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NESTED DOMAIN DECOMPOSITION WITH POLARIZED TRACES
FOR THE 2D HELMHOLTZ EQUATION∗

LEONARDO ZEPEDA-NÚÑEZ† AND LAURENT DEMANET‡

Abstract. We present a solver for the two-dimensional high-frequency Helmholtz equation in
heterogeneous, constant density, acoustic media, with online parallel complexity that scales empiri-
cally as O(N

P
), where N is the number of volume unknowns, and P is the number of processors, as

long as P = O(N1/5). This sublinear scaling is achieved by domain decomposition, not distributed
linear algebra, and improves on the P = O(N1/8) scaling reported earlier in [L. Zepeda-Núñez and
L. Demanet, J. Comput. Phys., 308 (2016), pp. 347–388]. The solver relies on a two-level nested do-
main decomposition: a layered partition on the outer level and a further decomposition of each layer
in cells at the inner level. The Helmholtz equation is reduced to a surface integral equation (SIE)
posed at the interfaces between layers, efficiently solved via a nested version of the polarized traces
preconditioner [L. Zepeda-Núñez and L. Demanet, J. Comput. Phys., 308 (2016), pp. 347–388]. The
favorable complexity is achieved via an efficient application of the integral operators involved in the
SIE.
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1. Introduction. It has become clear over the past several years that the right
mix of ideas to obtain an efficient Helmholtz solver, in the high-frequency regime,
involves domain decomposition with accurate transmission conditions. The first em-
pirical O(N) complexity algorithm, where N is the number of degrees of freedom,
was the sweeping preconditioner of Engquist and Ying [33] that uses a decomposition
in grid-spacing-thin layers coupled with an efficient multifrontal solver at each layer.
Subsequently, Stolk proposed different instances of domain decomposition methods
(DDMs) [88, 89] that restored the ability to use arbitrarily thick layers, improving
the efficiency of the local solves at each layer, with the same O(N) claim. Liu and
Ying recently presented a recursive version of the sweeping preconditioner in three
dimensions (3D) that decreases the offline cost to linear complexity [68] and a variant
of the sweeping preconditioner using an additive Schwarz preconditioner [67]. Many
other authors have proposed algorithms with similar complexity claims that we review
in section 1.2, which we briefly compare in section 1.3.

Although these algorithms are instances of efficient iterative methods, they have
to revisit all the degrees of freedom inside the volume in a sequential (or sweeping)
fashion at each iteration. This sequential computation thus hinders the scalability of
the algorithms to large-scale parallel architectures.
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NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B943

Two solutions have been proposed so far to mitigate the lack of asymptotic scal-
ability in the high-frequency regime:

• Poulson et al. [80] parallelized the sweeping preconditioner in 3D by using
distributed linear algebra to solve the local system at each layer, obtaining
a O(N) complexity. This approach should in principle reach sublinear com-
plexity scalings in two dimensions (2D). The resulting codes are complex,
and using distributed linear algebra libraries can be cumbersome for indus-
trial application because of licensing issues.

• Zepeda-Núñez and Demanet [103] proposed the method of polarized traces,
with an online empirical runtime O(N/P ) in 2D, where N is the number
of degrees of freedom in the volume1 and P is the number of nodes in a
distributed memory environment, provided that P = O(N1/8) and that the
medium does not contain microstructures at the wavelength level with a pre-
ferred orientation aligned with the sweeping direction.2 The communication
cost is a negligible O(N1/2P ).

In this paper we follow and improve on the latter approach. The method of
polarized traces relies on a layered domain decomposition coupled with a surface
integral equation (SIE) posed at the interfaces between subdomains that is easy to
precondition. The algorithm has two stages: an expensive but parallel offline stage
that is performed only once and a fast online stage that is performed for each right-
hand side (source). The above-mentioned online complexity is the result of, first,
the efficient preconditioner, and second, the precomputation and compression of the
operators involved in the SIE and its preconditioner during the offline stage.

The main improvements of the solver presented in this paper stem from a nested
layered domain decomposition in two levels. In the outer level we use an equivalent
matrix-free formulation of the SIE that relies on solving a local problem within each
layer, with equivalent sources at the interfaces. In the inner level, we decompose each
layer in cells, and we use the original method of polarized traces to solve the local
problems efficiently via a local SIE posed at the interfaces between cells within a layer.
As will be explained in what follows, the operators involved in the local SIE at each
local problem are much smaller, making them cheaper to precompute and to apply.
Finally, the number of layers and cells can be balanced to increase the parallelism and
hence reduce the asymptotic runtime.

1.1. Results. We propose a variant of the method of polarized traces using a
nested domain decomposition approach. This novel approach results in an algorithm
with an empirical asymptotic online runtime of O(N/P ) provided that P = O(N1/5),
which results in a lower asymptotic online runtime in a distributed memory environ-
ment. Moreover, the nested polarized traces method also has lower memory footprint,3

and lower offline complexity, as shown in Table 1.1. The parameter α in Table 1.1 is
the exponent of the empirical asymptotic complexity.4

The nested polarized traces method inherits the modularity from the original
method of polarized traces; it can easily be extended to more complex physics and

1Throughout this paper, the notation O(·) may hide logarithmic factors.
2As will be explained in what follows, the combination of higher frequencies and thinner subdo-

mains increases the number of iterations, thus resulting in a mild deterioration of the scalings.
3The offline complexity for the method of polarized traces in this case (Table 1.1) is higher than

in [103] because we assume that we have P nodes instead of N1/2P .
4We choose to express the complexity with respect to the global number of degrees of freedom,

N , in order to provide a cleaner expression in Table 1.1. of the application of a compressed numerical
Green’s function with respect to N . The exact definition of α is given in section 4.3. In this case,
the value of α = 3/4 is estimated empirically.
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B944 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

Table 1.1
Runtime of both formulations (up to poly-logarithmic factors), supposing only P nodes, one

node per layer for the method of polarized traces, and one node per cell for the nested domain
decomposition with polarized traces. The value of α depends on the ability to compress local Green’s
functions in partitioned low-rank form; there exist theoretical and practical arguments for setting
α = 3/4. In that case, the N/P contribution dominates P 1−αNα as long as P = O(N1/5). These
scalings hold provided that the medium does not contain microstructures at the wavelength level
presenting a preferred orintation aligned with the sweeping direction.

Stage Polarized traces Nested polarized traces

Offline O
(
N3/2/P

)
O
(
(N/P )3/2

)
Online O (PNα +N/P ) O

(
P 1−αNα +N/P

)

higher order discretizations, and it takes advantage of new developments in direct
methods such as [52, 83, 99] and in better block-low-rank and butterfly matrix com-
pression techniques such as [6, 12, 65].

In addition, we propose a few minor improvements to the original scheme pre-
sented in [103] to obtain better accuracy and to accelerate the convergence rate. We
provide

1. an equivalent formulation of the method of polarized traces that involves a
discretization using Q1 finite elements on a Cartesian grid using a suitable
quadrature rule to compute the mass matrix. This formulation can be easily
generalized to high order finite differences and high order finite elements, thus
circumventing the labor-intensive summation by parts; and

2. a variant of the preconditioner introduced in [103], in which we used a block
Gauss–Seidel iteration instead of a block Jacobi iteration, that improves the
convergence rate.

Even though the nested approach presented in this paper has a lower asymptotic
online runtime than the method of polarized traces, in practice, the latter is faster.
This is due to the large constants resulting from iterating within each layer in the
nested approach. In order to reduce the constants, we introduce a small variant of
the nested approach, which relies on a compressed LU factorization to solve the local
SIE within each layer. The asymptotic online runtime remains unchanged, with much
lower constants, albeit with a more thorough precomputation.

1.2. Related work. Using domain decomposition to solve PDEs can be dated
back to Schwarz [86] and Lions [66], in which the Laplace equation is solved itera-
tively. However, using such techniques to solve the Helmholtz problem was proposed
for the first time by Després in [29], which led to the development of many differ-
ent approaches focusing mostly on the discretization of the Helmholtz equation; in
particular, the ultra weak variational formulation (UWVF) [17], which, in return,
spawned plane wave methods such as the Trefftz formulation of Moiola, Hiptmair,
and Perugia [76], the plane wave discontinuous Galerkin method [53, 58], the discon-
tinuous enrichment method of Farhat et al. [39], the partition of unity method (PUM)
by Babuska and Melenk [4], the least-squares method by Monk and Wang [78], and,
more recently, the multitrace formulation of Claeys, Hiptmair, and Jerez-Hanckes
[24, 57], among many others. A recent and thorough review can be found in [59].

Moreover, the ideas of Lions and Després led to the development of various do-
main decomposition algorithms, which can be classified as Schwarz algorithms (for
a review on classical Schwarz methods see [18, 90]) with or without overlap for the
Helmholtz equation [13, 25, 28, 51, 70, 74]. However, soon it became evident that the
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NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B945

convergence rate of such algorithms was spectacularly dependent on the boundary
conditions prescribed at the interfaces between subdomains.

In the quest to design boundary conditions that ensured a fast convergence Gan-
der introduced the framework of optimized Schwarz methods in [41]. Within that
framework, Gander, Magoules, and Nataf provided an optimal nonlocal boundary
condition, which is then approximated by an optimized Robin boundary condition
[44]. How to design better approximations has been studied in [43, 46, 47, 49]. More
recently Boubendir, Antoine, and Geuzaine [14] presented a quasi-optimal optimized
Schwarz method using Padé approximations of the Dirichlet to Neumann (DtN) map.

The idea of mixing domain decomposition and absorbing boundary condition was
first explored by Engquist and Zhao [34] for elliptic problems. The application of such
ideas to the Helmholtz problem can be traced back, to great extent, to the analytic
incomplete LU preconditioner of Gander and Nataf [45], in which a layered domain
decomposition was used, and to Plessix and Mulder [79], in which a similar idea is
used with separation of variables. However, it was Engquist and Ying who showed in
[33, 32] that such ideas could yield fast methods to solve the high-frequency Helmholtz
equation, by introducing the sweeping preconditioner, which was then extended by
Tsuji and collaborators to different discretizations and physics [92, 93, 94]. Since
then, many other papers have proposed methods with similar claims. Stolk [88]
proposed a DDM using single layer potentials to transfer the information between
subdomains. Geuzaine and Vion explored randomized techniques [23] to probe the
DtN map [8] in order to approximate the absorbing boundary conditions within a
multiplicative Schwarz iteration [96, 97]. Chen and Xiang proposed another instance
of efficient domain decomposition, where the emphasis is on transferring sources from
one subdomain to another [21, 22], which has inspired similar methods [64, 63, 30].
Most of the methods mentioned above can be recast as optimized Schwarz methods
(cf. [20]). Closely related to the content of this paper, we find the method of polarized
traces [103] and an earlier version of this work [102].

Luo et al. proposed the fast sweeping Huygens method, based on an approximate
Green’s function computed via geometric optics, coupled with a butterfly algorithm,
which can handle transmitted waves in very favorable complexity [69, 81].

Alongside iterative methods, some advances have also been made on multigrid
methods. Brandt and Livshits developped the wave-ray method [15], in which the
oscillation error is eliminated by a ray-cycle using a geometric optics approximation;
Haber and MacLachlan proposed an alternative formulation that can be solved by
standard multigrid methods [56]; Erlangga, Oosterlee, and Vuik [37] showed how to
implement a simple, although suboptimal, complex-shifted Laplace preconditioner
with multigrid. Another variant of complex-shifted Laplacian method with deflation
was studied by Sheikh, Lahaye, and Vuik [87]. The choice of the optimal complex-shift
was studied by Cools and Vanroose [26] and by Gander, Grahan, and Spence [40].
Finally, the generalization of the complex shifted Laplacian preconditioner to the
elastic wave equation has been studied by Rizzuti and Mulder [82]. We point out that
most of the multigrid methods mentioned above exhibit a suboptimal dependence
of the number of iterations to converge with respect to the frequency, making them
illsuited for high frequency problems. However, they are easy to parallelize, resulting
in small runtimes, as shown by Calandra et al. [16].

