infections, Gastro- Bacterial & Viral Infections Atladóttir et al., 2010 [101];
intestinal Disorders, Atladóttir et al., 2012 [102];
Cardiac Disorders etc.) Garbett et al., 2012 [103];

Hagberg, Gressens,
and Mallard, 2012 [104];

Chronic Kidney Disease Curatolo et al., 2004 [105];
Loirat et al., 2010 [106]

Cerebral Palsy Surén et al., 2012 [107];
Doshi-Velez, Ge,
and Kohane, 2014 [45];

Dilated Cardiomyopathy Witchel, Hancox,
and Nutt, 2003 [108];
Bilder et al., 2013 [109];

Ear Infection/Otitis Media Konstantareas and
Homatidis, 1987 [110];
Rosenhall et al., 1999 [111];
Porges et al., 2013 [112];

Inflammatory Bowel Disease Horvath et al., 1999 [51];
(Crohn’s Disease, Ulcerative Horvath and Perman, 2002 [52];
Colitis) Walker et al., 2013 [113]
Muscular Dystrophy Wu et al., 2005 [54];

Hendriksen and Vles, 2008 [55];
Hinton et al., 2009 [56];
Kohane et al., 2012 [44];

Upper Respiratory Infection Shavelle, Strauss,
and Pickett, 2001 [114];
Porges et al., 2013 [112];
Bilder et al., 2013 [109];

Seizures Epilepsy Mouridsen et al., 1999 [49];
Tuchman and Rapin, 2002 [50];
Surén et al., 2012 [107];
Bilder et al., 2013 [109];

Psychiatric Disorders Schizophrenia Morgan, Roy,
and Chance, 2003 [57];
Tabarés-Seisdedos
and Rubenstein, 2009 [115];
Ingason et al., 2011 [116];
Smoller et al., 2013 [42];
Murdoch and State, 2013 [117];
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Table 2.2: Number of differentially expressed genes selected under different FDR
corrections for ASD and its comorbidities with a significance cutoff of 𝑝-value < 0.05.

Disease Bonferroni BY BH None
ASD 157 1258 5104 9176

Asthma 238 852 2501 5555
Bacterial & Viral Infection 1613 3630 6016 8183
Chronic Kidney Disease 66 416 3771 12577

Cerebral Palsy 93 220 646 2352
Dilated Cardiomyopathy 146 349 908 3455

Ear Infection/Otitis Media 1629 3867 6708 6708
Epilepsy 5 4 12 2242

Inflammatory bowel Disease 831 2547 4771 6897
Muscular Dystrophy 207 517 1303 3885

Schizophrenia 54 149 508 2881
Upper Respiratory Infection 32 59 172 2664

* Here, BY = Benjamini-Yekutieli, BH = Benjamini-Hochberg, and None = No FDR
correction.
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Figure 2-2: Accuracy of different classification methods for case-control
group classification in ASD and its comorbid diseases using genes selected
under different false discovery rate (FDR) corrections as features. (A)
Naïve Bayes Classification, (B) Fisher’s Linear Discriminant Analysis, (C) k-Nearest
Neighbor Classification, and (D) Support Vector Machine.
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Figure 2-3: Quantile-quantile plots showing Fisher’s combined p-value dis-
tributions of KEGG pathways across (a) ASD and all its comorbidities, and
(b) ASD and its non-immune related comorbidities. Here, ASD = Autism
Spectrum Disorder, CKD = Chronic Kidney Disease, CP = Cerebral Palsy, DC =
Dilated Cardiomyopathy, MD = Muscular Dystrophy, and S = Schizophrenia.

45



Ta
bl

e
2.

3:
K

E
G

G
pa

th
w

ay
s

si
gn

ifi
ca

nt
ly

sh
ar

ed
be

tw
ee

n
A

SD
an

d
it

s
co

m
or

bi
d

di
se

as
es

.

P
at

hw
ay

A
S
D

A
st

h
m

a
IN

F
C

K
D

C
P

D
C

E
I

E
P

IB
D

M
D

S
U

R
I

F
is

h
er

’s

𝑝

B
on

fe
rr

on
i

co
rr

ec
te

d
𝑝

B
ay

es

fa
ct

or

M
in

im
u
m

p
os

te
ri

or

of
nu

ll

To
ll-

lik
e

R
ec

ep
to

r

Si
gn

al
in

g

0.
00

48
5.

52
E

-0
6

0.
07

62
0.

01
14

0.
65

50
0.

00
34

4.
28

E
-1

6
1

5.
93

E
-0

5
0.

02
10

1
1.

14
E

-1
0

1.
17

45
E

-3
2

1.
70

3E
-3

0
8.

78
E

-3
1

9.
76

E
-3

2

C
he

m
ok

in
e

Si
gn

al
in

g
0.

01
45

0.
00

03
0.

00
00

51
0.

21
97

0.
86

28
0.

01
94

3.
21

E
-1

0
1

1.
37

E
-0

6
0.

57
03

1
8.

89
E

-0
9

7.
04

49
E

-2
6

1.
02

2E
-2

1
4.

01
E

-2
2

1.
07

E
-2

2

N
O

D
-li

ke

R
ec

ep
to

r

Si
gn

al
in

g

0.
03

42
9.

02
E

-0
5

0.
01

36
0.

00
19

0.
47

60
0.

00
19

1.
99

E
-0

8
1

0.
00

36
0.

73
35

1
9.

04
E

-0
5

1.
78

13
E

-1
7

2.
58

3E
-1

5
7.

75
E

-1
6

3.
23

E
-1

7

R
ib

os
om

e
6.

49
E

-1
3

0.
96

47
4.

84
E

-1
0

0.
17

20
0.

60
06

1
0.

98
41

1
0.

94
60

0.
00

26
1

1
3.

68
E

-1
7

5.
33

6E
-1

5
1.

68
E

-1
5

3.
69

E
-1

6

Sp
lic

eo
so

m
e

6.
70

E
-0

5
0.

95
41

6.
39

E
-0

6
0.

29
65

0.
38

31
0.

27
46

0.
92

01
1

1.
36

E
-0

5
0.

50
81

0.
17

21
1

9.
91

49
E

-0
9

1.
43

8E
-0

6
2.

38
E

-0
7

5.
23

E
-0

8

Le
uk

oc
yt

e

Tr
an

s-

en
do

th
el

ia
l

M
ig

ra
ti

on

0.
00

23
0.

82
01

0.
01

10
0.

07
97

0.
00

02
0.

81
64

0.
09

74
1

0.
12

38
7.

63
E

-0
6

0.
50

00
1

9.
96

2E
-0

9
1.

44
5E

-0
6

2.
40

E
-0

7
6.

76
E

-0
8

R
eg

ul
at

io
n

of
A

ct
in

C
yt

o-

sk
el

et
on

0.
02

34
0.

90
80

0.
27

34
0.

11
31

0.
07

45
0.

03
55

0.
22

80
1

0.
20

32
5.

90
E

-0
5

0.
13

30
1

2.
73

24
E

-0
5

0.
00

39
62

0.
00

04
0.

00
07

T
ig

ht

Ju
nc

ti
on

0.
03

59
0.

56
13

0.
41

11
0.

10
64

0.
00

05
0.

85
42

0.
30

39
1

0.
19

00
0.

00
06

1
1

6.
91

14
E

-0
5

0.
01

00
22

0.
00

10
0.

00
04

N
ot

e:
E

nt
ri

es
in

di
ca

ti
ng

si
gn

ifi
ca

nt
𝑝-

va
lu

es
ar

e
co

lo
re

d
in

re
d.

T
he

en
tr

ie
s

w
it

h
va

lu
e

‘1
’i

nd
ic

at
e

th
e

ca
se

w
he

re
th

er
e

w
as

no
ov

er
la

p
be

tw
ee

n
th

e
pa

th
w

ay
an

d
th

e
di

se
as

e
ge

ne
se

t.

H
er

e,
A

SD
=

A
ut

is
m

Sp
ec

tr
um

D
is

or
de

r,
IN

F
=

B
ac

te
ri

al
&

V
ir

al
In

fe
ct

io
n,

C
K

D
=

C
hr

on
ic

K
id

ne
y

D
is

ea
se

,C
P

=
C

er
eb

ra
lP

al
sy

,D
C

=
D

ila
te

d
C

ar
di

om
yo

pa
th

y,
E

I=
E

ar
In

fe
ct

io
n,

E
P

=
E

pi
le

ps
y,

IB
D

=
In

fla
m

m
at

or
y

B
ow

el
D

is
ea

se
,M

D
=

M
us

cu
la

r
D

ys
tr

op
hy

,S
=

Sc
hi

zo
ph

re
ni

a,
U

R
I

=
U

pp
er

R
es

pi
ra

to
ry

In
fe

ct
io

n.

46



F
ig

ur
e

2-
4:

Q
u
an

ti
le

-q
u
an

ti
le

p
lo

ts
co

m
p
ar

in
g

th
e

d
is

tr
ib

u
ti

on
of

p
-v

al
u
es

of
p
at

hw
ay

s
in

ea
ch

of
A

S
D

an
d

it
s
co

m
or

b
id

it
ie

s
w

it
h

th
eo

re
ti

ca
l
qu

an
ti

le
s.

T
he

pl
ot

s
ar

e
in

lo
g-

sc
al

e.
(A

)
A

SD
,
(B

)
A

st
hm

a,
(C

)
B

ac
te

ri
al

an
d

vi
ra

l
in

fe
ct

io
n,

(D
)

C
hr

on
ic

ki
dn

ey
di

se
as

e,
(E

)
C

er
eb

ra
l

P
al

sy
,

(F
)

D
ila

te
d

C
ar

di
om

yo
pa

th
y,

(G
)

E
ar

in
fe

ct
io

n,
(H

)
IB

D
,

(I
)

M
us

cu
la

r
D

ys
tr

op
hy

,
(J

)
Sc

hi
zo

ph
re

ni
a,

an
d

(K
)

U
pp

er
R

es
pi

ra
to

ry
In

fe
ct

io
n.

47



F
ig

ur
e

2-
5:

Q
u
an

ti
le

-q
u
an

ti
le

p
lo

ts
sh

ow
in

g
th

e
d
is

tr
ib

u
ti

on
of

co
m

b
in

ed
𝑝
-v

al
u
es

fr
om

ea
ch

d
is

ea
se

w
it

h
th

e
si

m
u
la

te
d

b
ac

kg
ro

u
n
d

𝑝
-v

al
u
e

d
is

tr
ib

u
ti

on
of

p
at

hw
ay

s.
T

he
pl

ot
s

ar
e

in
lo

g-
sc

al
e.

T
he

co
m

bi
ne

d
𝑝
-v

al
ue

s
ar

e
co

m
pa

re
d

w
it

h
th

e
th

eo
re

ti
ca

l
qu

an
ti

le
s

dr
aw

n
fr

om
ap

pr
op

ri
at

e
ch

i-s
qu

ar
e

di
st

ri
bu

ti
on

s,
an

d
th

e
nu

ll
di

st
ri

bu
ti

on
is

co
m

pa
re

d
w

it
h

th
eo

re
ti

ca
l

qu
an

ti
le

s
fr

om
th

e
st

an
da

rd
no

rm
al

di
st

ri
bu

ti
on

.
T

he
ex

pe
ct

ed
re

gi
on

is
co

lo
re

d
in

gr
ay

.
(A

)
C

om
bi

ne
d
𝑝
-v

al
ue

s
of

pa
th

w
ay

s
ac

ro
ss

al
ld

is
ea

se
s

(s
ho

w
n

fo
r

co
m

pa
ri

so
n)

,(
B

)
T

he
si

m
ul

at
ed

ba
ck

gr
ou

nd
𝑝
-v

al
ue

di
st

ri
bu

ti
on

of
pa

th
w

ay
s

w
hi

ch
w

e
ca

ll
th

e
“n

ul
l”

𝑝
-v

al
ue

di
st

ri
bu

ti
on

,(
C

)
A

SD
an

d
nu

ll,
(D

)
A

st
hm

a
an

d
nu

ll,
(E

)B
ac

te
ri

al
an

d
vi

ra
l
in

fe
ct

io
n

an
d

nu
ll,

(F
)

C
hr

on
ic

ki
dn

ey
di

se
as

e
an

d
nu

ll,
(G

)
C

er
eb

ra
l
pa

ls
y

an
d

nu
ll,

(H
)

D
ila

te
d

ca
rd

io
m

yo
pa

th
y

an
d

nu
ll,

(I
)

E
ar

in
fe

ct
io

n
an

d
nu

ll,
(J

)
IB

D
an

d
nu

ll,
(K

)
M

us
cu

la
r

dy
st

ro
ph

y
an

d
nu

ll,
(L

)
Sc

hi
zo

ph
re

ni
a

an
d

nu
ll,

an
d

(M
)

U
pp

er
re

sp
ir

at
or

y
in

fe
ct

io
n

an
d

nu
ll.

48



2.2.2 Involvement of innate immunity pathways in ASD and

its comorbidities

Our results demonstrated that pathways that are dysregulated across ASD and its

comorbidities with the highest statistical significance (i.e., the lowest Bonferroni-

corrected combined 𝑝-value), are all related to innate immune system (Tables 2.3–2.7;

full tables at https://tinyurl.com/PathPValues.). For the KEGG, BioCarta, and

PID gene sets, the Toll-like receptor signaling pathway was found to be the most

significant (Tables 2.3, 2.4 and 2.6). For the KEGG database, the top two signifi-

cant pathways were Toll-like receptor signaling, and chemokine signaling (Table 2.3).

The top three significant pathways, revealed from the analysis of Reactome data

set, include chemokine receptor signaling, innate immunity, and Toll-like receptor

signaling (Table 2.5). When we expanded our aperture of analysis to the gene sets

from all canonical pathways, the Toll-like receptor signaling, and chemokine signaling

pathways were still found to be the most significantly dysregulated in the disease con-

ditions (Table 2.7). Thus, we primarily focused our attention on these two pathways

in ASD and its comorbidities and then, for completeness, extended to other innate

immunity KEGG pathways that were found significantly dysregulated (Table 2.3).

Both Toll-like receptor signaling and chemokine signaling pathways are vital path-

ways in the innate immune response mechanism. Toll-like receptors are the most com-

mon pattern recognition receptors that recognize distinct pathogen-associated molec-

ular patterns and participate in the first line of defense against invading pathogens.

They also play a significant role in inflammation, immune cell regulation, survival,

and proliferation. Toll-like receptors activate various signal transduction pathways

which in turn activates expression and synthesis of chemokines which together with

cytokines, cell adhesion molecules, and immunoreceptors, orchestrate the early host

response to infection and at the same time represent an essential link to the adaptive

immune response [120]. Our study revealed that, the KEGG Toll-like receptor sig-

naling pathway, by itself, was significantly dysregulated (with a combined 𝑝-value of

1.7e-30 after Bonferroni correction) in ASD, asthma, chronic kidney disease, dilated
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cardiomyopathy, ear infection, inflammatory bowel disease, muscular dystrophy, and

upper respiratory infection with the minimum posterior probability of appearing sig-

nificant by chance being at most 1%. In addition, the KEGG chemokine signaling

pathway was found significantly dysregulated (with a combined 𝑝-value of 1.02e-21

after Bonferroni correction) in ASD, asthma, bacterial and viral infection, dilated

cardiomyopathy, ear infection, inflammatory bowel disease, and upper respiratory in-

fection with the minimum posterior probability of appearing significant by chance

being at most 2.4% in each case. These findings indicate the role of immune dys-

function in this wide range of seemingly unconnected disease conditions. Although,

there has been some experimental evidence linking abnormal chemokine response to

Toll-like receptor ligands associated with autism [121, 122], no study so far linked

them to the comorbidities suffered by ASD affected individuals.

When we looked at the other significant KEGG pathways, we found two oth-

ers involved in innate immunity, namely, NOD-like receptor signaling and leukocyte

transendothelial migration pathways. The NOD-like receptor signaling pathway, by

itself, was significantly dysregulated (with a combined 𝑝-value of 2.6e-15 after Bon-

ferroni correction and a minimum posterior probability of null hypothesis at most

4%) in ASD, asthma, bacterial and viral infection, chronic kidney disease, dilated

cardiomyopathy, ear infection, inflammatory bowel disease, and upper respiratory

infection. The leukocyte transendothelial migration pathway was significantly dys-

regulated (with a combined 𝑝-value of 1.4e-6 after Bonferroni correction and a mini-

mum posterior probability of null hypothesis at most 1.7%) in ASD, asthma, cerebral

palsy, and muscular dystrophy. Some NOD-like receptors recognize certain types

of bacterial fragments; others induce caspase-1 activation through the assembly of

multi-protein complexes called inflammasomes, which are critical for generating ma-

ture pro-inflammatory cytokines in concert with Toll-like receptor signaling path-

way. While Toll-like receptor, chemokine, and NOD-like receptor signaling pathways

have more to do with the recognition of infectious pathogens and initiating a re-

sponse, the leukocyte transendothelial migration pathway orchestrates the migration

of leukocytes from blood into tissues via a process called diapedesis, which is vital
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for immune surveillance and inflammation. During this diapedesis of leukocytes, the

leukocytes bind to endothelial cell adhesion molecules (CAM) and then migrate across

the vascular endothelium to the site of infection. Notably, increased permeability of

the blood-brain barrier (BBB) favoring leukocyte migration into the brain tissue has

been implicated in ASD before [123], but not as a shared genetic commonality among

its comorbidities.

To confirm that, the presence of multiple significant innate immunity-related path-

ways among ASD and its comorbidities was due to shared biology, we repeated the

combined 𝑝-value analysis excluding the immune system-related diseases – bacterial

and viral infection, asthma, inflammatory bowel disease, upper respiratory infection,

and ear infection. Innate immunity pathways – Leukocyte transendothelial migration,

Toll-like receptor signaling, and NOD-like receptor signaling pathways still appeared

among the most significant, dysregulated pathways shared by ASD, cerebral palsy,

chronic kidney disease, and muscular dystrophy. The QQ-plot of combined 𝑝-values

of pathways across ASD and its non-immune related comorbidities show marked en-

richment of significant 𝑝-values indicative of shared disease biology of these condi-

tions (Figure 2-3(b)). Table 2.8 shows the most significant KEGG pathways that

are shared by ASD and its non-immune related comorbidities. For other pathway

gene set collections, the complete lists of Fisher’s combined 𝑝-values per pathway per

disease are available at https://tinyurl.com/NonImmunePathPValues.

Besides the immune-related ones, Tables 2.3 and 2.8 document several other path-

ways and gene sets including the ribosome and spliceosome gene sets which have roles

in genetic information processing and translation and the actin cytoskeleton regula-

tion pathway which controls various cellular processes like cell motility. Neuronal

signal processing and neuron motility have often been associated with ASD [124].

Thus these findings are not surprising. The genes in the tight junction pathway

mediate cell adhesion and are thought to constitute the intra-membrane and para-

cellular diffusion barriers [125]. These findings implicate the involvement of these

cellular processes in the shared pathology of ASD and its comorbidities.
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Table 2.8: KEGG pathways significantly shared among ASD and its non-immune-
related comorbidities.

Pathway ASD CKD CP DC EP MD S
Fisher’s

combined
p-value

Bonferroni
corrected
p-value

Ribosome 6.49E-13 0.1720 0.6006 1.0000 1.0000 0.0026 1.0000 1.50E-12 2.18E-10
Leukocyte
Transendothelial
Migration

0.0023 0.0797 0.0002 0.8164 1.0000 7.63E-06 0.5000 2.97E-08 4.30E-06

Regulation
of Actin
Cytoskeleton

0.0234 0.1132 0.0745 0.0355 1.0000 5.90E-05 0.1330 4.22E-06 6.12E-04

Tight
Junction 0.0359 0.1064 0.0005 0.8542 1.0000 0.0006 1.0000 8.77E-06 1.27E-03

Toll-like
Receptor
Signaling

0.0048 0.0114 0.6550 0.0034 1.0000 0.0210 1.0000 2.03E-05 2.94E-03

NOD-like
Receptor
Signaling

0.0342 0.0019 0.4760 0.0019 1.0000 0.7335 1.0000 1.93E-04 2.79E-02

Oxidative
Phosphorylation 0.0004 0.6844 0.7558 1.0000 1.0000 0.0023 1.0000 3.06E-04 4.44E-02

* Entries indicating significant 𝑝-values are colored in red. The entries with value ‘1’ indicate the case where
there was no overlap between the pathway and the disease gene set. Here, ASD = Autism Spectrum Disorder,
CKD = Chronic Kidney Disease, CP = Cerebral Palsy, DC = Dilated Cardiomyopathy, EP = Epilepsy, MD
= Muscular Dystrophy, S = Schizophrenia.

2.2.3 Disease–innate immunity pathway overlap at gene level

To examine the shared innate immunity KEGG pathways through a finer lens, we

examined the genes that overlapped with them (Table 2.9). Although these pathways

have broad involvement in a variety of diseases, a small number of genes in these

pathways appear dysregulated most often in ASD and its comorbidities. Thus, we

gave a closer look at the genes that are shared by ASD and at least one of its comorbid

conditions.

In the Toll-like receptor signaling pathway, as shown in Figure 2-6(a), commonly

shared, differentially expressed genes included CD14 and LY96 (also known as MD-2),

responsible for mediating the lipopolysaccharide response which itself has been shown

to create an autism-like phenotype in murine model systems [126], but has never been

linked to the shared biology of ASD, cerebral palsy, dilated cardiomyopathy, muscu-

lar dystrophy, IBD. The widely-expressed Toll-like receptors, primarily, TLR1, TLR2,

and TLR9 mediate recognition of foreign substances, including infectious pathogens
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and regulation of subsequent cytokine production required for the immune response.

Although these genes have been known to be involved in immunity-related conditions,

they have not been implicated in the co-occurrence of such conditions in ASD pa-

tients. Other genes involved were: CCL4, also known as Macrophage inflammatory

protein 1𝛽 (MIP-1𝛽) which is the most upregulated chemokine in natural killer cells

of children with autism [127]; MAPK21, a gene upstream of the MAP-kinases that

mediates multiple intracellular and extracellular signals; JUN (a subunit of transcrip-

tion factor, AP-1) that regulates gene expression in response to a variety of stimuli,

including cytokines, growth factors, stress, and bacterial and viral infections; SPP1

(also known as OPN), a cytokine that upregulates expression of interferon-𝛾 (IFN-𝛾)

which itself has been implicated in ASD and other diseases characterized by social

dysfunction [128]; and TBK1, a gene that can mediate NF𝜅B activation in response

to specific growth factors and is often considered as a therapeutic target for inflam-

matory diseases.

In the chemokine pathway, as shown in Figure 2-6(b), the commonly shared genes

include the chemokines (e.g., CCL4 which had altered expression levels in asthma

and ear infection) and MAP-kinases (e.g., MAP2K1 which had altered expression

levels in ASD, dilated cardiomyopathy, ear infection, and muscular dystrophy). The

HCK gene, which belongs to the Src family of tyrosine kinases, showed altered ex-

pression levels in ASD, asthma, inflammatory bowel dis-ease, ear infection, bacterial

and viral infection, and muscular dystrophy. Considering HCK’s role in microglia

and macrophages in controlling proliferation and cell survival [129], this finding is

not surprising. The JAK2 which is dysregulated in ASD and its multiple immune-

related comorbidities regulates STAT3 activity which in turn transduces IL-6 signals

and increased Interleukin-6 (IL-6) in the maternal serum has been known in altering

fetal brain development impairing social behaviors in the offspring [130, 131]. The

alpha and beta subunits of G-proteins, dysregulated in ASD, asthma, IBD, and bac-

terial and viral infections, are essential signaling molecules which are often considered

to have weak links to several brain conditions. The RAP1B gene, a member of the

RAS family, regulates multiple cellular processes including cell adhesion, growth and
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differentiation, and integrin-mediated cell signaling. This protein also plays a role in

regulating outside-in signaling in platelets and G protein-coupled receptor signaling.

Thus, it can be of importance.

In the NOD-like receptor signaling pathway, the genes NOD1 and NOD2 drive the

activation of NF𝜅B and MAPK, production of cytokines, and apoptosis. The BIRC2

and BIRC3 genes (which had altered expressions in ASD, asthma, ear infection, and

bacterial and viral infections) are members of the inhibitor-of-apoptosis protein fam-

ily and are key regulators of NOD1 and NOD2 innate immunity signaling. In the

leukocyte transendothelial migration pathway, the TXK gene which is a non-receptor

tyrosine kinase (with altered expression in ASD, ear infection, IBD, and bacterial

and viral infections), specifically regulates interferon-𝛾 gene transcription and the de-

velopment, function, and differentiation of conventional T-cells and nonconventional

NKT-cells. Mutation of TXK gene has been identified to be a segregating factor for

many neurodevelopmental disorders, including ASD, bipolar disorder, and intellectual

disabilities [132].
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2.2.4 Discriminatory power of innate immunity pathway genes

The innate immunity pathway genes that overlapped the chemokine signaling and

Toll-like receptor signaling pathways could accurately discriminate cases vs. controls

to an extent in three-fold cross-validation SVM classification. We could achieve an av-

erage accuracy of at least 70% (Figure 2-7). For the baseline, we performed the same

classification using the same number of randomly selected genes which do not overlap

with these pathways. With randomly selected genes, the classification accuracy was

much lower. This result suggests that the genes which have altered expressions in

the diseases examined and are present in these innate immunity pathways were suffi-

cient to distinguish the disease states from the controls partially. When we included

the overlapped genes in NOD-like receptor signaling and transendothelial migration

pathways in this analysis, the classification accuracy was at least 65% (Figure 2-8)

which was still better than the randomly selected non-immune genes case. A recent

functional genomic study showed that immune/inflammation-related genes could pro-

vide reasonable accuracy in the diagnostic classification of male infants and toddlers

with ASD [135].

Figure 2-7: Classification of cases vs. controls in different disease cohorts using
overlapped genes in the Toll-like receptor and chemokine signaling pathways from
KEGG. Classification performance using randomly selected disease genes that do not
overlap in the innate immunity pathways was used as a baseline.
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Figure 2-8: Classification of cases vs. controls in different disease cohorts using
overlapped genes in the innate immunity pathways from KEGG. Classification per-
formance using randomly selected disease genes that do not overlap in the innate
immunity pathways was used as a baseline.

2.3 Methods

Here, we describe the steps of our three-tiered meta-analysis pipeline.

2.3.1 Gene-centric transcriptomic analysis per disease

Using the GEOquery package [136] from Bioconductor in R, we downloaded the gene

expression data for each disease in gene matrix transposed (GMT) format from the

gene expression omnibus (GEO). We removed ‘NA’ values from the data and log-

normalized the expression values for subsequent analysis. Then, we performed differ-

ential expression analysis on each dataset using an Empirical Bayes model [118]. The

model was implemented using the limma package [118] from Bioconductor in R, and

𝑝-value for each gene in each study was obtained from limma t-test.

To determine the degree of correlation between the differential expression analyses

𝑝-values of datasets selected under each disease, we calculated the pairwise Pearson
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correlation coefficient of 𝑝-values. Considering Pearson correlation coefficient of at

least 0.30 with 𝑝 < 0.05 as significant, we found that the 𝑝-values are not significantly

correlated (Figure 2-9). This lack of correlation allowed us to use Fisher’s combined

probability test to calculate combined 𝑝-values for the genes in each disease condition.

We used Fisher’s combined probability test as follows:

𝑃 ∼ 𝜒2 = −2
𝑘∑︁

𝑖=1

𝑙𝑛(𝑝𝑖)

𝑝𝑖 is the 𝑝-value of test 𝑖; 𝜒2 is the Chi-squared distribution; 𝑘 is the number of tests;

and 𝑃 is the adjusted 𝑝-value (𝑝 < 0.05 was considered significant).

Selection of FDR correction test for multiple comparisons

To adjust the combined 𝑝-values, we considered different FDR corrections (i.e., Bon-

ferroni, Benjamini-Yekutieli (BY), and Benjamini-Hochberg (BH)). We also consid-

ered the ‘no correction’ case for completeness. We selected the most informative one,

based on the level of accuracy we could achieve in classifying cases of a particular

disease, versus controls, using the genes selected under a specific test with a signif-

icance cutoff of 𝑝 < 0.05. We tested the accuracy of case-control classification for

each of the 53 disease datasets using four different classification methods, namely,

naïve Bayes method (NB), Fisher’s linear discriminant analysis (FLDA), k nearest

neighbor (KNN), and support vector machine (SVM) (Appendix A). The set of sig-

nificant genes selected under different FDR corrections were considered as features of

the classification methods. We performed three-fold cross-validation and calculated

the average accuracy. We selected the FDR correction test that produced the best

average accuracy in each disease (Figure 2-2).

2.3.2 Pathway-centric enrichment analysis per disease

From the disease-level gene-centric expression analysis, we obtained a list of significant

genes per disease. For each disease, we then performed a hypergeometric enrichment
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Figure 2-9: Independence of the 𝑝-values of genes across selected GEO se-
ries for ASD and its comorbidities. Pairwise Pearson correlation of 𝑝-value
distributions of differentially expressed genes from the selected GEO series was de-
termined. The upper-right triangle shows the pairwise correlation coefficients, and
the lower-left triangle shows the corresponding significance 𝑝-values in each matrix.
Two distributions were considered independent if the pairwise correlation coefficient
was < 0.30 or the significance 𝑝-value was > 0.05. The cells with significant 𝑝-values
are marked pink, and the cells with corresponding correlations are marked in blue.
No blue cell contains a value ≥ 0.30 satisfying the desired independence assump-
tion of gene 𝑝-value distributions. (a)-(i) ASD, Asthma, Bacterial & Viral Infection,
Chronic Kidney Disease, Ear Infection, Cerebral Palsy, IBD, Muscular Dystrophy,
Dilated Cardiomyopathy

test for each pathway. This test uses the hypergeometric distribution to calculate

the statistical significance of 𝑘 or more significant disease genes, out of 𝑛 total genes,

appearing in a specific pathway gene set. It helps identify whether or not the specific
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Figure 2-9: cont. Independence of the 𝑝-values of genes across selected GEO
series for ASD and its comorbidities. Pairwise Pearson correlation of 𝑝-value
distributions of differentially expressed genes from the selected GEO series was de-
termined. The upper-right triangle shows the pairwise correlation coefficients, and
the lower-left triangle shows the corresponding significance 𝑝-values in each matrix.
Two distributions were considered independent if the pairwise correlation coefficient
was < 0.30 or the significance 𝑝-value was > 0.05. The cells with significant 𝑝-values
are marked pink, and the cells with corresponding correlations are marked in blue.
Two distributions were considered independent if the pairwise correlation coefficient
was < 0.30 or the significance 𝑝-value of the Pearson correlation was > 0.05. No blue
cell contains a value ≥ 0.30 satisfying the desired independence assumption of gene
𝑝-value distributions. (j)-(l) Epilepsy, Upper Respiratory Infection, Schizophrenia

disease gene set is over-represented in a particular pathway, by providing a 𝑝-value

per pathway per disease.

2.3.3 Across-disease shared significance analysis of pathways

Once we obtained the 𝑝-values for the pathways per disease, first we calculated the

pairwise Pearson correlation of pathway 𝑝-values across diseases (Table 2.10). Since

the distributions were not significantly correlated (Pearson correlation coefficient <

0.30 with 𝑝-value < 0.05), we safely assumed the distributions to be independent.
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Next, we calculated the combined 𝑝-value of each pathway across all the diseases

using Fisher’s combined probability test. We corrected for multiple comparisons

using Bonferroni correction. We defined a significance threshold of adjusted 𝑝-value

< 0.05 and called any pathway that passed this threshold, ‘significant.’ We restricted

our results to the pathways that appeared significant in ASD.

Table 2.10: Independence of pathway 𝑝-values in ASD and its comorbidities.
Pairwise Pearson correlation (with significance) of hypergeometric 𝑝-values of KEGG
pathways in ASD and its comorbidities, as well as the null data set, were determined.
The 𝑝-value distributions of two diseases were considered independent of each other if
their pairwise correlation coefficient was < 0.30 or the significance 𝑝-value of Pearson
correlation was > 0.05.

ASD Asthma INF CKD CP DC EI IBD MD S URI NULL
ASD 0.0042 1.0000 0.0829 0.0453 0.0770 0.0053 9.70E-02 4.99E-03 0.037704 0.006864 0.009253
Asthma 0.9506 0.2090 0.0261 0.0120 0.0234 0.2512 1.79E-01 1.00E-01 0.153183 0.138483 0.169088
INF 0.0000 0.0090 0.0885 0.2234 0.0424 0.2392 2.04E-01 4.99E-03 0.037704 0.006864 0.118191
CKD 0.1604 0.7890 0.2931 0.2825 0.1034 0.2785 2.46E-01 7.63E-02 0.33307 0.069892 0.059191
CP 0.4435 0.9090 0.0207 0.0101 0.1473 0.1490 8.04E-02 9.92E-02 0.177432 0.021374 0.231012
DC 0.1928 0.7996 0.6115 0.2915 0.1812 0.1502 3.42E-02 8.14E-02 0.315967 0.056339 0.094819
EI 0.9292 0.0109 0.0041 0.0008 0.2252 0.1421 1.18E-01 3.75E-03 0.028345 0.032568 0.250611
IBD 0.1003 0.0261 0.0027 0.0029 0.4106 0.6824 0.1618 6.98E-02 0.081573 0.097878 0.056727
MD 0.9328 0.0895 0.9328 0.1965 0.0929 0.1681 0.9495 2.38E-01 0.158418 0.004895 0.211801
S 0.5239 0.0092 0.5239 0.0000 0.0025 0.0000 0.9495 1.67E-01 7.07E-03 0.03701 0.297515
URI 0.9077 0.0187 0.9077 0.2371 0.7180 0.3407 0.5820 9.74E-02 9.34E-01 0.531602 0.067065
NULL 0.9165 0.0649 0.1643 0.5730 0.0580 0.3633 0.0027 5.07E-01 2.25E-02 0.000323 0.427778

1 The upper-right triangle of each table contains the Pearson correlation coefficients, and the lower-left triangle contains the
corresponding 𝑝-values. None of the cells in the upper triangle has a correlation coefficient greater than or equal to 0.3 for
which the corresponding 𝑝 < 0.05; thus, the independence assumption for data sets is satisfied. Here, ASD = Autism Spectrum
Disorder, CKD = Chronic Kidney Disease, CP = Cerebral Palsy, DC = Dilated Cardiomyopathy, EI = Ear Infection, IBD
= Inflammatory Bowel Disease, Infection = Bacterial & Viral Infection, MD = Muscular Dystrophy, and URI = Upper
Respiratory Infection.

2.3.4 Bayesian posterior analysis of null hypothesis

Following Goodman’s approach [137], we derive the formula for estimating a lower

bound on the posterior probability of the null hypothesis as follows. Let,

𝐻0: null hypothesis

𝐻1: alternative hypothesis

𝐷: observed data

Following Bayes theorem, we can express the posterior probability of the null hypoth-

esis as follows.

𝑃 (𝐻0|𝐷) =
𝑃 (𝐷|𝐻0) × 𝑃 (𝐻0)

𝑃 (𝐷)
(2.1)
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where,

𝑃 (𝐻0|𝐷): posterior probability of the null hypothesis being true given the ob-

served data

𝑃 (𝐷|𝐻0): probability of observing the data when the null hypothesis is true (≈

𝑝-value from the frequentist approach)

𝑃 (𝐻0): prior probability of the null hypothesis

𝑃 (𝐷): marginal probability of observing the data

Similarly, the posterior probability of the alternative hypothesis is given by,

𝑃 (𝐻1|𝐷) =
𝑃 (𝐷|𝐻1) × 𝑃 (𝐻1)

𝑃 (𝐷)
(2.2)

where,

𝑃 (𝐻1|𝐷): posterior probability of the alternative hypothesis being true given the

observed data

𝑃 (𝐷|𝐻1): probability of observing the data when the alternative hypothesis is

true

𝑃 (𝐻1): prior probability of the alternative hypothesis

Dividing Equation (2.1) by Equation (2.2), we get

𝑃 (𝐻0|𝐷)

𝑃 (𝐻1|𝐷)
=

𝑃 (𝐷|𝐻0)

𝑃 (𝐷|𝐻1)
× 𝑃 (𝐻0)

𝑃 (𝐻1)
(2.3)

By definition,

𝑃 (𝐻1|𝐷) = 1 − 𝑃 (𝐻0|𝐷) (2.4)

𝑃 (𝐻1) = 1 − 𝑃 (𝐻0) (2.5)
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Substituting Equations (2.4) and (2.5) into Equation (2.3), we get

𝑃 (𝐻0|𝐷)

1 − 𝑃 (𝐻0|𝐷)
=

𝑃 (𝐷|𝐻0)

𝑃 (𝐷|𝐻1)
× 𝑃 (𝐻0)

1 − 𝑃 (𝐻0)

=⇒ 𝑃 (𝐻0|𝐷)

1 − 𝑃 (𝐻0|𝐷)
= 𝐵𝐹 × 𝑞

1 − 𝑞

=⇒ 1 − 𝑃 (𝐻0|𝐷)

𝑃 (𝐻0|𝐷)
=

(︂
𝐵𝐹 × 𝑞

1 − 𝑞

)︂−1

=⇒ 1

𝑃 (𝐻0|𝐷)
− 1 =

(︂
𝐵𝐹 × 𝑞

1 − 𝑞

)︂−1

∴ 𝑃 (𝐻0|𝐷) =

(︃
1 +

(︂
𝐵𝐹 × 𝑞

1 − 𝑞

)︂−1
)︃−1

(2.6)

Here, Bayes Factor, 𝐵𝐹 = 𝑃 (𝐷|𝐻0)
𝑃 (𝐷|𝐻1)

and 𝑃 (𝐻0) = 𝑞.

