
Navigation of Unknown Environments Using
High-Level Actions

by

Christopher Powell Bradley

B.S., California Institute of Technology (2017)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 22, 2019

Certified by. .
Nicholas Roy

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Navigation of Unknown Environments Using High-Level

Actions

by

Christopher Powell Bradley

Submitted to the Department of Aeronautics and Astronautics
on August 22, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Goal-oriented, autonomous navigation through previously unexplored environments
presents challenges to a robot on a number of different fronts. First, the robot must
construct a representation of its environment that enables it to reason about entering
and exploring unknown regions, while still allowing it to backtrack through previously
explored space. Additionally, the robot must be able evaluate the expected cost of
plans through unobserved space to reach its objective efficiently.

This thesis presents work that addresses each of these challenges with respect to
a mobile robot. The Learned Subgoal Planner provides an abstraction for planning
using high-level actions to reduce the complexity of the planning problem. Using
learning to estimate the cost of different actions, a 21% improvement in terms of
distance traveled versus a baseline was shown in a simulated environment replicating
real-world floor plans. A second contribution is a novel mapping paradigm which
represents the world with a graph of actions build from monocular visual input. To
construct this map, a convolutional network is used to detect high-level actions from
vision. The map is shown to be robust to noise, with particular attention paid to
the problem of associating detected actions from frame to frame using a learned
association metric. Preliminary results show this metric is an improvement compared
to a baseline.

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I have been privileged throughout my life to have been surrounded by people who

have given me the opportunity to a receive world-class education. First and foremost,

I would like to thank my parents for supporting my studies, and encouraging me to

pursue my interests, regardless of application or field. Thank you to Nick Roy for

allowing me to join the Robust Robotics Group, even with the knowledge that I was

new to the field of robotics and would need a bit of time and support to get up

to speed. Thank you to Greg Stein for welcoming collaboration, and for helping to

shape how I think about conducting and presenting research. Thanks to Guillaume

Blanquart, Joel Burdick, and Beverley McKeon at Caltech for guidance in helping me

find my way to graduate school. Finally, thanks to everyone in RRG for sharing your

inspirational research, passing along institutional knowledge, and making the lab a

fun and welcoming place to go to work.