A good early review of iterative methods for the Helmholtz equation is in [36].
Another review paper that discussed the difficulties generated by the high-frequency
limit is [38].
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B946 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

In another exciting direction, much progress has been made on making direct
methods efficient for the Helmholtz equation. Such is the case of Wang et al.’s method
[99], which couples nested dissection and multifrontal elimination with H-matrices
(see [31] for the multifrontal method and [50] for nested dissection). Another exam-
ple is the work of Gillman, Barnett, and Martinsson on computing DtN maps in a
multiscale fashion [52]. Recently, Ambikasaran et al. [1] proposed a direct solver for
acoustic scattering for heterogeneous media using compressed linear algebra to solve
an equivalent Lippmann–Schwinger equation. These methods are extremely efficient
for elliptic and low frequency problems due to the high compressibility of the Green’s
functions [7]. However, it is not yet clear whether offline linear complexity scalings
for high-frequency problems can be achieved this way (cf. [35]), though good direct
methods are often faster in practice than the iterative methods mentioned at the
beginning of this section. The main issue with direct methods is the lack of scala-
bility to very large-scale problems due to the memory requirements and prohibitively
expensive communication overheads.

Finally, beautiful mathematical reviews of the Helmholtz equation are [77] and
[19]. A more systematic and extended exposition of the references mentioned here
can be found in [101].

1.3. Comparison to other preconditioners. There has been a recent effort
to express the fast preconditioners based on domain decomposition and absorbing
boundary conditions in terms of optimized Schwarz method [20, 48, 55], in particular,
the method of polarized traces can be recast, algorithmically, as an optimized Schwarz
method; however, the polarization of the waves using discrete integral relations, and
in particular, the recasting of the volumetric problem as an extended algebraically
exact integral problem posed at at the interfaces between layers, seems to escape the
general framework. We do not aim to compare the method of polarized traces nor
its nested variant under the framework of optimized Schwarz methods, which would
be out of the scope of this paper. Instead, we aim to briefly compare the method of
polarized traces against some related methods in the literature.5

We start by comparing the method of polarized traces to the original sweeping
preconditioner. The sweeping preconditioner is based on a block LDLt factorization,
coupled with the remarkable observation that the inverse of the blocks of D correspond
to a half-space problem. The inverse of the blocks can be either compressed using
H-matrices6 [32] or applied using an auxiliary problem [33], in which the half-space
problem is truncated using high-quality perfectly matched layers (PML). The sweep-
ing preconditioner acts on the volume problem, and it needs to revisit all the degrees
of freedom, thus hindering parallelization, which is mostly achieved by parallelized
linear algebra [80]. On the other hand, the method of polarized traces preconditions
an SIE posed on the interfaces reducing the number of degrees of freedom. The ap-
plication of the SIE and the preconditioner can be parallelized and accelerated using
fast summation algorithms, and the number of iterations to convergence is, in general,
much smaller.

Another method based on the sweeping preconditioner is the source transfer
method [21], an overlapping domain decomposition. In this method, the residual
in a generous overlap, times a smooth window, is used to propagate the information

5We refer the interested reader to [42] for a short exposition on possible shortcomings of sweeping-
like preconditioners.

6This is possible, in homogeneous media, thanks to the compressibility of the Green’s function
when considering elongated structures [72].
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NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B947

to the neighboring domains in a fashion that resembles an iterative refinement iter-
ation. If the window is chosen as a Heaviside function, the source transfer method
has some striking similarities to the rapidly converging DDM [88] and the method
of polarized traces. However, the source transfer method is a preconditioner for the
volume problem, needing to revisit all the degrees of freedom each iteration, and the
generous overlap between subdomain can be prohibitively expensive in 3D.

The closest algorithm to the method of polarized traces is the rapidly converging
DDM of Stolk [88], in which the information is transfered between subdomains using
a single layer potential in [88] and using both single and double layer potential in [89].
The latter has the same form as the sweeps in the method of polarized traces (see
[104]). Stolk’s method preconditions the volume problem, which requires him to move
the boundaries of the subdomains and to use a step of iterative refinement between
sweeps. In practice, Stolk’s method has lower constants but a higher asymptotic
runtime in 2D.

Finally, we compare the method of polarized traces to the double sweep precondi-
tioner, which is, by construction, an optimized Schwarz method. In [97] the Helmholtz
problem is posed as a boundary problem between interfaces using different boundary
conditions. The boundary problem is then solved iteratively, using an Schwarz itera-
tion accelerated with preconditioned GMRES. The main disadvantage of the double
sweep preconditioner is its complexity. To converge in O(1) iterations, the double
sweep preconditioner requires a good knowledge of the DtN map, which is probed
using randomized methods (cf. [8]) during an offline stage. As a consequence, the lin-
ear systems at each subdomain have a nonlocal boundary condition, which results in
matrices with large dense blocks, making the local linear systems expensive to solve.

At the level of the formulation there exist some differences between the two meth-
ods; in [97] the resulting system posed on the the interfaces has a block-tridiagonal
structure, which is hard to solve iteratively; however, some off-diagonal blocks, which
represent self-interactions within layers, are small, so they can be neglected. The
resulting sparsified system has an interlaced structure, and it can be solved by back-
substitution, in which each block is a local solve with a nonlocal boundary condition.
In contrast, the method of polarized traces transitions from a volumetric discretiza-
tion to an extended equivalent boundary problem, without approximation, making it
better suited to cases in which the self-interactions, such as multiple scattering within
a layer, cannot be neglected. By exploiting the block structure of the latter we can
easily construct an efficient preconditioner based on a block Gauss–Seidel iteration
within a GMRES [85] or Bi-CGstab [95] iteration. Finally, we point out that the
different types of sweeps described in [98] can be seamlessly deduced using different
block splittings of the extended SIE.

1.4. Organization. The present paper is organized as follows:
• we review the formulation of the Helmholtz problem and the reduction to a

boundary integral equation in section 2;
• in section 3 we review the method of polarized traces;
• in section 4 we present two variants of the nested solver, and we provide the

empirical complexity observed; Finally,
• in section 5 we present numerical experiments that corroborate the complexity

claims.

2. Formulation. Let Ω be a rectangle in R2, and consider a layered partition of
Ω into L slabs, or layers {Ω`}L`=1, as shown in Figure 2.1. Define the squared slowness
as m(x) = 1/c(x)2, x = (x, z). As in geophysics, we may refer to z as depth, and we
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B948 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

Fig. 2.1. Layered domain decomposition. The orange grid-points represent the PML for the
original problem, the light-blue grid-points represent the artificial PML between layers, and the red
grid-points correspond to u in (2.11).

suppose that it points downwards. Define the global Helmholtz operator at frequency
ω as

(2.1) Hu =
(
−4−mω2

)
u in Ω,

with an absorbing boundary condition on ∂Ω implemented via PML [9, 10, 61].
Let us define f ` as the restriction of f to Ω`, i.e., f ` = fχΩ` , where χΩ` is the

characteristic function of Ω`. Define the local Helmholtz operators as

(2.2) H`u =
(
−4−mω2

)
u in Ω`,

with absorbing boundary conditions on ∂Ω`. Finally, let u be the solution to Hu = f .
As for any DDM, we seek to find u by solving the local systems H`v` = f `χΩ` .

In order to compute u, classical DDMs (cf. [90]) require a coupling between the
subdomains, which usually takes the form of continuity or boundary conditions. In
this case, the global coupling between subdomains is realized via a reduction of the
problem posed on the volume to a problem posed on the interfaces between layers,
resulting in an SIE. The main tool used in this endeavor is the Green’s representation
formula (GRF) in each layer.

If the global Green’s function G, given by HG(x,y) = δ(x − y), is known, then
we can write in the interior of each layer

(2.3) u(x) = Gf `(x) +

∫
∂Ω`

(
G(x,y)∂νyu(y)dy − ∂νyG(x,y)u(y)

)
dSy

for x ∈ Ω`, and Gf `(x) =
∫

Ω
G(x,y)f `(y)dy. One remarkable, and mostly underval-

ued, property of the GRF is that (2.3) remains true even if we change the Green’s
function for a local Green’s function, which we denote G`, provided that

(2.4) HG`(x,y) = δ(x− y)

is satisfied for x,y ∈ Ω`, where H acts on x.
Using the local GRF, the solution can be written without approximation in each

layer as

(2.5) u(x) = G`f `(x) +

∫
∂Ω`

(
G`(x,y)∂νyu(y)dy − ∂νyG`(x,y)u(y)

)
dSy
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NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B949

for x ∈ Ω`, where G`f `(x) =
∫

Ω` G
`(x,y)f `(y)dy and G`(x,y) is the solution of

H`G`(x,y) = δ(x − y). Where H` coincides with H in Ω` by construction, thus G`

satisfies (2.4).
Denote Γ`,`+1 = ∂Ω` ∩ ∂Ω`+1. Supposing that Ω` are thin slabs either extending

to infinity, or surrounded by a damping layer on the lateral sides, we can rewrite (2.5)
as

u(x) = G`f `(x)−
∫

Γ`−1,`

G`(x,x′)∂zu(x′)dx′ +

∫
Γ`,`+1

G`(x,x′)∂zu(x′)dx′

+

∫
Γ`−1,`

∂zG
`(x,x′)u(x′)dx′ −

∫
Γ`,`+1

∂zG
`(x,x′)u(x′)dx′.(2.6)

The knowledge of u and ∂zu on the interfaces Γ`,`+1 therefore suffices to recover
the solution everywhere in Ω. We show in section 2.2 how to build, via an algebraic
reduction, a discrete SIE (based on (2.6)) posed on the interfaces between boundaries
{Γ`,`+1}L−2

`=1 , and whose solution is exactly the restriction of the global solution to the
interfaces between layers. Once the solution at the interfaces is known, the solution
can be reconstructed at each layer exactly using (2.6). The remaining question is
how to efficiently solve the SIE using an iterative method. The answer lies within the
concept of polarization, which is the main topic of the next section.

2.1. Polarization. In this section we provide the rationale for the polarization
of waves, a concept that plays a crucial role to solve the SIE mentioned above effi-
ciently. We say that a wave is polarized at an interface when it is generated by sources
supported only on one side of that interface.

In order to express the polarizing conditions in boundary integral form, we briefly
recall the rationale provided in [103]. Let us consider Figure 2.2, where x = (x, z)
with z pointing down. Consider an interface Γ partitioning R2 as Ωdown ∪ Ωup, with
f 6= 0 in Ωdown. Let x ∈ Ωup, and consider a contour made up of Γ and a semicircle
D at infinity in the upper half-plane Ωup. In case the wave speed becomes uniform
past some large radius, the Sommerfeld radiation condition (SRC) puts to zero the
contribution on D in GRF [62, 75], resulting in the incomplete Green’s formula

(2.7) u(x) =

∫
Γ

(
∂G

∂zy
(x,y)u(y)−G(x,y)

∂u

∂zy
(y)

)
dSy, x ∈ Ωup \Γ.

On the other hand, if x approaches Γ from below, then we obtain the annihilation
formula

(2.8) 0 =

∫
Γ

(
∂G

∂zy
(x,y)u(y)−G(x,y)

∂u

∂zy
(y)

)
dSy, x→ Γ from below.

We can observe that (2.7) and (2.8) are equivalent; either one can be used as the
definition of a polarizing boundary condition on Γ. In this case we can say that a
wavefield is up-going with respect to Γ if it was generated by a source located below γ,
or equivalently, if its Dirichlet and Neumann traces, denoted u↑ and ∂zu

↑, satisfy the
annihilation condition (2.8). We can easily express the same annihilation condition
for a down-going wavefield by the annihilation formula

(2.9) 0 =

∫
Γ

(
− ∂G
∂zy

(x,y)u(y) +G(x,y)
∂u

∂zy
(y)

)
dSy, x→ Γ from above.

In order to efficiently solve the globally coupling SIE, we define an extended
system by introducing extra variables. We split u = u↑ + u↓ and ∂zu = ∂zu

↑ +
∂zu
↓ on Γ`,`+1, by letting (u↑, ∂zu

↑) be polarized up in Ω` (according to (2.8)) and

D
ow

nl
oa

de
d 

11
/1

2/
19

 to
 1

8.
10

.1
1.

12
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B950 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

⌦up

⌦down

�

D

x

z

Fig. 2.2. Illustration of (2.7) and (2.8).

(u↓, ∂zu
↓) polarized down (according to (2.9)) in Ω`+1. Together, the interface fields

u↑, u↓, ∂zu
↑, ∂zu

↓ are the polarized traces that serve as unknowns for the numerical
method.

