
Delay, stability, and resource tradeoffs in large
distributed service systems

by

Martín Zubeldía Suárez

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

c© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 19, 2019
Certified by. .

David Gamarnik
Nanyang Technological University Professor of Operations Research

Thesis Supervisor
Certified by. .

John N. Tsitsiklis
Clarence J. Lebel Professor of Electrical Engineering

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Delay, stability, and resource tradeoffs in large distributed

service systems

by

Martín Zubeldía Suárez

Submitted to the Department of Electrical Engineering and Computer Science
on August 19, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering

Abstract

This thesis addresses fundamental tradeoffs in the design of dispatching policies in
large-scale distributed service systems, motivated by examples such as cloud com-
puting facilities and multi-core processors. A canonical framework for modeling such
systems is provided by a parallel queueing model with n servers, where service re-
quests arrive stochastically over time as a single stream of jobs of rate proportional
to n, and where a central controller is responsible for all decisions.

The central controller makes decisions based on limited information about the
state of the queues, which is conveyed through messages from servers to the dispatcher,
and stored in a limited local memory. Our objective is to understand the best possible
performance of such systems (in terms of stability region and delay) and to propose
optimal policies, with emphasis on the asymptotic regime when both the number of
servers and the arrival rate are large.

We study the tradeoffs between the resources available to the controller (memory
size and message rate) and the achievable queueing delay performance and stability
region of resource constrained dispatching policies. Our main findings are:

1. Queueing delay vs. resources tradeoff. We propose a family of dispatching poli-
cies, indexed by the size of their memories and by the average message rate,
and show that the expected queueing delay vanishes as n→∞ when either (i)
the number of memory bits is of the order of log(n) and the message rate grows
superlinearly with n, or (ii) the number of memory bits grows superlogarithmi-
cally with n and the message rate is at least as large as the arrival rate (Chapter
3). Moreover, we develop a novel approach to show that, within a certain broad
class of “symmetric” policies, every dispatching policy with a message rate of
the order of n, and with a memory of the order of log(n) bits, results in an ex-
pected queueing delay which is bounded away from zero, uniformly as n → ∞
(Chapter 4).

2. Stability region vs. resources tradeoff. We propose a dispatching policy that
requires a memory size (in bits) of the order of log(n) and an arbitrarily small

3

(but positive) message rate, and show that it is stable for all possible server
rates for which the entire system is underloaded. Moreover, we show that within
a certain broad class of “weakly symmetric” policies, every dispatching policy
with a message rate of the order of o

(
n2
)
, and with a memory size that grows

sublogarithmically with n, results in a reduced stability region (Chapter 5).

Thesis Supervisor: David Gamarnik
Title: Nanyang Technological University Professor of Operations Research

Thesis Supervisor: John N. Tsitsiklis
Title: Clarence J. Lebel Professor of Electrical Engineering

4

Acknowledgments

First and foremost, I would like to thank my advisors, David Gamarnik and John

Tsitsiklis, for all their guidance, support, and patience over the past five years. They

gave me the freedom that I needed to learn how to pick my own research problems,

and the guidance to learn how to approach them with clarity and rigor. I consider

myself to be very lucky to have had them as my advisors, and I will always be grateful

to them.

Life at LIDS would not have been the same without the great officemates that I

had over the years, Zied Ben Chaouch, Zhi Xu, Dogyoon Song, Sarah Cen, and Anish

Agarwal, which made my journey all the more enjoyable. I also want to thank the

administrative staff at LIDS for their help, especially Lynne Dell, Brian Jones, and

Francisco James.

Last but not least, I would like to thank my parents for all their support and

encouragement, which allowed me to pursue my dreams.

My doctoral studies at MIT were supported by the MIT Jacobs Presidential Fel-

lowship, NSF Grant CMMI-1234062 and ONR Grant N0014-17-1-2790.

5

6

Contents

1 Introduction 15

1.1 Context . 15

1.2 Related literature . 17

1.3 Summary of main contributions . 18

1.3.1 Delay, memory, and messaging tradeoffs 18

1.3.2 Stability vs resources tradeoff in heterogeneous systems 19

1.4 Organization of the thesis . 20

2 Notation and models 21

2.1 Notation . 21

2.2 General queueing model . 24

3 Efficient dispatching policies 27

3.1 Model and main results . 28

3.1.1 Modeling assumptions and performance metric 29

3.1.2 Policy description and high-level overview of the results 29

3.1.3 Stochastic and fluid descriptions of the system 32

3.1.4 Technical results . 35

3.1.5 Asymptotic queueing delay and phase transitions 38

3.2 Proof of part of Theorem 3.1.1 . 44

3.2.1 Uniqueness of solutions . 45

3.2.2 Existence, uniqueness, and characterization of an equilibrium . 51

3.2.3 Asymptotic stability of the equilibrium 52

7

3.3 Proof of Theorem 3.1.2 and of the rest of Theorem 3.1.1 60

3.3.1 Probability space and coupling 60

3.3.2 Tightness of sample paths . 63

3.3.3 Derivatives of the fluid limits 67

3.4 Proofs of Proposition 3.1.3 and Theorem 3.1.4 77

3.4.1 Stochastic stability of the n-th system 77

3.4.2 Convergence of the invariant distributions 80

3.5 Conclusions and future work . 84

4 Universal delay lower bound for dispatching policies 87

4.1 Model and main results . 88

4.1.1 Modeling assumptions and performance metric 88

4.1.2 Unified framework for dispatching policies 89

4.1.3 Delay lower bound for resource constrained policies 97

4.1.4 Queueing delay vs resources tradeoff 99

4.2 Literature review . 99

4.2.1 Memory, messages, and queueing delay 105

4.3 Proof of Theorem 4.1.1 . 105

4.3.1 Local limitations of finite memory 106

4.3.2 A sequence of “bad” events . 111

4.3.3 Lower bound on the probability of “bad” events 113

4.3.4 Upper bound on the number of useful distinguished servers . . 121

4.3.5 Completing the proof . 125

4.4 Additional proofs . 127

4.4.1 A combinatorial inequality 127

4.4.2 Proof of Lemma 4.3.6 . 127

4.4.3 Proof of Lemma 4.3.9 . 131

4.5 Conclusions and future work . 135

5 Stability vs resources tradeoff in heterogeneous systems 137

5.1 Model and main results . 138

8

5.1.1 Modeling assumptions and performance metric 138

5.1.2 Universally stable policy . 139

5.1.3 Unified framework for dispatching policies 141

5.1.4 Instability of resource constrained policies 147

5.1.5 Stability vs resources tradeoff 148

5.2 Proof of Theorem 5.1.1 . 148

5.3 Proof of Theorem 5.1.2 . 152

5.3.1 Local limitations of finite memory 152

5.3.2 High arrival rate to slow servers 153

5.4 Conclusions and future work . 156

6 Concluding remarks 159

9

10

List of Figures

1-1 Basic distributed service system. 17

2-1 General distributed service system. 24

3-1 Resource Constrained Pull-Based policy. Jobs are sent to queues as-

sociated with idle servers, based on tokens in the virtual queue. If no

tokens are present, a queue is chosen at random. 30

3-2 Resource requirements of the three regimes, and the resulting asymp-

totic queueing delays. 31

3-3 Relationship between the stochastic system and the fluid model. . . . 38

3-4 Average queueing delay of the power-of-2-choices policy (red circles)

vs. our policy (blue squares) vs. PULL (green asterisks). 44

3-5 An example of a non-differentiable solution for the High Message regime,

with λ = 0.9, s1(0) = s2(0) = s3(0) = 0.7, and si(0) = 0 for all i ≥ 4.

The solution is non-differentiable at the points indicated by the circles. 51

4-1 Resource requirements for vanishing queueing delays. 100

5-1 Resource requirements for stable policies. 148

11

12

List of Tables

3.1 The three regimes of our policy, and the resulting asymptotic queueing

delays. 31

13

14

Chapter 1

Introduction

1.1 Context

Distributed service systems are ubiquitous, from passport control at the airport and

checkout lines at the supermarket, to multi-core processing units and server farms

for cloud computing. Common to these is a large number of processing units, and a

stream of incoming service requests. Naturally, the performance and the stability of

such systems depends critically on how service requests are dispatched to the different

processing units.

The importance of distributed service systems, compounded with a relatively poor

understanding of the fundamental limitations and tradeoffs of the dispatching policies

used to operate them, has been the main motivation of this thesis. That being said,

the notion of distributed service systems is rather general, and there are many different

types of systems that fall under the same term. In this thesis, our focus will be on

distributed service systems that have the following features:

1. Non-trivial dynamics. We will study systems that involve non-trivial dynam-

ics (as opposed to static models), where decisions have to be made repeatedly

over time. As a result, our performance metrics will also involve quantities that

depend on this dynamic nature, such as average delays and stability regions.

2. Large-scale. We will focus on the regime where the size of the system (e.g.,

15

number of processing units and service requests) grows to infinity. Our main

motivation for studying this regime stems from the fact that most applications

of interest have a very large number of processing units. Moreover, while most

dynamical service systems are fairly intractable, asymptotic analyses are often

possible, and can provide significant architectural insights.

3. Centralized control. We will study systems whose operation is dictated by a

centralized decision maker, who follows policies that are prescribed beforehand.

This is in contrast to game-theoretic models, where the dynamics of the system

can be the result of strategic interactions among different parties.

In order to take advantage of the multiple processing units available, the decision

maker can benefit from information about the current state of the system (e.g., which

processing units are idle). For such information to be available when a decision has

to be made, it is necessary for the decision maker to periodically obtain information

about the current state of the system and/or have sufficient memory that allows it

to extrapolate from the available information. This requires resources in the form of

bandwidth (to obtain information) and/or physical memory (to store information).

A canonical framework that has emerged for modeling the systems mentioned

above is provided by a parallel queueing system, consisting of a large number of servers

that operate in parallel, where each one has a queue associated to it. In principle,

these servers can have different processing rates. In addition, service requests arrive

to the system in the form of a single stream of discrete jobs. Upon arrival, the

individual jobs are dispatched by a central decision maker to a suitable queue. This

stylized model is depicted in Figure 1-1.

In this setting, the design of good dispatching policies remains an important chal-

lenge. In this thesis, we focus on performance-related tradeoffs. More specifically, we

are interested in advancing existing methods of performance analysis and generating

new insights into existing policies considered in the literature, as well as designing

new policies to achieve good performance. For both of these objectives, we will see

that system performance depends crucially on the amount of information available to

16

Incoming jobs
Decision
maker

... Servers

Figure 1-1: Basic distributed service system.

the decision maker, and on the system load.

1.2 Related literature

In this section, we review relevant research on the design and analysis of dispatching

policies for distributed service systems. There is a variety of ways in which such

system can be operated, which correspond to different decision making architectures

and policies. At one extreme, if no information about the state of the system is

available, it is known that the best policy is to dispatch incoming jobs according to

a Round-Robin policy [39]. This policy has no informational requirements but incurs

a substantial delay because it does not take advantage of resource pooling. At the

other extreme, if complete information about the state of the system is available, it

is known that the best policy is to send incoming jobs to one of the queues with the

smallest workload [4]. Such policy has very good performance (small queueing delay),

but relies on substantial information exchange.

Many intermediate policies have been explored in the literature, and they achieve

different performance levels while using varying amounts of resources, including local

memory and communication overhead. For example, the power-of-d-choices [34, 44]

and its variations [33, 36, 47, 35, 25] have been extensively studied, including the case

17

of non-exponential service time distributions [13, 14, 2]. More recently, pull-based

policies like Join-Idle-Queue [8, 31] have been drawing attention, including exten-

sions for heterogeneous servers [40, 5], multiple dispatchers [32, 43, 41], heavy-traffic

[22], and general service time distributions [17]. A more extensive review of this lit-

erature is given in Chapter 4.

On the other hand, tradeoffs similar to the ones we study in this thesis have been

analyzed in the context of the balls into bins model [6], in which n balls are to be

placed sequentially into n bins. In particular, the tradeoff between the number of

messages exchanged and the maximum number of balls in any one bin was recently

characterized in [29, 1]. Furthermore, the tradeoff between memory size and maximum

number of balls in any one bin was studied in [3, 9].

Note that the balls into bins model and the dynamical model that we consider are

similar, in the sense that sequential decisions about the destination of balls (or tasks)

have to be made and that there are many policies that are used and perform well in

both settings (e.g., the policy where balls/tasks join one of the shortest bins/queues).

However, the fact that the balls (unlike the jobs) never leave the system makes these

problems substantially different. This difference also leads to most of the literature

studying the balls into bins model using different performance metrics, such as the

maximum load among the bins after all balls were placed. Because of these differences,

results from one setting can rarely be translated into the other.

1.3 Summary of main contributions

We now summarize the main contributions of this thesis.

1.3.1 Delay, memory, and messaging tradeoffs

Our first contribution is the study of the effect of different resource levels at the

dispatcher (local memory and communication overhead) on the expected delay of a

typical job. This is studied in the setting of resource constrained dispatching systems,

18

with homogeneous servers, and jobs that consist of a single task that cannot be

replicated.

Efficient dispatching policies. In Chapter 3 we propose a family of dispatching

policies, parameterized by the size of the memory used by the dispatcher and by the

average rate of messages exchanged between the dispatcher and the servers. For this

family of policies, we show that the expected queueing delay of a typical job vanishes

(as the number of servers and the arrival rate go to infinity) as long as the resources

are above a certain level.

In particular, we show that if either (i) the average message rate is superlinear in

the arrival rate and the memory size (in bits) is of the order of the logarithm of the

number of servers, or (ii) the average message rate greater than or equal to the arrival

rate and the memory size (in bits) is superlogarithmic in the number of servers, then

the expected queueing delay of a typical job vanishes as the system size increases.

Universal delay lower bound for dispatching policies. In Chapter 4, we con-

sider a broad family of decision making architectures and policies, which includes the

ones introduced in Chapter 3 along with most of those considered in the earlier lit-

erature, and work towards characterizing the minimum amount of resources required

in order to obtain vanishing queueing delays, as the system size increases.

In particular, we show that if the average message rate is at most of the order of

the arrival rate, and the memory size (in bits) is at most of the order of the logarithm

of the number of servers, then every decision making architecture and policy, within

the class of dispatching policies considered, results in a queueing delay that does

not vanish as the system size increases. This complements the results obtained in

Chapter 3.

1.3.2 Stability vs resources tradeoff in heterogeneous systems

Our second contribution is the study of the effect of different resource levels (local

memory and communication overhead) on the stability region of dispatching policies.

19

This is again studied in the setting of resource constrained dispatching systems, with

jobs that consist of a single task that cannot be replicated, but now we allow the

servers to have different processing rates, which are not known at the dispatcher.

Universally stable dispatching policy. In Chapter 5 we propose a simple dis-

patching policy, which requires a memory of size (in bits) logarithmic in the number

of servers and a positive (but arbitrarily small) message rate, and we show that it has

the largest possible stability region.

Instability of resource constrained policies. Also in Chapter 5, we consider

a slightly broader family of decision making architectures and policies than the one

defined in Chapter 4, and work towards characterizing the minimum amount of re-

sources required in order to obtain a policy with the largest possible stability region.

In particular, we show that if the average message rate is smaller than of the order

of the square of the arrival rate, and the memory size (in bits) is sublogarithmic in

the number of servers, then every decision making architecture and policy, within the

broad class of dispatching policies considered, has a reduced stability region.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. We begin by describing some of our

main modeling assumptions and notation in Chapter 2. In Chapter 3 we introduce

and analyze a family of resource efficient dispatching policies. In Chapter 4 we present

an impossibility result for resource constrained dispatching policies. In Chapter 5 we

study the stability region of heterogeneous service systems with limited resources.

Finally, we conclude the thesis in Chapter 6, where we also highlight several potential

avenues for future research.

20

Chapter 2

Notation and models

In this chapter we introduce the notation used, and the queueing model studied in

the thesis. We refrain from getting into details of mathematical formalism, which

will be presented in subsequent chapters. Instead, we focus on highlighting the main

features.

2.1 Notation

In this section we collect, for ease of reference, the notation that will be used through-

out the thesis. First, we define notation for the asymptotic behavior of positive

functions, which is as follows:

f(n) ∈ o
(
g(n)

)
⇔ lim sup

n→∞

f(n)

g(n)
= 0,

f(n) ∈ O
(
g(n)

)
⇔ lim sup

n→∞

f(n)

g(n)
<∞,

f(n) ∈ Θ
(
g(n)

)
⇔ 0 < lim inf

n→∞

f(n)

g(n)
≤ lim sup

n→∞

f(n)

g(n)
<∞,

f(n) ∈ Ω
(
g(n)

)
⇔ lim inf

n→∞

f(n)

g(n)
> 0,

f(n) ∈ ω
(
g(n)

)
⇔ lim inf

n→∞

f(n)

g(n)
=∞.

21

We let [·]+ , max{ · , 0}. We denote by Z+ and R+ the sets of non-negative

integers and real numbers, respectively. The indicator function is denoted by 1, so

that 1A(x) is 1 if x ∈ A, and is 0 otherwise. The Dirac measure δ concentrated at a

point x is defined by δx(A) , 1A(x). We also define the following sets:

S ,
{
s ∈ [0, 1]Z+ : s0 = 1; si ≥ si+1, ∀ i ≥ 0

}
,

S1 ,

{
s ∈ S :

∞∑
i=0

si <∞

}
, (2.1)

In ,

{
x ∈ [0, 1]Z+ : xi =

ki
n
, for some ki ∈ Z+, ∀ i ≥ 0

}
.

We define the weighted `2 norm || · ||w on RZ+ by

||x− y||2w ,
∞∑
i=0

|xi − yi|2

2i
.

Note that this norm comes from an inner product, so (`2w, ‖ · ‖w) is actually a Hilbert

space, where

`2w ,
{
s ∈ RZ+ : ‖s‖w <∞

}
.

We also define partial orders on S as follows:

x ≥ y ⇔ xi ≥ yi, ∀ i ≥ 1,

x > y ⇔ xi > yi, ∀ i ≥ 1.

We will sometimes work with the Skorokhod spaces of functions

D[0, T] , {f : [0, T]→ R : f is right-continuous with left limits} ,

endowed with the uniform metric

d(x, y) , sup
t∈[0,T]

|x(t)− y(t)|,

22

and

D∞[0, T] ,
{
f : [0, T]→ RZ+ : f is right-continuous with left limits

}
,

with the metric

dZ+(x, y) , sup
t∈[0,T]

||x(t)− y(t)||w.

Given a set A, its power set, the set of all subsets of A, is denoted by P(A). Ran-

dom variables will always be denoted by upper case symbols. Non-random quantities

will generally — but not always — be denoted by lower case symbols; exceptions will

be pointed out as necessary. We will use boldface fonts to denote vectors. If v is a

vector, we denote its i-th component by vi. We will denote the (unordered) set of

elements of a vector by using the superscript “set”; for example, if v = (2, 1, 3, 1), then

vset = {1, 2, 3}. Furthermore, we will use |v| to denote the dimension of a vector v.

If v = (v1, . . . ,vm) is a vector, and u is a vector with entries in {1, . . . ,m}, then vu

is a |u|-dimensional vector whose i-th component is vui ; for example, if u = (3, 1),

then vu = (v3,v1).

For any positive integer n, we define the sets Nn , {1, . . . , n}, and

Rn ,

{
s ∈

n⋃
i=0

(Nn)i : there are no repeated coordinates in s

}
, (2.2)

where (Nn)0 = {∅}. We say that a permutation σ : Nn → Nn fixes a set R ⊂ Nn
if σ(i) = i, for all i ∈ R. Furthermore, we say that a permutation σ preserves

the ordering of a subset A ⊂ Nn if σ(i) < σ(j) whenever i, j ∈ A and i < j. If

v = (v1, . . . ,vm) is a vector in (Nn)m and σ is a permutation of Nn, we denote by

σ(v) the vector
(
σ(v1), . . . , σ(vm)

)
. Finally, for any function X of time, and any

t ∈ R, we let X(t−) , lim
τ→t−

X(τ), as long as the limit exists.

23

2.2 General queueing model

In this section, we introduce the basic queueing model that will serve as the basis of

the more specific queueing models that are used in subsequent chapters.

We consider a queueing model consisting of n parallel servers, where each server is

associated with an infinite capacity First-In-First-Out (FIFO) queue. Jobs arrive to

the system as a single renewal process of rate λn, where λ is a positive constant. The

sizes of the incoming jobs are independent and identically distributed, independent

from the arrival process, and have an arbitrary distribution with unit mean.

Connecting the incoming service requests to the servers there is a central controller

(dispatcher), responsible for routing the incoming jobs to suitable queues (see Figure

2-1). This dispatcher makes decisions based on limited information about the state of

the queues, which is conveyed through messages from servers to the dispatcher, and

stored in a limited local memory.

λn

Dispatcher ... n servers

Figure 2-1: General distributed service system.

In particular, we consider a dispatcher with the following limitations:

1. Finite memory: The dispatcher has a local finite memory to store any type

of information (e.g., information about the current state of the queues).

2. Bounded message rate: There is a limit on the average number of messages

24

exchanged between the dispatcher and the servers.

Note that these two limitations restrict the amount of information available to the

dispatcher for decision-making.

25

26

Chapter 3

Efficient dispatching policies

In this chapter we focus on homogeneous distributed service systems consisting of

a large number of servers with equal service rates, and study the tradeoffs between

the expected queueing delay of a typical job, and the resources (local memory and

message rate) available to the dispatcher. This is achieved by introducing a family of

dispatching policies parameterized by the amount of resources involved. We carry out

a thorough analysis in different regimes and show that the queueing delay vanishes

as the number of servers increases only if the resources are above a certain level.

More concretely, our development relies on a fluid limit approach, where we take

the limit when the number of servers (n) goes to infinity. As is common with fluid-

based analyses, we obtain two types of results: (i) qualitative results obtained through

a deterministic analysis of a fluid model, and (ii) technical results on the convergence

of the actual stochastic system to its fluid counterpart.

On the qualitative end, we establish the following:

a) If the message rate is superlinear in n and the number of memory bits is at least

logarithmic in n, then the asymptotic delay is zero.

b) If the message rate is larger than or equal to the arrival rate and the number of

memory bits is superlogarithmic in n, then the asymptotic delay is zero.

c) If the message rate is αn and the number of memory bits is dc log2(n)e, we derive

a closed form expression for the (now positive) asymptotic delay in terms of the

27

arrival rate, α, and c, and which exhibits interesting phase transitions.

On the technical end, and for each one of three regimes corresponding to cases (a),

(b), and (c) above, we show the following:

a) The queue length process converges (as n→∞, and over any finite time inter-

val) almost surely to the unique solution of a certain fluid model.

b) For any initial conditions that correspond to starting with a finite average num-

ber of jobs per queue, the fluid solution converges (as time tends to ∞) to a

unique invariant state.

c) The steady-state distribution of the finite system converges (as n→∞) to the

invariant state of the fluid model.

The rest of the chapter is organized as follows. In Section 3.1 we present the

model and the main results, and also compare a particular regime of our policy to

the so-called “power-of-d-choices” policy. In sections 3.2–3.4 we provide the proofs of

the main results. Finally, in Section 3.5 we present our conclusions and suggestions

for future work.

The results on this chapter first appeared in [19] and [20].

3.1 Model and main results

In this section we present the specific modeling assumptions, the performance metrics

of interest, and our main results. In Subsection 3.1.1 we describe the model and our

assumptions. In Subsection 3.1.2 we introduce three different regimes of a certain

pull-based dispatching policy. In subsections 3.1.3 and 3.1.4 we introduce a fluid

model and state the validity of fluid approximations for the transient and the steady-

state regimes, respectively. In Subsection 3.1.5, we discuss the asymptotic delay, and

show a phase transition in its behavior.

28

3.1.1 Modeling assumptions and performance metric

We now introduce a refinement of the modeling assumptions for the basic model pre-

sented in Section 2.2. In particular, throughout this chapter we assume that the n

servers are homogeneous, i.e., they all have the same processing rate. assumed to

be equal to 1. Furthermore, jobs arrive to the system as a single Poisson process of

rate λn (for some fixed λ ∈ (0, 1)), and their sizes are i.i.d., independent from the

arrival process, and exponentially distributed with unit mean. Finally, we assume

that the central dispatcher has to route each incoming job to a queue immediately

upon arrival (i.e., jobs cannot be queued at the dispatcher).

Regarding the performance metric, we will focus on the steady-state expectation

of the time between the arrival of a typical job and the time at which it starts receiving

service, to be referred to as the expected queueing delay of a typical job.

3.1.2 Policy description and high-level overview of the results

In this subsection we introduce our policy and state in a succinct form our results for

three of its regimes.

Policy description

For any fixed value of n, the policy that we study operates as follows.

a) Memory: The dispatcher maintains a virtual queue comprised of up to cn

server identity numbers (IDs), also referred to as tokens, so that the dis-

patcher’s memory size is dcn log2(n)e bits. Since there are only n distinct servers,

we will assume throughout the rest of the chapter that cn ≤ n.

b) Spontaneous messages from idle servers: While a server is idle, it sends

messages to the dispatcher as a Poisson process of rate βn, to inform or remind

the dispatcher of its idleness. We assume that βn is a nondecreasing function

of n. Whenever the dispatcher receives a message, it adds the ID of the server

29

that sent the message to the virtual queue of tokens, unless this ID is already

stored or the virtual queue is full, in which cases the new message is discarded.

c) Dispatching rule: Whenever a new job arrives, if there is at least one server

ID in the virtual queue, the job is sent to the queue of a server whose ID

is chosen uniformly at random from the virtual queue, and the corresponding

token is deleted. If there are no tokens present, the job is sent to a queue chosen

uniformly at random.

Note that under the above described policy, which is also depicted in Figure 3-1,

no messages are ever sent from the dispatcher to the servers. Accordingly, following

the terminology of [8], we will refer to it as the Resource Constrained Pull-Based

(RCPB) policy or Pull-Based policy for short.

nλ
Dispatcher

cn
Queue of IDs

Jobs to
empty queues

Messages from
idle servers

... n servers

Figure 3-1: Resource Constrained Pull-Based policy. Jobs are sent to queues associ-
ated with idle servers, based on tokens in the virtual queue. If no tokens are present,
a queue is chosen at random.

High-level summary of the results

We summarize our results for the RCPB policy, for three different regimes, in Table

3.1, where we also introduce some mnemonic terms that we will use to refer to these

30

regimes. Formal statements of these results are given later in this section. Further-

more, we provide a pictorial representation of the total resource requirements and the

corresponding asymptotic queueing delays in Figure 3-2.

Regime Memory Idle message rate Delay
High Memory cn ∈ ω(1) and cn ∈ o(n) βn = β ≥ λ

1−λ 0

βn = β < λ
1−λ > 0

High Message cn = c ≥ 1 βn ∈ ω(1) 0
Constrained cn = c ≥ 1 βn = β > 0 > 0

Table 3.1: The three regimes of our policy, and the resulting asymptotic queueing
delays.

Delay> 0

Delay=0

Total message rate

Bits of memory

< λn Θ(n) ω(n)

ω(log(n))

Θ(log(n))

High Memory
regime

High Message
regime

Constrained
regime

Figure 3-2: Resource requirements of the three regimes, and the resulting asymptotic
queueing delays.

The more interesting subcase of the High Memory regime is when β ≥ λ/(1− λ),

which results in zero asymptotic queueing delay with superlogarithmic memory and

linear overall message rate. Note that if we set β = λ/(1− λ), and use the fact that

servers are idle a fraction 1− λ of the time, the resulting time-average message rate

becomes exactly λn, i.e., one message per arrival.

31

3.1.3 Stochastic and fluid descriptions of the system

In this subsection, we define a stochastic process that corresponds to our model under

the RCPB policy, as well as an associated fluid model.

Stochastic system representation

Let Qn
i (t) be the number of jobs in queue i (including the job currently being served,

if any), at time t, in a n-server system. We can model the system as a continuous-time

Markov chain whose state at time t is the queue length vector, Qn(t) =
(
Qn
i (t)

)n
i=1
∈

Zn+, together with the number of tokens, denoted byMn(t) ∈ {0, 1, . . . , cn}. However,

as the system is symmetric with respect to the queues, we will use instead the more

convenient representation Sn(t) =
(
Sni (t)

)∞
i=0

, where

Sni (t) ,
1

n

n∑
j=1

1[i,∞)

(
Qn
j (t)

)
, i ∈ Z+,

is the fraction of queues with at least i jobs at time t. Once more, the pair
(
Sn(·),Mn(·)

)
is a continuous-time Markov process, with a countable state space.

Finally, another possible state representation involves V n(t) =
(
V n
i (t)

)∞
i=1

, where

V n
i (t) ,

∞∑
j=i

Snj (t)

can be interpreted as the average amount by which a queue length exceeds i − 1 at

time t. In particular, V n
1 (t) is the total number of jobs at time t divided by n, and is

finite, with probability 1.

Fluid model

We now introduce the fluid model of Sn(·), associated with our policy. Recall the

definition of the set S1 in Equation (2.1).

Definition 3.1.1 (Fluid model). Given an initial condition s0 ∈ S1, a continuous

function s : [0,∞)→ S1 is said to be a solution to the fluid model (or fluid solution)

32

if:

1. s(0) = s0.

2. For all t ≥ 0, s0(t) = 1.

3. For all t ≥ 0 outside of a set of Lebesgue measure zero, and for every i ≥ 1,

si(t) is differentiable and satisfies

ds1
dt

(t) =λ
(
1− P0(s(t))

)
+ λ(1− s1(t))P0(s(t))−

(
s1(t)− s2(t)

)
, (3.1)

dsi
dt

(t) =λ
(
si−1(t)− si(t)

)
P0(s(t))−

(
si(t)− si+1(t)

)
∀ i ≥ 2, (3.2)

where P0(s) is given, for the three regimes considered, by:

(i) High Memory: P0(s) =
[
1− β(1−s1)

λ

]+
;

(ii) High Message: P0(s) =
[
1− 1−s2

λ

]+
1{1}(s1);

(iii) Constrained: P0(s) =

[
c∑

k=0

(
β(1−s1)

λ

)k]−1
.

We use the convention 00 = 1, so that the case s1 = 1 yields P0(s) = 1.

A solution to the fluid model, s(·), can be thought of as a deterministic approxi-

mation to the sample paths of the stochastic process Sn(·), for n large enough. Note

that the fluid model does not include a variable associated with the number of tokens.

This is because, as we will see, the virtual queue processMn(·) evolves on a faster time

scale than the processes of the queue lengths and does not have a deterministic limit.

We thus have a process with two different time scales: on the one hand, the virtual

queue evolves on a fast time scale (at least n times faster) and from its perspective

the queue process Sn(·) appears static; on the other hand, the queue process Sn(·)

evolves on a slower time scale and from its perspective, the virtual queue appears to

be at stochastic equilibrium. This latter property is manifested in the drift of the

fluid model: P0(s(·)) can be interpreted as the probability that the virtual queue is

empty when the rest of the system is fixed at the state s(·). Moreover, the drift of

s1(·) is qualitatively different from the drift of the other components si(·), for i ≥ 2,

because our policy treats empty queues differently.