5

6

Contents

1 Introduction 15

1.1 Motivating Navigation of Unexplored Environments 15

1.2 Path Planning in Different Levels of Abstraction 18

1.3 Navigation Through Unknown Space 19

1.4 Navigation with High-Level Actions 20

1.5 Building a Graph of Actions . 22

1.6 Thesis Overview . 23

2 Technical Background and Foundational Related Works 25

2.1 Estimating and Representing the State of the World 25

2.1.1 Different Map Representations 26

2.1.2 Probabilistic Mapping . 29

2.2 Data-Association in Mapping . 30

2.2.1 Distance Metrics . 31

2.2.2 Data-Association with Multiple Detections 32

2.2.3 Errors in Data-Association . 33

2.3 Navigating Under Uncertainty . 34

2.3.1 Navigation as a POMDP . 35

2.3.2 Belief States and the Bellman Equation 37

2.4 Solving the POMDP . 39

2.4.1 Approximating short-horizon POMDPs for Navigation 39

2.4.2 Navigation using Deep Reinforcement Learning 41

7

3 Learned Subgoal Planner 43

3.1 Planning Using High-Level Actions 43

3.2 Planning with Subgoals . 46

3.2.1 Approximating Expected Cost via the Subgoal Planner 47

3.2.2 Learning Properties of Unknown Space 49

3.2.3 Training Data Generation . 51

3.2.4 Implementation Details . 52

3.3 Simulation Results . 54

3.3.1 “Guided” Maze Navigation Results 55

3.3.2 Forest Navigation Results . 56

3.3.3 Office-Like Environment Navigation Results 57

3.3.4 Floor Plan Environment Navigation Results 58

3.4 Real-world Experiments . 59

3.5 Discussion . 61

4 Mapping and Data-Association with High-Level Actions 65

4.1 Constructing a Map of Actions . 66

4.2 Map-Building . 68

4.2.1 Noiseless Map Building . 68

4.2.2 Detecting Actions with Convolutional Neural Networks 70

4.2.3 Noisy Map Building Procedure 72

4.3 Map Estimation with Noisy Sensing 73

4.3.1 Defining the posterior . 74

4.4 Data-Association . 76

4.4.1 Mahalanobis Distance for Data-Association 77

4.4.2 Incorporating Visual Input into Data-Association 78

4.4.3 Network Architecture . 79

4.4.4 Training the Network . 82

4.4.5 Comparing Data-Association Metrics 82

4.5 Discussion . 84

8

5 Conclusion 87

9

10

List of Figures

1-1 Motivating Example . 17

1-2 Action-Centric Abstraction . 21

3-1 Learned Subgoal Planner . 47

3-2 Guided Maze Results . 54

3-3 Random Forest Results . 56

3-4 Simulated Office Results . 57

3-5 MIT Floorplan Results . 58

3-6 Real World Results . 60

4-1 Actions on the boundary of known space 69

4-2 Learned Action Detector . 70

4-3 Building Map of Actions . 72

4-4 Data-Association Network . 80

4-5 Precision Recall Curve for Association 83

11

12

List of Tables

4.1 Confusion Matrices for Different Methods of Association 84

13

14

Chapter 1

Introduction

Navigating an unknown environment to find an unseen goal is a ubiquitous problem

in robotics, and can be broken down into two main tasks. First, the robot must be

able to reason about what path to follow through unexplored space that will most

efficiently lead it to the goal. Second, the robot will need to build a map as it travels

such that the agent is able to localize itself and make plans that avoid local minima

(dead-ends) in space that has already been explored. Research to address each of

these problems is presented in this thesis.

1.1 Motivating Navigation of Unexplored Environ-

ments

The field of mobile robotics has been rapidly expanding over the past thirty years,

driven in part by the myriad of possible applications for a system that is able to

autonomously travel through, and accomplish tasks in, its environment. Problems as

impactful as surveillance, reconnaissance, and search and rescue are familiar motiva-

tors of research in the field, but even simple, every-day tasks such as delivering coffee

in an office building are potential applications of an autonomous agent [47, 9].

Independent of the larger, overall goal, for a mobile robot, a critical component

of accomplishing any task is navigation. For example, if a robot is tasked with mak-

15

ing breakfast, it first must go to the kitchen. When the map of the environment is

known, it is well understood how to best plan a path to a goal in order to accomplish

such a task. Dijkstra’s algorithm, A*, and other search algorithms are guaranteed to

return the minimum-distance path through a discretized state-space [12, 24]. Simi-

larly, sampling-based approaches such as RRT* and PRM* are asymptotically opti-

mal through known, continuous spaces [30]. However, when the environment is not

fully known, it is no longer possible to use these well-established algorithms without

reasoning about planning through unknown space.

Despite the continued advancements in other areas of the field however, there has

not been much practical development in the area of planning to navigate through

unknown space. Imagine a robot tasked with navigating to a goal in a large office

complex with a partial map, discovering the environment as it travels. To reach its

goal, the agent must plan to enter unknown parts of the map, and in so doing, reason

about the cost of trajectories through regions which have not been observed. Many

approaches to planning attempt to avoid the difficulties associated with reasoning

about unknown space by optimistically assuming all unobserved space is free of ob-

stacles [4, 20]. Yet if a robot were instructed to travel to a conference room on the

far side of a building, for example, such an optimistic planner is likely to make glob-

ally sub-optimal decisions and guide the robot into countless offices as it navigates

towards its goal as shown in Fig. 1-1. Moreover, if the task does not have a goal

defined in metric space, such as the problem of search and rescue for example, then

naively planning through unknown space without explicitly reasoning about where to

navigate to is not a useful approach.

The central algorithm of this thesis, the Learned Subgoal Planner, seeks to solve

the problem of navigating unknown environments by first decomposing the world into

high-level actions, then using a data-driven approach to estimate the different costs

associated with taking each action. Specifically, we associate an action with each

boundary between free and unknown space and define high-level actions as traveling

to the goal through each of these separate boundaries. By treating navigation as a de-

cision between entering unknowns space through different frontiers, we greatly reduce

16

Figure 1-1: A depiction of the path a robot might follow if it were to attempt to navigate through a
previously unknown building by naively assuming all unknown space is free. Here the robot begins
at the blue point, and encounters many dead-ends on it’s path to the green goal. An intelligent
planner should realize that small offices are not likely to lead to the goal, and the robot would be
better served planning through hallways.

the dimensionality of the problem, and so make estimating the cost of each action, and

then finding the sequence of actions that minimizes expected cost, computationally

tractable.