The discrete system is then set up from discrete algebraic reformulations7 of the
local GRF (2.6) with the polarizing conditions (2.8) and (2.9), in a manner that will
be made explicit in section 3. The resulting system has a 2× 2 structure with block-
triangular submatrices on the diagonal and comparably small off-diagonal submatri-
ces. A very good preconditioner consists in inverting the block-triangular submatrices
by back- and forward-substitution. One application of this preconditioner can be seen
as a sweep of the domain to compute transmitted (as well as locally reflected) waves
using (2.7). From extensive numerical experiments provided in [103], the structure
of the system ensures that the number of GMRES iterations grows at most as logω,
provided that the m does not contain a large resonant cavity or microstructures at the
wavelength level with a preferred orientation aligned with the domain decomposition.

The rationale presented above can be seamlessly translated to the algebraic level,
as will be done in section 3, in which, for the sake of reproducibility, we follow a
mostly algebraic description of the algorithm.

2.2. Discrete realization. In order to compress the notation, and yet provide
enough details so that the reader can implement the algorithm presented in this paper,
we recall the notation used in [103].

We can discretize (2.1) using second order finite differences (Appendix A) or Q1
finite elements (Appendix B), and we obtain the global linear system

(2.10) Hu = f ,

which we aim to solve using a domain decomposition approach that relies on solving
the local systems H`, which are the discrete version of (2.2).

As explained previously, the coupling between the subdomains is realized via an
equivalent discrete SIE, which relies on a discrete version of (2.6). In this section we
briefly explain, at an algebraic level, the reduction of (2.10) to an equivalent discrete
SIE of the form

7The algebraic reformulation is performed using either summation by parts, as done in [103], or
the much less labor intensive approach shown in Appendix C.
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NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B951

Mu = f ,(2.11)

where u are the degrees of freedom of u at the interfaces between layers (see Figure 2.1)
and M is defined below after some basic notation has been introduced.

We suppose that the full domain has N = nx×nz discretization points, that each
layer has nx × n` discretization points, and that the number of points in the PML,
npml, is the same in both dimension and in every subdomain (light-blue and orange
nodes in Figure 2.1).

In both discretizations the mesh is structured so that we can define xp,q =
(xp, zq) = (ph, qh). We assume the same ordering as in [103], i.e.,

(2.12) u = (u1,u2, . . . ,unz
),

and we use the notation

(2.13) uj = (u1,j , u2,j , . . . , unx,j),

for the entries of u sampled at constant depth zj . We write u` for the wavefield
defined locally at the `th layer, i.e., u` = χΩ`u, and u`k for the values at the local
depth8 z`k of u`. In particular, u`1 and u`n` are the top and bottom rows9 of u` (see
red grid-points in Figure 2.1). We then gather the interface traces in the vector

u =
(
u1
n1 ,u2

1,u
2
n2 , . . . ,uL−1

1 ,uL−1
nL−1 ,u

L
1

)t
.(2.14)

Define the numerical local Green’s function in layer ` by

(2.15) H`G`(xi,j ,xi′,j′) = H`G`
i,j,i′,j′ = δ(xi,j − xi′,j′),

if (i, j) ∈ J−npml + 1, nx + npmlK× J−npml + 1, n` + npmlK,10 where the discrete dirac
delta11 is given by

(2.16) δ(xi,j − xi′,j′) =

{
1
h2 if xi,j = xi′,j′ ,
0 if xi,j 6= xi′,j′ ,

and where the operator H` acts on the (i, j) indices.
Furthermore, for notational convenience we consider G` as an operator acting on

unknowns at the interfaces, as follows.

Definition 2.1. We consider G`(zj , zk) as the linear operator defined from [−npml

+ 1, nx + npmlK× {zk} to J−npml + 1, nx + npmlK× {zj} given by

(2.17)
(
G`(zj , zk)v

)
i

= h

nx+npml∑
i′=−npml+1

G`((xi, zj), (xi′ , zk))vi′ ,

where v is a vector in Cnx+2npml and G`(zj , zk) are matrices in C(nx+2npml)×(nx+2npml).
Moreover, (2.17) is the discrete counterpart of

(2.18)

∫
R
G`((x, zj), (x

′, zk))v(x′, zk)dx′.

8We hope that there is little risk of confusion in overloading zj (local indexing) for zn`
c+j

(global

indexing), where n`c =
∑`−1
j=1 n

j is the cumulative number of points in depth.
9We do not consider the PML points here.

10The set denoted by Ja, bK is equivalent to {i ∈ Z; a ≤ i ≤ b}.
11The definition is for a finite difference discretization. We refer the reader to the Appendix C

for a more general definition.
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B952 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

The interface-to-interface operator G`(zj , zk) is indexed by two depths—following the
jargon from fast methods; we call them source depth (zk) and target depth (zj). In
particular, it represents the wavefield sampled at zj produced by a source (in this case
a measure) located at zk.

Definition 2.2. We consider G↑,`j (vn` ,vn`+1) the up-going local incomplete Green’s

integral and G↓,`j (v0,v1) the down-going local incomplete Green’s integral, as defined
by

G↑,`j (vn` ,vn`+1) = G`(zj , zn`+1)

(
vn`+1 − vn`

h

)
(2.19)

−
(

G`(zj , zn`+1)−G`(zj , zn`)

h

)
vn`+1,

G↓,`j (v0,v1) = −G`(zj , z0)

(
v1 − v0

h

)
+

(
G`(zj , z1)−G`(zj , z0)

h

)
v0.(2.20)

In what follows we use the shorthand notation G`(zj , zk) = G`
j,k when explicitly build-

ing the matrix form of the integral systems.

We can observe that Definition 2.2 is the discrete counterpart of (2.7), in which
we used two neighboring traces to define the normal derivative. The expression above
is the result of a discrete Green’s representation formula that can be deduced from a
laborious summation by parts (for more details, see [103]).

Finally, we define the Newton potential as resulting from a local solve inside each
layer.

Definition 2.3. Consider the local Newton potential N `
k applied to a local source

f ` as

(2.21) N `
k f ` =

n`∑
j=1

G`(zk, zj)f
`
j .

By construction, N `f ` satisfies the equation
(
H`N `f `

)
i,j

= fi,j for −npml + 1 ≤ i ≤
nx + npml and 1 ≤ j ≤ n`.

Following the notation introduced above, the discrete SIE reduction of the original
discrete Helmholtz equation, issued from (2.6), takes the form

G↓,`1 (u`0,u
`
1) + G↑,`1 (u`n` ,u

`
n`+1) +N `

1 f ` = u`1,(2.22)

G↓,`
n` (u`0,u

`
1) + G↑,`

n` (u`n` ,u
`
n`+1) +N `

n`f
` = u`n` ,(2.23)

u`n` = u`+1
0 , u`n`+1 = u`+1

1 ,(2.24)

if 1 < ` < L, with

(2.25) G↑,1n1 (u1
n1 ,u1

n1+1) +N 1
n1f1 = u1

n1 , u1
n1 = u2

0, u1
n1+1 = u2

1,

and

(2.26) G↓,L1 (uL0 ,u
L
1 ) +NL

nLfL = uL1 , uL−1
nL−1 = uL0 , uL−1

nL−1+1
= uL1 .

This was what we referred to as Mu = f in (2.11) and whose structure is depicted in
Figure 3.1 (left).

Finally, the online stage of the algorithm is summarized in Algorithm 1.
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Algorithm 1. Online computation using the SIE reduction.

1: function u = Helmholtz solver( f )
2: for ` = 1 : L do
3: f ` = fχΩ` . partition the source
4: end for
5: for ` = 1 : L do
6: N `f ` = (H`)−1f ` . solve local problems (parallel)
7: end for
8: f =

(
N 1
n1f1,N 2

1 f2,N 2
n2f2, . . . ,NL

1 fL
)t

. form right-hand side (r.h.s.) for the
integral system

9: u = (M)
−1

f . solve (2.11) for the traces
10: for ` = 1 : L do
11: u`j = G↑,`j (u`n` ,u

`
n`+1) + G↓,`j (u`0,u

`
1) +N `

j f ` . reconstruct local solutions
12: end for
13: u = (u1,u2, . . . ,uL−1,uL)t . concatenate the local solutions
14: end function

Fig. 3.1. Sparsity pattern of the SIE matrix in (2.11) (left) and the polarized SIE matrix in
(3.8) (right) .

3. The method of polarized traces. In this section, we review succinctly the
formulation of the method of polarized traces at an algebraic level; for further de-
tails see [101]. From Algorithm 1 we can observe that the local solves (lines 5-7 in
Algorithm 1) and the reconstruction (lines 10-12 in Algorithm 1) can be performed
concurrently; the only sequential bottleneck is the solution of (2.11) (line 9 in Al-
gorithm 1). For the sake of clarity we use matrices to explain the preconditioner;
however, all the operations can be performed in a matrix-free fashion, as will be
explained in section 4.1.

The method of polarized traces was developed to solve (2.11) efficiently. The
method utilizes an extended equivalent SIE formulation which relies on

• a decomposition of the wavefield at the interfaces in two components, up-
going and down-going;

• integral relations to close the new extended system;
• a permutation of the unknowns to obtain an easily preconditionable system

via classical matrix splitting (see section 4.2.2 of [84]).
Following the notation introduced in section 2.2, the resulting extended system (see
section 3.5 in [103]) can be written as
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B954 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

G↑,`1 (u`,↑
n` ,u

`,↑
n`+1

) + G↓,`1 (u`,↓0 ,u`,↓1 ) + G↑,`1 (u`,↓
n` ,u

`,↓
n`+1

) +N `
1 f ` = u`,↑1 + u`,↓1 ,(3.1)

G↓,`
n` (u`,↑0 ,u`,↑1 ) + G↑,`

n` (u`,↑
n` ,u

`,↑
n`+1

) + G↓,`
n` (u`,↓0 ,u`,↓1 ) +N `

n`f
` = u`,↑

n` + u`,↓
n` ,(3.2)

G↑,`0 (u`,↑
n` ,u

`,↑
n`+1

) + G↓,`0 (u`,↓0 ,u`,↓1 ) + G↑,`0 (u`,↓
n` ,u

`,↓
n`+1

) +N `
0 f ` = u`,↑0 ,(3.3)

G↓,`
n`+1

(u`,↑0 ,u`,↑1 ) + G↑,`
n`+1

(u`,↑
n` ,u

`,↑
n`+1

) + G↓,`
n`+1

(u`,↓0 ,u`,↓1 ) +N `
n`+1f

` = u`,↓
n` ,(3.4)

for ` = 1, . . . , L or equivalently

M u = f , u =

(
u↓

u↑

)
,(3.5)

where we write

u↓ =
(
u↓,1n1 ,u

↓,1
n1+1,u

↓,2
n2 , . . . ,u

↓,L−1
nL−1 ,u

↓,L−1
nL−1+1

)t
,(3.6)

u↑ =
(
u↑,20 ,u↑,21 ,u↑,30 , . . . ,u↑,L0 ,u↑,L1

)t
,(3.7)

to define the components of the polarized wavefields, and u↓ + u↑ = u. The indices
and the arrows are chosen such that they reflect the propagation direction. For exam-
ple, u↓,`n1 represents the wavefield leaving the layer ` at its bottom, i.e., propagating
downwards and sampled at the bottom of the layer.

After a permutation of the entries (see section 3.5 in [103], in particular Figure 5),
and some basic algebraic operations, the matrix in (3.5) takes the form

(3.8) M =

[
D↓ U

L D↑

]
,

where D↓ and D↑ are, respectively, block-lower triangular and block-upper triangu-
lar matrices with identity diagonal blocks, thus easily invertible using a block back-
substitution (see Figure 3.1 (right)).

Finally, the method of polarized traces seeks to solve the system in (3.5) using
an iterative method, such as GMRES, coupled with an efficient preconditioner issued
from a matrix splitting, which relies on the application of (D↓)−1 and (D↑)−1.

We point out that the blocks of M have a physical meaning. D↓ takes into account

the waves propagating downwards, D↑ considers the waves propagating upwards, U
takes into account the reflections of waves propagating upwards and being reflected
downwards, and U takes into account the down-going waves reflected upwards.