33

We now provide some intuition for each of the drift terms in Equations (3.1) and

(3.2).

(i) λ
(
1 − P0(s(t))

)
: This term corresponds to arrivals to an empty queue while

there are tokens in the virtual queue, taking into account that the virtual queue

is nonempty with probability 1− P0(s(t)), in the limit.

(ii) λ
(
si−1(t) − si(t)

)
P0(s(t)): This term corresponds to arrivals to a queue with

exactly i − 1 jobs while there are no tokens in the virtual queue. This occurs

when the virtual queue is empty and a queue with i − 1 jobs is drawn, which

happens with probability P0(s(t))
(
si−1(t)− si(t)

)
.

(iii) −
(
si(t)−si+1(t)

)
: This term corresponds to departures from queues with exactly

i jobs, which after dividing by n, occur at a rate equal to the fraction si(t) −

si+1(t) of servers with exactly i jobs.

(iv) Finally, the expressions for P0(s) are obtained through an explicit calculation of

the steady-state distribution of Mn(t) when Sn(t) is fixed at the value s, while

also letting n→∞.

Let us give an informal derivation of the different expressions for P0(s). Recall

that P0(s) can be interpreted as the probability that the virtual queue is empty when

the rest of the system is fixed at the state s. Under this interpretation, for any fixed

state s, and for any fixed n, the virtual queue would behave like an M/M/1 queue

with capacity cn, arrival rate βnn(1 − s1), and departure rate λn. In this M/M/1

queue, the steady-state probability of being empty is

P
(n)
0 (s) =

[
cn∑
k=0

(
βn(1− s1)

λ

)k]−1
.

By taking the limit as n → ∞, we obtain the correct expressions for P0(s), except

in the case of the High Message regime with s1 = 1. In that particular case, this

simple interpretation does not work. However, we can go one step further and note

that when all servers are busy (i.e., when s1 = 1), servers become idle at rate 1− s2,

34

which is the proportion of servers with exactly one job left in their queues. Since the

high message rate assures that messages are sent almost immediately after the server

becomes idle, only a fraction [λ− (1− s2)]/λ of incoming jobs will go to a non-empty

queue, which is exactly the probability of finding an empty virtual queue in this case.

3.1.4 Technical results

In this subsection we provide precise statements of our technical results.

Properties of the fluid solutions

The existence of fluid solutions will be established by showing that, almost surely,

the limit of every convergent subsequence of sample paths of Sn(·) is a fluid solution

(Proposition 3.3.4). In addition, the theorem that follows establishes uniqueness of

fluid solutions for all initial conditions s0 ∈ S1, characterizes the unique equilibrium of

the fluid model, and states its global asymptotic stability. The regimes mentioned in

the statement of the results in this subsection correspond to the different assumptions

on memory and message rates described in the 2nd and 3rd columns of Table 3.1,

respectively.

Theorem 3.1.1 (Existence, uniqueness, and stability of fluid solutions). A fluid

solution, as described in Definition 3.1.1, exists and is unique for any initial condition

s0 ∈ S1. Furthermore, the fluid model has a unique equilibrium s∗, given by

s∗i = λ (λP ∗0)i−1 , ∀ i ≥ 1,

where P ∗0 = P0(s
∗) is given, for the three regimes considered, by:

(i) High Memory: P ∗0 =
[
1− β(1−λ)

λ

]+
;

(ii) High Message: P ∗0 = 0;

(iii) Constrained: P ∗0 =

[
c∑

k=0

(
β(1−λ)

λ

)k]−1
.

35

This equilibrium is globally asymptotically stable, i.e.,

lim
t→∞
‖s(t)− s∗‖w = 0,

for any initial condition s0 ∈ S1.

The proof is given in sections 3.2 (uniqueness and stability) and 3.3 (existence).

Remark 3.1.1. Note that, if β ≥ λ/(1−λ), the High Memory regime also has P ∗0 = 0

in equilibrium.

Approximation theorems

The three results in this subsection justify the use of the fluid model as an approxi-

mation to the finite stochastic system. The first one states that the evolution of the

process Sn(·) is almost surely uniformly close, over any finite time horizon [0, T], to

the unique fluid solution s(·).

Theorem 3.1.2 (Convergence of sample paths). Fix T > 0 and s0 ∈ S1. Under each

of the three regimes, if

lim
n→∞

∥∥Sn(0)− s0
∥∥
w

= 0, a.s.,

then

lim
n→∞

sup
0≤t≤T

‖Sn(t)− s(t)‖w = 0, a.s.,

where s(·) is the unique fluid solution with initial condition s0.

The proof is given in Section 3.3.

Remark 3.1.2. On the technical side, the proof is somewhat involved because

the process
(
Sn(·),Mn(·)

)
is not the usual density-dependent Markov process stud-

ied by Kurtz [28] and which appears in the study of several dispatching policies

(e.g., [34, 40, 47]). This is because Mn(·) is not scaled by n, and consequently

evolves in a faster time scale. We are dealing instead with an infinite-level infinite-

dimensional jump Markov process, which is a natural generalization of its finite-level

36

finite-dimensional counterpart studied in Chapter 8 of [38]. The fact that our process

may have infinitely many levels (memory states) and is infinite-dimensional prevents

us from directly applying known results. Furthermore, even if we truncated Sn(·) to

be finite-dimensional as in [33], our process still would not satisfy the more techni-

cal hypotheses of the corresponding result in [38] (Theorem 8.15). Finally, the large

deviations techniques used to prove Theorem 8.15 in [38] do not directly generalize

to infinite dimensions. For all of these reasons, we will prove our fluid limit result

directly, by using a coupling approach, as in [12] and [42]. Our results involve a

separation of time scales similar to the ones in [46] and [26].

If we combine theorems 3.1.2 and 3.1.1, we obtain that after some time, the state

of the finite system Sn(t) can be approximated by the equilibrium of the fluid model

s∗, because

Sn(t)
n→∞−−−→ s(t)

t→∞−−−→ s∗,

almost surely. If we interchange the order of the limits over n and t, we obtain the

limiting behavior of the invariant distribution πns of Sn(t) as n increases. In the next

proposition and theorem, we show that the result is the same, i.e., that

Sn(t)
t→∞−−−→ πns

n→∞−−−→ s∗,

in distribution, so that the interchange of limits is justified.

The first step is to show that for every finite n, the stochastic process of interest

is positive recurrent.

Proposition 3.1.3 (Stochastic stability). For every n, the process
(
Sn(·),Mn(·)

)
is

positive recurrent and therefore has a unique invariant distribution πn.

The proof is given in Subsection 3.4.1.

Given πn, the unique invariant distribution of the process
(
Sn(·),Mn(·)

)
, let

πns (·) ,
cn∑
m=0

πn(·,m)

37

be the marginal for Sn(·). We have the following result concerning the convergence

of this sequence of marginal distributions.

Theorem 3.1.4 (Convergence of invariant distributions). We have

lim
n→∞

πns = δs∗ , in distribution.

The proof is given in Subsection 3.4.2.

Putting everything together, we conclude that when n is large, the fluid model

is an accurate approximation to the stochastic system, for both the transient regime

(Theorems 3.1.2 and 3.1.1) and the steady-state regime (Theorem 3.1.4). The rela-

tionship between the convergence results is depicted in the commutative diagram of

Figure 3-3.

πns
Thm. 3.1.4

n→∞

Prop. 3.1.3
t→∞

Sn(t)

Thm. 3.1.1
t→∞

s(t)
Thm. 3.1.2

n→∞

s∗

Figure 3-3: Relationship between the stochastic system and the fluid model.

3.1.5 Asymptotic queueing delay and phase transitions

In this subsection we use the preceding results to conclude that in two of the regimes

considered, the asymptotic queueing delay is zero. For the third regime, the asymp-

totic queueing delay is positive and we examine its dependence on various policy

parameters.

38

Queueing delay

Having shown that we can approximate the stochastic system by its fluid model for

large n, we can analyze the equilibrium of the latter to approximate the queueing

delay under our policy.

For any given n, we define the queueing delay of a job, generically denoted by

E [W n], as the mean time that a job spends in queue until its service starts. Here

the expectation is taken with respect to the steady-state distribution, whose existence

and uniqueness is guaranteed by Proposition 3.1.3. Then, the asymptotic queueing

delay is defined as

E[W] , lim sup
n→∞

E [W n] .

This asymptotic queueing delay can be obtained from the equilibrium s∗ of the fluid

model as follows. For a fixed n, the expected number of jobs in the system in steady-

state is

E

[
∞∑
i=1

nSni

]
.

Furthermore, the queueing delay of a job is equal to the total time it spends in the

system minus the expected service time (which is 1). Using Little’s Law, we obtain

that the queueing delay is

E [W n] =
1

λn
E

[
∞∑
i=1

nSni

]
− 1 =

1

λ
E

[
∞∑
i=1

Sni

]
− 1.

Taking the limit as n→∞, and interchanging the limit, summation, and expectation,

we obtain

E [W] =
1

λ

(
∞∑
i=1

s∗i

)
− 1. (3.3)

The validity of these interchanges is established the following lemma.

Lemma 3.1.5. We have

lim
n→∞

E

[
∞∑
i=1

Sni

]
=
∞∑
i=1

s∗i .

39

Proof. By Fubini’s theorem, we have

lim
n→∞

E

[
∞∑
i=1

Sni

]
= lim

n→∞

∞∑
i=1

E [Sni] .

Due to the symmetric nature of the invariant distribution πn, we have

E [Sni] = E

[
1

n

n∑
j=1

1[i,∞)

(
Qn
j

)]

= E
[
1[i,∞) (Qn

1)
]

= πn
(
Qn

1 ≥ i
)

≤
(

1

2− λ

)i/2
,

where the inequality is established in Lemma 3.4.1. We can therefore apply the

dominated convergence theorem to interchange the limit with the first summation,

and obtain

lim
n→∞

∞∑
i=1

E [Sni] =
∞∑
i=1

lim
n→∞

E [Sni] ,

We already know that Sni converges to s∗, in distribution (Theorem 3.1.4). Then,

using a variant of the dominated convergence theorem for convergence in distribution,

and the fact that we always have Sni ≤ 1, we can finally interchange the limit and the

expectation and obtain

∞∑
i=1

lim
n→∞

E [Sni] =
∞∑
i=1

s∗i .

As a corollary, we obtain that if we have a superlinear message rate or a superloga-

rithmic number of memory bits, the RCPB policy results in zero asymptotic queueing

delay.

Corollary 3.1.6. For the High Memory regime with β ≥ λ/(1−λ), and for the High

Message regime, the asymptotic queueing delay is zero, i.e., E[W] = 0.

40

Proof. From Theorem 3.1.1, we have P ∗0 = 0 and therefore, s∗1 = λ and s∗i = 0, for

i ≥ 2. The result follows from Equation (3.3).

The asymptotic queueing delay in the Constrained regime

According to Equation (3.3) and Theorem 3.1.1, the asymptotic queueing delay is

given by

E[W] =
1

λ

∞∑
i=1

s∗i − 1 =
∞∑
i=1

(λP ∗0)i−1 − 1 =
λP ∗0

1− λP ∗0
, (3.4)

and is positive in the Constrained regime. Nevertheless, the dependence of the queue-

ing delay on the various parameters has some remarkable properties, which we proceed

to study.

Suppose that the message rate of each idle server is β = α/(1 − λ) for some

constant α > 0. Since a server is idle (on average) a fraction 1 − λ of the time,

the resulting average message rate at each server is α, and the overall (system-wide)

average message rate is αn. We can rewrite the equilibrium probability P ∗0 in Theorem

3.1.1 as

P ∗0 =

[
c∑
j=0

(α
λ

)j]−1
.

This, together with Equation (3.4) and some algebra, implies that

E[W] = λ

[
1− λ+

c∑
j=1

(α
λ

)j]−1
. (3.5)

Phase transition of the queueing delay for λ ↑ 1. We have a phase transition

between α = 0 (which corresponds to uniform random routing) and α > 0. In the

first case, we have the usual M/M/1 queueing delay: λ/(1−λ). However, when α > 0,

the queueing delay is upper bounded uniformly in λ as follows:

E[W] ≤

(
c∑

k=1

αk

)−1
. (3.6)

41

This is established by noting that the expression in Equation (3.5) is monotonically

increasing in λ and then setting λ = 1. Note that when α is fixed, the total message

rate is the same, αn, for all λ < 1. This is a key qualitative improvement over all

other resource constrained policies in the literature; see our discussion of the power-

of-d-choices policy at the end of this subsection.

Phase transition in the memory-delay tradeoff. When λ and α are held fixed,

the asymptotic queueing delay in Equation (3.5) decreases with c. This represents a

tradeoff between the asymptotic queueing delay E[W], and the number of memory

bits, which is equal to dc log2(n)e for the Constrained regime. However, the rate at

which the queueing delay decreases with c depends critically on the value of α, and

we have a phase transition when α = λ.

(i) If α < λ, then

lim
c→∞

E[W] =
λ(λ− α)

(1− λ)(λ− α) + 1
.

Consequently, if α < λ, it is impossible to drive the queueing delay to 0 by

increasing the value of c, i.e., by increasing the amount of memory available.

(ii) If α = λ, we have

E[W] =
1

1− λ+ c
≤ 1

c
,

and thus the queueing delay converges to 0 at the rate of 1/c, as c→∞.

(iii) If α > λ, we have

E[W] = λ

[
1− λ+

c∑
j=1

(α
λ

)j]−1
≤
(
λ

α

)c
, (3.7)

and thus the queueing delay converges exponentially fast to 0, as c→∞.

This phase transition is due to the fact that the queueing delay depends critically on

P ∗0 , the probability that there are no tokens left in the dispatcher’s virtual queue. In

equilibrium, the number of tokens in the virtual queue evolves as a birth-death process

with birth rate α, death rate λ, and maximum population c, and has an invariant

42

distribution which is geometric with ratio α/λ. As a result, as soon as α becomes

larger than λ, this birth-death process has an upward drift, and the probability of

being at state 0 (no tokens present) decays exponentially with the size of its state

space. This argument captures the essence of the phase transition at β = λ/(1 − λ)

for the High Memory regime.

Comparison with the power-of-d-choices. The power-of-d-choices policy que-

ries d random servers at the time of each arrival and sends the arriving job to the

shortest of the queried queues. As such, it involves 2λdn messages per unit time. For

a fair comparison, we compare this policy to our RCPB policy with α = 2λd, so that

the two policies have the same average message rate.

The asymptotic queueing delay for the power-of-d-choices policy was shown in

[34, 44] to be

E[WPod] =
∞∑
i=1

λ
di−d
d−1 − 1 ≥ λd.

Thus, the queueing delay decreases at best exponentially with d, much like the queue-

ing delay decreases exponentially with c in our scheme (cf. Equation (3.7)). However,

increasing d increases the number of messages sent, unlike our policy where the aver-

age message rate remains fixed at αn.

Furthermore, the asymptotic queueing delay in the power-of-d-choices when λ ↑ 1

is shown in [34] to satisfy

lim
λ↑1

E[WPod]

log
(

1
1−λ

) =
1

log(d)
.

For any fixed d, this is an exponential improvement over the queueing delay of ran-

domized routing, but the queueing delay is still unbounded as λ ↑ 1. In contrast, the

queueing delay of our scheme has a constant upper bound, independent of λ.

In conclusion, if we set α = 2dλ, so that our policy and the power-of-d policy

use the same number of messages per unit of time, our policy results in much better

asymptotic queueing delay, especially when λ ↑ 1, even if c is as small as 1.

43

Numerical results. We implemented three policies in Matlab: the power-of-2-

choices [34, 44], our RCPB policy, and the PULL policy [40]. We evaluate the algo-

rithms in a system with 500 servers. In our algorithm we used c = 2, and α = λ, so

it has the same average message rate as the PULL policy (500λ messages per unit of

time), which is 4 times less than what the power-of-2-choices utilizes. In Figure 3-4

we plot the queueing delay as a function of log (1/(1− λ)).

Figure 3-4: Average queueing delay of the power-of-2-choices policy (red circles) vs.
our policy (blue squares) vs. PULL (green asterisks).

As expected, the queueing delay remains uniformly bounded under our RCPB

policy (blue squares). This is achieved with only d2 log2(500)e = 18 bits of memory.

Furthermore, with this small amount of memory we are also close to the performance

of the PULL algorithm, which requires 500 bits of memory.

3.2 Proof of part of Theorem 3.1.1

The proof of Theorem 3.1.1 involves mostly deterministic arguments; these are devel-

oped in lemmas 3.2.1 and 3.2.3, and Proposition 3.2.5, which establish uniqueness of

fluid solutions, existence and uniqueness of a fluid-model equilibrium, and asymptotic

44

stability, respectively. The proof of existence of fluid solutions relies on a stochastic

argument and is developed in Section 3.3, in parallel with the proof of Theorem 3.1.2.

3.2.1 Uniqueness of solutions

Lemma 3.2.1. If there exists a fluid solution (cf. Definition 3.1.1) with initial con-

dition s0 ∈ S1, it is unique.

Proof. The fluid model is of the form ṡ(·) = F
(
s(·)
)
, where the function F : S1 →

[−1, λ]Z+ is defined by

F0(s) =0,

F1(s) =λ
(
1− P0(s)

)
+ λ(1− s1)P0(s)− (s1 − s2), (3.8)

Fi(s) =λ(si−1 − si)P0(s)− (si − si+1), ∀ i ≥ 2,

and where P0(s) is given for the three regimes by:

(i) High Memory: P0(s) =
[
1− β(1−s1)

λ

]+
.

(ii) High Message: P0(s) =
[
1− 1−s2

λ

]+
1{1}(s1).

(iii) Constrained: P0(s) =

[
c∑

k=0

(
β(1−s1)

λ

)k]−1
.

The function P0(s) for the High Memory regime is continuous and piecewise linear

in s1, so it is Lipschitz continuous in s, over the set S1. Similarly, P0(s) for the

Constrained regime is also Lipschitz continuous in s, because P0(s) is a rational

function of s1 and the denominator is lower bounded by 1. However, P0(s) for the

High Message regime is only Lipschitz continuous “almost everywhere” in S1; more

precisely, it is Lipschitz continuous everywhere except on the lower dimensional set

D ,
{
s ∈ S1 : s1 = 1 and s2 > 1− λ

}
.

Moreover, P0(s) restricted to D is also Lipschitz continuous.

45

Suppose that P0(s) is Lipschitz continuous with constant L on some subset S0 of

S1. Then, for every s, s′ ∈ S0 and any i ≥ 1, we have

|Fi(s)− Fi(s′)| =
∣∣−λP0(s)1{1}(i) + λ(si−1 − si)P0(s)− (si − si+1)

+λP0 (s′)1{1}(i)− λ
(
s′i−1 − s′i

)
P0 (s′) +

(
s′i − s′i+1

)∣∣
≤ |P0(s)− P0(s

′)|+
∣∣(si−1 − si)P0(s)−

(
s′i−1 − s′i

)
P0(s

′)
∣∣

+ |si − s′i|+
∣∣si+1 − s′i+1

∣∣
≤ 2 |P0(s)− P0(s

′)|+
∣∣si−1 − s′i−1∣∣+ 2 |si − s′i|+

∣∣si+1 − s′i+1

∣∣
≤ 2L‖s− s′‖w +

∣∣si−1 − s′i−1∣∣+ 2 |si − s′i|+
∣∣si+1 − s′i+1

∣∣ .
Then,

‖F (s)− F (s′)‖w =

√√√√ ∞∑
i=0

|Fi(s)− Fi(s′)|2

2i

≤

√√√√√ ∞∑
i=1

(
2L‖s− s′‖w +

∣∣si−1 − s′i−1∣∣+ 2 |si − s′i|+
∣∣si+1 − s′i+1

∣∣)2
2i

≤

√√√√12
∞∑
i=1

4L2‖s− s′‖2w +
∣∣si−1 − s′i−1∣∣2 + 4 |si − s′i|

2 +
∣∣si+1 − s′i+1

∣∣2
2i

≤ ‖s− s′‖w
√

12(4L2 + 2 + 4 + 1),

where the second inequality comes from the fact that (w+x+y+ z)2 ≤ 12
(
w2 +x2 +

y2 + z2
)
, for all (w, x, y, z) ∈ R4. This means that F is also Lipschitz continuous on

the set S0.

For the High Memory and Constrained regimes, we can set S0 = S1, and by the

preceding discussion, F is Lipschitz continuous on S1. At this point we cannot imme-

diately guarantee the uniqueness of solutions because F is just Lipschitz continuous

on a subset (S1) of the Hilbert space (`2w, ‖ · ‖w). However, we can use Kirszbraun’s

theorem [27] to extend F to a Lipschitz continuous function F on the entire Hilbert

space. If we have two different solutions to the equation ṡ = F (s) which stay in S1, we

46

would also have two different solutions to the equation ṡ = F (s). Since F is Lipschitz

continuous, this would contradict the Picard-Lindelöff uniqueness theorem [30]. This

establishes the uniqueness of fluid solutions for the High Memory and Constrained

regimes.

Note that the preceding argument can also be used to show uniqueness of solutions

for any differential equation with a Lipschitz continuous drift in an arbitrary subset

of the Hilbert space (`2w, ‖ ·‖w), as long as we only consider solutions that stay in that

set. This fact will be used in the rest of the proof.

From now on, we concentrate on the High Message regime. In this case, the

drift F (s) is Lipschitz continuous only “almost everywhere,” and a solution will in

general be non-differentiable. In particular, results on the uniqueness of classical

(differentiable) solutions do not apply. Our proof will rest on the fact that non-

uniqueness issues can only arise when a trajectory hits the closure of the set where

the drift F (s) is not Lipschitz continuous, which in our case is just the closure of D:

D =
{
s ∈ S1 : s1 = 1 and s2 ≥ 1− λ

}
.

We now partition the space S1 into three subsets, S1\D, D, and D\D, and character-

ize the behavior of potential trajectories depending on the initial condition. Note that

we only consider fluid solutions, and these always stay in the set S1, by definition.

Therefore, we only need to establish the uniqueness of solutions that stay in S1.

Claim 3.2.2. For any fluid solution s(·) in the High Message regime, and with initial

condition s0 ∈ D, we have the following.

i) If s0 ∈ D, then s(·) either stays in D forever or hits D\D at some finite time.

In particular, it cannot go directly from D to S1\D.

ii) If s0 ∈ D\D, then s(·) stays in S1\D forever. In particular, it can never return

to D.

47

Proof.

i) Suppose that s0 ∈ D, i.e., s01 = 1 and s02 > 1 − λ. Let tDc be the exit time

from D, and suppose that it is finite. Note that, by continuity of solutions,

s1(tDc) = 1. We will show that s2(tDc) = 1 − λ, so that the trajectory hits

D\D. Suppose, in order to derive a contradiction, that this is not the case and,

therefore, s2(tDc) > 1−λ. Then, due to the continuity of solutions, there exists

some time t1 > tDc such that s1(t1) < 1 and s2(t) > 1 − λ, for all t ∈ [tDc , t1].

Let

t0 , sup{t ≤ t1 : s1(t) = 1}

be the last time before t1 that s1(t) is equal to 1. Then we have s1(t0) = 1,

and s1(t) < 1 for all t ∈ (t0, t1]. Since the drift F is continuous for all s1 < 1,

all times in (t0, t1] are regular. On the other hand, for all t ∈ (t0, t1], we have

s1(t) < 1 and thus P0(s(t)) = 0, which together with s2(t) > 1− λ implies that

ds1(t)

dt
= λ− (s1(t)− s2(t)) > 0,

for all t ∈ (t0, t1]. This contradicts the relations s1(t1) < 1 = s1(t0), and

establishes that s1(tD) = 1. Therefore the fluid solution s either stays in D

forever or it exits D with s2 = 1− λ.

ii) Suppose now that s0 ∈ D\D, i.e., s01 = 1 and s02 = 1− λ. It is enough to show

that s2(t) ≤ 1− λ, for all t ≥ 0. Let

τ2(ε) , min{t ≥ 0 : s2(t) = 1− λ+ ε}

be the first time s2 reaches 1−λ+ε. Suppose, in order to derive a contradiction,

that there exists ε∗ > 0 such that τ2(ε∗) < ∞. Then, due to the continuity

of s2, we also have τ2(ε) < ∞, for all ε ≤ ε∗. Since s2 is differentiable almost

everywhere, we can choose ε such that τ2(ε) is a regular time with F2

(
s(τ2(ε))

)
>

48

0. Using the expression (3.8) for F2, we obtain

0 < λ
(
s1(τ2(ε))− s2(τ2(ε))

)(
1− 1− s2(τ2(ε))

λ

)
1{1}(s1(τ2(ε)))

−
(
s2(τ2(ε))− s3(τ2(ε))

)
≤ λ

(
1− s2(τ2(ε))

)(
1− 1− s2(τ2(ε))

λ

)
−
(
s2(τ2(ε))− s3(τ2(ε))

)
= λ− 1 + s3(τ2(ε)) + s2(τ2(ε))

(
1− λ− s2(τ2(ε))

)
< λ− 1 + s3(τ2(ε)),

or s3(τ2(ε)) > 1 − λ. On the other hand, we have s3(0) ≤ s2(0) = 1 − λ.

Combining these two facts, we obtain that s3(τ2(ε)) > s3(0), i.e., that s3(·)

increased between times 0 and τ2(ε). As a result, and since s3(·) is differentiable

almost everywhere, there exists another regular time τ3(ε) ≤ τ2(ε) such that

s3(τ3(ε)) > 1 − λ and F3(s(τ3(ε))) > 0. Proceeding inductively, we can obtain

a sequence of nonincreasing regular times τ2(ε) ≥ τ3(ε) ≥ · · · ≥ 0 such that

sk(τk(ε)) > 1−λ, for all k ≥ 2. Let τ∞(ε) be the limit of this sequence of regular

times. Since all coordinates of the fluid solutions are Lipschitz continuous with

the same constant L, we have

sk(τ∞) > 1− λ− L
(
τk(ε)− τ∞

)
,

for all k ≥ 2. Since τk(ε) → τ∞, there exists some k∗ ≥ 2 such that sk(τ∞) >

(1− λ)/2 > 0, for all k ≥ k∗. But then,

‖s(τ∞)‖1 ≥
∞∑

k=k∗

1− λ
2

=∞.

This contradicts the fact that s(τ∞) ∈ S1, and it follows that we must have

s2(t) ≤ 1− λ for all t ≥ 0.

The uniqueness of a solution over the whole time interval [0,∞) for the High

49

Message regime can now be obtained by concatenating up to three unique trajectories,

depending on the initial condition s0.

a) Suppose that s0 ∈ S1\D, and let tD be the hitting time of D, i.e.,

tD , inf
{
t ≥ 0 : s(t) ∈ D with s(0) = s0

}
.

Since F |S1\D (the restriction of the original drift F to the set S1\D) is Lipschitz

continuous, we have the uniqueness of a solution over the time interval [0, tD),

by using the same argument as for the other regimes. If tD = ∞, then we are

done. Otherwise, we have s(tD) ∈ D; the uniqueness of a solution over the time

interval [tD,∞) will immediately follow from the uniqueness of a solution with

initial condition in D.

b) Suppose that s0 ∈ D. Due to part i) of Claim 3.2.2, a solution can only exit the

set D by hitting D\D, and never by going back directly into S1\D. Let tD\D be

the hitting time of D\D. Since F |D is Lipschitz continuous, we have uniqueness

of a solution over the time interval [0, tD\D). As in case a), if tD\D =∞ we are

done. Otherwise, the uniqueness of a solution over the time interval [tD\D,∞)

will immediately follow from the uniqueness of a solution with initial condition

in D\D.

c) Suppose that s0 ∈ D\D. Due to part ii) of Claim 3.2.2, a solution stays in S1\D

forever. As a result, since F |S1\D is Lipschitz continuous, uniqueness follows.

The intuition behind the preceding proof, for the High Message regime, is as

follows. A non-differentiable solution may arise if the system starts with a large

fraction of the servers having at least two jobs. In that case, the rate s1(t)− s2(t) at

which the servers become idle is smaller than the rate λ at which idle servers become

busy. As a consequence, the fraction s1(t) of busy servers increases until it possibly

reaches its maximum of 1, and stays there until the fraction of servers with exactly

50

one job, which is now 1−s2(t), exceeds the total arrival rate λ; after that time servers

become idle at a rate faster than the arrival rate. This scenario is illustrated in Figure

3-5.

Figure 3-5: An example of a non-differentiable solution for the High Message regime,
with λ = 0.9, s1(0) = s2(0) = s3(0) = 0.7, and si(0) = 0 for all i ≥ 4. The solution is
non-differentiable at the points indicated by the circles.

3.2.2 Existence, uniqueness, and characterization of an equi-

librium

Lemma 3.2.3. The fluid model has a unique equilibrium s∗ ∈ S1, given by

s∗i =λ(λP ∗0)i−1, ∀ i ≥ 1,

where P ∗0 , P0(s
∗) is given by

(i) High Memory: P ∗0 =
[
1− β(1−λ)

λ

]+
.

(ii) High Message: P ∗0 = 0.

(iii) Constrained: P ∗0 =

[
c∑

k=0

(
β(1−λ)

λ

)k]−1
.

51

Proof. A point s∗ ∈ S1 is an equilibrium if and only if

0 =λ
(
1− P0(s

∗)
)

+ λ(1− s∗1)P0(s
∗)− (s∗1 − s∗2),

0 =λ(s∗i−1 − s∗i)P0(s
∗)− (s∗i − s∗i+1), ∀ i ≥ 2.

Since s∗ ∈ S1, the sum
∑∞

i=0(s
∗
i−s∗i+1) is absolutely convergent, even when we consider

all the terms separately, i.e., when we consider s∗i and −s∗i+1 as separate terms, for

each i ≥ 0. Thus, we can obtain equivalent equilibrium conditions by summing these

equations over all coordinates j ≥ i, for any fixed i ≥ 1. We then obtain that s∗ is

an equilibrium if and only if

0 =λ
(
1− P0(s

∗)
)

+ λP0(s
∗)
∞∑
j=1

(s∗j−1 − s∗j)−
∞∑
j=1

(s∗j − s∗j+1), (3.9)

0 =λP0(s
∗)
∞∑
j=i

(s∗j−1 − s∗j)−
∞∑
j=i

(s∗j − s∗j+1), ∀ i ≥ 2. (3.10)

Since the sums are absolutely convergent, we can rearrange the terms in equations

(3.9) and (3.10) to obtain that s∗ ∈ S1 is an equilibrium if and only if

0 = λ− s∗1,

0 = λP0(s
∗)s∗i−1 − s∗i , ∀ i ≥ 2.

These conditions yield s∗1 = λ < 1, and

s∗i =λ(λP0(s
∗))i−1, ∀ i ≥ 1,

which concludes the proof.

3.2.3 Asymptotic stability of the equilibrium

We will establish global asymptotic stability by sandwiching a fluid solution between

two solutions that converge to s∗, similar to the argument in [44]. Towards this

purpose, we first establish a monotonicity result.