To estimate the prior probability of pathways, we selected a publicly available

GEO study of 109 gene expression profiles of blood drawn from healthy individuals

enrolled at a single site (GEO Accession: GSE16028). We assigned case-control

labels randomly to the samples and performed differential expression analysis using

R package limma. We selected differentially expressed genes using uncorrected 𝑝-

values (< 0.05) because after BY correction, none of the genes remained significant.

On the list of significant genes, we performed hypergeometric enrichment analysis

to obtain pathway 𝑝-value distribution. We repeated this process for one hundred

times to obtain hundred null 𝑝-value distributions. We calculated the prior for each

pathway by looking at how many times the pathway appeared significant (𝑝-value

< 0.05) during these hundred runs. We took an average of the hundred distributions

to obtain the null 𝑝-value distribution.

In case of pathway 𝑝-values, the null hypothesis is that 𝑝-values are uniformly

distributed, and the alternative hypothesis is smaller 𝑝-values are more likely than

larger 𝑝 values. Following the approach of Sellke, Bayarri, and Berger [138], we
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estimated the minimum Bayes factors using the following formula:

𝐵𝐹 =

⎧⎪⎨⎪⎩−𝑒𝑝 log(𝑝), if 𝑝 < 1
𝑒

1, otherwise

where 𝑒 is Euler’s constant.

For calculating minimum Bayes factors for 𝜒2-distributed test statistics we used

Johnson’s formula [139]:

𝐵𝐹 =

⎧⎪⎨⎪⎩( 𝑣
𝑥
)−

𝑣
2 exp(−𝑥−𝑣

2
), for 𝑥 > 𝑣

1, otherwise

where 𝑥 is the chi-square statistic which gave rise to the observed 𝑝-value and 𝑣 is

the degrees of freedom.

We used the prior probability distribution drawn from the simulated background

data set and the minimum Bayes factor to estimate the minimum posterior probability

of the null hypothesis for the pathways. The simulated null 𝑝-value distributions and

the priors for all KEGG pathways, the minimum Bayes factors, and the minimum

posterior probabilities of null hypotheses are available at https://tinyurl.com/

BayesianPosteriorAnalysis.

2.3.5 Data set selection

Gene expression data sets

We selected eleven disease conditions which co-occur most commonly in ASD patients.

Each of these diseases has at least 5% prevalence in ASD patients [45]. The prevalence

of a comorbid condition can be defined in two ways – (i) percentage of ASD patients

having a comorbid disease, and (ii) percentage of patients of a comorbid disease having

ASD [44]. The diseases which satisfy either of these criteria include asthma, bacterial

and viral infection, cerebral palsy, chronic kidney disease, dilated cardiomyopathy, ear

infection/otitis media, epilepsy, IBD, muscular dystrophy, schizophrenia, and upper
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respiratory infection. Table 2.1 shows the disease groups along with the literature

references.

To identify publicly available studies relevant to these comorbidities, we performed

an extensive literature search on the gene expression omnibus (GEO) of the National

Center for Biotechnology Information (NCBI) [140, 141]. Using the advanced search

tool provided by GEO, we searched series data sets from studies that performed

expression profiling by microarray on either human or mouse. The search results

were parsed using a custom-built parser. It identified 1329 GEO studies for ASD and

eleven of its comorbidities, which were publicly available since 2002. We verified the

search results by hand to remove false positives. From the hand-curated results, we

retained only those series that corresponded to case-control studies and had complete,

gene annotations supplied by either NCBI or the submitter. We investigated case-

control studies to have matched controls for the disease cases as well as to reduce

noise. We have made sure that we have at least 30 samples under each disease.

For each selected GEO series, accession identifier, as well as abridged study details

including the organism, tissue type, platform, and the number of samples, is provided

in Appendix A: Table A.1. To remove the potential of biases that could arise from

using gene expression datasets from different array platforms, tissues, and species,

we avoided combining the actual measurements of expression values across platforms,

tissues, and diseases. Instead, we performed differential expression analysis on each

study separately and then combined the 𝑝-values only.

Pathway gene sets

We collected 1320 curated pathway gene sets, including those from the KEGG path-

ways [133, 134]; Reactome pathways [142, 143]; BioCarta pathways [144]; PID path-

ways [145]; SigmaAldrich gene sets; Signaling Gateway gene sets, Signal Transduc-

tion KE gene sets; and SuperArray gene sets from the Molecular Signatures Database

(MSigDb) version 4.0 [146]. The gene sets were downloaded in Gene Matrix Trans-

posed (GMT) format. Of the available gene sets, we used those that were expert-

curated: C2:CP (canonical pathways); C2:CP-BioCarta (BioCarta gene sets); C2:CP-
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KEGG (KEGG gene sets); C2:CP-Reactome (Reactome gene sets); and PID (Path-

way Interaction Database gene sets extracted from C2). From the KEGG collection,

we excluded the disease and drug-related gene sets. After excluding too large (> 300

genes) and too small (< 10 genes) gene sets, 1261, 146, 211, 629, and 196 gene sets

remained in these categories, respectively.

2.4 Discussion

This study bridges previous electronic health record-based analyses of the comorbidi-

ties of large populations of individuals with ASD and the gene expression profiles

of each of these comorbid diseases as well as ASD against their respective control

cases. We have identified that the most significantly and consistently dysregulated

pathways shared by these diseases are the innate immunity signaling pathways. For

most of these disorders, the genes in these pathways can discriminate the cases from

their controls with moderate accuracy, providing further evidence of the extent of the

dysregulation in these pathways.

In contrast to traditional approaches that look at a group of disorders of the same

organ system, we have focused on ASD and its comorbidities which often occur in dif-

ferent organ systems intending to find their shared genetics. It would have been ideal

if we could perform the study on a sufficiently large cohort of ASD patients having

enough representatives of all the comorbid diseases, but in practice, such a study is

currently infeasible due to cost constraints and patient availability. Thus, to perform

this study with existing datasets for ASD and its comorbidities, we make use of the

power of statistics and computation. First, we look at the genetic makeup of patients

of ASD and its comorbid diseases separately and then find the genetic commonalities

between them. Some of the microarray studies we looked at have small sample sizes

which give rise to the possibility of poor random error estimates and inaccurate sta-

tistical tests for differential expression. For this reason, we selected limma t-statistics,

an Empirical Bayes method [118] which is reportedly one of the most effective meth-

ods for differential expression analysis even for data sets with small sample sizes [147].
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To find the combined significance of the pathways across multiple diseases we used

Fisher’s combined probability test [119], because, it gives a single test of significance

for multiple not-so-correlated tests of significance performed on very heterogeneous

datasets. When the individual tests do not appear as significant, yet have a com-

bined effect, Fisher’s combined 𝑝-value can indicate whether the probability of the

combined effect is on the whole lower than would often have been obtained by chance.

Notably, a significant statistic from Fisher’s test implies that the pathway is involved

in the biology of at least one of the diseases. Thus, to ensure that the combined sig-

nificant statistic is due to shared biology of multiple diseases we calculate minimum

Bayes factors and minimum posterior probabilities of significance by chance for each

significant pathway and also compare the combined 𝑝-value distributions of diseases

and null data set using QQ-plots. We draw our conclusions using a combination of

the 𝑝-values and the posteriors to avoid any systematic bias inherent to the methods

used.

As expected in case of a neurological disease, the pathways that are most sig-

nificantly dysregulated in ASD are often the pathways involved in neuronal signal-

ing and development, synapse function, and chromatin regulation [40]. Similarly,

for immunity-related diseases like, asthma, inflammatory bowel disease, and various

infections, the role of innate immunity pathways is well documented in individual

studies [148–154]. Despite some controversy, in the last fifteen years, experimental

evidence has also pointed in the direction of dysregulated immunological signaling in

at least some subsets of individuals with autism. This evidence includes findings of

abnormal chemokine response to Toll-like receptor ligands associated with autism in

experimental studies [121,122], differential gene and protein expression in the central

nervous system and peripheral blood of patients with ASD [58, 103, 121, 155–161].

Many reports suggest alteration of activation, amount, distribution of microglia,

a representative immune cell in the brain, and its autophagy to be involved in

ASD [162–165]. A recent study implicates adaptive immune dysfunction, in par-

ticular, disruption of IFN-𝛾 signaling driven anti-pathogen response to be related to

ASD and other diseases characterized by social dysfunction [128]. However, the fact
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that dysregulation of innate immunity pathways connects ASD with some of its non-

immune related comorbidities (e.g., chronic kidney disease, cerebral palsy, muscular

dystrophy), is rather intriguing.

That the innate immunity pathways are shared between ASD and the other comor-

bid states does not mean that a disorder in these pathways can characterize all cases

of ASD. For example, in our previous work we have shown that although on average,

the gene expression profile of children with ASD shows dysregulated innate immunity

signaling, this is a reflection of a smaller number of individuals with ASD who are

outliers in this pathway [166]. With our growing understanding of the heterogene-

ity of ASD and the characterization of ASD populations with distinct comorbidity

associations [45], the integrative analysis we describe here may therefore implicate a

subset of individuals with ASD with innate immune dysregulation that is either the

result of genetic vulnerabilities [167] or particular exogenous stimuli such as infections

or disordered microbiome ecology [168].

Although it is tempting to consider that innate immunity signaling is primarily

driven by external environmental stimuli such as infection, we have to recognize that

different organs may repurpose the same signaling mechanisms for different purposes.

For example, 21% of the genes described in the KEGG long term potentiation pathway

(one of the mechanisms underlying synaptic plasticity), overlap with the genes in the

Gene Ontology’s collection of "immune genes." It may be, as suggested by extensive

epidemiological studies that sometimes the disorder is in the signaling system and

at other times, it is because of an external stimulus. Specifically, nationally-scaled

studies have demonstrated an increased frequency of autoimmune diseases in the

parents of children with ASD [169], increased levels of gestational C-reactive protein

in mothers of children with ASD [170], and an increased frequency of ASD in children

after pregnancies complicated by infection [101,102]. Some early studies also suggest

the infectious exposure may be directly from the gastrointestinal microbiome [171–

175], which also can engage the innate immune system. The success of treatment and

prophylaxis for disorders of innate immunity in some of the diseases that are comorbid

with ASD raises the possibility that similar treatments may also be successful for
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subsets of those with ASD.

2.5 Conclusions and future directions

Over the years, autism spectrum disorder (ASD) has baffled researchers not only with

its heterogeneity but also its co-occurrence with many seemingly unrelated diseases

of different organ systems. In this chapter, we introduced a three-tiered integrative

omics analysis approach to capture the shared genetic and pathway-level signals that

form the basis of the co-occurrence of ASD with other diseases. For ASD and 11 of

its most frequently occurring comorbidities, we extracted significant differentially ex-

pressed genes, measured their enrichment in canonical pathways, and determined the

pathways that are significantly shared by the diseases in question. Our pipeline can

integrate transcriptomic and genetic data from heterogeneous sources in a statistically

principled way. An analysis of this scale for studying ASD and its comorbidities is un-

heard of as per our knowledge. Our results revealed the involvement of two disrupted

innate immunity pathways—Toll-like receptor signaling and chemokine signaling—in

ASD and several of its comorbidities irrespective of whether they are immune-related

diseases or not. We also showed that the disease genes that overlapped with these

pathways could discriminate between patients and controls in each disease with at

least 70 % accuracy, further proving their importance. As innate immunity pathways

are imperative in orchestrating the first line-of-defense mechanism against infection-

causing pathogens and environmental triggers, their involvement in ASD and its co-

morbidities can be thought of as the missing genetic link for environmental factors in

the pathophysiology of ASD. This mindset also raises the possibility that successful

treatments for innate immunity disorders may help ASD patients.

Our finding from this multi-level integrative omics study not only proves the im-

portance of looking at different omics levels to understand a complex disease, but also

motivates us to extend our efforts to other groups of seemingly unrelated diseases,

including but not limited to type-2 diabetes, hypertension, Parkinson’s disease, and

dementia in aging populations. Furthermore, while genome-wide association studies
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have successfully identified genetic risk factors for complex diseases in Caucasian pop-

ulations, much work still needs to be done in populations of non-Caucasian origin.

Extending efforts to investigate the differential etiologies of comorbid diseases across

diverse populations is particularly crucial in this era of globalization. As populations

of countries become ever more admixed, clinical protocols must adapt to account

for the increased genome-phenome variability across ethnicities. Thus, a reasonable

future direction is to perform integrative omics studies to investigate the shared patho-

physiology of groups of comorbid diseases and the population-level stratification of

these comorbidities. Such a study would give us a representative understanding of

the genetic and environmental risk factors of different diseases in the overall world

population.

2.6 Availability of data and source code

All microarray expression studies included in this analysis are publicly available via

GEO website [176]. The accession ID for each study is provided in Appendix A:

Table A.1. All the pathway gene sets used for the analysis are publicly available on

MSigDB website [177]. All calculations were performed in R version 2.15.1. Some

pre- and post-processing were performed in Python version 2.7.6. The source code

and instruction for performing the analysis are licensed under the terms of the MIT

License (https://opensource.org/licenses/MIT) and are available from https:

//github.com/snz20/3TierMA (DOI:10.5281/zenodo.159288).
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Chapter 3

Robust comparative functional

metagenomics across diverse study

populations

Microbial populations exhibit functional changes in response to different ambient envi-

ronments. Though whole metagenome sequencing promises enough raw data to study

those changes, existing functional read annotation tools are limited in their ability

to compare microbial metabolic function across samples and studies directly. We in-

troduce Carnelian, an end-to-end pipeline for metabolic functional profiling uniquely

suited to finding common functional trends across diverse data sets. Carnelian can

find shared metabolic pathways, concordant functional dysbioses, and distinguish En-

zyme Commission (EC) terms missed by state-of-the-art functional profiling tools. We

demonstrate Carnelian’s effectiveness on large-scale metagenomic studies of type-2 di-

abetes and Crohn’s disease, Parkinson’s disease, and industrialized/non-industrialized

cohorts.

3.1 Background

Recent advances in Next-Generation Sequencing (NGS) technologies and large-scale

national and international efforts [66,178] have generated unprecedented amounts of
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microbial genomic data; the NIH’s National Center for Biotechnology Information

(NCBI), the European Bioinformatics Institute (EBI), and the Joint Genome Insti-

tute (JGI) currently host an order of magnitude more shotgun metagenomic data

than they did 10 years ago [23]. Many methods have been developed for the ini-

tial analyses of this data—assembly, taxonomic binning, and functional profiling of

metagenomic reads [22,23,179] in order to enable comparing the taxonomic and func-

tional profiles of microbial communities. Here, we turn our attention to the discovery

of trends in microbial metabolic function across diverse populations (different nations

or geographical boundaries) concerning health and disease.

Hundreds of recent studies have demonstrated associations between the human

microbiome and disease, including Crohn’s disease [180], obesity [181], type-2 dia-

betes (T2D) [182, 183], colorectal cancer [184], Parkinson’s disease (PD) [185], and

even Autism Spectrum Disorder (ASD), which has been found to have an innate im-

munity component [3, 186]. Many efforts have sought to uncover shared taxonomic

dysbiosis (i.e., microbial imbalance) between study populations for a given disease;

however, these attempts have generally not found shared taxonomic dysbiosis, prob-

ably because the background healthy microbiomes differ significantly in taxonomic

composition to begin with [79, 82–84]. Because different species may fill the same

ecological niche, the traditional focus on taxonomy can lose sight of the functional

relatedness of the microbiomes of two individuals—i.e., commonalities and differences

in the functional capabilities of microbial populations [25]. For example, while most

strains of lactobacilli exhibit galactosidase activity, that particular functionality can

also be partially substituted for by many taxonomically distinct strains of bifidobac-

teria and bacteriodes [187]. In the large meta-analyses cited above [79,82–84], there

was some attempt to perform functional profiling (in addition to taxonomic profiling),

but due to limitations in the study design and methods available, they were unable

to find concordant pathways, which one would expect from the same disease. Thus,

better functional profiling is essential to uncovering trends in functional relatedness

when comparing study cohorts; this remains an unsolved challenge due to inconsisten-

cies and incompleteness of annotations of microbial genes across reference databases
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and the lack of comparability of existing relative abundance statistics across samples

and studies [23,78].

An essential first step for uncovering functional trends in microbiomes is func-

tional profiling of metagenomic reads, the task of assigning reads to known biological

function (e.g., catalytic action, functional domain categories, genes) and estimat-

ing abundances of those functional terms. Traditional whole metagenome functional

annotation approaches assemble reads into large contigs and annotate them using

sequence homology, often using existing alignment tools such as BLAST [59], pro-

file Hidden Markov Models (HMMs) or position-specific weight matrices (PWMs).

Such methods include RAST [60], Megan4 [61], MEDUSA [62], Tentacle [63], MO-

Cat2 [64], IMG4 [65], and gene catalogue-based methods [66,67]. Since assembly is a

slow, resource-heavy, and lossy process, annotating reads directly via sequence homol-

ogy or read-mapping is used by another class of tools, including MG-RAST [68], HU-

MAnN [69], ShotMap [70], Fun4Me [71], mi-faser [72], and HUMAnN2 [73]. However,

alignment-based read mapping remains time-consuming when comparing hundreds of

samples from different disease conditions [74, 75]. HUMAnN2 and mi-faser signifi-

cantly speed up the alignment step by using a fast protein aligner, DIAMOND [76],

and thus can accurately and quickly capture functions from sequences correspond-

ing to known proteins. However, because they are based on alignment, they are

challenged in capturing shared features of functionally similar proteins that are not-

so-sequence-similar, multi-domain proteins, and remote homologs.

Naturally, predicting function without having characterized a protein experimen-

tally is difficult and runs the risk of false positives. For well-studied populations, there

is little need to do so. However, when analyzing data from less studied populations—

so often the case in metagenomic analysis, a significant fraction of reads sequenced

do not directly correspond to proteins of known species [25, 26]. Thus methods that

depend on alignment do not perform as well. We observe this problem when studying

the non-industrialized Baka population (Results). Techniques from the field of remote

homology detection can be used to explicitly guess at shared functions between an

unknown protein and an existing one, but they operate at the level of entire protein
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sequences, rather than Whole Metagenome Shotgun (WMS) sequencing reads.

Alternately, 𝑘-mer based taxonomic binning methods have shown great utility

compared to read-alignment approaches in assigning reads to taxonomic units [86,87,

188,189]. Importantly, they can be trained to directly classify WMS reads by function,

even when the read itself comes from a protein that is not in existing databases.

Using these techniques, we pursue the intuition that we can, for example, predict

that reads correspond to a particular enzymatic function (e.g., galactosidase activity)

even when the training set does not include the protein from which those reads were

taken, but only for distantly related proteins (Section 3.2.8). Importantly, the design

of these classification tools allows us to easily construct negative examples during

training time to control the false positive rate while still allowing labeling of reads

for which alignment is insufficient. Our work thus newly repurposes gapped 𝑘-mer

binning techniques to directly perform efficient and accurate functional binning, which

performs much better than existing functional profilers based on either alignment or

assembly for analyzing functional relatedness across diverse microbiomes.

To this end, we introduce Carnelian, a compositional tool for metabolic func-

tional profiling of whole metagenome sequencing reads, and an end-to-end pipeline

that is uniquely suited to finding common functional trends across metagenomic data

sets from different study populations. The pipeline we present is better suited for

“comparative functional metagenomics" for three reasons. First, Carnelian makes

use of a gapped 𝑘-mer classifier [85, 86], which is better able to detect the ECs (En-

zyme Commission terms that classify proteins by their enzymatic action) present in

non-annotated species, while simultaneously avoiding forced spurious labels through

training on a negative set. Second, we build a comprehensive database focused on

comparing metabolic functionality, as opposed to using typical protein databases that

contain non-prokaryotic and non-metabolic annotations. Third, we present a princi-

pled statistical significance analysis for finding shared metabolic pathways using the

results of EC-detection.

We demonstrate Carnelian’s effectiveness through analyses of several real pub-

lished and unpublished data sets. First, we compare geographically separated study
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cohorts of type-2 diabetes (T2D) and Crohn’s disease (CD). Several of today’s state-

of-the-art functional annotation tools, including mi-faser, HUMANn2 (translated

search), and Kraken2 (protein search) were unable to find concordant functional dys-

bioses between healthy and diseased microbiomes, which one would expect given that

the same disease should have similar effects on different study populations. Impor-

tantly, Carnelian alone is able to find those expected concordant functional dysbioses.

Next, we find that Carnelian-identified EC terms can classify patients vs. controls

consistently, with higher accuracy than existing tools across T2D, CD, and Parkin-

son’s disease (PD); this finding suggests that the additional Carnelian classifications

are not spurious. Next, using a combination of published and unpublished data

sets, we further demonstrate Carnelian’s effectiveness on geographically and dietar-

ily diverse healthy microbiomes of industrialized individuals from the United States

(Boston: new data set) and non-industrialized communities from Cameroon (Baka

ethnicity: new data set), Ethiopia (Gimbichu region) [26], and Madagascar (Betsimis-

araka and Tsimihety ethnicities) [26]. Unlike existing methods, Carnelian was able to

uncover the expected pathway-level similarities in core metabolic function between

healthy individuals from each of those communities. Lastly, on a Parkinson’s dis-

ease case-control metagenomic read data set, we show that Carnelian uniquely finds

several hallmarks of Parkinson’s disease in the patient microbiomes. For all these ex-

periments, Carnelian, mi-faser, HUMAnN2, and Kraken2 were run with Carnelian’s

curated reference database to ensure an unbiased comparison.

Carnelian is robust to sequencing technology biases and is equally applicable to

non-human metagenomic data sets where it can find meaningful biological patterns.

In benchmarking experiments, Carnelian achieves higher sensitivity and F1-score

than current state-of-the-art alignment-based tools: mi-faser [72] and HUMAnN2 [73]

(translated search) as well as a fast alignment-free 𝑘-mer based tool: Kraken2 [188]

(protein search)—all run with the same reference database. On a synthetic human gut

metagenomic data set of 5 million reads (150 bp, single-ended), Carnelian requires

∼ 16 minutes using 16 CPU cores—this is roughly 2x faster than mi-faser (∼ 29

minutes) and similar to HUMAnN2’s translated search (∼ 18 minutes) on the same
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number of CPUs on the same machine (a 40-core machine with 320 GB RAM, each

core was Intel Xeon CPU E5-2695 v2 @ 2.40GHz). As new data is being collected

from all over the world (e.g., our Cameroon data), we expect Carnelian to be an

essential tool in analyzing functional similarities and differences.

3.2 Results

3.2.1 Overview of Carnelian

We present Carnelian, a novel gapped 𝑘-mer based functional profiler, and an end-to-

end pipeline for comparative functional metagenomic studies using WMS reads from

diverse study populations. Our pipeline enables the comparison of functional sum-

maries of WMS data by designing more consistently annotated reference databases of

microbial proteins, building a functional annotation tool better suited for assigning

functions to reads that are not readily alignable to known proteins, and generating

comparable abundance statistics across samples and studies (Figure 3-1).

WMS data comes from a mixture of many different organisms and can encode 100x

more unique genes than are present in just the human genome [67]. Only a fraction

of these genes has known functional annotations in existing databases. Even of those

genes with annotations, many of the annotations are computationally predicted and

therefore less reliable. We are also primarily interested in microbial functions that can

influence host health, such as the production of metabolites, extracellular enzymes, or

immunostimulatory surface structures [190]. Thus, we constructed our gold standard

reference database with curated prokaryotic proteins that have verified unique and

complete EC labels which provide a direct mapping to KEGG metabolic pathways for

our later analyses. Our curated database consists of 7,884 prokaryotic proteins with

2,010 unique EC labels and is provided on our website (http://carnelian.csail.

mit.edu).

Another important characteristic of metagenomic data is that the reads sequenced

often come from non-annotated species; without a known reference, taxonomic read
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Figure 3-1: Comparative functional metagenomics with Carnelian. Prepro-
cessing. We build a gold standard database by combining reviewed prokaryotic
proteins with complete Enzyme Commission (EC) labels and evidence of existence
from UniProtKB/SwissProt with curated prokaryotic catalytic residues with complete
EC labels from the Catalytic Site Atlas. Carnelian first represents gold standard pro-
teins in a compact feature space using Opal-Gallager hashing. Then it trains a set
of one-against-all (OAA) classifiers (implemented using the Vowpal Wabbit frame-
work) using the compact feature representation of those proteins as well as negative
samples based off of randomly shuffled sequences generated by HMMER. Functional
Profiling. To functionally profile WMS reads from an experiment, Carnelian first
performs probabilistic ORF prediction using FragGeneScan. Next, the ORFs are
represented in a compact feature space using the same Opal-Gallager hashing tech-
nique. The trained OAA classifier ensemble is then used to classify the ORFs into
appropriate EC bins. Abundance estimates of ECs are computed from the raw ORF
counts in the EC bins by normalizing against effective protein length per EC bin and
a per million scaling factor. Pathway profiles (Orange) are computed by grouping the
ECs into metabolic pathways and summing the abundance estimates. Comparative
Metagenomics. We start from pathway profiles (Orange) of different populations
and conditions. (Blue) Functional relatedness of healthy microbiomes across different
populations is assessed by co-abundance pathway analysis. Pathway co-abundance
estimates are quantified by Kendall’s rank correlation. Co-abundance clusters are
determined by Ward-Linkage hierarchical clustering, and the PERMANOVA test is
used to determine if the centroids of those clusters differ between Populations A and
B. (Green) Functional trends analysis across different case-control cohorts of a dis-
ease is performed using differential abundance analysis by Wilcoxon rank-sum test
and shared significance analysis by Fisher’s combined probability test.
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classifiers are limited in their annotation ability. Luckily, related proteins that share

a function also share compositional (gapped 𝑘-mer) features in their amino acid se-

quence, even across species. Leveraging this intuition, the Carnelian pipeline uses

probabilistic ORF detection to enable the application of a compositional gapped

classifier ensemble on the full amino-acid sequence; this classifier ensemble is better

able to bin proteins present in non-annotated species. More precisely, Carnelian first

detects all possible ORFs from the input reads using FragGeneScan [191], which prob-

abilistically detects the coding part(s) of the reads and translates them to the best

possible ORFs. Then Carnelian encodes the ORFs into a low-dimensional compact

feature space using Opal-Gallager hashes [85, 86]. Once so encoded, these ORFs are

annotated by Carnelian’s classifier ensemble, a set of one-against-all support vector

machines. The classifier ensemble is trained with functionally annotated gold stan-

dard proteins represented in the same compact feature space, and with negative sam-

ples based off of randomly shuffling in human sequences generated via HMMER [192].

The training is performed in an online fashion (i.e., we load only one input sequence

in memory at a time), making incremental training of Carnelian’s classifier ensemble

easy when new annotations become available.

Relative abundance statistics output from standard functional profiling tools are

not directly comparable across samples and studies; to address this problem, Car-

nelian borrows from transcriptomic normalization practices. From input WMS reads,

Carnelian constructs a functional vector containing effective read counts per EC label

(i.e., read counts normalized against effective protein length per EC label and a per

million scaling factor that takes into account the effect of the lengths of proteins with

other EC labels on the relative abundance of a particular EC label) (Methods). This

normalization step is similar to the “transcripts per million" (TPM) counts used for

quantifying transcript abundances from RNA-seq data [158]. The sum of Carnelian’s

effective read counts thus remains constant across all samples, unlike the raw read

counts and reads per kilobase (RPK) measures used by existing functional annotation

tools (e.g., HUMAnN2). This normalization makes sample profiles directly compa-

rable to each other across experiments performed with different sequencing depths
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(Methods). These EC profiles are used to quantify KEGG metabolic pathways for

comparative analysis of different study populations.

3.2.2 Revealing concordant functional dysbiosis across geo-

graphically separated disease cohorts

Comparing healthy and diseased microbiomes is key to understanding their effect

on host biology, enabling clinical diagnoses and informed therapeutics [193, 194].

While taxonomic dysbiosis (i.e., alteration of the species-level composition of the

microbiome) in the patient population is often geography-specific and not generaliz-

able [83,183,195], we instead looked at functional dysbiosis. As expected, functional

dysbiosis is indeed more generalizable in type-2 diabetes and Crohn’s disease data

sets we studied, but only when we used Carnelian as opposed to other methods for

the analysis.

We quantified the metabolic functional capacity of the gut microbiomes of patients

and controls in two large-scale T2D data sets [182,183], and two CD data sets [178,196]

at enzyme and pathway levels. Our results revealed concordant functional dysbioses

between geographically separated disease cohorts—13 common metabolic pathways

between Chinese and European T2D patient microbiomes and eight common path-

ways between US and Swedish CD patient microbiomes (Table 3.1).

For the T2D cohorts, we generated the EC profiles of preprocessed fecal sam-

ples from Chinese and European individuals using Carnelian and determined the

differentially abundant ECs between patients and controls using a cutoff of Wilcoxon

rank-sum test 𝑝-value < 0.05 after Benjamini-Hochberg (BH) correction and absolute

log fold change > 0.33. In both Chinese and European cohorts, Carnelian reported

reduced levels of several glycosyltransferases (e.g. 2.4.1.1, 2.4.1.7, 2.4.1.15) and abun-

dance of several carbon-oxygen lyases (e.g. 4.2.1.120, 4.2.1.20, 4.2.1.42) in the T2D

gut (Tables 3.2 and 3.3). At the pathway level, it found 30 significantly altered

metabolic pathways in the Chinese T2D patients (BH-corrected Wilcoxon rank-sum

test 𝑝-value < 0.05 and absolute log fold change > 0.11) and 36 pathways altered be-
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Table 3.1: Shared functional dysbiosis between two type-2 diabetes (T2D) co-
horts and two Crohn’s disease (CD) cohorts. (a) Common pathways between Chinese
and European T2D cohorts which have significantly altered read abundances. We found 13
shared pathways of which 12 are highly relevant to T2D; these pathways are significant
in individual cohorts (BH-corrected Wilcoxon rank-sum test 𝑝-value < 0.05) as well as in
Fisher’s combined test at 𝑝-value < 0.05 cutoff. On the other hand, mi-faser finds only the
photosynthesis pathway and Kraken2 finds the photosynthesis and aflatoxin biosynthesis
pathways to be commonly disrupted between both the cohorts; with HUMAnN2-profiles,
no overlap at the pathway level was found (Tables 3.12–3.17). (b) Common pathways be-
tween the US and Swedish CD cohorts which have significantly altered read abundances.
We identify shared dysbiosis in 8 pathways between the two study cohorts; these pathways
are significant in individual cohorts as well as in Fisher’s combined test at 𝑝-value < 0.05
cutoff. On the other hand, only Kraken2 finds the beta-alanine metabolism pathway to be
commonly disrupted between both the cohorts; with mi-faser- and HUMAnN2-profiles, no
overlap at the pathway level was found (Tables 3.24, 3.25, 3.28, 3.29, 3.32 and 3.33). Here,
SB: significant in both the studies, NB: detected but not significant in both the studies, SC:
significant in Chinese cohort only, SE: significant in European cohort only, SU: significant
in the US cohort only, SS: significant in the Swedish cohort only.

(a) Common pathways between Chinese and European T2D cohorts
ID Pathway Carnelian mi-faser HUMAnN2 Kraken2 Fisher’s 𝑝

(Carnelian)
00030 Pentose phosphate pathway SB NB NB NB 6.59E-03
00040 Pentose and gluconerate SB NB NB NB 9.88E-03

interconversions
00051 Fructose and mannose metabolism SB SE NB NB 4.94E-04
00052 Galactose metabolism SB NB NB NB 4.71E-03
00061 Fatty acid biosynthesis SB SC NB SC 6.56E-03
00190 Oxidative phosphorylation SB SE SC SE 4.97E-04
00250 Alanine, aspartate and glutamate SB NB NB NB 1.48E-04

metabolism
00290 Valine, leucine and isoleucine SB SE NB NB 1.68E-05

biosynthesis
00590 Arachidonic acid metabolism SB NB NB NB 2.11E-03
00600 Sphingolipid metabolism SB SE NB SC 8.86E-05
00730 Thiamine metabolism SB NB NB NB 2.62E-03
00983 Drug metabolism - other enzymes SB NB NB NB 2.62E-03
00195 Photosynthesis SB SB SC SB 2.74E-03
00254 Aflatoxin biosynthesis SC SC NB SB 1.03E-02

(b) Common pathways between US and Swedish CD cohorts
ID Pathway Carnelian mi-faser HUMAnN2 Kraken2 Fisher’s 𝑝

(Carnelian)
00500 Starch and sucrose metabolism SB NB SS SS 4.91E-06
00620 Pyruvate metabolism SB NB NB SS 4.05E-04
00640 Propanoate metabolism SB NB NB NB 9.04E-03
00290 Valine, leucine and isoleucine SB SS NB SS 5.03E-03

biosynthesis
00450 Selenocompound metabolism SB NB NB NB 8.95E-03
00460 Cyanoamino acid metabolism SB NB SS SS 8.33E-05
00513 Various types of N-glycan SB NB NB NB 5.79E-03

biosynthesis
00710 Carbon fixation in SB NB NB SS 1.09E-05

photosynthetic organisms
00410 Beta-alanine metabolism NB SS NB SB 5.79E-01
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tween European T2D patients and individuals with normal glucose tolerance (NGT)

(Tables 3.4 and 3.5). Notably, 13 of these pathways are significantly shared between

both patient cohorts (Fisher’s combined 𝑝-value < 0.05) and highly relevant to T2D

(Table 3.1(a)). For example, we observed significant depletion of reads in several

carbohydrate metabolism pathways, such as the pentose phosphate pathway, pen-

tose and glucuronate interconversions, fructose and mannose metabolism, galactose

metabolism in patient guts compared to controls in both cohorts (Tables 3.4 and 3.5).

Across these two cohorts, we also observed a higher rate of oxidative phosphorylation

in the patient gut—a finding that is in agreement with the original studies [182,183].

Additionally, in each of the patient cohorts, we found significantly lower read abun-

dances in several vitamin-B metabolism pathways (e.g. thiamine metabolism) com-

pared to the healthy gut. Notably, EC- and Pathway-level results from mi-faser,

HUMAnN2, and Kraken2 were unable to uncover shared pathways of relevance be-

tween the two cohorts (Tables 3.6–3.17).

Carnelian-generated EC profiles of the Crohn’s disease cohorts revealed a shift

in the metabolic functionality of the patient gut microbiome compared to the con-

trol gut microbiome as indicated by lower read abundances in several essential en-

zymes and pathways. The most significantly variable ECs between patients and

controls (Wilcoxon rank-sum test 𝑝-value < 0.05 after BH correction and absolute

log fold change > 0.58) in both the US and Swedish cohorts include several hexosyl-

transferases (2.4.1.-), oxidoreductases acting on aldehyde group (1.2.7.-), glycosidases

(3.2.1.-), and hydrolyases (4.2.1.-), which are key players in different carbohydrate

metabolism pathways (Tables 3.18 and 3.19). Many of these enzymes were not found

by other methods. We also observed a decrease in the relative abundance of several

enzymes, including aminobutyraldehyde dehydrogenase (1.2.1.19), acetylornithinase

(3.5.1.16), lysine decarboxylase (4.1.1.18), and 5-carboxymethyl-2-hydroxymuconic

acid isomerase (5.3.3.10). These enzymes play crucial roles in the metabolism of sev-

eral essential amino acids, including arginine, proline, lysine, and tyrosine. Thus,

this finding might indicate a lower rate of microbial absorption of such amino acids

from the diet. Several enzymes involved in vitamin B metabolism such as pyridoxine

89



phosphatase (3.1.3.74), dihydroxy-acid dehydratase (4.2.1.9), phosphomethylpyrim-

idine synthase (4.1.99.17), etc. were also found to be depleted in the CD gut; of

the methods we compared against, only Carnelian was able to uncover these findings

(Tables 3.18, 3.19, 3.22, 3.23, 3.26, 3.27, 3.30 and 3.31).

