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An Introductory Note: Unit Conventions

In writing this thesis, | have attempted to present all equations and results in the Gaussian
(cgs) unit system. There are two main exceptions to this. Section 3.1 is essentially
an engineering description of the equipment built for the experiments described in the
following chapters. Because of American equipment and machining standards, many of
the parts I obtained were machined to standard English sizes. It would have been very
awkward to convert to centimeters many of the dimensions involved, and so I have left
the entire equipment description in inches.

A more subtle violation of the cgs standard occurs in Chapters 4 and 5, where electrical
potential is generally measured in volts rather than statvolts, the cgs unit. Wherever the

difference presents a problem in calculations, a conversion is given as well.
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Chapter 1

The Versatile Toroidal Facility

The Versatile Toroidal Facility (VTF) at the MIT Plasma Fusion Center (PFC) is a
toroidal plasma chamber designed for fundamental plasma physics experiments. Its con-
struction began in 1988 with the acquisition of eighteen magnetic coils from the Oak
Ridge National Laboratory. An aluminum support structure and stainless steel vacuum
chamber were designed and partially constructed by a group of students in 1989 and
1990 under the supervision of Dr. Marcel Gaudreau. The vacuum chamber was built at
Atomic, Ltd., in Cambridge.! In recent years, the facility has been used as a low-density
plasma chamber. At present, it is being upgraded to achieve a higher plasma density by

injection of an electron beam.

1.1 VTF Vacuum Chamber

The chamber itself is a torus with a rectangular cross-section. It has an outer radius of

125.7 cm, an inner radius of 59.7 cm, and a height of 105.4 cm (see Figure 1-2), making

!Beals, D. F.: Vacuum System Construction and Analysis for a TOKAMAK Plasma Device, S. B,
Thesis, Department of Mechanical Engineering, MIT, Cambridge, Mass., 1991
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Figure 1-2: Diagram of the VTF vacuum chamber.

it slightly larger than Alcator C-MOD. The VTF chamber is equipped with 48 ports for
installation of diagnostic equipment and power injection. The ports on the upper and
lower faces of the chamber are only as deep as the chamber wall. The side openings
protrude outward as box ports, with a depth of 50.2 cm.

The chamber is evacuated by a turbo molecular pump system designed by Dexter
Beals, now a graduate student in electrical engineering at the VI'F group. The pumping

station is installed on one of the side ports. lon gauges read the pressure at various points

15




along the pumping line as well as in the chamber. When pumped down, the chamber
generally reaches a pressure between 5 x 1077 and 2 x 107 torr, depending on the levels

and outgassing rates of impurities in the chamber.

1.2 Plasma Configuration

The Oak Ridge magnets (“TF coils”) surround the vacuum chamber, setting up a toroidal
field. In addition, there are several current-carrying cables which surround the entire
chamber, setting up a weak vertical field. This magnetic configuration, consisteing of
a strong toroidal field and a weak vertical field, is known as a HELIMAK confinement
scheme.

A microwave source injects 3 kW of 2.45 GHz radiation into one of the side ports,
producing electron-cyclotron resonance heating (ECRH) in the plasma. For the experi-
ments described in this thesis, the microwaves are the only source of plasma heating. For
these experiments, the toroidal field By is set to 700 gauss. The vertical field B, can be
varied from 0 to 20 gauss, changing the confinement characteristics of the plasma. For
most of the experiments, the vertical field was set at 10 gauss.

Although both hydrogen and argon plasmas have been produced in the VTF, all
experiments described here were conducted on hydrogen plasmas. To run the machine,
the chamber was filled with hydrogen to a total pressure of around 2.5 x 107° torr, keeping
the partial pressures of impurities under 10%. For each shot, the magnet power is turned

on, followed three seconds later by the microwave power. After sustaining a plasma for

16



eight seconds, the power systems shut off.

The configuration produces a plasma with an electron temperature around 10 eV
and a density which varies spatially, but peaks at around 2 x 10'° cm™. The density
profile is toroidally symmetric. Along the radial axis, it is peaked, at a radius which
varies according to the vertical field. As B, increases from zero to 10 G, the density peak
becomes more pronounced and moves inward toward the center of the chamber. When
B, is increased to 20 G, the density peak becomes broader, but moves farther toward
the center of the chamber. The density has been measured across the chamber (at the
mid-plane) by sweeping a Langmuir probe during a shot. Figure 1-3 shows three density

profiles taken during shots with different magnetic field strengths.
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Figure 1-3: Midplane plasma density profiles for different vertical field strengths. Source:
J. C. Rost, S. C. Luckhardt, R. R. Parker, E. D. Zimmerman, Density and Potential
Fluctuation Measurements in a Toroidal ECRH Sustained Plasma, poster, APS Plasma
Physics Meeting, Seattle, November 1992
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Chapter 2

Background

2.1 Plasma Fluctuations.

Extensive theoretical and experimental work has been published which predicts condi-
tions for turbulence in Helimak and TOKAMAK edge plasmas, but little work has been
done as yet on HELIMAK plasmas of the type studied here. The main purpose of this
thesis is to characterize some aspects of turbulence and potential fluctuations in the
HELIMAK plasma.

From basic thermodynamics, we can see in a primitive way that some form of tur-
bulence is to be expected. The confinement of the plasma by the external magnetic
fields results in a density gradient in the plasma. This is a thermodynamically unstable
situation, and creates free energy which can drive turbulent fluctuations.

Fluctuations in the VTF plasma are primarily measureable in the directions perpen-
dicular to the magnetic field lines, which are primarily in the toroidal direction. The
plasma tend. to stream quickly along the field lines, causing any toroidal variation in

the characteristics of the plasma to occur over a long distance scale. There is much

19



less large-scale movement of mass across the field lines, so spatial variations are more
pronounced over distances significantly smaller than the size of the plasma chamber.
Measurements of radial potential fluctuations have been carried out on the VTF
plasma by J. C. Rost, a graduate student at the VTF group, and the author. The data
gathered indicated the presence of wave activity and turbulence in the radial direction
in the chamber. Radial fluctuations have a correlation length of approximately 7 cm at

most frequencies measured. '.