52

Lemma 3.2.4. Suppose that s1 and s2 are two fluid solutions with s1(0) ≥ s2(0).

Then s1(t) ≥ s2(t), for all t ≥ 0.

Proof. It is known that uniqueness of solutions implies their continuous dependence

on initial conditions, not only for the classical solutions in the High Memory and

Constrained regimes, but also for the non-differentiable solutions of the High Message

regime (see Chapter 8 of [16]). Using this fact, it can be seen that it is enough to

verify that s1(t) ≥ s2(t) when s1(0) > s2(0), which we henceforth assume, under our

particular definition of “>” in Section 2.1. Let us define

t1 , inf
{
t ≥ 0 : s1k(t) < s2k(t), for some k ≥ 1

}
.

If t1 =∞, then s1(t) ≥ s2(t) for all t ≥ 0, and the result holds. It remains to consider

the case where t1 <∞, which we assume from now on.

By the definition of t1, we have s1i (t) ≥ s2i (t) for all i ≥ 1, and for all t ≤ t1. Since

P0(s) is nondecreasing in s, this implies that P0(s
1(t)) ≥ P0(s

2(t)), for all t ≤ t1.

Then, for all regular times t ≤ t1 and any i ≥ 2, and also using the fact that si is

nonincreasing in i, we have

Fi
(
s1(t)

)
− Fi

(
s2(t)

)
= λ

[
s1i−1(t)− s1i (t)

]
P0(s

1(t)) +
[
s1i+1(t)− s2i+1(t)

]
− λ
[
s2i−1(t)− s2i (t)

]
P0

(
s2(t)

)
−
[
s1i (t)− s2i (t)

]
≥ λ

[
s1i−1(t)− s1i (t)

]
P0

(
s2(t)

)
− λ
[
s2i−1(t)− s2i (t)

]
P0

(
s2(t)

)
−
[
s1i (t)− s2i (t)

]
≥ −λP0

(
s2(t)

)[
s1i (t)− s2i (t)

]
−
[
s1i (t)− s2i (t)

]
≥ −2

[
s1i (t)− s2i (t)

]
.

Then, by Grönwall’s inequality we have

s1i (t)− s2i (t) ≥ e−2t
[
s1i (0)− s2i (0)

]
, ∀i ≥ 2, (3.11)

for all t ≤ t1. This implies that s1i (t) − s2i (t) > 0, for all i ≥ 2 and for all t ≤ t1. It

53

follows that, at time t1, we must have s11(t1) = s21(t1). The rest of the proof considers

separately two different cases.

Case 1: Suppose that we are dealing with the High Memory or the Constrained

regime, or with the High Message regime with s11(t1) = s21(t1) < 1. Since s11(t1) =

s21(t1), we have P0

(
s1(t1)

)
= P0

(
s2(t1)

)
. Then, due to the continuity of s1, s2, and of

P0 (local continuity for the High Message regime), there exists ε > 0 such that

λs21(t)P0

(
s2(t)

)
− λs11(t)P0

(
s1(t)

)
−
[
s11(t)− s21(t)

]
> −ε,

and (using Equation (3.11)) s12(t)− s22(t) > ε, for all t ≤ t1 sufficiently close to t1. As

a result, we have

F1

(
s1(t)

)
− F1

(
s2(t)

)
= λs21(t)P0

(
s2(t)

)
− λs11(t)P0

(
s1(t)

)
−
[
s11(t)− s21(t)

]
+
[
s12(t)− s22(t)

]
> 0, (3.12)

for all t < t1 sufficiently close to t1. Therefore, s11 − s21 was increasing just before t1.

On the other hand, from the definition of t1, we have s11(t1) = s21(t1) and s11(t) ≥ s21(t)

for all t < t1. This is a contradiction, and therefore this case cannot arise.

Case 2: Suppose now that we are dealing with the High Message regime, and that

s11(t1) = s21(t1) = 1. Since t1 <∞, we can pick a time t2 > t1, arbitrarily close to t1,

such that s11(t2) < s21(t2). Let us define

t′1 , sup
{
t ≤ t2 : s11(t) = s21(t)

}
.

Due to the continuity of s1 and s2, and since s11(t′1) = s21(t
′
1) and s12(t1) > s22(t1), there

exists ε > 0 such that s21(t) − s11(t) < ε and s12(t) − s22(t) > ε, for all t ∈ [t′1, t2] (we

can always take a smaller t2, if necessary, so that this holds). Furthermore, since

s11(t) < 1 for all t ∈ [t′1, t2], we have P0

(
s1(t)

)
= 0, for all t ∈ [t′1, t2]. Using these facts

in Equation (3.12), we obtain F1

(
s1(t)

)
−F1

(
s2(t)

)
≥ 0, for all t ∈ [t′1, t2]. Therefore,

s11 − s21 is nondecreasing in that interval. This is a contradiction, because we have

s11(t
′
1) = s21(t

′
1) and s11(t2) < s21(t2). Therefore, this case cannot arise either.

54

We will now show that we can “sandwich” any given trajectory s(·) between a

smaller one sl(·) and a larger one su(·) (according to our partial order ≥) and prove

that both sl(t) and su(t) converge to s∗ as t→∞, to conclude that s(t) converges to

s∗ as t→∞.

Proposition 3.2.5. The equilibrium s∗ of the fluid model is globally asymptotically

stable, i.e.,

lim
t→∞
‖s(t)− s∗‖w = 0,

for all fluid solutions s(·).

Proof. Suppose that s(0) = s0 ∈ S1. We define initial conditions su(0) and sl(0) by

letting

sui (0) , max {si(0), s∗i } , and sli(0) , min {si(0), s∗i } ,

for all i. We then have su(0) ≥ s0 ≥ sl(0), su(0) ≥ s∗ ≥ sl(0), and su(0), sl(0) ∈ S1.

Due to monotonicity (Lemma 3.2.4), we obtain that su(t) ≥ s(t) ≥ sl(t) and su(t) ≥

s∗ ≥ sl(t) for all t ≥ 0. Thus it suffices to prove that ‖su(t)− s∗‖w and
∥∥sl(t)− s∗∥∥

w

converge to 0 as t→∞.

For any s ∈ S1, we introduce an equivalent representation in terms of a vector v

with components vi defined by

vi ,
∞∑
j=i

sj, i ≥ 1.

Note that any s ∈ S1 can be fully recovered from v. Therefore, we can work with a

representation vu(t), vl(t), and v∗, of the vectors su(t), sl(t), and s∗, respectively.

From the proof of Lemma 3.2.1, we know that a trajectory can be non-differentiable

at most at a single point in time. This can occur only for the High Message regime,

and only if the trajectory hits the set

D =
{
s ∈ S1 : s1 = 1 and s2 > 1− λ

}
,

55

where the drift is discontinuous. In all other cases, the trajectories are not only dif-

ferentiable, but also Lipschitz continuous (in time), with the same Lipschitz constant

for all coordinates. Therefore, in order to prove the asymptotic stability of the solu-

tions, which is a property of the limiting behavior as t→∞, we can assume that the

trajectories are everywhere differentiable and Lipschitz continuous.

Our first step is to derive a differential equation for vi. This requires the inter-

change of summation and differentiation, which we proceed to justify. For any i ≥ 1,

we define a sequence of functions
{
f
(i)
k (·)

}∞
k=1

, as follows:

f
(i)
k (t) ,

k∑
j=i

dsuj
dt

(t), ∀ t ≥ 0.

Using equations (3.1) and (3.2), we obtain

f
(1)
k (t) = λ− su1(t) +

[
sun+1(t)− λsuk(t)P0

(
su(t)

)]
,

f
(i)
k (t) = λsui−1(t)P0

(
su(t)

)
− sui (t) +

[
suk+1(t)− λsuk(t)P0

(
su(t)

)]
, ∀ i ≥ 2.

Since su(t) ∈ S1, for all t, we have the pointwise limits

lim
k→∞

f
(1)
k (t) = λ− su1(t),

lim
k→∞

f
(i)
k (t) = λsui−1(t)P0

(
su(t)

)
− sui (t), ∀ i ≥ 2.

On the other hand, since all components of su(·) are Lipschitz continuous with the

same constant, and since P0(s) is also Lipschitz-continuous, the functions in the

sequence
{
f
(i)
k (·)

}∞
k=1

are equicontinuous, for any given i. Then, the Arzelà-Ascoli

theorem allows us to conclude that f (i)
k (·) also converges uniformly, over any compact

interval of time, to their pointwise limits. Using the uniform convergence, and the

fact that su(0) ∈ S1, we can interchange summation and differentiation (Theorem

56

7.17 in [37]) to obtain

dvu1
dt

(t) =
d

dt

∞∑
j=1

suj (t) =
∞∑
j=1

dsuj
dt

(t) = λ− su1(t)

dvui
dt

(t) =
d

dt

∞∑
j=i

suj (t) =
∞∑
j=i

dsuj
dt

(t) = λsui−1(t)P0(s
u(t))− sui (t), ∀ i ≥ 2.

Turning the above differential equations into integral equations, and using the facts

s∗1 = λ and λs∗i−1P ∗0 − s∗i = 0, we have

vu1 (t)− vu1 (0) =

t∫
0

(s∗1 − su1(τ)) dτ,

vui (t)− vui (0) =

t∫
0

(
λ
(
sui−1(τ)P0(s

u(τ))− s∗i−1P ∗0
)
−
(
sui (τ)− s∗i

))
dτ.

Note that from the definition of vi, we have vu1 (t) ≥ vui (t). Furthermore, from Lemma

3.2.4, we have su1(t) ≥ s∗1, so that v̇u1 (t) ≤ 0, for all t ≥ 0. It follows that

vu1 (0) ≥ vu1 (t) ≥ vui (t) ≥ vui (t)− vui (0) ≥ −vui (0),

for all t.

We will now use induction on i to prove coordinate-wise convergence, i.e., that

|sui (t)− s∗i | converges to 0, as t → ∞, for all i ≥ 1. We start with the base case,

i = 1. We have su1(τ) − s∗1 ≥ 0, for all τ ≥ 0. Using the fact v̇u1 (t) ≤ 0, we see that

vu1 (t) converges to some limit, which we denote by vu1 (∞). Then,

0 ≤
∞∫
0

(
su1(τ)− s∗1

)
dτ = vu1 (0)− vu1 (∞) ≤ vu1 (0) <∞,

which, together with the fact that s1 is Lipschitz continuous, implies that
(
su1(τ)−s∗1

)
converges to zero, as τ →∞.

57

We now consider some i ≥ 2 and make the induction hypothesis that

∞∫
0

(
suk(τ)− s∗k

)
dτ <∞, ∀ k ≤ i− 1. (3.13)

Then,

−vui (0) ≤ vui (t)−vui (0) =

t∫
0

(
λ
(
sui−1(τ)P0(s

u(τ))−s∗i−1P ∗0
)
−
(
sui (τ)−s∗i

))
dτ. (3.14)

Adding and subtracting λs∗i−1P0(s
u(τ)) inside the integral, we obtain

− vu1 (0) ≤
t∫

0

(
λ
[
sui−1(τ)− s∗i−1

]
P0(s

u(τ))

+ λ [P0(s
u(τ))− P ∗0] s∗i−1 −

(
sui (τ)− s∗i

))
dτ. (3.15)

Using Lemma 3.2.4, we have sui−1(τ) ≥ s∗i−1 for all i ≥ 1, and for all τ ≥ 0, which also

implies that P0(s
u(τ)) ≥ P ∗0 for all τ ≥ 0. Therefore, the two terms inside brackets

are nonnegative. Using the facts λ < 1, s∗i−1 ≤ 1, and P0(s
u(τ)) ≤ 1, Equation (3.15)

implies that

−vui (0) ≤
t∫

0

([
sui−1(τ)− s∗i−1

]
+ [P0(s

u(τ))− P ∗0]− [sui (τ)− s∗i]
)
dτ,

or

t∫
0

(sui (τ)− s∗i) dτ ≤ vi(0) +

t∫
0

(
sui−1(τ)− s∗i−1

)
dτ +

t∫
0

(
P0(s

u(τ))− P ∗0
)
dτ. (3.16)

The first integral on the right-hand side of Equation (3.16) is upper-bounded uni-

formly in t, by the induction hypothesis (Equation (3.13)). We now derive an upper

bound on the last integral, for each one of the three regimes.

(i) High Memory regime: By inspecting the expression for P0(s) for the High-

58

Memory variant, we observe that it is monotonically nondecreasing and Lips-

chitz continuous in s1. Therefore, there exists a constant L such that

t∫
0

(
P0(s

u(τ))− P ∗0
)
dτ ≤

t∫
0

L
(
su1(τ)− s∗1

)
dτ.

Using the induction hypothesis for k = 1, we conclude that the last integral on

the right-hand side of Equation (3.16) is upper bounded, uniformly in t.

(ii) Constrained regime: For the Constrained regime, the function P0(s) is again

monotonically nondecreasing and, as remarked at the beginning of the proof

of Lemma 3.2.1, it is also Lipschitz continuous in s1. Thus, the argument is

identical to the previous case.

(iii) High Message regime: We have an initial condition s0 ∈ S1, and therefore

0 ≤ v01 < ∞. As already remarked, we have v̇u1 (t) = λ − su1(t) ≤ 0. It follows

that su1 can be equal to 1 for at most v01/(1 − λ) units of time. Therefore,

P0(s
u(t)) = [1− (1− su2(t))/λ]+ 1{1}

(
su1(t)

)
can be positive only on a set of

times of Lebesgue measure at most v01/(1− λ). This implies the uniform (in t)

upper bound

t∫
0

(
P0(s

u(τ))− P ∗0
)
dτ =

t∫
0

P0(s
u(τ))dτ ≤ v01

1− λ
.

For all three cases, we have shown that the last integral in Equation (3.16) is

upper bounded, uniformly in t. It follows from Equation (3.16) and the induction

hypothesis that
∞∫
0

(sui (τ)− s∗i) dτ <∞.

This completes the proof of the induction step. Using the Lipschitz-continuity of sui (·),

it follows that sui (t) converges to s∗i , as t→∞, for all i ≥ 1. It is straightforward to

check that this coordinate-wise convergence, together with boundedness (sui (t) ≤ 1,

59

for all i and t), implies that also

lim
t→∞
‖su(t)− s∗‖w = 0.

An analogous argument gives us the convergence

lim
t→∞
‖sl(t)− s∗‖w = 0,

which concludes the proof.

3.3 Proof of Theorem 3.1.2 and of the rest of Theo-

rem 3.1.1

We will now prove the convergence of the stochastic system to the fluid solution.

The proof involves three steps. We first define the process using a coupled sample

path approach, as in [42]. We then show the existence of limiting trajectories under

the fluid scaling (Proposition 3.3.3). We finally show that any such limit trajectory

must satisfy the differential equations in the definition of the fluid model (Proposition

3.3.4).

3.3.1 Probability space and coupling

We will first define a common probability space for all n. We will then define a

coupled sequence of processes {(Sn(·),Mn(·))}∞n=1. This approach will allow us to

obtain almost sure convergence in the common probability space.

Fundamental processes and initial conditions

All processes of interest (for all n) will be driven by certain common fundamental

processes.

a) Driving Poisson processes: Independent Poisson counting processes Nλ(·)

(process of arrivals, with rate λ), and N1(·) (process of potential departures,

60

with rate 1). A coupled sequence {Nβn(·)}∞n=1 (processes of potential messages,

with nondecreasing rates βn), independent of Nλ(·) and N1(·), such that the

events in Nβn(·) are a subset of the events in Nβ(n+1)(·) almost surely, for all n ≥

1. These processes are defined on a common probability space (ΩD,AD,PD).

b) Selection variables: Three independent and individually i.i.d. sequences of

random variables {Uk}∞k=1, {Vk}∞k=1, and {Wk}∞k=1, uniform on [0, 1], defined on

a common probability space (ΩS,AS,PS).

c) Initial conditions: A sequence of random variables
{(
S(0,n),M (0,n)

)}∞
n=1

de-

fined on a common probability space (Ω0,A0,P0) and taking values in (S1 ∩ In)×

{0, 1, . . . , cn}.

The whole system will be defined on the probability space

(Ω,A,P) = (ΩD × ΩS × Ω0,AD ×AS ×A0,PD × PS × P0).

All of the randomness in the system (for any n) will be specified by these fundamental

processes, and everything else will be a deterministic function of them.

A coupled construction of sample paths

Recall that our policy results in a Markov process
(
Sn(·),Mn(·)

)
, taking values in

the set
(
S1 ∩ In

)
× {0, 1, . . . , cn}, where Sni (t) is the fraction of servers with at least

i jobs and Mn(t) is the number of tokens stored in memory, at time t. We now

describe a particular construction of the process, as a deterministic function of the

fundamental processes. We decompose the process Sn(·) as the sum of two non-

negative and non-decreasing processes, An(·) and Dn(·), that represent the (scaled by

n) total cumulative arrivals to and departures from the queues, respectively, so that

Sn(·) = S(0,n) + An(·)−Dn(·).

Let tλ,nj , t1,nj , and tβ,nj be the time of the j-th arrival of the processes Nλ(n ·), N1(n ·),

and Nβn(n ·), respectively. In order to simplify notation, we will omit the superscripts

61

λ, 1, and β, when the corresponding process is clear. For every t ≥ 1, the first

component of An(t) is

An1 (t) ,
1

n

Nλ(nt)∑
j=1

[
1[1,cn]

(
Mn

(
tnj
−))+ 1{0}

(
Mn

(
tnj
−))1[0,1−Sn1 (tnj −))(Uj)

]
. (3.17)

The above expression is interpreted as follows. We have an upward jump of size 1/n

in An1 (·) every time that a job joins an empty queue, which happens every time that

there is an arrival and either (i) there are tokens in the virtual queue (i.e., Mn > 0)

or, (ii) there are no tokens and an empty queue is drawn uniformly at random, which

happens with probability 1− Sn1 . Similarly, for i ≥ 2,

Ani (t) ,
1

n

Nλ(nt)∑
j=1

1{0}
(
Mn

(
tnj
−))1[1−Sni−1(tnj −),1−Sni (tnj −))(Uj).

In this case we have an upward jump in Ani (·) of size 1/n every time that there is

an arrival, there are no tokens in the virtual queue (i.e., Mn = 0), and a queue with

exactly i − 1 jobs is drawn uniformly at random, which happens with probability

Sni−1 − Sni . Moreover, for all i ≥ 1,

Dn
i (t) ,

1

n

N1(nt)∑
j=1

1[1−Sni (tnj −),1−Sni+1(tnj −))(Wj).

We have an upward jump in Dn
i (·) of size 1/n when there is a departure from a queue

with exactly i jobs, which happens with rate
(
Sni − Sni+1

)
n.

Recall that βn is the message rate of an empty server. In the High Memory and

Constrained regimes, we have βn = β, while in the High Message regime βn is a

nondecreasing and unbounded sequence. Potential messages are generated according

to the processNβn(n ·), but an actual message is generated only if a randomly selected

62

queue is empty. Thus, the number of tokens in the virtual queue evolves as follows:

Mn(t) ,M (0,n) −
Nλ(nt)∑
j=1

1[1,cn]

(
Mn

(
tnj
−))

+

Nβn (nt)∑
j=1

1[0,cn−1]
(
Mn

(
tnj
−))1[

0,1−Sn1 (tnj −)−
Mn(tnj −)

n

)(Vj). (3.18)

To see this, if the virtual queue is not empty, a token is removed from the virtual

queue each time there is an arrival. Furthermore, if the virtual queue is not full, a

new token is added each time a new message arrives from one of the n(1− Sn1)−Mn

queues that do not have corresponding tokens in the virtual queue.

As mentioned earlier, the proof involves the following two steps:

1. We show that there exists a measurable set C ⊂ Ω with P(C) = 1 such that for

all ω ∈ C, any sequence of sample paths Sn(ω, ·) contains a further subsequence

that converges to a Lipschitz continuous trajectory s(·), as n→∞.

2. We characterize the derivative of s(·) at any regular point and show that it is

identical to the drift of our fluid model. Hence s(·) must be a fluid solution

for some initial condition s0, yielding also, as a corollary, the existence of fluid

solutions.

3.3.2 Tightness of sample paths

We start by finding a set of “nice” sample paths ω for which any subsequence of the

sequence {Sn(ω, ·)}∞n=1 contains a further subsequence {Snk(ω, ·)}∞k=1 that converges

to some Lipschitz continuous function s(·). The arguments involved here are fairly

straightforward and routine.

Lemma 3.3.1. Fix T > 0. There exists a measurable set C ⊂ Ω such that P(C) = 1

63

and for all ω ∈ C,

lim
n→∞

sup
t∈[0,T]

∣∣∣∣ 1nNλ(ω, nt)− λt
∣∣∣∣ = 0, (3.19)

lim
n→∞

sup
t∈[0,T]

∣∣∣∣ 1nN1(ω, nt)− t
∣∣∣∣ = 0, (3.20)

lim
n→∞

1

n

n∑
i=1

1[a,b)(Ui(ω)) = b− a, for all [a, b) ⊂ [0, 1], (3.21)

lim
n→∞

1

n

n∑
i=1

1[c,d)(Wi(ω)) = d− c, for all [c, d) ⊂ [0, 1]. (3.22)

Proof. Using the Functional Strong Law of Large Numbers for Poisson processes,

we obtain a subset CD ⊂ ΩD such that PD(CD) = 1 on which Equations (3.19)

and (3.20) hold. Furthermore, the Glivenko-Cantelli lemma gives us another subset

CS ⊂ ΩS such that PS(CS) = 1 and on which equations (3.21) and (3.22) hold. Taking

C = CD × CS × Ω0 concludes the proof.

Let us fix an arbitrary s0 ∈ [0, 1], sequences Rn ↓ 0 and γn ↓ 0, and a constant

L > 0. For n ≥ 1, we define the following subsets of D[0, T]:

En(Rn, γn) ,
{
s ∈ D[0, T] : |s(0)− s0| ≤ Rn, and

|s(a)− s(b)| ≤ L|a− b|+ γn, ∀ a, b ∈ [0, T]
}
. (3.23)

We also define

Ec ,
{
s ∈ D[0, T] : s(0) = s0, |s(a)− s(b)| ≤ L|a− b|, ∀ a, b ∈ [0, T]

}
,

which is the set of L-Lipschitz continuous functions with fixed initial conditions, and

which is known to be sequentially compact, by the Arzelà-Ascoli theorem.

Lemma 3.3.2. Fix T > 0, ω ∈ C, and some s0 ∈ S1. Suppose that

∥∥Sn(ω, 0)− s0
∥∥
w
≤ R̃n,

64

for some sequence R̃n ↓ 0. Then, there exist sequences
{
R

(i)
n ↓ 0

}∞
i=0

and γn ↓ 0 such

that

Sni (ω, ·) ∈ En
(
R(i)
n , γn

)
, ∀ i ∈ Z+, ∀ n ≥ 1,

with the constant L in the definition of En equal to 1 + λ.

Proof. Fix some ω ∈ C. Based on our coupled construction, each coordinate of An(·)

(the process of cumulative arrivals) and Dn(·) (the process of cumulative departures)

is non-decreasing, and can have a positive jump, of size 1/n, only when there is an

event in Nλ(n ·) or N1(n ·), respectively. As a result, for every i and n, we have

|Ani (ω, a)− Ani (ω, b)| ≤ 1

n
|Nλ(ω, na)−Nλ(ω, nb)| , ∀ a, b ∈ [0, T],

and

|Dn
i (ω, a)−Dn

i (ω, b)| ≤ 1

n
|N1(ω, na)−N1(ω, nb)| , ∀ a, b ∈ [0, T].

Therefore,

|Sni (ω, a)− Sni (ω, b)| ≤ 1

n
|Nλ(ω, na)−Nλ(ω, nb)|+

1

n
|N1(ω, na)−N1(ω, nb)| .

Since ω ∈ C, Lemma 3.3.1 implies that 1
n
Nλ(ω, nt) and 1

n
N1(ω, nt) converge uniformly

on [0, T] to λt and to t, respectively. Thus, there exists a pair of sequences γ1n ↓ 0

and γ2n ↓ 0 (which depend on ω) such that for all n ≥ 1,

1

n
|Nλ(ω, na)−Nλ(ω, nb)| ≤ λ|a− b|+ γ1n,

and
1

n
|N1(ω, na)−N1(ω, nb)| ≤ |a− b|+ γ2n,

which imply that

|Sni (ω, a)− Sni (ω, b)| ≤ (1 + λ)|a− b|+ (γ1n + γ2n).

The proof is completed by setting R(i)
n = 2iR̃n, γn = γ1n + γ2n, and L = 1 + λ.

65

We are now ready to prove the existence of convergent subsequences of the process

of interest.

Proposition 3.3.3. Fix T > 0, ω ∈ C, and some s0 ∈ S1. Suppose (as in Lemma

3.3.2) that ‖Sn(ω, 0) − s0‖w ≤ R̃n, where R̃n ↓ 0. Then, every subsequence of

{Sn(ω, ·)}∞n=1 contains a further subsequence {Snk(ω, ·)}∞k=1 which converges to a

coordinate-wise Lipschitz continuous function s(·) with s(0) = s0 and

|si(a)− si(b)| ≤ L|a− b|, ∀ a, b ∈ [0, T], i ∈ Z,

where L is independent of T , ω, and s(·).

Proof. As in Lemma 3.3.2, let L = 1 + λ. A standard argument, similar to the

one in [12] and [42], based on the sequential compactness of Ec and the “closeness”

of En
(
R

(i)
n , γn

)
to Ec establishes the following. For any i ≥ 1, every subsequence of

{Sni (ω, ·)}∞n=1 contains a further subsequence that converges to a Lipschitz continuous

function yi(·) with yi(0) = s0i .

Starting with the existence of coordinate-wise limit points, we now argue the

existence of a limit point of Sn(·) in D∞[0, T]. Let s1(·) be a Lipschitz continuous

limit point of {Sn1 (ω, ·)}∞n=1, so that there is a subsequence such that

lim
k→∞

d
(
S
n1
k

1 (ω, ·), s1(·)
)

= 0.

We then proceed inductively and let si+1(·) be a limit point of a further subsequence

of
{
S
nik
i+1(ω, ·)

}∞
k=1

, where {nik}
∞
k=1 are the indices of the subsequence of Sni (·).

We now argue that s(·) is indeed a limit point of Sn(·) in D∞[0, T]. Fix a positive

integer i. Because of the construction of s(·), Sn
i
k

j (ω, ·) converges to sj(·), as k →∞,

for j = 1, . . . , i. In particular, there exists some ni > i, for which

d
(
Sn

i

j (ω, ·), sj(·)
)
≤ 1

i
, j = 1, . . . , i.

66

We then have

dZ+

(
Sn

i

(ω, ·), s(·)
)

= sup
t∈[0,T]

√√√√ ∞∑
j=1

2−j
∣∣Snij (ω, t)− sj(t)

∣∣2
≤ 1

i
+

√√√√ ∞∑
j=ni+1

2−j+2.

We now let i increase to infinity (in which case ni also increases to infinity), and we

conclude that dZ+

(
Sn

i
(ω, ·), s(·)

)
→ 0.

This concludes the proof of the tightness of the sample paths. It remains to prove

that any possible limit point is a fluid solution.

3.3.3 Derivatives of the fluid limits

Proposition 3.3.4. Fix ω ∈ C and T > 0. Let s(·) be a limit point of some subse-

quence of {Sn(ω, ·)}∞n=1. As long as ω does not belong to a certain zero-measure subset

of C, s(·) satisfies the differential equations that define a fluid solution (cf. Definition

3.1.1).

Proof. We fix some ω ∈ C and for the rest of this proof we suppress the dependence

on ω in our notation. Let {Snk(·)}∞k=1 be a subsequence that converges to s(·), i.e.,

lim
k→∞

sup
0≤t≤T

‖Snk(t)− s(t)‖w = 0.

After possibly restricting, if necessary, to a further subsequence, we can define Lip-

schitz continuous functions ai(·) and di(·) as the limits of the subsequences of cu-

mulative arrivals and departures processes {Anki (·)}∞k=1 and {Dnk
i (·)}∞k=1 respectively.

Because of the relation Sni (·) = S(0,n) + Ani (·) − Dn
i (·), it is enough to prove the

67

following relations, for almost all t:

da1
dt

(t) =λ[1− P0(s(t))] + λ[1− s1(t)]P0(s(t)),

dai
dt

(t) =λ[si−1(t)− si(t)]P0(s(t)), ∀ i ≥ 2,

ddi
dt

(t) =si(t)− si+1(t), ∀ i ≥ 1.

We will provide a proof only for the first one, as the other proofs are similar. The main

idea in the argument that follows is to replace the token process Mn(·) by simpler,

time-homogeneous birth-death processes that are easy to analyze.

Let us fix some time t ∈ (0, T), which is a regular time for both a1(·) and d1(·).

Let ε > 0 be small enough so that t + ε ≤ T and so that it also satisfies a condition

to be introduced later. Equation (3.17) yields

Ank1 (t+ ε)− Ank1 (t) =
1

nk

Nλ(nk(t+ε))∑
j=Nλ(nkt)+1

[
1[1,cnk]

(
Mnk

(
tnkj
−))

+1{0}
(
Mnk

(
tnkj
−))

1[
0,1−Snk1

(
t
nk
j

−))(Uj)
]
. (3.24)

By Lemma 3.3.2, there exists a sequence γnk ↓ 0 and a constant L such that

Snk1 (u) ∈
[
s1(t)− (εL+ γnk) , s1(t) + (εL+ γnk)

)
, ∀u ∈ [t, t+ ε].

Then, for all sufficiently large k, we have

Snk1 (u) ∈
[
s1(t)− 2εL, s1(t) + 2εL)

)
, ∀u ∈ [t, t+ ε]. (3.25)

In particular, for k sufficiently large and for every event time tnkj
− ∈ (t, t + ε] of the

driving process Nλ(n ·), we have

[
0, 1− Snk1

(
tnkj
−)) ⊂ [0, 1− s1(t) + 2εL

)
.

68

This implies that

Ank1 (t+ ε)− Ank1 (t) ≤ 1

nk

Nλ(nk(t+ε))∑
j=Nλ(nkt)+1

[
1[1,cnk]

(
Mnk

(
tnkj
−))

+ 1{0}
(
Mnk

(
tnkj
−))

1[0,1−s1(t)+2εL)(Uj)
]
.