At the pathway-level, we found 25 significantly altered metabolic pathways in

the guts of CD patients from the US (BH-corrected Wilcoxon rank-sum test 𝑝-

value < 0.05 and absolute log fold change > 0.11) and 35 pathways altered between

Swedish CD patients and healthy individuals (Tables 3.20 and 3.21). Notably, eight

of these pathways are significantly shared between both patient cohorts (Fisher’s

combined 𝑝-value < 0.05) and seven of them are highly relevant to Crohn’s disease

(Table 3.1(b)). For example, we observed significant depletion of reads in three car-

bohydrate metabolism pathways, namely, starch and sucrose metabolism, pyruvate

metabolism, and propanoate metabolism in patient guts compared to the controls in

both the cohorts (Tables 3.20 and 3.21). In both data sets, we also observed lower

abundance of reads in valine, leucine and isoleucine (essential amino acids) biosynthe-

sis and cyanoamino acid metabolism pathways in CD patients. We further observed

a lower abundance of reads in the selenocompound metabolism and various N-glycan

biosynthesis pathways in the CD guts compared to the normal individuals in both

cohorts. Although non-specific to CD, the reduced read abundance in carbon fixation

pathway might be indicative of the imbalance of energy homeostasis in the patient

gut. Importantly, mi-faser and HUMAnN2 found no shared pathways of relevance

between the two cohorts and Kraken2 found shared dysbiosis in only the beta-alanine

metabolism pathway. EC- and pathway-level results from mi-faser, HUMAnN2, and

Kraken2 can be found in Tables 3.22–3.33.
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Table 3.2: Significant differentially abundant ECs identified by Carnelian in the T2D-
Qin data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC log
Fold Change

adjusted
p-value EC log

Fold Change
adjusted
p-value

5.4.99.62 0.36 0.0426 1.8.2.3 0.33 0.032
3.6.1.23 -0.92 0.0457 1.1.1.28 -0.35 0.0088
2.4.2.2 -0.34 0.0348 3.2.1.52 -0.33 0.0242
2.4.2.6 0.36 0.0168 2.4.1.1 -0.43 0.0165

1.1.1.100 -0.33 0.0021 1.4.1.24 0.35 0.0179
2.7.8.35 0.42 0.017 1.4.1.4 -0.37 0.0004
3.7.1.8 0.37 0.0044 2.6.1.84 0.33 0.0065
2.7.2.4 0.39 0.0375 2.7.7.61 0.34 0.0033

1.13.11.27 0.35 0.0117 4.2.1.120 0.39 0.005
4.1.1.33 0.34 0.0015 5.4.2.11 -0.38 0.0031
4.2.1.20 0.35 0.0036 4.3.1.15 0.34 0.0493
2.7.1.220 0.36 0.0051 1.3.1.70 0.34 0.0003
1.1.1.408 0.35 0.0155 1.13.11.6 0.5 0.0002
1.12.2.1 0.34 0.031 4.2.1.147 0.35 0.0053
1.8.4.14 0.35 0.0432 2.4.1.7 -0.5 0.0067
1.17.7.4 -0.45 0.0149 5.4.3.2 0.41 0.0068
1.17.7.3 -0.34 0.0059 3.1.3.85 0.39 0.0424
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Table 3.3: Significant differentially abundant ECs identified by Carnelian in the T2D-
Karlsson data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value

2.4.1.329 -0.35 0.013 -0.12 0.4543
4.1.1.101* 0.35 0.0059 0.32 0.0047
4.2.99.20 -0.61 0.0136 -0.59 0.018
3.1.3.8 -0.38 0.0136 -0.05 0.864

2.6.1.113* 0.41 0.0309 0.26 0.0188
3.2.2.23 -0.57 0.0211 -0.55 0.2546
4.2.2.n2 -0.73 0.008 -0.18 0.2417
4.1.1.79 -0.34 0.0083 -0.09 0.4543

1.14.13.127 -0.53 0.0069 -0.49 0.0483
3.5.1.5 0.41 0.0026 0.25 0.1976

3.1.3.12* -0.45 0.0326 -0.59 0.02
1.12.98.1 -0.4 0.0072 -0.13 0.3454
6.2.1.44 -0.36 0.0082 -0.15 0.2417
2.3.2.21 -0.52 0.0266 -0.45 0.2546
5.4.99.20 -0.49 0.0398 -0.52 0.1142
2.1.1.10 0.53 0.004 0.24 0.0837
5.3.1.22 -0.71 0.0091 -0.91 0.0809
1.5.1.36 -0.36 0.0326 -0.07 0.9132
4.2.1.42 -0.36 0.0483 -0.31 0.3868
1.1.1.251 -0.38 0.0007 -0.31 0.0242
4.1.2.48* -0.45 0.0101 -0.53 0.002
6.3.2.33 -0.49 0.0013 -0.23 0.1179
1.8.98.1 -0.36 0.0428 -0.14 0.3575
6.3.2.36 -0.38 0.0091 -0.08 0.6347
2.3.1.5 0.37 0.0233 0.08 0.5279
2.8.4.1 -0.34 0.0144 -0.11 0.5028
1.2.99.7 0.34 0.0089 0.23 0.007
2.4.1.15* -0.53 0.0184 -0.55 0.0242
6.2.1.3 -0.34 0.0009 -0.22 0.0258

4.2.1.119* 0.4 0.0015 0.62 0.0006
3.4.13.9* -0.7 0.0016 -0.58 0.0316
3.1.4.16 -0.35 0.0039 -0.12 0.1949
3.1.4.12 0.34 0.0266 0.12 0.5485
2.1.1.90 -0.42 0.0266 -0.18 0.2386
3.2.1.80 0.38 0.0018 0.33 0.0069
2.4.1.182 -0.34 0.0059 -0.27 0.053
1.13.11.3 0.38 0.0002 0.19 0.0138

* ECs marked with ‘*’ are significantly variable between im-
paired glucose tolerance (IGT) and normal glucose tolerance
(NGT) individuals as well.
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Table 3.4: Pathways identified as significantly variable between T2D patients and
healthy controls in the T2D-Qin data set using Carnelian-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and abs (log fold change) > 0.11.

Category Name logFC Adjusted
p-value

C Glycolysis / Gluconeogenesis -0.21 0.0333
C Citrate cycle (TCA cycle) -0.20 0.0478
C Pentose phosphate pathway -0.22 0.0393
C Pentose and glucuronate interconversions -0.23 0.0361
C Fructose and mannose metabolism -0.21 0.0465
C Galactose metabolism -0.22 0.0376
C Ascorbate and aldarate metabolism -0.25 0.0165
L Fatty acid biosynthesis 0.21 0.0262
L Fatty acid elongation 0.22 0.0372
L Steroid biosynthesis 0.34 0.0019
E Oxidative phosphorylation 0.35 0.0035
E Photosynthesis 0.18 0.0448
N Pyrimidine metabolism 0.18 0.0432

AA Alanine, aspartate and glutamate metabolism 0.18 0.0018
SM Aflatoxin biosynthesis -0.19 0.0197
AA Valine, leucine and isoleucine biosynthesis 0.25 0.0007
AA Arginine and proline metabolism 0.23 0.0034
AA Tyrosine metabolism 0.19 0.0325
AA Phenylalanine metabolism 0.20 0.0366
AA Glutathione metabolism 0.28 0.0068
C Amino sugar and nucleotide sugar metabolism -0.23 0.0217
L Arachidonic acid metabolism 0.27 0.0071
L Sphingolipid metabolism 0.25 0.0221
G Glycosphingolipid biosynthesis - globo and isoglobo series 0.28 0.0144
C Pyruvate metabolism -0.19 0.0083
V Thiamine metabolism -0.18 0.0002
V Vitamin B6 metabolism -0.14 0.0054
V Nicotinate and nicotinamide metabolism -0.23 0.0034
V Biotin metabolism -0.17 0.0002
X Drug metabolism - other enzymes 0.20 0.0350

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =
Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and
Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation
and Metabolism.
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Table 3.5: Pathways identified as significantly variable between T2D patients and
normal glucose tolerance (NGT) individuals in the T2D-Karlsson data set using
Carnelian-generated functional profiles. Significance thresholds used: BH corrected
Wilcoxon rank-sum test 𝑝-value < 0.05 and abs (log fold change) > 0.11.

Category Name T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value

C Pentose phosphate pathway -0.20 0.0219 -0.08 0.0268
C Pentose and glucuronate interconversions -0.21 0.0357 -0.15 0.8701
C Fructose and mannose metabolism -0.24 0.0010 -0.13 0.1573
C Galactose metabolism -0.22 0.0147 -0.06 0.0094
L Fatty acid biosynthesis 0.24 0.0309 0.11 0.5331
E Oxidative phosphorylation 0.28 0.0128 0.12 0.8274
E Photosynthesis 0.35 0.0067 0.15 0.6797

AA Arginine biosynthesis 0.26 0.0069 0.13 0.2546
AA Alanine, aspartate and glutamate metabolism 0.24 0.0069 0.11 0.6126
AA Glycine, serine and threonine metabolism 0.21 0.0207 0.06 0.4638
AA Valine, leucine and isoleucine biosynthesis 0.27 0.0016 0.14 0.2481
AA Lysine biosynthesis 0.24 0.0147 0.12 0.1766
SM Carbapenem biosynthesis 0.28 0.0117 0.14 0.3181
AA Histidine metabolism 0.21 0.0345 0.07 0.0456
AA Phenylalanine, tyrosine and tryptophan biosynthesis 0.26 0.0047 0.16 0.0492
SM Phenazine biosynthesis 0.28 0.0191 0.18 0.0492
AA Selenocompound metabolism 0.21 0.0017 0.11 0.0539
AA Cyanoamino acid metabolism 0.31 0.0091 0.08 0.4831
AA D-Arginine and D-ornithine metabolism 0.14 0.0492 0.09 0.7318
G Other glycan degradation 0.22 0.0215 0.08 0.4879
L Glycerolipid metabolism 0.25 0.0002 0.16 0.0316
L Arachidonic acid metabolism 0.26 0.0314 0.22 0.0144
L Sphingolipid metabolism 0.26 0.0332 0.09 0.6402
L Glycosphingolipid biosynthesis - ganglio series 0.21 0.0130 0.05 0.7912
V Thiamine metabolism -0.22 0.0377 -0.15 0.7673
GI Aminoacyl-tRNA biosynthesis 0.15 0.0428 0.10 0.7792
X Drug metabolism - other enzymes 0.24 0.0082 0.12 0.5695
X Atrazine degradation 0.47 0.0031 0.39 0.1843
V Retinol metabolism 0.28 0.0297 0.17 0.3414
C C5-Branched dibasic acid metabolism 0.27 0.0017 0.13 0.1161
T Terpenoid backbone biosynthesis 0.24 0.0083 0.08 0.8517
E Nitrogen metabolism 0.25 0.0063 0.10 0.3534
E Sulfur metabolism 0.22 0.0037 0.10 0.1505
X Polycyclic aromatic hydrocarbon degradation 0.57 0.0002 0.38 0.0138
X Chloroalkane and chloroalkene degradation 0.24 0.0276 0.10 0.7201
X Naphthalene degradation 0.30 0.0371 0.16 0.2031

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N = Nucleotide Metabolism;
AA = Amino Acid Metabolism (includes metabolism of other amino acids as well); SM = Biosynthesis of Sec-
ondary Metabolites; G = Glycan Biosynthesis and Metabolism; V = Metabolism of Co-factors and Vitamins;
X = Xenobiotics Biodegradation and Metabolism; GI = Genetic Information Processing; T = Metabolism of
Terpenoids and Polyketides.
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Table 3.6: Significant differentially abundant ECs identified by mi-faser in the T2D-
Qin data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC logFC adjusted EC logFC adjusted
p-value p-value

2.7.1.58 0.89 0.0379 2.1.1.289 -0.37 0.0174
6.2.1.13 0.34 0.0188 2.7.1.220 -0.72 0.0406
1.2.3.3 0.77 0.0176 3.5.3.8 -3.34 0.0082

2.7.1.113 0.85 0.0293 3.5.3.1 0.39 0.0351
4.1.1.48 0.39 0.0444 2.4.1.288 2.49 0.0095
6.1.2.1 0.38 0.04 5.1.99.1 0.45 0.0027

4.2.1.162 -0.39 0.012 2.7.1.162 0.57 0.0452
2.5.1.88 0.67 0.0012 5.4.2.8 -0.52 0.0484
1.1.3.48 1.01 0.0213 5.1.3.23 0.92 0.048
5.4.99.61 -0.67 0.0256 3.2.1.136 0.49 0.047
2.4.2.6 0.83 0.0059 1.1.1.28 0.36 0.0023
2.6.1.34 0.35 0.0103 1.3.1.101 -0.52 0.0327
2.6.1.39 0.56 0.0023 2.4.1.8 0.44 0.0102
1.1.1.215 0.97 0.0349 6.3.1.12 1.1 0.0004
4.1.99.1 0.35 0.0221 1.1.1.377 0.63 0.0029
2.7.8.36 0.37 0.0077 1.1.1.371 0.54 0.0002
2.7.8.38 0.82 0.0101 4.2.1.120 0.69 0.0012
2.4.2.45 -1.37 0.0022 3.2.1.89 -0.51 0.0279
2.1.1.264 -0.86 0.0052 2.3.1.245 0.47 0.0047
5.3.99.11 -2.83 0.016 4.3.1.14 0.35 0.0386
5.1.1.13 1 0.0053 2.7.1.76 1.05 0.0108
1.1.1.310 0.7 0.0075 3.2.1.99 -0.82 0.0274
2.6.1.17 0.63 0.0439 3.1.3.90 5.54 0.0219
2.7.1.95 1.88 0.0211 2.4.1.345 0.72 0.0041
1.3.8.2 1.27 0.0003 5.1.99.1 0.45 0.0027

1.13.11.27 -4.84 0.0326 2.7.1.162 0.57 0.0452
3.2.1.11 -1.58 0.0243 5.4.2.8 -0.52 0.0484
4.1.1.86 -0.44 0.0127 5.1.3.23 0.92 0.048
4.1.1.33 5.97 0.0043 3.2.1.136 0.49 0.047
4.2.1.5 1.53 0.0282 1.1.1.28 0.36 0.0023
1.3.1.12 -1.16 0.0295
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Table 3.7: Significant differentially abundant ECs identified by HUMAnN2 in the
T2D-Qin data set. Significance thresholds used: BH corrected Wilcoxon rank-sum
test 𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC log
Fold Change

adjusted
p-value

4.6.1.12 -0.39 0.0054
4.4.1.25 1.74 0.0307
4.1.1.48 0.74 0.0096
6.1.2.1 1.94 0.027

2.4.1.329 -0.4 0.0038
1.6.5.8 -0.78 0.0187
3.1.3.3 -0.39 0.0065
4.1.99.2 -0.68 0.013
1.1.1.310 2.92 0.0356
1.1.1.304 -0.85 0.0331
2.7.1.95 1.88 0.0423
2.7.1.205 -0.85 0.0026
3.2.1.18 -0.64 0.0288
4.1.1.86 -1.19 0.0219
1.12.5.1 0.42 0.007
2.3.1.30 -0.35 0.0119
3.1.3.73 -0.62 0.0277
2.4.1.282 -1.51 0.0189
3.4.24.3 2.35 0.0102
1.1.1.39 0.39 0.0365
1.2.1.92 3.52 0.012
5.4.2.8 -0.75 0.0295
2.3.3.3 0.66 0.015
5.1.3.23 1.47 0.0176
3.2.1.135 0.96 0.0095
3.3.1.1 0.34 0.0291
1.97.1.2 1.14 0.034
4.2.1.119 1.14 0.0152
6.3.1.12 2.6 0.0069
2.1.1.228 -0.36 0.043
2.4.99.16 1.61 0.0414
4.3.3.6 -0.33 0.0261
2.7.1.76 0.86 0.0197
3.6.3.42 1.09 0.0367
1.3.7.5 -1.51 0.0072
3.1.3.83 0.44 0.0144
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Table 3.8: Significant differentially abundant ECs identified by Kraken2 in the T2D-
Qin data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC log
Fold Change

adjusted
p-value EC log

Fold Change
adjusted
p-value

2.7.7.13 0.60 0.0433 3.4.24.75 -1.66 0.0205
1.7.7.2 0.77 0.0079 1.1.1.336 0.50 0.0432

1.13.11.73 -0.41 0.0120 1.1.1.338 -5.93 0.0453
2.4.1.329 -0.37 0.0055 1.14.13.92 -3.91 0.0441
6.3.2.49 1.21 0.0482 2.3.3.10 -1.43 0.0435
2.4.2.2 -0.41 0.0371 2.7.1.39 -0.60 0.0334
2.4.2.6 6.11 0.0424 3.4.11.15 1.32 0.0167
3.5.1.93 -0.58 0.0356 1.13.11.2 1.72 0.0399
1.7.2.1 0.34 0.0092 1.15.1.2 -0.57 0.0462
2.6.1.39 0.80 0.0280 1.1.1.28 0.94 0.0320
2.5.1.96 1.71 0.0438 1.97.1.2 1.14 0.0137
6.3.2.n2 0.94 0.0212 3.4.23.42 -1.26 0.0172
2.4.1.250 -0.41 0.0285 3.2.1.1 0.36 0.0189
2.4.1.332 -1.27 0.0032 4.99.1.3 -1.01 0.0149
2.4.1.247 -0.41 0.0380 2.1.1.80 -0.57 0.0257
1.17.8.1 -0.42 0.0124 1.3.1.101 -0.35 0.0075
5.1.1.13 0.57 0.0488 1.3.1.54 -1.56 0.0111
2.7.4.2 -0.93 0.0089 1.5.99.13 -0.53 0.0274

1.14.16.1 2.74 0.0083 4.2.1.120 0.96 0.0210
3.6.4.9 1.64 0.0080 3.2.1.89 -0.60 0.0247
4.2.2.22 3.56 0.0225 3.4.19.1 -3.72 0.0343
3.2.2.3 0.61 0.0229 1.13.11.9 2.00 0.0491
1.3.3.11 -0.90 0.0478 2.5.1.68 -0.63 0.0205
2.6.1.77 0.90 0.0470 4.1.1.39 0.64 0.0256
3.5.1.44 -0.99 0.0162
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Table 3.9: Significant differentially abundant ECs identified by mi-faser in the T2D-
Karlsson data set. Significance thresholds used: BH corrected Wilcoxon rank-sum
test 𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC T2D-NGT IGT-NGT EC T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value logFC adj p-value logFC adj p-value

3.1.22.4 -0.86 0.0159 -1.09 0.0037 1.1.1.311 0.77 0.0001 0.76 0.0002
4.6.1.16 -1.45 0.0188 -0.22 0.6484 1.12.98.2 -0.92 0.0273 -0.35 0.1814
2.5.1.77 -1.11 0.0494 -0.38 0.2929 1.1.1.87 -0.39 0.0391 -0.05 0.9070
2.3.1.169 0.84 0.0099 0.42 0.5426 2.8.3.12 0.56 0.0133 -0.12 0.9438
1.2.7.4 0.36 0.0443 0.20 0.5416 2.1.1.10 1.33 0.0044 0.75 0.2677
1.2.7.8 -0.38 0.0398 -0.22 0.1310 4.2.1.40 -0.53 0.0364 -0.50 0.0744

2.1.1.217 1.56 0.0451 1.25 0.4678 2.4.1.54 1.60 0.0061 0.86 0.2544
3.5.4.10 -0.79 0.0098 -0.04 0.2118 2.2.1.10 -1.01 0.0498 -0.59 0.0523
1.1.1.136 -0.61 0.0488 -0.43 0.0458 1.12.7.2 -0.49 0.0027 -0.19 0.1095
1.1.1.302 -0.35 0.0234 -0.17 0.2101 2.8.1.10 0.52 0.0001 0.12 0.2059
2.7.7.23 -0.34 0.0475 -0.45 0.0895 2.7.4.26 -1.21 0.0051 -0.34 0.0689
4.4.1.19 -1.08 0.0295 -0.26 0.2198 2.1.1.246 -1.52 0.0404 -0.25 0.3333
4.2.2.6 -2.56 0.0386 -8.00 0.0149 1.1.1.405 -0.44 0.0246 -0.21 0.5110
4.1.1.15 -0.40 0.0323 -0.68 0.0015 2.1.1.171 -0.52 0.0433 -1.00 0.0018
5.4.99.60 0.45 0.0124 -0.05 0.8942 2.5.1.114 -1.03 0.0099 -0.33 0.2767
2.4.1.11 -1.27 0.0068 -1.35 0.0434 3.2.1.70 0.47 0.0451 1.28 0.0035
2.4.1.19 -0.92 0.0276 -1.40 0.0035 1.1.1.39 0.34 0.0163 -0.03 0.7722
2.4.1.329 -1.07 0.0031 -0.16 0.6834 3.4.13.22 -1.88 0.0478 -1.46 0.3035
5.1.2.1 0.44 0.0420 0.54 0.0659 1.2.99.7 0.63 0.0014 0.34 0.0636

3.2.1.185 0.63 0.0026 0.48 0.2105 3.1.21.3 -0.40 0.0017 -0.27 0.0451
4.1.1.101 0.96 0.0127 0.72 0.3697 5.1.3.21 1.76 0.0448 1.34 0.2146
3.5.4.27 -1.11 0.0184 -0.47 0.1579 2.7.7.1 -0.97 0.0060 -0.17 0.1514
2.6.1.109 -1.27 0.0042 -0.51 0.0805 1.5.98.1 -0.92 0.0124 -0.24 0.1579
1.1.1.107 1.28 0.0002 0.53 0.0424 1.5.98.2 -0.70 0.0298 -0.13 0.1898
2.6.1.34 -0.88 0.0057 -0.18 0.0971 4.2.3.153 -0.97 0.0370 -0.32 0.1561
4.2.1.36 0.50 0.0051 0.68 0.0591 3.1.3.45 -0.93 0.0487 -2.17 0.0001
2.7.8.35 1.65 0.0063 1.11 0.0363 2.1.1.86 -0.87 0.0430 -0.34 0.1944
3.5.4.39 -1.10 0.0098 -0.41 0.1587 2.4.1.8 0.60 0.0147 0.26 0.5785
2.4.2.48 -0.76 0.0331 -0.03 0.2412 2.4.1.5 2.44 0.0418 1.88 0.7413
3.2.2.20 -0.35 0.0357 -0.21 0.1055 1.4.1.24 -0.80 0.0131 -0.26 0.1445
1.2.1.22 -0.76 0.0315 -0.35 0.1693 1.4.1.1 0.43 0.0177 0.28 0.0895
4.1.99.14 -1.15 0.0258 -0.35 0.4157 3.1.4.16 -0.34 0.0133 -0.37 0.0268
2.7.1.85 0.52 0.0359 -1.39 0.8280 2.5.1.41 -1.12 0.0481 -0.44 0.2051
4.1.1.79 -0.95 0.0071 -0.40 0.0967 1.5.99.15 -0.40 0.0494 -0.21 0.2767
4.1.1.75 0.67 0.0230 -0.13 0.7452 3.4.21.62 0.45 0.0382 0.19 0.3887
2.3.1.136 2.65 0.0386 -0.12 0.6655 2.1.1.90 -0.95 0.0202 -0.11 0.3653
2.1.1.74 -0.34 0.0405 -0.05 0.4831 2.1.1.98 -1.09 0.0104 -0.84 0.0409
2.4.2.4 -0.99 0.0041 -1.35 0.0009 3.2.1.80 0.85 0.0008 0.80 0.0008
2.4.2.54 -0.95 0.0122 -0.22 0.1337 2.5.1.120 2.64 0.0149 0.56 0.6458
1.3.4.1 -0.80 0.0108 -0.30 0.0657 1.1.1.385 0.91 0.0145 -0.83 0.5544
3.4.16.4 -0.34 0.0371 -0.44 0.0520 2.7.7.73 0.53 0.0003 -0.06 0.6726
3.5.1.2 -0.55 0.0160 -0.84 0.0012 2.7.7.72 -1.07 0.0428 -1.41 0.0059
3.5.1.5 0.51 0.0047 0.37 0.0520 5.3.2.8 0.64 0.0225 -0.35 0.8501
1.5.1.49 -0.99 0.0245 -0.04 0.2489 2.4.1.7 0.47 0.0125 0.34 0.1477
1.5.1.40 -0.98 0.0410 -0.64 0.1291 4.1.1.31 -0.82 0.0205 -0.88 0.0188
3.6.4.9 -0.83 0.0159 -0.21 0.1579 2.1.1.206 -0.98 0.0108 -0.25 0.2505
2.4.2.29 -0.34 0.0015 -0.06 0.2031 6.3.4.19 -0.69 0.0389 -1.19 0.0035
1.1.1.261 -0.79 0.0286 -0.35 0.0895
* Here, IGT = impaired glucose tolerance; NGT = normal glucose tolerance.
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Table 3.10: Significant differentially abundant ECs identified by HUMAnN2 in the
T2D-Karlsson data set. Significance thresholds used: BH corrected Wilcoxon rank-
sum test 𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value

1.2.7.8 -0.77 0.0294 -0.43 0.1691
2.5.1.86 -1.8 0.0186 -1.82 0.0318
5.1.2.1 0.46 0.0459 1.02 0.021

4.1.1.101 2.42 0.0135 1.36 0.1014
3.5.4.27 -0.74 0.0082 0.03 0.246
2.3.1.n4 1.34 0.0055 1.62 0.1079
2.7.14.1 -1.71 0.0319 -0.31 0.1862
2.3.1.136 1.88 0.0386 -0.08 0.9506
4.2.1.28 0.64 0.0075 -0.17 0.3897
5.1.1.13 -0.54 0.0317 -1.74 0.0003
2.7.1.121 -1.5 0.0142 -0.51 0.0028
2.7.4.8 -0.54 0.0298 -0.98 0.0011
3.5.1.5 0.63 0.0122 0.65 0.0705
3.1.3.15 -3.55 0.0402 -0.4 0.8988
2.7.1.205 -0.93 0.0025 -1.16 0.0019
4.1.2.57 -1.44 0.033 -1.44 0.0661
1.12.98.2 -0.49 0.0232 0.36 0.429
1.12.98.1 -0.46 0.0391 0.23 0.3172
1.1.1.87 -1.55 0.0076 -0.11 0.3338
2.8.3.12 2.25 0.0249 2.69 0.0148
4.1.99.17 0.67 0.0348 0.09 0.9407
1.5.1.36 5.31 0.0334 5 0.1246
6.1.1.11 -0.37 0.0314 -0.24 0.0783
1.3.7.11 -0.84 0.0144 0.36 0.9021
2.3.1.30 -0.47 0.0376 -0.55 0.033

3.4.21.107 -0.4 0.0483 -0.65 0.0002
2.1.1.192 -0.51 0.0093 -0.35 0.0169
2.4.2.17 -1.4 0.0089 -0.41 0.2987
3.4.13.22 -2.29 0.0465 -2.03 0.035
2.8.4.3 -0.56 0.0136 -0.13 0.2612
1.5.98.1 -0.39 0.0148 0.16 0.2677
6.2.1.3 -0.61 0.0164 -0.49 0.0301
2.4.1.5 2.61 0.0021 2 0.0077
1.8.1.8 -0.5 0.0422 -1.33 0.0001
3.2.1.80 2.05 0.0162 1.34 0.9552
4.3.1.3 -0.98 0.016 -0.38 0.7561
2.7.1.6 -0.46 0.0309 0.08 0.9689
2.7.1.76 3.62 0.0372 3.59 0.0187
3.2.1.97 1.55 0.0063 1.71 0.4388
1.1.1.65 -1.17 0.0321 -2.33 0.0030
2.4.1.7 0.89 0.0356 0.60 0.2126

* Here, IGT = impaired glucose tolerance; NGT = normal
glucose tolerance.
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Table 3.11: Significant differentially abundant ECs identified by Kraken2 in the T2D-
Karlsson data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.33.

EC T2D-NGT IGT-NGT EC T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value logFC adj p-value logFC adj p-value

2.5.1.77 -0.94 0.0141 -0.35 0.173 1.16.3.1 -0.9 0.0385 -2.07 0.0057
1.7.1.4 -1.52 0.0387 -0.44 0.1002 1.1.1.333 -3.18 0.0128 -4.73 0.0019

3.4.14.13 0.49 0.0463 0.34 0.3417 2.7.4.26 -1.02 0.0028 -0.45 0.074
1.7.7.1 -1.72 0.0399 -0.1 0.438 2.1.1.198 -0.59 0.0106 -0.45 0.0214

1.14.14.12 2.76 0.004 2.67 0.0319 3.4.13.22 -0.96 0.0492 -0.75 0.3439
1.14.99.3 -0.48 0.0339 -0.51 0.0513 2.8.4.1 -0.69 0.0045 -0.12 0.6181
1.1.1.136 -0.79 0.0063 -0.37 0.0284 1.2.99.7 0.6 0.0017 0.51 0.0055
4.2.1.162 0.55 0.002 0.22 0.0837 2.4.1.9 0.91 0.0293 0.1 0.9686
1.3.99.28 -0.98 0.0117 -0.06 0.0197 3.4.11.10 -1.84 0.0105 -0.88 0.2528
2.4.1.11 -0.69 0.0015 -0.57 0.0743 4.1.2.17 -0.99 0.0131 -1.28 0.0331
5.1.2.1 0.51 0.0147 0.56 0.1236 2.7.7.1 -1.09 0.0189 -0.42 0.1802
3.5.4.27 -1 0.0179 -0.31 0.2367 2.7.7.47 -0.69 0.0433 -3.56 0.0066
3.5.4.29 -1.12 0.0383 -0.56 0.2187 1.5.98.1 -1.02 0.0077 -0.27 0.2805
2.5.1.96 -1.19 0.0097 0.23 0.1779 3.8.1.7 -1 0.0032 -0.17 0.5086
2.1.1.63 -0.63 0.0272 -1.06 0.0005 4.2.3.153 -0.9 0.0078 -0.12 0.288
4.1.1.65 -0.73 0.0169 -1.48 0.0139 6.2.1.3 -0.46 0.0398 -0.58 0.0046
4.2.1.36 0.49 0.0036 0.16 0.4157 3.1.1.48 1.88 0.0463 0.55 0.4962
2.4.2.48 -0.44 0.0299 0.03 0.7862 1.14.13.154 2.29 0.0093 -0.23 0.6692
2.7.14.1 -0.57 0.0091 -0.19 0.2513 2.1.1.86 -0.54 0.0072 -0.11 0.5695
1.2.1.22 -0.5 0.0252 -0.64 0.0381 1.8.1.14 0.56 0.003 0.36 0.0161
4.1.1.79 -0.36 0.0265 0 0.4826 6.5.1.1 0.44 0.006 0.73 0.0293
6.3.4.21 -0.52 0.0384 -0.68 0.0058 3.1.4.17 0.95 0.0386 0.49 0.2786
2.4.2.4 -0.57 0.003 -0.32 0.0634 2.6.1.84 0.77 0.0054 0.61 0.328
1.3.4.1 -0.86 0.0453 -0.28 0.2245 3.4.21.62 0.49 0.0215 0.2 0.4385
1.2.1.38 0.42 0.0009 0.11 0.4543 2.1.1.98 -0.84 0.0078 -0.45 0.1586
3.5.1.5 0.5 0.0045 0.38 0.1005 3.5.1.32 0.65 0.0126 0.15 0.7188
6.3.4.12 1.14 0.03 0.27 0.7834 1.9.3.1 -0.52 0.0147 -0.28 0.2468
3.6.4.9 -0.86 0.0213 -0.07 0.2528 3.4.21.72 -0.94 0.0013 -0.53 0.0266
3.2.1.91 0.81 0.0442 -0.25 0.618 1.4.99.1 0.47 0.0125 -0.31 0.5855
1.12.98.1 -0.8 0.0075 -0.02 0.7156 1.4.99.5 1.77 0.0396 1.07 0.0861
1.1.1.87 -0.65 0.0055 -0.26 0.3335 2.5.1.113 0.38 0.0443 0.24 0.2233
4.1.99.17 0.43 0.0009 0.06 0.8824 1.13.11.5 1.58 0.0131 0.29 0.9321
2.1.1.10 1.46 0.0064 0.87 0.2528 3.5.1.110 -1.33 0.0142 -1.62 0.003
1.5.1.36 2.63 0.0066 2.5 0.1205 3.4.11.1 0.63 0.037 0.68 0.0731
2.7.1.167 0.73 0.0098 0.22 0.6314 4.2.1.148 1.74 0.0266 -1.84 0.8681
3.4.21.96 -1.34 0.0091 -0.28 0.0399 1.1.1.65 -1.45 0.0257 -1.93 0.0687
6.3.2.4 -0.35 0.0136 -0.11 0.2355 1.1.1.69 -0.77 0.0419 -0.48 0.0399
1.12.7.2 -0.49 0.0133 -0.21 0.1157 2.4.1.7 0.54 0.0224 0.37 0.0559
3.1.3.70 -0.94 0.037 -1.6 0.0112 5.4.1.4 -1.02 0.0042 -0.62 0.0466
2.7.1.175 1.4 0.0132 0.71 0.2943 4.1.1.38 -1.65 0.0292 -1.57 0.086
* Here, IGT = impaired glucose tolerance; NGT = normal glucose tolerance.
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Table 3.12: Pathways identified as significantly variable between T2D patients and
healthy controls in the T2D-Qin data set using mi-faser-generated functional profiles.
Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value < 0.05
and abs (log fold change) > 0.11.

Category Name logFC Adjusted
p-value

L Fatty acid biosynthesis -0.15 0.000009
E Photosynthesis -0.21 0.000456

SM Aflatoxin biosynthesis -0.24 0.017628
AA D-Arginine and D-ornithine metabolism 0.21 0.003276
AA Glutathione metabolism 0.20 0.002753
G Various types of N-glycan biosynthesis 0.22 0.030179
T Biosynthesis of 12-, 14- and 16-membered macrolides 1.02 0.038230
G Lipoarabinomannan (LAM) biosynthesis 0.78 0.001068
L Glycosphingolipid biosynthesis - globo and isoglobo series 0.18 0.010605
X Aminobenzoate degradation 0.23 0.006568
V Riboflavin metabolism -0.13 0.006686
V Vitamin B6 metabolism -0.21 0.011154
V Lipoic acid metabolism 0.18 0.037381
T Carotenoid biosynthesis 0.62 0.000006

SM Flavone and flavonol biosynthesis -0.33 0.043905
T Insect hormone biosynthesis 0.27 0.012885

SM Biosynthesis of secondary metabolites - unclassified -0.19 0.001662
T Biosynthesis of ansamycins -0.26 0.000619

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =
Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and
Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation
and Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and
Polyketides.

101



Table 3.13: Pathways identified as significantly variable between T2D patients and
normal glucose tolerance (NGT) individuals in the T2D-Karlsson data set using
mi-faser-generated functional profiles. Significance thresholds used: BH corrected
Wilcoxon rank-sum test 𝑝-value < 0.05 and abs (log fold change) > 0.11.

Category Name T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value

E Oxidative phosphorylation 0.12 0.0031 0.06 0.3296
E Photosynthesis 0.17 0.0215 0.12 0.3335

AA Arginine biosynthesis 0.12 0.0125 0.09 0.0756
SM Monobactam biosynthesis 0.11 0.0048 0.06 0.0756
AA Valine, leucine and isoleucine biosynthesis 0.11 0.0078 0.05 0.1817
AA Phenylalanine, tyrosine and tryptophan biosynthesis 0.14 0.0034 0.10 0.0501
AA Cyanoamino acid metabolism 0.16 0.0139 -0.01 0.6627
G Other glycan degradation 0.24 0.0082 0.16 0.5485
G Glycosaminoglycan degradation 0.19 0.0320 0.10 0.9689
L Glycerolipid metabolism 0.19 0.0002 0.11 0.0796
G Arabinogalactan biosynthesis - Mycobacterium 1.57 0.0069 0.82 0.1062
L Sphingolipid metabolism 0.22 0.0287 0.15 0.5909
L Glycosphingolipid biosynthesis - ganglio series 0.23 0.0101 0.15 0.5963
X Atrazine degradation 0.51 0.0048 0.37 0.0520

* Here, IGT = impaired glucose tolerance, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy
Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and Metabolism; V =
Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation and Metabolism; GI = Genetic Infor-
mation Processing; T = Metabolism of Terpenoids and Polyketides.

Table 3.14: Pathways identified as significantly variable between T2D patients and
healthy controls in the T2D-Qin data set using functional profiles generated by HU-
MAnN2. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value
< 0.05 and abs (log fold change) > 0.11.

Category Name logFC Adjusted
p-value

C Citrate cycle (TCA cycle) -0.13 0.0020
L Synthesis and degradation of ketone bodies -0.28 0.0419
E Oxidative phosphorylation -0.18 0.0145
E Photosynthesis -0.25 0.0172

AA Tryptophan metabolism 0.15 0.0402
L Glycerolipid metabolism 0.12 0.0184
L Glycosphingolipid biosynthesis - globo and isoglobo series 0.15 0.0215
X Toluene degradation 1.73 0.0416
X Nitrotoluene degradation -0.13 0.0312
V Vitamin B6 metabolism -0.31 0.0039
T Terpenoid backbone biosynthesis -0.12 0.0309

SM Biosynthesis of secondary metabolites - unclassified -0.32 0.0386
* * Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =

Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino acids
as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and Metabolism;
V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation and Metabolism; GI
= Genetic Information Processing; T = Metabolism of Terpenoids and Polyketides.
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Table 3.15: Pathways identified as significantly variable between T2D patients and
normal glucose tolerance (NGT) individuals in the T2D-Karlsson data set using func-
tional profiles generated by HUMAnN2. Significance thresholds used: BH corrected
Wilcoxon rank-sum test 𝑝-value < 0.05 and abs (log fold change) > 0.11.

Category Name T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value

C Fructose and mannose metabolism -0.12 0.0483 0.14 0.0180
L Fatty acid degradation -0.18 0.0219 -0.05 0.6458

AA Lysine degradation -0.30 0.0113 -0.31 0.0730
AA Histidine metabolism -0.59 0.0019 -0.34 0.0348
AA Cyanoamino acid metabolism 0.32 0.0170 0.18 0.1089
V One carbon pool by folate 0.14 0.0371 0.09 0.5909
X Atrazine degradation 0.63 0.0122 0.65 0.0705

* * Here, IGT = impaired glucose tolerance, C = Carbohydrate Metabolism; L = Lipid Metabolism; E =
Energy Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism
of other amino acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis
and Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation and
Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and Polyketides.