2.2 Individual particle behavior: Cyclotron motion and E x B drift.

This section describes some of the particle motions which are relevant to an understanding
of the HELIMAK plasma.

Plasma particles in constant electric and magnetic fields obey the basic electromag-
netic equation of motion:

mi:Q(E+§ x B) (2.1)

where all variables are in Gaussian (cgs) units.
The basic motion of a charged particle moving perpendicular to a uniformm magnetic
field, with zero electric field, is circular. The frequency w, of the oscillation, known as

the cyclotron frequency, is independent of the particle’s energy:

_lap

mc

(2.2)

We

1J. C. Rost, S. C. Luckhardt, R. R. Parker, E. D. Zimmerman, Density and Potential Fluctuation
Measurements in a Toroidal ECRH Plasma, Poster, APS Plasma Physics Meeting, Seattle, November
1992.
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The particle may also have a velocity parallel to the magnetic field, which is unaffected
by the magnetic field. Thus the most general path is a helix. The motion in the plane

perpendicular to B is a circle centered around a guiding center (Zg, g ). Setting
B = Bz
the perpendicular components of the particle’s position become

T — Ty =rgsinwt (2.3)

Y — Yge = *rg coswt (24)

where r¢ is the gyro radius of the orbit?,

_ ()i

rg = —zl’ (2.5)

wC
or, in terms of the particle’s kinetic energy T,

1
(o

We

TGe

(2.6)

Adding a constant electric field (for simplicity’s sake, in the z-z plane), the equation

of motion in the Z direction (the Z-component of Equation 2.1) becomes:

"=g& (2.7)

which is merely a constant acceleration. If, however, collisions are taken into account for
motion parallel to B, then the Z-direction motion becomes a steady drift (for sufficiently

small E,). This effect results in a non-zero electrical resistivity in the plasma.

2The + in Equation 2.4 results from the division of |Q| by Q in the derivation of the equation. Its
physical significance is that positive and negative particles orbit in opposite directions.

21



Perpendicular to B, the equations of motion must include a magnetic term:

5:9&i%g (2.8)
m

¥ = Fw (2.9)
These coupled differential equations can be uncoupled by taking another time derivative:

T = tw. = twe(Fwet) (2.10)

?=¥%i=%u%&i%m (2.11)

Using Equation 2.2, Equation 2.11 becomes:

. IQ|B Q 2.
=F———F 2.12
y :F me M x :F (:twcy) ( )
0, Ex )
Q=0 = § = w2 Ze+3) (213)
It is useful to make the substitution
E.
/ = __:Ect 2.14
y=y+4 (2.14)
and transform Equation 2.13 into
¥ = —wliy (2.15)

The equations of motion are now those for unperturbed cyclotron motion in z, ¥’. In other
words, the particle undergoes cyclotron gyration at w, about a guiding center drifting at
speed

E; |
Ve = ¥ (2.16)

22



We can generalize this result to coordinate systems where B does not lie along the 2

axis and E, # 0 by noting that, in the original coordinates,

E. |E x B|

= =5 (2.17)
and
(E x B)|ly (2.18)
Making these substitutions, we can restate Equation 2.16 as
Ve = éE x B (2.19)

which is independent of coordinate system.

There are several surprising aspects of this result. First it is not only independent
of @ and m, but also of the sign of ¢: Ions and electrons drift in the same direction at
the same speed. In a plasma, this motion manifests itself macroscopically as a flow of

neutral mass in the direction perpendicular to both E and B. The phenomenon is known

as E x B dnift.
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Chapter 3

Experimental Apparatus

The experiments described herein were conducted using an array of Langmuir probes
designed by the author during the summer of 1991, constructed between August 1991
and June 1992, and tested and installed in September 1992. As shown in Fig. 3-1, The
device consists of eight probes arranged in a linear array 8.53 cm long. Each probe is a
stainless steel wire 0.89 mm in diameter, with an exposed length of 6mm. The potential
of each probe relative to the grounded vacuum chamber was measured by sending the
signal through an RF filter to an isolation amplifier circuit. The amplifier output was
sent to a low-pass filter, the output of which was digitized by the VI'F's CAMAC data
acquisition system. The circuit and data acquisition system can handle four channels of
data simultaneously, digitizing at a 40 kHz data rate for 0.82 seconds. This permitted
measurement of the floating potential of the plasma at up to four different probes (and

hence four vertical positions) during a single shot.
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3.1 The VTF Probe Array

3.1.1 Internal Structure

The vertical probe array is designed around a “backbone,” a pipe of type 304 stainless
steel, part of which is shown as part A in Fig. 3-1. The pipe is 40.4 inches long, with an
outer diameter of 1” and a wall thickness of 0.125”. Coaxial cables which carry the probe
signals run through this pipe. In addition, the pipe serves as a cantilever to support the
probe array inside the vacuum chamber. Its back end is welded to the inside of a ring
with an inner diameter of 1” (to fit the pipe snugly) and an outer diameter of 1.37”. The
outside of the ring is welded to the inside of a double-sided high-vacuum flange with an
outer diameter of 2.75” (Part B in Fig. 3-1). Because both faces of the ring are under
vacuum, several ventilation holes were drilled through it to permit the rear of the system
to be pumped out. The ring was machined by Randolph West and Kevin Walsh, and
was welded by Christopher Shutts. All three are students at the VTF group. The pipe

was electro-polished at Arborway Metal Finishing, Inc., in Dorchester, Mass.

3.1.2 Probe Support Structure

The forward end of the pipe is cantilevered into the vacuum chamber. Its end is bolted
to two brackets (Fig. 3-2, part A) which hold a support bar in place. This first support
bar (Fig. 3-2, part B), a piece of stainless steel 1” x 1” x 51", holds the forward ends

of the signal cables. These lines are semi-rigid coaxial cables, with a core conductor of

copper, a stainless steel shield, and a Teflon dielectric. The outer diameter of the cable

25
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is 0.141". Each cable runs through a 0.145” hole in the support bar, and is held in place
by a set screw (tap size 5-40). This junction makes electrical contact with the shield,
keeping it grounded to the chamber wall. The support bar was machined by Randolph
West.