We wish to analyze this upper bound on Ank1 (t+ε)−Ank1 (t), which will then lead to

an upper bound on (dai/dt)(t). Towards this purpose, we will focus on the empirical

distribution of 1{0}
(
Mnk

(
tnkj
−)), which depends on the birth-death process Mnk(·),

and which is in turn modulated by Snk(·). In particular, we will define two coupled

time-homogeneous birth-death processes: Mnk
+ (·), which is dominated byMnk(·); and

Mnk
− (·), which dominates Mnk(·) over (t, t+ ε], i.e.,

Mnk
+ (u) ≤Mnk(u) ≤Mnk

− (u), ∀u ∈ (t, t+ ε]. (3.26)

This is accomplished as follows. Using again Equation (3.25), when nk is sufficiently

large, we get the set inclusion[
0, 1− Snk1

(
tnkj
−)− Mnk

(
tnkj
−)

nk

)
⊂
[
0, 1− s1(t) + 2εL

)
,

for all event times tnkj ∈ [t, t + ε). Furthermore, our assumptions on cnk imply that

Mnk(t)/nk ≤ cnk/nk goes to zero as k →∞. Thus, when nk is sufficiently large,

[
0, 1− Snk1

(
tnkj
−)− Mnk

(
tnkj
−)

nk

)
⊃
[
0, 1− s1(t)− 3εL

)
,

for all event times tnkj ∈ [t, t + ε). We now define intermediate coupled processes

M̃nk
+ (·) and M̃nk

− (·) by replacing the last indicator set in the evolution equation for

the process Mn(·) (cf. Equation (3.18)), by the deterministic sets introduced above.

Furthermore, we set M̃nk
+ (t) = 0 ≤Mnk(t) and M̃nk

− (t) = cnk ≥Mnk(t).

69

More concretely, for all u ∈ [t, t+ ε], we let

M̃nk
− (u) , cnk −

Nλ(nku)∑
j=Nλ(nkt)+1

1[1,cnk]

(
M̃nk
−
(
tnkj
−))

+

Nβnk (nku)∑
j=Nβnk (nkt)+1

1[0,cnk−1]

(
M̃nk
−
(
tnkj
−))

1[0,1−s1(t)+2εL)(Vj)

and

M̃nk
+ (u) , 0−

Nλ(nku)∑
j=Nλ(nkt)+1

1[1,cnk]

(
M̃nk

+

(
tnkj
−))

+

Nβnk (nku)∑
j=Nβnk (nkt)+1

1[0,cnk−1]

(
M̃nk

+

(
tnkj
−))

1[0,1−s1(t)−3εL)(Vj).

We note that the processes M̃nk
− (·) and M̃nk

+ (·) are plain, time-homogenous birth-

death Markov processes, no longer modulated by Snk(·), and therefore easy to analyze.

It can now be argued, by induction on the event times, that M̃nk
− (u) ≥ Mnk(u) for

all u ∈ [t, t + ε]. We omit the details but simply note that (i) this inequality holds

at time t; (ii) whenever the process Mnk(·) has an upward jump, the same is true for

M̃nk
− (·), unless M̃nk

− (·) is already at its largest possible value, cnk , in which case the

desired inequality is preserved; (iii) as long as the desired inequality holds, whenever

the process M̃nk
− (·) has a downward jump, the same is true for Mnk(·), unless Mnk(·)

is already at its smallest possible value, 0, in which case the desired inequality is again

preserved. Using also a symmetrical argument for M̃nk
+ (·), we obtain the domination

relationship

M̃nk
+ (u) ≤Mnk(u) ≤ M̃nk

− (u), ∀u ∈ (t, t+ ε]. (3.27)

Even though M̃nk
+ (·) and M̃nk

− (·) are simple birth-death processes, it is convenient to

simplify them even further. We thus proceed to define the coupled processes Mnk
+ (·)

and Mnk
− (·) by modifying the intermediate processes M̃nk

+ (·) and M̃nk
− (·) in a different

way for each regime.

70

(i) High Memory regime: Recall that in this regime we have βnk = β for all k.

Let us fix some l, independently from k, and let cl = c(nl). For every k, we

define Mnk
+ (·) and Mnk

− (·) by replacing the upper bound cnk on the number of

tokens in M̃nk
+ (·) and M̃nk

− (·), by cl and ∞ respectively. More concretely, for

u ∈ [t, t+ ε] we let

Mnk
− (u) , cnk −

Nλ(nku)∑
j=Nλ(nkt)+1

1[1,∞)

(
Mnk
−
(
tnkj
−))

+

Nβ(nku)∑
j=Nβ(nkt)+1

1[0,1−s1(t)+2εL)(Vj)

and

Mnk
+ (u) , 0−

Nλ(nku)∑
j=Nλ(nkt)+1

1[1,cl]

(
Mnk

+

(
tnkj
−))

+

Nβ(nku)∑
j=Nβ(nkt)+1

1[0,cl−1]
(
Mnk

+

(
tnkj
−))

1[0,1−s1(t)−3εL)(Vj).

When k is large enough, we have cnk ≥ cl, and as we are replacing cnk by cl in

M̃nk
+ (u), we are reducing the state space of the homogeneous birth-death process

M̃nk
+ (·). It is easily checked (by induction on the events of the processes) that

we have the stochastic dominance M̃nk
+ (u) ≥Mnk

+ (u), for all u ∈ [t, t+ ε]. Using

a similar argument, we obtain M̃nk
− (u) ≤ Mnk

− (u), for all u ∈ [t, t + ε]. These

facts, together with Equation (3.27), imply the desired dominance relation in

Equation (3.26).

(ii) High Message regime: Recall that in this regime we have cnk = c, for all k.

Let us fix some l, independently from k, and let βl = β(nl). We define Mnk
+ (·)

by replacing the process Nβnk (·) that generates the spontaneous messages in

71

M̃nk
+ (·), by Nβl(·). More concretely, for u ∈ [t, t+ ε] we let

Mnk
+ (u) , 0−

Nλ(nku)∑
j=Nλ(nkt)+1

1[1,c]

(
Mnk

+

(
tnkj
−))

+

Nβl (nku)∑
j=Nβl (nkt)+1

1[0,c−1]
(
Mnk

+

(
tnkj
−))

1[0,1−s1(t)−3εL)(Vj).

Recall that we assumed that the event times in the Poisson process Nβnk (·)

are a subset of the event times of Nβ(nk+1)(·), for all k. As a result, when

k ≥ l, the process Mnk
+ (·) only has a subset of the upward jumps in M̃nk

+ (·),

and thus (using again a simple inductive argument) satisfies M̃nk
+ (u) ≥Mnk

+ (u),

for all u ∈ [t, t + ε]. Furthermore, we define Mnk
− (u) , c, for all u ∈ [t, t + ε],

which clearly satisfies M̃nk
− (u) ≤Mnk

− (u), for all u ∈ [t, t+ ε]. Combining these

facts with Equation (3.27), we have again the desired dominance relation in

Equation (3.26).

(iii) Constrained regime: Recall that in this regime we have cnk = c and βnk = β,

for all k ≥ 1. For this case, we defineMnk
− (u) , M̃nk

− (u) andMnk
+ (u) , M̃nk

+ (u),

for all u ∈ [t, t + ε], which already satisfy the desired dominance relation in

Equation (3.26).

For all three regimes, and having fixed l, the dominance relation in Equation (3.26)

implies that when k is large enough (k ≥ l), we have

1{0}
(
Mnk
−
(
tnkj
−)) ≤ 1{0}

(
Mnk

(
tnkj
−)) ≤ 1{0}

(
Mnk

+

(
tnkj
−))

for all tnkj
− ∈ (t, t+ ε]. Consequently,

Ank1 (t+ ε)− Ank1 (t) ≤ 1

nk

Nλ(nk(t+ε))∑
j=Nλ(nkt)+1

[
1− 1{0}

(
Mnk
−
(
tnkj
−))

+ 1{0}
(
Mnk

+

(
tnkj
−))

1[0,1−s1(t)+2εL)(Uj)
]
. (3.28)

Note that the transition rates of the birth-death processes Mnk
− (·) and Mnk

+ (·), for

72

different nk, involve nk only as a scaling factor. As a consequence, the corresponding

steady-state distributions are the same for all nk.

Let P−0 (s(t)) and P+
0 (s(t)) be the steady-state probabilities of state 0 for Mnk

− (·)

andMnk
+ (·), respectively. Then, using the PASTA property, we have that as nk →∞,

the empirical averages

1

nk

Nλ(nk(t+ε))∑
j=Nλ(nkt)+1

1{0}
(
Mnk
−
(
tnkj
−)) (3.29)

and
1

nk

Nλ(nk(t+ε))∑
j=Nλ(nkt)+1

1{0}
(
Mnk

+

(
tnkj
−))

converge almost surely to ελP−0 (s(t)) and ελP+
0 (s(t)), respectively.

We now continue with the explicit calculation of P−0 (s(t)) and P+
0 (s(t)).

(i) High Memory regime:

P−0 (s(t)) =

[
1− β ·min{1− s1(t) + 2εL, 1}

λ

]+
,

and

P+
0 (s(t)) =

 cl∑
k=0

(
β
(
1− s1(t)− 3εL

)+
λ

)k
−1 ,

(ii) High Message regime: If s1(t) < 1, then we assume that ε has been chosen

small enough so that 1− s1(t)− 3εL > 0. We then obtain

P−0 (s(t)) = 0

and

P+
0 (s(t)) =

[
c∑

k=0

(
βl[1− s1(t)− 3εL]+

λ

)k]−1
.

Suppose now that s1(t) = 1. In this case, the approach based on the processes

Mnk
− and Mnk

+ is not useful, because it yields P−0 (s(t)) = 0 and P+
0 (s(t)) = 1,

73

for all ε > 0 and for all βl. This case will be considered separately later.

(iii) Constrained regime:

P−0 (s(t)) =

[
c∑

k=0

(
β ·min{1− s1(t) + 2εL, 1}

λ

)k]−1

and

P+
0 (s(t)) =

 c∑
k=0

(
β
(
1− s1(t)− 3εL

)+
λ

)k
−1 ,

We now continue by considering all three regimes, with the exception of the High

Message regime with s1(t) = 1, which will be dealt with separately. We use the

fact that the random variables Uj are independent from the process Mnk
+ . Using an

elementary argument, which is omitted, it can be seen that

1

nk

Nλ(nk(t+ε))∑
j=Nλ(nkt)+1

1{0}
(
Mnk

+

(
tnkj
−))

1[0,1−s1(t)+2εL)(Uj)

converges to the limit of the empirical average in Equation (3.29), which is the product

of ελP+
0 (s(t)) times the expected value of 1[0,1−s1(t)+2εL)(Uj). That is, it converges to

εP+
0 (s(t)) min{1− s1(t) + 2εL, 1}, P-almost surely.

Recall that we have fixed some ε > 0 and some l and, furthermore, that P−0 and

P+
0 depend on l for the High Memory and High Message regimes, and on ε for all

regimes. We will first take limits, as k → ∞, while holding ε and l fixed. Using the

inequality in Equation (3.28), and the fact that the left-hand side converges to the

fluid limit a(t+ ε)− a(t) as k →∞, we obtain

a1(t+ ε)− a1(t) ≤ ελ[1− P−0 (s(t))] + ελP+
0 (s(t)) min{1− s1(t) + 2εL, 1}.

An analogous argument yields

a1(t+ ε)− a1(t) ≥ ελ[1− P+
0 (s(t))] + ελP−0 (s(t))[1− s1(t)− 2εL]+.

74

We now take the limit as l → ∞, so that cl → ∞ for the High Memory regime

and βl → ∞ for the High Message regime, and then take the limit as ε → 0. Some

elementary algebra shows that in all cases, P+
0 (s(t)) and P−0 (s(t)) both converge to

P0(s(t)), as defined in the statement of the proposition. We thus obtain

da1(t)

dt
= λ[1− P0(s(t))] + λ[1− s1(t)]P0(s(t)), (3.30)

as desired.

We now return to the exceptional case of the High Message regime with s1(t) = 1,

and find the derivative of a1(t) using a different argument. Recall that we have the

hard bound Sn1 (t) ≤ 1, for all t and for all n. This leads to the same bound for the

fluid solutions, i.e., s1(t) ≤ 1 for all t. As a result, since t > 0 is a regular time, we

must have ṡ1(t) = 0. Furthermore, we also have the formula

dd1
dt

(t) = s1(t)− s2(t) = 1− s2(t),

which is established by an independent argument, using the same proof technique

as for ȧ1, but without the inconvenience of having to deal with Mnk . Then, since

ṡ1(t) = ȧ1(t)− ḋ1(t), we must also have

da1
dt

(t) = 1− s2(t). (3.31)

On the other hand, it can be easily checked that ȧ1(t) ≤ λ for all regular t, and thus

we must have s2(t) ≥ 1− λ. We have thus established that at all regular times t > 0

with s1(t) = 1, s2(t) must be at least 1−λ. Then it follows (cf. Definition 3.1.1) that

at time t, we have

P0(s(t)) =

[
1− 1− s2(t)

λ

]+
1{1}

(
s1(t)

)
= 1− 1− s2(t)

λ
.

75

It is then easily checked that Equation (3.31) is of the form

da1
dt

(t) = λ(1− P0(s(t))) + λ(1− s1(t))P0(s(t)),

exactly as in Equation (3.30), where the last equality used the property s1(t) = 1.

The derivatives of ai(·), for i > 1, and of di(·), for i ≥ 1, are obtained using similar

arguments, which are omitted.

For every sample path outside a zero-measure set, we have established the fol-

lowing. Proposition 3.3.3 implies the existence of limit points of the process Sn(·).

Furthermore, according to Proposition 3.3.4 these limit points verify the differential

equations of the fluid model. Since all stochastic trajectories Sn(·) take values in S

(which is a closed set), their limits are functions taking values in S as well. We will

now show that the limit s(·) actually takes values in the smaller set S1, which is a

requirement in our definition of fluid solutions. Using the same argument as in the

proof of Proposition 3.2.5, it can be shown that

d

dt
‖s(t)‖1 ≤ λ,

for all regular times t. Since the trajectories s(·) are continuous with respect to our

weighted norm ‖ · ‖w, but not necessarily with respect to the 1-norm, it now remains

to be checked that the 1-norm cannot become infinite at a non-regular time.

Suppose that t1 is a non-regular time. Recall, from the proof of Proposition 3.2.5,

that such a time may occur only once, and only in the High Message regime, if

trajectory hits the set

D = {s ∈ S : s1 = 1, s2 > 1− λ}.

For all t < t1, we have P0(s(t)) = 0, and thus ṡi(t) ≤ 0, for all t < t1 and all i ≥ 2.

Combining this with the continuity of the coordinates, we obtain si(t1) ≤ si(0), for

76

all i ≥ 2. It follows that

‖s(t1)‖1 ≤ 1 + s1(t1) +
∞∑
i=2

si(0) ≤ 2 + ‖s(0)‖1.

Combining this with the fact that ‖s(0)‖1 < ∞, we get that ‖s(t)‖1 < ∞, for all

t ≥ 0, and thus s(t) ∈ S1, for all t ≥ 0. This implies the existence of fluid solutions,

thus completing the proof of Theorem 3.1.1.

Moreover, we have already established a uniqueness result in Theorem 3.1.1: for

any initial condition s0 ∈ S1, we have at most one fluid solution. We also have

(Proposition 3.3.3) that every subsequence of Sn(·) has a further subsequence that

converges — by necessity to the same (unique) fluid solution. It can be seen that this

implies the convergence of Sn(·) to the fluid solution, thus proving Theorem 3.1.2.

3.4 Proofs of Proposition 3.1.3 and Theorem 3.1.4

In this section, we prove Proposition 3.1.3 and Theorem 3.1.4, which assert that for

any finite n, the stochastic system is positive recurrent with some invariant distribu-

tion πn and that the sequence of the marginals of the invariant distributions, {πns }
∞
n=1,

converges in distribution to a measure concentrated on the unique equilibrium of the

fluid model. These results guarantee that the properties derived from the equilib-

rium s∗ of the fluid model, and specifically for the asymptotic queueing delay, are

an accurate approximation of the steady state of the stochastic system for n large

enough.

3.4.1 Stochastic stability of the n-th system

We will use the Foster-Lyapunov criterion to show that for any fixed n, the continuous-

time Markov process
(
Sn(·),Mn(·)

)
is positive recurrent.

Our argument is developed by first considering a detailed description of the system:

(
Qn

1 (·), . . . ,Qn
n(·),Mn(·)

)
,

77

which keeps track of the size of each queue, but without keeping track of the identities

of the servers with associated tokens in the virtual queue. As hinted in Subsection

3.1.3, this is a continuous-time Markov process, on the state space

Zn ,

{
(q1, . . . ,qn,m) ∈ Zn+ × {0, 1, . . . , cn} :

n∑
i=1

1{0}
(
qi
)
≥ m

}
.

The transition rates, denoted by rn·→ · are as follows, where we use ei to denote the

i-th unit vector in Zn+.

1. When there are no tokens available (m = 0), each queue sees arrivals with rate

λ:

rn(q,0)→(q+ei,0)
= λ, i = 1, . . . , n.

2. When there are tokens available (m > 0), the arrival stream, which has rate

nλ, is divided equally between all empty queues:

rn(q,m)→(q+ei,m−1) =
nλ1{0}

(
qi
)

n∑
j=1

1{0}
(
qj
)1[1,cn](m), i = 1, . . . , n.

3. Transitions due to service completions occur at a uniform rate of 1 at each

queue, and they do not affect the token queue:

rn(q,m)→(q−ei,m) = 1[1,∞)

(
qi
)
, i = 1, . . . , n.

4. Messages from idling servers are sent to the dispatcher (hence resulting in ad-

ditional tokens) at a rate equal to βn times the number of empty servers that

do not already have associated tokens in the virtual queue:

rn(q,m)→(q,m+1) = βn

(
n∑
i=1

1{0}
(
qi
)
−m

)
1[0,cn−1](m).

Note that, for all t, the state at time t of the Markov process of interest, (Sn(t),Mn(t)),

is a deterministic function of
(
Qn(t),Mn(t)

)
. Therefore, to establish positive recur-

78

rence of the process (Sn(·),Mn(·)), it suffices to establish positive recurrence of the

process (Qn(·),Mn(·)), as in the proof that follows.

Proof of Proposition 3.1.3. The Markov process
(
Qn(·),Mn(·)

)
on the state space

Zn is clearly irreducible, with all states reachable from each other. To show positive

recurrence, we define the quadratic Lyapunov function

Φ(q,m) ,
1

n

n∑
i=1

q2
i , (3.32)

and note that

∑
(q′,m′)6=(q,m)

Φ(q′,m′)rn(q,m)→(q′,m′) <∞, ∀ (q,m) ∈ Zn.

We also define the finite set

Fn ,

{
(q,m) ∈ Zn :

n∑
i=1

qi <
n(λ+ 2)

2(1− λ)

}
.

As qi can change but at most 1 during a transition, we use the relations (qi+1)2−q2
i =

2qi + 1 and (qi − 1)2 − q2
i = −2qi + 1. For any (q,m) outside the set Fn, we have

∑
(q′,m′)∈Zn

[Φ(q′,m′)− Φ(q,m)] rn(q,m)→(q′,m′)

=
1

n

n∑
i=1

(2qi + 1)λ

 n1{0}
(
qi
)

n∑
j=1

1{0}
(
qj
)1[1,cn](m) + 1{0}(m)

− (2qi − 1)1[1,∞)

(
qi
)

= λ+
1

n

n∑
i=1

[
1[1,∞)

(
qi
)
− 2qi

(
1− λ1{0}(m)

)]
≤ λ+ 1− 2(1− λ)

n

n∑
i=1

qi ≤ −1, ∀ (q,m)∈ Zn\Fn.

The last equality is obtained through a careful rearrangement of terms; the first

inequality is obtained by replacing each indicator function by unity. Then, the Foster-

Lyapunov criterion [18] implies positive recurrence.

79

3.4.2 Convergence of the invariant distributions

As a first step towards establishing the interchange of limits result, we start by estab-

lishing some tightness properties, in the form of uniform (over all n) upper bounds for

Eπn [‖Sn‖1] and for πn (Qn
1 ≥ k). One possible approach to obtaining such bounds is

to use an appropriate coupling and show that our system is stochastically dominated

by a system consisting of n independent parallel M/M/1 queues. However, we follow

an easier approach based on a simple linear Lyapunov function and the results in [23]

and [10].

Lemma 3.4.1. Let πn be the unique invariant distribution of the process (Qn(·),Mn(·)).

We then have the uniform upper bounds

πn (Qn
1 ≥ k) ≤

(
1

2− λ

)k/2
, ∀n, ∀ k,

and

Eπn [‖Sn‖1] ≤ 2 +
2

1− λ
, ∀n.

Proof. Consider the linear Lyapunov function

Ψ(q,m) , q1.

Under the terminology in [10], this Lyapunov function has exception parameterB = 1,

drift γ = 1−λ, maximum jump νmax = 1, and maximum rate pmax ≤ 1. Note that this

function is not a witness of stability because the set {(q,m) ∈ Zn : Ψ(q,m) < 1} is

not finite. However, the boundedness of the upward jumps allows us to use Theorem

2.3 from [23] to obtain that Eπn [Qn
1] <∞. Thus, all conditions in Theorem 1 in [10]

are satisfied, yielding the upper bounds

πn (Qn
1 ≥ 1 + 2m) ≤

(
1

2− λ

)m+1

, ∀ m ≥ 1,

and

Eπn [Qn
1] ≤ 1 +

2

1− λ
.

80

The first part of the result is obtained by letting m = (k − 1)/2 if k is odd or

m = k/2 − 1 if k is even. Finally, using the definition ‖Sn‖1 = 1 + 1
n

n∑
i=1

Qn
i , which,

together with symmetry yields

E [‖Sn‖1] = 1 +
1

n

n∑
i=1

E [Qn
i] = E [Qn

1] ,

and concludes the proof.

We now prove our final result on the interchange of limits.

Proof of Theorem 3.1.4. Consider the set Z+ ∪ {∞} endowed with the topology of

the Alexandroff compactification, which is known to be metrizable. Moreover, it

can be seen that the topology defined by the norm ‖ · ‖w on [0, 1]Z+ is equivalent

to the product topology, which makes [0, 1]Z+ compact. As a result, the product

{s ∈ S1 : ‖s‖1 ≤M}× (Z+∪{∞}) is closed, and thus compact, for allM . Note that,

for each n, the invariant distribution πn is defined over the set (S1∩In)×{0, 1, . . . , cn}.

This is a subset of S1× (Z+ ∪ {∞}), so we can extend the measures πn to the latter,

larger set.

Let {Sn(0)}∞n=1 be a sequence of random variables distributed according to the

marginals {πns }∞n=1. From Lemma 3.4.1, we have

Eπn
[
‖Sn(0)‖1

]
≤ 2 +

2

1− λ
, ∀n. (3.33)

Using Markov’s inequality, it follows that for every ε > 0, there exists a constant M

such that

πns
(
{s ∈ S1 : ‖s‖1 ≤M}

)
≥ 1− ε, ∀n,

which implies that

πn
(
{s ∈ S1 : ‖s‖1 ≤M} × (Z+ ∪ {∞})

)
≥ 1− ε, ∀n.

Thus, the sequence {πn}∞n=1 is tight and, by Prohorov’s theorem [11], it is also rela-

tively compact in the weak topology on the set of probability measures. It follows that

81

any subsequence has a weakly convergent subsequence whose limit is a probability

measure over S1 × (Z+ ∪ {∞}).

Let {πnk}∞k=1 be a weakly convergent subsequence, and let π be its limit. Let

S(0) be a random variable distributed according to πs, where πs is the marginal of π.

Since S1 × (Z+ ∪ {∞}) is separable, we invoke Skorokhod’s representation theorem

to construct a probability space (Ω0,A0,P0) and a sequence of random variables

(Snk(0),Mnk(0)) distributed according to πnk , such that

lim
k→∞
‖Snk(0)− S(0)‖w = 0 P0 − a.s. (3.34)

We use the random variables (Snk(0),Mnk(0)) as the initial conditions for a sequence

of processes {(Snk(·),Mnk(·))}∞k=1, so that each one of these processes is stationary.

Note that the initial conditions, distributed as πnk , do not necessarily converge to a

deterministic initial condition (this is actually part of what we are trying to prove),

so we cannot use Theorem 3.1.2 directly to find the limit of the sequence of processes

{Snk(·)}∞k=1. However, given any ω ∈ Ω0 outside a zero P0-measure set, we can restrict

this sequence of stochastic processes to the probability space

(Ωω,Aω,Pω) = (ΩD × ΩS × {ω},AD ×AS × {∅, {ω}},PD × PS × δω)

and apply Theorem 3.1.2 to this new space, to obtain

lim
k→∞

sup
0≤t≤T

‖Snk(t, ω)− S(t, ω)‖w = 0, Pω − a.s.,

where S(t, ω) is the fluid solution with initial condition S(0, ω). Since this is true for

all ω ∈ Ω0 except for a set of zero P0-measure, it follows that

lim
k→∞

sup
0≤t≤T

‖Snk(t)− S(t)‖w = 0, P− a.s.,

where P = PD×PS×P0 and where S(·) is another stochastic process whose randomness

is only in the initial condition S(0) (its trajectory is the deterministic fluid solution

82

for that specific initial condition).

We use Lemma 3.4.1 once again to interchange limit, expectation, and infinite

summation in Equation (3.33) (using the same argument as in Lemma 3.1.5) to obtain

Eπs
[
‖S(0)‖1

]
≤ 2 +

2

1− λ
.

Using Markov’s inequality now in the limit, it follows that for every ε > 0, there exists

a constant M such that

πs
(
‖S(0)‖1 ≤M

)
≥ 1− ε. (3.35)

Recall that the uniqueness of fluid solutions (Theorem 3.1.1) implies the contin-

uous dependence of solutions on initial conditions [16]. Moreover, Theorem 3.1.1

implies that any solution s(·) with initial conditions s(0) ∈ S1 converges to s∗ in

time. As a result, there exists Tε > 0 such that

sup
s(0): ‖s(0)‖1≤M

‖s(Tε)− s∗‖w < ε.

Combining this with Equation (3.35), we obtain

Eπs
[
‖S(Tε)− s∗‖w

]
= Eπs

[
‖S(Tε)− s∗‖w

∣∣∣ ‖S(0)‖1 ≤M
]
πs
(
‖S(0)‖1 ≤M

)
+ Eπs

[
‖S(Tε)− s∗‖w

∣∣∣ ‖S(0)‖1 > M
]
πs
(
‖S(0)‖1 > M

)
< ε+

(
sup
s∈S
‖s− s∗‖w

)
ε

≤ 2ε, (3.36)

where the expectations Eπs are with respect to the random variable S(0), distributed

according to πs, even though the dependence on S(0) is suppressed from our notation

and is left implicit. On the other hand, due to the stationarity of Snk(·), the random

variables Snk(0) and Snk(Tε) have the same distribution, for any k. Taking the limit

as k → ∞, we see that S(0) and S(Tε) have the same distribution. Combining this

83

with Equation (3.36), we obtain

Eπs
[
‖S(0)− s∗‖w

]
≤ 2ε.

Since ε was arbitrary, it follows that S(0) = s∗, πs-almost surely, i.e., the distribution

πs of S(0) is concentrated on s∗. We have shown that the limit πs of a convergent

subsequence of πn is the Dirac measure δs∗ . Since this is true for every convergent

subsequence and πn is tight, this implies that πn converges to δs∗ , as claimed.

3.5 Conclusions and future work

The main objective of this chapter was to study the tradeoff between the amount

of resources (messages and memory) available to a central dispatcher, and the ex-

pected queueing delay of a typical job, as the system size increases. We introduced a

parametric family of dispatching policies and, using a fluid model and associated con-

vergence theorems, we showed that with enough resources, we can drive the queueing

delay to zero as the system size increases.

We also analyzed a resource constrained regime of our pull-based policies that, al-

though it does not have vanishing queueing delay, it has some remarkable properties.

We showed that by wisely exploiting an arbitrarily small message rate (but still pro-

portional to the arrival rate), we obtain a queueing delay which is finite and uniformly

upper bounded for all λ < 1, a significant qualitative improvement over the queue-

ing delay of the M/M/1 queue (obtained when we use no messages). Furthermore,

we compared it with the popular power-of-d-choices and found that, while using the

same number of messages, our policy achieves a much lower expected queueing delay,

especially when λ is close to 1.

There are several interesting directions for future research. For example:

(i) It would be interesting to extend these results to the case of different service

disciplines such as processor sharing or LIFO, or to the case of general service

time distributions, as these are prevalent in many applications.

84

(ii) Another interesting line of work is to consider a reverse problem, in which we

have decentralized arrivals to several queues, a central server, and a scheduler

that needs to decide which queue to serve. In this context we expect to again

find a similar tradeoff between the resources used and the queueing delay.

85

86

Chapter 4

Universal delay lower bound for

dispatching policies

As in Chapter 3, we focus again on distributed service systems consisting of a large

number of servers with homogeneous service rates. However, instead of studying yet

another policy or decision making architecture, we step back and address a more

fundamental question: what is the minimum amount of resources required to obtain

the best possible delay performance, as the number of servers increases? Regarding

performance, we focus on the expected queueing delay of a typical job. Regarding

resources, we focus on the average number of messages exchanged between the dis-

patcher and the servers per unit of time, and on the number of bits of “long term”

memory that the dispatcher has at its disposal.

More concretely, we introduce a unified framework for dispatching policies and

show that if the memory size (in bits) is logarithmic in the number of servers and the

average message rate is proportional to the arrival rate, then the expected queueing

delay of a typical job cannot vanish as the system size increases. This complements the

results in Chapter 3 where we showed that if we relax either one of those restrictions,

there exist dispatching policies where the expected queueing delay of a typical job

vanishes as the system size increases.

In order to establish the impossibility results described above, we develop a novel

combinatorial approach to handle the constraint on memory size, which involves es-

87

tablishing the impact of limited memory on the different decisions that a dispatcher

can make. Using these results, we obtain a universal lower bound for the expected

queueing delay of a typical job, which implies the desired result.

The rest of the chapter is organized as follows. The model and the main result are

presented in Section 4.1. In Section 4.2 we discuss our result in the context of some

concrete dispatching policies from the earlier literature. In Section 4.3 we provide

the proof of our main result. Finally, in Section 4.5 we present our conclusions and

suggestions for future work.

The results on this chapter first appeared in [19] and [21].

4.1 Model and main results

In this section we present the specific modeling assumptions, the performance metrics

of interest, and our main results. In Subsection 4.1.1 we describe the model and

our assumptions. In Subsection 4.1.2 we present a unified framework that defines

a broad set of dispatching policies, which includes most of the policies studied in

previous literature. In Subsection 4.1.3 we present our negative result on the expected

queueing delay under resource constrained policies within this set of policies. Finally,

in Subsection 4.1.4 we combine the results in this chapter with the ones in Chapter

3 to better understand the tradeoff between resources and queueing delay.

4.1.1 Modeling assumptions and performance metric

We now introduce a refinement of the modeling assumptions for the basic model in-

troduced in Section 2.2. In particular, throughout this chapter we assume that the

n servers are homogeneous, and have a constant processing rate equal to 1. Fur-

thermore, jobs arrive to the system as a single renewal process of rate λn (for some

fixed λ ∈ (0, 1)), and are i.i.d., independent from the arrival process, and have a

general distribution with unit mean. Finally, the central dispatcher has to route each

88

incoming job to a queue immediately upon arrival (i.e., jobs cannot be queued at the

dispatcher).