Table 3.16: Pathways identified as significantly variable between T2D patients and
healthy controls in the T2D-Qin data set using functional profiles generated by
Kraken2. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value
< 0.05 and abs (log fold change) > 0.11.

Category Name logFC Adjusted
p-value

L Fatty acid biosynthesis 0.19 0.0025
E Photosynthesis -0.20 0.0026

SM Aflatoxin biosynthesis -0.27 0.0088
AA Tryptophan metabolism 0.27 0.0021
SM Novobiocin biosynthesis -0.19 0.0374
AA Glutathione metabolism 0.20 0.0034
G Glycosaminoglycan degradation 0.21 0.0232
L Sphingolipid metabolism 0.22 0.0086
L Glycosphingolipid biosynthesis - globo and isoglobo series 0.20 0.0243
V Nicotinate and nicotinamide metabolism 0.21 0.0051
L Biosynthesis of unsaturated fatty acids -0.27 0.0017
T Biosynthesis of ansamycins -0.25 0.0031

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =
Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and
Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation
and Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and
Polyketides.
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Table 3.17: Pathways identified as significantly variable between T2D patients and
normal glucose tolerance (NGT) individuals in the T2D-Karlsson data set using func-
tional profiles generated by Kraken2. Significance thresholds used: BH corrected
Wilcoxon rank-sum test 𝑝-value < 0.05 and abs (log fold change) > 0.11.

Category Name T2D-NGT IGT-NGT
logFC adj p-value logFC adj p-value

C Ascorbate and aldarate metabolism -0.13 0.0314 -0.03 0.5178
L Synthesis and degradation of ketone bodies -0.86 0.0467 -0.86 0.0103
E Oxidative phosphorylation 0.15 0.0108 0.07 0.4175
E Photosynthesis 0.19 0.018 0.09 0.5748

AA Arginine biosynthesis 0.12 0.0207 0.09 0.1038
SM Aflatoxin biosynthesis 0.18 0.032 0.15 0.1355
SM Monobactam biosynthesis 0.11 0.0034 0.1 0.0612
X Fluorobenzoate degradation -0.58 0.0236 0.24 0.681

AA Selenocompound metabolism 0.18 0.0055 0.09 0.1107
G Mannose type O-glycan biosynthesis -0.27 0.0357 0.15 0.5178
L Glycerolipid metabolism 0.15 0.0251 0.01 0.6402
X Chloroalkane and chloroalkene degradation 0.16 0.0042 0.14 0.0657
C C5-Branched dibasic acid metabolism 0.11 0.0125 0.08 0.0539
X Atrazine degradation 0.5 0.0043 0.37 0.1072

* Here, IGT = impaired glucose tolerance, C = Carbohydrate Metabolism; L = Lipid Metabolism; E =
Energy Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism
of other amino acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis
and Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation and
Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and Polyketides.
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Table 3.18: Significant differentially abundant ECs identified by Carnelian in the CD-
HMP data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC Adjusted
p-value

2.4.1.292 -0.67 9.55E-05
1.10.3.10 -0.60 2.42E-03
2.7.7.39 0.79 2.42E-03
4.2.1.12 -0.75 2.61E-03
1.2.1.19 -0.60 4.31E-03
1.3.3.3 -0.71 6.07E-03
4.3.1.15 -0.64 6.07E-03
1.17.5.3 -1.44 8.42E-03
3.2.1.28 -0.65 8.98E-03
1.1.1.60 -0.72 1.23E-02
3.2.2.21 -0.71 1.23E-02
3.1.1.41 -0.67 1.65E-02
3.2.2.8 -0.88 1.65E-02
4.2.1.42 -0.84 1.75E-02
2.4.2.52 -0.89 1.86E-02
2.7.7.19 -1.08 2.08E-02
1.3.1.101 -0.69 2.20E-02
2.7.1.186 -0.72 2.20E-02
5.1.3.26 -0.79 2.20E-02
3.6.1.25 -0.68 2.33E-02
4.2.1.40 -0.79 2.60E-02
5.3.3.10 -0.78 2.65E-02
2.7.7.61 -0.89 3.05E-02
3.1.3.74 -1.22 3.05E-02
3.4.23.49 -0.93 3.05E-02
3.5.1.16 -0.76 3.39E-02
4.1.1.65 -0.93 3.57E-02
2.7.1.55 -0.88 3.96E-02
3.2.1.31 -0.65 3.96E-02
2.4.1.12 -1.13 4.17E-02
3.1.4.14 -1.20 4.60E-02
5.3.1.26 0.74 4.60E-02
1.17.1.9 -0.90 4.84E-02
1.8.5.5 -0.76 4.84E-02
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Table 3.19: Significant differentially abundant ECs identified by Carnelian in the CD-
Swedish data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC adj p-value EC logFC adj p-value
2.4.1.20 -1.46 1.00E-05 3.4.24.55 -1.23 5.46E-03
3.6.3.5 -1.19 1.23E-05 6.3.4.14 -1.25 5.84E-03
1.4.1.2 -1.35 3.53E-05 2.4.1.288 -1.32 6.12E-03
2.4.2.47 -1.20 3.87E-05 1.3.1.31 -1.26 6.20E-03
1.1.1.40 -1.41 4.64E-05 4.3.1.24 -1.35 6.21E-03
3.6.3.42 -0.93 4.64E-05 2.3.2.3 -0.92 6.26E-03
2.4.1.52 -1.08 5.08E-05 3.6.3.2 -0.88 6.99E-03
2.7.9.1 -1.04 5.55E-05 1.2.7.4 -0.90 7.38E-03
1.4.4.2 -1.39 6.62E-05 1.2.99.7 -1.14 7.56E-03

3.4.24.69 -1.31 7.22E-05 1.14.13.171 -1.71 7.57E-03
2.4.1.25 -1.00 1.81E-04 4.1.2.27 -1.74 8.32E-03
3.4.21.53 -1.00 1.81E-04 6.1.1.10 -0.61 8.67E-03
5.4.99.2 -1.27 1.81E-04 4.6.1.1 -0.89 1.02E-02
1.8.98.3 -1.26 2.29E-04 1.2.7.5 -0.80 1.07E-02
3.2.1.3 -0.91 2.34E-04 2.4.1.247 -1.35 1.12E-02
2.4.2.46 -1.40 2.48E-04 6.3.5.4 -0.69 1.19E-02
3.2.1.21 -1.16 2.48E-04 2.7.8.47 -1.50 1.36E-02
3.2.1.14 -0.97 4.21E-04 6.2.1.51 -0.84 1.36E-02
2.3.2.27 -1.16 5.25E-04 3.2.1.4 -1.10 1.38E-02
4.2.1.135 -1.15 5.41E-04 2.4.1.19 -1.35 1.56E-02
3.2.1.18 -1.37 6.51E-04 2.4.99.21 -0.77 1.60E-02
2.4.2.48 -1.47 9.38E-04 3.2.1.52 -0.80 1.60E-02
5.99.1.2 -0.72 9.88E-04 1.13.11.61 -1.15 1.94E-02
3.2.1.133 -1.23 1.53E-03 3.2.1.176 -1.51 1.97E-02
3.1.26.12 -1.13 1.79E-03 2.7.1.195 -0.66 2.51E-02
3.2.1.169 -0.98 1.95E-03 3.1.11.5 -0.73 2.57E-02
3.2.1.131 -0.64 2.11E-03 4.2.1.9 -0.62 2.57E-02
3.1.7.2 -1.01 2.18E-03 3.1.21.3 -1.11 2.80E-02
1.4.7.1 -0.67 2.45E-03 1.2.7.6 -1.19 2.97E-02
1.1.1.39 -1.54 2.50E-03 1.2.4.2 -0.59 3.05E-02
3.6.3.4 -0.86 2.77E-03 2.7.1.193 -0.79 3.05E-02
4.1.1.32 -1.55 2.80E-03 4.1.99.17 -0.74 3.21E-02
3.2.1.41 -1.31 3.05E-03 1.8.7.1 -1.31 3.47E-02
6.1.1.18 -0.76 3.13E-03 3.4.21.72 -0.68 3.53E-02
2.4.1.9 -1.26 3.15E-03 1.7.7.1 -1.10 3.58E-02
3.2.1.35 -1.08 3.48E-03 3.2.1.8 -0.77 3.82E-02
4.1.1.18 -1.10 3.68E-03 3.2.1.1 -0.87 3.84E-02
2.2.1.7 -0.81 3.97E-03 5.4.99.15 -0.78 3.92E-02
2.3.1.41 -0.89 3.97E-03 3.2.1.187 1.39 4.91E-02
3.2.1.177 -0.87 4.46E-03 4.2.1.82 -0.95 4.97E-02
1.8.5.5 -1.13 5.44E-03

* *
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Table 3.20: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-HMP data set using Carnelian-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
GI Aminoacyl-tRNA biosynthesis -0.11 4.02E-03
AA Lysine biosynthesis -0.17 7.90E-03
C Pyruvate metabolism -0.17 1.23E-02
L Glycerolipid metabolism 0.23 1.30E-02

AA Valine, leucine and isoleucine biosynthesis -0.18 2.33E-02
AA Cyanoamino acid metabolism -0.15 2.60E-02
AA Selenocompound metabolism -0.18 2.89E-02
C Propanoate metabolism -0.18 3.05E-02
C Starch and sucrose metabolism -0.15 3.39E-02
X Caprolactam degradation 0.25 1.56E-02

SM Flavone and flavonol biosynthesis 0.65 3.96E-02
T Polyketide sugar unit biosynthesis -0.31 4.17E-02

SM Streptomycin biosynthesis -0.28 4.17E-02
L Fatty acid elongation 0.25 4.17E-02
G Various types of N-glycan biosynthesis 0.24 4.38E-02
T Geraniol degradation 0.27 1.65E-02
T Biosynthesis of ansamycins 0.21 1.75E-02
T Biosynthesis of siderophore group nonribosomal peptides 0.33 3.57E-02
T Insect hormone biosynthesis 0.41 1.66E-03
X Aminobenzoate degradation 0.22 2.81E-03
T Limonene and pinene degradation 0.26 6.49E-03
E Carbon fixation in photosynthetic organisms -0.11 1.08E-02
E Photosynthesis -0.17 1.15E-02
GI Bacterial chemotaxis 0.15 1.38E-02
GI Flageller assembly -0.21 7.40E-03

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =
Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and
Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation
and Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and
Polyketides.
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Table 3.21: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-Swedish data set using Carnelian-generated functional
profiles. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value
< 0.05 and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
C Glycolysis / Gluconeogenesis -0.79 2.45E-03
C Pyruvate metabolism -0.65 2.95E-03

AA Glycine, serine and threonine metabolism -1.33 4.24E-05
C Starch and sucrose metabolism -0.83 9.04E-06
C Amino sugar and nucleotide sugar metabolism -0.48 9.64E-03
V Thiamine metabolism -0.76 1.45E-02

AA Arginine biosynthesis -1.35 3.53E-05
AA Valine, leucine and isoleucine degradation -1.27 1.81E-04
AA Arginine and proline metabolism -0.88 1.81E-04
AA Cyanoamino acid metabolism -1.16 2.48E-04
AA Lysine degradation -0.94 2.89E-04
AA Valine, leucine and isoleucine biosynthesis -0.62 2.57E-02
C Propanoate metabolism -0.56 3.82E-02

AA Selenocompound metabolism -0.46 3.98E-02
L Sphingolipid metabolism -0.35 4.91E-02
L Fatty acid biosynthesis -1.07 3.12E-04
C Glyoxylate and dicarboxylate metabolism -0.89 3.63E-04
C Pentose and glucuronate interconversions -0.88 1.57E-02
L Glycosphingolipid biosynthesis - globo and isoglobo series -0.8 1.60E-02
G Various types of N-glycan biosynthesis -0.8 1.60E-02
E Sulfur metabolism -0.98 9.64E-03
E Nitrogen metabolism -0.82 1.36E-05

AA Phenylalanine metabolism -0.98 1.74E-06
C Pantothenate and CoA biosynthesis -0.62 2.57E-02

SM Tropane, piperidine and pyridine alkaloid biosynthesis -0.99 8.04E-04
X Nitrotoluene degradation -0.91 2.03E-03
E Carbon fixation in photosynthetic organisms -0.89 6.62E-05
G Lipoarabinomannan (LAM) biosynthesis -1.2 3.87E-05
G Arabinogalactan biosynthesis - Mycobacterium -1.31 4.51E-08

AA Taurine and hypotaurine metabolism -1.32 2.76E-06
SM Phenylpropanoid biosynthesis -1.09 4.79E-06
E Carbon fixation pathways in prokaryotes -0.8 2.89E-04
V Biotin metabolism -0.89 3.97E-03
T Terpenoid backbone biosynthesis -0.81 3.97E-03

SM Biosynthesis of secondary metabolites - unclassified -1.71 7.57E-03
* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =

Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and
Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation
and Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and
Polyketides.
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Table 3.22: Significant differentially abundant ECs identified by mi-faser in the CD-
HMP data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC Adjusted
p-value EC logFC Adjusted

p-value
2.3.1.n3 -0.58 1.21E-03 1.18.1.3 0.78 2.65E-02
2.1.1.113 -2.64 1.02E-02 3.2.1.156 -0.80 2.89E-02
4.2.3.152 -2.52 1.23E-02 6.3.1.13 -2.52 2.92E-02
3.2.1.28 0.91 1.75E-02 3.9.1.2 -0.65 2.93E-02
4.2.1.51 -4.20 2.08E-02 3.2.1.70 -0.75 3.22E-02
3.4.19.5 1.00 2.08E-02 2.3.1.41 0.59 3.22E-02
2.7.7.2 -3.62 2.33E-02 1.17.2.1 1.83 3.25E-02

1.1.1.108 -3.59 2.33E-02 1.2.7.4 -0.78 4.62E-02
2.3.1.169 -1.25 2.37E-02 4.2.2.2 -2.03 4.67E-02
1.1.1.310 -0.85 2.65E-02 2.7.7.39 -0.81 4.80E-02

Table 3.23: Significant differentially abundant ECs identified by mi-faser in the CD-
Swedish data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC adj p-value EC logFC adj p-value
1.4.4.2 -1.17 3.53E-05 2.4.1.247 -2.91 1.12E-02
4.1.1.31 1.61 9.03E-05 3.2.1.135 1.49 1.24E-02
3.2.1.11 4.67 9.89E-05 1.17.4.2 7.77 1.39E-02
2.7.1.195 2.84 1.10E-04 3.1.7.2 0.9 1.46E-02
3.2.1.4 -1.93 1.21E-04 3.6.3.8 0.64 1.60E-02
1.17.4.1 1.27 1.42E-04 2.7.1.197 0.91 1.68E-02
2.4.1.20 -1.07 1.54E-04 2.1.1.13 -0.9 1.72E-02
3.2.1.18 3.21 1.83E-04 3.2.1.3 -0.98 1.82E-02
2.3.2.3 3.4 6.38E-04 4.1.1.38 3.34 1.92E-02
3.2.1.97 2.16 6.51E-04 2.4.1.279 -3.08 2.52E-02
1.1.98.6 1.29 8.04E-04 6.2.1.1 -1.64 2.67E-02
3.2.1.187 3.69 1.30E-03 2.7.1.207 2.18 2.68E-02
3.4.21.96 3.27 1.82E-03 3.2.1.41 -0.68 2.81E-02
5.4.99.2 -0.92 3.88E-03 4.2.1.162 1.03 3.18E-02
1.1.5.12 0.83 4.82E-03 3.4.24.70 -0.97 3.24E-02
3.4.14.12 -1.09 5.64E-03 1.97.1.2 -3.06 3.39E-02
3.2.1.68 1.8 5.82E-03 3.4.11.2 2.64 3.59E-02
3.2.1.8 -1.36 6.40E-03 3.6.3.4 0.93 3.60E-02
4.1.1.32 -1.89 7.20E-03 4.2.2.8 -0.58 3.99E-02
1.2.3.3 2.84 7.58E-03 4.2.1.135 -0.67 4.52E-02
1.2.4.1 1.75 7.76E-03 1.4.3.21 1.86 4.89E-02
6.2.1.36 2.69 1.09E-02 2.4.1.8 3.01 4.94E-02
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Table 3.24: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-HMP data set using mi-faser-generated functional profiles.
Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value < 0.05
and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
AA D-Glutamine and D-glutamate metabolism 0.33 1.38E-02
L Glycerolipid metabolism 0.27 1.86E-02
T Geraniol degradation 0.43 2.89E-02
L Fatty acid elongation 0.43 3.05E-02
X Caprolactam degradation 0.51 3.39E-02

* Here, L = Lipid Metabolism; AA = Amino Acid Metabolism (includes
metabolism of other amino acids as well); X = Xenobiotics Biodegradation and
Metabolism; T = Metabolism of Terpenoids and Polyketides.

Table 3.25: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-Swedish data set using mi-faser-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
AA Glycine, serine and threonine metabolism -1.12 5.08E-05
AA Glutathione metabolism 1.23 7.22E-05
X Drug metabolism - other enzymes 0.95 3.12E-04
V Pantothenate and CoA biosynthesis -0.52 2.16E-03

AA Valine, leucine and isoleucine biosynthesis -0.52 2.16E-03
AA Valine, leucine and isoleucine degradation -0.92 3.88E-03
V Thiamine metabolism -0.43 5.92E-03
T Terpenoid backbone biosynthesis -0.44 1.38E-02
C Amino sugar and nucleotide sugar metabolism -0.23 1.94E-02
C Galactose metabolism 0.58 2.24E-02

Biosynthesis of ansamycins 0.43 2.45E-02
C Citrate cycle (TCA cycle) 0.51 3.35E-02

AA beta-Alanine metabolism 1.86 4.89E-02
AA Tyrosine metabolism 1.86 4.89E-02
SM Isoquinoline alkaloid biosynthesis 1.86 4.89E-02

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy
Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes
metabolism of other amino acids as well); SM = Biosynthesis of Secondary Metabo-
lites; G = Glycan Biosynthesis and Metabolism; V = Metabolism of Co-factors
and Vitamins; X = Xenobiotics Biodegradation and Metabolism; GI = Genetic
Information Processing; T = Metabolism of Terpenoids and Polyketides.
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Table 3.26: Significant differentially abundant ECs identified by HUMAnN2 in the
CD-HMP data set. Significance thresholds used: BH corrected Wilcoxon rank-sum
test 𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC Adjusted
p-value EC logFC Adjusted

p-value
3.5.1.104 -2.00 3.33E-03 2.6.1.57 -1.46 8.29E-03
2.4.1.329 -7.09 3.93E-03 3.2.1.70 -1.10 2.69E-02
2.7.8.36 -0.61 4.91E-02 3.2.1.151 -1.01 1.77E-02
3.2.1.37 -0.66 4.95E-02 6.3.1.12 -2.76 4.87E-02
4.2.2.26 -9.15 2.08E-02 2.4.99.16 -2.07 4.49E-02
1.18.1.3 -0.59 2.39E-02 3.6.3.40 -0.80 4.05E-02
2.3.1.35 -2.11 4.31E-02 1.3.1.n3 -0.67 1.36E-02
4.2.1.77 -3.34 3.19E-03 2.4.1.342 -2.29 2.61E-02
4.1.1.96 -1.60 1.42E-02 2.3.1.89 -1.74 3.14E-02
2.7.1.162 -1.58 2.24E-02 1.1.1.3 -1.31 1.19E-02

Table 3.27: Significant differentially abundant ECs identified by HUMAnN2 in the
CD-Swedish data set. Significance thresholds used: BH corrected Wilcoxon rank-sum
test 𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC Adjusted
p-value EC logFC Adjusted

p-value
1.17.4.1 1.19 7.92E-03 2.3.3.9 1.46 9.31E-03
4.2.1.53 0.83 4.89E-02 6.2.1.1 -0.87 3.84E-02
2.4.1.12 1.06 2.18E-02 2.4.1.8 4.62 2.23E-03
3.2.1.187 2.41 6.36E-03 2.4.1.5 1.98 2.24E-02
3.2.1.185 2.07 1.01E-02 1.4.1.2 -1.59 3.65E-04
3.2.1.20 1.63 3.78E-03 1.2.5.1 3.34 6.86E-03
3.2.1.21 -1.42 1.09E-02 6.3.5.5 0.74 1.53E-02
3.2.1.28 -1.19 4.77E-02 1.2.4.2 1.31 4.35E-02
2.2.1.9 3.44 4.59E-03 1.3.5.4 1.65 3.98E-02
6.1.1.19 1.01 3.03E-02 2.4.1.211 1.38 3.13E-03
6.1.1.5 1.25 2.86E-02 3.2.1.170 0.68 2.61E-02
3.6.3.8 1.43 3.89E-02 4.1.1.31 2.12 9.31E-03
1.8.4.13 1.41 1.98E-02
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Table 3.28: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-HMP data set using HUMAnN2-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
X Biosynthesis of vancomycin group antibiotics -0.47 1.65E-02
X Polycyclic aromatic hydrocarbon degradation -0.54 3.56E-02
V One carbon pool by folate -0.13 3.76E-02
L Glycerolipid metabolism 0.34 4.84E-02

* Here, L = Lipid Metabolism; V = Metabolism of Co-factors and Vitamins; X =
Xenobiotics Biodegradation and Metabolism;

Table 3.29: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-Swedish data set using HUMAnN2-generated functional
profiles. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value
< 0.05 and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
AA Arginine biosynthesis -1.59 3.65E-04
AA Taurine and hypotaurine metabolism -1.59 3.65E-04
AA Arginine and proline metabolism -1.27 1.81E-03
AA Glutathione metabolism 1.11 4.42E-03
C Starch and sucrose metabolism -0.98 4.55E-03

V Ubiquinone and other
terpenoid-quinone biosynthesis 3.44 4.59E-03

GI Two-component system -0.49 7.79E-03
AA Cyanoamino acid metabolism -1.42 1.09E-02
C Pentose and glucuronate interconversions 0.96 1.56E-02

SM Phenylpropanoid biosynthesis -1.36 2.43E-02
X Drug metabolism - other enzymes 0.82 3.44E-02
C Glyoxylate and dicarboxylate metabolism 0.26 3.46E-02
L Fatty acid biosynthesis 2.47 3.98E-02
E Nitrogen metabolism -0.84 4.71E-02

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy
Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism
(includes metabolism of other amino acids as well); SM = Biosynthesis of
Secondary Metabolites; G = Glycan Biosynthesis and Metabolism; V =
Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation and
Metabolism; GI = Genetic Information Processing; T = Metabolism of Ter-
penoids and Polyketides.
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Table 3.30: Significant differentially abundant ECs identified by Kraken2 in the CD-
HMP data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC Adjusted
p-value EC logFC Adjusted

p-value
2.4.1.161 -1.54 2.76E-02 1.14.13.92 -1.74 1.02E-02
2.1.1.44 -1.89 1.89E-02 3.1.4.3 -1.09 2.10E-02
1.2.3.3 -1.43 4.77E-02 1.14.14.5 0.98 6.07E-03

1.14.13.70 -2.36 4.49E-02 6.3.1.20 0.79 1.65E-02
1.3.99.28 -1.77 4.21E-02 2.7.7.43 1.70 2.54E-02
3.2.1.183 -1.97 1.24E-02 3.5.4.9 -1.27 1.84E-02
1.3.1.86 -3.18 4.23E-03 2.8.1.15 -2.12 1.15E-02
3.2.2.26 -1.21 1.43E-02 2.4.1.15 0.59 2.42E-03
3.2.1.28 0.87 2.46E-02 4.2.3.155 -1.43 7.85E-03
1.11.2.4 -1.14 5.23E-03 1.14.13.154 2.87 3.81E-02
2.7.4.6 0.64 2.42E-03 6.3.5.11 -1.06 1.87E-02
3.2.1.31 0.69 2.60E-02 3.2.1.156 -1.09 1.30E-02
3.2.1.37 -0.70 2.38E-02 3.1.1.74 -0.76 4.34E-02
3.2.1.35 -1.66 9.80E-03 1.1.1.374 -1.48 2.45E-02
1.5.1.43 -1.39 4.49E-02 2.7.7.62 -0.99 2.11E-02
2.4.1.109 -3.89 2.33E-02 1.3.5.4 0.71 1.75E-02
5.5.1.25 3.50 4.44E-02 4.1.1.1 -2.75 2.25E-02

Table 3.31: Significant differentially abundant ECs identified by Kraken2 in the CD-
Swedish data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC Adjusted
p-value EC logFC Adjusted

p-value
6.3.5.1 -1.05 2.01E-05 3.2.1.141 1.49 8.36E-03
4.1.1.31 1.41 3.32E-05 3.2.1.20 1.09 9.19E-03
3.2.1.97 2.52 4.43E-05 4.1.1.38 2.83 1.13E-02
2.4.1.20 -1.34 4.43E-05 3.2.1.4 -0.58 1.25E-02
2.4.1.279 -5.14 4.48E-05 4.2.2.1 2.43 1.34E-02
2.7.1.197 1.58 5.07E-04 4.2.2.24 -1.17 1.55E-02
6.3.5.3 1.69 8.29E-04 3.2.1.135 2.64 1.78E-02

3.2.1.185 2.56 1.22E-03 1.17.4.2 7.40 1.80E-02
3.2.1.187 3.64 1.46E-03 3.2.1.170 2.04 1.80E-02
1.1.1.40 -0.83 1.91E-03 3.2.1.177 -0.72 1.94E-02
2.2.1.7 -0.59 2.95E-03 3.2.1.1 -0.84 1.97E-02
2.6.1.97 2.70 3.02E-03 3.4.24.68 0.85 2.03E-02
3.2.1.11 1.04 3.14E-03 1.4.3.21 2.14 2.50E-02
1.1.5.12 -2.17 3.39E-03 3.2.1.131 -0.62 2.72E-02
1.2.3.3 2.38 4.32E-03 4.2.2.23 -1.77 2.83E-02

2.4.1.247 -1.42 4.76E-03 1.1.1.39 -0.70 2.98E-02
1.1.98.6 1.14 4.80E-03 3.2.1.21 -0.61 4.33E-02
1.8.7.1 2.19 4.82E-03 1.2.4.1 0.74 4.41E-02
3.6.3.8 0.77 5.29E-03 4.2.1.3 0.92 4.71E-02
2.2.1.1 0.73 6.26E-03 2.4.1.288 1.89 4.89E-02
4.3.1.24 1.83 6.40E-03 4.1.1.32 -2.10 4.90E-02
5.4.99.2 -0.93 6.54E-03
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Table 3.32: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-HMP data set using Kraken2-generated functional profiles.
Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value < 0.05
and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
T Biosynthesis of 12-, 14- and 16-membered macrolides 2.25 1.13E-02

AA Phenylalanine, tyrosine and tryptophan biosynthesis -0.13 1.15E-02
L Ether lipid metabolism -1.46 1.25E-02
X Chlorocyclohexane and chlorobenzene degradation 1.34 2.20E-02

SM Phenazine biosynthesis -0.22 2.20E-02
SM Flavone and flavonol biosynthesis 0.69 2.60E-02
AA beta-Alanine metabolism -0.11 2.60E-02
GI Aminoacyl-tRNA biosynthesis -0.11 3.39E-02

* Here, AA = Amino Acid Metabolism (includes metabolism of other amino acids as well);
L = Lipid Metabolism, SM = Biosynthesis of Secondary Metabolites; X = Xenobiotics
Biodegradation and Metabolism; GI = Genetic Information Processing; T = Metabolism
of Terpenoids and Polyketides.

Table 3.33: Pathways identified as significantly variable between CD patients and
healthy controls in the CD-Swedish data set using Kraken2-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and absolute logFC ≥ 0.11.

Category Name logFC adj p-value
T Terpenoid backbone biosynthesis -0.59 2.95E-03
T Biosynthesis of ansamycins 0.73 6.26E-03

AA Valine, leucine and isoleucine degradation -0.93 6.54E-03
C Phosphotransferase system (PTS) 0.5 7.79E-03
C Pentose phosphate pathway 0.67 1.02E-02
C Starch and sucrose metabolism -0.27 1.52E-02
C Amino sugar and nucleotide sugar metabolism -0.27 1.60E-02
C Pantothenate and CoA biosynthesis -0.4 2.45E-02

AA Valine, leucine and isoleucine biosynthesis -0.4 2.45E-02
AA beta-Alanine metabolism 2.14 2.50E-02
AA Tyrosine metabolism 2.14 2.50E-02
SM Isoquinoline alkaloid biosynthesis 2.14 2.50E-02
AA Glycine, serine and threonine metabolism 2.14 2.50E-02
E Carbon fixation in photosynthetic organisms -0.23 2.57E-02
V Thiamine metabolism -0.41 2.94E-02

AA Cyanoamino acid metabolism -0.61 4.33E-02
C Pyruvate metabolism -0.19 4.33E-02

* Here, C = Carbohydrate Metabolism; E = Energy Metabolism; AA = Amino Acid
Metabolism (includes metabolism of other amino acids as well); SM = Biosynthe-
sis of Secondary Metabolites; V = Metabolism of Co-factors and Vitamins; T =
Metabolism of Terpenoids and Polyketides.
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3.2.3 Enabling accurate patient vs control classification using

functional metagenomic markers

Patients and controls in case-control cohorts of type-2 diabetes (T2D), Crohn’s dis-

ease (CD), and Parkinson’s disease (PD) can be classified with much higher accuracy

using the enzyme markers (EC terms) identified by Carnelian, implying that Car-

nelian’s additional labeling of unalignable reads is meaningful. To test the power of

significantly variable EC terms in discriminating patients from controls in the disease

data sets, we performed 𝑁 -fold cross-validation experiments (T2D: 10-fold, CD: 5-

fold, and PD: 5-fold). In each trial, ECs exhibiting significant differences in terms of

relative abundances between patients and controls in the training partition (Wilcoxon

rank-sum test 𝑝-value < 0.05) were selected as features input to a set of random forest

classifiers and accuracy was measured on the test partition.

In the Chinese T2D cohort, with Carnelian-identified differentially abundant ECs

we achieved an average area under the curve (AUC) of 0.75 (95% CI: 0.69 - 0.82),

whereas using the ECs identified by mi-faser, HUMAnN2 and Kraken2, average AUCs

of 0.69, 0.63, and 0.63 were achieved, respectively (Figure 3-2(a)). In discriminating

European T2D patients from NGT individuals, we achieved an average AUC of 0.72

(95% CI: 0.61 - 0.82) with Carnelian-identified ECs which is significantly higher than

the other three methods (Figure 3-2(b)).

In the CD cohort from the US, we achieved an average AUC of 0.73 (95% CI:

0.56 - 0.89) with Carnelian-identified differentially abundant ECs, whereas using the

differentially abundant ECs identified by mi-faser, HUMAnN2 and Kraken2, average

AUCs of 0.61, 0.54, and 0.55 were achieved, respectively (Figure 3-2(c)). In discrimi-

nating Swedish CD patients from the healthy controls, we achieved an average AUC of

0.95 (95% CI: 0.89 - 1.00) with Carnelian-identified variable ECs which is significantly

higher than the other three methods (Figure 3-2(d)). In the PD cohort, Carnelian-

identified markers achieved an AUC of 0.85 (95% CI: 0.72 to 0.98) in discriminating

between patients and healthy controls, whereas the differentially abundant EC terms

found by other methods did not achieve more than 0.75 average AUC (Figure 3-2(e)).
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Figure 3-2: Classification of patients vs controls using Enzyme Commission
(EC) markers (𝑁-fold cross-validation experiments). (a) T2D vs controls
in the T2D-Qin data set (Chinese cohort); (b) T2D vs Normal Glucose Tolerance
(NGT) individuals in the T2D-Karlsson data set (European cohort). (c) CD patients
vs controls in the CD-HMP data set (individuals from the US). (d) CD patients
vs healthy individuals in the CD-Swedish data set (Swedish twin studies). (e) PD
vs controls in the PD-Bedarf data set. In each trial, one of the 𝑁 subsets was
selected as the test set and the rest 𝑁 − 1 subsets were used as the training set.
Differentially abundant ECs were selected from the training set as features input to
a set of random forest classifiers. Performance of classification was measured on the
test set. Carnelian-identified EC terms achieve a larger average area under the curve
(AUC) in all the cases compared to those identified by other methods.
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Figure 3-3: Classification of patients vs. controls using Enzyme Commission
(EC) markers selected from the entire data set (N-fold cross-validation
experiments). (a) T2D vs controls in the T2D-Qin data set (Chinese cohort);
(b) T2D vs. Normal Glucose Tolerance (NGT) individuals in the T2D-Karlsson
data set (European cohort). (c) CD patients vs. controls in the CD-HMP data
set (individuals from the US). (d) CD patients vs. healthy individuals in the CD-
Swedish data set (Swedish twin studies). (e) PD vs controls in the PD-Bedarf data
set. Differentially abundant ECs were selected from the entire data set as features
input to a set of random forest classifiers. Average area under the curve (AUC) over
all cross-validation trials is reported as a measure of accuracy. Carnelian-identified
EC markers achieve a larger area under the curve (AUC) in all the cases compared
to those identified by mi-faser, HUMAnN2, and Kraken2.
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Note that while it is common practice in the metagenomics literature to select

classification features from the entire data set, even when running cross-validation ex-

periments [182,183], in all our cross-validation analyses, we instead followed standard

machine learning best-practices and avoid information leakage in feature selection by

choosing EC labels only from the training sets. For completeness, we also performed

the classification experiments choosing EC labels from the entire data set. Using

this experimental design, Carnelian-generated ECs again achieved higher accuracy

compared to the other three methods in all the study cohorts (Figure 3-3).

To test for generalizability of Carnelian-identified ECs in the CD and T2D cohorts,

we combined the EC markers identified in the geographically separated cohorts and

redid the classification of patients vs. controls. For CD, using the unified ECs iden-

tified by Carnelian as features, we could achieve ∼0.94 AUC on average, whereas,

the combined ECs identified by other tools achieved average AUCs between 0.79 and

0.88 (Figure 3-4). For T2D, with the unified ECs from Carnelian as features, we were

able to classify the functional profiles of T2D patients and controls with an average

AUC of ∼0.80, whereas using the combined ECs identified by other methods in both

cohorts as features, the average AUCs remained between 0.73 and 0.76 (Figure 3-

5). The lists of combined EC markers for T2D and CD identified by Carnelian are

provided in Tables 3.34 and 3.35.
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Figure 3-4: Classification of patients vs. controls in Crohn’s disease cohorts
from the US and Sweden using the combined set of markers identified
by Carnelian, mi-faser, HUMAnN2-translated, and Kraken2-translated.
Using Carnelian-identified significant ECs, we can consistently achieve ≥ 0.90 area
under the curve (AUC) on average on both CD-HMP and CD-Swedish data sets which
is higher than the other three tools.
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Figure 3-5: Classification of patients vs. controls in Chinese and European
T2D cohorts using the combined set of markers identified by Carnelian,
mi-faser, HUMAnN2-translated, and Kraken2-translated. Using Carnelian-
identified highly variable ECs, we can consistently achieve ∼ 0.80 area under the curve
(AUC) on average on both T2D-Qin and T2D-Karlsson data sets, whereas using the
highly variable ECs identified by other methods, an average AUC of 0.73-0.76 can be
achieved on both data sets.

120



Table 3.34: Combined EC markers identified by Carnelian that can classify T2D
patients vs. controls in both Chinese and European population with ∼80% area
under the curve on average.

5.4.99.62 1.17.7.4 4.2.1.147 3.1.3.12 2.8.4.1
3.6.1.23 1.17.7.3 2.4.1.7 1.12.98.1 1.2.99.7
2.4.2.2 1.8.2.3 5.4.3.2 6.2.1.44 2.4.1.15
2.4.2.6 1.1.1.28 3.1.3.85 2.3.2.21 6.2.1.3

1.1.1.100 3.2.1.52 2.4.1.329 5.4.99.20 4.2.1.119
2.7.8.35 2.4.1.1 4.1.1.101 2.1.1.10 3.4.13.9
3.7.1.8 1.4.1.24 4.2.99.20 5.3.1.22 3.1.4.16
2.7.2.4 1.4.1.4 3.1.3.8 1.5.1.36 3.1.4.12

1.13.11.27 2.6.1.84 2.6.1.113 4.2.1.42 2.1.1.90
4.1.1.33 2.7.7.61 3.2.2.23 1.1.1.251 3.2.1.80
4.2.1.20 4.2.1.120 4.2.2.n2 4.1.2.48 2.4.1.182
2.7.1.220 5.4.2.11 4.1.1.79 6.3.2.33 1.13.11.3
1.1.1.408 4.3.1.15 1.14.13.127 1.8.98.1 6.3.2.36
1.12.2.1 1.3.1.70 3.5.1.5 2.3.1.5 1.13.11.6
1.8.4.14

Table 3.35: Combined EC markers identified by Carnelian that can classify CD pa-
tients vs. controls in both the US and Swedish population with ∼94% area under the
curve on average.