3.1. Gauss–Seidel preconditioner. In this paper, we use a block Gauss–Seidel
iteration as a preconditioner to solve the polarized system in (3.5) instead of the block
Jacobi iteration used in [103]. The Gauss–Seidel preconditioner is given by

(3.9) PGS

(
v↓

v↑

)
=

(
(D↓)−1v↓

(D↑)−1
(
v↑ − L(D↓)−1v↓

) ) ,
and the Jacobi preconditioner is given by

(3.10) P Jac

(
v↓

v↑

)
=

(
(D↓)−1v↓

(D↑)−1v↑

)
.

In our experiments, solving (3.8) using GMRES, or alternatively Bi-CGstab, precon-
ditioning with PGS converges twice as fast as using P Jac as a preconditioner, and

D
ow

nl
oa

de
d 

11
/1

2/
19

 to
 1

8.
10

.1
1.

12
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B955

0.9 1 1.1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
block Jacobi

0.9 1 1.1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
block Gauss Seidel

0.9 1 1.1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
block Jacobi

0.9 1 1.1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
block Gauss Seidel

Fig. 3.2. Eigenvalues for the preconditioned polarized systems using the block Jacobi (left) and
the block Gauss–Seidel (right) preconditioner, using the BP 2004 model [11] with L = 5, npml = 10,
and ω = 34π (top row) and ω = 70π (bottom row).

the former exhibits a weaker dependence of the number of iterations for convergence
with respect to the frequency. We considered other standard preconditioners, such as
symmetric successive overrelaxation (SSOR) (see section 10.2 in [84]), but they failed
to yield faster convergence, while being more computationally expensive to apply.

We point out that M can be partitioned in smaller blocks. In that case, we can
recover the X and NX sweeps (see Table 3 of [89]) when we precondition the system
with a Jacobi or Gauss–Seidel iteration, respectively.

Figure 3.2 depicts the eigenvalues for M preconditioned with PGS and P Jac. We

can observe that for PGS the eigenvalues are more clustered and there exist fewer
outliers. There exists extensive numerical evidence that indicates that a tighter clus-
tering of the spectrum away from zero can be related to a smaller number of iterations
needed for convergence12 thus explaining the faster convergence of the GMRES iter-
ations preconditioned with P Jac.

The system in (3.5) is solved using GMRES preconditioned with PGS. Moreover,
as in [103], one can use an adaptive H-matrix fast algorithm for the application of
integral kernels, which in this case are used for the solution of the local problems
defined in each layer.

12If the preconditioned systems were represented by normal matrices, then from Theorem 35.2
of [91] the clustering of the eigenvalues would explain the smaller number of iterations needed for
convergence. For a more extensive treatment of nonnormal matrices, see [54] and references therein.
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B956 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

Fig. 4.1. Nested decomposition in cells. The orange grid-points represent the PML for the
original problem, the light-blue grid-points represent the artificial PML between layers, and the pink
grid-points represent the artificial PML between cells in the same layer. Compare to Figure 2.1.

4. Nested solver. The main drawback of the method of polarized traces is
its offline precomputation that involves computing, storing, and compressing the
interface-to-interface Green’s functions needed to assemble M. In 3D this approach
would become impractical given the sheer size of the resulting matrices. To alleviate
this issue, we present an equivalent matrix-free approach that relies on local solves
with sources at the interfaces between layers.

As will be explained in what follows, the matrix-free approach relies on the fact
that the blocks of M (as well as the blocks of D↓ and D↑) are the restrictions of local
Green’s functions. Thus they can be applied via a local solve (using, for example, a
multifrontal sparse direct solver such as [2, 60, 27] among many others) with sources at
the interfaces. This same observation was used in [103] to reconstruct the solution in
the volume (see section 2.3, in particular (28), in [103]). However, given the iterative
nature of PGS (that relies on inverting D↓ and D↑ by block-back-substitution), solving
the local problems naively would incur a deterioration of the online complexity, in
particular, the parallelization. This deterioration can be circumvented if we solve
the local problems inside the layer via the same boundary integral strategy as in the
method of polarized traces, in a nested fashion. This procedure can be written as a
factorization of the Green’s integral in block-sparse factors, as will be explained in
section 4.2.

The nested domain decomposition approach involves a layered decomposition in
L ∼

√
P layers, such that each layer is further decomposed in Lc ∼

√
P cells, as

shown in Figure 4.1.
In addition to the lower online complexity achieved by the nested approach, the

offline complexity is much reduced; instead of computing large Green’s functions for
each layer, we compute much smaller interface-to-interface operators between the
interfaces of adjacent cells within each layer, resulting in a lower memory footprint.

The nested approach consists of two levels:
• the outer solver, which solves the global Helmholtz problem, (2.10), using the

matrix-free version of the method of polarized traces to solve (2.11) at the
interfaces between layers, and
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• the inner solver, which solves the local Helmholtz problems at each layer,
using an integral boundary equation to solve for the degrees of freedom at
the interfaces between cells within a layer.

4.1. Matrix-free approach. We proceed to explain how to implement the
method of polarized traces using the matrix-free approach. We point out that the
matrix-free approach is only used in the outer SIE; we still need to assemble and
factorize the local systems (or local SIEs); however, the outer SIE is never assembled.

As stated before, the backbone of the method of polarized traces is to solve (3.8)
iteratively with GMRES using (3.9) as a preconditioner. In this section we explain
how to apply M and Pgs in a matrix-free fashion, and we provide the pseudocode for
the method of polarized traces using the matrix-free approach with the local solves
explicitly identified.

From (3.1), (3.2), (3.3), and (3.4), each block of M is a Green’s integral, and its
application to a vector is equivalent to sampling a wavefield generated by suitable
sources at the boundaries. The application of the Green’s integral to a vector v, in a
matrix-free approach, consists of three steps:

• from v we form the sources at the interfaces,
• we perform a local direct solve inside the layer,
• and we sample the solution at the interfaces.

The precise algorithm to apply M in a matrix-free fashion is provided in Algorithm 2.

Algorithm 2. Application of the boundary integral matrix M.

1: function u = Boundary Integral( v )

2: f̃1 = −δ(zn1+1 − z)v1
n` + δ(zn1 − z)v2

n1 . forming equivalent sources

3: w1 = (H1)−1f̃1

4: u`n` = w`
n` − v`n` . sampling

5: for ` = 2 : L− 1 do

6:
f̃ ` = δ(z1 − z)v`−1

n`−1 − δ(z0 − z)v`1
−δ(zn`+1 − z)v`n` + δ(zn` − z)v`+1

1

. forming equivalent sources

7: w` = (H`)−1f̃ ` . inner solve
8: u`1 = w`

1 − v`1; u`n` = w`
n` − v`n` . sampling

9: end for
10: f̃L = δ(z1 − z)vL−1

nL−1 − δ(z0 − z)vL1 . forming equivalent sources

11: wL = (HL)−1f̃L

12: uL1 = wL
1 − vL1 . sampling

13: end function

Algorithm 2 can be easily generalized for M. We observe that there is no data
dependency within the for loop, which yields an embarrassingly parallel algorithm.

Matrix-free preconditioner. For the sake of clarity we present a high level
description of the implementation of (3.9) using the matrix-free version.

We use the notation introduced in section 3 (in particular, (3.6) and (3.7)) to
write explicitly the matrix-free operations for the block Gauss–Seidel preconditioner
in (3.9). Algorithm 3 and 4 have the physical interpretation of propagating the waves
across the domains, and Algorithm 5 can be seen as the up-going reflections generated
by a down-going wavefield. The following algorithms can be easily derived from section
3.5 in [103].
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B958 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET

Algorithm 3. Downward sweep, application of (D↓)−1.

1: function u↓ = Downward Sweep( v↓ )

2: u↓,1n1 = −v↓,1n1 . invert the diagonal block

3: u↓,1n1+1 = −v↓,1n1+1
4: for ` = 2 : L− 1 do

5: w` = (H`)−1
[
δ(z0 − z)u↓,`−1

n`−1+1
− δ(z1 − z)u↓,`−1

n`−1

]
. inner solve

6: u↓,`
n` = wn` − v↓,`

n` . sample the wavefield and subtract the r.h.s.

7: u↓,`
n`+1

= wn`+1 − v↓,`
n`+1

. sample the wavefield and subtract the r.h.s.
8: end for

9: u↓ =
(
u↓,1n1 ,u

↓,1
n1+1,u

↓,2
0 , . . . ,u↓,L−1

0 ,u↓,L−1
1

)t
10: end function

Algorithm 4. Upward sweep, application of (D↑)−1.

1: function u↑ = Upward sweep( v↑ )

2: u↑,L0 = −v↑,L0 . invert the diagonal block

3: u↑,L1 = −v↑,L1

4: for ` = L− 1 : 2 do

5: w` = (H`)−1
[
−δ(zn`+1 − z)u

↑,`−1
1 + δ(zn` − z)u↑,`−1

0

]
. inner solve

6: u↑,`1 = w`
1 − v↑,`1 . sample the wavefield and subtract the r.h.s.

7: u↑,`0 = w`
0 − v↑,`0 . sample the wavefield and subtract the r.h.s.

8: end for

9: u↑ =
(
u↑,10 ,u↑,11 ,u↑,2n2 , . . . ,u

↑,L−1
nL−1 ,u

↑,L−1
nL−1+1

)t
10: end function

Algorithm 5. Upward reflections, application of L.

1: function u↑ = Upward Reflections( v↓ )
2: for ` = 2 : L− 1 do

3:
f ` = δ(z1 − z)v↓,`0 − δ(z0 − z)v↓,`1

−δ(zn`+1 − z)v
↓,`+1
1 + δ(zn` − z)v↓,`+1

0

4: w` = (H`)−1f ` . inner solve

5: u↑,`1 = w`
1 − v↓,`1 . sample the wavefield and subtract the identity

6: u↑,`0 = w`
0 . sample the wavefield

7: end for
8: fL = δ(z1 − z)v↑,L0 − δ(z0 − z)v↑,L1

9: wL = (HL)−1fL . local solve

10: u↑,L1 = wL
1 − v↓,L1 . sample the wavefield and subtract the identity

11: u↑,L0 = wL
0 . sample the wavefield

12: u↑ =
(
u↑,20 ,u↑,21 ,u↑,3n2 , . . . ,u

↑,L−1
nL−1 ,u

↑,L
nL+1

)t
13: end function

We observe that the for loop in lines 2–7 in Algorithm 5 is completely parallel. On
the other hand, in Algorithms 3 and 4, the data dependency within the for loop forces
the algorithm to run sequentially. The most expensive operation is the inner solve
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Algorithm 6. Matrix-free polarized traces solver.

1: function u = Matrix-free solver( f )
2: for ` = 1 : L do
3: f ` = fχΩ` . partition the source

4: w` =
(
H`
)−1

(f `) . solve local problems
5: end for
6: f =

(
w1
n1 ,w2

1, . . . ,w
L
1

)t
; f0 =

(
w1
n1+1,w

2
0, . . . ,w

L
0

)t
7: f =

(
f
f0

)
. form the r.h.s. for the polarized integral system

8:

(
u↓

u↑

)
= u =

(
PGSM

)−1
PGSf . solve using GMRES

9: u = u↑ + u↓ . add the polarized components
10: f̃1 = f1 − δ(zn1+1 − z)u1

n1 + δ(zn1 − z)u2
1 . reconstruct local solutions

11: u1 =
(
H1
)−1

(f̃1)
12: for ` = 2 : L− 1 do

13:
f̃ ` = f ` + δ(z1 − z)u`−1

n`−1 − δ(z0 − z)u`1
−δ(zn`+1 − z)u`n` + δ(zn` − z)u`+1

1

14: u` =
(
H`
)−1

(f̃ `)
15: end for
16: f̃L = fL + δ(z1 − z)uL−1

nL−1 − δ(z0 − z)uL1
17: uL =

(
HL
)−1

(f̃L)
18: u = (u1,u2, . . . ,uL−1,uL)t . concatenate the local solutions
19: end function

performed locally at each layer. We will argue in section 4.2 that by using a nested
approach, with an appropriate reduction of the degrees of freedom, we can obtain a
highly efficient inner solve, which yields a fast application of the preconditioner.

Matrix-free solver. We provide the full algorithm of the matrix-free solver
using the method of polarized traces coupled with the Gauss–Seidel preconditioner.
The main difference with the original method of polarized traces in [103] is that we
use Algorithms 2, 3, 4, and 5 within the GMRES iteration (line 8 of Algorithm 6)
instead of compressed matrix-vector multiplications.