The dispatcher has limited information on the state of the queues; it can only

rely on a limited amount of local memory and on messages that provide partial in-

formation about the state of the system. These messages (which are assumed to be

instantaneous) can be sent from a server to the dispatcher at any time, or from the

dispatcher to a server (in the form of queries) at the time of an arrival. Messages

from a server can only contain information about the state of its own queue (number

of remaining jobs and the remaining workload of each one). Within this context, a

system designer has the freedom to choose a messaging policy, as well as the rules for

updating the memory and for selecting the destination of an incoming job.

Regarding the performance metric, we will focus on the steady-state expectation

of the time between the arrival of a typical job and the time at which it starts receiving

service, to be referred to as the expected queueing delay of a typical job. We

will formalize this definition in Subsection 4.1.3.

4.1.2 Unified framework for dispatching policies

In this subsection we present a unified framework that describes memory-based dis-

patching policies. In order to do this, we fix n and we introduce a sample path

construction of the evolution of the system under an arbitrary policy.

Let cn be the number of memory bits available to the dispatcher. We define the

corresponding set of memory states to beMn , {1, . . . , 2cn}. Furthermore, we define

the set of possible states at a server as the set of nonnegative sequences Q , RZ+

+ ,

where a sequence specifies the remaining workload of each job in that queue, including

the one that is being served. (In particular, an idle server is represented by the zero

sequence.) As long as a queue has a finite number of jobs, the queue state is a sequence

that has only a finite number of non-zero entries. The reason that we include the

workload of the jobs in the state is that we wish to allow for a broad class of policies,

that can take into account the remaining workload in the queues. In particular, we

89

allow for information-rich messages that describe the full workload sequence at the

server that sends the message. We are interested in the process

Q(·) =
(
Q1(·), . . . ,Qn(·)

)
=
((

Q1,j(·)
)∞
j=1
, . . . ,

(
Qn,j(·)

)∞
j=1

)
,

which takes values in the set Qn, and describes the evolution of the workload of each

job in each queue. Here Qi,j(t) is the remaining workload of the j-th job in the i-

th queue, at time t, which for j ≥ 2 is simply the job’s service time. We are also

interested in the process M(·) that describes the evolution of the memory state, and

in the process Z(·) that describes the remaining time until the next arrival of a job.

Fundamental processes and initial conditions

The processes of interest will be driven by certain common fundamental processes.

1. Arrival process: A delayed renewal counting process An(·) with rate λn, and

event times {Tk}∞k=1, defined on a probability space (ΩA,AA,PA).

2. Spontaneous messages process: A Poisson counting process Rn(·) with rate

βn, and event times {T sk}∞k=1, defined on a probability space (ΩR,AR,PR).

3. Job sizes: A sequence of i.i.d. random variables {Wk}∞k=1 with mean one,

defined on a probability space (ΩW ,AW ,PW).

4. Randomization variables: Four independent and individually i.i.d. sequences

of random variables {Uk}∞k=1, {Vk}∞k=1, {Xk}∞k=1, and {Yk}∞k=1, uniform on [0, 1],

defined on a common probability space (ΩU ,AU ,PU).

5. Initial conditions: Random variables Q(0), M(0), and Z(0), defined on a

common probability space (Ω0,A0,P0).

The whole system will be defined on the associated product probability space

(
ΩA × ΩR × ΩW × ΩU × Ω0,AA ×AR ×AW ×AU ×A0,PA × PR × PW × PU × P0

)
,

90

to be denoted by (Ω,A,P). All of the randomness in the system originates from these

fundamental processes, and everything else is a deterministic function of them.

A construction of sample paths

We now consider some fixed n, and provide a construction of a Markov process(
Q(·),M(·), Z(·)

)
, that takes values in the set Qn ×Mn ×R+. The memory process

M(·) is piecewise constant, and can only jump at the time of an event. All processes to

be considered will have the càdlàg property (right-continuous with left limits) either

by assumption (e.g., the underlying fundamental processes) or by construction.

There are three types of events: job arrivals, spontaneous messages, and service

completions. We now describe the sources of these events, and what happens when

they occur.

Job arrivals: At the time of the k-th event of the arrival process An, which occurs at

time Tk and involves a job with sizeWk, the following transitions happen sequentially

but instantaneously.

1. First, the dispatcher chooses a vector of distinct servers Sk, from which it solicits

information about their state, according to

Sk = f1

(
M
(
T−k
)
,Wk, Uk

)
,

where f1 : Mn × R+ × [0, 1] → Rn is a measurable function defined by the

policy. Note that the set of servers that are sampled only depends on the

current memory state and on the size of the incoming job, but it is chosen in a

randomized way, thanks to the independent random variable Uk. Thus, we allow

for randomized policies; for example, the dispatcher might choose to sample a

fixed number of servers uniformly at random.

2. Then, messages are sent to the servers in the vector Sk, and the servers respond

with messages containing their queue states; thus, the information received by

91

the dispatcher is the vector QSk . This results in 2|Sk| messages exchanged.

Using this information, the destination of the incoming job is chosen to be

Dk = f2

(
M
(
T−k
)
,Wk,Sk,QSk

(
T−k
)
, Vk

)
,

where f2 :Mn × R+ ×Rn ×
(
∪ni=0 Qi

)
× [0, 1]→ Nn is a measurable function

defined by the policy. Note that the destination of a job can only depend on the

current memory state, the job size, as well as the vector of queried servers and

the state of their queues, but it is chosen in a randomized way, thanks to the

independent random variable Vk. Once again, we allow for randomized policies

that, for example, dispatch jobs uniformly at random.

3. Finally, the memory state is updated according to

M(Tk) = f3

(
M
(
T−k
)
,Wk,Sk,QSk

(
T−k
)
, Dk

)
,

where f3 :Mn × R+ ×Rn ×
(
∪ni=0 Qi

)
×Nn →Mn is a measurable function

defined by the policy. Note that the new memory state is obtained using the

same information as for selecting the destination, plus the destination of the

job, but without randomization.

Spontaneous messages: At the time of the k-th event of the spontaneous message

process Rn, which occurs at time T sk , the i-th server sends a spontaneous message to

the dispatcher if and only if

g1

(
Q
(
T sk
)
, Xk

)
= i,

where g1 : Qn × [0, 1]→ {0} ∪ Nn is a measurable function defined by the policy. In

that case, the memory is updated to the new memory state

M(T sk) = g2

(
M
(
T sk
−), i,Qi

(
T sk
))
,

where g2 :Mn ×Nn ×Q →Mn is a measurable function defined by the policy, and

92

which prescribes the server who sends a message. On the other hand, no message

is sent when g1
(
Q(T sk), Xk

)
= 0. Note that the dependence of g1 on Q allows the

message rate at each server to depend on the server’s current workload. For example,

we could let idle servers send repeated spontaneous messages (as a Poisson process)

to inform the dispatcher of their idleness.

Service completions: As time progresses, the remaining workload of each job that

is at the head of line in a queue decreases at a constant, unit rate. When a job’s

workload reaches zero, the job leaves the system and every other job advances one

slot. Let {T dk (i)}∞k=1 be the sequence of departure times at the i-th server. At those

times, the i-th server sends a message to the dispatcher if and only if

h1

(
Qi

(
T dk (i)

)
, Yk

)
= 1,

where h1 : Q× [0, 1]→ {0, 1} is a measurable function defined by the policy. In that

case, the memory is updated to the new memory state

M
(
T dk (i)

)
= h2

(
M
(
T dk (i)

−)
, i,Qi

(
T dk (i)

))
,

where h2 :Mn ×Nn ×Q →Mn is a measurable function defined by the policy. On

the other hand, no message is sent when h1
(
Qi(T

d
k (i)), Yk

)
= 0.

Remark 4.1.1. We have chosen to describe the collection of queried servers by a

vector, implying an ordering of the servers in that collection. We could have described

this collection as an (unordered) set. These two options are essentially equivalent but

it turns out that the ordering provided by the vector description allows for a simpler

presentation of the proof.

Remark 4.1.2. For any given n, a policy is completely determined by the sponta-

neous message rate β, and the functions f1, f2, f3, g1, g2, h1, and h2. Furthermore,

many policies in the literature that are described without explicit mention of memory

or messages can be cast within our framework, as we will see in Section 4.2.

93

Remark 4.1.3. The memory update functions f3, g2, and h2 do not involve random-

ization, even though our main result could be extended in that direction. We made

this choice because none of the policies introduced in earlier literature require such

randomization, and because it simplifies notation and the proofs.

Remark 4.1.4. We only consider the memory used to store information in between

arrivals or messages. Thus, when counting the memory resources used by a policy, we

do not take into account information that is used in zero time (e.g., the responses from

the queries at the time of an arrival) or the memory required to evaluate the various

functions that describe the policy. If that additional memory were to be accounted

for, then any memory constraints would be more severe, and therefore our negative

result would still hold.

The dispatching policies that we have introduced obey certain constraints:

(i) The dispatcher can only send messages to the servers at the time of an arrival,

and in a single round of communication. This eliminates the possibility of

policies that sequentially poll the servers uniformly at random until they find

an idle one. Indeed, it can be shown that such sequential polling policies may

lead to asymptotically vanishing delays, without contradicting our lower bounds.

On the other hand, in practice, queries involve some processing and travel time

ε. Were we to consider a more realistic model with ε > 0, sequential polling

would also incur positive delay.

(ii) We assume that the dispatcher must immediately send an incoming job to a

server upon arrival. This prevents the dispatcher from maintaining a centralized

queue and operating the system as a G/G/n queue.

We now introduce a symmetry assumption on the policies. In essence it states that

at the time of a job arrival, and given the current memory state, if certain sampling

and dispatching decisions and a certain memory update are possible, then a permuted

version of these decisions and updates is also possible (and equally likely), starting

with a suitably permuted memory state.

94

Assumption 4.1.1. (Symmetric policies.) We assume that the dispatching policy is

symmetric, in the following sense. For any given permutation of the servers σ, there

exists a corresponding (not necessarily unique) permutation σM of the memory states

Mn that satisfies all of the following properties.

1. For every m ∈Mn and w ∈ R+, and if U is a uniform random variable on [0, 1],

then

σ
(
f1(m,w,U)

)
d
= f1

(
σM(m), w, U

)
,

where d
= stands for equality in distribution.

2. For every m ∈ Mn, w ∈ R+, s ∈ Rn, and q ∈ Q|s|, and if V is a uniform

random variable on [0, 1], then1

σ
(
f2
(
m,w, s,q, V

)) d
= f2

(
σM(m), w, σ(s),q, V

)
.

3. For every m ∈Mn, w ∈ R+, s ∈ Rn, and q ∈ Q|s|, and d ∈ Nn, we have

σM

(
f3
(
m,w, s,q, d

))
= f3

(
σM(m), w, σ(s),q, σ(d)

)
.

As a concrete illustration, our symmetry assumption implies the following. If a

certain memory state mandates that the vector (2, 4, 5) of servers must be sampled

(with probability 1), independently from the incoming job size, then there exists some

other memory state which mandates that the vector (1, 5, 7) will be sampled, inde-

pendently from the incoming job size, and the same holds for every 3-element vector

with distinct entries. Since there are n(n − 1)(n − 2) different vectors, there must

be at least so many different memory states. This suggests that if we have too few

memory states, the number of “distinguished” servers, i.e., servers that are treated in

a special manner is severely limited. This is a key element of the proof of the delay

1Note that the argument on the right-hand side of the relation below involves q rather than a
permuted version of q, even though the vector s gets permuted. We are essentially comparing a
situation where the dispatcher queries a vector s and receives certain numerical values q with the
situation where the dispatcher queries a vector σ(s) and receives the same numerical values q.

95

lower bound that we present in the next subsection.

One may contemplate a different (stronger) definition of symmetry. For example,

in the first part, we could have required that

σ
(
f1(m,w, u)

)
= f1

(
σM(m), w, u

)
, ∀u ∈ [0, 1]. (4.1)

While this would lead to a simpler proof, this stronger definition would be too re-

strictive. This is shown in the following example.

Example 4.1.1. Consider a policy that samples a fixed number d of servers, uni-

formly at random (regardless of the memory state and of the incoming job size), and

that satisfies this stronger symmetry assumption. Then, f1(m,w, u) is a vector of

dimension d, for all m ∈ Mn, w ∈ R+, and u ∈ [0, 1]. Let σ, τ be a pair of permuta-

tions such that σ(f1(m,w, u)) 6= τ(f1(m,w, u)). The stronger symmetry assumption

in Equation (4.1) implies that there exists a pair of associated permutations σM , τM

of the memory states such that

f1
(
σM(m), w, u

)
= σ

(
f1(m,w, u)

)
6= τ
(
f1(m,w, u)

)
= f1

(
τM(m), w, u

)
.

It follows that σM(m) 6= τM(m), and thus there must be at least as many memory

states as the number of different vectors of dimension d with different entries. There

are
(
n
d

)
d! such vectors, and therefore a large memory would be required to implement

such a uniform sampling policy if Equation (4.1) were to be enforced.

On the other hand, the symmetry assumption that we have adopted in this chapter

only requires equality in distribution, and uniform sampling can be achieved with only

one memory state (i.e., with no bits of memory). Indeed, since the sampling of servers

is done uniformly at random, we have

f1(m,w,U)
d
= σ

(
f1(m,w,U)

)
,

for all permutations σ.

96

This example shows that the symmetry assumption that we have adopted can be

substantially weaker (and thus easier to satisfy), and allows small-memory implemen-

tation of simple natural policies.

Remark 4.1.5. Note that a symmetry assumption is imposed on the memory update

function f3 at the time that a job is dispatched. However, we do not need to impose

a similar assumption on the memory update functions g2 and h2 at the times that

the dispatcher receives a message. Similarly, there is no symmetry assumption on the

functions g1 and h1 that govern the generation of server messages. In particular, we

allow each server to send spontaneous messages at its own identity-dependent, and

hence asymmetric, rate.

4.1.3 Delay lower bound for resource constrained policies

Before stating the main result of this chapter, we introduce formal definitions for the

average message rate between the dispatcher and the servers, and for our performance

metric for the delay. Furthermore, we introduce an assumption on the arrival process.

First, given a policy of the form specified in the previous subsection, we define the

average message rate between the dispatcher and the servers as

lim sup
t→∞

1

t

An(t)∑
k=1

2|Sk|+
Rn(t)∑
k=1

1Nn

(
g1
(
Q
(
T sk
)
, Xk

))

+
n∑
i=1

∑
k:T dk (i)<t

1{1}

(
h1
(
Qi

(
T dk (i)

)
, Yk
)) . (4.2)

Second, we provide a formal definition of our performance metric for the delay.

We assume that the process
(
Q(·),M(·), Z(·)

)
is stationary, with invariant probability

measure π. Since the destinations of jobs (and their queueing delays) are deterministic

functions of the state and i.i.d. randomization variables, the point process of arrivals

with the queueing delays as marks, is also stationary. Using this, we define the

expected queueing delay in steady-state π of a typical job, denoted by E0
π [L0],

as follows. If Lk is the queueing delay of the k-th job under the stationary process

97

(
Q(·),M(·), Z(·)

)
, then

E0
π [L0] , Eπ

 1

λnt

An(t)∑
k=1

Lk

 , (4.3)

where the right-hand side is independent from t due to the stationarity of the processes

involved (see [7]). Furthermore, if the stationary process
(
Q(·),M(·), Z(·)

)
is ergodic

(in the sense that every invariant set has measure either 0 or 1 under π), we have

E0
π [L0] = lim

t→∞

1

An(t)

An(t)∑
k=1

Lk, a.s.

Finally, we introduce an assumption on the arrival process.

Assumption 4.1.2. Let In be distributed as the typical inter-arrival times of the

delayed renewal process An(·). We assume that there exists a constant ε > 0, inde-

pendent from n, such that the following holds. For every ε ∈ (0, ε], there exists a

positive constant δε such that

δε ≤ P
(
In ≤

ε

n

)
≤ 1− δε,

for all n.

This assumption implies that arbitrarily small inter-arrival times of order Θ(1/n)

occur with a probability that is bounded away from 0, and from 1, for all n. In partic-

ular, this excludes deterministic inter-arrival times, and inter-arrival times that can

take values of order o(1/n) with probability of order 1− o(1). On the other hand, if

A(·) is a delayed renewal process, where the typical inter-arrival times are continuous

random variables with positive density around 0, then the process An(·), defined as

An(t) , A(nt) for all t ≥ 0, satisfies Assumption 4.1.2.

We are now ready to state the main result. It asserts that within the class of

symmetric policies that we consider, and under some upper bounds on the mem-

98

ory size (logarithmic) and the message rate (linear), the expected queueing delay in

steady-state of a typical job is bounded below by a positive constant.

Theorem 4.1.1 (Positive delay for resource constrained policies). For any constants

λ ∈ (0, 1), c, α > 0, and for every arrival process that satisfies Assumption 4.1.2, there

exists a constant ζ(λ, c, α) > 0 with the following property. For any fixed n, consider a

symmetric memory-based dispatching policy, i.e., that satisfies Assumption 4.1.1, with

at most c log2(n) bits of memory, with an average message rate (cf. Equation (4.2))

upper bounded by αn in expectation, and under which the process
(
Q(·),M(·), Z(·)

)
admits at least one invariant probability measure πn. Then, for all n large enough,

we have

E0
πn [L0] ≥ ζ(λ, c, α),

where E0
πn [L0] is the expected queueing delay in steady-state πn of a typical job.

The proof is given in Section 4.3.

4.1.4 Queueing delay vs resources tradeoff

In this subsection we summarize the results obtained in Chapter 3 and in this chapter.

First, recall that Corollary 3.1.6 in Chapter 3 implies that with either (i) a memory of

size (in bits) of order Ω(log(n)) and a message rate of order ω(n), or (ii) a memory of

size (in bits) of order ω(log(n)) and a message rate greater than or equal to λn, there

exists a policy with vanishing queueing delay. Second, note that Theorem 4.1.1 states

that symmetric policies with O(log(n)) bits of memory and a message rate of order

O(n) cannot have vanishing queueing delays. Finally, there is a third regime (policies

with Ω(log(n)) bits of memory and a message rate smaller than λn) for which there

are no known results. The three regimes are depicted in Figure 4-1.

4.2 Literature review

In this section we put our results in perspective by showing that various dispatching

policies considered earlier in the literature are special cases of the class of symmetric

99

Delay9 0

Delay→ 0

Total message rate

Bits of memory

< λn Θ(n) ω(n)

ω(log(n))

Θ(log(n))

Corollary 3.1.6

Theorem 4.1.1

?

Figure 4-1: Resource requirements for vanishing queueing delays.

dispatching policies described above. Most policies have only been studied for the

case of Poisson arrivals and exponential service times, so this review is restricted to

that case unless stated otherwise.

Open-loop policies

Random routing. The simplest policy is to dispatch each arriving job to a random

queue, with each queue being equally likely to be selected. In this case, the system

behaves as n independent parallel M/M/1 queues. This policy needs no messages or

memory, and has a positive queueing delay independent of n.

Round-Robin (RR). When the dispatcher has no access to the workload of in-

coming jobs and no messages are allowed, it is optimal to dispatch arriving jobs to

the queues in a Round-Robin fashion [39]. This policy does not require messages but

needs dlog2(n)e bits of memory to store the ID of the next queue to receive a job. In

the limit, each queue behaves like a D/M/1 queue (see [39]). While random routing

is a symmetric policy, Round-Robin is not. To see this, note that a memory state i

must be followed by state i + 1, and such a transition is not permutation-invariant;

in particular, the memory update function f3 does not satisfy the symmetry assump-

tion. Round-Robin can be made symmetric by using an additional dn log2(n)e bits

100

of memory to specify the order with which the different servers are selected. But in

any case, this policy also has a positive queueing delay, that does not vanish as n

increases.

Policies based on queue lengths

Join a shortest queue (SQ). If we wish to minimize the queueing delay and have

access to the queue lengths but not to the job sizes, an optimal policy is to have each

incoming job join a shortest queue, breaking any ties uniformly at random [45]. When

n goes to infinity, the queueing delay vanishes, but this policy requires a message rate

of 2λn2 (n queries and n responses for each arrival), and no memory. This policy is

symmetric and achieves vanishing delay, but uses a superlinear number of messages.

Join a shortest of d random queues (SQ(d)). In order to sharply decrease the

number of messages sent, Mitzenmacher [34] and Vvedenskaya et al. [44] introduced

the power-of-d-choices policy. When there is an arrival, d servers are chosen uniformly

at random, and the job is sent to a shortest queue among those d servers. This policy

fits our framework, and in particular is symmetric; it uses 2λdn messages per unit

of time, and zero memory. This policy was also analyzed in the case of heavy-tailed

service times by Bramson et al. [14], yielding similar results. In any case, this policy

has positive delay, which is consistent with Theorem 4.1.1.

Join a shortest of dn random queues (SQ(dn)). More recently, Mukherjee et al.

[35] analyzed a variation of the SQ(d) policy, which lets d be a function of the system

size n. This policy is symmetric, uses 2λdnn messages per unit of time and zero

memory, and has zero delay as long as dn → ∞, which is consistent with Theorem

4.1.1.

Join a shortest of d queues, with memory (SQ(d,b)). Another improvement

over the power-of-d-choices, proposed by Mitzenmacher et al. in [33], is obtained by

using extra memory to store the IDs of the b (with b ≤ d) least loaded queues known

at the time of the previous arrival. When a new job arrives, d queues are sampled

101

uniformly at random and the job is sent to a least loaded queue among the d sampled

and the b stored queues. This policy is symmetric, needs 2λdn messages per unit of

time and db log2(n)e bits of memory, and has positive delay, consistent with Theorem

4.1.1.

SQ(d) for divisible jobs. Recently, Ying et al. [47] considered the case of jobs of

size mn (with mn ∈ ω(1) and mn/n→ 0) arriving as a Poisson process of rate nλ/mn,

where each job can be divided into mn tasks with mean size 1. Then, the dispatcher

samples dmn queues and does a water-filling of those queues with the mn tasks. In

this case, the number of messages sent per unit of time is 2λdn and no memory is

used. Even though this was not mentioned in [47], this policy can be shown to drive

the queueing delay to 0 if d ≥ 1/(1− λ). However, this model does not fall into our

framework because it involves divisible jobs.

Policies based on remaining workload

Join a least loaded queue (LL). An appealing policy is the one that sends in-

coming jobs to a queue with the least remaining workload, in which case the whole

system behaves as an M/M/n queue. This policy is symmetric and achieves a van-

ishing delay as n → ∞, but it has the same quadratic messaging requirements as

SQ.

Join a least loaded of d queues (LL(d)). A counterpart of SQ(d) is LL(d), in

which the dispatcher upon arrival chooses d queues uniformly at random and sends

the job to one of those queues with the least remaining workload, breaking any ties

uniformly at random. This setting was studied in [25], and it does not result in

asymptotically vanishing delay, consistent with Theorem 4.1.1.

Policies based on job size

The previous policies dispatched the incoming jobs based on information about the

state of the queues, obtained by dynamically exchanging messages with the servers.

102

Such information could include the remaining workload at the different queues. On

the other hand, if the dispatcher only knows the size of an incoming job (which might

be difficult in practice [15]), it could use a static and memoryless policy that selects a

target server based solely on the job size. Harchol-Balter et al. [24] showed that delay

is minimized over all such static policies by a non-symmetric policy that partitions

the set of possible job sizes into consecutive intervals and assigns each interval to a

different server. This is especially effective when the jobs have highly variable sizes

(e.g., heavy-tailed), yet the resulting delay can be no better than that of an M/D/1

queue, and does not vanish as n → ∞. This scheme does not require any message

exchanges, and could be made symmetric by using the memory to store a list of the

n intervals of job sizes corresponding to each of the n servers.

Pull-based load balancing

Join-Idle-Queue (JIQ). In order to reduce the message rate, Badonnel and Burgess

[8], Lu et al. [31], and Stolyar [40] propose a scheme where messages are sent from a

server to the dispatcher whenever the server becomes idle, so that the dispatcher can

keep track of the set of idle servers in real time. Then, an arriving job is to be sent

to an empty queue (if there is one) or to a queue chosen uniformly at random (if all

queues are non-empty). This policy requires at most λn messages per unit of time

and exactly n bits of memory (one bit for each queue, indicating whether it is empty

or not). Stolyar [40] has shown that when n goes to infinity, the expected queue-

ing delay vanishes. This policy is symmetric. It has a vanishing delay and a linear

message rate, but uses superlogarithmic memory, consistent with Theorem 4.1.1.

Persistent Idle (PI). In order to ensure a full capacity region, even for small values

of n, Atar et al. [5] propose a variation of JIQ where, when there are no idle servers

available, jobs are sent to the last server that was idle. In [5] the authors showed

that, by avoiding the dispatching of jobs uniformly at random, this policy is always

stable as long as the combined processing power of all servers can handle the incoming

workload (regardless of the disparity in the processing rates of the individual servers).

103

As with the JIQ policy, a symmetric implementation of PI would require at least n

bits of memory, and a message rate of the order of n.

Idle-One-First (I1F). In order to obtain good delay performance, even in a heavy-

traffic regime such as the Non-Degenerate Slowdown Regime (NDS), Gupta and Wal-

ton [22] propose another variation of JIQ where the dispatcher not only keeps track of

which server is idle, but also of which server has only one job in its queue. Note that,

even though it has to keep track of servers with both zero and one jobs in their queues,

this policy requires at most λn messages per unit of time (at most one per departure

of a job). Furthermore, a memory with at least dn log2(3)e bits is required, since each

queue can have three states: empty, has one job, or has two or more jobs, which leads

to 3n different states that need to be stored in memory. This policy is symmetric, it

has a vanishing delay and a linear message rate, but uses superlogarithmic memory,

consistent with Theorem 4.1.1.

Resource Constrained Pull-Based (RCPB). In order to reduce the message

rate and the memory usage, we proposed in Chapter 3 a family of dispatching policies,

similar to Join-Idle-Queue, where the dispatcher keeps a small list of up to cn idle

servers, and where messages are sent from each idle server to the dispatcher as a

Poisson process of rate νn. Then, an arriving job is sent to an empty queue (if the

dispatcher has the ID of one on its list) or to a queue chosen uniformly at random

(if the dispatcher’s list is empty). This policy requires (1− λ)νnn messages per unit

of time and dcn log2(n)e bits of memory (the size of the list, cn, times the number

of bits required to store one ID, log2(n) bits). In Chapter 3 we showed that, if we

either have a high message rate regime (RCPB-HMess) with cn = 1 and νn → ∞,

or a high memory regime (RCPB-HMem) with cn → ∞ and νn = λ/(1 − λ), the

expected queueing delay vanishes as n → ∞. This policy is symmetric, and it only

has a vanishing delay when either the message rate is superlinear, or the memory is

superlogarithmic. This is consistent with Theorem 4.1.1.

104

4.2.1 Memory, messages, and queueing delay

We now summarize the resource requirements (memory and message rate) and the

asymptotic delay of the policies reviewed in this section that fall within our framework.

Policy Memory (bits) Message rate Limiting delay

Random 0 0 > 0

RR [39] dlog2(n)e 0 > 0

SQ [45] 0 2λn2 0

SQ(d) [34] 0 2dλn > 0

SQ(dn) [35] 0 ω(n) 0

SQ(d, b) [33] db log2(n)e 2dλn > 0

LL 0 2λn2 0

LL(d) [25] 0 2dλn > 0

JIQ [40] n λn 0

RCPB-HMess dlog2(n)e ω(n) 0

RCPB-HMem ω(log(n)) λn 0

Note that any one of the above listed policies that achieves vanishing queueing

delay falls into one (or both) of the following two categories:

a) Those requiring ω(n) message rate, namely, SQ, SQ(dn), and LL.

b) Those requiring ω(log(n)) bits of memory (JIQ, and RCPB-HMem).

The main result of this chapter effectively establishes this fundamental limitation of

symmetric policies.

4.3 Proof of Theorem 4.1.1

Let us fix some n. In the sequel, we will assume that n is large enough whenever

needed for certain inequalities to hold. We fix a memory-based policy that satisfies

Assumption 4.1.1 (symmetry), with at most nc memory states, and which results

in the process (Q(·),M(·), Z(·)) having at least one invariant probability measure.

105

Let us fix such an invariant probability measure πn. We consider the process in

steady-state; that is, we assume that (Q(0),M(0), Z(0)) is distributed according to

πn. Accordingly, probabilities P(·) and expectations E[·] encountered in the sequel

will always refer to the process in steady-state.

The high-level outline of the proof is as follows. In Subsection 4.3.1 we show that

under our symmetry assumption, the dispatcher can give special treatment to at most

c servers, which we call distinguished servers. The treatment of all other servers, is

symmetric, in some appropriate sense.

In Subsection 4.3.2 we consider a sequence of bad events under which, over a

certain time interval, there are c + 1 consecutive arrivals, no service completions

or messages from the servers, and all sampled servers are “busy” with a substantial

workload. Then, in Subsection 4.3.3, we show that this sequence of bad events has

non-negligible probability.

In Subsection 4.3.4, we develop some further consequences of the symmetry as-

sumption, which we use to constrain the information available to the dispatcher at

the time of the (c+ 1)st arrival. Loosely speaking, the idea is that during the interval

of interest, the server only has information on c distinguished servers together with

(useless) information on some busy servers. This in turn implies (subsection 4.3.5)

that at least one of the first c+ 1 arrivals must be dispatched to a server on which no

useful information is available, and which therefore has a non-negligible probability

of inducing a non-negligible delay, thus completing the proof.

4.3.1 Local limitations of finite memory

We consider the (typical) case where a relatively small number of servers are sam-

pled. We will use the symmetry assumption to show that except for a small set of

distinguished servers, of size at most c, all other servers must be treated as indistin-

guishable.

Proposition 4.3.1. Let U be a uniform random variable over [0, 1]. For all n large

enough, for every memory state m ∈ Mn and every possible job size w ∈ R+, the

106

following holds. Consider any vector of servers s ∈ Rn (and its associated set of

servers sset) with |s| ∈ o(n), and any integer ` with |s| + 1 ≤ ` ≤ n. Consider the

event B(m,w; s, `) that exactly ` servers are sampled and that the first |s| of them are

the same as the vector s, i.e.,

B(m,w; s, `) ,
{
|f1(m,w,U)| = `

}
∩
|s|⋂
i=1

{
f1(m,w,U)i = si

}
,

and assume that the conditional probability measure

P
(
·
∣∣ B(m,w; s, `)

)
is well-defined. Then, there exists a unique set R(m,w, s, `) ⊂ Nn\sset of minimal

cardinality such that

P
(
f1(m,w,U)|s|+1 = j

∣∣ B(m,w; s, `)
)

(4.4)

is the same for all j /∈ R(m,w, s, `) ∪ sset. Furthermore, |R(m,w, s, `)| ≤ c.

Remark 4.3.1. With some notational abuse, the measure P in Proposition 4.3.1 need

not correspond to the measure P that describes the process. We are simply considering

probabilities associated with a deterministic function of the uniform random variable

U .

Proof. Throughout the proof, we fix a particular memory state m, job size w, vector

of servers s with |s| ∈ o(n), and an integer ` in the range |s|+ 1 ≤ ` ≤ n. To simplify

notation, we will suppress the dependence on w.