2.4.1.292 3.1.3.74 5.4.99.2 3.2.1.35 3.2.1.4
1.10.3.10 3.4.23.49 1.8.98.3 4.1.1.18 2.4.1.19
2.7.7.39 3.5.1.16 3.2.1.3 2.2.1.7 2.4.99.21
4.2.1.12 4.1.1.65 2.4.2.46 2.3.1.41 3.2.1.52
1.2.1.19 2.7.1.55 3.2.1.21 3.2.1.177 1.13.11.61
1.3.3.3 3.2.1.31 3.2.1.14 3.4.24.55 3.2.1.176
4.3.1.15 2.4.1.12 2.3.2.27 6.3.4.14 2.7.1.195
1.17.5.3 3.1.4.14 4.2.1.135 2.4.1.288 3.1.11.5
3.2.1.28 5.3.1.26 3.2.1.18 1.3.1.31 4.2.1.9
1.1.1.60 1.17.1.9 2.4.2.48 4.3.1.24 3.1.21.3
3.2.2.21 1.8.5.5 5.99.1.2 2.3.2.3 1.2.7.6
3.1.1.41 2.4.1.20 3.2.1.133 3.6.3.2 1.2.4.2
3.2.2.8 3.6.3.5 3.1.26.12 1.2.7.4 2.7.1.193
4.2.1.42 1.4.1.2 3.2.1.169 1.2.99.7 4.1.99.17
2.4.2.52 2.4.2.47 3.2.1.131 1.14.13.171 1.8.7.1
2.7.7.19 1.1.1.40 3.1.7.2 4.1.2.27 3.4.21.72
1.3.1.101 3.6.3.42 1.4.7.1 6.1.1.10 1.7.7.1
2.7.1.186 2.4.1.52 1.1.1.39 4.6.1.1 3.2.1.8
5.1.3.26 2.7.9.1 3.6.3.4 1.2.7.5 3.2.1.1
3.6.1.25 1.4.4.2 4.1.1.32 2.4.1.247 5.4.99.15
4.2.1.40 3.4.24.69 3.2.1.41 6.3.5.4 3.2.1.187
5.3.3.10 2.4.1.25 6.1.1.18 2.7.8.47 4.2.1.82
2.7.7.61 3.4.21.53 2.4.1.9 6.2.1.51
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3.2.4 Uncovering functional relatedness of diverse industrial-

ized and non-industrialized microbiomes

In addition to finding trends in functional changes across disease cohorts, Carnelian

enables us to compare the functional potential of healthy human gut microbiomes

from industrialized and non-industrialized communities. We analyzed the fecal mi-

crobiomes of 84 individuals from Boston with an urban lifestyle (industrialized soci-

ety; unpublished data set from Alm lab), 35 hunter-gatherer Baka individuals from

Cameroon (unpublished data set from Alm lab), 50 non-industrialized individuals

from Gimbichu, Ethiopia [26], and 112 individuals of Betsimisaraka and Tsimihety

ethnicities from Madagascar [26]. The expectation is that healthy individuals across

populations ought to share similar core metabolic pathways [25, 197]. Carnelian’s

analyses met this expectation, finding pathway-level similarity in core metabolic func-

tionality of both the industrialized and non-industrialized communities.

Using our curated EC database, Carnelian detects more ECs compared to other

methods (Table 3.36) and finds slightly higher diversity of identified ECs in the non-

industrialized communities compared to the industrialized community indicated by

the Shannon-Wiener diversity index (Figure 3-6(a)). At the pathway level, the diver-

sity of identified functionality in both communities is comparable, as hoped (Figure 3-

6(b)). At both levels, Carnelian captures significantly more diversity than the other

three methods (Figure 3-6). Importantly, the fecal microbiomes of Baka individuals

from Cameroon could not be characterized well, even running the full HUMAnN2

pipeline using its default databases (Appendix B). Despite incorporating taxonomic

information, out-of-the-box HUMAnN2 could map on average ∼ 10% of the reads

and detect less than 30 known species and 996 ECs per sample (Shannon diversity

index for ECs: 5.58) (Appendix B: Table B.1).

Principal component analysis of the EC profiles generated by Carnelian shows a

marked separation by population (Figure 3-7(a)). Mean EC profiles of industrialized

and non-industrialized microbiomes show a moderate degree of correlation (Kendall’s

𝜏 = 0.75). Much of this separation washes away at the pathway level (Figure 3-7(b));
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mean pathway profiles of industrialized and non-industrialized microbiomes show a

high degree of correlation (Kendall’s 𝜏 = 0.93). This finding suggests a high degree

of pathway-level functional similarity between industrialized and non-industrialized

healthy microbiomes—which was not observed by earlier studies.

Table 3.36: Performance of Carnelian, mi-faser, HUMAnN2, and Kraken2 on pop-
ulation data sets from Boston, Cameroon, Ethiopia, and Madagascar. Carnelian
annotates significantly more reads and identifies more ECs compared to mi-faser,
HUMAnN2, and Kraken2 in all four data sets.

Boston
84

individuals

Cameroon
35

individuals

Ethiopia
50

individuals

Madagascar
112

individuals

Industrialized
(B)

Non-industrialized
(CEM)

C
ar

ne
lia

n

# Annotated
reads

per sample
1,430,026 269,720 2,182,173 2,157,741 1,430,026 1,828,507

# ECs
per

sample
1981 2003 2002 2003 1981 2003

m
i-f

as
er

# Annotated
reads

per sample
743,877 268,684 1,181,031 1,527,111 743,877 1,215,695

# ECs
per

sample
1230 1252 1309 1368 1230 1310

H
U

M
A

nN
2

# Annotated
reads

per sample
83,131 21,383 281,640 819,424 83,131 541,147

# ECs
per

sample
791 827 919 1064 791 937

K
ra

ke
n2

# Annotated
reads

per sample
466,709 149,191 709,543 1,046,199 466,709 801,387

# ECs
per

sample
1238 1219 1280 1233 1238 1244

In order to identify the ECs that characterize the separation for industrialized and

non-industrialized population, we looked at the weights of the ECs in the first nine

principal components, which together explain 80% of the variability among individuals

(Table 3.37). The majority of ECs with high weights were involved in the carbohy-

drate, amino acid, nucleotide, and energy metabolism pathways. Using the highly

weighted ECs, we performed Ward-linkage hierarchical clustering based on Pearson

correlation coefficients of the EC profiles of the industrialized and non-industrialized

individuals; we observed a clear separation of the two groups (Figure 3-8).
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Figure 3-6: Functional diversity found by Carnelian and other methods in
the non-industrialized and industrialized microbiomes. (a) Diversity at the
EC-level. (b) Diversity at the pathway level. Carnelian identifies more diversity at
both the levels than other methods as indicated by Shanon-Wiener indices.

Figure 3-7: Principal component analysis (PCA) plots depicting Carnelian-
derived EC and pathway profiles of the microbiomes of non-industrialized
and industrialized communities. (a) PCA plot of EC profiles show separation of
populations. (b) Pathway profiles of the microbiomes do not show much separation
indicating a high degree of similarity between the microbial metabolic functionality
of industrialized and non-industrialized communities.
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Table 3.37: Weights of top 52 EC terms in the first nine principal components
which cumulatively explain ∼80% variance in the principal component analysis of
the EC profiles of the industrialized and non-industrialized microbiomes. These ECs
are mostly involved in microbial carbohydrate, amino acid, nucleotide, and energy
metabolism pathways.

EC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
4.1.1.11 0.19 0.17 0.04 0.31 -0.25 0.03 -0.08 0.24 -0.09
5.1.3.32 -0.18 -0.14 -0.08 0.15 0.02 -0.15 0.18 0.05 -0.1
2.7.7.24 0.16 0.1 -0.12 0.24 0.06 -0.02 0.12 -0.19 0.01
6.4.1.3 0.15 -0.11 0.05 0.01 0.01 0 -0.02 -0.03 -0.02

1.11.1.15 0.15 -0.28 0.1 -0.05 -0.03 -0.01 -0.02 -0.04 -0.17
1.16.3.2 0.15 -0.17 0.08 -0.03 -0.04 -0.04 -0.06 0.07 -0.07
4.6.1.12 0.15 0.1 -0.04 -0.03 -0.07 -0.06 0.04 0.19 0.01
2.7.1.11 0.14 -0.08 0.01 -0.03 0 -0.03 -0.03 0.06 0.02
1.1.1.100 0.13 0.02 -0.03 -0.02 0.02 -0.01 -0.02 0.09 0.03
2.5.1.47 0.13 0 -0.03 -0.02 -0.01 -0.02 0.04 0.09 0.02
1.7.1.15 -0.13 -0.08 -0.04 0.07 -0.01 -0.07 0.1 0.01 -0.08
2.6.1.83 0.13 0.02 0 0.07 0.08 -0.02 0 0.05 0.04
4.2.1.11 0.12 0.02 -0.02 -0.02 -0.01 -0.04 0.03 -0.01 -0.09
5.1.3.13 0.12 0.03 -0.04 0.09 0.04 0 0 -0.04 0.05
3.2.1.3 0.12 -0.04 0.01 0.12 0.01 0 0 -0.06 0.02
5.2.1.8 -0.11 -0.02 -0.03 0.06 -0.03 -0.03 -0.02 0 0.09
6.3.5.2 0.1 0 -0.02 -0.05 -0.01 -0.01 0.02 0 0.01

5.4.99.18 0.1 0 -0.01 0 0.05 0.01 0.02 -0.03 0
3.2.1.21 0.1 -0.07 0.03 0.02 0.03 0.02 -0.07 -0.04 0.05
3.1.4.52 -0.1 -0.07 -0.04 0.05 0 -0.06 0.07 0.01 -0.02
4.2.1.47 0.1 -0.06 0.02 0.04 0.01 -0.02 -0.01 0 0
3.5.99.10 0.1 0.01 -0.06 0 0.06 -0.11 0.05 0.25 -0.04
1.4.1.16 0.09 -0.03 0.01 0.06 -0.03 0.03 -0.01 0.01 0.01
4.1.1.49 0.09 0.02 -0.03 0.06 -0.01 0 0.03 0.02 0.04

1.14.99.48 -0.09 0.28 0.12 0.23 0.17 0.17 -0.52 0 -0.48
4.2.1.46 0.09 0.02 -0.03 0.06 0.01 0.03 0.11 -0.17 -0.12
3.6.1.23 -0.09 0.15 0.38 0.02 -0.42 -0.41 -0.24 -0.32 0.25
1.6.5.11 -0.09 -0.08 -0.01 0.05 0.05 -0.07 0.06 -0.01 0.01
3.6.3.14 0.09 0.09 -0.07 -0.11 0.07 0.02 0.01 0.03 0.16
3.4.21.92 0.09 0.2 0.11 -0.12 -0.16 -0.32 0.17 -0.22 -0.17
3.2.2.27 0.09 0.05 0 0 -0.03 -0.05 0.03 -0.05 -0.06
2.1.3.9 0.09 -0.04 0.01 0.05 0.01 0 0 -0.02 0.01
1.2.1.12 0.09 0.11 -0.06 -0.07 0.02 -0.15 0.09 0.03 -0.14
3.6.4.13 0.09 -0.07 -0.01 0.05 -0.02 0 0.01 -0.01 0.03
2.7.7.65 -0.08 -0.05 -0.03 0.04 0.01 -0.05 0.05 0.01 -0.01
3.5.99.6 0.08 -0.01 -0.01 0.09 0.06 -0.02 0.04 -0.08 0.01
1.1.1.22 0.08 -0.01 -0.01 0.06 0 -0.03 0.01 -0.01 -0.04
2.4.1.281 0.08 -0.02 0 0.05 0.02 0 0 -0.02 0.03
5.3.1.5 0.08 -0.08 0.04 -0.01 -0.02 0 -0.02 0.01 -0.02
2.7.1.90 0.08 -0.02 0.01 0.04 0.02 -0.02 0 -0.01 0.02
2.1.1.45 0.07 -0.07 0.02 -0.06 -0.12 0.07 0.06 -0.03 -0.12
2.7.4.22 0.07 0.04 -0.03 -0.05 -0.02 -0.03 0.04 0.02 -0.06
5.4.2.11 0.07 -0.12 0.05 -0.06 0.02 0.02 0 -0.11 -0.13
6.1.1.20 0.07 -0.06 0.01 -0.01 -0.01 0.01 -0.02 -0.02 0.01
1.11.1.1 0.07 0.01 0.02 -0.02 0.02 -0.07 -0.04 0.04 -0.01
2.7.7.6 0.07 0.12 -0.09 -0.19 -0.07 0 0.07 -0.08 -0.01

1.1.1.205 0.07 0.02 -0.02 0.02 0.01 0.01 0.03 -0.06 0
2.3.1.31 0.07 -0.02 0.03 -0.01 0.04 0.03 0.01 -0.05 -0.02
6.3.1.2 0.07 -0.04 0.01 0.01 0 0.09 -0.01 -0.08 0.04
6.3.2.1 0.07 0 -0.01 0.07 -0.04 0.03 0.03 0 0.03
1.15.1.2 0.06 0.32 -0.13 0.35 0.07 -0.06 0.17 -0.04 0.07
3.5.1.5 -0.06 0.04 0.03 -0.06 -0.19 0.26 0.07 -0.06 -0.03
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Figure 3-8: Enzyme-level differences between the microbiomes of non-
industrialized and industrialized communities (selected individuals). The
heatmap was generated using the z-scores of read abundances of the ECs with high
weights in the top principal components of the EC profiles of industrialized and non-
industrialized microbiomes. Ward-linkage hierarchical clustering of the EC profiles
was performed using the Pearson correlation. The two top-level clusters found by
hierarchical clustering perfectly capture the separation of non-industrialized and in-
dustrialized microbiomes. For display purposes, we show only individuals with read
abundances falling outside one standard deviation of the mean in at least nine of the
highly variable ECs. See Figure 3-9 for the corresponding heatmap and clustering of
all individuals.
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Table 3.38: Top 100 significant ECs identified by Carnelian in the industri-
alized (Boston) vs non-industrialized (Cameroon, Ethiopia, and Madagas-
car) communities as differentially abundant. Significance thresholds used: BH
corrected Wilcoxon ranksum test 𝑝-value < 0.05 and abs (log fold change) > 1. Fold
change was calculated as the ratio of the mean EC abundance in non-industrialized
communities to the EC abundance in the industrialized community. Carnelian iden-
tifies 454 differentially abundant ECs, whereas mi-faser, HUMAnN2, and Kraken2
identify 1009, 976, and 785 differentially abundant ECs respectively which covers >
80% of the ECs they identified in the population data sets; this indicates the presence
of false positive hits among the reported ECs by other methods. Out of the 454 dif-
ferentially abundant ECs identified by Carnelian, 284 were also reported significant
by mi-faser, HUMAnN2, and Kraken2.

EC logFC adjusted
p-value EC logFC adjusted

p-value EC logFC adjusted
p-value

4.2.2.21 -3.44 6.98E-37 2.7.7.61 2.06 8.20E-29 3.6.1.40 2.19 2.40E-28
5.3.1.5 -3.43 4.72E-37 2.6.1.19 2.06 3.81E-34 3.6.1.67 2.18 3.24E-29
2.6.1.37 -3.2 8.40E-37 1.14.11.33 2.06 8.65E-32 2.7.1.51 2.17 1.72E-26
1.7.1.15 3.16 1.41E-26 1.16.1.9 2.05 1.61E-27 3.6.1.25 2.16 3.21E-31
2.4.1.320 -2.82 2.61E-37 6.3.2.45 2.05 4.05E-29 4.1.1.18 2.16 3.50E-19
3.1.4.55 2.61 1.04E-29 4.2.1.3 2.01 1.13E-26 1.7.2.3 2.15 1.37E-26
5.4.99.2 -2.57 7.87E-37 2.8.1.2 2 1.85E-28 1.8.4.13 2.14 5.57E-24
4.2.2.24 -2.57 6.98E-37 3.5.4.1 2 5.47E-31 3.5.1.49 2.14 3.30E-23
3.1.4.52 2.55 3.56E-34 2.3.1.29 -1.99 6.98E-37 3.1.1.5 1.93 1.70E-26
2.8.3.21 2.53 2.14E-32 3.6.1.63 1.98 8.76E-32 1.1.1.346 1.91 4.24E-30
3.4.23.51 2.5 1.80E-24 2.7.4.23 1.98 2.86E-21 1.5.1.42 1.91 2.46E-21
3.1.3.10 2.49 8.73E-31 2.7.7.12 1.97 1.94E-35 3.4.16.4 1.91 1.96E-34
4.2.2.n1 2.48 1.81E-31 6.3.2.2 1.95 6.66E-34 2.3.1.15 1.91 1.94E-35
4.2.2.8 -2.46 4.60E-34 1.14.11.47 1.95 1.13E-30 1.2.7.3 -1.91 4.92E-37
1.3.8.13 2.45 2.22E-26 2.3.1.242 1.94 3.92E-28 1.3.5.3 1.91 1.72E-22
3.2.1.196 2.41 3.78E-30 6.2.1.30 -1.94 2.18E-36 3.1.21.1 1.9 3.41E-26
1.13.11.29 2.41 1.20E-29 2.4.1.319 -2.3 4.92E-37 2.1.1.265 1.89 2.29E-28
3.1.11.5 2.39 7.09E-36 2.1.1.298 2.3 1.03E-31 3.1.3.23 1.89 9.08E-25
2.1.1.197 2.38 3.46E-25 4.1.3.38 2.3 1.72E-30 2.7.1.73 1.87 1.54E-28
1.17.4.1 2.36 5.26E-32 3.1.3.74 2.29 1.94E-27 1.1.1.373 1.86 8.54E-33
2.1.1.61 2.36 4.96E-33 1.14.11.17 2.29 2.59E-31 4.2.1.80 1.86 1.79E-25
2.4.1.12 2.35 1.56E-33 3.4.21.83 2.29 2.43E-19 1.14.12.19 1.86 3.83E-22
4.1.1.98 2.34 6.68E-28 1.7.99.4 2.26 9.29E-19 1.2.1.10 1.85 1.30E-24
1.6.1.2 2.33 2.43E-35 6.3.1.11 2.25 1.60E-30 1.16.3.2 -1.85 4.95E-36

1.14.99.46 2.31 4.66E-33 1.1.98.6 2.25 2.68E-33 2.6.1.62 -1.85 1.86E-36
3.2.2.28 2.11 1.13E-30 3.2.2.3 2.25 5.53E-29 1.13.11.39 -1.85 2.74E-32
1.17.5.3 2.11 6.13E-21 1.3.1.91 2.24 1.15E-28 5.3.1.22 1.84 4.42E-21
2.7.7.42 2.11 1.12E-33 3.1.4.14 2.23 1.41E-23 1.8.5.3 1.84 1.11E-16
6.4.1.3 -2.1 2.61E-37 4.1.2.53 2.22 2.05E-33 2.3.1.193 1.83 2.74E-32
1.2.1.2 2.1 4.65E-33 3.4.11.2 2.21 6.99E-33 2.7.7.19 1.82 3.00E-27

1.1.1.350 2.09 2.25E-32 2.7.8.42 2.2 7.91E-34 3.2.1.170 1.82 3.14E-25
1.3.5.1 2.09 1.63E-35 2.7.7.65 2.2 7.95E-33 3.5.3.26 1.81 5.15E-19
3.6.3.12 -2.09 2.81E-36 2.6.1.66 2.2 4.66E-25 6.3.5.3 1.8 3.85E-33
3.2.1.169 -2.07 1.52E-36

We also identified the significantly variable ECs between the two groups us-
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ing a cutoff of BH-corrected Wilcox on rank-sum test 𝑝-value < 0.05 and abso-

lute log fold change > 1 (Table 3.38). The differentially abundant ECs identified

by Carnelian recapitulate the findings of earlier studies; those ECs match the mi-

crobial enzymatic functions related to differences in diet and lifestyle [26, 80, 198].

For example, fecal microbiota from the non-industrialized communities showed over-

representation of several enzymes (exclusively identified by Carnelian) involved in the

metabolism of fructose, mannose, starch, and sucrose. Examples include mannosyl-3-

phosphoglycerate synthase (2.4.1.217), sucrose phosphorylase (2.4.1.7), phosphoglyc-

erate mutase (5.4.2.11), phosphate propanoyltransferase (2.3.1.222), etc. On the other

hand, fecal microbiota of industrialized individuals showed over-representation of sim-

ple sugar metabolizing enzymes, including ornithine aminotransferase (2.6.1.13), ly-

sine 2,3-aminomutase (5.4.3.2), glycogenase (3.2.1.1), NADP-glucose-6-phosphate de-

hydrogenase (1.1.1.49), and phosphohexokinase (2.7.1.11). Urease enzyme (3.5.1.5)

which potentially plays a role in synthesizing essential and non-essential amino acids

by releasing ammonia as well as a number of amino acid metabolizing enzymes,

including ornithine carbamoyltransferase (2.1.3.3; metabolizes arginine), lysine de-

carboxylase (4.1.1.18; metabolizes lysine), lysine racemase (5.1.1.5; metabolizes ly-

sine), showed higher read abundance in non-industrialized communities (not found

by other methods). In addition, Carnelian exclusively found read enrichment in

phospholipase D (3.1.4.4; involved in lipid metabolism) and phosphoadenylate 3’-

nucleotidase (3.1.3.7; involved in sulfur metabolism), and depletion of phenylacetyl-

CoA ligase (6.2.1.30; involved in phenylalanine metabolism), pyrrolysyl-tRNA syn-

thetase (6.1.1.26; involved in aminoacyl-tRNA synthesis), and potassium-importing

ATPase (3.6.3.12; involved in microbial potassium import) in the non-industrialized

communities compared to the industrialized one.

We then explored the co-abundance associations between the core metabolic path-

ways involved in energy production and the metabolism of carbohydrate, protein,

lipid, vitamins, and co-factors. Although hierarchical clustering can be used to iden-

tify clusters of co-abundance pathways between the non-industrialized vs industrial-

ized communities, the clusters were not significantly different from each other with
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Figure 3-10: Co-abundance association of core metabolic pathways across in-
dustrialized and non-industrialized microbiomes. Co-abundance associations
between pathways were calculated as the pairwise Kendall rank correlations between
the pathway abundance profiles (obtained using Carnelian-generated EC profiles) of
microbiomes from both communities considered together. Ward-linkage hierarchical
clustering was used to partition the pathways using Euclidean distance, generating
either 2, 3, 4, or 5 clusters. Although hierarchical clustering can be used to identify
clusters of co-abundance pathways between the non-industrialized vs. industrialized
communities, the clusters were not significantly different from each other concern-
ing the industrialized/non-industrialized label (PERMANOVA test 𝑝-value > 0.05).
Thus, in contrast to the top-level EC label clustering from part (a), the partitions
are not merely recapitulating the industrialized/non-industrialized labels.
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respect to the industrialized/non-industrialized label (PERMANOVA test 𝑝-value >

0.05) (Figure 3-10). This result confirms the existence of pathway-level similarity

in the core metabolic functionality (i.e., carbohydrate, amino acid, lipid, energy,

vitamin, and co-factors metabolism) between the healthy gut microbiomes of non-

industrialized and industrialized population. Differences at the pathway level be-

tween the two groups were mainly observed in secondary metabolism and xenobiotics

degradation pathways (Table 3.39).

Table 3.39: Pathways identified as significantly variable between the microbiomes
of the industrialized (Boston) vs. non-industrialized (Cameroon, Ethiopia, and
Madagascar) communities using Carnelian-generated functional profiles. Significance
thresholds used: BH-corrected Wilcoxon ranksum test 𝑝-value < 0.05 and abs (log
fold change) > 1. Coverage is calculated as the ratio of the number of significant
ECs mapped to a pathway to the total number of gold-standard ECs present in the
pathway. When we take EC coverage of pathways into account, only six pathways
remain significant.

Category Pathway logFC adjusted
p-value Coverage

SM Phenylpropanoid biosynthesis -1.49 8.69E-38 0.16
X Drug metabolism - cytochrome P450 1.33 5.31E-36 0.44
X Metabolism of xenobiotics by cytochrome P450 1.02 1.73E-29 0.45
X Beta-Lactam resistance 1.01 3.31E-22 1.00
V Lipoic acid metabolism -1.02 3.79E-31 0.75

SM Caffeine metabolism 1.02 9.95E-31 0.31
X Xylene degradation 1.26 1.04E-29 0.18
X Atrazine degradation 1.11 1.35E-21 0.17
X Ethylbenzene degradation 1.19 6.69E-35 0.67
X Naphthalene degradation 1.10 8.06E-32 0.25

* Here, SM = Biosynthesis of Secondary Metabolites; V = Metabolism of Co-factors and Vita-
mins; X = Xenobiotics Biodegradation and Metabolism.
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3.2.5 Finding novel functional dysbiosis in the gut microbiome

of Parkinson’s patients

Not only does Carnelian find consistent functional patterns in healthy and disease

microbiomes across different geographies, but it also helps us uncover novel biology

when applied to metagenomic data from a disease with poorly understood links to the

gut microbiome. For example, although two-thirds of the patients with Parkinson’s

disease (a neurodegenerative disease of complex etiology) suffer from gastrointesti-

nal (GI) abnormalities [199], it is not well understood how the gut microbiome is

associated with the disease process. We applied Carnelian on whole metagenome se-

quencing data from the gut microbiomes of early-stage L-DOPA- naive Parkinson’s

disease (PD) patients and controls [200] to investigate the differences between the

functional capacity of healthy and Parkinson’s gut.

Our results reveal a hitherto unobserved functional shift in the gut microbiome

of early-stage Parkinson’s disease patients from the microbiome of healthy controls

through performing differential abundance analyses of ECs and pathways. At the

EC level, Carnelian exclusively identifies significant variation in read abundance

(Benjamini-Hochberg (BH)-corrected Wilcoxon rank-sum test 𝑝-value < 0.05 and

absolute log fold change > 0.58) in ribonucleoside-diphosphate reductase (1.17.4.1;

implicated in glutathione metabolism), alpha-galactosidase (3.2.1.22; implicated in

lipid metabolism), kynureninase (3.7.1.3; implicated in tryptophan metabolism), etc.

(ECs identified by all four methods are provided in Tables 3.40–3.43).

At the pathway level, we found the PD gut to have lower read abundance in

several carbohydrate metabolism pathways (BH-corrected Wilcoxon rank-sum test

𝑝-value < 0.05 and absolute log fold change > 0.11) (Table 3.44). Differential read

abundances in different carbohydrate metabolism pathways were also found by HU-

MAnN2, mi-faser, and Kraken2 (Tables 3.45–3.47). Carnelian also identified signifi-

cantly lower read abundances (BH-corrected Wilcoxon rank-sum test 𝑝-value < 0.05

and absolute log fold change > 0.11) in phenylalanine, tyrosine, and tryptophan

biosynthesis (missed by both mi-faser and HUMAnN2), alanine, aspartate, and gluta-
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mate metabolism (missed by HUMAnN2), sphingolipid metabolism (missed by HU-

MAnN2 and Kraken2), glycosphingolipid biosynthesis, and D-alanine metabolism,

notably missed by the other three methods (Tables 3.44–3.47). Note that the origi-

nal study—which employed an assembly-based functional annotation approach using

gene catalogs—found differences in gene abundances in only the D-Glucuronate and

tryptophan metabolism pathways [200]. We also analyzed the same data set with

an out-of-the-box HUMAnN2 pipeline with its default databases (Pathway results

are provided in Table 3.48). Despite using additional taxonomic information, HU-

MAnN2 was not able to detect any significant shifts in pathways related to tryptophan

metabolism (a clinically established hallmark of PD). The differentially abundant

pathways identified by HUMAnN2 were primarily related to the broad category of

purine and pyrimidine metabolism, which is non-specific to Parkinsonism. It detected

a downward shift in some vitamin B and phospholipid metabolism pathways which

might be associated with Parkinson’s disease.

Table 3.40: Significant differentially abundant ECs between Parkinson’s disease (PD)
patients and controls identified by Carnelian in the PD-Bedarf data set. Significance
thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value < 0.05 and abs (log
fold change) > 0.58.

EC logFC adjusted
p-value EC logFC adjusted

p-value EC logFC adjusted
p-value

1.17.4.1 -0.70 0.0424 2.1.1.74 0.75 0.0024 1.7.1.13 -0.62 0.0005
1.4.1.16 -0.73 0.0042 1.1.1.271 -0.74 0.0039 3.4.13.9 -0.75 0.0452
3.4.14.12 -1.00 0.0006 2.7.1.209 0.76 0.0136 3.1.1.72 -0.58 0.0397
2.1.1.219 -0.82 0.0482 4.2.1.47 -0.69 0.0126 3.1.1.73 -0.98 0.0264
1.14.15.1 0.61 0.0424 6.3.2.2 -1.71 0.0482 3.1.4.16 0.87 0.0001
2.4.1.11 0.63 0.0283 1.12.1.2 0.70 0.0008 1.1.1.376 0.73 0.0264
2.4.1.321 0.60 0.0264 1.16.3.2 -0.68 0.0077 3.2.1.86 -0.73 0.0000
2.4.1.320 -0.78 0.0065 2.1.3.9 -0.92 0.0007 3.2.1.80 -0.59 0.0116
1.7.2.2 -0.60 0.0283 2.1.3.6 0.59 0.0246 3.2.1.177 -0.59 0.0042
3.11.1.1 -0.66 0.0264 3.5.3.18 0.68 0.0002 4.2.1.70 0.65 0.0046
5.3.1.17 -0.71 0.0020 3.7.1.3 0.63 0.0158 2.1.1.181 -0.70 0.0424
3.5.4.32 0.85 0.0011 3.8.1.2 0.66 0.0032 4.1.1.32 0.89 0.0015
2.7.14.1 0.67 0.0013 1.11.1.22 -0.72 0.0229 3.2.1.169 -0.81 0.0229
3.2.1.22 -0.58 0.0116 3.2.1.3 -1.06 0.0055 3.1.3.85 0.58 0.0482
2.1.1.72 -0.76 0.0065
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Table 3.41: Significant differentially abundant ECs identified by mi-faser in the PD-
Bedarf data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC adjusted
p-value EC logFC adjusted

p-value EC logFC adjusted
p-value

1.1.5.3 -0.79 0.0309 3.2.1.122 -0.87 0.0006 3.4.21.102 -0.65 0.0218
3.1.4.46 -0.77 0.0351 3.3.2.1 -1.07 0.0206 2.8.1.12 -0.76 0.0494
4.4.1.24 1.1 0.0033 3.4.25.2 0.61 0.0414 2.7.1.193 -0.64 0.0309
4.4.1.21 -1.01 0.0112 4.2.1.82 -0.73 0.0284 3.5.3.23 -1.17 0.0307
2.7.1.59 -1 0.0403 1.11.1.22 -0.78 0.0044 2.4.1.282 1.85 0.0006
1.7.1.7 -0.88 0.0448 2.1.1.265 -0.98 0.0373 2.1.1.35 -0.86 0.0189

3.4.14.12 -0.84 0.0025 3.5.4.40 -1.37 0.0316 2.1.1.193 -0.58 0.0151
1.5.8.2 0.8 0.0231 3.5.4.41 0.58 0.0249 5.1.3.3 -0.95 0.0412

2.1.1.217 -1.08 0.0379 3.1.3.45 -1.1 0.0336 1.12.2.1 1.17 0.0311
3.6.1.54 -1.18 0.0317 1.1.98.6 -0.78 0.0431 1.1.1.38 -0.67 0.0467
1.3.1.91 -0.81 0.0087 1.1.1.298 -1.01 0.0001 3.4.17.11 -0.74 0.0231
6.1.2.1 0.67 0.0182 2.5.1.30 0.73 0.0174 1.2.1.92 -1.12 0.0483
2.5.1.86 0.75 0.001 3.1.26.8 -1.17 0.0096 5.4.2.8 -0.67 0.0351
3.6.1.22 -0.67 0.0017 1.4.1.24 1.43 0.0249 5.1.3.20 -0.67 0.0032
1.6.99.3 -0.62 0.0209 1.4.1.3 0.71 0.0414 2.3.1.12 -0.89 0.0249
3.11.1.1 -0.83 0.0137 3.4.11.7 -0.99 0.0314 3.3.1.1 0.58 0.0076
1.1.1.103 0.63 0.0448 1.1.1.69 -0.65 0.0012 1.3.1.39 1.21 0.0058
2.5.1.90 -0.77 0.0038 5.4.3.5 0.62 0.0063 1.1.1.350 -0.95 0.0121
2.3.1.n4 -0.67 0.0376 4.1.1.32 0.95 0.0014 1.1.1.24 2.3 0.0416
2.3.1.101 1.19 0.0151 3.2.1.165 -3.64 0.0096 3.5.4.3 -0.64 0.0024
4.2.1.39 -0.64 0.0068 3.5.5.1 -0.59 0.0375 3.1.4.16 0.93 0.0004
3.5.4.39 1.77 0.0124 2.4.1.279 0.81 0.0238 3.5.2.17 -0.7 0.0318
2.7.1.130 -0.99 0.0041 1.5.1.43 -0.58 0.0144 3.2.1.85 -0.96 0.0131
2.7.14.1 0.82 0.0098 4.2.2.26 1.71 0.0186 3.6.1.67 -0.86 0.0496
3.4.15.5 -0.95 0.0001 3.1.3.16 -0.58 0.0242 1.1.1.383 1.04 0.003
5.3.99.11 -1.23 0.0048 3.1.1.11 -2.19 0.0395 1.1.1.385 -1.28 0.0315
4.1.1.75 -0.77 0.033 2.7.1.207 -0.98 0.0272 3.5.1.108 -0.81 0.0137
2.1.1.74 0.63 0.003 5.4.99.27 -0.85 0.0302 5.3.2.8 -1.09 0.0217
2.1.1.242 -1.11 0.0273 2.8.2.22 -0.75 0.0343 3.1.13.5 -0.77 0.0449
2.8.1.6 -0.73 0.0159 4.2.1.42 -1.04 0.0068 2.7.1.5 -0.67 0.0034
2.7.8.8 -0.99 0.0464 4.2.1.40 -0.91 0.0058 1.9.3.1 -2.14 0.0228

2.3.1.263 0.68 0.0388 2.4.1.54 -1.02 0.0068 3.2.1.99 -1.13 0.0358
3.1.3.27 -0.94 0.0408 2.2.1.10 1.33 0.0233 4.1.99.19 -0.72 0.0489
3.1.3.25 -0.71 0.0199 2.7.1.144 -1.16 0.0336 4.1.3.4 1.38 0.0219
1.3.4.1 1.2 0.0491 2.8.3.5 0.61 0.0035 4.1.3.3 -0.99 0.028

1.1.1.310 1.25 0.0209 5.5.1.27 1.68 0.0167 3.4.21.72 -1.89 0.0196
2.6.1.14 -0.61 0.0108 1.12.1.2 0.98 0.0017 1.14.13.2 -3.11 0.0355
1.1.1.308 0.97 0.0039 3.4.24.70 -1.05 0.0001 4.3.1.24 -1.59 0.0327
1.1.1.304 -0.98 0.0486 3.4.24.78 0.67 0.0098 3.4.11.9 -0.84 0.0343
2.7.1.219 -2.22 0.0466 1.8.98.1 0.8 0.008
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Table 3.42: Significant differentially abundant ECs identified by HUMAnN2 (trans-
lated) in the PD-Bedarf data set. Significance thresholds used: BH corrected
Wilcoxon rank-sum test 𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC adjusted
p-value EC logFC adjusted

p-value EC logFC adjusted
p-value

1.1.5.2 -0.99 0.0327 4.4.1.8 -0.81 0.0366 2.7.1.193 -1.13 0.0345
2.7.7.19 -0.85 0.0201 4.4.1.5 -1.18 0.0485 1.16.3.1 -1.12 0.026
4.4.1.24 3.31 0.0216 3.1.3.45 -1.38 0.0049 3.5.3.7 -2.17 0.0427
4.4.1.21 -0.67 0.0441 2.7.1.17 -0.98 0.0397 2.7.1.25 -0.87 0.009
2.7.1.59 -0.86 0.0332 1.3.1.108 0.77 0.0372 2.1.1.193 -1.07 0.0284
3.5.1.104 0.86 0.0323 5.1.1.7 -0.65 0.0188 2.1.1.198 -1.12 0.045
1.1.1.58 -0.62 0.0166 6.5.1.2 -0.79 0.0167 5.1.3.9 -0.66 0.0229
1.2.7.3 1.46 0.0197 5.4.99.19 -1.13 0.007 2.1.1.171 -1.17 0.0158
3.6.1.55 -0.90 0.0178 1.1.1.283 2.08 0.0446 2.1.1.173 2.40 0.0316
1.3.1.91 -0.70 0.0366 3.5.2.17 -0.91 0.0236 1.1.1.346 -1.22 0.0325
2.5.1.86 2.59 0.0188 3.2.1.85 -1.14 0.0452 1.1.1.38 -0.81 0.0331
4.1.1.17 -0.64 0.0226 6.3.5.7 0.98 0.0032 2.3.3.13 -0.70 0.049
2.4.2.3 -0.89 0.0382 1.2.4.2 -0.79 0.0248 2.1.1.189 -1.01 0.0342
2.4.2.2 0.69 0.0119 4.1.2.25 -1.50 0.0291 6.4.1.3 1.02 0.0125
3.5.4.27 2.79 0.0474 4.1.2.21 -0.66 0.045 2.3.1.180 -0.62 0.0324
2.3.1.241 -0.85 0.0361 4.3.1.3 0.76 0.0425 3.3.1.1 1.05 0.0045
2.3.1.247 1.20 0.0076 1.1.1.383 0.73 0.0397 2.6.1.48 -1.02 0.0086
2.7.7.39 1.27 0.0158 2.3.1.174 1.26 0.0086 4.1.2.14 -0.98 0.0204
1.2.1.11 -0.87 0.0373 2.7.8.14 5.65 0.0271 2.7.7.56 -0.59 0.0403
2.5.1.90 -1.01 0.0463 5.4.99.2 0.69 0.0174 4.2.1.82 -2.13 0.0167
2.3.1.n4 -1.75 0.0029 1.3.3.11 -2.32 0.0399 1.1.1.385 2.72 0.0483
5.3.3.14 -1.37 0.0046 5.4.99.27 -1.00 0.0395 2.5.1.55 -0.58 0.0446
3.5.4.32 2.70 0.0361 5.4.99.24 -0.71 0.0415 4.2.1.1 -0.97 0.0397
2.1.2.9 -0.78 0.0384 5.3.1.28 -1.14 0.01 2.7.7.75 -0.96 0.0191
1.2.7.1 0.82 0.003 3.6.3.4 0.84 0.0173 3.6.3.42 2.39 0.0016
2.3.2.6 -1.23 0.0332 3.4.21.116 1.66 0.0021 1.14.11.47 -0.93 0.0318
6.3.4.20 -0.59 0.0042 2.7.1.148 -0.82 0.0468 1.5.1.3 -0.94 0.0403
2.7.8.8 -1.04 0.027 6.4.1.1 1.52 0.0005 1.1.1.60 -0.75 0.019

2.3.1.263 1.99 0.0056 3.6.5.n1 0.66 0.003 2.7.7.6 0.62 0.0027
2.7.9.1 0.81 0.0024 3.4.21.92 0.66 0.0047 2.1.1.181 -0.67 0.0497
3.1.3.27 -0.85 0.0297 6.3.2.2 -1.00 0.0445 5.4.3.5 1.91 0.0022
3.1.3.25 -0.73 0.0345 4.2.1.2 0.63 0.0358 5.4.3.4 0.97 0.0023
5.1.1.13 1.83 0.0007 6.3.2.8 -0.75 0.0244 5.4.3.3 0.92 0.0028
2.7.6.1 -0.66 0.0491 6.3.4.3 0.78 0.0021 5.4.3.2 1.00 0.0158
2.6.1.11 0.84 0.0442 2.7.10.2 1.14 0.0146 4.1.1.32 2.09 0.0022
4.2.2.24 2.05 0.007 2.3.1.35 5.63 0.0253 4.1.1.37 -0.67 0.0483
3.6.3.29 1.36 0.0311 1.10.3.14 -0.63 0.0337 6.3.4.18 -0.65 0.0417
2.3.1.54 0.71 0.0182
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Table 3.43: Significant differentially abundant ECs identified by Kraken2 in the PD-
Bedarf data set. Significance thresholds used: BH corrected Wilcoxon rank-sum test
𝑝-value < 0.05 and abs (log fold change) > 0.58.