The first bar is bolted to threaded rods which extend past it, and are attached to a
second support bar (Fig. 3-2, part C), which holds the probes and their shields in place.
The second bar, diagrammed in Fig. 3-3, was machined to 0.001” tolerances (to keep the
probes parallel) by Peter Dandridge, Jr. at Atomic, Ltd., in Cambridge, Mass.

The stainless steel probe wires are soldered to the center conductor of the coax-
ial cables in the space between the two support bars. The connection was made with
vacuum-grade Welco #5 tin-silver solder. A ceramic (alumina) tube of inner diameter
0.047”, outer diameter 0.078” and length 22” surrounds each probe wire. It terminates
approximately 1” behind the back of the second support bar. Outside the spacer is a
stainless steel shield with an outer diameter of 0.12” and an inner diameter of 0.09”.
Its rear end is crimped, holding the ceramic spacer in place and preventing it from slid-
ing. This shield fits snugly in the narrow section of the second support bar, where it is
held in place by a set screw. This provides an electrical connection, keeping the shicd
grounded to the chamber wall. Outside the shield, the grounded metal and the plasma
are separated by another ceramic shroud. This tube has an outer diameter of 0.250”
and an inner diameter of 0.175”, with a length of 21”. It terminates one inch inside the

second support, where the 0.260” hole tapers to 0.125”. Within the 0.260” hole, the tube

28
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PROBE | PosITION (£0.05 cm)
1 4.27

3.40

1.47

0.71

-0.41

-1.50

-3.38

-4.27

O~ O Ot W N

p—
o

Table 3.1: Measured probe locations relative to center of array, which is aligned at the
mid-plane of the VTF vacuum chamber. All dimensions in centimeters.

is held in place by two set screws. Its forward end is closed, except for a 0.045” hole,
through which the probe wire extends approximately 1”. The spacer tube and ground
shield terminate immediately inside the closed end of the outer shroud. The probe tips
are shown in Fig. 3-4. Although the support brackets are designed to accomodate ten
probes, only eight are installed, leaving the third position from each end blank. The
probes are numbered, however, according to their position, from top to bottom: 1, 2, 4,
5,6,7,9, and 10.

Because the ceramic sheaths are not perfectly straight, there is some variation between
the theoretical and actual probe spacings. The measured locations of each probe along

the vertical axis are presented in Table 3.1.

3.1.3 Bellows Assemblies

At the rear end of the main pipe, the forward face of the double-sided vacuum flange is

bolted to the first of a series of four welded bellows assemblies, which permit the pipe
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(and hence the probe array) to be moved to different radial positions. All of the bellows,
purchased from Huntington Laboratories, are 0.007”-wall type 316 stainless steel, and
have an inner diameter of 1.04”, enabling the pipe to slide through them.

The first (Part A, Fig. 3-5) and fourth bellows are identical, with a compressed length
of 0.92” and a stroke of 5.70”. Each of these bellows is welded to a 33" flange on one end
and a half-nipple with a 23" flange on the other. A support ring with ventilation holes
and an inner diameter of 1.02” was welded inside the half-nipple of the fourth bellows,
so that the bellows are supported on the pipe at the ring, and the compressible sections
do not drag along the surface of the metal.

The second and third bellows each have a compressed length of 0.87” and a stroke of
4.50”. They are welded to 32" flanges at either end. All four flange-to-bellows connections
were initially machined and arc-welded by Peter Dandridge Sr. at Atomic, Ltd. The
second bellows (Fig. 3-6) was later replaced due to a manufacturing defect. Electron-
beam welding on the replacement was performed at Applied Energy, Inc., in Winchester,
Mass.

At each of the three junctions where one bellows assembly meets another, an extra
3%” double-sided flange, a machined blank flange, is bolted between them. This flange
has a 1.02” hole bored through its center, and several ventilation holes around it, and
serves to support the bellows assemblies around the main pipe.

The bellows permit the probe tips to be moved to any major radius from 81.5 cm to

127.5 cm (1.5 cm inside the box port).
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3.1.4 Connection to the Vacuum Chamber

The 2%” flange on the fourth bellows is bolted to a “zero-length” adapter flange, which
mounts to an 8” flange on the forward side. It is bolted to a half-nipple with a rotatable
flange. The pipe of the half-nipple is welded to a port cover which seals one of the
tangential ports of the VTF chamber. The port cover, machined at Atomic, Ltd., seals
to the chamber with a rectangular O-ring. The weld between the half-nipple and the
port cover, besides providing a vacuum seal, acts as the forward support for the weight

of the probe structure.

3.1.5 Signal Feedthroughs and External Structure

At the rear of the structure, the pipe flange is bolted to a zero-length adapter flange with
an 8” diameter. The coaxial cables extend through the flange into an 8” nipple, where
they terminate in BNC connectors. These connectors are attached by Welco tin-silver
solder.

Attached to the bolt-holes of each flange of the nipple are three “ears,” pieces by
which the apparatus is suspended from stainless steel rails. Each rail runs through a
support bushing in the ear, enabling the nipple, rigidly connected to the probe array, to
slide along the rails, which terminate in a support piece which rests on a table.

The back plate of the apparatus is an 8” blank flange which is bolted to the nipple.
Into the flange are welded eight double-ended BNC signal feedthroughs. This piece was

machined and welded by Peter Dandridge Sr., at Atomic Ltd. The coaxial cables are
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connected to the inside end of the feedthroughs, and the signal is sent to the air side of

the flange.

3.2 Amplifier Circuit

The vertical probe array has a set of amplifier circuits dedicated to it. The circuit
setup was built primarily by Jenise Bushman, a student in the VTF group. It has four
independent signal channels, each consisting of an operational amplifier circuit whose
output runs to an isolation amplifier. The output of the isolation amplifier is sent to a

low-pass filter, from which the signal enters the data acquisiton system.

3.2.1 Circuit Components

The complete circuit diagram is shown as Fig. 3-7. The circuit is housed in an aluminum
chassis, 11”7 x 17" x 2”.

A BNC cable is connected to the feed-through on the back plate of the probe appa-
ratus. The signal goes through a 9 MHz low-pass filter (Mini-Circuits model BLP-5),
which is contained in a small cylinder with a BNC connector on either end. The filter’s
purpose is to block any microwave signals the probe may have picked up from the ECRH
wave. The plug on the end of the filter is connected to a BNC jack on the front panel of
the circuit chassis.