The matrix-free solver in Algorithm 6 has three stages:
• lines 2–7: preparation of the r.h.s. for the outer polarized integral system,

which can be done concurrently within each layer;
• lines 8–9: solve for the traces at the interfaces between layers, using precon-

ditioned GMRES and applying M and the preconditioner via the matrix-free
approach with Algorithms 2, 3, 4, and 5;

• lines 10–18: reconstruction of the solution inside the volume at each layer,
which can be performed independently of the other layers.

4.2. Nested inner and outer solver. In the presentation of the matrix-free
solver (Algorithm 6), we have extensively relied on the assumption that the inner
systems H` can be solved efficiently in order to apply the Green’s integrals fast. In
this section we describe the algorithms to compute the solutions to the inner, or local,
systems efficiently, and then we describe how the outer solver calls the inner solver.

From the analysis of the rank of the off-diagonal blocks of the Green’s functions,
we know that the Green’s integrals can be compressed in a way that results in a
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fast application in O(n3/2) time (see section 5 in [103]), but this approach requires
precomputation and storage of the Green’s functions. The matrix-free approach in
Algorithm 6 does not need expensive precomputations, but it would naively perform
a direct solve in the volume (inverting H`), resulting in an application of the Green’s
integral in O(N/L) complexity up to logarithmic factors (assuming that a good di-
rect method is used at each layer). This becomes problematic when applying the
preconditioner, which involves O(L) sequential applications of the Green’s integrals
as Algorithms 3 and 4 show. This means that the unaided application of the pre-
conditioner using the matrix-free approach would result in an algorithm with linear
online complexity; in particular, the method would behave similarly to a sweeping-
like preconditioner. The nested strategy (which we present below) mitigates this
issue resulting in a lower O(Lc(n/L)3/2) (up to logarithmic factors) complexity for
the application of each Green’s integral, where Lc is the number of cells per layer.

We follow the matrix-free approach of Algorithm 6, but instead of a direct solver to
invert H`, we use a nested solver, i.e., we use the same reduction used in Ω to each layer
Ω`. We reduce the local problem at each layer to solving a discrete integral system
analog to (2.11) with a layered decomposition in the transverse direction given by

M`u` = f ` for ` = 1, . . . , Lc.(4.1)

We suppose that we have Lc ∼ L ∼
√
P cells in each layer.

The nested solver uses the inner boundaries, or interfaces between cells, as proxies
to perform the local solve inside the layer efficiently. The efficiency can be improved
when the inner solver is used in the applications of the Green’s integral within the
preconditioner. The improved efficiency stems from the localization of the sources,
and the sampling of the solution on the interfaces, which allows us to precompute
and compress some for the operations. In that case, the application of the Green’s
integral can be decomposed into three steps:

• using precomputed Green’s functions at each cell, we evaluate the wavefield
generated from the sources to form f ` (from red to pink in Figure 4.2 (left));
this operation can be represented by a sparse block matrix M`

f ;

• we solve (4.1) to obtain u` (from pink to blue in Figure 4.2 (right)); finally,
• we use the Green’s representation formula to sample the wavefield at the

interfaces (from blue to green in Figure 4.2); this operation is represented by
another sparse-block matrix M`

u.

f ` u`

Fig. 4.2. Sketch of the application of the Green’s functions using a nested approach. The
sources are in red (left) and the sampled field in green (right). The application uses the inner
boundaries as proxies to perform the solve.
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NESTED DOMAIN DECOMPOSITION FOR THE HELMHOLTZ EQ. B961

Using the definition of the incomplete integrals in section 2.2, the algorithm de-
scribed above leads to the factorization

(4.2)


G↓,`0 (v0,v1) + G↑,`0 (vn` ,vn`+1)

G↓,`1 (v0,v1) + G↑,`0 (vn` ,vn`+1)

G↓,`
n` (v0,v1) + G↑,`

n` (vn` ,vn`+1)

G↓,`
n`+1

(v0,v1) + G↑,`
n`+1

(vn` ,vn`+1)

 = M`
u

(
M`
)−1

M`
f ·


v0

v1

vn`

vn`+1

 ,
in which the blocks of M`

f and M`
u are dense but compressible in partitioned low rank

(PLR)13 form.

Algorithms. We now provide the algorithms in pseudocode for the the inner
solver, Algorithm 7, and we provide the necessary modifications to Algorithm 6 for
the outer solve. In addition, we provide a variant of the inner solver that is crucial to
obtain the online complexity mentioned at the beginning of the paper (i.e., O(N/P )
provided that P = O(N1/5)).

In order to reduce the notational burden, we define the inner solve using the same
notation as before. We suppose that each layer Ω` is decomposed in Lc cells, noted
{Ω`,c}Lc

c=1. We extend all the definitions from the matrix-free solver to the inner solver
by indexing the operations by ` and c, in which ` stands for the layer-index and c for
the cell-index within the layer.

For each Ω`, we apply the variable swap x̃ = (z, x), which is noted by R such
that R2 = I. Under the variable swap, we can decompose Ω` in Lc layers, or cells,
{Ω`,c}Lc

c=1, to which we can apply the machinery of the boundary integral reduction
at the interfaces between cells. The resulting algorithm has the same structure as
before. The variable swap is a suitable tool that allows us to reuse to great extent
the notation introduced in [103]. Numerically, the variable swap just introduced is
implemented by transposing the matrices that represent the different wavefields.

To obtain the nested solver, we modify Algorithm 6 and the algorithm it calls by
replacing (H`)−1 by the inner solver.

• If the support of the source is the whole layer and the wavefield is required
in the volume, we use the inner solve as prescribed in Algorithm 7 without
modifications. In Algorithm 6 we modify lines 4, 11, 14, and 17, in which
(H`)−1 is replaced by Algorithm 7.

• If the source term is concentrated at the interfaces between layers, and the
wavefield is needed only at the interfaces, we reduce the computational cost
by using a slight modification of Algorithm 7, according to (4.2). In this
variant, the local solves in line 7 of Algorithm 7 (which is performed via a LU
back-substitution) and the reconstruction (lines 11 to 15 in Algorithm 7) are
replaced by precomputed operators as explained above. Within the GMRES
loop (line 10 in Algorithm 6), we replace (H`)−1 with the variant of Algo-
rithm 7 following (4.2) in line 5 of Algorithm 3, line 4 of Algorithm 4, and
lines 4 and 9 of Algorithm 5.

The choice of algorithm to solve (4.1) and to apply the Green’s integrals dictates
the scaling of the offline complexity and the constant of the online complexity. We can
either use the method of polarized traces or the compressed-block LU solver, which
are explained below.

13A PLR matrix is a H-matrix obtained by an adaptive dyadic partitioning and multilevel com-
pression; see section 3 in [103].
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Algorithm 7. Inner solve, for applying (H`)−1 in Algorithms 3, 4, and 5.

1: function w = Inner Solver`( f `)
2: g` = R ◦ f ` . variable swap
3: for c = 1 : Lc do
4: g`,c = gχΩ`,c . partition the source
5: end for
6: for c = 1 : Lc do
7: N `,cg`,c = (H`,c)−1g`,c . solve local problems
8: end for

9: g` =
(
N `,1
n1 g`,1,N `,2

1 g`,2,N `,2
n2 g`,2, . . . ,N `,Lc

1 g`,Lc

)t
. form r.h.s.

10: v` =
(
M`
)−1

g` . solve for the traces (4.1)

11: for c = 1 : Lc do . local reconstruction
12: v`,cj = G↑,`,cj (v`,c

n` ,v
`,c
n`+1

) + G↓,`,cj (v`,c0 ,v`,c1 ) +N `,c
j g`,c

13: end for
14: v` = (v`,1,v`,2, . . . ,v`,Lc−1,v`,Lc)t . concatenate the local solutions
15: w = R ◦ v` . variable swap
16: end function

4.2.1. Nested polarized traces. To efficiently apply the Green’s integrals us-
ing Algorithm 7, we need to solve (4.1) efficiently. One alternative is to use the method
of polarized traces in a recursive fashion to solve the system at each layer. We call
this approach the method of nested polarized traces. Following [103] this approach
has the same empirical scalings, at the inner level, as those found in [103] when the
blocks are compressed in PLR form.

Although, as will be explained in section 4.3, in this case the complexity is lower,
we have to iterate inside each layer to solve each system, which produces large con-
stants for the application of the Green’s integrals in the online stage.

4.2.2. Inner compressed-block LU. An alternative to efficiently apply the
Green’s integrals via Algorithm 7 is to use the compressed-block LU solver (see Chap-
ter 3 in [101]) to solve (4.1). Given the banded structure of M` (see Figure 3.1 (left)),
we perform a block LU decomposition without pivoting. The resulting LU factors are
block sparse and tightly banded. We have the factorization

(4.3) M` = L` U`,

which leads to

(4.4) G` = M`
u(U`)−1(L`)−1M`

f ,

in which G` represents the linear operator at the left-hand side of (4.2). Following
section 3 in [101],(U`)−1(L`)−1 can be done in the same complexity as the nested
polarized traces, at the price of a more thorough precomputation. The improved
complexity is achieved by inverting the diagonal blocks of the LU factors, thus reduc-
ing (U`)−1 and (L`)−1 to a sequence of matrix-vector multiplications that are further
accelerated by compressing the matrices in PLR form.

The main advantage of the inner compressed solver with respect to using the
method of polarized traces in the layer solve is that we do not need to iterate, and
the system to solve is half the size. Therefore, the online constants are much lower
than using the method of polarized traces for the inner solve.
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Table 4.1
Number of nodes active, complexity, and communication cost of the different steps of the pre-

conditioner, in which α depends on the compression of the local matrices, thus on the scaling of the
frequency with respect to the number of unknowns. The value of α depends on the compression rate
of the discrete integral operator, which depends on the scaling of ω, N , and the maximum rank of
the blocks (see section 5.3, in particularly, Table 4, of [103]). Typically α = 3/4.

Step Nnodes active Complexity per node Communication

LU factorizations O(P ) O
(
(N/P + log(N))3/2

)
O (1)

Green’s functions O(P ) O
(
(N/P + log(N))3/2

)
O (1)

Local solves O(P ) O
(
N/P + log(N)2

)
O (1)

Sweeps 1 O(P (N/P + log(N)2)α) O(PN1/2)
Reconstruction O(P ) O

(
N/P + log(N)2

)
O (1)

4.3. Complexity. Table 4.1 summarizes the complexities and number of pro-
cessors at each stage of the nested polarized traces method in section 4.2.1.

The runtimes and complexities presented in Table 4.1 use the following setup:
We suppose that we have available O(P ) nodes, and they are organized following the
domain decomposition in Figure 4.1. In particular, we have L ∼

√
P layers, O(

√
P )

nodes per layer, and O(1) nodes per cell, i.e., Lc ∼
√
P and L · Lc ∼ P . We suppose

that the factorized matrices and compressed Green’s functions are local to the nodes
associated to a cell. The cells communicate only with theirs neighbors induced by the
topology of the decomposition. For simplicity we do not count the logarithmic factors
from the nested dissection; however, we consider the logarithmic factors coming from
the extra degrees of freedom in the PML.14

4.3.1. Offline complexity. The offline stage is composed of the LU factoriza-
tions at each cell containing O(N/P +log(N)) points, the computation of the Green’s
function that involves solving O(n/

√
P ) local systems in each cell, and the compres-

sion of the resulting Green’s functions in PLR form. The complexities for each node
are presented in Table 4.1; furthermore, the compression of the Green’s functions
takes a negligible O(n/

√
P log(n/

√
P )) time per node (see Table 2 and section 5.1 in

[103]) using randomized methods (cf. [73]) to accelerate the compression step.
From Table 4.1, the offline stage is embarrassingly parallel at the cell level, and it

has an overall runtime O
(
(N/P )3/2

)
, up to logarithmic factors, as stated in Table 1.1.

When using the inner compressed-block LU method, we have the same complexity
but with an extra O(N3/2/P ) cost in the offline stage, making it comparable to the
method of polarized traces in [103], although with a lower online complexity.