Consider the random vector S(m) , f1(m,U). Let v be the vector whose compo-

nents are indexed by j ranging in the set
(
sset
)c

= Nn\sset, and defined for any such

j, by

vj , P
(
S(m)|s|+1 = j

∣∣ B(m; s, `)
)
.

We need to show that for j outside a “small” set, all of the components of v are

equal. Let z1, . . . , zd be the distinct values of vj, as j ranges over
(
sset
)c, and let

107

Aα = {j ∈
(
sset
)c | vj = zα}. The sequence of sets (A1, . . . , Ad) provides a partition of(

sset
)c into equivalence classes, with vj = vj′ = zα, for all j, j′ in the α-th equivalence

class Aα. Let k1, . . . , kd be the cardinalities of the equivalence classes A1, . . . , Ad.

Without the loss of generality, assume that kd is a largest such cardinality. We define

R ,
{
j ∈

(
sset
)c | vj 6= vd

}
= A1 ∪ · · · ∪ Ad−1,

so that Rc ∩
(
sset
)c

= Ad. For every j, j′ ∈ Ad, we have vj = vj′ = vd, and therefore

the condition (4.4) is satisfied by R. Note that by choosing vd to be the most common

value, we are making the cardinality of the set Rc ∩
(
sset
)c

= {j /∈ sset | vj = vd} as

large as possible, from which it follows that the set R∩
(
sset
)c is as small as possible,

and therefore R, as defined, is indeed a minimal cardinality subset of
(
sset
)c that

satisfies (4.4).

We now establish the desired upper bound on the cardinality of R. Let Σsset

be the set of permutations that fix the set sset. Consider an arbitrary permutation

σ ∈ Σsset and let σM be a corresponding permutation of the memory states, as defined

by Assumption 4.1.1. We let vσ−1 be the vector with components (vσ−1)j = vσ−1(j),

for j /∈ sset. Note that as we vary σ over the set Σsset , vσ−1 ranges over all possible

permutations of the vector v. We also have, for j /∈ sset,

(vσ−1)j = vσ−1(j)

= P
(
S(m)|s|+1 = σ−1(j)

∣∣∣ B(m; s, `)
)

= P

S(m)|s|+1 = σ−1(j)

∣∣∣∣∣∣ {|S(m)| = `
}
∩
|s|⋂
i=1

{
S(m)i = si

}
= P

σ(S(m)|s|+1

)
= j

∣∣∣∣∣∣ {|S(m)| = `
}
∩
|s|⋂
i=1

{
S(m)i = si

}
= P

σ(S(m)|s|+1

)
= j

∣∣∣∣∣∣ {|σ(S(m))| = `
}
∩
|s|⋂
i=1

{
σ(S(m)i) = σ(si)

}
108

= P

σ(S(m)|s|+1

)
= j

∣∣∣∣∣∣ {|σ(S(m))| = `
}
∩
|s|⋂
i=1

{
σ(S(m)i) = si

}
= P

S
(
σM(m)

)
|s|+1

= j

∣∣∣∣∣∣ {|S(σM(m))| = `
}
∩
|s|⋂
i=1

{
S(σM(m))i = si

} .

Note that in the above expressions, the only random variables are S(m) and S
(
σM(m)

)
,

while s is a fixed vector. The next to last equality above holds because σ fixes the ele-

ments in the vector s; the last equality follows because the random variables σ
(
S(m)

)
and S

(
σM(m)

)
are identically distributed, according to Part 1 of the symmetry As-

sumption 4.1.1. The equality that was established above implies that σM(m) com-

pletely determines the vector vσ−1 . As σ ∈ Σsset changes, σM(m) can take at most

nc distinct values, due to the assumed bound on the memory size, and this leads to

a bound on the number of possible permutations of the vector v:

∣∣{vσ−1 : σ ∈ Σsset}
∣∣ ≤ nc.

We now argue that since v has relatively few distinct permutations, most of its

entries vi must be equal. Recall the partition of the set
(
sset
)c of indices into equiva-

lence classes, of sizes k1, . . . , kd, with kd being the largest cardinality. Note that there

is a one-to-one correspondence between distinct permutations vσ−1 of the vector v

and distinct partitions of
(
sset
)c into a sequence of subsets of cardinalities k1, . . . , kd,

with the value zα being taken on the α-th subset. It follows that the number of

different partitions of Sc into sets with the given cardinalities, which is given by the

multinomial coefficient, satisfies

(
n− |s|

k1! k2! · · · kd!

)
=
∣∣{vσ−1 : σ ∈ Σsset}

∣∣ ≤ nc.

The number of choices of a kd-element subset is no larger than the number of parti-

tions. Therefore, (
n− |s|
kd

)
≤ nc.

109

An elementary calculation (cf. Lemma 4.4.1) implies that when n is large enough,

we must have either (i) kd ≥ n − |s| − c or (ii) kd ≤ c. We argue that the second

possibility cannot occur. Indeed, if kd ≤ c, and since kd is the largest cardinality, it

follows that kα ≤ c for every α. Since k1 + · · · + kd = n − |s|, we obtain that the

number of classes, d, is at least d(n− |s|)/ce. When dealing with d different classes,

the number of possible partitions is at least d!; this can be seen by focusing on the

least-indexed entry in each of the d classes and noting that these d entries may appear

in an arbitrary order. Since |s| ∈ o(n), we have n− |s| ≥ n/2 for all n large enough,

and putting everything together, we obtain

d(n/2c)e! ≤
⌈
n− |s|
c

⌉
! ≤ nc.

This is clearly impossible when n is large enough, and case (ii) can therefore be

eliminated. We conclude that |Ad| = kd ≥ n − |s| − c. Since |A1 ∪ · · · ∪ Ad| =

|
(
sset
)c| = n − |s|, it follows that |R| = |A1 ∪ · · · ∪ Ad−1| ≤ c, which is the desired

cardinality bound on R.

It should be apparent that any minimal cardinality set R that satisfies (4.4) must

be constructed exactly as our set Ad. Thus, non-uniqueness of the set R with the

desired properties will arise if and only if there is another subset Aα, with α 6= d,

with the same maximal cardinality kd. On the other hand, since |s| ∈ o(n), we have

kd ≥ n−|s|−c > n/2, when n is large enough. But having two disjoint subsets, Ad and

Aα, each of cardinality larger than n/2 is impossible, which proves uniqueness.

Using a similar argument, we can also show that the distribution of the destination

of the incoming job is uniform (or zero) outside the set of sampled servers and a set

of at most c distinguished servers.

Proposition 4.3.2. Let V be a uniform random variable over [0, 1]. For all n large

enough, for every memory state m ∈ Mn, every vector of indices s ∈ Rn with

|s| ∈ o(n), every queue vector state q ∈ Q|s|, and every job size w ∈ R+, the following

holds. There exists a unique set R′
(
m,w, s,q

)
⊂ Nn\sset of minimal cardinality such

110

that

P
(
f2
(
m,w, s,q, V

)
= j
)

= P
(
f2
(
m,w, s,q, V

)
= k
)
,

for all j, k /∈ R′
(
m,w, s,q

)
∪ sset. Furthermore, |R′(m,w, s,q)| ≤ c.

Proof. The proof is analogous to the proof of the previous proposition. We start by

defining a vector v, whose components are again indexed by j ranging in the set

Nn\sset, by

vj , P
(
f2
(
m,w, s,q, V

)
= j
)
.

Other than this new definition of the vector v, the rest of the proof follows verbatim

the one for Proposition 4.3.1.

4.3.2 A sequence of “bad” events

In this subsection we introduce a sequence of “bad” events that we will be focusing

on in order to establish a positive lower bound on the delay.

Recall that T s1 is the time of the first event of the underlying Poisson process of

rate βn that generates the spontaneous messages from the servers. Recall also that

we denote by Qi,1(t) the remaining workload of the job being serviced in server i, at

time t, with Qi,1(t) = 0 if no job is present at server i. Let

B ,

{
i :

∞∑
j=1

Qi,j(0) ≥ 2γ

}
, (4.5)

which is the set of servers with at least 2γ remaining workload in their queues, and let

Nb = |B|, where γ ≤ 1 is a small positive constant, independent of n, to be specified

later.

Consider the following events:

(i) the first c+ 1 jobs after time 0 are all of size at least 2γ,

Aw , {W1, . . . ,Wc+1 ≥ 2γ};

111

(ii) the first potential spontaneous message occurs after time γ/n, and the (c+1)-st

arrival occurs before time γ/n,

Aa ,
{
T s1 >

γ

n

}
∩
{
Tc+1 <

γ

n

}
;

(iii) there are no service completions before time γ/n,

As ,
{
Qi,1(0) /∈

(
0,
γ

n

)
, ∀ i

}
;

(iv) there are at least γn servers that each have at least 2γ remaining workload at

time zero,

Ab ,
{
Nb ≥ γn

}
.

For an interpretation, the event

H+
0 , Aw ∩ Aa ∩ As ∩ Ab,

corresponds to an unfavorable situation for the dispatcher. This is because, at time

zero, the dispatcher’s memory contains possibly useful information on at most c dis-

tinguished servers (Propositions 4.3.1 and 4.3.2), and has to accommodate c + 1

arriving jobs by time γ/n. On the other hand, a nontrivial fraction of the servers are

busy and will remain so until time γ/n (event Ab), and it is possible that sampling

will not reveal any idle servers (as long as the number of sampled servers is not too

large). Thus, at least one of the jobs may end up at a busy server, resulting in pos-

itive expected delay. In what follows, we go through the just outlined sequence of

unfavorable events, and then, in Subsection 4.3.3, we lower bound its probability.

Starting with H+
0 , we define a nested sequence of events, after first introducing

some more notation. For k = 1, . . . , c + 1, let Sk be the random (hence denoted by

an upper case symbol) vector of servers that are sampled upon the arrival of the k-th

112

job; its components are denoted by (Sk)i. For i = 0, 1, . . . , |Sk|, we let

Rk,i , R
(
M
(
T−k
)
,Wk,

(
(Sk)1, . . . , (Sk)i−1

)
, |Sk|

)
be the (random) subset of servers defined in Proposition 4.3.1 (whenever M

(
T−k
)
,

Wk,
(
(Sk)1, . . . , (Sk)i−1

)
, and |Sk| are such that the proposition applies), with the

convention that
(
(Sk)1, . . . , (Sk)i−1

)
= ∅ when i = 1. Otherwise, we let Rk,i , ∅.

Furthermore, we define

Rk ,
|Sk|⋃
i=1

Rk,i.

Moreover, let Dk be the destination of the k-th job, and let

R′k , R′
(
M
(
T−k
)
,Wk,Sk,QSk(T

−
k)
)

be the (random) subset of servers defined in Proposition 4.3.2 (whenever M
(
T−k
)
,

Wk, Sk and QSk(T
−
k) are such that the proposition applies). Otherwise, we let R′k ,

∅. Finally, given a collection of constants ξ1, . . . , ξc+1, independent of n and to be

determined later, we define a nested sequence of events recursively, by

H−k , H+
k−1 ∩

{
|Sk| ≤ ξk

}
,

Hk , H−k ∩
{

(Sk)i ∈ Rk,i ∪B, i = 1, . . . , |Sk|
}
,

H+
k , Hk ∩

{
Dk ∈ Ssetk ∪R′k ∪B

}
, (4.6)

for k = 1, . . . , c+ 1.

4.3.3 Lower bound on the probability of “bad” events

In this subsection, we establish a positive lower bound, valid for all n large enough,

for the probability of the event H+
c+1. In order to do this, we will obtain such uniform

lower bounds for the probability of H+
k , for k ≥ 0, by induction. We start with the

base case.

113

Lemma 4.3.3. There exists a constant α+
0 > 0, independent of n, such that

P(H+
0) ≥ α+

0 .

Proof. Note that the event Aa only depends on the processes of arrivals and sponta-

neous messages after time zero, Aw only depends on the i.i.d. workloadsW1, . . . ,Wc+1,

and As ∩ Ab only depends on the initial queue length vector Q(0). It follows that

P(H+
0) = P(Aa)P(Aw)P(As ∩ Ab).

We will now lower bound each of these probabilities.

Note that P(Aa) is the intersection of two independent events. The first is the

event that the first arrival in a Poisson process with rate βn happens after time γ/n,

or equivalently, it is the event that the first arrival of a Poisson process of rate β

happens after time γ, which has positive probability that does not depend on n. The

second is the event that c + 1 arrivals of the delayed renewal process An(t) occur

before time γ/n, i.e., the event that Tc+1 < γ/n. Since the process (Q(·),M(·), Z(·))

is stationary, the first arrival time (T1) is distributed according to the residual time of

typical inter-arrival times. In particular, if F is the cumulative distribution function

of typical inter-arrival times of the arrival process An(·) (which have mean 1/λn), the

well-known formula for the distribution of residual times gives

P
(
T1 <

γ

n(c+ 1)

)
= λn

γ
n(c+1)∫
0

(
1− F (u)

)
du

= λ

γ
c+1∫
0

(
1− F

(v
n

))
dv.

Recall that Assumption 4.1.2 states that 1−F (v/n) ≥ δv > 0, for all v > 0 sufficiently

114

small, and for all n. As a result, we have

λ

γ
c+1∫
0

(
1− F

(v
n

))
dv ≥ λ

γ
c+1∫
0

(
1− F

(
γ

n(c+ 1)

))
dv (4.7)

=
λγ

c+ 1
δ γ
c+1
, (4.8)

for all γ sufficiently small. On the other hand, for k = 2, . . . , c+ 1, Assumption 4.1.2

also implies that

P
(
Tk − Tk−1 ≤

γ

n(c+ 1)

)
≥ δ γ

(c+1)
.

Combining this with Equation (4.8), and using the fact that the first arrival time and

the subsequent inter-arrival times are independent, we obtain

P
(
Tc+1 <

γ

n

)
≥ P

({
T1 <

γ

n(c+ 1)

}
∩

c+1⋂
k=2

{
Tk − Tk−1 ≤

γ

n(c+ 1)

})

≥ P
(
T1 <

γ

n(c+ 1)

) c+1∏
k=2

P
(
Tk − Tk−1 ≤

γ

n(c+ 1)

)
≥ λγ

c+ 1

(
δ γ
c+1

)c+1

,

which is a positive constant independent from n.

We also have

P(Aw) =
c+1∏
i=1

P(Wi ≥ 2γ)

= P(Wi ≥ 2γ)c+1,

which is independent of n, and positive for γ small enough.

We now consider the event As. If Acs holds, then there exists a server i such that

0 < Qi,1(0) ≤ γ/n, and thus we have a job departure during (0, γ
n
]. Let X be the

number of service completions during (0, γ
n
]. The occurrence of Acs implies X ≥ 1.

Furthermore, the expected number of service completions in steady-state during any

115

fixed interval must be equal to the expected number of arrivals, so that

P(Acs) ≤ E[X] = (nλ)
γ

n
= λγ. (4.9)

We now consider the event Ab. Recall that

Nb =

∣∣∣∣∣
{
i :

∞∑
j=1

Qi,j(0) ≥ 2γ

}∣∣∣∣∣ .
Let

NI =

∣∣∣∣∣
{
i :

∞∑
j=1

Qi,j(0) = 0

}∣∣∣∣∣ ,
and

Nd =

∣∣∣∣∣
{
i : 0 <

∞∑
j=1

Qi,j(0) < 2γ

}∣∣∣∣∣ .
Then, n = Nb + NI + Nd. Furthermore, all servers with 0 <

∑∞
j=1Qi,j(0) < 2γ will

have a departure in (0, 2γ). Let Y be the number of departures (service completions)

during (0, 2γ). Then, Y ≥ Nd. We use once more that the expected number of service

completions in steady-state during any fixed interval must be equal to the expected

number of arrivals, to obtain

nλ2γ = E[Y] ≥ E[Nd].

Furthermore, by applying Little’s law to the number of busy servers, in steady-state,

we obtain

E[NI] = (1− λ)n.

Hence

E[Nb] = n− E[NI]− E[Nd] ≥ n(λ− 2λγ).

116

On the other hand, we have

E[Nb] ≤ P(Nb ≤ γn)γn+ P(Nb > γn)n

≤ γn+ P(Nb ≥ γn)n

= γn+ P(Ab)n.

Combining these last two inequalities, we obtain

P(Ab) ≥ λ− 2λγ − γ. (4.10)

Finally, using equations (4.9) and (4.10), we have

P(As ∩ Ab) = P(Ab)− P(Ab ∩ Acs)

≥ P(Ab)− P(Acs)

≥ λ− 2λγ − γ − γλ,

which is a positive constant if γ is chosen small enough.

We now carry out the inductive step, from k−1 to k, in a sequence of three lemmas.

We make the induction hypothesis that there exists a positive constant α+
k−1 such that

P(H+
k−1) ≥ α+

k−1, and we sequentially prove that there exist positive constants α−k ,

αk, and α+
k such that P(H−k) ≥ α−k (Lemma 4.3.4), P(Hk) ≥ αk (Proposition 4.3.5),

and P(H+
k) ≥ α+

k (Lemma 4.3.7).

Lemma 4.3.4. Suppose that P(H+
k−1) ≥ α+

k−1 > 0 and that the constant ξk is chosen

to be large enough. Then, there exists a constant α−k > 0, such that for all n large

enough, we have P(H−k) ≥ α−k .

Proof. First, recall our assumption that the average message rate (cf. Equation (4.2))

is upper bounded by αn in expectation. Therefore,

E

lim sup
t→∞

1

t

An(t)∑
j=1

2|Sj|

 ≤ αn,

117

where An(t) is the number of arrivals until time t. By Fatou’s lemma, we also have

lim sup
t→∞

E

1

t

An(t)∑
j=1

2|Sj|

 ≤ αn.

Recall that the process (Q(·),M(·), Z(·)) is stationary. Then, since the sampled

vectors are a deterministic function of the state, and i.i.d. randomization variables,

the point process of arrivals with the sampled vectors as marks, is also stationary. As

a result, the expression

E

1

t

An(t)∑
j=1

2|Sj|


is independent from t (see Equation (1.2.9) of [7]). In particular, for t = γ/n, we have

that

E

1

γ

An(γn)∑
j=1

2|Sj|

 ≤ α. (4.11)

Moreover, since k ≤ c+ 1, we have

E

An(
γ
n)∑

j=1

|Sj|

 ≥ E

An(
γ
n)∑

j=1

|Sj|

∣∣∣∣∣∣∣ An
(γ
n

)
≥ c+ 1

P
(
An

(γ
n

)
≥ c+ 1

)
≥ E

[
|Sk|

∣∣∣An (γ
n

)
≥ c+ 1

]
P
(
An

(γ
n

)
≥ c+ 1

)
.

Combining this with Equation (4.11), we obtain

E
[

2

γ
|Sk|

∣∣∣An (γ
n

)
≥ c+ 1

]
P
(
An

(γ
n

)
≥ c+ 1

)
≤ α.

This yields the upper bound

E
[
|Sk|

∣∣∣An (γ
n

)
≥ c+ 1

]
≤ αγ

2P
(
An
(
γ
n

)
≥ c+ 1

) . (4.12)

118

On the other hand, using the fact that H+
k−1 ⊂ {An(γ/n) ≥ c+ 1}, we have

P
(
H−k
)

= P
(
H+
k−1 ∩

{
|Sk| ≤ ξk

})
= P

(
H+
k−1 ∩

{
An

(γ
n

)
≥ c+ 1

}
∩
{
|Sk| ≤ ξk

})
= P

(
H+
k−1 ∩

{
|Sk| ≤ ξk

} ∣∣∣An (γ
n

)
≥ c+ 1

)
P
(
An

(γ
n

)
≥ c+ 1

)
≥ P

(
H+
k−1
)
− P

(
|Sk| > ξk

∣∣∣An (γ
n

)
≥ c+ 1

)
P
(
An

(γ
n

)
≥ c+ 1

)
. (4.13)

Furthermore, for any constant ξk > 0, Markov’s inequality implies

P
(
|Sk| > ξk

∣∣∣An (γ
n

)
≥ c+ 1

)
≤

E
[
|Sk|

∣∣An (γn) ≥ c+ 1
]

ξk
, (4.14)

which combined with Equation (4.13) yields

P
(
H−k
)
≥ P

(
H+
k−1
)
−

E
[
|Sk|

∣∣An (γn) ≥ c+ 1
]

ξk
P
(
An

(γ
n

)
≥ c+ 1

)
. (4.15)

Applying the inequality (4.12) to the equation above, we obtain

P
(
H−k
)
≥ P

(
H+
k−1
)
− αγ

2ξk
. (4.16)

Finally, combining this with the fact that P(H+
k−1) ≥ α+

k−1 > 0, we have that

P
(
H−k
)
≥ α+

k−1 −
αγ

2ξk
, α−k ,

which is positive for all ξk large enough.

Proposition 4.3.5. Suppose that P(H−k) ≥ α−k , and that the constant ξk is chosen

large enough. Then, there exists a constant αk > 0, such that for all n large enough,

we have P(Hk) ≥ αk.

Proof. Recall the definitions

Hk = H−k ∩
{

(Sk)i ∈ Rk,i ∪B, i = 1, . . . , |Sk|
}
,

119

and

H−k = H+
k−1 ∩ {|Sk| ≤ ξk}.

For i = 1, . . . , |Sk|, let us denote

Hk,i ,
{

(Sk)i ∈ Rk,i ∪B
}
.

Then,

P(Hk) = P
(
H−k ∩

{
(Sk)i ∈ Rk,i ∪B, i = 1, . . . , |Sk|

})
=
∑
`

P

(
H+
k−1 ∩ {|Sk| = `} ∩

⋂̀
i=1

Hk,i

)

=
∑
`

P

(⋂̀
i=1

Hk,i

∣∣∣∣∣ H+
k−1 ∩ {|Sk| = `}

)
P
(
H+
k−1 ∩ {|Sk| = `}

)
=
∑
`

P
(
H+
k−1 ∩ {|Sk| = `}

) ∏̀
i=1

P

(
Hk,i

∣∣∣∣∣ H+
k−1 ∩ {|Sk| = `} ∩

i−1⋂
j=1

Hk,j

)
, (4.17)

where the sum is over all integers ` such that the conditional probabilities above are

well-defined. Intuitively, in the last step, we are treating the selection of the random

vector Sk as a sequential selection of its components, which leads us to consider the

product of suitable conditional probabilities. The next lemma provides a lower bound

for the factors in this product.

Lemma 4.3.6. For all n large enough, we have

P

(
Hk,i

∣∣∣∣∣ H+
k−1 ∩ {|Sk| = `} ∩

i−1⋂
j=1

Hk,j

)
≥ γ

2
,

for all ` ≤ ξk and i ≤ ` such that the conditional probability above is well-defined.

The idea of the proof of this lemma is that when a next component, (Sk)i is cho-

sen, it is either a “distinguished” server, in the set Rk,i, or else it is a server chosen

uniformly outside the set Rk,i (cf. Proposition 4.3.1), in which case it has a substan-

120

tial probability of being a busy server, in the set B. Although the intuition is clear,

the formal argument is rather tedious and is deferred to Subsection 4.4.2.

Applying Lemma 4.3.6 to Equation (4.17), and using the fact that P
(
H−k
)
≥ α−k >

0, we obtain

P(Hk) ≥
∑
`

P
(
H+
k−1 ∩ {|Sk| = `}

) (γ
2

)`
≥ P

(
H+
k−1 ∩ {|Sk| ≤ ξk}

) (γ
2

)ξk
,

= P
(
H−k
) (γ

2

)ξk
≥ α−k

(γ
2

)ξk
, αk > 0,

for all n large enough.

Lemma 4.3.7. Suppose that P(Hk) ≥ αk. Then, there exist a constant α+
k > 0, such

that for all n large enough, we have P(H+
k) ≥ α+

k .

The proof is similar to the proof of Proposition 4.3.5 but with ξk = 1, and it is

omitted. Intuitively, choosing the destination of a job has the same statistical prop-

erties as choosing one more server to sample, which brings us back to the setting of

Proposition 4.3.5.

This concludes the induction step. It follows that there exists a constant α+
c+1 > 0,

which is independent of n, and such that P(H+
c+1) ≥ α+

c+1.

4.3.4 Upper bound on the number of useful distinguished servers

Let us provide some intuition on what comes next. The dispatcher initially may treat

in a non-typical manner the servers in an initial set of at most c distinguished servers.

As servers get sampled, the dispatcher acquires and possibly stores information about

other servers. Ultimately, at the time of the (c+1)-st arrival, the dispatcher may have

acquired information and therefore treat in a special manner (i.e., asymmetrically)

121

the servers in the set

R ,
c+1⋃
k=1

(Rk ∪R′k) , (4.18)

Recall that, for k = 1, . . . , c+ 1, we have

Rk =

|Sk|⋃
i=1

Rk,i, (4.19)

where each of the sets in the union has cardinality at most c, by Proposition 4.3.1.

Furthermore, for k = 1, . . . , c+1, the cardinality of R′k is also at most c, by Proposition

4.3.2. It follows that ∣∣R∣∣ ≤ c
c+1∑
k=1

(
1 + |Sk|

)
. (4.20)

If we are to rely solely on this upper bound, the size of R can be larger than c + 1,

and it is possible in principle that the knowledge of so many “distinguished” servers

(in the set R) is enough for the dispatcher to identify c + 1 idle servers to which

to route the first c + 1 jobs. On the other hand, under the event H+
c+1, all new

information comes from servers that are “busy” (in the set B), and hence cannot be

useful for the dispatching decisions. The next proposition states that for every sample

path ω ∈ H+
c+1, the set of idle (and therefore, potentially useful) servers on which

information is available, namely, the set R\B, has cardinality of at most c.

Proposition 4.3.8. The event H+
c+1 implies the event

∣∣R\B∣∣ ≤ c.

Proof. Let us fix a realization ω ∈ H+
c+1. We will upper bound the number of distinct

images of the set R\B under permutations of the set Nn of servers, which will lead

to an upper bound on the cardinality of the set itself. In order to simplify notation,

we will suppress the notational dependence on ω of all random variables for the rest

of this proof.

We introduce a subset of the set of all possible permutations of Nn, with this

subset being rich enough to lead to the desired bound. Towards this goal, we define

122

the set

F ,
c+1⋃
k=1

|Sk|⋃
i=1

[{
(Sk)i

}
\Rk,i

]
∪
[
{Dk}\

(
R′k ∪ Ssetk

)] . (4.21)

This is the set of servers that were sampled, or that were chosen as the destination

for a job, which were not in the distinguished sets Rk,i, or R′k ∪ Ssetk , respectively.

Using our assumption ω ∈ H+
c+1 and the definition of H+

c+1, we have

c+1⋃
k=1

|Sk|⋃
i=1

{
(Sk)i

}
\Rk,i ⊂ B, and

c+1⋃
k=1

{Dk}\
(
R′k ∪ Ssetk

)
⊂ B.

As a result, we have F ⊂ B, and thus

(
R\B

)
∩ F = ∅. (4.22)

Let Σ be the set of permutations σ of the server set Nn that:

(i) preserve the ordering of R\B in the sense defined in Section 2.1,

(ii) fix the set
(
R ∩B

)
∪ F , and

(iii) satisfy σ
(
R\B

)
∩
(
R\B

)
= ∅.

Consider two permutations σ, τ ∈ Σ such that σ
(
R\B

)
= τ

(
R\B

)
. Then, the fact

that σ and τ both preserve the order of R\B implies that σ(i) = τ(i), for all i ∈ R\B.

Lemma 4.3.9. Let σ, τ ∈ Σ, and let σM and τM , respectively, be associated permuta-

tions of the memory states as specified in Assumption 4.1.1 (Symmetry). Let m(0) be

the initial memory state, at time 0. If σM
(
m(0)

)
= τM

(
m(0)

)
, then σ

(
R
)

= τ
(
R
)
.

Loosely speaking, Lemma 4.3.9 asserts that for the given sample path, permuta-

tions σ, τ in Σ that lead to different sets R of distinguished servers must also lead

(through σM and τM) to different initial memory states. The proof is an elementary

consequence of our symmetry assumption on the underlying dynamics. However, it

is tedious and is deferred to Subsection 4.4.3.

123

By Lemma 4.3.9, and for σ ∈ Σ, distinct images σ(R) must correspond to distinct

memory states σM(m(0)). Since the number of different memory states is upper

bounded by nc, this implies that

∣∣∣{σ(R) : σ ∈ Σ
}∣∣∣ ≤ nc.

Furthermore, since every σ ∈ Σ fixes the set R ∩B, we have

∣∣∣{σ(R\B) : σ ∈ Σ
}∣∣∣ =

∣∣∣{σ(R) : σ ∈ Σ
}∣∣∣ ≤ nc. (4.23)

Recall now that the only restrictions on the image σ
(
R\B

)
under permutations

in σ ∈ Σ is that the set
(
R ∩ B

)
∪ F is fixed, and that σ

(
R\B

)
∩
(
R\B

)
= ∅. This

implies that σ
(
R\B

)
can be any set of the same cardinality within

(
R ∪ F

)c. It

follows that ∣∣∣{σ(R\B) : σ ∈ Σ
}∣∣∣ ≥ (n− |R ∪ F ||R\B|

)
. (4.24)

Recall also that under the event H+
c+1 we must have

∣∣Sk∣∣ ≤ ξk, for k = 1, . . . , c + 1.

Thus
∣∣F ∣∣ ≤ ξ1 + · · ·+ ξc+1 + c+ 1 , f , and using Equation (4.20), |R| ≤ c(ξ1 + · · ·+

ξc+1) + c+ 1 , θ. Combining these two upper bounds, we obtain

(
n− |R ∪ F |
|R\B|

)
≥
(
n− (f + θ)

|R\B|

)
.

Combining this with equations (4.23) and (4.24), we obtain the inequality

nc ≥
(
n− (f + θ)

|R\B|

)
. (4.25)

Finally, using the bound
∣∣R∣∣ ≤ θ, and applying Lemma 4.4.1, we conclude that in

order for this equation to hold for all n large enough, we must have
∣∣R\B∣∣ ≤ c.

124

4.3.5 Completing the proof

We are now ready to complete the proof, by arguing that at least one of the first

c+ 1 arrivals must be sent to a server that is either known to be busy or to a server

on which no information is available, and therefore has positive probability of being

busy.

Recall that for any fixed sample path in H+
c+1, we have (cf. Equation (4.6))

{
D1, . . . , Dc+1

}
⊂ B ∪

c+1⋃
k=1

(
Ssetk ∪R′k

)
.

Furthermore the event H+
c+1 implies that (Sk)i ∈ Rk,i ∪ B, for i = 1, . . . , |Sk| and

k = 1, . . . , c+ 1. Therefore,

Ssetk ⊂
|Sk|⋃
i=1

Rk,i ∪B = Rk ∪B, (4.26)

for k = 1, . . . , c+ 1. It follows that

{
D1, . . . , Dc+1

}
⊂ B ∪

c+1⋃
k=1

(
Ssetk ∪R′k

)
(4.27)

⊂ B ∪
c+1⋃
k=1

(
Rk ∪R′k

)
(4.28)

= B ∪R. (4.29)

Moreover, Proposition 4.3.8 states that
∣∣R\B∣∣ ≤ c. Thus, either (a) there exists k

such that Dk ∈ B, or (b) Di ∈ R\B for i = 1, . . . , c + 1, and hence there exists a

pair k, l, with k < l, such that Dk = Dl. We will now show that in both cases, the

queueing delay is at least γ.