The input signal, relative to the machine ground (cable shield), is initially sent through
a buffer amplifier. This consists of an operational amplifier (an OP07 precision op-

amp) wired as an inverting amplifier. This buffer amplifier sets the gain of the circuit
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(unity in these experiments). In addition, the op-amp acts as a fuse, protecting the data
acquisition system from any high-voltage pulses which might result from a catastrophic
plasma collapse.

The output of the buffer amplifier and the machine ground are connected to the inputs
of an Analog Devices isolation amplifier, model 289L. This iutegrated circuit provides
total electrical isolation between the CAMAC system ground and the machine ground,
as well as between the CAMAC and the input signal. The amplifier has a specified
bandwidth of 20 kHz, above which it attenuates by 24 db/oct. Testing has determined
that the frequency response begins to drop below unity at approximately 17 kHz.

The output signal from the isolation amplifier and the CAMAC ground signal are
connected to the input and ground terminals of a low-pass filter circuit. The filter is an
integrated circuit, DATEL model FLJ-UR4LA2. It is used to cut out signals above 20
kHz, to prevent higher frequency components from entering the digitizing equipment and

aliasing to spurious signals.

3.2.2 Signal Grounds

The probe circuit maintains complete electrical isolation between the CAMAC and the
vacuum chamber. The chassis is grounded to the machine through the shield of the BNC
connector on channel 2. The CAMAC ground enters the chassis through an isolated
double-ended Lemo connector on the output of channel 2, and is connected to the second

conductor of each of the other outputs.
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Chapter 4

Single-Point Measurements

This chapter presents plasma potential time series data obtained from individual probes,

as well as spectral analysis of these data.

4.1 Fluctuation Amplitudes

The first aspect to be addressed in the study of plasma fluctuations is their amplitude,

defined in this case to be the standard deviation A¢ of the floating potential:

Ag = \/(8%) — (¢)? (4.1)

where () indicates a time averaged (expectation) value.

The fluctuation amplitudes of the measured potentials were obtained by calculat-
ing the standard deviation of time series electrostatic potential data over 0.82-second
digitizing periods during shots. The fluctuation amplitude was found to be essentially
independent of probe number (i. e. constant over the length of the probe array), but
strongly dependent on radial position. This suggests that the fluctuations are indeed a
result of the radial density gradient, as predicted. Table 4.1 shows the relation between
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R n Ag¢
(cm) | (£0.2) x 10'° cm™3 | (£0.01) V

84 0.4 0.179
94 1.2 0.196
105 1.3 0.682
117 0.5 1.030

Table 4.1: Measured fluctuation amplitude A¢ as a function of major radius R and
plasma density n.

major radius R, approximate plasma density n, and measured fluctuation amplitude
A¢. The largest fluctuation amplitudes occur at locations where the density gradient is

negative, 1. e. on the outer slope of the density peak.

4.2 JFrequency Spectra

This section presents time series fluctuation data analyzed using fast Fourier transform
methods.

The time series signals obtained from the probe array were analyzed using MATLAB
signal processing software to obtain Fourier transforms of the data. The power spectrum,
defined as the squared magnitude Z(w)zZ*(w) of a time function z(t), indicates the level
of fluctuation activity at a particular frequency.

The power spectra of the potential fluctuations measured exhibited strikingly differ-
ent behavior in two different frequency ranges. At low frequencies (below 2 kHz), the
spectrum is dependent on the radial position of the probes. At the innermost and outer-
most radii (117 and 84 cm), where the plasma density is low, the spectrum is fairly flat
below 1 kHz. This is seen in Figures 4-1 and 4-4. At R = 105 cm, on the outer slope
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of the density peak, the spectrum exhibits a broad peak around 500 Hz. This is seen
most easily in the full log plot, Fig. 4-2. On the inner slope of the density peak, a similar
but much smaller peak occurs at approximately 400 Hz (Fig. 4-3). The reasons for these
broad spectral peaks are unknown.

Above a roll-off frequency (1 to 2 kHz, depending on radius), the power spectrum
drops off according to a power law. Although the full log plots are not all perfectly linear
in this frequency range, it is apparent that they all obey, at least approximately, the

single-term power law:

dlogy

dlogz (42)

where g is a constant. In the experimental data, g is always near 2; the power spectrum
drops as 1/w? in the high-frequency range.

Semi-logarithmic plots of the same frequency data are contained in Appendix A.

4.3 Time-Averaged Signals

The time-averaged potential was found to be nonzero in these experiments, and this
value, the local floating potential, and its spatial structure are discussed here.

By averaging the signals from individual probes over three seconds of data digitized
at 1 kHz, we obtain a measure of the plasma floating potential. The floating potential
is a useful measurement: by sampling several probes at the same time, an approximate
measure of the vertical electric field can be gathered. This, along with knowledge of the

toroidal magnetic field, permits a calculation of the radial component of the plasma’s
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Spectral Power Density

Power spectrum (8192-point FFT) of probe 1, shot 5, R = 117.3 cm
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Figure 4-1: Full logarithmic plot of fluctuation power spectrum. Major radius 117.3
cm. Composite of four 8192-point FFTs.
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Spectral Power Density

Power spectrum (8192-point FFT) of probe 1, shot 13, R= 104.6 cm
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Figure 4-2: Full logarithmic plot of fluctuation power spectrum. Major radius 104.6 cm.
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Spectral Power Density

Power spectrum (8192-point FFT) of probe 1, shot 16, R= 94.4 cm
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Figure 4-3: Full logarithmic plot of fluctuation power spectrum. Major radius 94.4 cm.
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Spectral Power Density

Power spectrum (8192-point FFT) of probe 1, shot 25, R= 84.0 cm
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Figure 4-4: Full logarithmic plot of fluctuation power spectrum. Major radius 84.0 cm.
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velocity caused by the E x B drift.