EC logFC adjusted
p-value EC logFC adjusted

p-value EC logFC adjusted
p-value

4.4.1.21 -0.65 0.0152 4.2.2.26 1.15 0.0039 2.3.1.228 1.13 0.021
2.5.1.72 -0.65 0.0052 3.2.2.8 -0.92 0.0241 1.14.14.5 -0.91 0.0231
3.5.1.104 0.83 0.0448 1.12.98.4 1.01 0.0079 4.2.3.170 3.25 0.0187
1.1.1.53 1.87 0.0007 1.12.98.2 1.01 0.0385 1.1.1.35 0.66 0.0025
1.2.7.8 0.63 0.0174 4.2.1.40 -0.93 0.0093 1.1.2.8 1.07 0.0082

3.4.14.12 -0.95 0.0018 5.3.1.29 1.09 0.0355 1.2.99.8 1.34 0.0145
1.13.11.75 -1.59 0.0296 2.4.2.36 1.89 0.0413 2.4.99.21 1.32 0.0108
1.1.99.6 -1.08 0.0111 2.4.2.31 -1.00 0.0211 2.6.1.48 -0.63 0.0209
1.1.1.302 -0.95 0.0018 3.1.4.16 0.91 0.0024 4.1.2.14 -0.68 0.0361
2.5.1.86 0.69 0.0006 3.2.1.85 -1.11 0.0058 2.7.7.1 2.04 0.0039
4.2.2.6 -3.24 0.0148 2.1.1.315 0.80 0.0206 1.1.1.350 -1.10 0.0133
2.4.1.11 1.45 0.0295 3.5.1.108 -0.72 0.0454 4.2.1.109 3.97 0.0253
2.4.1.12 -0.94 0.0096 3.4.21.72 1.06 0.0012 3.5.4.3 -0.58 0.0103
6.3.2.44 0.67 0.0472 3.5.1.25 -0.65 0.0058 2.7.1.219 -0.63 0.0454
4.1.1.104 -0.98 0.0115 1.3.5.1 -0.60 0.0166 3.2.1.122 -0.83 0.0028
3.11.1.1 -0.92 0.0199 4.1.1.87 1.52 0.0068 3.8.1.7 -1.59 0.0436
1.1.1.107 0.72 0.031 4.1.1.81 0.64 0.0208 3.4.23.42 0.99 0.0304
2.4.1.250 0.76 0.0079 5.4.99.17 1.34 0.0295 4.2.3.154 -0.98 0.0459
1.14.15.12 -1.51 0.0164 6.3.2.5 -0.62 0.0249 1.1.1.298 -0.88 0.0317
2.7.14.1 0.83 0.0103 2.1.1.298 -0.59 0.0296 1.7.1.15 -0.82 0.044
2.1.1.74 0.75 0.0007 1.8.98.1 0.65 0.0467 1.1.1.14 0.64 0.0293
5.5.1.16 3.62 0.0022 3.1.3.78 2.18 0.0062 5.4.99.19 -0.71 0.0358
3.1.3.25 -0.73 0.0065 3.4.21.105 -0.84 0.0468 1.1.1.286 0.89 0.0431
1.3.4.1 1.15 0.0485 3.1.1.31 -0.87 0.0268 2.5.1.113 -0.59 0.0166
2.7.4.2 -0.83 0.0258 3.5.3.23 -0.95 0.0194 1.14.13.2 -2.39 0.0216

2.3.1.129 -1.03 0.0454 2.1.1.289 -2.33 0.0007 4.3.1.23 1.51 0.0204
2.4.1.279 0.93 0.0065 6.6.1.1 0.71 0.0043 3.4.11.7 -1.07 0.0431
2.3.1.94 1.19 0.0303 2.7.4.29 -0.84 0.0463 5.4.3.5 0.76 0.0013
3.6.4.9 1.47 0.005 2.1.1.196 0.96 0.0068 4.1.1.32 0.94 0.0034
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Table 3.44: Pathways identified as significantly variable between PD patients and
healthy controls in the PD-Bedarf data set using Carnelian-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and abs (log fold change) > 0.11.

Category Name logFC adjusted
p-value

C Pentose and glucuronate interconversions -0.31 0.0009
C Fructose and mannose metabolism -0.22 0.0039
C Galactose metabolism -0.18 0.0013
C Ascorbate and aldarate metabolism -0.28 0.0171

AA Alanine, aspartate and glutamate metabolism -0.18 0.0213
X Benzoate degradation 0.15 0.0015

AA Phenylalanine, tyrosine and tryptophan biosynthesis -0.19 0.0190
AA D-Alanine metabolism 0.25 0.0029
AA Glutathione metabolism -0.49 0.0016
C Starch and sucrose metabolism -0.19 0.0020

SM Streptomycin biosynthesis -0.24 0.0397
T Polyketide sugar unit biosynthesis -0.32 0.0452
G Glycosaminoglycan degradation -0.32 0.0372
G Peptidoglycan biosynthesis 0.20 0.0022
G Lipoarabinomannan (LAM) biosynthesis 0.34 0.0060
L Sphingolipid metabolism -0.35 0.0107
L Glycosphingolipid biosynthesis - globo and isoglobo series -0.43 0.0325
L Glycosphingolipid biosynthesis - ganglio series -0.37 0.0372
V Folate biosynthesis -0.13 0.0303
V Porphyrin and chlorophyll metabolism 0.12 0.0482
T Zeatin biosynthesis 0.26 0.0099
X Drug metabolism - other enzymes -0.19 0.0066

SM Biosynthesis of secondary metabolites - unclassified 0.15 0.0264
T Biosynthesis of vancomycin group antibiotics -0.36 0.0424

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism; N =
Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino
acids as well); SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and
Metabolism; V = Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation
and Metabolism; GI = Genetic Information Processing; T = Metabolism of Terpenoids and
Polyketides.
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Table 3.45: Pathways identified as significantly variable between PD patients and
healthy controls in the PD-Bedarf data set using mi-faser-generated functional pro-
files. Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value <
0.05 and abs (log fold change) > 0.11.

Category Name logFC adjusted
p-value

C Pentose and glucuronate interconversions -0.31 0.0022
C Fructose and mannose metabolism -0.21 0.0099
C Galactose metabolism -0.18 0.0018
C Ascorbate and aldarate metabolism -0.31 0.0099
L Fatty acid elongation -0.45 0.0482
T Ubiquinone and other terpenoid-quinone biosynthesis -0.60 0.0184
N Purine metabolism 0.12 0.0071
N Pyrimidine metabolism 0.19 0.0010

SM Phenazine biosynthesis -0.25 0.0283
AA Phosphonate and phosphinate metabolism -0.79 0.0229
AA Selenocompound metabolism -0.13 0.0184
AA D-Arginine and D-ornithine metabolism 0.69 0.0116
AA Glutathione metabolism -0.43 0.0158
C Starch and sucrose metabolism -0.16 0.0264
G Other glycan degradation -0.60 0.0007
G Glycosaminoglycan degradation -0.59 0.0005
C Inositol phosphate metabolism 0.26 0.0065
L Sphingolipid metabolism -0.53 0.0016
L Glycosphingolipid biosynthesis - ganglio series -0.60 0.0009
X Nitrotoluene degradation 0.18 0.0325
V One carbon pool by folate 0.12 0.0424
V Biotin metabolism -0.20 0.0042
V Folate biosynthesis -0.31 0.0013
T Limonene and pinene degradation -0.48 0.0371
T Zeatin biosynthesis 0.44 0.0020
X Caprolactam degradation -0.54 0.0424
GI Aminoacyl-tRNA biosynthesis 0.15 0.0055
X Drug metabolism - other enzymes -0.12 0.0012
X Steroid degradation -0.57 0.0303

SM Biosynthesis of secondary metabolites - unclassified 0.33 0.0032
* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism;

N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of
other amino acids as well); SM = Biosynthesis of Secondary Metabolites; G = Gly-
can Biosynthesis and Metabolism; V = Metabolism of Co-factors and Vitamins; X =
Xenobiotics Biodegradation and Metabolism; GI = Genetic Information Processing; T
= Metabolism of Terpenoids and Polyketides.
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Table 3.46: Pathways identified as significantly variable between PD patients and
healthy controls in the PD-Bedarf data set functional profiles generated by HUMAnN2
(translated). Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-
value < 0.05 and abs (log fold change) > 0.11.

Category Name logFC adjusted
p-value

C Citrate cycle (TCA cycle) 0.28 0.005511
C Pentose phosphate pathway -0.29 0.015847
C Pentose and glucuronate interconversions -0.39 0.030336
C Galactose metabolism -0.19 0.008417
L Synthesis and degradation of ketone bodies 0.41 0.026405
N Purine metabolism 0.41 0.002425
N Pyrimidine metabolism 0.52 0.007124

SM Monobactam biosynthesis -0.31 0.03248
AA Valine, leucine and isoleucine degradation 0.45 0.012579
AA Lysine degradation 0.77 0.001641
AA beta-Alanine metabolism -0.69 0.030336
AA D-Arginine and D-ornithine metabolism 2.18 0.001629
C Starch and sucrose metabolism -0.47 0.028313
C Pyruvate metabolism 0.34 0.000714
X Nitrotoluene degradation 0.74 0.000325
C Propanoate metabolism 0.42 0.000032
C Butanoate metabolism 0.28 0.022911
V One carbon pool by folate 0.3 0.00991
E Methane metabolism 0.37 0.003526
E Carbon fixation in photosynthetic organisms 0.37 0.019818
E Carbon fixation pathways in prokaryotes 0.6 0.000021
C Pantothenate and CoA biosynthesis -0.5 0.015847

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy
Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism
(includes metabolism of other amino acids as well); SM = Biosynthesis of
Secondary Metabolites; G = Glycan Biosynthesis and Metabolism; V =
Metabolism of Co-factors and Vitamins; X = Xenobiotics Biodegradation and
Metabolism; GI = Genetic Information Processing; T = Metabolism of Ter-
penoids and Polyketides.
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Table 3.47: Pathways identified as significantly variable between PD patients and
healthy controls in the PD-Bedarf data set functional profiles generated by Kraken2.
Significance thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value < 0.05
and abs (log fold change) > 0.11.

Category Name logFC adjusted
p-value

C Pentose and glucuronate interconversions -0.35 0.0016
C Fructose and mannose metabolism -0.17 0.0264
C Galactose metabolism -0.23 0.0002
C Ascorbate and aldarate metabolism -0.32 0.0084
L Primary bile acid biosynthesis 0.81 0.0013
L Steroid hormone biosynthesis 2.27 0.0014
N Purine metabolism 0.13 0.0126
N Pyrimidine metabolism 0.22 0.0006

AA Alanine, aspartate and glutamate metabolism -0.14 0.0126
AA Arginine and proline metabolism -0.15 0.0482
AA Histidine metabolism -0.18 0.0171
AA Phenylalanine, tyrosine and tryptophan biosynthesis -0.15 0.0325
AA Selenocompound metabolism -0.23 0.0046
AA D-Arginine and D-ornithine metabolism 0.59 0.0091
AA Glutathione metabolism -0.41 0.0147
C Starch and sucrose metabolism -0.13 0.0371
G Other glycan degradation -0.42 0.0099
C Amino sugar and nucleotide sugar metabolism -0.13 0.0452
G Glycosaminoglycan degradation -0.42 0.0055
G Lipopolysaccharide biosynthesis -0.47 0.0397
G Peptidoglycan biosynthesis 0.18 0.0424
L Glycosphingolipid biosynthesis - ganglio series -0.42 0.0099
X Toluene degradation 0.87 0.0006
V Riboflavin metabolism -0.48 0.0032
V Folate biosynthesis -0.37 0.0029
T Zeatin biosynthesis 0.38 0.0229
E Nitrogen metabolism -0.15 0.0482
GI Aminoacyl-tRNA biosynthesis 0.2 0.0032
SM Biosynthesis of secondary metabolites - unclassified 0.32 0.0136

* Here, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism;
N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism
of other amino acids as well); SM = Biosynthesis of Secondary Metabolites; G =
Glycan Biosynthesis and Metabolism; V = Metabolism of Co-factors and Vitamins; X
= Xenobiotics Biodegradation and Metabolism; GI = Genetic Information Processing;
T = Metabolism of Terpenoids and Polyketides.
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Table 3.48: Pathways identified as significantly variable between PD patients and
healthy controls in the PD-Bedarf data set functional profiles generated by out-of-
the-box HUMAnN2 using ChocoPhlAn, Uniref, and MetaCyc databases. Significance
thresholds used: BH corrected Wilcoxon rank-sum test 𝑝-value < 0.05, abs (log fold
change) > 0.11 and coverage > 0.10.

Category MetaCyc ID Name logFC adjusted
p-value coverage

V 1CMET2-PWY N10-formyl-tetrahydrofolate
biosynthesis -0.60 0.03 0.55

AA ASPASN-PWY Superpathway of L-aspartate and
L-asparagine biosynthesis -0.76 0.01 0.17

T NONMEVIPP-PWY methylerythritol phosphate pathway I -0.59 0.04 0.95
V PANTO-PWY phosphopantothenate biosynthesis I -0.59 0.03 0.86

AA PWY-2942 L-lysine biosynthesis III -0.59 0.03 0.95
V PWY-3841 folate transformations II -0.55 0.04 0.64

AA PWY-5097 L-lysine biosynthesis VI -0.55 0.02 0.94
L PWY-5667 CDP-diacylglycerol biosynthesis I -0.65 0.01 0.88
N PWY-5686 UMP biosynthesis I -0.53 0.04 1.00
N PWY-5695 inosine 5’-phosphate degradation -0.74 0.02 0.77
L PWY-5973 cis-vaccenate biosynthesis -0.70 0.01 0.70

N PWY-6126 superpathway of adenosine nucleotides
de novo biosynthesis II -0.69 0.04 0.18

AA PWY-6151 S-adenosyl-L-methionine cycle I -0.82 0.01 0.95
N PWY-6609 adenine and adenosine salvage III -0.49 0.02 0.15
N PWY-6700 queuosine biosynthesis -0.72 0.03 0.80
V PWY-6897 thiamine salvage II -0.63 0.04 0.19

N PWY-7219 adenosine ribonucleotides
de novo biosynthesis -0.58 0.03 1.00

N PWY-7221 guanosine ribonucleotides
de novo biosynthesis -0.58 0.04 1.00

N PWY-7229 superpathway of adenosine nucleotides
de novo biosynthesis I -0.66 0.03 0.19

N PWY0-1296 purine ribonucleosides degradation -0.70 0.04 0.27
L PWY0-1319 CDP-diacylglycerol biosynthesis II -0.65 0.01 0.88

L PWY4FS-7 phosphatidylglycerol biosynthesis I
(plastidic) -0.99 0.05 0.12

L PWY4FS-8 phosphatidylglycerol biosynthesis
II (non-plastidic) -0.99 0.05 0.12

* Here, L = Lipid Metabolism; N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes
metabolism of other amino acids as well); V = Metabolism of Co-factors and Vitamins; T = Metabolism of
Terpenoids and Polyketides.
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3.2.6 Robustness to sequencing technology biases

To test for Carnelian’s robustness against the biases introduced by different sequenc-

ing technologies, we analyzed the sequencing reads generated by Roche 454 FLX

Titanium and the Illumina Genome Analyzer (GA) II on the same DNA sample ob-

tained from a complex planktonic community from a temperate freshwater lake (Lake

Lanier, Atlanta, GA) from the Luo et al. study [201]. Raw sequencing reads were

downloaded from the JGI Genomic Portal (https://genome.jgi.doe.gov/portal/)

with a free account. Carnelian could capture similar functional diversity at both EC

and pathway levels (Spearman correlation coefficients 0.87 and 0.89 respectively) de-

spite the differences in sequencing technologies.

3.2.7 Applicability to environmental metagenomes

Since many of the species found in the human microbiome are well annotated, and

many of the proteins in the reference databases come from human commensal bacteria,

Carnelian, as well as other functional annotation methods, is expected to provide

high-quality annotations for metagenomic reads from human body sites. Despite

the existence of such bias in the reference data set, Carnelian can find meaningful

biological insights from environmental metagenomic samples which we demonstrated

using six aquatic metagenomes from an asbestos mine pit pond in Vermont (VAG-

pond data set [185] and six beach sand metagenomes from the Deepwater Horizon oil

spill site (DWH-spill data set [202]).

In the VAG-pond data set, we found the functional profiles of the samples from

all three layers of the pond to be different from the freshwater samples; they showed

high intra-layer correlations and relatively low inter-layer correlation as expected (Ta-

ble 3.49). We identified several highly variable ECs which were abundant in the

surface layer (epilimnion) where the sunlight, temperature, and amount of dissolved

oxygen is higher and less abundant at the middle (hypolimnion) and bottom lay-

ers (hypolimnion). For example, EC terms 1.3.15.15, 4.99.1.4, and 2.7.1.177, vital

in porphyrin and chlorophyll metabolism, were depleted both in the metalimnion
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Table 3.49: Kendall rank correlation between the functional profiles of VAG-pond
samples generated by Carnelian.

Epilimnion Metalimnion Hypolimnion Freshwater
1-S 2-S 3-S 1-M 2-M 3-M 2-B 3-B 1-F 2-F

Epilimnion
1-S 1 - - - - - - - - -
2-S 0.81 1 - - - - - - - -

(Surface) 3-S 0.83 0.86 1 - - - - - - -

Metalimnion
1-M 0.79 0.76 0.79 1 - - - - - -
2-M 0.73 0.77 0.78 0.74 1 - - - - -

(Middle) 3-M 0.78 0.8 0.79 0.82 0.78 1 - - - -
Hypolimnion 2-B 0.72 0.77 0.75 0.74 0.74 0.78 1 - - -

(Bottom) 3-B 0.7 0.74 0.73 0.7 0.75 0.74 0.85 1 - -
Freshwater 1-F 0.57 0.61 0.59 0.59 0.6 0.75 0.65 0.66 1 -
(Control) 2-F 0.53 0.57 0.56 0.54 0.67 0.6 0.6 0.63 0.6 1

and hypolimnion layers compared to the epilimnion layer (Table 3.50). Conversely,

EC terms 2.7.4.31, 3.5.4.27, and 4.2.1.147 (implicated in methane metabolism), and

3.1.3.87, 4.1.1.50, and 5.3.1.23 (involved in sulfur-containing amino-acid metabolism)

were found abundant in the hypolimnion layer and depleted in the epilimnion layer

(Table 3.50). Interestingly, several ECs, such as 1.14.11.7 (involved in sulfur meta-

bolism) were found enriched in the metalimnion layer compared to both epilimnion

and hypolimnion layers (Table 3.50).

We also observed high variability in several pathways, including the synthesis and

degradation of ketone bodies, monobactam biosynthesis, Geraniol degradation, and

D-arginine, D-ornithine metabolism between all three layers (Table 3.51). Reduced

rate of oxidative phosphorylation was observed in hypolimnion compared to epil-

imnion, which was expected in the presence of less dissolved oxygen and sunlight in

the bottom layer. Overall, the functional profiles of the samples from the bottom layer

showed slightly more functional variability compared to the top two layers as indi-

cated by Shannon-Wiener index (Figure 3-11) which agrees with the taxonomic-level

findings of the original study [185].

143



Table 3.50: Highly variable ECs between the epilimnion, metalimnion, and
hypolimnion layers found by Carnelian in the VAG-pond data set.

EC EM_FC EH_FC MH_FC EC EM_FC EH_FC MH_FC

2.7.1.202 6.19 13.82 2.23 4.3.1.7 0.96 0.23 0.22

4.1.1.47 1.02 2.91 2.85 2.7.1.164 0.9 0.25 0.22

2.7.1.177 1.38 2.86 2.07 5.5.1.16 0.86 0.26 0.22

1.3.7.15 1.33 2.86 2.15 2.5.1.97 1.21 0.2 0.24

3.4.17.n1 0.57 2.41 4.24 1.1.1.14 0.78 0.31 0.24

1.1.1.108 0.54 2.09 3.9 1.2.1.80 0.79 0.31 0.24

2.7.7.76 0.35 1.99 5.63 1.4.1.24 0.71 0.35 0.24

5.4.1.4 0.64 1.83 2.85 2.5.1.105 0.71 0.35 0.25

1.14.11.17 0.36 1.06 2.94 3.6.3.12 1.11 0.23 0.25

3.5.4.3 0.25 0.33 0.08 5.3.1.23 1.04 0.24 0.25

4.99.1.4 2.5 3.45 8.33 1.1.1.382 1.52 0.17 0.25

5.1.3.29 0.4 0.31 0.13 3.2.1.37 0.83 0.31 0.26

5.1.99.1 0.53 0.24 0.13 3.6.1.17 0.91 0.28 0.26

1.13.11.48 0.53 0.25 0.13 1.6.1.1 0.76 0.34 0.26

2.1.1.156 0.63 0.23 0.14 4.2.1.82 1.21 0.21 0.26

1.20.4.3 0.56 0.29 0.16 4.2.1.147 1.14 0.23 0.26

2.7.14.1 0.61 0.27 0.17 2.6.1.83 0.89 0.3 0.27

4.1.1.98 0.49 0.34 0.17 2.6.1.59 0.94 0.29 0.27

4.2.1.171 1.13 0.15 0.17 3.5.1.44 1.43 0.19 0.27

1.11.1.6 0.51 0.34 0.18 5.1.3.30 1 0.28 0.28

1.4.3.23 0.75 0.25 0.18 4.1.2.27 0.91 0.31 0.28

1.14.99.50 1.21 0.15 0.18 1.12.98.4 0.84 0.34 0.28

1.1.1.412 0.97 0.19 0.19 1.13.11.49 1.1 0.26 0.28

2.7.8.47 0.67 0.28 0.19 4.2.2.22 0.95 0.3 0.28

4.1.1.50 1 0.19 0.19 3.4.17.19 0.82 0.35 0.29

2.7.4.31 0.82 0.24 0.19 3.1.3.87 1.04 0.28 0.29

1.1.1.286 0.64 0.31 0.2 3.4.17.14 0.91 0.33 0.3

3.6.1.7 0.75 0.26 0.2 1.1.1.390 0.9 0.33 0.3

3.1.1.17 1.05 0.19 0.2 1.3.1.104 0.86 0.35 0.3

1.21.98.1 1.08 0.19 0.2 3.1.1.61 1.2 0.25 0.3

2.7.1.162 1.09 0.19 0.2 3.2.1.67 0.89 0.34 0.3

4.2.1.83 0.66 0.31 0.2 1.1.1.343 1.25 0.25 0.31

2.4.1.1 0.74 0.29 0.21 4.2.1.5 0.91 0.35 0.32

2.2.1.10 0.67 0.32 0.21 3.5.4.27 1.06 0.31 0.32

1.1.1.374 0.71 0.3 0.21 1.5.3.1 0.96 0.35 0.33

3.6.3.4 0.63 0.34 0.21 4.2.3.156 1.14 0.3 0.34

3.5.1.102 0.69 0.32 0.22 2.4.1.320 1.95 0.18 0.35

* Here, EM = Epilimnion vs. Metalimnion, EH = Epilimnion vs. Hypolimnion, MH = Metalimnion vs.

Hypolimnion, and FC = Fold Change.
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Table 3.51: Highly variable pathways between the epilimnion, metalimnion, and
hypolimnion layers found by Carnelian in the VAG-pond data set.

Category Pathway Coverage
EM EH MH

logFC logFC logFC

L Synthesis and degradation of ketone bodies 1 0.13 0.37 0.23

SM Monobactam biosynthesis 0.5 0.17 0.29 0.12

T Geraniol degradation 0.4 0.09 0.26 0.18

X Benzoate degradation 0.39 0.07 0.24 0.17

G Lipoarabinomannan (LAM) biosynthesis 0.5 0.15 0.24 0.1

SM Carbapenem biosynthesis 0.4 0.09 0.24 0.15

L Biosynthesis of unsaturated fatty acids 0.32 0.03 0.23 0.2

G Arabinogalactan biosynthesis - Mycobacterium 0.86 0.13 0.22 0.09

AA Valine, leucine and isoleucine degradation 0.58 0.06 0.2 0.14

AA Valine, leucine and isoleucine biosynthesis 0.71 0.01 0.18 0.17

L alpha-Linolenic acid metabolism 0.33 0.06 0.18 0.12

AA Lysine degradation 0.39 0.03 0.17 0.14

C C5-Branched dibasic acid metabolism 0.43 0.01 0.17 0.16

C Butanoate metabolism 0.58 0.04 0.17 0.13

AA Phosphonate and phosphinate metabolism 0.38 0.14 0.17 0.03

T Terpenoid backbone biosynthesis 0.56 0.04 0.17 0.13

L Fatty acid degradation 0.38 0.03 0.16 0.13

AA Lysine biosynthesis 0.78 0.08 0.16 0.08

X Dioxin degradation 0.62 0.07 0.15 0.08

T Ubiquinone and other terpenoid-quinone biosynthesis 0.49 0.02 0.15 0.13

X Ethylbenzene degradation 0.67 0.03 0.14 0.11

X Steroid degradation 0.54 0.11 0.13 0.01

AA Glycine, serine and threonine metabolism 0.66 0.04 0.12 0.08

V Lipoic acid metabolism 0.75 -0.03 0.11 0.15

C Galactose metabolism 0.61 -0.06 -0.11 -0.05

SM Penicillin and cephalosporin biosynthesis 0.43 -0.01 -0.12 -0.1

E Oxidative phosphorylation 0.62 0.04 0.13 0.1

C Starch and sucrose metabolism 0.68 0 -0.14 -0.13

G Other glycan degradation 0.44 -0.01 -0.14 -0.14

G Mannose type O-glycan biosynthesis 0.38 -0.12 -0.14 -0.02

AA D-Arginine and D-ornithine metabolism 0.64 -0.07 -0.24 -0.16

* Thresholds used: coverage ≥ 0.30 and absolute log fold-change (logFC) > 0.11. Coverage is calculated as the

ratio of the number of Carnelian-identified ECs mapped to a pathway to the total number of gold-standard

ECs in the pathway. Here, EM = Epilimnion vs. Metalimnion, EH = Epilimnion vs. Hypolimnion, MH =

Metalimnion vs. Hypolimnion, C = Carbohydrate Metabolism; L = Lipid Metabolism; E = Energy Metabolism;

N = Nucleotide Metabolism; AA = Amino Acid Metabolism (includes metabolism of other amino acids as well);

SM = Biosynthesis of Secondary Metabolites; G = Glycan Biosynthesis and Metabolism; V = Metabolism of Co-

factors and Vitamins; X = Xenobiotics Biodegradation and Metabolism; GI = Genetic Information Processing;

T = Metabolism of Terpenoids and Polyketides.
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Figure 3-11: Violin plot showing the functional diversity observed at differ-
ent layers of the Vermont mine pit pond (VAG-Pond data set). Samples from
the hypolimnion (bottom) layer show higher functional diversity than both epilimnion
(surface) and metalimnion (middle) layers, as indicated by the Shannon-Wiener in-
dices.

In the DWH-spill data set, we observed a high intra-phase correlation between

the samples (Figure 3-12). We also observed much higher functional diversity in the

oil and post-oil phases compared to pre-oil phase (Shannon-Wiener Index: pre-oil:

3.43, oil: 5.82 post-oil: 5.78) which suggests a shift in the microbial functionality in

the area due to the disastrous event of an oil spill. Carnelian-generated functional

profiles showed a greater abundance of a number of ECs involved in the BTEX (Ben-

zene, Toluene, Ethylbenzene, and Xylenes) degradation pathways in the oil phase

compared to the pre-oil phase (Table 3.52). Notably, we observed an enrichment of

catechol 1,2-dioxygenase (EC 1.13.11.1), catechol-2,3-dioxygenase (1.13.11.2), proto-

catechuate 3,4-dioxygenase beta chain (1.13.11.3), and muconolactone delta-isomerase

(EC 5.3.3.4), key players in the aerobic degradation of aromatic hydrocarbons [203],

in the oil phase samples. Many of the oil-degrading functions were also enriched in the

post-oil phase which might suggest that the recovery process may not have finished at

the time of sample collection—a finding that agrees with other independent studies

of the same data set [72,204]. Notably, Carnelian found significant enrichment in all

BTEX metabolism pathways in the oil phase (Table 3.53).
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Figure 3-12: Non-metric multidimensional scaling (NMDS) plot depicting
the Carnelian-derived functional profiles of beach sand metagenomes from
the DWH-spill data set. Samples in each phase are functionally similar to each
other in both the leading log fold-change dimensions. Samples in the oil-phase are
functionally more similar to the samples in the post-oil phase.

Table 3.52: Hydrocarbon-degrading ECs involved in BTEX metabolism pathways
found enriched in the oil phase compared to the pre-oil phase in the DWH-spill data
set by Carnelian.

EC Name Oil/Pre Oil/Post

FC FC

1.1.1.35 3-hydroxyacyl-CoA dehydrogenase 2.23 0.97

1.12.98.4 Sulfhydrogenase 1 subunit beta 2.25 0.86

1.13.11.1 Catechol 1,2-dioxygenase 1.97 0.89

1.13.11.2 Catechol-2,3-dioxygenase 2.33 0.97

1.13.11.3 Protocatechuate 3,4-dioxygenase beta chain 1.89 0.9

1.13.11.39 Manganese-dependent 2,3-dihydroxybiphenyl 2.58 1.18

1,2-dioxygenase

1.13.11.57 Gallate dioxygenase 1.99 0.87

1.13.12.16 Nitronate monooxygenase 2.55 1.89

1.14.11.17 Alpha-ketoglutarate-dependent taurine dioxygenase 2.74 0.99

1.14.12.1 Anthranilate 1,2-dioxygenase large subunit 3.85 1.49

1.14.13.2 p-hydroxybenzoate hydroxylase (PHBH) 1.78 1.09

1.14.13.24 3-hydroxybenzoate 6-hydroxylase 1 2.26 1

1.14.13.7 Phenol 2-monooxygenase 2.13 1.04

1.14.14.1 Cytochrome P450 3A56 2.61 0.94

1.14.14.5 Alkanesulfonate monooxygenase 2.43 0.94

1.14.99.15 Cytochrome p450 CYP199A2 2.29 1

1.14.99.39 Ammonia monooxygenase alpha subunit (AMO) 1.74 0.83

(continued on next page)

147



Table 3.52: cont. Hydrocarbon-degrading ECs involved in BTEX metabolism path-
ways found enriched in the oil phase compared to the pre-oil phase in the DWH-spill
data set by Carnelian.

EC Name Oil/Pre Oil/Post

FC FC

1.2.1.10 Acetaldehyde dehydrogenase 2.53 1.5

1.2.1.39 Phenylacetaldehyde dehydrogenase (PAD) 2.19 1.01

1.3.1.32 Maleylacetate reductase 2 1.95 0.85

1.3.8.10 Cyclohex-1-ene-1-carbonyl-CoA dehydrogenase (Ch1CoA) 3.31 1.58

1.3.8.11 Cyclohexane-1-carbonyl-CoA dehydrogenase (ChCoA) 2.6 1.47

1.97.1.2 Pyrogallol hydroxytransferase large subunit 1.88 0.88

2.3.1.16 3-ketoacyl-CoA thiolase 2.05 1.18

2.3.1.9 Acetyl-CoA acetyltransferase A 1.68 1.26

2.8.3.12 Glutaconate CoA-transferase subunit A 2.42 0.91

2.8.3.6 3-oxoadipate CoA-transferase subunit A 1.8 0.96

2.8.3.8 Acetate CoA-transferase subunit alpha 2.55 0.95

3.1.1.24 3-oxoadipate enol-lactonase 2 1.89 1.03

3.1.1.45 Putative carboxymethylenebutenolidase 3.37 1.21

3.1.8.1 Aryldialkylphosphatase 2.44 0.84

3.5.1.4 Acetamidase 2.33 0.99

3.5.5.1 Nitrilase 3 2.18 0.95

3.8.1.2 (S)-2-haloacid dehalogenase 3.58 0.94

3.8.1.3 Haloacetate dehalogenase H-1 1.52 0.92

3.8.1.5 Haloalkane dehalogenase 1.52 0.99

3.8.1.7 4-chlorobenzoyl coenzyme A dehalogenase-1 2.19 0.95

4.1.1.61 4-hydroxybenzoate decarboxylase subunit C 2.64 0.93

4.1.1.7 Benzoylformate decarboxylase (BFD) 2.39 0.92

4.1.1.70 Glutaconyl-CoA decarboxylase subunit gamma 1.6 1.03

4.1.3.17 4-carboxy-4-hydroxy-2-oxoadipic acid aldolase 2.25 0.96

4.1.3.39 4-hydroxy-2-oxovalerate aldolase (HOA) 2.44 1.27

4.2.1.17 enoyl-CoA hydratase 2.23 1.22

4.2.1.80 2-keto-4-pentenoate hydratase 2.46 1.19

4.2.1.83 4-oxalmesaconate hydratase (OMA hydratase) 2.38 0.93

5.1.2.2 Mandelate racemase (MR) 2.25 0.93

5.3.2.8 4-oxalomesaconate tautomerase 2.69 1.12

5.3.3.4 Muconolactone Delta-isomerase (MIase) 3.91 0.92

5.4.4.3 3-hydroxylaminophenol mutase (3HAP mutase) 1.88 1.37

5.5.1.2 3-carboxy-cis,cis-muconate cycloisomerase 2.19 0.94

5.5.1.7 Chloromuconate cycloisomerase 2.04 0.84

6.2.1.32 Anthranilate–CoA ligase 2.47 1.06
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Table 3.53: Highly variable hydrocarbon metabolism pathways found by Carnelian
in the DWH-spill data set.