4.3.2. Online complexity. For the online stage, the runtime of the local solves
and the reconstruction in each cell is independent of the frequency and embarrassingly
parallel; the runtime is then dominated by the complexity of multifrontal methods,
as stated in Table 4.1.

The sweeps are, however, fully sequential, as shown in Table 4.1. Moreover, given
the nested nature of the preconditioner, we have two kinds of sweeps:

• the inner sweeps within a layer that are used to apply the Green’s integral in
the outer SIE,

• and the outer sweeps, which sweep from layer to layer applying the Green’s
integrals in a matrix-free fashion, therefore relying on the inner sweeps.

The runtime of the inner sweeps depends on the compression rate of the integral
operators involved in the local SIE, which is given by α that is exponent of the

14They are more visible in the runtime scalings presented below.
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empirical asymptotic complexity of the application of integral operators with respect
to N . The value of α depends on the scaling between the frequency and the number
of degrees of freedom per dimension. If the frequency scales as ω ∼

√
n, the regime

in which second order finite-differences and Q1 finite elements are expected to be
quasi-optimal, we empirically obtain α = 5/8 (see Figure 13 in [103]); however, we
assume the more conservative value α = 3/4. The latter is in better agreement with
a theoretical analysis of the ranks of the off-diagonal blocks of the Green’s functions
under a geometrical optics approximation (see section 5, in particular, Table 4 and
Lemma 7, in [103]; for further details on the compressibility of Green’s functions for
smooth heterogeneous media see [35]).

In such a scenario, the complexity of the application of the Green’s integral at
the layer level depends on the complexity of the application of each of the factors in
the right-hand side of (4.2), i.e., M`

u, (M`)−1, and M`
f .

For the operators M`
u and M`

f , we can compress their blocks in PLR format

(see section 5 of [103]). From (4.2) and Figure 4.2, we can clearly see that M`
u and

M`
f are integral operators with blocks involving the numerical Green’s function local

to each cell sampled at the interfaces. Each block can be represented by a matrix
of size (n/L + log(n)) × (n/L + log(n)),15 thus after compression it is possible to
apply each block in O((n/L+log(n))2α) time. This last statement is backed from the
extensive numerical experiments whose results are summarized in Table 4 of [103], in
which the complexity of the application of a compressed n × n matrix issued from
the discrete Green’s function is O(n2α) or, following the fact that N = n2, O(Nα).
Finally, given that the operators M`

u and M`
f have Lc blocks, they can be applied in

O(Lc(n/L+ log(n))2α) time.
For the application of (M`)−1, the remaining term in (4.2), we can solve (4.1)

using either the compressed-block LU or the nested polarized traces in O(Lc(n/L +
log(n))2α) time. We follow the same procedure as in the method of polarized traces:
we build an extended local SIE, and we solve the local SIE iteratively using precondi-
tioned GMRES. The solve is accelerated by compressing the blocks of the local SIE.
Each block of the local SIE is represented by an (n/L + log(n)) × (n/L + log(n))
matrix; thus, following section 4 in [103], the application of each block can be per-
formed in O((n/L + log(n))2α) time. Therefore, given that each layer has Lc cells,
the application of the local SIE and the local preconditioner after compression can be
performed in O(Lc(n/L+ log(n))2α) time. For the case of the compressed-block LU
variant, a similar argument provides the same asymptotic complexity.

This yields a runtime of O(Lc(n/L+log(n))2α) for each application of the Green’s
integral, at the layer level, using the factorization in (4.2).

Finally, to apply the Gauss–Seidel preconditioner on the outer SIE, we need to
perform outer sweeps, each requiring O(L) applications of the Green’s integrals, re-
sulting in a runtime of O(L · Lc(n/L+ log(n))2α) to solve (3.5). Using the fact that
L ∼

√
P , Lc ∼

√
P , N = n2 and adding the contribution of the other steps of

the online stage, we have that the overall online runtime is given by O(P 1−αNα +
P log(N)α + N/P + log(N)2). Supposing that P = O(N) and neglecting the loga-
rithmic factors, we have that the overall runtime is given by O(P 1−αNα + N/P ) as
stated in Table 1.1.

Moreover, if α = 3/4, then we have that the online complexity is O(N/P ) (up
to logarithmic factors) provided that P = O

(
N1/5

)
. The communication cost for

15The logarithmic factor comes from the fact that the traces are taken transversally to each layer;
then we need to consider the extra PML nodes, which grow as O(logn).
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the online part is O(nP ), and the memory footprint is O(P 1/4N3/4 + P log(N)3/4 +
N/P + log(N)2), which represents an asymptotic improvement with respect to [103],
in which the memory footprint is O(PN3/4 +N/P + log(N)2) .

It was already explained in [103] why α = 3/4 is a reasonable assumption. Empir-
ically, α is often closer to 5/8, but this seems to be an overly optimistic preasymptotic
scaling. Theoretically, the case can be made for α = 3/4 in the continous geometri-
cal optics scenario when G(x, y) = Aω(x, y)eiωΦ(x,y) for smooth Aω(x, y) and Φ(x, y)
except when x 6= y, and Aω(x, y) further depends on ω in a harmless polyhomo-
geneous way.16 When ω ∼ n, then it is easy to show (by factoring out the leading
plane wave) that the largest constant-rank blocks have size O(

√
ω) = O(

√
n). Further

bookkeeping on the partitioned low-rank structure induced by these blocks shows that
the compressed matrix-vector multiplication can be realized in O(n3/2) = O(N3/4)
operations, yielding α = 3/4. This argument is not rigorous for two reasons: (i)
geometrical optics may not be a good approximation, and (ii) it does not take into
account the fact that the Green’s function for the discretized problem may be far from
that of the PDE. If the Green’s functions are not compressed, it is clear that α = 1.

5. Numerical results. The code used for the numerical experiments was writ-
ten in MATLAB, and the experiments were performed in a dual socket server with
two Xeon E5-2670 and 384 GB of RAM. Given the lack of parallelism of the MATLAB
implementation, we only benchmark the sequential bottleneck of the online computa-
tion, which is the only nonembarrassingly parallel operation. Following Table 4.1 the
communication cost is asymptotically negligible, so we focus the benchmarks on the
number of iterations needed for convergence and on the compressibility of the Green’s
functions at the inner level.

In this section we provide numerical evidence of the following claims:
• the fast convergence of the method of polarized traces for a typical geophysical

benchmark model and its agnosticity to the type of sources;
• the behavior of the preconditioner using two different matrix splittings and

different Krylov iterative methods to solve the outer problem;
• the dependence of the number of iteration to convergence with respect to the

frequency, the contrast of the medium, the number of subdomains, and the
number of layers in layered media;

• the effectiveness of the compression of the local matrices to reduce the run-
time; and,

• the complexity reduction due to the compression of the local matrices coupled
with a proper scaling of the number of subdomains.
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Fig. 5.1. BP 2004 geophysical benchmark model [11].

16i.e., Aω(x, y) has no highly oscillatory components depending on ω.
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Table 5.1
Maximum number of iterations required to reduce the relative residual to 10−5, using GMRES

with the Gauss–Seidel preconditioner, for 50 realizations of a randomly located point source and a
randomly generated global source. In this case, f = ω/2π ∼ n, the number of layers and the number
of cells inside each layer grow as n, the number of points in the PML scales as log(N), and the
sound speed is given by the BP 2004 model (see [11]).

N ω/2π [Hz] L× Lc s = δ(x) s = rand
60× 169 1.25 6× 3 3 3
120× 338 2.5 12× 6 4 4
239× 675 5.0 24× 12 4 5
478× 1349 10.0 48× 24 5 5
955× 2697 20.0 96× 48 5 6
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Fig. 5.2. Two iterations of the preconditioner, from left to right and top to bottom: initial guess
with only local solves, first iteration, second iteration, solution. The background model is given by
the BP 2004 model [11] shown in Figure 5.1.

5.1. Fast convergence. Figure 5.2 depicts the fast convergence of the method
when using the BP 2004 model17 (see Figure 5.1), point sources, and a layered do-
main decomposition with vertical layers. After a couple of iterations, the exact and
approximated solutions are indistinguishable to the naked eye. Figure 5.3 depicts the
fast convergence of the method of polarized traces when using the BP 2004 model
as wavespeed, but with a global random source. We can observe that the method
converges extremely fast; after two iterations the exact and approximated solutions
are indistinguishable to the naked eye. Even though most of the experiments shown
in this manuscript were performed using randomly located point sources, which are
of paramount importance in geophysics to approximate seismic sources, the behavior
of the solver is agnostic to the form and location of the source as shown in Table 5.1,
which presents the number of iterations to convergence when using a randomly lo-
cated point source or a global source randomly generated by the rand function in
MATLAB.

5.2. Convergence using different matrix splittings and Krylov solvers.
Previously we defined two different preconditioners: the block Jacobi (3.10), and
block Gauss–Seidel preconditioner (3.9), which are essentially different block matrix
splittings of the polarized system in (3.8). We compare the performance of both
preconditioners for two different Krylov subspace methods used to solve the polarized
system. In particular, the polarized system is solved iteratively using either GMRES

17The BP 2004 model is a typical benchmark model in the geophysical community, and it includes
simplified geologic features usually found in the Eastern/Central Gulf of Mexico and off-shore Angola.
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Fig. 5.3. Two iterations of the preconditioner using a random source supported in the physical
domain, from left to right and top to bottom: initial guess with only local solves, first iteration,
second iteration, solution. The background model is given by the BP 2004 model [11] shown in
Figure 5.1.

Table 5.2
Number of iterations required to reduce the relative residual to 10−7, using GMRES and Bi-

CGstab preconditioned with the Gauss–Seidel and Jacobi preconditioners. f = ω/2π ∼ n; the
number of points in the PML scales as log(N), and the sound speed is given by the BP 2004 model
(see [11]).

N ω/2π [Hz] L× Lc GSgmres Jgmres GSbicgstab Jbicgstab
120× 338 2.50 9× 3 5 10 2.5 5
239× 675 5.0 18× 6 6 11 3 6
478× 1349 10.0 27× 9 6 12 3.5 6.5
955× 2697 20.0 36× 12 8 15 4 7
1910× 5394 40.0 45× 15 8 17 4.5 9.5

or Bi-CGstab [95] preconditioned with either the Gauss–Seidel preconditioner (3.9)
or the Jacobi preconditioner (3.10). Table 5.2 summarizes the typical behavior of the
different combinations of preconditioners and Krylov solvers; it shows the number of
iterations needed to converge when the polarized system (3.5) is solved for different
frequencies and number of subdomains using the BP 2004 model.

We can observe that for this particular model, the number of iterations needed
to converge depends weakly on the frequency and the number of subdomains when a
horizontally layered decomposition is used. Moreover, when the system is precondi-
tioned with PGS , the iterative solver converges twice as fast as when using P Jac as a
preconditioner, which can be loosely explained by the clustering of the eigenvalues of
the preconditioned systems, as shown in Figure 3.2. Table 5.2 shows that the number
of iterations for Bi-CGstab is half the number of iterations for GMRES; however,
Bi-CGstab needs two applications of the matrix and preconditioner per iteration, re-
sulting in a comparable computational cost, albeit with a smaller memory footprint
for Bi-CGstab.

We point out that we used a zero initial guess for both GMRES and Bi-CGstab
iterative solvers. Even though it is possible to use a random initial guess, it is not
recommended given that the number of iterations will increase compared to a zero
initial guess. Table 5.3 shows that the number of iterations to convergence using a
random initial guess (generated using the rand command in MATLAB) retains the
same asymptotic behavior as before, albeit with larger constants.
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Table 5.3
Maximum number of iterations required to reduce the relative residual to 10−5, using GMRES

with the Gauss–Seidel preconditioner, for 50 realizations of a random source, using a zero initial
guess and a randomly generated initial guess. In this case, f = ω/2π ∼ n, the number of layers and
the number of cells inside each layer grow as n, the number of points in the PML scales as log(N),
and the sound speed is given by the BP 2004 model (see [11]).