Let Lk be the queueing delay of the k-th arrival. Recall that for i ∈ B, we have

Qi,1(0) > 2γ. Then, for case (a), with Dk = i ∈ B we have

Lk =
(
Qi,1(0)− Tk

)+ ≥ 2γ − γ

n
≥ γ > 0.

125

On the other hand, for case (b), we have

Ll ≥
[
Wk − (Tl − Tk)

]+ ≥ 2γ −
(γ
n
− 0
)
≥ γ > 0.

In both cases, we have
c+1∑
j=1

Lj ≥ γ.

Since this is true for every sample path in H+
c+1, we obtain

E

[
c+1∑
j=1

Lj

∣∣∣∣∣ H+
c+1

]
≥ γ. (4.30)

Finally, recall that the process (Q(t),M(t), Z(t))t≥0 is stationary, with invariant

probability measure πn. Then, setting t = γ/n in Equation (4.3), we obtain

E0
πn [L0] =

1

λγ
E

An(
γ
n)∑

j=1

Lj


≥ 1

λγ
E

An(
γ
n)∑

j=1

Lj

∣∣∣∣∣∣∣ H+
c+1

P
(
H+
c+1

)

≥ 1

λγ
E

[
c+1∑
j=1

Lj

∣∣∣∣∣ H+
c+1

]
P
(
H+
c+1

)
,

where the last inequality comes from the fact that H+
c+1 ⊂

{
An(γ/n) ≥ c + 1

}
.

Combining this with Equation (4.30) and the fact that P
(
H+
c+1

)
≥ α+

c+1 > 0, we

obtain

E0
πn [L0] ≥

α+
c+1

λ
> 0.

As the constant in the lower bound does not depend on n, this completes the proof

of the theorem.

126

4.4 Additional proofs

4.4.1 A combinatorial inequality

We record here an elementary fact.

Lemma 4.4.1. Let us fix positive integer constants a and c. Suppose that b satisfies

(
n− a
b

)
≤ nc. (4.31)

As long as n is large enough, we must have b ≤ c or b ≥ n− a− c.

Proof. Suppose that b = c+1. The quantity
(
n−a
c+1

)
is a polynomial in n of degree c+1

and therefore, when n is large, (4.31) cannot hold. In the range c+1 ≤ b ≤ (n−a)/2,

the quantity
(
n−a
b

)
increases with b, and hence (4.31) cannot hold either. Using

the symmetry of the binomial coefficient, a similar argument is used to exclude the

possibility that (n− a)/2 ≤ b ≤ n− a− c− 1.

4.4.2 Proof of Lemma 4.3.6

In order to simplify notation, we introduce the following. For any m ∈Mn, w ∈ R+,

and b ∈ P(Nn), we define the event

Am,w,b ,
{
M(T−k) = m,B = b,Wk = w

}
,

and we let Pm,w,b be the conditional probability measure

Pm,w,b(·) , P
(
· | Am,w,b

)
.

127

Let us fix some ` ≤ ξk and some i ≤ `. We have

P

(
Hk,i

∣∣∣∣∣ H+
k−1 ∩ {|Sk| = `} ∩

i−1⋂
j=1

Hk,j

)

=

∫
m,w,b

Pm,w,b

(
Hk,i

∣∣∣∣∣H+
k−1 ∩

{
|Sk| = `

}
∩

i−1⋂
j=1

Hk,j

)

· dP

(
Am,w,b

∣∣∣∣∣ H+
k−1 ∩ {|Sk| = `} ∩

i−1⋂
j=1

Hk,j

)
.

Moreover,

Pm,w,b

(
Hk,i

∣∣∣∣∣H+
k−1 ∩

{
|Sk| = `

}
∩

i−1⋂
j=1

Hk,j

)

=
∑
s

Pm,w,b

(
Hk,i

∣∣∣∣∣H+
k−1 ∩

{
|Sk| = `

}
∩

i−1⋂
j=1

{(Sk)j = sj}

)

· Pm,w,b

(
i−1⋂
j=1

{(Sk)j = sj}

∣∣∣∣∣H+
k−1 ∩

{
|Sk| = `

}
∩

i−1⋂
j=1

Hk,j

)
,

where the sum is over all (i−1)-dimensional vectors s whose components are distinct

indices of servers, and such that the conditional probabilities above are well-defined.

It is not hard to see that the desired result follows immediately once we establish

the following claim.

Claim 4.4.2. For all n large enough, we have

Pm,w,b

(
Hk,i

∣∣∣∣∣H+
k−1 ∩

{
|Sk| = `

}
∩

i−1⋂
j=1

{(Sk)j = sj}

)
≥ γ

2
, (4.32)

for all (m,w, b, s) such that the conditional probability above is well-defined.

Proof. Let us fix some (m,w, b, s). Since H+
k−1 implies |B| ≥ γn, we have

|b| ≥ γn. (4.33)

128

On the other hand, recall that

Hk,i = {(Sk)i ∈ Rk,i ∪B} ,

where

Sk = f1
(
M(T−k),Wk, Uk

)
,

and Rk,i is equal to the set

R
(
M(T−k),Wk,

(
(Sk)1, . . . , (Sk)i−1

)
, |Sk|

)
defined in Proposition 4.3.1, whenever the proposition applies. Otherwise, we have

Rk,j = ∅. In any case, Rk,j is a deterministic function of the same random variables.

Then, conditioned on M(T−k) = m, Wk = w, B = b,
(
(Sk)1, . . . , (Sk)j−1

)
= s, and

|Sk| = `, we have

Hk,i =
{(
f1
(
m,w,Uk

))
i
∈ rk,i ∪ b

}
,

where rk,i denotes the corresponding realization of the random set Rk,i. Note that the

only randomness left in this event comes from Uk, which is a randomization random

variable that is chosen independent from all the events prior to time T−k . It follows

that Hk,i is conditionally independent from H+
k−1, and thus

Pm,w,b

(
Hk,i

∣∣∣∣∣H+
k−1 ∩

{
|Sk| = `

}
∩

i−1⋂
j=1

{(Sk)j = sj}

)

= Pm,w,b

(
Hk,i

∣∣∣∣∣ {|Sk| = `
}
∩

i−1⋂
j=1

{(Sk)j = sj}

)
.

We now define the event Gk,s,i,` to be

Gk,s,i,` ,
{
|Sk| = `

}
∩

i−1⋂
j=1

{(Sk)j = sj}.

We are interested in bounding Pm,w,b (Hk,i | Gk,s,i,`), which we decompose into two

129

terms:

Pm,w,b
(
Hk,i

∣∣Gk,s,i,`

)
= Pm,w,b

(
(Sk)i ∈ rk,i ∪ b

∣∣Gk,s,i,`

)
= Pm,w,b

(
(Sk)i ∈ rk,i

∣∣Gk,s,i,`

)
+ Pm,w,b

(
(Sk)i ∈ b\rk,i

∣∣Gk,s,i,`

)
. (4.34)

Since the conditional probability measure Pm,w,b(· | Gk,s,i,`) is well-defined, and since

` ≤ ξk and ξl ∈ o(n) for all n large enough, Proposition 4.3.1 applies and yields

Pm,w,b
(
(Sk)i = s

∣∣Gk,s,i,`

)
= Pm,w,b

(
(Sk)i = s′

∣∣Gk,s,i,`

)
, (4.35)

for all s, s′ /∈ rk,i ∪ {s1, . . . , si−1}. As a result,

Pm,w,b
(
(Sk)i ∈ b\rk,i

∣∣Gk,s,i,`

)
≥ Pm,w,b

(
(Sk)i ∈ b\(rk,i ∪ {s1, . . . , si−1})

∣∣Gk,s,i,`

)
=
|b\(rk,i ∪ {s1, . . . , si−1})|
n− |rk,i ∪ {s1, . . . , si−1}|

Pm,w,b
(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1}

∣∣Gk,s,i,`

)
.

Moreover, using the facts that |b| ≥ γn (Equation (4.33)), |rk,i| ≤ c (Proposition

4.3.1), and i ≤ `, we obtain

|b\(rk,i ∪ {s1, . . . , si−1})|
n− |rk,i ∪ {s1, . . . , si−1}|

· Pm,w,b
(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1}

∣∣Gk,s,i,`

)
≥ γn− c− `

n
· Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1}

∣∣Gk,s,i,`

)
≥ γ

2
· Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1}

∣∣Gk,s,i,`

)
,

when n is large enough. Finally, since the elements of the vector Sk are distinct,

Pm,w,b
(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1}

∣∣Gk,s,i,`

)
= Pm,w,b

(
(Sk)i /∈ rk,i

∣∣Gk,s,i,`

)
,

130

and therefore

Pm,w,b
(
(Sk)i ∈ b\rk,i

∣∣Gk,s,i,`

)
≥ γ

2
Pm,w,b

(
(Sk)i /∈ rk,i

∣∣Gk,s,i,`

)
.

We now substitute into Equation (4.34), and obtain

Pm,w,b
(
Hk,i

∣∣Gk,s,i,`

)
≥ Pm,w,b

(
(Sk)i ∈ rk,i

∣∣Gk,s,i,`

)
+
γ

2
Pm,w,b

(
(Sk)i /∈ rk,i

∣∣Gk,s,i,`

)
≥ γ

2
,

for all n large enough.

4.4.3 Proof of Lemma 4.3.9

We first prove a claim about the set-valued functions R and R′ introduced in propo-

sitions 4.3.1 and 4.3.2, respectively.

Claim 4.4.3. For every m ∈ Mn, w ∈ R+, s ∈ Rn with |s| ∈ o(n), q ∈ Q|s|, and

for ` = |s| + 1, . . . , n, and for every permutation σ, we have R
(
σM(m), w, σ(s), `

)
=

σ
(
R(m,w, s, `)

)
, and R′

(
σM(m), w, σ(s),q

)
= σ

(
R′(m,w, s,q)

)
.

Proof. In order to simplify notation, we suppress the dependence on w of the functions

R, R′, and f1 throughout the proof of the lemma.

Let U be a uniform random variable over [0, 1]. For every m ∈Mn, we define the

random vector S(m) = f1(m,U). Recall that R
(
m, s, `

)
⊂ Nn\sset is the unique set

of minimal cardinality such that

P

S(m)|s|+1 = j

∣∣∣∣∣∣ {|S(m)| = `
}
∩
|s|⋂
i=1

{
S(m)i = si

}
= P

S
(
m
)
|s|+1

= j′

∣∣∣∣∣∣ {|S(m)| = `
}
∩
|s|⋂
i=1

{
S(m)i = si

} ,

for all j, j′ /∈ R(m, s, `)∪ sset. It is not hard to see, e.g., by replacing j, j′ in the above

131

equality by σ−1(j), σ−1(j′) /∈ R(m, s, `) ∪ sset, that σ
(
R
(
m, s, `

))
⊂ Nn\σ(sset) is the

unique set of minimal cardinality such that

P

σ(S(m)|s|+1

)
= j

∣∣∣∣∣∣ {|σ(S(m))| = `
}
∩
|s|⋂
i=1

{
σ(S(m)i) = σ(si)

}
= P

σ(S(m)|s|+1

)
= j′

∣∣∣∣∣∣ {|σ(S(m))| = `
}
∩
|s|⋂
i=1

{
σ(S(m)i) = σ(si)

} ,

for all j, j′ /∈ σ
(
R
(
m, s, `

))
∪ σ(sset). On the other hand, the symmetry assumption

states that

σ
(
S(m)

) d
= S

(
σM(m)

)
.

Combining the last two equalities we get that σ
(
R
(
m, s, `

))
⊂ Nn\σ(sset) is the

unique set of minimal cardinality such that

P

S
(
σM(m)

)
|s|+1

= j

∣∣∣∣∣∣ {∣∣S(σM(m)
)∣∣ = `

}
∩
|s|⋂
i=1

{
S
(
σM(m)

)
i

= σ(si)
}

= P

S
(
σM(m)

)
|s|+1

= j′

∣∣∣∣∣∣ {∣∣S(σM(m)
)∣∣ = `

}
∩
|s|⋂
i=1

{
S
(
σM(m)

)
i

= σ
(
si
)} ,

for all i, j /∈ σ
(
R
(
m, s, `

))
∪ σ(sset). However, this is exactly the definition of

R(σM(m), σ(s), `) (uniqueness is crucial at this point), so we have

σ
(
R
(
m, s, `

))
= R

(
σM(m), σ(s), `

)
.

The proof of R′
(
σM(m), σ(s),q

)
= σ

(
R′(m, s,q)

)
is analogous (this time making use

of the symmetry of the mapping f2) and is omitted.

We continue with the proof of Lemma 4.3.9. Under the event H+
c+1, we have

(S1)i ∈ R1,i∪B, for i = 1, . . . , |S1|. Applying Claim 4.4.3 and the fact m(t−1) = m(0),

132

which implies that σM
(
m(t−1)

)
= τM

(
m(t−1)

)
, we obtain

σ
(
R1,1

)
= σ

(
R
(
m(t−1), w1, ∅, |S1|

))
= R

(
σM
(
m(t−1)

)
, w1, ∅, |S1|

)
= R

(
τM
(
m(t−1)

)
, w1, ∅, |S1|

)
= τ
(
R
(
m(t−1), w1, ∅, |S1|

))
= τ
(
R1,1

)
. (4.36)

Now recall that σ and τ preserve the order of R\B and fix R∩B, so in particular

they preserve the order of R1,1\B ⊂ R\B and fix R1,1 ∩B ⊂ R ∩B. Combining this

with Equation (4.36), we must have σ(i) = τ(i), for all i ∈ R1,1. If (S1)1 ∈ R1,1, this

implies that

τ
(
(S1)1

)
= σ

(
(S1)1

)
. (4.37)

On the other hand, if (S1)1 does not belong to R1,1, then, from the definition of F ,

we must have (S1)1 ∈ F . Since σ and τ fix the set F , we conclude that Equation

(4.37) must hold in all cases.

Proceeding inductively, and using the same argument, we obtain

σ
(
R1,i

)
= τ
(
R1,i

)
, (4.38)

for i = 1, . . . , |S1|, and σ(i) = τ(i), for all i ∈ Sset1 . It follows that σ(S1) = τ(S1).

Combining this with the fact that σM
(
m(t−1)

)
= τM

(
m(t−1)

)
, and applying Claim

133

4.4.3 twice, we obtain

σ
(
R′1

)
= σ

(
R′
(
m(t−1), w1,S1,qS1(t

−
1)
))

= R′
(
σM
(
m(t−1)

)
, w1, σ

(
S1

)
,qS1(t

−
1)
)

= R′
(
τM
(
m(t−1)

)
, w1, τ

(
S1

)
,qS1(t

−
1)
)

= τ
(
R′
(
m(t−1), w1,S1,qS1(t

−
1)
))

= τ
(
R′1

)
. (4.39)

Now recall that σ and τ preserve the order of R\B and fix R∩B, so in particular

they preserve the order of R′1\B ⊂ R\B and fix R′1 ∩ B ⊂ R ∩ B. Combining this

with Equation (4.39), we must have σ(i) = τ(i), for all i ∈ R′1. Furthermore, recall

that we also have that σ(i) = τ(i), for all i ∈ Sset1 . If D1 ∈ R′1∪Sset1 , this implies that

σ
(
D1

)
= τ
(
D1

)
. (4.40)

On the other hand, if D1 does not belong to R′1 ∪Sset1 , then, from the definition of F ,

we must have D1 ∈ F . Since σ and τ fix the set F , we conclude that Equation (4.40)

must hold in all cases.

We now consider a memory update. Using the symmetry assumption, we have

σM
(
m(t1)

)
= σM

(
f3
(
m(t−1), w1,S1,qS1(t

−
1), D1

))
= f3

(
σM
(
m(t−1)

)
, w1, σ

(
S1

)
,qS1(t

−
1), σ

(
D1

))
.

Then, since σM(m(t−1)) = τM(m(t−1)), σ
(
S1

)
= τ
(
S1

)
, and τ

(
D1

)
= σ

(
D1

)
, we have

f3

(
σM
(
m(t−1)

)
, w1, σ

(
S1

)
,qS1(t

−
1), σ

(
D1

))
= f3

(
τM
(
m(t−1)

)
, w1, τ

(
S1

)
,qS1(t

−
1), τ

(
D1

))
.

134

Using the symmetry assumption once again, we obtain

f3

(
τM
(
m(t−1)

)
, w1, τ

(
S1

)
,qS1(t

−
1), τ

(
D1

))
= τM

(
f3
(
m(t−1), w1,S1,qS1(t

−
1), D1

))
= τM

(
m(t1)

)
.

We conclude that

σM
(
m(t1)

)
= τM

(
m(t1)

)
.

Finally, since the memory states at time t1 are still equal, we can proceed in-

ductively by applying the same argument to obtain that, for k = 2, . . . , c + 1, we

have σ
(
Rk,i

)
= τ

(
Rk,i

)
for i = 1, . . . , |Sk|, and σ

(
R′k
)

= τ
(
R′k
)
. It follows that

σ
(
R
)

= τ
(
R
)
.

4.5 Conclusions and future work

In this chapter, we showed that when we have a limited amount of memory and

a modest budget of messages per unit of time, and under a symmetry assumption,

all dispatching policies result in queueing delay that is uniformly bounded away from

zero. In particular, this implies that the queueing delay does not vanish as the system

size increases.

The main result of this chapter complements those of Chapter 3, in which we

showed that if we have a little more of either resource, i.e., if the number of memory

bits or the message rate grows faster with n, then there exists a symmetric policy that

drives the queueing delay to zero as n → ∞. Consequently, we now have necessary

and sufficient conditions on the amount of resources available to a central dispatcher,

in order to achieve a vanishing queueing delay as the system size increases.

There are several interesting directions for future research. For example:

(i) All the policies in the literature that achieve a vanishing queueing delay need

a message rate at least equal to the arrival rate λn. We conjecture that this

is not a necessary condition for a policy to have a vanishing queueing delay, as

135

long as it has access to the incoming job sizes and the memory is sufficiently

large.

(ii) Although the message rate is only constrained through its time average, the

memory has a hard bound on its size that always has to be satisfied. It would

be interesting to explore whether we obtain the same results by constraining

the memory size only through its average.

(iii) In light of the symmetry assumption in Theorem 4.1.1, an immediate open

question is whether the result still holds without this assumption. Our proof

relies heavily on symmetry and is hard to generalize. However, perhaps (non-

symmetric) policies that use the memory to store the beginning and the end

of streaks of idle servers could achieve a vanishing queueing delay in the low

memory and low message rate regime where symmetric policies cannot do it.

136

Chapter 5

Stability vs resources tradeoff in

heterogeneous systems

While in chapters 3 and 4 we focused on the tradeoff between the resources (local

memory and message rate) and the expected queueing delay of a typical job in systems

with homogeneous servers, in this chapter we focus on systems where servers have

heterogeneous service rates, and study the tradeoffs between the stability region of

policies and the resources utilized by them.

More concretely, we start by introducing a simple dispatching policy that has the

largest capacity region possible while requiring a memory of size (in bits) logarith-

mic on the number of servers and a positive (but arbitrarily small) message rate.

This establishes sufficient conditions on the amount of resources that are required to

implement policies with the largest capacity region.

In order to establish necessary conditions on the amount of resources with the

same goal in mind, we introduce a unified framework for dispatching policies (slightly

more general than the one introduced in Chapter 4). Then, we leverage the same

combinatorial approach developed in Chapter 4 to show that all policies with a mem-

ory size (in bits) that is sublogarithmic in the number of servers and with an average

message rate that is proportional to the arrival rate have a reduced stability region.

The rest of the chapter is organized as follows. The model and the main results

137

are presented in Section 5.1. In sections 5.2 and 5.3 we provide the proofs of our main

results. Finally, in Section 5.4 we present our conclusions and suggestions for future

work.

5.1 Model and main results

In this section we present the specific modeling assumptions, the performance metric

of interest, and our main results. In Subsection 5.1.1 we describe the model and

our assumptions. In Subsection 5.1.2 we introduce a simple dispatching policy and

show that it is always stable. In Subsection 5.1.3 we introduce a unified framework

that defines a slightly broader set of dispatching policies than the one presented in

Chapter 4. In Subsection 5.1.4 we present our negative result on the instability of

resource constrained policies within this set of policies. Finally, in Subsection 5.1.5

we combine the results in this chapter to better understand the tradeoff between

resources and stability.

5.1.1 Modeling assumptions and performance metric

We now introduce a refinement of the modeling assumptions for the basic model

introduced in Section 2.2. First, throughout this chapter we assume that, for all

i = 1, . . . , n, the i-th server has constant service rate µi > 0. In order to maintain

the same total processing power as in the homogeneous case of chapters 3 and 4, we

only allow server processing rates in the set

Σn ,

{
µ ∈ (0,∞)n :

n∑
i=1

µi = n

}
. (5.1)

On the other hand, jobs arrive to the system as a single renewal process of rate

λn (for some fixed λ ∈ (0, 1)), and are i.i.d., independent from the arrival process,

and have a general distribution with unit mean. Finally, the central dispatcher has

to route each incoming job to a queue immediately upon arrival (i.e., jobs cannot be

queued at the dispatcher).

138

As in chapters 3 and 4, the dispatcher has limited information on the state of

the queues and on the rate of the servers; it can only rely on a limited amount of

local memory and on messages that provide partial information about the state and

parameters of the system. These messages (which are assumed to be instantaneous)

can be sent from a server to the dispatcher at any time, or from the dispatcher to a

server (in the form of queries) at the time of an arrival or at the time of a spontaneous

message. Messages from a server can only contain information about the state of its

own queue (number of remaining jobs and the remaining workload of each one) and

about its processing rate. Within this context, a system designer has the freedom

to choose a messaging policy, as well as the rules for updating the memory and for

selecting the destination of an incoming job.

Regarding the performance metric, our focus is on the stability region of a

policy under the arrival rate λ, i.e., the largest subset of server rates Γn(λ) ⊂ Σn

such that the policy is stable for all µ ∈ Γn(λ). We will formalize this definition in

Subsection 5.1.4.

5.1.2 Universally stable policy

In this subsection we propose a simple dispatching policy with the largest possible

stability region (i.e., with stability region equal to Σn, for all λ ∈ (0, 1)).

Policy description

For any fixed value of n, the policy that we study operates as follows.

a) Memory: The dispatcher maintains a register with the ID of a single server.

b) Dispatching rule: Whenever a new job arrives, it is sent to the server whose

ID is stored in memory (the server ID in memory does not change at this point).

c) Spontaneous messages: Each server sends messages to the dispatcher as an

independent Poisson process of rate αn > 0, informing the dispatcher of its

139

queue length (i.e., of the number of job in its queue or in service). When a

message from a server arrives to the dispatcher, the dispatcher stores the ID of

this server only if the sender’s queue is shorter than the queue of the server that

is currently stored in memory. In order to make this comparison, the length of

the queue of the currently stored server is obtained by sending a query to it.

Remark 5.1.1. This policy requires only dlog2(n)e bits of memory, and an arbitrarily

small (but positive) average message rate of 3αnn.

Main result

Note that when the arrival process is Poisson and the service times are exponential, the

behavior of the system under this policy can be modeled as a continuous-time Markov

chain
(
Q(·), I(·)

)
, where Q(·) =

(
Q1(·), . . . ,Qn(·)

)
is the queue lengths vector, and

I(·) is the ID of the server stored in memory. In this setting, the stability of the

policy is established with the following result.

Theorem 5.1.1. If the arrival process is Poisson, and the job sizes are exponential,

then the stability region of the policy described above is Σn, for any λ ∈ (0, 1).

The proof is given in Section 5.2.

This result states that, at least in the Markovian case, the stability region of

our proposed policy is the whole set of admissible rates Σn. Moreover, it implies that

dlog2(n)e bits of memory and an average message rate of 3αnn (which can be arbitrar-

ily small) are sufficient for a policy to be always stable. This is much more economical

than the most efficient always stable policy in the literature (the Persistent-Idle policy

[5], reviewed in Section 4.2), which requires a memory of size (in bits) of order n, and

a message rate also of order n.

Remark 5.1.2. Since the proposed policy requires an arbitrarily small message rate,

this policy is most useful for applications where a large stability region and a small

communication overhead are preferred. Furthermore, since its operation does not

140

depend explicitly on the rates of the servers, it would continue to work even if the

service rates changed slowly over time, which makes it robust.

5.1.3 Unified framework for dispatching policies

In this subsection we present a unified framework that describes memory-based dis-

patching policies in systems with heterogeneous servers, which slightly generalizes the

one introduced in Chapter 4. As in Chapter 4, let cn be the number of memory bits

available to the dispatcher. We define the corresponding set of memory states to be

Mn , {1, . . . , 2cn}. Furthermore, we define the set of possible states at a server as

the set of nonnegative sequences Q , RZ+

+ , where a sequence specifies the remaining

workload of each job in that queue, including the one that is being served. (In par-

ticular, an idle server is represented by the zero sequence.) As long as a queue has

a finite number of jobs, the queue state is a sequence that has only a finite number

of non-zero entries. The reason that we include the workload of the jobs in the state

is that we wish to allow for a broad class of policies, that can take into account the

remaining workload in the queues. In particular, we allow for information-rich mes-

sages that describe the full workload sequence at the server that sends the message.

We are interested in the process

Q(·) =
(
Q1(·), . . . ,Qn(·)

)
=
((

Q1,j(·)
)∞
j=1
, . . . ,

(
Qn,j(·)

)∞
j=1

)
,

which takes values in the set Qn, and describes the evolution of the workload of each

job in each queue. We are also interested in the process M(·) that describes the

evolution of the memory state, and in the process Z(·) that describes the remaining

time until the next arrival of a job.

Fundamental processes and initial conditions

The processes of interest will be driven by the following common fundamental pro-

cesses:

141

1. Arrival process: A delayed renewal counting process An(·) with rate λn, and

event times {Tk}∞k=1, defined on a probability space (ΩA,AA,PA).

2. Spontaneous messages process: A Poisson counting process Rn(·) with rate

βn, and event times {T sk}∞k=1, defined on a probability space (ΩR,AR,PR).

3. Job sizes: A sequence of i.i.d. random variables {Wk}∞k=1 with mean one,

defined on a probability space (ΩW ,AW ,PW).

4. Randomization variables: Five independent and individually i.i.d. sequences

of random variables {Uk}∞k=1, {Vk}∞k=1, {Xk}∞k=1, {Yk}∞k=1, and {Jk}∞k=1, uniform

on [0, 1], defined on a common probability space (ΩU ,AU ,PU).

5. Initial conditions: Random variables Q(0), M(0), and Z(0), defined on a

common probability space (Ω0,A0,P0).

The whole system will be defined on the associated product probability space

(
ΩA × ΩR × ΩW × ΩU × Ω0,AA ×AR ×AW ×AU ×A0,PA × PR × PW × PU × P0

)
,

to be denoted by (Ω,A,P). All of the randomness in the system originates from these

fundamental processes, and everything else is a deterministic function of them.

A construction of sample paths

We provide a construction of a Markov process (Q(·),M(·), Z(·)), taking values in the

setQn×Mn×R+. The memory processM(·) is piecewise constant, and can only jump

at the time of an event. All processes considered will have the càdlàg property (right-

continuous with left limits) either by assumption (e.g., the underlying fundamental

processes) or by construction.

There are three types of events: job arrivals, spontaneous messages, and service

completions. We now describe the sources of these events, and what happens when

they occur.

142

Job arrivals: At the time of the k-th event of the arrival process An, which occurs at

time Tk and involves a job with sizeWk, the following transitions happen sequentially

but instantaneously:

1. First, the dispatcher chooses a vector of distinct servers Sk, from which it solicits

information about their state, according to

Sk = f1

(
M
(
T−k
)
,Wk, Uk

)
,

where f1 : Mn × R+ × [0, 1] → Rn is a measurable function defined by the

policy.

2. Then, messages are sent to the servers in the vector Sk, and the servers respond

with messages containing their queue states and their service rates; thus, the

information received by the dispatcher are the vectorsQSk and µSk . This results

in 2|Sk| messages exchanged. Using this information, the destination of the

incoming job is chosen to be

Dk = f2

(
M
(
T−k
)
,Wk,Sk,QSk

(
T−k
)
, µSk , Vk

)
,

where f2 :Mn×R+×Rn×
(
∪ni=0Qi×Ri

+

)
×[0, 1]→ Nn is a measurable function

defined by the policy. Note that the destination of a job not only depends on

the current memory state, the job size, the vector of queried servers, and the

state of their queues, but also on the rates of the queried servers.

3. Finally, the memory state is updated according to

M(Tk) = f3

(
M
(
T−k
)
,Wk,Sk,QSk

(
T−k
)
, µSk , Dk

)
,

where f3 : Mn × R+ × Rn ×
(
∪nj=0 Qj × Rj

+

)
× Nn → Mn is a measurable

function defined by the policy. Note that the new memory state is obtained

using the same information as for selecting the destination, plus the destination

of the job, including the rates of the queried servers.

143

Spontaneous messages: At the time of the k-th event of the spontaneous message

process Rn, which occurs at time T sk , the i-th server sends a spontaneous message to

the dispatcher if and only if

g1

(
Q
(
T sk
)
, µ,Xk

)
= i,

where g1 : Qn × Rn
+ × [0, 1] → {0} ∪ Nn is a measurable function defined by the

policy. On the other hand, no message is sent when g1
(
Q(T sk), µ,Xk

)
= 0. Note that

the dependence of g1 on Q and µ allows the message rate at each server to depend

on all servers’ current workloads, and on their rates. This allows for policies that

let servers with higher service rates send messages at a higher rate than servers with

slower service rates.

When a spontaneous message from server i arrives to the dispatcher, the following

transitions happen sequentially but instantaneously:

1. First, the dispatcher chooses a vector of distinct servers Ssk, from which it solicits

information about their state, according to

Ssk = g2

(
M
(
T−k
)
, i,Qi

(
T sk
)
, µi, Yk

)
,

where g2 :Mn ×Nn ×Q× R+ × [0, 1]→ Rn is a measurable function defined

by the policy. Note that the set of servers that are sampled not only depends

on the current memory state but also on the index, queue state, and rate of the

server that sent the message.

2. Then, messages are sent to the servers in the vector Ssk, and the servers respond

with messages containing their queue states and their service rates; thus, the

information received by the dispatcher are the vectorsQSsk
and µSsk

. This results

in 2|Ssk| messages exchanged. Using this information, the memory is updated

to the new memory state

M(T sk) = g3

(
M
(
T sk
−), i,Qi

(
T sk
)
, µi,S

s
k,QSsk

(
T sk
)
, µSsk

)
,

144

where g3 :Mn×Nn×Q×R+×Rn×
(
∪nj=0Qj ×Rj

+

)
→Mn is a measurable

function defined by the policy.