In all shots studied, the potential shows little or no sign of a trend over the duration
of the samples; the time-averaged signal is stationary and thus a meaningful datum.
This was determined by examining “running averages” of the potential data from a given
probe over the duration of the digitizing. The running average splits the data set into
a given number (in this case thirty) of consecutive segments, each covering an identical
time period. The measurement is time-averaged over each of the segments, producing
a thirty-point array. This was done for each data set analyzed, and none exhibited
significantly more than small random variations over the duration of the data.

Due to the fact that the amplifier circuits can only handle four channels, it is not
possible to obtain data for all eight probes simultaneously; several shots must be used.
The plasma potential does not repeat its value exactly from shot to shot, although it is
constant for the duration of any given shot. The floating potential as measured by the
probes thus varies systematically and significantly from one shot to the next. However,
the difference between the signals from a given pair of probes appears to vary less than
the signals themselves. Thus a plot of the averaged potential versus probe position must
include data from several shots, but the mean values of the potential do not constitute a
measurement which is expected to be accurate for any given shot; this does not appear

to be a measurement error.
In fact, the electric field “measurement” gained by averaging potential data from

many shots may not even be accurate, as the errors can be very different during the
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shots when different probes were sampled. This problem could be avoided completely
by adding a second set of four amplifier channels in future experiments, permitting all
probes to be monitored in a single shot. However, the cause of the shot-to-shot variation

is not understood and further experiments will be needed to clarify this effect.

4.3.1 Data Normalization

An approach which appears to reduce significantly the “random” error under some cir-
cumstances is to determine the electric field by measuring the floating potential over
many shots, and then subtract the measured potential at a fixed probe from all data.
The efficacy of this type of normalization is demonstrated in Figures 4-5 and 4-6, where
a set of data is shown before and after normalization.

After referencing the data to the signal from a particular probe, we are left with
measurements of the relative potential at seven probes, while the potential of the eighth
is defined to be zero— in effect, the loss of one data point is the price of the reduction
of the shot-to-shot variation which appears to be inherent in the plasma. This does not
translate into a loss of information about the electric field, because the field is independent
of a uniform offset.

There are many possible explanations for the shot-to-shot variations which the plasma
demonstrates. A possible source of this variation is the fact that the hydrogen fill pressure
in the chamber was not well regulated, and varied by as much as 15% between shots.

Shot-to-shot variations only appear to be large enough for the normalization technique

to significantly improve precision at the outermost radii of the chamber.

47



Time-averaged potential (mV)

-200

-400

-600

-800

-1000

-1200

Absolute (unnormalized) potential, R= 117.3 cm

T

T

T

T T T T T T T T T

[=]oN =]

4 3 2 a0 i 2 3 4

Height above midplane of chamber (cm)

Figure 4-5: Time-averaged floating potential, major radius 117.3 cm.
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Figure 4-6: Time-averaged potential normalized to probe 1, major radius 117.3 cm.
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Figure 4-7: Time-averaged floating potential, major radius 104.6 cm.

4.3.2 Experimental Data

Potential data have also been gathered at other major radii. These data did not appear
to be significantly improved by normalization, because the shot-to-shot variation in the
differences between the readings on two given probes were not significantly smaller than
the variations in the offset potential. Both absolute and normalized data are presented
here.

The results at R = 117.3 cm (Fig. 4-6) indicate an electric field with structure on the
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Figure 4-8: Time-averaged potential normalized to probe 1, major radius 104.6 cm.

51



scale of the distance between probes. Therefore it is difficult Lo determine a particular
value of E, by looking at the plot. The potential fluctuates in space by as much as 1 V,
and so the electric field clearly fluctuates as well. A fairly uniform trend (although it may
only be a statistical illusion) seems to appear over a 4-cm length around the center of
the probe array, where the slope of the potential, equal to the electric field, is 0.3 V/cm
(1.0 x 1073 statvolt/cm). In general, the slope does not appear to exceed 0.5 V/cm
(1.7 x 1072 statvolt/cm) at any point on the plot.

At R = 117.3 cm (Figures 4-7 and 4-8) the normalization appears to have little effect
on the “random” spread of the data points. The potential varies on the same length scale
as at 7 = 117.3 cm, but not as strongly. The differences appear to be on the order of
0.05 V/em (1.7 x 107* statvolt/cm.

The data at R = 94.4 cm (Figures 4-9 and 4-10) show little evidence of any vertical

electric field— the variation in the data points is large enough to where no trend is visible.

4.3.3 Plasma Drift

The presence of a vertical electric field E, and a toroidal magnetic field By = 700 gauss

produce an E x B drift in the radial direction. The magnitude of the drift velocity,

E,
Vge = C—13—0 (43)

is clearly nonuniform, as is its direction, due to the spatially varying vertical electric field
which has been measured. This corresponds to a form of convective plasma drift, with

velocities up to 7 x 10* cm/sec at R = 117 cm. At R = 105 cm, the strongest measured
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Figure 4-10: Time-averaged potential normalized to probe 1, major radius 94.4 cm.
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electric field corresponds to a drift velocity of 10* cm/sec.

The non-uniformity of E,(z), which actually changes sign in some cases, indicates
that the plasma is undergoing a complex convective flow. The flow is radially outward
at some locations and inward at others. The spatial scale of the changes of flow direction

is on the order of 1-5 cm, as seen in Figures 4-6 and 4-8.

55




Chapter 5

Correlation Analysis

Plasma fluctuations are a phenomenon which occur with a finite spatial dimension as well
as a time scale. Characteristic scale lengths for plasma turbulence include the density
gradient scale length A, & 3-5 cm, as well as the ion gyro radius p; = 0.3 cm. The probe
spacing on the array of ~0.9 cm allows fluctuations of lengths comparable to and greater
than p; to be measured.

A thorough analysis of turbulent fluctuations must examine simultaneous measure-
ments at nearby points in space. This was done by analyzing correlations between signals

from different probes during the same shot.

5.1 Mathematical Techniques

In order to examine the joint properties of two time signals, it is necessary to use a
function which calculates quantitatively the resemblance between the two functions. The
functions utilized here are statistical averages of multiplicative functions of Fourier trans-

forms of the signal data. Data analysis was carried out using MATLAB software running
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on a 486-based PC.