N ω/2π [Hz] L× Lc u0 = 0 u0 = rand
60× 169 1.25 6× 3 3 5
120× 338 2.5 12× 6 4 6
239× 675 5.0 24× 12 5 8
478× 1349 10.0 48× 24 6 10
955× 2697 20.0 96× 48 6 12

Table 5.4
Number of iterations required to reduce the relative residual to 10−5, using GMRES precondi-

tioned with the Gauss–Seidel preconditioner, in two different patches of the Marmousi2 model [71]
using either a horizontal or vertical layered decomposition. The subscripts indicate in which medium
the Helmholtz equation was solved: lay stands for the layered patch in Figure 5.4 (right); whereas
cent stands for the centered patch in Figure 5.4 (left). f = ω/2π ∼ n, the number of layers scales
as L ∼ n; and the number of points in the PML scales as log(N).

N ω/2π L Itercent,vert Itercent,hor Iterlay,vert Iterlay,hor
88× 88 8 6 4 4 3 4

175× 175 17 12 4 5 3 6
350× 350 35 24 5 6 4 7
700× 700 70 48 6 7 4 7

1400× 1400 140 96 7 8 5 12
2800× 2800 280 192 8 9 7 18

5.3. Layered media. Although the asymptotic behavior of the sweeping type
solvers seems to be weakly dependent on the frequency, the number of subdomains,
the source, and the initial guess, this kind of method can be very sensitive to the
medium and to the orientation of the layered decomposition. One typical example of
the former is a medium containing large resonant cavities, for which the number of
iterations becomes highly frequency dependent. One example of the latter is layered
media with multiscale structures at the wavelength level: if the domain decomposi-
tion is performed perpendicularly to the layers in the media (i.e., the layers in the
decomposition are perpendicular to the layers present in the medium), the empirical
behavior of the method remains the same; however, if the domain decomposition is
performed parallel to the layers, there is a detriment on the convergence rate.

We showcase this behavior using two different parts of the Marmousi2 [71] model.
We use the central part of the model, as in Figure 5.4 (left), in which we observe
several layers that span different lengthscales, but without a preferred orientation,
and the left-most part of the model, as in Figure 5.4 (right), in which most of the
layers are oriented horizontally. Figure 5.5 depicts the solutions to the Helmholtz
equation using both patches of the Marmousi2 model. Table 5.4 shows the number of
iterations to convergence for each portion of the model, using a decomposition with
either horizontal or vertical layers. When the medium does not possess a preferred
orientation, both decompositions perform roughly the same; however, when there is
a preferred orientation, the decomposition with layers perpendicular to the preferred
orientation performs better. This difference in the performance is due to the increas-
ing number of layers and frequency simultaneously; in fact, the number of iterations
depends weakly on the frequency when the number of layers is constant, as shown in
Table 5.5.
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Fig. 5.4. Truncated Marmousi models: left: the central part without a preferred layered struc-
ture, right: left-most part, with a horizontally layered structure.
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Fig. 5.5. Solutions to the Marmousi2 patches for ω/(2π) = 35: left: solution to the Helmholtz
equation for the central patch of the Marmousi2 model, right: solution to the Helmholtz equation
for the left-most patch of the Marmousi2 model.

We interpret the detriment of the convergence rate as follows: from [103] it is
known that the performance of the method of polarized traces is roughly proportional
to energy scattered back at each sweep compared to the energy transmitted, which is
closely linked to the number of reflections of the wavefield when interacting with the
medium. In particular, the interactions within each subdomain are treated seamlessly
using a direct solver, and interactions across subdomains are treated iteratively. The
method handles the propagating waves in a sequential fashion by sweeping the waves
traveling across the subdomains and treating the reflections in an ulterior sweep in
the opposite direction. For example, if the medium is constant, then at each sweep
most of the energy of the waves will be transmitted across subdomains, up to a small
amount that is reflected given the imperfection of the absorbing boundary conditions.
However, if the medium exhibits discontinuities in the wave speed, which will produce
new reflections, then energy will be scattered back. These new reflections need to be
propagated in an ulterior sweep in the opposite direction, which will provoke new
reflections that need to be propagated in a subsequent sweep, and so on.

If the medium presents a handful of layers as in Figure 5.6, and the frequency and
the number of subdomains increase, we have that most of the subdomains will not
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Table 5.5
Number of iterations required to reduce the relative residual to 10−5, using GMRES precondi-

tioned with the Gauss–Seidel preconditioner, using the layered patch of the Marmousi2 model [71]
as depicted in Figure 5.4 (right), and using either a horizontal or vertical layered decomposition.
f = ω/2π ∼ n, the number of layers is fixed and equal to 6, and the number of points in the PML
scales as log(N).

N ω/2π L Iterlay,vert Iterlay,hor
88× 88 8 6 3 4

175× 175 17 6 3 5
350× 350 35 6 4 6
700× 700 70 6 4 6

1400× 1400 140 6 4 6
2800× 2800 280 6 5 6
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Fig. 5.6. Layered media used for the numerical experiments with different contrasts; the left
medium has a maximum contrast of 2.0 in the wave speed, and the right medium has a maximum
contrast of 3.0.

present any interior reflections. Thus, during the sweeps the waves are transmitted
seamlessly across most subdomains until they hit a subdomain containing a disconti-
nuity, in which a reflection is created, which will need to be transmitted in an ulterior
sweep. In this case, the number of reflections in the domain is mostly frequency in-
dependent. Therefore, provided that enough absorption is used for the transmission
conditions between subdomains, the performance of the method is preserved as shown
in Table 5.6.

It is well known that waves interact with structures that have a characteristic
length of the same order than the wavelength. In the case of a layered medium with
multiscale structures, as the one presented in Figure 5.4 (right), as the frequency
increases, or the wavelength decreases, the waves will increasingly interact with in-
creasingly thinner layers, thus increasing the amount of energy scattered back.

If the frequency increases but the number of layers is constant, then the increased
number of interactions due to the increment on the frequency is handled with a
direct method within each subdomain; the only interactions handled iteratively are
the transmission and reflection between subdomains, which remain almost constant
as the frequency increases, as depicted by Table 5.5.

However, if the number of domains increases as the frequency increases, then the
orientation of the domain decomposition is crucial. If the orientation is perpendicular
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Table 5.6
Number of iterations required to reduce the relative residual to 10−5, using GMRES precondi-

tioned with the Gauss–Seidel preconditioner, for the layered models in Figure 5.6, using a vertical
domain decomposition, for two different contrasts. f = ω/2π ∼ n; the number of layers scales as
L ∼ n, and the number of points in the PML scales as log(N).

N ω/2π L Iter2.0 Iter3.0
60× 60 6 4 2 2

120× 120 12 8 2 2
240× 240 24 16 2 3
480× 480 48 32 3 4
960× 960 96 64 3 5

1920× 1920 192 128 5 7

to the layered media, then, as the frequency increases, the energy scattered from the
micro structures is efficiently handled via a direct method within each subdomain.
The interaction between subdomains will be composed of mostly transmitted waves
propagating within each of the layers present in the medium. These interactions are
efficiently handled by the sweeps. In such cases the method retains its performance
as shown in Table 5.4. However, if the domain decomposition aligned to the layered
media, then the method needs to properly handle all the internal reflection between
the increasing numbers of subdomains in a sequential fashion, thus resulting in an
increasing number of iterations to convergence as shown in Table 5.4.

Finally, the performance of the method is not only a function of the number of
layers, it is a function of the strength of the reflections, which is directly linked to the
contrast between layers. For example, in a layered medium with strong contrast, the
amount of energy scattered back will increase, meaning that the sweep needs to take
into account more reflections, as shown in Table 5.6.

We point out that in these numerical experiments we used L ∼ n, which is
a much more astringent condition than the one used in the nested version of the
algorithm, in which L ∼ Lc ∼

√
P , where P = O(N1/5). In order to keep an online

complexity sublinear, the number of layers and cells in the decomposition grows slowly
with respect to the frequency. This fact, coupled with the very efficient transmission
conditions between cells, greatly attenuates the growth in the number of iterations for
the nested solver within a layer, even in the case of multiscale layers with a preferred
orientation.

5.4. Fast methods. Table 5.2 depicts the efficiency of the preconditioner mea-
sured in the number of iterations for convergence; however, in order to obtain sub-
linear runtimes, we need to compress the integral kernels. As noted in [103] the scaling
of the number of degrees of freedom with the frequency is critical to obtain the cor-
rect asymptotic compression rate. If the scaling is too aggressive, as in Table 5.2, the
pollution error will be overwhelming and the compression rate of the integral operator
will suffer. In order to account for the pollution error, in Table 5.7 we use the scaling
n ∼ ω2, which is known to be quasi-optimal for finite elements and finite differences
(even though it is widely believed that n ∼ ω3/2 is enough, cf. [5])

Table 5.7 shows the sublinear18 O(P 1−αNα + P log(N)α) scaling of the runtime
of one GMRES iteration for α = 5/8, as shown by Figure 5.7. Once again we can
observe that the number of iterations to converge depends weakly on the frequency
and the number of subdomains. Figure 5.7 depicts the efficient compression of the

18The same scaling holds for other typical geophysical benchmarks such as Marmousi2 [71], in
which convergence is achieved in 4–6 iterations.
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Table 5.7
Number of GMRES iterations (bold) required to reduce the relative residual to 10−5, along with

average execution time (in seconds) of one GMRES iteration using the compressed direct method,
for different N and P = L× Lc. The frequency is scaled such that f = ω/2π ∼

√
n, the number of

points in the PML scales as log(N), and the sound speed is given by the BP 2004 model (see [11]).

N ω/2π [Hz] 6× 2 24× 8 42× 14 60× 20
120× 338 2.50 (4) 0.42 (4) 8.30 (4) 24.8 (4) 51.7
239× 675 3.56 (4) 0.74 (5) 9.15 (5) 26.1 (5) 52.8
478× 1349 5.11 (4) 1.52 (5) 11.6 (5) 30.8 (5) 59.9
955× 2697 7.25 (5) 3.32 (5) 17.9 (6) 38.5 (6) 68.8
1910× 5394 10.3 (5) 6.79 (6) 29.6 (6) 58.7 (6) 98.3

104 105 106 107

N=n2

10-1

100

101

102

103

t[
s]

Nested polarized traces

Compressed-block LU

O(N5/8 )

O(N5/8 )

Fig. 5.7. Runtime for one GMRES iteration using the two different nested solves, for L = 9
and Lc = 3, ω ∼

√
n, in which the maximum ε-rank in the adaptive PLR compression (see section

5.1 in [103] for further details) scales as maxrank ∼
√
ω and ε = 10−8. Moreover, for the nested

polarized traces, the accuracy for the GMRES inner solve is fixed to 10−6.

discrete integral operators; we can observe that both methods (nested polarized traces
and compressed-block LU) have the same asymptotic runtime, but with different
constants;19 the same scaling holds for different numbers of cells and layers.

6. Conclusion. We presented an extension to the method of polarized traces
introduced in [103], with improved asymptotic runtimes in a distributed memory
environment. The method has sublinear runtime even in the presence of rough media
of geophysical interest. Moreover, its performance is completely agnostic to the source.

The method can be embedded efficiently within algorithms that require solving
systems in which the medium is locally updated in an inversion loop. The method
only needs to be locally modified in order to solve the updated system, thus reducing
the overall computational effort. This algorithm is of special interest in the con-
text of time-lapse full-waveform inversion, continuum reservoir monitoring, and local
inversion.

We point out that this approach can be further parallelized using distributed
linear algebra libraries. Moreover, it is possible to solve multiple right-hand sides
simultaneously without an asymptotic penalty. This can be achieved by pipelining
the sweeps, i.e., performing additional sweeps before the first one has finished, in order
to maintain a constant load among all the nodes.

19We point out that some gains can be made by using different compressed operators. One can use
one compressed operator with high accuracy to apply M, an operation that is easily parallelizable,
and another with low accuracy to apply the preconditioner that represents the sequential bottleneck.
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Appendix A. Discretization using finite differences.
In order to impose the absorbing boundary conditions, we extend the rectangular

domain Ω = (0, Lx)× (0, Lz) to Ωext = (−δpml, Lx + δpml)× (−δpml, Lz + δpml). The
Helmholtz operator in (2.1) then takes the form

H = −∂xx − ∂zz −mω2 in Ωext,(A.1)

where m is an extension20 of the squared slowness. The differential operators are
redefined following

∂x → αx(x)∂x, ∂z → αz(x)∂z,(A.2)

where

αx(x) =
1

1 + iσx(x)
ω

, αz(x) =
1

1 + iσz(x)
ω

.(A.3)

Moreover, σx(x) is defined as

(A.4) σx(x) =


C
δpml

(
x

δpml

)2

if x ∈ (−δpml, 0),

0 if x ∈ [0, Lx],

C
δpml

(
x−Lx

δpml

)2

if x ∈ (Lx, Lx + δpml),

and similarly for σz(x).21 In general, δpml goes from a couple of wavelengths in
a uniform medium to a large number independent of ω in a highly heterogeneous
medium, and C is chosen to provide enough absorption.