Service completions: Let {T dk (i)}∞k=1 be the sequence of departure times at the i-th

server. At those times, the i-th server sends a message to the dispatcher if and only

if

h1

(
Qi

(
T dk (i)

)
, µi, Jk

)
= 1,

where h1 : Q × R+ × [0, 1] → {0, 1} is a measurable function defined by the policy.

In that case, the memory is updated to the new memory state

M
(
T dk (i)

)
= h2

(
M
(
T dk (i)

−)
, i,Qi

(
T dk (i)

)
, µi

)
,

where h2 :Mn×Nn×Q×R+ →Mn is a measurable function defined by the policy.

On the other hand, no message is sent when h1
(
Qi(T

d
k (i)), µi, Jk

)
= 0.

Remark 5.1.3. Note that this framework generalizes the one in Chapter 4, not only

by taking into account the rates of the servers to make decisions, but also by allowing

the dispatcher to sample servers whenever a spontaneous message arrives.

We now introduce a symmetry assumption on the policies, which is slightly weaker

than the one introduced in Chapter 4.

Assumption 5.1.1. (Weakly symmetric policies.) We assume that the dispatching

policy is weakly symmetric, in the following sense. For any given permutation of the

servers σ, there exists a corresponding (not necessarily unique) permutation σM of

the memory statesMn that satisfies all of the following properties:

1. For every m ∈Mn and w ∈ R+, and if U is a uniform random variable on [0, 1],

then

σ
(
f1(m,w,U)

)
d
= f1

(
σM(m), w, U

)
,

where d
= stands for equality in distribution.

145

2. For every m ∈ Mn, w ∈ R+, s ∈ Rn, q ∈ Q|s|, and µs ∈ R|s|+ , and if V is a

uniform random variable on [0, 1], then

σ
(
f2
(
m,w, s,q, µs, V

)) d
= f2

(
σM(m), w, σ(s),q, µs, V

)
.

Remark 5.1.4. This assumption prevents any bias for or against a server, unless

it is encoded in the memory in a sufficiently detailed way so that the assumption

is satisfied. For example, in order to implement (in a weakly symmetric way) the

randomized dispatching policy where incoming jobs are sent to a server with a prob-

ability proportional to its processing rate, the dispatching probabilities have to be

encoded in memory in a sufficiently detailed way as to satisfy the second condition

in Assumption 5.1.1.

Remark 5.1.5. Note that Assumption 5.1.1 is weaker than the symmetry assump-

tion (Assumption 4.1.1) introduced in Chapter 4 because it does not impose any

restrictions on the function f3. Otherwise, the conditions imposed on f1 and f2 are

the same.

In particular, the weakening of the symmetry assumption allows for the imple-

mentation of policies using less memory. For example, the Round-Robin policy can

be implemented in a weakly symmetric way with only dlog2(n)e bits of memory (to

store the ID of the server that was the last destination of a job), while a symmetric

implementation of the same policy requires d(n+ 1) log2(n)e bits of memory (to also

keep a list of the IDs stored in memory).

Remark 5.1.6. Note that the policy introduced in Subsection 5.1.2 falls within the

class of policies defined by this universal framework, and is also weakly symmetric

(i.e., it satisfies Assumption 5.1.1).

146

5.1.4 Instability of resource constrained policies

Before stating the main result of this subsection, we first define the average message

rate between the dispatcher and the servers as

lim sup
t→∞

1

t

An(t)∑
k=1

2|Sk|+
Rn(t)∑
k=1

(
1 + 2|Ssk|

)
1Nn

(
g1
(
Q
(
T sk
)
, µ,Xk

))

+
n∑
i=1

∑
k:T dk (i)<t

1{1}

(
h1
(
Qi

(
T dk (i)

)
, µi, Yk

)) . (5.2)

Second, we provide a formal definition of our performance metric: the stability

region of a policy. For each n, given a policy and an arrival rate λ, the stability

region of the policy under the arrival rate λ is the largest subset of server rates

Γn(λ) ⊂ Σn such that the process
(
Q(·),M(·), Z(·)

)
is positive Harris recurrent for

all server rates in Γn(λ).

We are now ready to state the main result of this subsection. It asserts that within

the class of weakly symmetric policies that we consider, and under some upper bounds

on the memory size and the message rate, the stability region does not contain all

possible rates.

Theorem 5.1.2 (Instability of resource constrained policies). For any fixed n, and

for any constants λ ∈ (0, 1) and αn > 0, there exists a stability region Γn(λ, αn) (Σn

with the following property. Consider a weakly symmetric memory-based dispatch-

ing policy, i.e., that satisfies Assumption 5.1.1, with at most cn ∈ o
(

log(n)
)
bits

of memory, and with an average message rate (cf. Equation 5.2) upper bounded by

αn ∈ o
(
n2
)
almost surely. Then, for all n large enough, the stability region of the

policy under the arrival rate λ is contained in Γn(λ, αn).

The proof is given in Section 5.3.

147

5.1.5 Stability vs resources tradeoff

In this subsection, we summarize the results of this paper. First, recall that Theo-

rem 5.1.1 implies that with at least dlog2(n)e bits and an arbitrarily small message

rate, we can obtain a policy (which is weakly symmetric) that is always stable. Sec-

ond, Theorem 5.1.2 states that weakly symmetric policies with o
(

log(n)
)
bits of

memory and a message rate of order o
(
n2
)
cannot be always stable. Finally, note

that a policy which sends incoming jobs to each server with a probability proportional

to the server’s rate can be implemented by querying all servers at the time of each

arrival. This requires a message rate of order Θ
(
n2
)
, and it is always stable. The

three regimes are depicted in Figure 5-1.

Not always stable

Always stable

Total message rate

Bits of memory

o
(
n2
)

Ω
(
n2
)

Ω(log(n))

o(log(n))

Theorem 5.1.1

Theorem 5.1.2
Weighted random

policy

Figure 5-1: Resource requirements for stable policies.

5.2 Proof of Theorem 5.1.1

Let us fix some n, and some arbitrary vector of processing rates in Σn. Let µmin and

µmax be the smallest and largest processing rates in the chosen vector, respectively.

In particular, note that they are positive.

We will use the Foster-Lyapunov criterion to show that the continuous-time Markov

chain
(
Q(·), I(·)

)
is positive recurrent. First, note that this process has state space

148

Zn+ × {1, . . . , n}. Its transition rates, denoted by r·→ ·, are as follows, where we use

ej to denote the j-th unit vector in Zn+:

1. Since incoming jobs are sent to the queue whose ID is stored in memory, each

queue sees arrivals with rate:

r(q,i)→(q+ej ,i) = λn1{i}(j).

2. Transitions due to service completions occur according to the processing rate of

each server, and they do not affect the ID stored in memory:

r(q,i)→(q−ej ,i) = µj1[1,∞)

(
qj
)
.

3. Spontaneous messages are sent from each server to the dispatcher at a rate equal

to αn, but the ID stored in memory only changes if the sender of the message

has a shorter queue:

r(q,i)→(q,j) = αn1[0,qi−1]
(
qj
)
.

Note that the Markov process
(
Q(·), I(·)

)
on the state space Zn+×{1, . . . , n} is clearly

irreducible, with all states reachable from each other. To show positive recurrence,

we define the Lyapunov functions

Ξ1(q, i) ,
2µmax
αn

qi,

Ξ2(q, i) ,
n∑
j=1

q2
j ,

and

Ξ(q, i) , Ξ1(q, i) + Ξ2(q, i), (5.3)

and note that

∑
(q′,i′)6=(q,i)

Ξ(q′, i′)r(q,i)→(q′,i′) <∞, ∀ (q, i) ∈ Zn+ × {1, . . . , n}.

149

We also define the finite set

Fn ,

(q, i) ∈ Zn+ × {1, . . . , n} :
n∑
j=1

qj <
λn
(

1 + 2µmax
αn

)
+ n+ 1

2 min{1− λ, µmin}

 . (5.4)

For any state (q, i), we have

∑
(q′,i′)∈Zn+×{1,...,n}

[
Ξ1(q

′, i′)− Ξ1(q, i)
]
r(q,i)→(q′,i′)

= λn

(
2µmax
αn

)
−

n∑
j=1

2µmax
(
qi − qj

)+ − 2µmax
αn

µi1[1,∞)

(
qi
)

≤ λn

(
2µmax
αn

)
−

n∑
j=1

2µmax
(
qi − qj

)+
, (5.5)

and

∑
(q′,i′)∈Zn+×{1,...,n}

[
Ξ2(q

′, i′)− Ξ2(q, i)
]
r(q,i)→(q′,i′)

= λn (2qi + 1)−
n∑
j=1

µj
(
2qj − 1

)
1[1,∞)

(
qj
)

= λn (2qi + 1) +
n∑
j=1

µj1[1,∞)

(
qj
)
− 2

n∑
j=1

µjqj

≤ λn (2qi + 1) + n− 2
n∑
j=1

µjqj, (5.6)

where in the last inequality we used that the vector of server rates µ is in Σn, which

means that
n∑
j=1

µj = n. (5.7)

150

Combining equations (5.3), (5.5), and (5.6), for any state (q, i) /∈ Fn, we have

∑
(q′,i′)∈Zn+×{1,...,n}

[
Ξ(q′, i′)− Ξ(q, i)

]
r(q,i)→(q′,i′)

≤ λn

(
1 +

2µmax
αn

)
+ n+ 2λnqi − 2

n∑
j=1

µjqj + µmax(qi − qj)
+

≤ λn

(
1 +

2µmax
αn

)
+ n+ 2λnqi − 2

n∑
j=1

µj

[
qj + (qi − qj)

+
]

= λn

(
1 +

2µmax
αn

)
+ n+ 2λnqi − 2

n∑
j=1

µj max
{
qi, qj

}
= λn

(
1 +

2µmax
αn

)
+ n+ 2λnqi − 2

n∑
j=1

µj

[
qi + (qj − qi)

+
]

= λn

(
1 +

2µmax
αn

)
+ n+ 2λ)nqi − 2qi

n∑
j=1

µj − 2
n∑
j=1

µj(qj − qi)
+

(∗)
= λn

(
1 +

2µmax
αn

)
+ n− 2(1− λ)nqi − 2

n∑
j=1

µj(qj − qi)
+

≤ λn

(
1 +

2µmax
αn

)
+ n− 2(1− λ)nqi − 2µmin

n∑
j=1

(qj − qi)
+

≤ λn

(
1 +

2µmax
αn

)
+ n− 2 min{1− λ, µmin}

n∑
j=1

qi + (qj − qi)
+

= λn

(
1 +

2µmax
αn

)
+ n− 2 min{1− λ, µmin}

n∑
j=1

max
{
qi, qj

}
≤ λn

(
1 +

2µmax
αn

)
+ n− 2 min{1− λ, µmin}

n∑
j=1

qj

≤ −1,

where in equality (∗) we used Equation (5.7), and in the last inequality we used the

fact that (q, i) /∈ Fn and the definition of the finite set Fn (Equation (5.4)). Then,

the Foster-Lyapunov criterion [18] implies the positive recurrence of the Markov chain(
Q(·), I(·)

)
. Finally, since this is true for all server rates in Σn, we conclude that Σn

is the stability region of the policy.

151

5.3 Proof of Theorem 5.1.2

Fix λ, and consider a vector of server rates in Σn where bn/2c servers have rate

εn > 0. We will show that, for any given λ, and for all εn small enough, every

resource constrained dispatching policy that is weakly symmetric (i.e., that it satisfies

Assumption 5.1.1) overloads the slow servers.

The high-level outline of the proof is as follows. In Subsection 5.3.1 we show that

under our weak symmetry assumption, the constrain on the number of bits available

implies that the dispatcher treats all servers in a symmetric way, in some appropriate

sense.

Then, in Subsection 5.3.2 we combine the results obtained in Subsection 5.3.1 with

the bound on the average message rate to show that jobs are sent to slow servers (i.e.,

to servers with service rate εn) with a positive rate that is bounded away from zero.

This implies that the total workload of the servers diverges for all εn small enough,

thus completing the proof.

5.3.1 Local limitations of finite memory

We first note that if there are at most 2cn ∈ o(n) memory states, then the distribution

of the sampled servers is uniform.

Lemma 5.3.1. Let U be a uniform random variable over [0, 1]. For all n large

enough, for every memory state m ∈Mn, for every possible job size w ∈ R+, and for

any vector of servers s ∈ Rn with |s| ∈ o(n), we have

P
(
f1
(
m,w,U

)
= s
)

= P
(
f1
(
m,w,U

)
= σ(s)

)
,

for every permutation σ.

Proof. This is a corollary of Proposition 4.3.1.

Similarly, we argue that if there are at most 2cn ∈ o(n) memory states, then the

distribution of the destination of the incoming job is uniform (or zero) outside the

set of sampled servers.

152

Lemma 5.3.2. Let V be a uniform random variable over [0, 1]. For all n large enough,

for every memory state m ∈Mn, every vector of indices s ∈ Rn with |s| ∈ o(n), every

queue vector state q ∈ Q|s|, every rate vector µs ∈ R|s|+ , and every job size w ∈ R+,

we have

P
(
f2
(
m,w, s,q, µs, V

)
= j
)

= P
(
f2
(
m,w, s,q, µs, V

)
= k
)
,

for all j, k ∈ Nn\sset.

Proof. This is a corollary of Proposition 4.3.2.

5.3.2 High arrival rate to slow servers

For every t ≥ 0, let Wn(t) be the total remaining workload in the system at time t.

Lemma 5.3.3. For every λ, there exists a constant an(λ) > 0 such that

lim inf
t→∞

Wn(t)

t
≥
[
an(λ)− εn

]
n, a.s.,

for all n large enough.

Proof. Let An(t) be the counting process of arrivals with a job size of at least 1/2,

and let us define

p1/2 , P
(
W1 ≥

1

2

)
.

Since the total arrivals are a renewal process of rate λn, and the job sizes {Wk}∞k=1 are

i.i.d. with unit mean, then An(t) is a renewal counting process of rate λnp1/2 > 0. On

the other hand, since the average message rate (cf. Equation 5.2) is upper bounded

by αn almost surely, we have

lim sup
t→∞

1

t

An(t)∑
k=1

2|Sk| ≤ αn, a.s.

153

Combining this with the fact that

lim sup
t→∞

1

t

An(t)∑
k=1

2

(
αn

λnp1/2

)
1{
|Sk|> αn

λnp1/2

} ≤ lim sup
t→∞

1

t

An(t)∑
k=1

2|Sk|,

we obtain

lim sup
t→∞

1

t

An(t)∑
k=1

1{
|Sk|> αn

λnp1/2

} ≤ λnp1/2
2

.

This in turn implies that

lim inf
t→∞

1

t

An(t)∑
k=1

1{
|Sk|≤ αn

λnp1/2

} = lim inf
t→∞

1

t

An(t)∑
k=1

(
1− 1{

|Sk|> αn
λnp1/2

})

= lim inf
t→∞

An(t)

t
+ lim inf

t→∞

1

t

An(t)∑
k=1

−1{
|Sk|> αn

λnp1/2

}
= λnp1/2 − lim sup

t→∞

1

t

An(t)∑
k=1

1{
|Sk|> αn

λnp1/2

}
≥
λnp1/2

2
, a.s. (5.8)

Let Nεn ⊂ Nn be the set of servers with service rate εn, which was assumed to

have cardinality bn/2c. Then, Lemma 5.3.1 implies that

P
(
Ssetk ⊂ Nεn

∣∣∣∣ |Sk| ≤ αn
λnp1/2

)

≥

(bn/2c
bαn/λnp1/2c

)(
n

bαn/λnp1/2c

)
=
bn/2c

(
bn/2c − 1

)
· · ·
(
bn/2c − bαn/λnp1/2c+ 1

)
n
(
n− 1

)
· · ·
(
n− bαn/λnp1/2c+ 1

)
≥
(

1

3

) αn
λnp1/2

,

for all k ≥ 1, and for all n large enough, where in the last inequality we used that

154

αn ∈ o
(
n2
)
. Combining this with Equation (5.8), we obtain

lim inf
t→∞

1

t

An(t)∑
k=1

1{
|Sk|≤ αn

λnp1/2
,Ssetk ⊂Nεn

} ≥ λnp1/2
2

(
1

3

) αn
λnp1/2

, (5.9)

almost surely, for all n large enough. Furthermore, Lemma 5.3.2 implies that

P
(
Dk ∈ Nεn

∣∣∣∣Ssetk ⊂ Nεn , |Sk| ≤
αn

λnp1/2

)
≥ P

(
Dk ∈ Nεn

∣∣∣∣Dk /∈ Ssetk , Ssetk ⊂ Nεn , |Sk| ≤
αn

λnp1/2

)
=

⌊
n
2

⌋
− αn

λnp1/2

n

≥ 1

3
,

for all k ≥ 1, and for all n large enough, where in the last inequality we used that

αn ∈ o
(
n2
)
. Combining this with Equation (5.9), we obtain

lim inf
t→∞

1

t

An(t)∑
k=1

1{
Dk∈Nεn

} ≥ lim inf
t→∞

1

t

An(t)∑
k=1

1{
Dk∈Nεn , |Sk|≤

αn
λnp1/2

,Ssetk ⊂Nεn
}

≥
λnp1/2

6

(
1

3

) αn
λnp1/2

, a.s.,

for all n large enough. Note that this is a lower bound on the average rate of arrival

of jobs with size at least 1/2, to the servers with service rate εn. On the other hand,

those servers have a total processing rate of εnbn/2c units of workload per unit of

time. Then, since the total workload of the system is at least as much as the workload

of the servers with rate εn, we have

lim inf
t→∞

Wn(t)

t
≥ lim inf

t→∞

1

t

An(t)∑
k=1

1

2
1{

Dk∈Nεn
} − εn ⌊n

2

⌋
≥

[
λp1/2

6

(
1

3

) αn
λnp1/2

− εn

]
n,

for all n large enough.

155

Note that Lemma 5.3.3 implies that, for all n large enough, the total workload of

the system increases at least linearly with time when bn/2c of the servers have rate

εn < an(λ). Since this is true for every weakly symmetric policy with o(log(n)) bits

of memory, and with an average message rate upper bounded by αn ∈ o
(
n2
)
almost

surely, it follows that, for all n large enough, the stability region of all such policies

are contained in the subset of server rates Γn(λ, αn) (Σn that excludes the ones

where bn/2c of the servers have rate εn < an(λ).

5.4 Conclusions and future work

In this chapter, we proposed a simple but efficient dispatching policy that requires a

memory of size (in bits) logarithmic in the number of servers, and an arbitrarily small

message rate message rate, and showed that it has the largest possible stability region.

The key for the stability properties of this policy is the fact that it never chooses the

destination of a job by either random sampling of the servers (like JSQ(d)) or by

random dispatching of the job (like JIQ).

On the other hand, we showed that when we have a memory size (in bits) sublog-

arithmic in the number of servers, and a message rate sublinear in the square of the

arrival rate, all weakly symmetric dispatching policies have a sub-optimal stability

region. We leave as an open question whether a policy with a memory size (in bits)

sublogarithmic in the number of servers and a message rate superlinear in the arrival

rate can have the largest possible stability region.

There are several interesting directions for future research. For example:

(i) Policies can have the largest possible stability region using an arbitrarily small

message rate, as long as the size of the memory (in bits) is logarithmic in

the number of servers. However, their delay performance is not completely

understood. For example, the rate of increase of the expected delay as the

messaging rate decreases.

(ii) Although a memory of size (in bits) that is logarithmic in the number of servers

156

is necessary in order to have policies with the largest possible stability region

when the message rate is at most proportional to the arrival rate, we conjecture

that, if the average message rate is allowed to be superlinear in the arrival rate,

then there are dispatching policies that have the largest possible stability region,

even with no memory.

157

158

Chapter 6

Concluding remarks

This thesis is centered around the role of information in large-scale distributed service

systems. Our results demonstrate that with enough resources and the appropriate

dispatching policies, we can obtain the same asymptotic performance as in systems

with many more resources available.

Some of the open problems that concern specific models have been stated at the

end of the corresponding chapters. Thus, we now focus on higher level issues that

could provide interesting directions for future research.

Detailed performance metrics. The main performance metric used throughout

this thesis is the expected delay of a typical job, and for the most part we were

interested in whether the queueing delay of a typical job converges to zero or not, when

the system size increases. However, it provides no insight as to how fast it converges

to zero, which is especially relevant for moderately sized systems. Furthermore, while

the expectation of the delay is quite informative, it obscures other properties of the

delay that can be equally relevant. For example, in many applications the variance or

the tail of the delay might be more relevant than its expectation, especially if there

are deadlines or penalties incurred for large differences between delays of different

jobs (e.g., in video streaming).

Note that in Chapter 3 we proposed policies that drive the expected queueing

delay to zero, and characterized the minimum amount of resources required to do it.

159

However, the tail of the delay distribution seems to be exponential (worse than the

superexponential tails observed in policies such as JSQ(d)). Furthermore, we are not

taking into account the speed of convergence in the design or analysis of the policies.

We conjecture that the speed of convergence depends critically on the amount of

resources available, which would make it an interesting line of future work.

Abandonments in the queues. All jobs in this thesis were considered to have

infinite patience, in the sense that the jobs stay in the system until service completion.

However, this is not always the case in practice. For example, if there are people

waiting to receive service, they might leave the queue if they have to wait for too long.

Furthermore, in applications such as video streaming, the frames to be downloaded

have deadlines after which they become useless.

While in both applications mentioned above there is patience involved, job/customer

behavior can be quite different. For example, customers in a queue might be aware

of the length of the queue and of how fast the queue is moving, which could make

them abandon the queue sooner or later than with a fixed patience. Since the vast

literature on this subject assumes a fixed patience, there is an opportunity to explore

the different dynamics that arise from different patience models.

Hierarchical architectures. In this thesis we considered distributed service sys-

tems, where all servers operate in parallel and there is a single dispatcher that makes

all decisions. However, there are many applications where there are several dispatch-

ers and/or where there are sets of servers in parallel, all of which have to process the

jobs before they leave the system.

In this setting, we might still want to study the tradeoff between resources, stabil-

ity, and delay, or design appropriate replication policies. However, since the dynamics

introduced by the sequential nature of multi-stage systems seems to be significantly

different from those considered in this thesis, we suspect that one would need a differ-

ent set of analytical techniques and problem formulations in order to study the same

issues.

160

Bibliography

[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel random-
ized load balancing. Random Structures and Algorithms, 13(2):159–188, 1998.

[2] R. Aghajani and K. Ramanan. The hydrodynamic limit of a randomized load
balancing network. arXiv:1707.02005, 2017.

[3] N. Alon, E. Lubetzky, and O. Gurel-Gurevich. Choice-memory tradeoff in allo-
cations. In Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, 2009.

[4] S. Asmussen. Applied Probability and Queues. Springer, 2003.

[5] R. Atar, I. Keslassy, G. Mendelson, A. Orda, and S. Vargaftik. Persistent-Idle
Load-Distribution. Preprint, 2018.

[6] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM
Journal on Computing, 29(1):180–200, 1999.

[7] F. Baccelli and P. Brémaud. Elements of Queueing Theory. Springer, 2003.

[8] R. Badonnel and M. Burgess. Dynamic pull-based load balancing for autonomic
servers. In Proceedings of the Network Operations and Management Symposium
(NOMS), 2008.

[9] I. Benjamini and Y. Makarychev. Balanced allocations: memory performance
tradeoffs. The Annals of Applied Probability, 22(4):1642–1649, 2012.

[10] D. Bertsimas, D. Gamarnik, and J. N. Tsitsiklis. Performance of multiclass
Markovian queueing networks via piecewise linear Lyapunov functions. The An-
nals of Applied Probability, 11(4):1384–1428, 2002.

[11] P. Billingsley. Convergence of Probability Measures. Wiley, second edition, 1999.

[12] M. Bramson. State space collapse with application to heavy traffic limits for mul-
ticlass queueing networks. Queueing Systems: Theory and Applications, 30:89–
148, 1998.

[13] M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic independence of queues
under randomized load balancing. Queueing Systems, 71:247–292, 2012.

161

[14] M. Bramson, Y. Lu, and B. Prabhakar. Decay tails at equilibrium for FIFO join
the shortest queue networks. The Annals of Applied Probability, 23(5):1841–1878,
2013.

[15] D. Feitelson and M. A. Jette. Improved utilization and responsiveness with gang
scheduling. In Proceedings of the Job Scheduling Strategies for Parallel Processing
(IPPS), pages 238–261, 1997.

[16] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides.
Springer-Science, 1988.

[17] S. Foss and A. L. Stolyar. Large-scale Join-Idle-Queue system with general
service times. Journal of Applied Probability, 54(4):995–1007, 2017.

[18] F. G. Foster. On the stochastic matrices associated with certain queueing pro-
cesses. The Annals of Mathematical Statistics, 24:355–360, 1953.

[19] D. Gamarnik, J. N. Tsitsiklis, and M. Zubeldia. Delay, memory, and messaging
tradeoffs in distributed service systems. In Proceedings of the ACM SIGMET-
RICS Conference, 2016.

[20] D. Gamarnik, J. N. Tsitsiklis, and M. Zubeldia. Delay, memory, and messaging
tradeoffs in distributed service systems. Stochastic Systems, 8(1):45–74, 2018.

[21] D. Gamarnik, J. N. Tsitsiklis, and M. Zubeldia. A lower bound on the queueing
delay in resource constrained load balancing. Under revision in The Annals of
Applied Probability, 2019.

[22] V. Gupta and N. Walton. Load balancing in the non-degenerate slowdown
regime. Operations Research, 2019.

[23] B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis
with applications. Advances in Applied Probability, 14(3):502–525, 1982.

[24] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task as-
signment policy for a distributed server system. IEEE Journal of Parallel and
Distributed Computing, 59(2):204–228, 1999.

[25] T. Hellemans and B. Van Houdt. On the power-of-d-choices with least loaded
server selection. POMACS, 2(2), 2018.

[26] P. J. Hunt and T. G. Kurtz. Large loss networks. Stochastic Processes and their
Applications, 53(2):363–378, 1994.

[27] M. D. Kirszbraun. Uber die zusammenziehende und Lipschitzsche Transforma-
tionen. Fund. Math, 22:77–108, 1934.

[28] T. G. Kurtz. Approximation of Population Processes. Society for Industrial and
Applied Mathematics, 1981.

162

[29] C. Lenzen and R. Wattenhofer. Tight bounds for parallel randomized load bal-
alcing. Distributed Computing, pages 1–16, 2014.

[30] S. G. Lobanov and O. G. Smolyanov. Ordinary differential equations in locally
convex spaces. Uspekhi Mat. Nauk, 49:93–168, 1994.

[31] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg. Join-Idle-
Queue: A novel load balancing algorithm for dynamically scalable web services.
Performance Evaluation, 68(11):1056–1071, Nov. 2011.

[32] M. Mitzenmacher. Analyzing distributed Join-Idle-Queue: A fluid limit ap-
proach. In Proceedings of the Annual Allerton Conference on Communication,
Control, and Computing, 2016.

[33] M. Mitzenmacher, B. Prabhakar, and D. Shah. Load balancing with memory. In
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2002.

[34] M. D. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
PhD thesis, U.C. Berkeley, 1996.

[35] D. Mukherjee, S. Borst, J. van Leeuwaarden, and P. Whiting. Universality of
Power-of-d Load Balancing Schemes. In Proceedings of the Workshop on Math-
ematical performance Modeling and Analysis (MAMA), 2016.

[36] C. Nair, B. Prabhakar, and D. Shah. The randomness in randomized load bal-
ancing. In Proceedings of the Annual Allerton Conference on Communication
Control and Computing, pages 912–921, 2001.

[37] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.

[38] A. Shwartz and A. Weiss. Large Deviations for Performance Analysis: Queues,
Communications, and Computing. Chapman & Hall, 1995.

[39] G. D. Stamoulis and J. N. Tsitsiklis. Optimal distributed policies for choosing
among multiple servers. In Proceedings of the 30th Conference on Decision and
Control, pages 815–820, 1991.

[40] A. L. Stolyar. Pull-based load distribution in large-scale heterogeneous service
systems. Queueing Systems: Theory and Applications, 80(4):341–361, 2015.

[41] A. L. Stolyar. Pull-based load distribution among heterogeneous parallel servers:
the case of multiple routers. Queueing Systems: Theory and Applications, 85(2),
2017.

[42] J. N. Tsitsiklis and K. Xu. On the power of (even a little) resource pooling.
Stochastic Systems, 2:1–66, 2012.

163

[43] M. van der Boor, S. Borst, and J. van Leeuwaarden. Load balancing in large-
scale systems with multiple dispatchers. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM), 2017.

[44] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queueing system
with selection of the shortest of two queues: an asymptotic approach. Problems
of Information Transmission, 32(1):15–27, 1996.

[45] W. Winston. Optimality of the shortest line discipline. Applied Probability,
14:181–189, 1977.

[46] K. Xu and S.-Y. Yun. Reinforcement with fading memories. In Proceedings of
the ACM SIGMETRICS Conference, 2018.

[47] L. Ying, R. Srikant, and X. Kang. The power of slightly more than one sample in
randomized load balancing. In Proceedings of the IEEE Conference on Computer
Communications, 2015.

164

	Introduction
	Context
	Related literature
	Summary of main contributions
	Delay, memory, and messaging tradeoffs
	Stability vs resources tradeoff in heterogeneous systems

	Organization of the thesis

	Notation and models
	Notation
	General queueing model

	Efficient dispatching policies
	Model and main results
	Modeling assumptions and performance metric
	Policy description and high-level overview of the results
	Stochastic and fluid descriptions of the system
	Technical results
	Asymptotic queueing delay and phase transitions

	Proof of part of Theorem 3.1.1
	Uniqueness of solutions
	Existence, uniqueness, and characterization of an equilibrium
	Asymptotic stability of the equilibrium

	Proof of Theorem 3.1.2 and of the rest of Theorem 3.1.1
	Probability space and coupling
	Tightness of sample paths
	Derivatives of the fluid limits

	Proofs of Proposition 3.1.3 and Theorem 3.1.4
	Stochastic stability of the n-th system
	Convergence of the invariant distributions

	Conclusions and future work

	Universal delay lower bound for dispatching policies
	Model and main results
	Modeling assumptions and performance metric
	Unified framework for dispatching policies
	Delay lower bound for resource constrained policies
	Queueing delay vs resources tradeoff

	Literature review
	Memory, messages, and queueing delay

	Proof of Theorem 4.1.1
	Local limitations of finite memory
	A sequence of ``bad'' events
	Lower bound on the probability of ``bad'' events
	Upper bound on the number of useful distinguished servers
	Completing the proof

	Additional proofs
	A combinatorial inequality
	Proof of Lemma 4.3.6
	Proof of Lemma 4.3.9

	Conclusions and future work

	Stability vs resources tradeoff in heterogeneous systems
	Model and main results
	Modeling assumptions and performance metric
	Universally stable policy
	Unified framework for dispatching policies
	Instability of resource constrained policies
	Stability vs resources tradeoff

	Proof of Theorem 5.1.1
	Proof of Theorem 5.1.2
	Local limitations of finite memory
	High arrival rate to slow servers

	Conclusions and future work

	Concluding remarks