5.1.1 Cross-correlation Spectrum

The cross-correlation spectrum provides a measure of the degree to which individual
frequency components of two time signals are correlated. To calculate the correlation
spectrum between two time signals a(t) and b(t), the time signals are broken up into n
finite intervals of equal duration. The Fourier transforms &;(w) and b;(w) are calculated
for each of the intervals. The complex cross correlation F, y(w) between a(t) and b(t) is

defined as follows:

n '( w)b; (w)
Fap(w) = (5.1)
VEm @(w)a (w) /T, bi(w)bi (w)

Coherence function

The squared magnitude FF* of the cross-correlation spectrum is known as the coherence

function, and varies between 0 and 1:

Cap(w) = Fap(w)F3p(w) (5.2)

Two perfectly correlated signals have a coherence of unity, while totally uncorrelated
signals have a coherence of zero. For two signals a(t) and b(t) to be “perfectly correlated”
in the sense that Cyp(w) = 1 for all w, the signals need not be identical; in fact they
may appear quite different. The coherence function may be unity even when some or all
frequency components of the signals a(t) and b(t) are out of phase. Signals which are
shifted in time with respect to each other thus remain perfectly correlated, as well as
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signals which are sent through different frequency-dependent delay filters. In addition,
the coherence function is independent of an arbitrary change in the amplitude of either
signal. A detailed discussion of spectral analysis techniques can be found in Bendat and
Piersol’

The utility of the coherence function is clear— it permits data which are gathered in
different manners to be compared in a quantitative manner. Signals which the two series

contain in common can be extracted from noise.

Phase of Cross-Correlation Spectrum

The phase ¢ of F, (w) contains more subtle information than the coherence function. Its
significance is that it is a measure of the phase difference between the w-components of
a(t) and b(t). However, it becomes statistically insignificant at points where the coherence
is lower than approximately 0.5.

In practice, the utility of the phase of the cross-correlation is in the determination of a
dispersion relation for wave activity. A linear relation between ¢(w) and probe separation

s at a given frequency w would indicate a wave number k(w) of

k(w) = 9—‘%(:“’—) (5.3)

1J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures, John Wiley & Sons,
New York, 1986
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5.1.2 Correlation Length

For fluctuations of a given frequency, the expected effect of a turbulent system is a
damping of signals. Thus the coherence function C,,(w) between two signals a and b, at
a particular frequency w, should decrease as a function of spatial separation of the probes
producing the two signals. Assuming there are no nonlinear amplitude-dependent effects,
the coherence should be reduced by a predictable fraction over a given distance. If that
fraction is independent of C,p(w) itself and independent of the particular position (i. e.
the conditions giving rise to turbulence are spatially uniform), then the only possible
profile is an exponential decay. Thus, if three time series a, b, and c are generated by
probes at positions z,, =, and z., where z, < z, < z., one would expect the following

relation to hold:

T — Ty

Cac(w) = Cqp(w) exp[— o)

) (5.4)

The constant A¢(w), a function of the medium and the particular frequency component
being studied, is known as the correlation length. The number is generally determined
experimentally from the coherence functions of several data sets. It should be noted that
the concept of a correlation length does not have significant meaning unless the medium

has the linearity and uniformity properties described above.

5.2 Analysis of Experimental Data

This section contains the results of correlation analysis of experimental data. The com-

plex cross-correlation function between two simultaneous signals from different probes
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was calculated, for all probe combinations, using 256-point Fourier transforms (In the
notation of the previous section, n = 128). Both the coherence functions and the phases
of the cross-correlation functions were studied as a function of probe separation. The

coherence functions were also examined as a function of frequency.

5.2.1 Contour Plots of Coherence Functions

The behavior of the coherence function as both probe separation and frequency ? are
varied is shown here as a series of contour plots, where the contours represent paths of
constant coherence. The first set (Figures 5-1 through 5-4) were produced by examining
the coherence functions of one signal (based on 256-point FFTs) from each of probes 2-10
with a simultaneous signal from probe 1; there are thus seven data arrays contained in
each plot. Intermediate values were determined by interpolation, and generated by the
MATLAB program. Each contour plot contains data taken at a fixed radial position.
The second set of plots, Figures 5-5 through 5-8, are composite plots, which include
many more data sets than the first. They are produced by averaging the coherence
functions between data from many sets of two probes (over six shots of data). For
example, the array corresponding to a probe separation of two probes (1.9 cm) is an
average of the data from probes 2 and 4, 4 and 6, 5 and 7, and 7 and 9. The purpose
of averaging over many shots is to “clean up” the representation by smoothing out the

random error. In doing so, however, we are assuming that the plasma is uniform over the

2Appendix B shows x-y plots of coherence as a function of frequency alone at different radii and
probe separations.
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Figure 5-1: Contour plot of coherence of potential. Major radius = 117.3 cm, Vertical
field B, = 10 gauss. Data obtained from seven sets of two arrays each. Each set contains
data from probe 1 and from another probe.
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Vertical probe separation (cm)
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Figure 5-4: Contour plot of coherence of potential. Major radius = 84.0 cm.
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length of the probe array. Specifically, the assumption is that the difference between the
coherence between data at probes 2 and 4 and between probes 7 and 9 can be attributed

to random error alone.

5.2.2 Phase of Cross-Correlation Functions

Because the experimental data show so little coherence in most frequency regions, the
phase of the cross-correlation function is not a very significant datum. However, the
signals are highly correlated at low frequencies, so it is useful to examine the phase of
F(w) in this region. Selecting a frequency of 1875 Hz (within the coherent region at all
radii and probe separations), plots of ¢(w = 27 - 1875 sec™') versus probe separation s
are shown as Figures 5-9 through 5-12 for the four radial positions studied. The plots are
obtained from the 1875 Hz data point of cross-correlation functions based on 128-point
FFTs of the original experimental data.

As can be seen in the figures, the plots all show a slight increase in ¢ as s increases,
but this trend is barely discernable because of large random errors in the individual data
points. The trend appears to be on the order of d¢/ds ~ (0.01 £ 0.005) cm™.