With this notation we rewrite (2.1) as

Hu = f in Ωext,(A.5)

with homogeneous Dirichlet boundary conditions (f is the zero extended version of f
to Ωext).

We discretize Ω as an equispaced regular grid of stepsize h and of dimensions
nx × nz. For the extended domain Ωext, we extend this grid by npml = δpml/h
points in each direction, obtaining a grid of size (2npml + nx)× (2npml + nz). Define
xp,q = (xp, zq) = (ph, qh).

We use the 5-point stencil Laplacian to discretize (A.5). For the interior points
xi,j ∈ Ω, we have

(Hu)p,q =− 1

h2
(up−1,q−2up,q+up+1,q)−

1

h2
(up,q−1 − 2up,q + up,q+1)− ω2m(xp,q).

(A.6)

In the PML, we discretize αx∂x(αx∂xu) as

αx(xp,q)
α(xp+1/2,q)(up+1,q − up,q)− αx(xp−1/2,q)(up,q − up−1,q)

h2
,(A.7)

20We assume that m(x) is given to us in Ωext.
21In practice, δpml and C can be seen as parameters to be tuned for accuracy versus efficiency.
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and analogously for αz∂z(αz∂zu). Although we use a second order finite difference
stencil, the method can be easily extended to higher order finite differences. In such
cases, the number of traces needed in the SIE reduction will increase.

Appendix B. Discretization using Q1 finite elements. The symmetric
formulation of the Helmholtz equation takes the form

−
(
∇ · Λ∇+

ω2m(x)

αx(x)αz(x)

)
u(x) =

f(x)

αx(x)αz(x)
,(B.1)

where

(B.2) Λ(x) =

[
sx(x) 0

0 sz(x)

]
,

sx = αx/αz, sz = αz/αx, where αx and αz are defined in (A.3).
In the case of a medium with sharp interfaces, finite difference approximations

give inaccurate results due to the lack of differentiability of the velocity profile. In
such cases, sophisticated quadratures and adaptive meshes have to be implemented
to properly approximate the finite difference operator [100, 3]. We opted for a low
order Q1 finite element discretization, with an adaptive quadrature rule at the dis-
continuities.

(B.1) is discretized using Q1 elements, leading to a discretized matrix

H = S−M,(B.3)

where the stiffness matrix S is computed using a Gauss quadrature. On the other
hand, the mass matrix, M, is computed using a quadrature adapted to each element
depending on the local smoothness of the velocity profile:

• if the medium is locally smooth, a fixed Gauss quadrature is used to approx-
imate the integral over the square;

• if the medium is discontinuous, an adaptive trapezoidal rule is used, until a
preset accuracy is achieved.

To discriminate whether the medium is discontinuous, the velocity is sampled
at the Gauss-points, and the ratio between maximum and minimum velocity is com-
puted. If the ratio is smaller than a fixed threshold, the medium is considered smooth;
otherwise it is considered discontinuous.

Using a nodal basis we can write the system to solve as

Hu = f ,(B.4)

where u is the pointwise value of the solution at the corners of the mesh, and f is the
projection of f onto the Q1 elements, using a high order quadrature rule.

Appendix C. Green’s representation formula.
We present a generalization of the domain decomposition framework developed

in [103] to Q1 regular finite elements.
We start by providing the algebraic formula for the discrete Green’s represen-

tation formula. We propose a technique to derive such formulas without the time
consuming computations performed in the Appendix of [103]. We point out that
there are clear parallels between this derivation and the reduction to an interface
problem using interior Schur complements. However, for the interface system based
on Schur complements, we could not define the polarizing conditions that would allow
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us to construct an efficient preconditioner, forcing us to solve it using a nonscalable
direct solver.

In what follows, we perform extensive manipulations on the matrix H; thus we
introduce some notation to help the reader follow the computations. Following that
ordering defined in section 2.2, we write H (and H`) as a block matrix in the form

(C.1) H =



H1,1 H1,2

H2,1 H2,2 H2,3

. . .
. . .

. . .

. . .
. . . Hnz−1,nz

Hnz,nz−1 Hnz,nz


,

in which each block corresponds to a fixed z.
We want to derive the algebraic form of the Green’s representation formula. From

Theorem 1 in [103] we know that using the Green’s representation formula locally in
a subdomain would produce a discontinuous solution, such that the exact solution
is recovered inside the domain, and it is zero outside it. The rationale behind the
formalism presented in this section is to find the form of the forcing terms necessary
to force the discontinuity of the local representation.22

An easy manner to deduce the Green’s representation formula is to let

v` = uχΩ` ,(C.2)

which is discontinuous, and apply the local differential operator to v`. Finding the
discrete Green’s representation formula can be recast as finding the expression of a
system of the form

H`v` = f ` + F`(u),(C.3)

such that its solution v` satisfies v` = uχΩ` , and F depends on the global wavefield
u. In (C.3) we suppose that f ` = fχ` and that H and H` coincide exactly inside
the layer. Within this context the problem of finding the formula for the Green’s
representation formula can be reduced to finding the expression of F`(u) such that
v` satisfies Eq C.2.

For ` fixed we can obtain the expression of F` by evaluating (C.3) and imposing
that v` = uχΩ` . In particular, we need to evaluate (C.3) at the interior of the slab,
at its boundaries, and at the exterior.

At the interior of the slab, F`(u) is zero, because v` satisfies H`v` = Hu = f = f `.
At the boundaries, the situation is slightly more complex. If we evaluate (C.3) at

k = 1, we have that

H`
1,1v

`
1 + H`

1,2v
`
2 = f `1 + F1(u).(C.4)

Moreover, evaluating Hu = f at the same index yields

H1,0u0 + H1,1u1 + H1,2u2 = f `1 .(C.5)

By imposing that v` = uχΩ` and subtracting (C.4) and (C.5), we have that

22The technique to compute the Green’s representation formula, and therefore the transmission
operators in form of an incomplete Green’s integral, was first mentioned, to the authors’ knowledge,
in Appendix 3B in [101]. More recently, an analogous formulation was used in [[89]; see Eqs. (11),
(12), and (13)].
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F`1(u) = −H1,0u0 = −H`
1,0u0.(C.6)

We can observe that the role of F` is to complete (C.3) at the boundary with exterior
data, such that v` satisfies the same equation as u inside the whole layer and not only
in the interior.

Analogously (C.3) can be evaluated at k = 0, obtaining

H`
0,1v

`
1 = F`0(u),(C.7)

and imposing that v` = uχΩ` , we obtain that

F`0(u) = H0,1u1 = H`
0,1u1.(C.8)

Finally, for k < 0, the same argument leads to

F`k(u) = 0.(C.9)

We can easily generalize this argument for the other side of a layer, obtaining a
generic formula for F`

F`(u) = −δn`H`
n`,n`+1un`+1 + δn`+1H

`
n`+1,n`un` − δ1H`

1,0u0 + δ0H
`
0,1u1,

which can be substituted in (C.3), leading to

H`v` =− δn`H`
n`,n`+1un`+1 + δn`+1H

`
n`+1,n`un`(C.10)

− δ1H`
1,0u0 + δ0H

`
0,1u1 + f `.

In addition, (C.10) can be transformed into the discrete expression of the Green’s
representation formula by applying the inverse of H`, G`. We can then reformulate
the Green’s integral in Definition 2.2 in the form

G↓,`j (v0,v1) = h
[
G`(zj , z1) G`(zj , z0)

]( −H`
1,0v0

H`
0,1v1

)
,(C.11)

G↑,`j (vn` ,vn`+1) = h
[
G`(zj , zn`+1) G`(zj , zn`)

]( H`
n`+1,n`vn`

−H`
n`,n`+1vn`+1

)
.(C.12)

Finally, we can redefine G`(zj , zk) for k = 0, 1, n`, n` + 1, such that they absorb all
the extra factors. In particular, we redefine

G`
1,0 =− δ1

(
(H`)−1δ0H

`
1,0

)
, G`

1,1 = −δ1
(
(H`)−1δ1H

`
0,1

)
,(C.13)

G`
n,n =− δn

(
(H`)−1δn+1H

`
n+1,n

)
, G`

n,n+1 = −δn
(
(H)−1δnHn,n+1

)
.(C.14)

This redefinition allows us to seamlessly use all the machinery introduced in [103] to
define the SIE and its preconditioner.

Remark 1. As an example, in the case of the unsymmetric finite difference dis-
cretization, the upper and lower diagonal blocks of H are diagonal matrices rescaled
by −1/h2. Then the formula presented here reduces exactly to the formulas computed
by summation by parts in Appendix of [103].
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S. Margenov, J. Waśniewski, eds., Springer-Verlag, Berlin, 2008, pp. 40–51, https:
//doi.org/10.1007/978-3-540-78827-0 4.

[55] I. G. Graham, E. A. Spence, and E. Vainikko, Domain decomposition precondition-
ing for high-frequency Helmholtz problems using absorption, preprint, arXiv:1507.02097
[math.NA], 2015, https://arxiv.org/abs/1507.02097.

[56] E. Haber and S. MacLachlan, A fast method for the solution of the Helmholtz equation, J.
Comput. Phys., 230 (2011), pp. 4403–4418, https://doi.org/10.1016/j.jcp.2011.01.015.

[57] R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for
Helmholtz transmission problems, Adv. Comput. Math., 37 (2012), pp. 39–91, https:
//doi.org/10.1007/s10444-011-9194-3.

[58] R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods for
the 2d Helmholtz equation: Analysis of the p-version, SIAM J. Numer. Anal., 49 (2011),
pp. 264–284, https://doi.org/10.1137/090761057.

[59] R. Hiptmair, A. Moiola, and I. Perugia, A survey of Trefftz methods for the Helmholtz
equation, preprint, arXiv:1506.04521 [math.NA], 2015, https://arxiv.org/abs/1506.04521.

[60] J. Xia, S. Chandrasekaranm, M. Gu, and X. S. Li, Superfast multifrontal method for
large structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009),
pp. 1382–1411, https://doi.org/10.1137/09074543X.

[61] S. Johnson, Notes on Perfectly Matched Layers (PMLs), manuscript, March 2010, http:
//www-math.mit.edu/∼stevenj/18.369/pml.pdf.

D
ow

nl
oa

de
d 

11
/1

2/
19

 to
 1

8.
10

.1
1.

12
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/978-3-642-11304-8_9
https://doi.org/10.1007/978-3-642-11304-8_9
https://doi.org/10.1137/S1064827501387012
https://doi.org/10.1137/S1064827501387012
https://doi.org/10.1142/S0218396X01001510
https://doi.org/10.1007/978-3-319-18827-0_65
https://doi.org/10.1007/978-3-319-18827-0_65
https://doi.org/10.1007/978-3-642-35275-1_24
https://doi.org/10.1007/978-3-642-35275-1_24
https://doi.org/10.1109/CAMA.2014.7003360
https://doi.org/10.1109/CAMA.2014.7003360
https://doi.org/10.1007/978-3-319-05789-7_17
https://doi.org/10.1007/s10543-014-0499-8
https://doi.org/10.1051/m2an/2009002
https://doi.org/10.1007/978-3-540-78827-0_4
https://doi.org/10.1007/978-3-540-78827-0_4
https://arxiv.org/abs/1507.02097
https://arxiv.org/abs/1507.02097
https://doi.org/10.1016/j.jcp.2011.01.015
https://doi.org/10.1007/s10444-011-9194-3
https://doi.org/10.1007/s10444-011-9194-3
https://doi.org/10.1137/090761057
https://arxiv.org/abs/1506.04521
https://arxiv.org/abs/1506.04521
https://doi.org/10.1137/09074543X
http://www-math.mit.edu/~stevenj/18.369/pml.pdf
http://www-math.mit.edu/~stevenj/18.369/pml.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B980 LEONARDO ZEPEDA-NÚÑEZ AND LAURENT DEMANET
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