Pathway Oil-Pre Oil-Post # ECs CoverageFold Change Fold Change Mapped
Benzoate degradation 15.32 1.23 24 0.85
Aminobenzoate degradation 18.03 1.07 15 0.94
Chloroalkane and chloroalkene 17.15 1.1 11 1degradation
Chlorocyclohexane and 13.48 1.04 9 1chlorobenzene degradation
Dioxin degradation 21.31 1.31 7 0.88
Toluene degradation 17.5 1.01 6 1
Fluorobenzoate degradation 17.49 0.97 5 1
Styrene degradation 16.89 1.03 5 0.71
Xylene degradation 19.18 1.29 4 0.8
Ethylbenzene degradation 18.52 1.13 1 0.33
Polycyclic aromatic 18.73 1.07 1 1hydrocarbon degradation

Here, coverage is calculated as the ratio of the number of Carnelian-identified
ECs mapped to a pathway to the total number of gold-standard ECs in the
pathway. Pathways having coverage > 0.30 are reported.
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3.2.8 Benchmarking Results

We benchmarked Carnelian against state-of-the-art alignment-based tools: mi-faser,

and HUMAnN2, as well as a state-of-the-art alignment-free tool: Kraken2 using our

gold-standard database, EC-2010-DB. Off-the-shelf HUMAnN2 and Kraken2 use tax-

onomic information in addition to translated searches; to ensure fair comparison hence

we used only their “translated-search” modes. All comparisons were based on the esti-

mation of EC terms identified by each method using the same gold-standard reference

database. The reference databases used by mi-faser and HUMAnN2 and the Kraken2

reference index were created with Carnelian’s gold-standard reference database for

unbiased comparison.

Benchmarks for performance in functional inference

Testing a tool’s capability to infer the functional capacity of a metagenome is very

difficult in the absence of true functional labels. To achieve this, we simulated a

synthetic human gut metagenome containing 5 million single-ended, 250-nucleotide

DNA reads drawn from ChocoPhlAn pangenomes of the 20 most abundant bacterial

species in Human Microbiome Project (HMP) stool samples [197] by following an

approach similar to the HUMAnN2 paper by Franzosa and colleagues [73]. Species

abundances were geometrically staggered from 0.1x to 70x (Table 3.54). To ensure

that the synthetic metagenome has the desired relative abundance distribution of

the 20 species, we drew fragments from the ChocoPhlAn pangenomes of each species

with probability proportional to the product of the genome’s size and corresponding

species’ target relative abundance. To create a gold-standard EC profile of the syn-

thetic metagenome, we grouped the UniRef90 gene families present in the synthetic

metagenome under ECs using the annotations from UniProt and cross-referenced the

EC labels with our gold-standard database. The synthetic metagenome contained

9% read with 605 ECs from our reference database. These ECs were mapped to 117

KEGG metabolic pathways, which we consider as the pathway gold-standard.

Since the generation of synthetic metagenome does not account for the random
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Table 3.54: Composition of the synthetic gut metagenome used for the task of func-
tional capacity inference.

Species # Reads Proportion
Alistipes onderdonkii 1455410 29.11%
Alistipes putredinis 1031759 20.64%
Alistipes shahii 731372 14.63%
Bacteroides caccae 519394 10.39%
Bacteroides cellulosilyticus 368759 7.38%
Bacteroides dorei 261169 5.22%
Bacteroides massiliensis 185225 3.70%
Bacteroides ovatus 131266 2.63%
Bacteroides stercoris 93525 1.87%
Bacteroides thetaiotaomicron 65776 1.32%
Bacteroides uniformis 46771 0.94%
Bacteroides vulgatus 33147 0.66%
Barnesiella intestinihominis 23559 0.47%
Dialister invisus 16766 0.34%
Eubacterium rectale 11940 0.24%
Faecalibacterium prausnitzii 8770 0.18%
Parabacteroides distasonis 6115 0.12%
Parabacteroides merdae 4226 0.08%
Prevotella copri 2971 0.06%
Ruminococcus bromii 2080 0.04%
Total 5000000 100.00%
UniRef_annotated 4071989 81%
UniRef_unknown 928011 19%
EC_annotated 456107 9%

Random isolates of the listed species were selected from the ChocoPhlAn
database, and reads were drawn from their annotated coding sequences, ensuring
the target coverage in the synthetic metagenome.

variations introduced by the fragment sampling and may not give the true magnitude

of the EC abundances present in the metagenome, we do not compare against the

magnitude of the EC abundances. We calculated sensitivity as the ratio of the number

of correct functional terms (EC or pathway) identified by a method to the total

number of functional terms (EC or pathway) present in the synthetic metagenome

(determined by mapping the UniRef90 gene families present in the sample to gold-

standard ECs and KEGG pathways). Precision was calculated as the ratio of the

number of correct functional terms identified by a method to the total number of

functional terms identified by the method. F1-score was calculated as the geometric
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mean of precision and sensitivity. Carnelian achieved 82.15% sensitivity at the EC

level and 90.55% sensitivity at the pathway level, which were higher than the other

three tools (Table 3.55).

Table 3.55: Performance of Carnelian, mi-faser, HUMAnN2, and Kraken2 in func-
tional capacity inference from the synthetic gut metagenome data. Carnelian achieves
higher sensitivity and F1-score at both the EC and pathway levels as compared to mi-
faser, HUMAnN2, and Kraken2 searches on a synthetic gut metagenome comprising
of the 20 most abundant bacterial species in Human Microbiome Project (HMP) stool
samples. Here, sensitivity is calculated as the ratio of the number of correct functional
terms (EC or pathway) identified by a method to the total number of gold-standard
functional terms (EC or pathway) present in the synthetic metagenome. Precision
is calculated as the ratio of the number of correct functional terms identified by a
method to the total number of functional terms identified by the method. F1-score
is calculated as the geometric mean of precision and sensitivity. Best performances
are shown in boldface.

Tool Sensitivity (%) Precision (%) F1-score (%)

EC Carnelian 82.15 64.21 72.08
mi-faser 74.88 63.45 68.69

level HUMAnN2 30.41 70.23 42.45
Kraken2 59.83 52.24 56.78

Pathway Carnelian 90.55 86.47 88.46
mi-faser 84.25 91.45 87.7

level HUMAnN2 70.87 91.84 80
Kraken2 85.04 84.38 84.71

Like functional capacity inference, performance in functional difference inference

is equally difficult to measure. One way to do such benchmark was described by Lind-

green et al. [78] which we replicated. The data set consisted of different proportions

of cyanobacteria (more abundant in set A), Bradyrhizobium and Rhizobium (more

abundant in set A), and known pathogens (more abundant in set B). The shifts in

taxa were used as a proxy for the expected pathway shifts between the two sets in the

original study. Since the magnitude of the pathway abundances might differ from the

differences observed at the taxonomic level, we tested for the direction of the change

as suggested by Lindgreen and colleagues [78]. Carnelian identifies the expected di-
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rection of change in each of the three categories, where the rest of the methods don’t

(Figure 3-13).

Figure 3-13: Functional shifts predicted by Carnelian, mi-faser, HUMAnN2,
and Kraken2 on the Lindgreen et al. data set. A positive log fold change
means an increase in set A relative to set B and vice versa. The expected fold change
amounts were given by the original paper based on the taxonomic differences of the
two sets. The test data sets were created with differences in the relative abundance
of cyanobacteria (photosynthesis; more abundant in set A), Bradyrhizobium and
Rhizobium (nitrogen fixation; more abundant in set A), and known pathogens (more
abundant in set B). We profiled the metagenomes from the two sets with all four
methods and calculated pathway abundances by mapping the identified ECs to the
carbon-fixation, photosynthesis, nitrogen-fixation, two-component systems, bacterial
chemotaxis, and cell motility pathways and summing the abundances. Carnelian
identifies the expected direction of change in each of the three categories, where the
rest of the methods don’t.

Inspired by the above test, we simulated two sets of six complex metagenomes with

varying proportions of coding sequences from random isolates of 20 different species of

proteobacteria, cyanobacteria, photosynthetic bacteria, nitrogen-fixing bacteria and

known pathogens from the ChocoPhlAn database (Table 3.56). The gold-standard
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Table 3.56: Composition of the data set used for the task of functional change infer-
ence.

Species Set A Set B Average
A1 A2 A3 B1 B2 B3 Set A Set B

Anabaena sp 90 125384 100254 149865 751064 875154 650519 3% 15%
Bradyrhizobium diazoefficiens 249101 224954 274745 49967 50035 40149 5% 1%
Bradyrhizobium elkanii 250393 264246 214801 50136 40075 40236 5% 1%
Campylobacter coli 499756 449839 495120 75506 90185 100080 10% 2%
Chlorobium chlorochromatii 499910 400318 474744 74501 75118 100118 9% 2%
Chloroflexus aurantiacus 499942 600412 525030 99725 99630 75098 11% 2%
Erythrobacter litoralis 500580 549474 505666 74980 109706 75165 10% 2%
Escherichia albertii 50223 74874 24907 250429 274864 299179 1% 5%
Escherichia coli 50138 74624 49633 249811 275877 249701 1% 5%
Helicobacter canadensis 49893 49770 24998 250529 250215 224633 1% 5%
Microcystis aeruginosa 125138 150456 100086 748434 625162 624557 3% 13%
Nodularia spumigena 124423 150483 100215 749842 650422 848959 3% 15%
Nostoc punctiforme 124725 99389 150116 751316 849131 876120 2% 17%
Rhizobium freirei 250230 224940 200277 50064 59833 49784 5% 1%
Rhizobium grahamii 250005 274160 298599 49916 65349 75238 5% 1%
Rhodomicrobium vannielii 500826 525809 400816 99805 49724 60128 10% 1%
Rhodospirillum centenum 499860 475189 600069 75496 75315 90070 11% 2%
Salmonella enterica 50019 24909 74949 249450 224496 199586 1% 4%
Trichodesmium erythraeum 249610 261117 260705 49908 35508 45189 5% 1%
Vibrio campbellii 49844 24783 74659 249121 224201 275491 1% 5%
Total 5000000 5000000 5000000 5000000 5000000 5000000 100% 100%
Uniref annotated 4419647 4421728 4420501 4253105 4240995 4251735 88% 85%
Uniref unknown 580353 578272 579499 746895 759005 748265 12% 15%
EC annotated 456097 401600 446782 421600 456079 465900 9% 9%

Two sets of six complex metagenomes were created with varying proportions
of coding sequences from 20 different species of proteobacteria, cyanobacteria,
photosynthetic bacteria, nitrogen-fixing bacteria, and known pathogens.

EC and pathway profiles of the metagenomes were created in a similar way as the

synthetic gut metagenome described above. Each of the metagenomes contained 5

million single-ended, 250-nucleotide DNA reads, 9% of which had EC annotations.

We tested all four methods with the task of detecting the ECs and pathways with

the correct direction of the change, as demonstrated by the reference profiles.

The reference values for abundances of ECs were calculated by grouping the

Uniref90 gene families present in the simulated metagenomes by UniProt annotations

and normalizing the summed counts by fragment length and average gene length per

EC label. Similarly, reference values for pathway abundances were determined by

mapping the ECs to pathways and summing their abundances. The gold-standard

directions of the functional changes between two groups were determined by taking
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the fold-change of the average abundances of each functional term in the two sets.

Carnelian achieves slightly higher sensitivity at both EC and pathway level compared

to mi-faser and significantly higher sensitivity than HUMAnN2 and Kraken2. Sensi-

tivity is measured as the proportion of functional terms identified by a method with

the correct direction of shift between two sets (Table 3.57).

Table 3.57: Performance of Carnelian, mi-faser, HUMAnN2, and Kraken2 in func-
tional change inference from the two-set complex metagenomes. The ECs with ex-
pected log fold change > 1 are termed as highly variable ECs. Similarly, the pathways
with expected log fold change > 0.58 are termed as highly variable pathways. Sensi-
tivity is measured as the proportion of functional terms identified by a method with
the correct direction of shift between two sets. Carnelian achieves slightly higher sen-
sitivity at both EC and pathway level compared to mi-faser and significantly higher
sensitivity than HUMAnN2 and Kraken2.

Method Sensitivity at EC level (%) Sensitivity at pathway level (%)
All ECs Highly variable All pathways Highly variable

ECs Pathways
Carnelian 65.75 74.38 64.96 56.25
mi-faser 65.13 73.6 63.5 54.17

HUMAnN2 52.77 62.27 60.58 52.08
Kraken2 52 59.63 48.18 54.17

Accuracy benchmarks on our curated EC database

To test for accuracy, we benchmarked the tools on synthetic data sets generated

from Carnelian’s gold-standard reference proteins because actual functional labels for

reads in the real-world data sets are not available. Three synthetic read data sets

with read lengths 150 bp, 200 bp, and 250 bp were constructed, each consisting of

80% coding and 20% shuffled (non-coding) reads. The coding reads comprised of

30% seen sequences, 15% sequences drawn with 3% mutation rate, 15% sequences

drawn with 5% mutation rate from the reference database, and 20% novel reads

drawn from prokaryotic proteins with homology-based complete EC annotation from

the Uniprot/Swissprot database that are not present in our gold-standard database.
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Carnelian bins more reads than all other methods; especially in the case of novel

reads, Carnelian’s mappability is significantly better than other methods (Figure 3-

14(a)). We achieve significantly higher sensitivity compared to the other methods at

comparable accuracy (Figure 3-14(b)).

Figure 3-14: Comparison of Carnelian’s performance against mi-faser, HU-
MAnN2 and Kraken2 on our in-house synthetic data set. (a) Mappability
of reads in in-house benchmarking data sets. Three synthetic read data sets were
created with read lengths 150, 200, and 250 base pair lengths respectively. Each data
set contained 80% coding reads (Seen: 30%; Mutated 3%: 15%; Mutated 5%: 15%;
Novel: 20%) and 20% shuffled reads. Carnelian maps more coding reads compared
to the other three methods. (b) Performance comparison on in-house benchmarking
data sets. Carnelian achieves higher sensitivity and F1-score at comparable precision
on the benchmarking data sets described in (b) compared to the other three methods.

We also performed a set of cross-validation experiments: we first drew amino acid

(AA) fragments of length, 𝑙 = 50 AA, 68AA, 84AA from the EC-2010-DB sequences

ensuring every position of the reference proteins are covered at least five times by the

fragments. We removed duplicate fragments from the sets. For each fragment length
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group, we then divided the fragments into the training and test sets as required for

a five-fold cross-validation experiment. The fragments in the test sets were back-

translated using standard codon table to mimic nucleotide reads of lengths 150-bp,

200-bp, and 250-bp. All four methods (Carnelian, mi-faser, HUMAnN2, and Kraken2)

used the protein fragments contained in the training sets as the reference database

and were tested on the nucleotide fragments in the test sets.

Additionally, we simulated the effect of the presence of a novel protein in metage-

nomic read data sets by performing two sets of experiments. First, we back-translated

reference proteins to nucleotide sequences using the standard codon table. We then

simulated reads of lengths 150-bp, 200-bp, and 250-bp from those sequences intro-

ducing 3% and 5% mutations within the fragments using wgsim. Carnelian’s gold-

standard reference database was used as a reference by all four methods, and they

were tested on the wgsim-generated nucleotide reads with random mutations. To

mimic the presence of functionally similar proteins with relatively less sequence simi-

larity, we held out different proportions of proteins from the multi-protein EC bins in

our gold-standard database and created two test sets by drawing 100-bp and 150-bp

fragments from the back-translated held-out proteins. All four methods were trained

on the remaining proteins in the multi-protein EC bins and tested on the nucleotide

fragments from the held-out proteins.

For longer reads, Carnelian achievers higher sensitivity and accuracy compared

to all other methods in cross-validation and mutation experiments. Especially in the

case of novel proteins, Carnelian demonstrates significant improvement in sensitiv-

ity (Figure 3-15 and Table 3.58).

Performance evaluation metric

For evaluating the performance in cross-validation, mutation, and hold-out exper-

iments, we used the macro-averaged sensitivity (𝜌), precision (𝜋) and F1-score as

evaluation metrics. For each gold-standard functional label (functional bin), 𝑖, we

157



Figure 3-15: Comparison of Carnelian’s performance against mi-faser, HU-
MAnN2 and Kraken2 on Carnelian’s curated EC database. (a) 5-fold
Cross-validation experiments (testing across “seen” proteins). While Car-
nelian and mi-faser achieve comparable sensitivity and F1-score for 150-bp reads, for
longer reads (200-bp, 250-bp), where the field is heading, Carnelian achieves signif-
icantly higher sensitivity and F1-score compared to other methods. (b) Mutation
(5%) experiments (novel sequences with high similarity). Similar to the
cross-validation experiment, Carnelian achieves significantly higher sensitivity and
F1-score compared to other methods for longer reads. (c) Hold-out experiments
(novel functionally similar proteins with moderate sequence similarity).
On short sequences (100-bp and 150-bp – the longest we could test with available
data) from held-out proteins, Carnelian achieves significantly higher sensitivity and
F1-score. In all experiments, all the methods demonstrate comparable precision, even
though Carnelian alone doesn’t perform exact alignment or exact 𝑘-mer matching.
The error bars indicate standard deviation from the mean.

calculated 𝜌, 𝜋, and F1-score as follows:

𝜋𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

, 𝜌𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

, and 𝐹𝑖 =
2𝜋𝑖𝜌𝑖
𝜋𝑖 + 𝜌𝑖

Here, 𝑇𝑃𝑖 (True Positive) denotes the number of fragments binned correctly under

label 𝑖; 𝐹𝑃𝑖 (False Positive) denotes the number of fragments that do not have label 𝑖

but are binned under label 𝑖 by the classifier model; and 𝐹𝑁𝑖 (False Negative) is the

number of fragments that belong to the bin of label 𝑖 but were incorrectly assigned to

some other bin. The overall F1-score of the entire binning problem can be computed
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Table 3.58: Comparison of Carnelian’s performance against mi-faser, HUMAnN2,
and Kraken2 on fragments of different lengths with 3% mutations using Carnelian’s
curated EC database.

Read Length Method Mean Stddev
Sensitivity Precision F1-score Sensitivity Precision F1-score

150-bp Carnelian 96.19 99.71 97.73 0.08 0.02 0.08
mi-faser 95.44 99.48 96.93 0.05 0.06 0.06
Humann2 92.82 99.9 95.91 0.05 0.03 0.03
Kraken2 78.15 78.16 78.12 0.04 0.01 0.03

200-bp Carnelian 98.1 99.84 98.85 0.11 0.05 0.07
mi-faser 94.32 99.33 96.05 0.14 0.06 0.14
Humann2 96.46 99.91 97.99 0.26 0.01 0.16
Kraken2 78.45 78.06 78.21 0.02 0.02 0.02

250-bp Carnelian 98.87 99.9 99.3 0.04 0 0.02
mi-faser 92.86 98.85 94.78 0.05 0.18 0.08
Humann2 98.14 99.91 98.74 0.54 0 0.03
Kraken2 78.47 78 78.19 0 0.02 0.02

by macro averaging, where F1-score for each bin, 𝐹𝑖, is calculated first and then

averaged over all bins as:

𝜋𝑚 =

∑︀𝑀
𝑖=1 𝜋𝑖

𝑀
, 𝜌𝑚 =

∑︀𝑀
𝑖=1 𝜌𝑖
𝑀

, and 𝐹𝑚 =

∑︀𝑀
𝑖=1 𝐹𝑖

𝑀

where 𝑀 is the total number of unique functional labels. Macro-averaged measures

have advantages over micro-averaged ones because they give equal weight to each

functional bin, regardless of how many examples of each label the classifier model

has seen in the training set. Thus, the performance of the classifier model is not

dominated by common bins; relatively rare categories also get equal importance.

Performance on examples of functionally similar proteins which are not-

so-sequence-similar

We compared Carnelian’s performance with mi-faser, HUMAnN2, and Kraken2 on

three sets of examples of functionally similar proteins which are not-so-sequence-

similar. Each experiment includes three proteins—A, B, and C, where A and B do

not have much similarity at the protein sequence level but have the same enzymatic

function (EC label). C has a different enzymatic function and serves as a control.

Carnelian, mi-faser, HUMAnN2, and Kraken2 only see fragments of protein A in the
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reference as a positive example. Carnelian’s training data also includes shuffled human

sequences as negative examples. The test set contains randomly drawn nucleotide

reads from back-translated protein sequences of A, B, and C. Reads of length 100 base

pairs were drawn from back-translated protein sequences in such a way that every

position was covered at least 10 times. Ideally, methods should be able to annotate

reads from B with the same function as A and leave the reads from C unannotated.

We measured performance in terms of sensitivity, precision, and F1-score.

Example 1:

A: Beta-galactosidase, gene lacZ from Escherichia coli (strain K12). EC label: 3.2.1.23

B: Evolved Beta-galactosidase, gene ebgA from Escherichia coli (strain UTI89 /

UPEC). EC label: 3.2.1.23

C: 6-phospho-alpha-glucosidase, gene BET80_00230 from Escherichia coli. EC label:

unverified 3.2.1.122 (used as negative here)

Similarity between proteins:

A-B: 34.18% (blastp e-value = 5𝑒− 177), A-C: 28.57% (blastp e-value = 0.018), and

B-C: 29.03% (blastp e-value = 2.3)

Performance:

Method Sensitivity Precision F1-score

Carnelian 0.9857 0.8257 0.8988

mi-faser 0.4857 1 0.6538

HUMAnN2 (translated) 0.4857 1 0.6538

Kraken2 0.4857 1 0.6538

HUMAnN2 (translated), Kraken2 and mi-faser couldn’t annotate any reads from B.

Example 2:

A: Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha, gene accA

from Escherichia coli (strain K12). EC label: 6.4.1.2

B: Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, gene accD from
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Staphylococcus aureus (strain COL). EC label: 6.4.1.2

C: Pyruvate carboxylase subunit B, gene pycB from Methanocaldococcus jannaschii

(strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440). EC label:

6.4.1.1 (used as negative here)

Similarity between proteins:

A-B: 58.33% (blastp e-value = 0.13), A-C: 41.18% (blastp e-value = 8.9), and B-C:

30.00% (blastp e-value = 1.7)

Performance:

Method Sensitivity Precision F1-score

Carnelian 0.769 0.8162 0.7628

mi-faser 0.5273 1 0.6905

HUMAnN2 (translated) 0.5273 1 0.6905

Kraken2 0.4552 0.8632 0.5961

HUMAnN2 (translated), Kraken2 and mi-faser couldn’t annotate any reads from B.

Example 3:

A: Urease subunit beta, gene ureB from Helicobacter felis (strain ATCC 49179 /

NCTC 12436 / CS1). EC label: 3.5.1.5

B: Urease subunit alpha, gene ureC from Mycobacterium tuberculosis (strain ATCC

25618 / H37Rv). EC label: 3.5.1.5

C: 4-hydroxyproline 2-epimerase, gene Arad_8151 from Agrobacterium radiobacter

(strain K84 / ATCC BAA-868). EC label: 5.1.1.8 (used as negative here)

Similarity between proteins:

A-B: 55.00% (blastp e-value = 0.0), A-C: no significant similarity, and B-C: 40.00%

(blastp e-value = 0.11)
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Performance:

Method Sensitivity Precision F1-score

Carnelian 0.9554 0.8198 0.8824

mi-faser 0.6658 1 0.7994

HUMAnN2 (translated) 0.4961 1 0.6632

Kraken2 0.5879 1 0.7405

Kraken2 and mi-faser were able to annotate some reads from B with correct function,

but HUMAnN2 (translated) was not using the default similarity cut-off.

Benchmarks for runtime and memory requirement

Carnelian is practical. In terms of running time, our performance closely matches that

of HUMAnN2 and is better than the standalone binary of mi-faser (Tables 3.59 and

3.60). We benchmarked the runtime and memory requirement of Carnelian against

mi-faser, HUMAnN2, and Kraken2 using the synthetic gut metagenome created with

the 20 most abundant species from HMP data set (Section 3.2.8). All the methods

were run on a 40-core machine with 320 GB RAM; each core was Intel Xeon CPU

E5-2695 v2 @ 2.40GHz.

To test how the runtime and memory requirement of Carnelian vary when the

overall size of the input data remains fixed but read length varies, five million single-

ended reads were generated for each data set from the synthetic gut metagenome

with 20 species. Carnelian’s runtime closely matched with HUMAnN2 and is better

than mi-faser’s standalone binary (Tables 3.59). Kraken2 is the fastest among all but

significantly limited in terms of performance (Section 3.2.8).

To test how the runtime and memory requirement of Carnelian vary when read

length remains fixed, but the size of the input data varies, one million, five million,

and 10 million single-ended 250 base pair reads were generated from the synthetic

gut metagenome created using the 20 most abundant species from HMP project.

Carnelian’s runtime closely matched with HUMAnN2 and is better than mi-faser’s

standalone binary (Table 3.60). Kraken2 is the fastest among all but significantly
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limited in terms of performance (Section 3.2.8). As read length increases, the running

times of all the methods tend to increase.

In both cases, the memory requirement of the other three methods is smaller than

Carnelian because they all use reduced size amino acid alphabets trading off sensi-

tivity. We can get similar memory gains by using reduced size amino acid alphabets

without significant loss of precision (Table 3.61).

Table 3.59: Runtime and memory requirement of Carnelian compared to mi-faser,
HUMAnN2, and Kraken2 when the size of input data remains fixed but read length
is varied.

Read length Method
Elapsed

clock time
(min)

Maximum
resident
set size
(GB)

100 bp

Carnelian 12.43 13.4
mi-faser 22.01 0.17
Humann2 12.08 3.33
Kraken2 1.34 0.47

150 bp

Carnelian 15.67 13.46
mi-faser 29.38 0.2
Humann2 17.65 4.94
Kraken2 2.15 0.47

200 bp

Carnelian 20.77 13.7
mi-faser 37.63 0.28
Humann2 24.35 6.49
Kraken2 2.96 0.46

250 bp

Carnelian 33.17 13.7
mi-faser 44.65 0.34
Humann2 30.15 6.53
Kraken2 3.75 0.46
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Table 3.60: Runtime and memory requirement of Carnelian compared to mi-faser,
HUMAnN2, and Kraken2 when read length remains fixed but the size of input data
varies.

# Reads Method
Elapsed

clock time
(min)

Maximum
resident
set size
(GB)

1 Million

Carnelian 9.30 13.7
mi-faser 9.01 0.32
Humann2 6.51 2.15
Kraken2 0.77 0.43

5 Million

Carnelian 33.17 13.7
mi-faser 44.65 0.34
Humann2 30.15 6.53
Kraken2 3.75 0.45

10 Million

Carnelian 54.85 13.7
mi-faser 92.48 0.35
Humann2 58.9 6.54
Kraken2 7.43 0.46

Table 3.61: Performance of Carnelian with reduced-size amino acid alphabets on our
cross-validation test set containing ∼3M 100 bp fragments.

Model
Alphabet

Size
(AA)

Sensitivity
(%)

Precision
(%)

F1-score
(%)

Peak
(Memory)

(GB)
Full Alphabet 20 98.86 97.86 98.26 7.57
MWL20001 15 86.77 99.52 92.12 0.76
MWL20001 10 86.27 99.59 91.83 0.76
MWL20001 8 78.37 99.18 86.49 0.76

Physico-Chemical2 5 86.65 99.53 92.03 0.76
HP Model3 2 75.22 98.98 84.22 0.76

mi-faser, HUMAnN2 114 96.78 99.95 98.16 1.31
1 1 MWL2000: Murphy, L. R., Wallqvist, A., and Levy, R. M. (2000). Simplified amino acid alphabets

for protein fold recognition and implications for folding. Protein Engineering, 13(3), 149-152.
2 2 Physio-Chemical: Amino acids grouped according to 5 physico-chemical properties; A (Aliphatic):

IVL, R (aRomatic): FYWH, C (Charged): KRDE, T (Tiny): GACS, D (Diverse): TMQNP
3 3 HP Model: Groups amino acids as polar (hydrophilic) or hydrophobic; P: AGTSNQDEHRKP, H:

CMFILVWY
4 4 DIAMOND aligner, used by mi-faser and HUMAnN2 (translated), inherently represents the proteins

in its database with a reduced amino acid alphabet of size 11.
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3.3 Methods

3.3.1 Main components of the Carnelian pipeline

We present here the full pipeline of Carnelian for whole metagenome comparative

studies. Our pipeline combines more tailored database curation, probabilistic gene

finding, alignment-free gapped 𝑘-mer-based functional metagenomic binning, abun-

dance estimation, and appropriate statistical tools for performing comparative func-

tional metagenomics. Figure 3-1 depicts the main components of our pipeline. The

heart of our pipeline is a novel compositional (gapped 𝑘-mer-based) tool for functional

metagenomic binning. It incorporates probabilistic ORF finding with a compositional

gapped 𝑘-mer classifier ensemble to bin reads into different Enzyme Commission (EC)

groups according to their gene content (if any).

Carnelian represents gold standard proteins with complete EC labels in a low-

dimensional compact feature space by leveraging Opal-Gallager hashes [85, 86], a

class of even-coverage, low-density, and locality-sensitive hashes [205]. These hashes

guarantee that there is a high probability of collision for input sequences which are

similar to each other in the 𝑘-mer space and a low collision probability for dissimilar

sequences. These features are then used to train an ensemble of one-against-all clas-

sifiers (support vector machines). We implemented the classifier ensemble using the

Vowpal Wabbit (v8.1.1) framework [206,207]. Negative examples were generated us-

ing the “shuffle” program from the HMMER package [192]. The classifiers are trained

in an online fashion (one example in memory at a time) using stochastic gradient de-

scent (SGD). The online training capability makes incremental training of Carnelian

easy as new verified EC annotations for proteins become available. For more details

of the parameters of the classifier ensemble, see Appendix B.

To functionally profile WMS reads, Carnelian first uses FragGeneScan [191] to

detect the best possible ORFs from them. FragGeneScan is a unified hidden Markov

model framework that incorporates codon usage bias and sequencing error models

to probabilistically detect the coding part(s) of the reads. As part of our pipeline,

FragGeneScan is run with ‘short reads’ option, because our input is short WMS

165



reads. Since the average substitution error rate for Illumina sequencing is ∼ 0.1%,

we used the ‘complete’ option with FragGeneScan, which assumes 0% error rate. The

ORFs predicted by FragGeneScan are encoded into the same compact feature space

as in training using Opal-Gallager hashing. Carnelian employs the trained classifier

ensemble to bin the feature vectors of the ORFs by EC labels.

All else being equal, the more abundant proteins from an EC bin in the microbial

sample is, the more reads from them are likely to be sequenced. Therefore, read counts

can be used as a proxy for EC abundance in the sample — used by standard functional

annotation tools (e.g., mi-faser). However, in practice “all else” are never equal.

These counts need to be made comparable across proteins, samples, and experiments

to enable meaningful comparative analysis downstream. Hence, we borrow intuition

from transcriptomics and have Carnelian construct a functional vector by normalizing

the read counts as follows:

Effective protein length in EC bin 𝑏, 𝑒𝑏 = 𝑝𝑏 −
𝑟𝑙

3
+ 1

Abundance of EC bin 𝑏, 𝜌𝑏 =

𝑟𝑏
𝑒𝑏
× 106∑︀
𝑏
𝑟𝑏
𝑒𝑏

Here, 𝑝𝑏 is the effective protein length (in amino acids) of EC bin 𝑏, and 𝑟𝑙 is the

average read length (in base pairs). This equation takes into account the effect of

effective protein length in an EC bin as well as the lengths of the proteins in other

EC bins while calculating the relative abundance of an EC label in a sample. This

normalization further ensures that the relative abundances of the ECs sum up to the

same amount in every microbial sample making the proportions directly comparable

across samples.

To understand why this normalization is important let’s look at the following

scenarios in which using raw read counts as a proxy for EC abundance provides

inaccurate estimates.

Scenario 1: Suppose, a microbial sample has only two proteins (from two different

ECs) in equal proportion. These protein sequences have different lengths. If we
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sequence the sample, with high probability, we see more reads from the longer protein

(thus more reads from the corresponding EC). If we take raw read counts as a proxy for

relative EC abundance, we mistakenly assume that the EC with the longer protein

is more abundant than the EC with the shorter one. For this reason, we need to

normalize the read counts in an EC bin by the effective protein length (the positions

in the protein sequence to which a read can map) of that bin. This value is often

known as RPK when the length is measured in kilobases (used by different methods

such as HUMAnN2).

Scenario 2: Suppose, we have reads from two experiments with different sequencing

depths—one experiment has 10x more reads than the other. If we want to compare the

relative abundance of the same EC across experiments, just normalizing by effective

protein length in the corresponding EC bin does not change anything. The higher

the total number of reads, the higher read count and normalized read count we see

for any given EC. For relative abundances to be comparable across experiments, they

need to be on the same scale.

Scenario 3: Suppose we have two microbial samples, each with two types of proteins

(from two different ECs). Sample 1 has red and yellow proteins, and sample 2 has

red and green proteins. The lengths of red, yellow, and green proteins are 10, 50,

and 250 units respectively. Let’s say, we observe 300 reads from both samples, and

we want to compare the abundance of red proteins across samples. If we observe 50

reads from the red protein in both the sample, the RPK values for red protein will

be the same across samples. We observe 250 reads from the yellow protein in sample

1 which means the relative abundance of red protein is much less compared to yellow

protein here (RPK for red protein = 1× 103 vs. RPK for yellow protein = 25× 103).

In sample 2, we observe 250 reads from the green protein, which means both red and

protein have the same relative abundance (RPK for both proteins is 1 × 103). This

means sample 2 has a higher abundance of red protein, which we will not be able to

tell if we only compare the RPK values. The RPK values of other proteins in the

sample affect the relative abundance of a protein in question. If we normalize by

the sum of all the RPK values in the sample, then we can see the desired difference
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(normalized RPK values of red protein in sample 1 and 2 are 1
26

and 1
2

respectively).

Carnelian’s effective count normalization takes the above scenarios into account

and normalizes read counts by effective protein length in the EC bin and a per million

scaling factor which incorporates the sum of all RPK values in the sample. This

normalization ensures that the relative abundances of the EC bins in every sample

effectively sums up to the same number making them directly comparable across

samples and experiments.

Supporting Experiment: To show how well Carnelian’s effective counts normalization

works in practice, we conducted the following experiment. We randomly selected an

individual from our Bostonian cohort. The original read data set contained ∼9M

paired-end reads of length 150 base pairs. We created another read data set by

performing 20x down-sampling such that the new subsampled data set has 450k

reads. Ideally, the relative abundance of all ECs should be the same in these two

samples, and we should observe a log fold-change (logFC) of zero (0) for all of them.

We used raw read counts (used by mi-faser), RPK measure (used by HUMAnN2),

and our effective read counts (TPM measure) as proxies for relative abundance and

measured the logFC value for all the ECs in each case. While nearly every EC appears

variable between the original and the subsampled data set in terms of raw read counts

and RPKs, only Carnelian’s effective counts show the expected behavior.

Raw count RPK Effective Count

(Carnelian)

Mean logFC -1.1251 -1.1251 0.0094

Stddev logFC 0.4659 0.4659 0.1918
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Some examples:

EC

Raw Count RPK Effective Count

(Carnelian)

Original Subsampled Original Subsampled Original Subsampled

3.6.3.19 1090 56 2939.99 151.05 2072.43 2120.91

1.2.1.11 876 45 2442.38 125.46 1721.66 1761.72

5.2.1.8 935 48 3231.71 165.91 2278.07 2329.58

3.6.3.25 2689 138 8280.22 424.94 5836.82 5966.87

4.1.1.87 78 4 187.95 9.64 132.49 135.34

2.7.7.24 3096 153 10927.06 540 7702.6 7582.46

4.2.1.24 466 23 1401.5 69.17 987.95 971.3

6.1.1.19 223 11 389.37 19.21 274.47 269.69

4.2.1.8 981 48 2468.74 120.79 1740.24 1696.15

2.5.1.47 3148 154 10092.68 4937.34 7114.44 6932.81

3.3.2 Database curation

We built our gold standard reference data set by first collecting reviewed prokaryotic

proteins from UniProtKB/Swiss-Prot (Feb. 2018) [208, 209] that had both exper-

imental evidence of existence at either the protein or the transcriptomic level and

complete EC Numbers associated—EC numbers act as the primary identifiers for

metabolic pathway members. We excluded any protein that had computationally

inferred functional labels (e.g., by homology), an incomplete EC label, or multi-

ple EC annotations. Indeed, some proteins can have multiple functions. However,

these proteins primarily act as enzymes, and the secondary functions are mainly non-

enzymatic. Therefore, we can safely assume that a protein will have a unique EC

label in the reference database. We also collected prokaryotic catalytic residues with

complete EC numbers for which a literature reference existed from the Catalytic Site

Atlas. We combined these two sets and removed any redundant sequences, which

gave us a reference data set, EC-2010-DB, consisting of 7,884 proteins with 2,010

unique EC numbers (both the dataset and a pre-trained model to bin reads into EC
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labels are available on the Carnelian’s website). Amino acid sequences for these pro-

teins were downloaded from UniProt [208]. This database is designed for profiling the

metabolic functional capacity of the microbiome and more suited for cross-comparing

healthy and disease microbiomes. Additionally, we provide a database of 1,785,722

proteins from 3,285 COG categories and a pre-trained model to classify reads into

COG categories on our website (http://carnelian.csail.mit.edu), which can be

used for microbial functional profiling beyond metabolism.

3.3.3 Constructing feature vectors using Opal-Gallager hashes

Let us consider a sequence fragment of 𝑙 amino acids, 𝑠 ∈ Σ𝑙, where Σ = standard

amino acid alphabet (|Σ| = 20). A 𝑘-mer, with 𝑘 < 𝑙, is a short word of 𝑘 contiguous

amino acids. Similar to the bag-of-words representation of a document, we define a

𝑘-mer profile of a sequence 𝑠 as a vector 𝑓𝑘(𝑠) ∈ R20𝑘 . We index each 𝑘-mer with an

integer 𝑖, where 0 ≤ 𝑖 ≤ 20𝑘 which can be represented by a binary string of length 5𝑘.