Because signals taken at major radius R = 94.4 cm appeared highly coherent at longer
distances and higher frequencies than anywhere else, phase data should be significant at
higher frequencies. A plot of ¢ versus s at frequency 8125 Hz and radius 94.4 cm is
shown as Fig. 5-13. The phase shift shows no identifiable trend at this frequency; the

slope appears to be zero.
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Figure 5-5: Contour plot of coherence of potential. Major radius = 117.3 cm, B,
gauss. Composite plot using data from 26 sets of two arrays each.
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Vertical probe separation (cm)

Coherence of Potential, R=104.6 cm, Bv=10 G, composite plot
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Figure 5-6: Composite contour plot of coherence of potential. Major radius = 104.6 cm.

67



Vertical probe separation (cm)

Coherence of Potential, R=94.4 cm, Bv=10 G, composite plot
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Figure 5-8: Composite contour plot of coherence of potential. Major radius = 84.0 cm.
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Phase of cross-corr. at 1875 Hz, radius 117.3 cm
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Figure 5-9: Phase of cross-correlation spectrum at 1875 Hz versus probe separation.
Major radius 117.3 cm.
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Figure 5-10: Phase of cross-correlation spectrum at 1875 Hz versus probe separation.
Major radius 104.6 cm.
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Phase of cross-corr. at 1875 Hz, radius 94.4 cm
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Figure 5-11: Phase of cross-correlation spectrum at 1875 Hz versus probe separation.
Major radius 94.4 cm.
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Phase of cross-corr. at 1875 Hz, radius 84.0 cm
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Figure 5-12: Phase of cross-correlation spectrum at 1875 Hz versus probe separation.
Major radius 84.0 cm.
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Phase of cross-corr. at 8125 Hz, radius 94.4 cm
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Figure 5-13: Phase of cross-correlation spectrum at 8125 Hz versus probe separation.
Major radius 94.4 cm.

74



5.3 Interpretation of Results

In general, the results of the correlataion analysis indicate that plasma fluctuations along
the vertical dimension of the HELIMAK plasma are turbulent rather than wave-like.
Moreover, the turbulence exhibits a complex spatial structure in some regions of the

plasma (Fig. 5-7). These results are discussed below.

5.3.1 Correlation Lengths of Potential Fluctuations

Correlation lengths vary greatly by frequency, and in different ways at different radial
positions. At a major radius of 94.4 cm (data shown as Fig. 5-7), on the inner slope
of the density peak, the correlation length is undefined because the coherence does not
decay exponentially with distance— indeed, at probe separations between 3 and 6 cm,
it actually increases with probe distance, indicating a serious nonlinearity in the plasma
at that radius. This is not a position-dependent effect. It is equally apparent in the
composite plot (Fig. 5-7) as in the plot of coherence with probe 1 signals only (Fig. 5-
3). The observation of this multiple length-scale spatial coherence is one of the most
intriguing results of this thesis.

At other radii, the correlation length was better defined. At 117 cm, in the outer
low-density region, (Fig. 5-5), Ac was greater than 10 cm for fluctuations in the 1 kHz
range, dropping to about 8-10 cm in the 3 kHz range. A¢ = 5 cm around 4 kHz, dropping
rapidly in this range to approximately | cm around 6 kHz, where it appears to level off

and remain up to 20 kHz, the high-frequency limit of the data. Due to the unevenness
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of the data, these numbers have a substantial error attached to them— +25%.

On the outer slope of the density peak, at R = 105 cm (Fig. 5-6), the coherence plot
is not dramatically different from the one in the low-density region. Once again, A¢ is
greater than 10 cm at the low-frequency end of the spectrum. However, the correlation
length does appear to drop off at somewhat lower frequencies than in the low-density
region. Between 2 and 4 kHz, A¢ is approximately 6 cm. Between 4 and 6 kHz, the
correlation length drops rapidly to 2 cm. At 8 kHz, Ac = 1 cm, and it drops slowly
through the rest of the spectrum to about 0.7 cm. Between 10 and 20 kHz, a small com-
plex structure (less vividly apparent than at R = 94 cm) shows as a region of increased
coherence at probe separations 5 < s < 8 cm.

As mentioned above, the coherence on the inner slope of the density peak (R =94cm)
exhibits a complex structure. At no frequency does it decrease steadily with increasing
probe separation. It is thus impossible to describe the data with a simple correlation
length at any frequency. Signals become highly coherent at a probe separation of 5 cm,
regardless of the absolute position of the probes. It is unclear what physical process is
leading to this. One possible explanation is that the fluctuations have a very long extent
along the helical field lines, and wrap completely around the torus, returning to the same

toroidal angle ¢ displaced by Az:

Az = 21ng;; (5.5)
_993cm - 10gauss (5.6)
- 700gauss )

~ 8cm (5.7)
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which is relatively close to 5 cm, where the high-coherence readings occur.

The inner low-density region (Fig. 5-8) shows behavior somewhat similar to the outer
one. Ar I = 84 cm, the correlation length is again greater than 10 cm at 1 kHz, and
drops to about 10 cm at 2 kHz. However, it remains high (5-10 c¢m) at frequencies as

high as 8 kHz. Higher than 10 kHz, A¢c drops to approximately 2 cm.

5.3.2 Evidence that Potential Fluctuations do not Represent Vertical Wave Ac-
tivity

In this section, evidence is presented which indicates that the potential fluctuations

studied here are not caused by plasma waves.

The phase data at different radii indicate that if there is wave activity at length
scales no smaller than the distance between probes, it occurs with a wave number k =
(0.01 £ 0.005) cm™'. This corresponds to a wavelength of approximately 600 cm. Not
only is this length nearly two orders of magnitude greater than the correlation lengths at
the frequency studied, but it is several times longer than the height of the VTF vacuum
chamber.

The higher-frequency component studied in the highly nonlinear case (Fig. 5-13)
shows no sign whatsoever of a nonzero wave number. Clearly, the potential fluctuations

studied here do not indicate the presence of vertically propagating waves.
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Chapter 6

Conclusions

The most general result of these experiments has been that the plasma exhibits strikingly
different qualities at different radial positions in the chamber, and that the inner and outer
slopes of the density peak are dissimilar.

The largest levels of fluctuation activity were found in the outermost, low-density
region. The amplitude of fluctuations steadily increasea with major radius, with the
smallest levels, lower by a factor of six, found in the inner low-density region. The
density peak appears to be a dividing line between regions of high and low fluctuation
activity.

The steady-state electric field also exhibits a change of behavior near the density
peak. In the outer regions, the electric field shows violent oscillations in space, whereas
it is near zero at inner radii. The large spatial variations in the electric field indicate
the presence of radial convection flows in the plasma. Future experiments with a larger
array of amplifier channels are necessary to explain a significant shot-to-shot variation

discovered in the local floating potential.
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The only measurement taken which appeared to be fairly independent of radial posi-
tion was the shape of the fluctuation auto-power spectrum, which was similar at all radii,
except for a low, broad peak which occurred only on the slopes of the density peak. At
frequencies above 2 kHz, the plots show a practically identical decay according to a 1 /w?
power law.

Coherence functions between signals taken at different vertical locations were an-
alyzed in an effort to understand the spatial structure of the fluctuations at different
frequencies. The results of this analysis were somewhat surprising. The structure of
the coherence function appeared very similar in both the inner and outer low-density
regions, even though the fluctuation amplitudes at the two locations were very different.
The correlation lengths are on the order of 5-10 cm at frequencies below 5 kHz, and drop
to around 1 cm at higher frequencies.

An interesting effect was observed at radii on the slopes of the density peak, more
prominently on the inner slope. The coherence increases briefly but significantly with
probe separation in the 5 cm range. This correlation spectrum cannot be characterized
by a simple coherence length, but it may be explained if the turbulent fluctuations wrap
around the torus along the helical field lines, returning to the same toroidal angle at
5 cm above the initial height. Future experiments which might test this hypothesis are
possible. One could investigate it by varying B, to determine whether the separation
between high-coherence regions changes in a comparable way.

At a selected frequency, the phase of the cross-correlation function was calculated
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for different radii and probe separations to determine whether or not the fluctuations
represented wave activity. Because the wave numbers calculated from the measurements
corresponded to wavelengths nearly two orders of magnitude longer than the coherence
length (and much larger than the vacuum chamber), it was concluded that there was no

evidence that the fluctuations represented dispersive wave activity.
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Appendix A

Semi-Logarithmic Plots of Frequency Spectra

This section contains semi-logarithmic plots of the data presented in Section 4.2.
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Spectral Power Density

Power spectrum (4096-pt. FFT), probe 1, shot 5 R=117.3 cm, semi-log
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Figure A-1: Semi-logarithmic plot of fluctuation power spectrum. Major radius 117.3
cm. Composite of four 8192-point FFTs.
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Spectral Power Density
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Figure A-2: Semi-logarithmic plot of fluctuation power spectrum.
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Spectral Power Density

Power spectrum (4096-pt. FFT), probe 1, shot 16, R=94.4 cm, semi-log
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Figure A-3: Semi-logarithmic plot of fluctuation power spectrum. Major radius 94.4 cm.

84



Spectral Power Density
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Figure A-4: semi-logarithmic plot of fluctuation power spectrum. Major radius 84.0 cm.
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Appendix B

Coherence Functions of Selected Data Sets

This section contains plots of coherence function versus frequency for selected seta of
data. Unlike the arrays used to generate the contour plots in Chapter 5, the coherence

plots presented here were produced from 512-point FFTs.

86



Coherence

Coherence of probes 1,2 on shot 5. R= 117.3 cm, probe sep. 0.87 cm
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Figure B-1: Coherence between signals from probes 1 and 2 at major radius R= 117.3
cm. Probe separation 0.87 cm. Coherence is high at all frequencies.
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Coherence of probes 1,10on shot 5. R= 117.3 c¢m, probe sep. 8.54 cm
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Figure B-2: Coherence between signals from probes 1 and 10. R = 117.3 cm. Probe
separation 8.54 cm. Coherence is low due to probe separation.
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Coherence

Coherence of probes 1,2 on shot 17. R= 94.4 cm, probe sep. 0.87 cm
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Figure B-3: Coherence between signals from probes 1 and 2. R = 94.4 cm. Probe
separation 0.87 cm. High coherence.
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Coherence of probes 1,10 on shot i7. R= 94.4 cm, probe sep. 8.54 cm
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Figure B-4: Coherence between signals from probes 1 and 6. R = 94.4 cm. Probe
separation 4.68 cm. Coherence is high due to apparent non-linearity of plasma.
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Coherence

Coherence of probes 1,6 on shot 17. R= 94.4 c¢m, probe sep. 4.68 cm
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Figure B-5: Coherence between signals from probes 1 and 10. R = 94.4 cm. Probe
separation 8.54 cm. Coherence is lower.
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Appendix C

MATLAB Code Written for Data Analysis

This appendix contains code which was written to be used with MATLAB numerical
computation software. The FLUCSTAT program runs as a self-contained program which
calls functions AVERUNV and VSCALE. Its purpose was to calculate the mean values of sets
of data and to present both the average value and standard deviation. It calls VSCALE to
scale the CAMAC'’s integer output to a voltage scale, and calls AVERUNV to print a graph

on the screen showing the running average of the data array.

92



/i Program FLUCSTAT.
/i calculates the mean and estimated error of the floating potential

i (volts) based on the scaling in the function vscale.m

'Input array to be analyzed'’

'c = data’

keyboard

vf = mean(vscale(c))

'vf is average potential in volts’

d = averunv(vscale(c),30);

err = std(d)/sqrt(30)

'err is estimated statistical error in vf'’

pause

plot(d,’o?)

title(’Running average of data (volts)’)
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function y=vscale(c)

/i Converts data taken from CAMAC to a voltage scale by assuming

/i that channel # 2048 corresponds to zero, and that the full

/i scale of 0-4096 corresponds to -5V to +5V.

c-(2048%ones(c)) ;

«
|1}

¥/409.6;

«
1}
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function y=averun(v,NB)

//

/i This M-file computes the running average of a vector v.
/Z

/i Number of data blocks in running average

s NB

y=0.0x[1:NB];

ND=length(v);

NI=floor(ND/NB); “floor truncates data range if ND is not a multiple of NB.

'working ...’

for kk=0:NB-1 % block index

g = v((kk#NI)+1: ((kk+1)*NI-1));

y(kk+1)=mean(g) ;
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end

plot(y,’o?’)
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