Each entry 𝑓𝑘(𝑠, 𝑖) ∈ 𝑓𝑘(𝑠) stores the frequency of the 𝑖-th 𝑘-mer. Thus, an amino

acid fragment of length 𝑙 can be represented using 𝑘-mers in 𝑂(20𝑘) space instead of a

vector of 𝑂(20𝑙). Using random locality-sensitive hash (LSH) functions, we can create

𝑘-mer profiles that specify spaced subsequences, rather than contiguous subsequences

of fragment 𝑠. More specifically, we define a random hash function, ℎ : Σ𝑘 → Σ𝑟

to generate a spaced (𝑘, 𝑟)-mer such that a hashed 𝑘-mer can be represented by a

binary vector of 𝑂(20𝑟) dimensions with corresponding positions set to 1. Here 𝑟

denotes the number of positions selected within a 𝑘-mer window. With this family of

LSH functions, we can randomly sample a set of 𝑚 LSH functions and concatenate

them together to represent a 𝑘-mer profile of a sequence by only 𝑂(𝑚20𝑟) ≪ 𝑂(20𝑘)

space. However, 𝑘-mer profiles built with uniformly random LSH functions often have

uneven coverage of positions in a sequence unless a large number of such functions

are used. To evenly cover positions using a small number (𝑚) of LSH functions, we

build upon Opal’s modified Gallager design algorithm [86]. Figure 3-16 depicts an

example of how even coverage LSH functions are generated for an amino acid 𝑘-mer.

We used a 𝑘 = 8 and 𝑟 = 4 for the purpose of this study.
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Figure 3-16: Example of low-density even coverage hashing representation
of an amino acid 𝑘-mer. A (𝑘, 𝑟)-hash function can be thought of as a binary
vector of length 𝑘 with 𝑟 1’s where each 1 indicates a marked position in the 𝑘-mer.
Leveraging the hashing technique from Opal, Carnelian starts with a set of hash
functions, represented as a hash matrix where the first row has 1’s in first r positions,
the second row has 1’s in second r positions, and so on. Carnelian then permutes
the columns of this matrix repeatedly to generate even coverage LSH functions. The
rows then give the corresponding hashes of a 𝑘-mer.

Choice of fragment length and k-mer length

In the training phase, Carnelian trains an ensemble of classifiers in multiple batches.

Since our current gold-standard is small in size, to ensure that the classifier ensemble

sees enough examples per batch, we draw random fragments from the gold-standard

proteins by making sure that all the reference proteins have sufficient representation

in the training batches. While choosing the fragment length (𝑙), we needed to ensure

that the fragments we drew were smaller than the smallest protein sequence in our

data sets. Lengths of 7,884 protein sequences in EC-2010-DB ranged from 34 to 7,073

residues with a median length of 342 residues. For this reason, we used 𝑙 = 30 in the

training phase.

Our choice of the value of 𝑘 needs to be such that the chance of 𝑘-mers being

shared by any two protein sequences in our gold-standard data sets is minimized. In

a study of 1,121 bacterial genomes, Greenfield et al. [210] showed that for a k-mer

length of > 20 nucleotides (≥ 7 amino acid residues), over 96% of the nucleotide

𝑘-mers within an organism are unique and only less than 0.2% of the 𝑘-mers of length

25 nucleotides (≥ 8 amino acid residues) are shared by any two organisms; the 25-

mers have the same gene annotation in both genomes. Inspired by these results, we
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chose 𝑘 = 8 for our experiments. For 𝑘 = 8, we can calculate the probability, p of a

random k-mer match within a data set as follows [211]:

𝑝 =
1

|Σ|𝑘
𝑔

+ 1

where, |Σ| is the alphabet size and 𝑔 is the size of the data set in total number of

amino acid fragments. For a gold-standard database containing 32,111,182 randomly

sampled amino acid fragments from the EC-2010-DB data set, this probability is

0.12%, which is sufficiently small. For flexibility, Carnelian takes fragment length as

input from the user.

3.3.4 Setup for benchmarking experiments

We benchmarked our compositional functional profiler, Carnelian against state-of-

the-art alignment-based tools, mi-faser and HUMAnN2, and a state-of-the-art 𝑘-mer-

based tool, Kraken2, using our gold standard database, EC-2010-DB on a number

of synthetic metagenomes. Off-the-shelf HUMAnN2 and Kraken2 use taxonomic in-

formation in addition to translated searches; to ensure fair comparison we used only

their “translated-search” or “protein-search” mode. All comparisons were based on the

EC terms identified by each method using the same gold standard reference database.

That is to say, the reference databases we used for the mi-faser and HUMAnN2 and

the Kraken2 reference indexes were created with Carnelian’s gold standard reference

database for unbiased comparison. Detailed performance benchmarks for Carnelian

against mi-faser, HUMAnN2, and Kraken2 are available in Section 3.2.8. The exact

commands used for running mi-faser, HUMAnN2, and Kraken2 are given in Ap-

pendix B and scripts are available on our website.

3.3.5 Functional profiling of real data sets

We explored two large-scale type-2 diabetes (T2D) studies, two Crohn’s disease (CD)

studies, and a Parkinson’s disease (PD) study for investigating functional dysbiosis

in disease vs. healthy microbiomes. We analyzed whole metagenome sequencing data
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from fecal samples of 347 individuals from a Chinese T2D study cohort [182]. Raw

paired-end Illumina reads were downloaded from the NCBI short read archive (SRA)

(Study accession: SRP008047). We labeled this data set T2D-Qin. Additionally,

we analyzed fecal metagenome sequencing data from a T2D study performed on a

European cohort of 145 women with either T2D or impaired glucose tolerance (IGT)

or normal glucose tolerance (NGT) [183]. Since we aimed at finding the differences

in microbial metabolic function between T2D patients and healthy individuals, we

did not include the IGT individuals in our analysis. We downloaded publicly avail-

able raw Illumina HiSeq 2000 paired-end reads from NCBI SRA (Study accession:

ERP002469); each individual metagenome contained ∼ 3 Gb on average. We labeled

this data set T2D-Karlsson. We further analyzed two Crohn’s disease case-control

data sets: 53 US individuals from HMP pilot phase and 62 Swedish individuals from

a Swedish cohort [178]. We downloaded publicly available raw Illumina HiSeq 2000

paired-end reads for the US cohort (CD-HMP data set) from the IBDMDB web-

site [196]. Raw reads for the Swedish cohort (CD-Swedish) were downloaded from

NCBI SRA (Study accession: SRP002423). We also analyzed whole metagenome

sequencing reads from the fecal samples of 20 patients and 21 healthy individuals in

an early stage L-DOPA naïve PD case-control study [200]. All the participants in the

study were male and age-matched. We downloaded publicly available raw Illumina

HiSeq 2500 paired-end reads from NCBI SRA (Study accession: ERP019674). We

labeled this data set PD-Bedarf.

For investigating the functional relatedness of the healthy microbiomes in indus-

trialized and non-industrialized communities, we analyzed gut microbiomes of four

cohorts (84 individuals from Boston, 35 Baka individuals from Cameroon, 50 indi-

viduals from the Gimbichu region in Ethiopia, and 112 individuals from Madagascar

of Betsimisaraka and Tsimihety ethnicity). The first two data sets were unpublished

data sets from the Alm lab. The latter two data sets were contributed by a recent

study [26] and are publicly available at NCBI SRA with study accessions SRP168387

and SRP156699.

We also explored the functional diversity of two environmental data sets — (i)
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VAG-pond data set: eight aquatic metagenomes from a study of microbial diversity in

a pond created by chrysotile asbestos mining activity at the Vermont Asbestos Group

(VAG) Mine in northern Vermont, USA [185] and (ii) DWH-spill data set: six beach

sand metagenomes from a study of the Deepwater Horizon oil spill [202]. For the

aquatic metagenomes in the VAG-pond data set, we obtained Illumina HiSeq 2000

paired-end reads of length 101 bp from NCBI SRA (Study accession: SRP056095).

The data set includes three samples from the epilimnion (surface layer), three sam-

ples from the metalimnion (middle layer), and two samples from the hypolimnion

(bottom layer). In addition, as in the original study [185], we included two positive

controls—(i) 1-F: single-end Illumina reads from a synthetic microbial sample simu-

lating organisms found in the Delaware River (downloaded from BaseSpace with a free

account: https://basespace.illumina.com/projects/20039022/samples); (ii) 2-

F: a set of single-end Illumina reads from the Human Microbiome Project (HMP)

mock community (downloaded from NCBI SRA with accession SRR172902). For the

DWH-spill data set, we obtained Illumina HiSeq 2000 paired-end reads of length 151

bp for the beach sand metagenomes (two from pre-oil phase, two from oil phase, and

two from post-oil phase) from NCBI SRA (Study accession: SRP046227).

Metadata of the samples from each study are available at http://carnelian.

csail.mit.edu/data/metadata.pdf.

Preprocessing steps for raw reads

We used Trimmomatic v0.36 [212] for adapter trimming and quality filtering with a

quality threshold of 30 and a minimum length of 60 bp (paired-end mode for Illumina

reads and single-end mode for Roche 454 reads). DeconSeq v0.4.3 [213] was used to

remove contaminating human sequences with the human reference genome GRCh38

as the database. For paired-end reads, we kept only the read-pairs for which both

sequences survived quality control. These steps were applied to all the data sets. In

the T2D-Qin data set, 241 of the samples survived the preprocessing step and were

used for subsequent analyses.
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3.3.6 Quantifying microbial functional variation in real data

sets

Carnelian outputs the effective read counts per EC label (i.e., normalized read counts

against effective protein length per EC bin and a per million scaling factor) as abun-

dance estimates. For the other three methods, we applied the same normalization on

the raw read counts produced by them to ensure an unbiased comparison. Pathway

abundances were calculated by grouping the ECs into KEGG metabolic pathways

and summing the effective read counts. Pathway coverage was calculated as the ratio

of the number of mapped ECs identified by a method to the total number of reference

ECs present in the pathway.

For the studies with two groups of microbiomes (case vs. control, industrialized vs

non-industrialized), we created an effective counts matrix using Carnelian generated

functional profiles and performed pairwise Wilcoxon rank-sum test (Mann-Whitney

U test). A Benjamini-Hochberg (BH) false discovery rate (FDR) corrected 𝑝-value

threshold of 0.05 was used as a test of significance. Additional log-fold-change thresh-

olds have been selected for each data set (mentioned in the main text).

To determine the significance of the common pathways between geographically

separated disease cohorts, we combined the individual 𝑝-values per pathway from dif-

ferent studies of the same disease using Fisher’s combined probability test (Figure 3-1:

Green). To investigate the co-abundance of microbial metabolic pathways between

healthy microbiomes of industrialized and non-industrialized communities, we com-

puted Kendall’s rank correlation of the pathway abundance profiles of the two groups.

Next, we performed Ward-linkage hierarchical clustering using Euclidean distance on

the pathway co-abundance matrix (correlation matrix). To determine whether the

centroids and dispersion of the pathway clusters are significantly different between the

non-industrialized and industrialized microbiomes, permutational multivariate analy-

sis of variance (PERMANOVA) test was performed using “adonis” function available

through the “vegan” package in R (Figure 3-1: Blue). For measuring functional di-

versity in a sample, we calculated the Shannon-Wiener diversity indices of the EC
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and pathway profiles of the samples using the “vegan” package available in R.

3.4 Discussion

While the rapid advancement in sequencing technologies has helped researchers re-

solve the taxonomic diversity of microbial “dark matter” to a great extent, much

of its functional diversity remains uncharacterized [24–26]. Even for the minimal

bacterial genome designed by Hutchison et al. [28], the function of one-third of the

genes could not be determined. Thus, functional annotation remains a challenging

task even for well-studied genomes, and, unsurprisingly, the sensitivity of all rele-

vant methods is low across the board. Potential reasons why reads often cannot

be mapped to functional labels include unknown functionality, non-metabolic func-

tionality, lack of coverage in reference databases, or a non-prokaryotic origin. It is

possible to use a much more extensive off-the-shelf protein database containing com-

putationally predicted functional labels, but doing so is not always advisable because

incorporating such databases can increase the chance of erroneous transfer of spurious

annotations [70, 214].

More than merely providing an alternative functional profiling tool, Carnelian is

able to capture hidden microbial metabolic functional diversity from whole metagenome

sequencing reads through its use of a gapped 𝑘-mer classifier. Being able to label ad-

ditional ECs accurately manifests partially as an increase in Carnelian’s sensitivity.

Additional sensitivity alone is suspect, due to the possibility of spurious labels, but we

believe that our stricter criteria for database inclusion, combined with training neg-

ative examples to reduce false positives, contributed significantly to Carnelian being

able to assign a functional label to unknown proteins while minimizing false positives.

Indeed, we believe that this ability makes Carnelian a potential tool for annotating

novel microbial proteins that are increasingly becoming available [29]. Also, we be-

lieve that it is partially due to this ability that, unlike existing methods, Carnelian is

able to create functional profiles that are comparable across populations. In multiple

large-scale comparative experiments, Carnelian uncovers shared and novel functional
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similarities and differences across diverse populations and environmental conditions

that would go unseen when using existing tools, which are often implicitly designed

around taxonomic profiling.

Carnelian detected a high degree of similarity in core metabolic pathways between

healthy guts in industrialized and non-industrialized communities, despite significant

taxonomic differences [26,80,198]. This result is notable given the differences in exter-

nal pressures (e.g., diet, lifestyle, exposure to toxins) and may indicate the adaptive

nature of the gut microbiome. Indeed, many of the enzyme-level variations we found

did suggest an adaptive response to industrialized vs. non-industrialized dietary dif-

ferences in carbohydrates (simple sugars vs. complex monosaccharides) and proteins

(protein-rich vs. protein-deficient); this finding agrees with earlier studies [26, 198].

By using different enzymes involved in core metabolic pathways, the healthy guts in

these communities can better maintain the overall balance in core metabolic func-

tionality.

We did observe differential read abundance in several xenobiotics metabolism

pathways between industrialized and non-industrialized microbiomes (Table 3.39).

For example, non-industrialized microbiomes showed enrichment of reads in antibi-

otic resistance ECs and pathways (e.g., beta-lactamase, drug metabolism by cy-

tochrome P450). On the other hand, we observed higher read abundance in lipoic

acid metabolism, xenobiotics metabolism by cytochrome P450, and phenylpropanoid

biosynthesis pathways in the industrialized gut. These findings agree with earlier

studies [26, 80, 198]. A potential line of future inquiry would be to investigate these

similarities and differences with much larger sample sizes, but such is beyond the

scope of this study.

Our results with Carnelian indicate concordant dysbiosis in several microbial car-

bohydrate metabolism pathways in both Chinese and European cohorts for type-2

diabetes. Though existing methods identified variable read abundances in several

carbohydrate metabolism pathways, they did not find any common pathways which

were statistically significant in both the cohorts. T2D patient guts were found to

have higher read abundance in the oxidative phosphorylation pathway, suggesting a
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higher degree of bacterial defense against oxidative stress and a more significant en-

ergy imbalance in the patient gut [182,183]. While the shared dysbiosis in vitamin B

metabolism pathways might not be directly related to the disease process, it could be

a side-effect of prolonged metformin use by T2D patients in both cohorts [182,215].

In Crohn’s disease case-control cohorts from the US and Sweden, Carnelian uncov-

ered reduced functional potential of several specific carbohydrate metabolism path-

ways and amino acid biosynthesis pathways; other tools did not find any concordant

dysbiosis. Our results make sense given that microbial carbohydrate metabolism,

amino acid synthesis, and selenocompound metabolism pathways were already known

to be associated with Crohn’s disease [216, 217]. Valine, leucine, and isoleucine have

anti-inflammatory roles and are required for intestinal growth and maintenance of

mucosal integrity and barrier function; dietary amino acids have been found to be

beneficial for inflammatory bowel disease (IBD) animal models [218]. Additionally,

dysbiosis in the microbial biosynthesis of N-glycan can affect the intestinal health of

CD patients [219].

For Parkinson’s disease (PD), Carnelian’s results indicate a downward shift in

the gut microbial capacity to synthesize tryptophan, which was not found by mi-

faser or HUMAnN2 (both the translated search and the full out-of-the-box pipeline).

Microbial tryptophan metabolism has been associated with a number of diseases [220],

and in particular, for Parkinson’s, this might affect serotonin production in the host as

tryptophan is a known precursor of serotonin. We also found microbial carbohydrate

metabolism to be altered in Parkinson’s disease which might be a contributor to the

insulin impairment observed commonly in Parkinson’s patients [221]; Glucagon-like

peptide-1 receptor agonists, which act in the gut-brain axis pathway and regulate

blood glucose, have shown therapeutic potential in clinical studies of PD [222].

Of course, though we find a significant alteration in the functional capacity of these

microbial metabolic pathways, these diseases cannot be characterized by these shifts

alone. Integrative approaches involving metabolomics, metagenomics, and metatran-

scriptomics will likely be required to establish causal relationships between microbial

pathways and disease processes in the host. Since disease-associated shifts can often
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be confounded by antibiotics and other drug usages by participants in a case-control

study, the results must be interpreted carefully. Despite these challenges, we were

able to show that it is possible to find concordant functional trends across geograph-

ically separated case-control cohorts. Our study opens the door to a future where

bioprospecting efforts using natural microbes, genetically engineered bacteria, or mi-

crobial products targeting specific metabolic pathways in a broad therapeutic context

may become possible.

3.5 Conclusions

In this chapter, we have presented a full pipeline for whole metagenome comparative

studies. By integrating together more tailored database curation, probabilistic gene

finding, alignment-free functional metagenomic binning, abundance estimation, and

the appropriate statistical tools, we show that on a variety of data sets, our tool

provides a more comprehensive picture of the functional relatedness of healthy and

disease microbiomes than cannot be achieved using existing tools, which implicitly

rely on taxonomic binning. Carnelian’s modular design enables flexibly running each

step of the pipeline independently. For instance, it can be run on either raw sequencing

reads (default) or transcriptomic sequences (by bypassing the ORF detection phase).

Alternately, should a user prefer to employ other functional profiling tools instead

of Carnelian, other components of our pipeline, such as the database curation and

statistical tests, may still be of use.

To demonstrate the usefulness of our pipeline, we also analyze a variety of data

sets, some publicly available and some newly collected. For type-2-diabetes and

Crohn’s disease, earlier studies showed only a moderate degree of taxonomic dysbiosis,

which did not generalize across different geographic cohorts. With Carnelian, we

newly identify concordant changes in the functional capacity of 13 metabolic pathways

in European and Chinese type-2 diabetes cohorts and eight metabolic pathways in

US and Swedish Crohn’s disease cohorts. Moreover, Carnelian was able to identify

several clinically established hallmarks of Parkinson’s disease that were not found by
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other state-of-the-art functional annotation tools. Carnelian-identified EC terms can

be used to classify patients and controls with high accuracy. In healthy microbiomes

from industrialized and non-industrialized communities, Carnelian identified more

functional diversity at both the EC and pathway levels compared to other methods

and revealed a high degree of pathway-level similarity in core metabolic functionality.

Carnelian’s unique ability to find functional relatedness in diverse metagenomic

data sets at the scale of hundreds of samples opens the door to more comprehensive

comparative functional metagenomic studies across different geographies, environ-

mental conditions, and time points. We expect Carnelian to be an essential compo-

nent of the metagenomic analysis toolkit, especially when cross-population compar-

isons are performed.

3.6 Software Availability

Carnelian is open source and freely licensed (MIT License). Source code of Car-

nelian is available at http://carnelian.csail.mit.edu and https://github.com/

snz20/carnelian (DOI:10.5281/zenodo.3371731).
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Chapter 4

Conclusion

The central theme of this thesis has been developing computational tools that can per-

form robust integration of heterogeneous omics data and reveal meaningful functional

insights in large-scale comparisons. We have focused on two pressing challenges in life

science and provided comprehensive solutions for each of them. Firstly, we addressed

the challenge of finding a shared molecular connection between autism spectrum dis-

order (ASD) and its seemingly unrelated multi-system comorbidities. In Chapter 2,

we presented a novel three-tiered integrative omics analysis pipeline that can integrate

transcriptomic data from disparate sources at the gene, pathway, and disease levels in

a statistically principled fashion. By for the first time integrating data across 53 tran-

scriptomic studies of twelve disease conditions, our pipeline revealed a novel innate

immunity connection between ASD and its highly prevalent comorbidities. Secondly,

we addressed the challenge of functionally profiling whole metagenome sequencing

reads to enable large-scale comparisons across samples, experiments, populations,

and environmental conditions. In Chapter 3, we introduced Carnelian, a comprehen-

sive framework for functional comparisons of whole metagenome sequencing data from

diverse study cohorts. The heart of our framework is a new compositional (gapped

𝑘-mer) classifier model for alignment-free functional metagenomic binning that accu-

rately classifies microbial proteins, especially from non-annotated species. By newly

integrating more tailored database curation, probabilistic gene finding, alignment-free

functional metagenomic binning, abundance estimation, and the appropriate statis-
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tical tools, Carnelian provides a more comprehensive picture of the functional relat-

edness of healthy and disease microbiomes than can not be achieved using existing

tools. Carnelian uniquely enables finding concordant patterns of microbial metabolic

function that can generalize across geographical borders and complement taxonomic

studies.

Due to continued technological advances, we now have access to unprecedented

amounts of omics data. UK Biobank currently provides access to different types of

omics data as well as demographic and clinical data from 500,000 individuals in the

United Kingdom, and by 2022 we are going to have access to data on at least 1

million individuals through the European infrastructure [223]. Moreover, access to

explosive amounts of omics data at single-cell resolution through consortia like the

Human Cell Atlas [224] is opening up new avenues for a more in-depth understanding

of the functioning of cells, thereby establishing the mechanistic links between cell

states and diseases. As we move into the era of omics-based precision healthcare, the

challenge we face is how to integrate and interpret all these data to obtain meaningful

insights into health and disease. The intuitive way to address this challenge is through

mechanistic approaches, but there is still a lack of such efforts. We need computational

tools that can process large-scale data sets rapidly and robustly, and identify accurate

and meaningful functional patterns in large-scale comparisons. This thesis is one step

in that direction.
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Appendix A

Supplementary information for

multi-level integrative omics analysis

for ASD and its comorbidities

Microarray expression data sets of ASD and its co-

morbidities from the GEO

The list of selected microarray studies for ASD and its comorbid diseases is provided

in Table A.1. For each selected GEO series, the table lists the accession identifier as

well as abridged study details including the organism, tissue type, platform, and the

number of samples.
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Different classification methods for microarray gene

expression data

Different classification methods from the area of statistics and machine learning can

be applied to microarray gene expression data of a disease, but some issues make the

task non-trivial. Gene expression data is very different from what is expected by these

methods. First, it has very high dimensionality, usually contains tens of thousands of

genes. Second, the number of participating individuals in publicly available disease

datasets is very small, often below 100. Third, most genes are irrelevant to disease

case-control classification. Many researchers propose to perform gene selection before

classification, which reduces the dimensionality as well as the number of irrelevant

genes. For disease datasets, one common practice is to consider the differentially

expressed genes between cases and controls as predictors of the classifier.

There is no single classification method that is superior over the rest in terms of

classifying disease gene expression data [225]. For such data, we want a binary clas-

sification method that gives maximal classification accuracy in distinguishing disease

cases from controls. First, we define the classification problem formally.

Problem A.0.1. Given a training set 𝑇 = {(𝑡1, 𝑐𝑎𝑠𝑒), (𝑡2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙), . . . , (𝑡𝑛, 𝑐𝑎𝑠𝑒)},

where 𝑛 is the number of individuals in the training set, 𝑡𝑖s are independent 𝑚-

dimensional random data tuples of gene expression values, 𝑚 is the total number

of predictor genes, 𝑡𝑖 = (𝑡𝑖𝑋1, 𝑡𝑖𝑋2, , 𝑡𝑖𝑋𝑚), 𝑚 >> 𝑛 and “case” and “control” are the

class labels. Given a test set 𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑙. Each 𝑠𝑖 is a gene expression data

tuple of length 𝑚, and 𝑙 is the number of individuals in the test set. Each 𝑠𝑖 is in the

form of 𝑠𝑖 = (𝑠𝑖𝑋1, 𝑠𝑖𝑋2, . . . , 𝑠𝑖𝑋𝑚), where 𝑋𝑗 is the expression value of gene 𝑗. Find

a classification function 𝐶, that gives maximal classification accuracy on 𝑆.

For completeness, we consider four classification methods namely, Fisher’s Linear

Discriminant Analysis (FLDA), K-Nearest Neighbor (KNN), NaÃŕve Bayes Method

(NB), and Support Vector Machine (SVM). For our purpose, we found that SVM

performed better than other classifiers in most of the cases in terms of accuracy.
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Fisher’s Linear Discriminant Analysis (FLDA)

FLDA tries to find a linear combination of the predictors that maximizes the separa-

tion between the centers of the data points from different classes while at the same

time minimizing the variation within each class. This approach is often is preferred

in practice due to its dimension-reduction property.

More formally, given a training set 𝑇 and test set 𝑆 as described above, FLDA

tries to find the linear combination Ma of the columns of matrix 𝑀 that maximizes

the Rayleigh quotient given by 𝑎𝑇𝐵𝑎/𝑎𝑇𝑊𝑎, where 𝐵 is the between-class sum of

squares, 𝑊 is the within-class sum of squares, and 𝑎 is the transformation matrix.

Let, 𝜇𝑘 be the vector of average gene expression values of 𝑚 predictor genes for

the training tuples in class 𝑘, where 𝑘 ∈ {𝑐𝑎𝑠𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙}. The correlation between

any test sample 𝑠𝑖 and each class is measured using the squared Euclidean distance

of 𝑠𝑖 and 𝜇𝑘, denoted by 𝑑𝑘(𝑠𝑖), where,

𝑑𝑘(𝑠𝑖) =
ℎ∑︁

𝑝=1

((𝑠𝑖 − 𝜇𝑘)𝑣𝑝)
2

Here, 𝑣𝑝s are linearly independent eigenvectors of the matrix 𝑊−1𝐵 and ℎ is the

number of its non-zero eigenvalues. Class 𝑘 is assigned to 𝑠𝑖 if the distance between

𝑠𝑖 and 𝜇𝑘 is minimum. Thus, for training set 𝑇 , and a test sample 𝑠𝑖, FLDA classifies

𝑠𝑖 using the following classification function:

𝐶(𝑇, 𝑠𝑖) = arg min
𝑘

𝑑𝑘(𝑠𝑖)

FLDA was first proposed and implemented by R.A. Fisher in 1936 [226]. Since

then, it has been implemented numerous times for classifying gene expression data.

We use the R implementation given by the lda function of the MASS package for our

purpose.
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K-Nearest Neighbor (KNN)

KNN is a distance metric based classifier. The main idea of this method is for each

test sample 𝑠𝑖, find k training tuples from the training set, T with most similar

expression value according to a distance measure. The class label of 𝑠𝑖 is assigned

using majority vote from the selected k training tuples while breaking ties at random.

The commonly used measure of similarities includes Pearson correlation, Euclidean

distance, etc. Thus, the classification function is given by,

KNN was first proposed and implemented by Fix and Hodges [227] and was applied

to gene expression data by Dudoit et al. for tumor classification [228]. We use the R

implementation of knn function provided in the class package for our purpose. This

implementation uses Euclidean distance as a measure of similarity. The value of 𝑘

was chosen by iterating over values from 1 to 5 and picking the 𝑘, which gives the

most accuracy in classification. In most cases, the chosen value was either 2 or 3.

Naïve Bayes Method (NB)

NB method uses probabilistic induction to assign class labels to test samples, as-

suming independence among the predictor genes. The method models each class as

a set of Gaussian distributions: one for each gene, by looking at the gene expres-

sion values of the training samples. Let, Gk denote the class variable representing

the setoff Gaussian distributions where 𝑘 ∈ {𝑐𝑎𝑠𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙}. Then 𝐺𝑘 is given by

𝐺𝑘 = {𝐺1
𝑘, 𝐺

2
𝑘, , 𝐺

𝑚
𝑘 } where, 𝐺𝑖

𝑘 is the Gaussian distribution of class 𝑘 for gene 𝑖.

For training set T and any test sample 𝑠𝑖 of test set S, the class label of 𝑠𝑖 is

obtained by the classification function:

𝐶(𝑇, 𝑠𝑖) = arg
𝑚

max
𝑘

(︀ 𝑚∑︁
𝑔=1

log𝑃 (𝑠𝑔𝑖 |𝐺
𝑔
𝑘)
)︀

𝑃 (𝑠𝑔𝑖 |𝐺
𝑔
𝑘) is given by Bayes rule and can be approximated from the mean and stan-

dard deviation of the Gaussian distribution for gene 𝑔 from class 𝑘âĂŹs distribution

set, 𝐺𝑔
𝑘. NB method was first used to classify gene expression data in 2000 [229,230].
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We use the R implementation of NB method given by naiveBayes function of the

e1071 package for our purpose.

Support Vector Machine (SVM)

SVM is a max-margin classifier that tries to find a hyperplane with maximum margin

to separate the training tuples into different groups according to their classes. The

margin of the hyperplane is defined as the distance from the hyperplane to the sets of

points that are closest to it. The points that lie closest to the max-margin hyperplane

are called support vectors. Since gene expression data can be viewed as very sparse

points in a very high dimensional space, it is easy to find several hyperplanes that

can separate the training tuples. However, this method is often prone to overfitting.

Formally, let, 𝑇 be the training set, as defined before, with 𝑛 training sam-

ples of the form 𝑥𝑖 = (𝑡𝑖, 𝑐𝑖) where, each 𝑡𝑖 is a expression vector of the form

(𝑡𝑖𝑋1, 𝑡𝑖𝑋2, . . . , 𝑡𝑖𝑋𝑚) and 𝑐𝑖 ∈ {1,−1} is the class label with “1” representing cases

and “-1” representing controls. Let, the max-margin hyperplane be denoted by the

vector w and scalar b. Given a test sample 𝑠𝑖, SVM assigns class label to 𝑠𝑖 based

on the distance of 𝑠𝑖 from the hyperplane in feature space. Thus the classification

function is given by,

𝐶(𝑇, 𝑠𝑖) =

⎧⎪⎨⎪⎩1, if 𝑠𝑖𝑔𝑛(⟨w, 𝜑(𝑠𝑖)⟩ − 𝑏) > 0.

−1, otherwise.

Here 𝜑(𝑠𝑖) denotes the mapping of test sample 𝑠𝑖 into the feature space and denotes

the dot product of two vectors 𝑥 and 𝑦. SVM determines the max-margin hyperplane

by applying various dot product functions as kernels depending on the separability

of the training data points.

SVM was first introduced by Boser et al. and used in many data mining applica-

tions [231, 232]. We use the R implementation of SVM given by the 𝑘𝑠𝑣𝑚 function

of the “kernlab” package for our purpose. We have applied both 𝑣𝑎𝑛𝑖𝑙𝑙𝑎𝑑𝑜𝑡 (linear)

and 𝑟𝑏𝑓𝑑𝑜𝑡 (Gaussian) kernels and got similar levels of accuracy. Aggregated classi-
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fiers are often useful for improving the accuracy of classification. However, since the

main focus of our study is not getting a higher accuracy in classifying cases and con-

trols of a disease dataset but to select the appropriate multiple hypothesis correction

tests which can give more informative genes, we limited our discussion to the basic

classifiers.
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Appendix B

Supplementary information for robust

comparative functional metagenomics

across diverse study populations

Performance of off-the-shelf HUMAnN2 on the gut

microbiome of Baka individuals

We ran the full pipeline of out-of-the-box HUMAnN2 with ChocoPhlAn, UniRef, and

MetaCyc databases on the microbiomes of all the non-industrialized Baka individuals

(35 unpublished samples from Alm lab). Each sample has ∼ 7M paired-end reads of

150 bp length. It took HUMAnN2 ∼ 3 days 6 hours (4676.85 minutes) to annotate

the samples using 16 threads on a server with Intel Xeon E5-2695 v2 x86_64 2.40

GHz processor and 320 GB RAM. On the same machine, it would take Carnelian a

little over a day (1617 minutes) to bin the reads from this data set using 16 cpus on

the same machine when we analyze the samples sequentially.

On average HUMAnN2 could annotate only 10% reads per Baka sample despite

using the entire ChocoPhlAn and UniRef database. On average, HUMAnN2 detected

less than 30 species and 996 Enzyme Commission (EC) terms per sample, and the

average Shannon diversity index per sample was 5.58. For comparison, we also ran
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Table B.1: Performance comparison of off-the-shelf HUMAnN2 with HUMAnN2
(translated) and Carnelian on the microbiomes of Baka individuals.

Out-of-the-box HUMAnN2 CarnelianHUMAnN2 (translated)
(Default database) (EC database) (EC database)
Baka Bostonian Baka Bostonian Baka Bostonian

# reads/sample 722,354 24,527,448 21,383 83,131 269,720 1,430,026
# Species/sample 29.6 53.6 N/A N/A N/A N/A

# ECs/sample 996 1061 827 791 2003 1981
Shannon Index 5.58 5.95 5.79 4.76 6.5 6.49

out-of-the-box HUMAnN2 on the microbiomes of 20 industrialized Bostonian indi-

viduals (unpublished data set from Alm lab). Each sample had roughly 36M reads on

average. Since industrialized microbiomes are well characterized, here, HUMAnN2

can annotate more reads ( 40-50% per sample). On average, it detects 1061 ECs

per sample (Shannon diversity index 5.95). UniRef IDs were mapped to level 4 EC

numbers using the mapping provided by HUMAnN2. Table B.1 summarizes the re-

sults of full HUMAnN2 pipeline on Baka individuals. For comparison, we include the

results from the Boston data set as well as the results of HUMAnN2 (translated) and

Carnelian; both were run with our curated EC database.

Note that, full HUMAnN2 pipeline finds less diversity in the microbiomes of non-

industrialized Baka individuals compared to the industrialized Bostonian individuals

which is counter-intuitive [233]. Using our curated Enzyme Commission database,

both HUMAnN2 (translated) and Carnelian can detect more enzymatic diversity in

the Baka population.

Vowpal Wabbit implementation of Carnelian’s one-

against-all classifier model

Carnelian’s gapped 𝑘-mer ensemble classifier was implemented using Vowpal Wabbit

(v8.1.1). Vowpal Wabbit implementations perform better than conventional classifiers
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for large-scale sequence classification tasks [87, 207]. Some of its advantages are as

follows: (i) it provides a dedicated of stochastic gradient descent (SGD) which makes

the task of learning faster and more scalable compared to standard gradient descent;

(ii) the learning can be done in an online fashion which makes retraining the model

easier as new annotations become available; and (iii) the keys of the feature hash

table can be stored as an integer using MurmurHash3 which saves space.

In “default” mode in Carnelian uses Vowpal Wabbit’s one-against-all SVM clas-

sifiers. If users want probability scores for the predicted labels, they can use the

“precise” mode of Carnelian in which we use one-against all logistic regression models

from Vowpal Wabbit. The default parameters used to run Vowpal Wabbit are as

follows:

∙ oaa: to select the one-against-all classifiers

∙ passes (Number of Training Passes): 1

∙ cache: Use a cache

∙ save_resume: save extra state so learning can be resumed later with new data

∙ bit precision: 31

∙ regularization parameters: l1=0, l2=0 for faster training

∙ To enable “precise” mode:

– Loss function: logistic

– probabilities: to get the probabilities for the predictions

Note that, Carnelian gives the user a choice to play with the Vowpal Wabbit

training parameters, such as the number of passes, regularization parameters l1 and

l2, bit precision, etc. The values that worked best for our analyses are included as

defaults in the pipeline. A comparison of Carnelian’s performance in “default” versus

“precise” mode is available at http://carnelian.csail.mit.edu.
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Commands used to run mi-faser, HUMAnN2, and

Kraken2

mi-faser:

# Database construction:

DIAMOND makedb ––in <gold_standard_protein_fasta> -d <database>

# Running annotation:

# Single-ended reads:

python3.6 mifaser.py -f <input_fasta> -d <database_path>

-o <path_to_output> -t 1 -c 1

# Paired-end reads:

python3.6 mifaser.py -l <forward_fq> <reverse_fq> -d <database_path>

-o <path_to_output> -t 1 -c 1

HUMAnN2 (translated search):

# Database construction and configuration:

DIAMOND makedb ––in <gold_standard_protein_fasta> -d <database>

humann2_config ––update database_folders protein <database>

# Running translated search:

humann2 ––input <input_file> ––output <out_dir>

––id-mapping <ec_mapping_file> ––protein-database <database>

––bypass-nucleotide-search

Paired-end reads were put in a single file before running HUMAnN2 (translated) on

it as instructed on their website.

Kraken2-translated:

#Index construction:

./kraken2-build ––download-taxonomy ––db $DBNAME ––skip-maps

./kraken2-build ––add-to-library $FASTAFILE ––db $DBNAME ––protein

./kraken2-build ––build ––db $DBNAME ––protein
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#Running translation and annotation:

./kraken2 ––db $DBNAME ––threads <num_threads> ––output <out_file>

––use-names <input_file>
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