The set of actions defined above fully represents what a robot can do at any

time, and can therefore serve as a sufficient representation for navigation. This thesis

presents the notion of using a “graph of actions” as a map for navigation, which allows

us to build a sparse representation of the world through vision that enables planning

through known and unknown space by directly reasoning about actions. Specifically

highlighted in this thesis from that work is the problem of data-association: deciding

if a detected action corresponds with one already in the map, or if it represents a

new action that must be added. Using the action-graph built from this method as

the representation for the Learned Subgoal Planner is left for future work.

17

1.2 Path Planning in Different Levels of Abstraction

When an autonomous agent seeks to navigate to a specified goal, it must solve a path

planning problem. This means that the robot must search for some way to safely

(e.g., without colliding with any obstacles) transition from its initial configuration to

the goal state, often with the objective of being optimal with respect to some cost

function. An important factor in the complexity of such a problem is the level of

abstraction in which it is solved. We can define an abstract representation as one

that “can be constructed from a concrete [abstraction] by ignoring details and includ-

ing only those aspects of primary importance [59].” In other words, a higher level

abstraction is formed by discarding information that is not necessary to some task

(here that task is navigation). By ignoring unnecessary information, it is possible to

reduce the state space and action set of a problem, thus making it easier to solve. For

example if the mobile robot tasked with navigating across a building had a mounted

arm attached to it for grasping, one might choose to plan in an abstraction where the

arm is assumed to be stationary, because all solutions that traverse the optimal path

to the goal are of the same cost regardless of what the arm is doing.

Abstractions produce useful plans as long as the information they discard is either

completely irrelevant to the task, as in the above example, or in some other way not

necessary. The solution to a navigation task would, at the very lowest level, yield a

sequence of motor commands that cause the robot to traverse the minimum cost path

from start to goal. In practice however, long term plans are generally not produced

by searching through motor commands until one sequence is found to be optimal.

Instead, often times the final plan is represented by a trajectory — a sequence of

valid configurations from start to goal — which some low-level controller is then

responsible for producing the motor commands to follow. As long each intermediate

step taken from the trajectory exists along the optimal path to the goal, and the agent

is capable of optimally planning between each step in the trajectory, the ultimate path

the robot follows will be the most cost-effective.

One reason path planning problems are often not solved at their lowest level of

18

abstraction is for ease of computation. Consider, once again, a wheeled robot planning

a route to some goal across an office building. One way to plan through this world

would be to solve the optimal control problem using some non-linear programming

solver, and produce the full sequence of commands — velocities and wheel angles

— that would lead the robot to the goal. However, if the building is large enough,

or the state-space is of a high enough dimension, such a plan would take too long

to generate, and the robot would not be able to reach its goal in a reasonable time.

A better strategy in this case might be to discretize the world, and plan through

that grid using a search algorithm like A* [24]. The robot would then be able to

take a point along the path produced by this search, and solve the optimal control

problem to it as an intermediate goal. Note that depending on the dimensionality of

the state space, relying on grid based discretizations may not always be the correct

abstraction. If the building were large enough, or the robot had more degrees of

freedom that could not be ignored, a higher level of abstraction may be necessary.

This could be accomplished with a coarser level of discretization, however if the grid

becomes too imprecise, the plan generated may not correspond with the true optimal

path. In that case a different method of abstraction should be considered.

1.3 Navigation Through Unknown Space

We return to the problem of navigating through an unknown environment. As stated

above, the planning problem involves finding a series of valid configurations that

take the robot from start to goal. However, when the robot plans through a region

of the environment that has not yet been explored, it is not possible to know if a

configuration is valid or not (if the robot intersects with an obstacle). In order to

estimate the likelihood that a plan through unknown space is valid, one possible

technique would be to reason about the probability that certain unknown regions

of the map are occupied by an obstacle, relying on some prior distribution of maps.

Unfortunately, due to the high dimensionality of building sized maps, and the complex

nature of the design of man-made structures, such a distribution over real-world

19

environments would be exceedingly difficult to model. Due to these limitations, the

best distribution that could reasonably be used would be one in which every possible

map were equally likely, which is a poor representation of how man made environments

are actually structured.

Even if we were to assume access to the true distribution over maps, if the plan-

ning problem is to be solved completely for the minimum cost in expectation, every

possible environment must be considered by the robot, and each individual plan must

be weighted by the likelihood of its corresponding map. It is clear that for any prob-

lem beyond trivial toy examples, it is intractable to find the optimal plan in this

manner without devising some clever way to reformulate the problem. Thus, plan-

ning to reach an unseen goal requires making simplifying assumptions that reduce

the dimensionality of the problem in order to plan in a higher level of abstraction.

1.4 Navigation with High-Level Actions

As discussed above, if it is not tractable to solve a planning problem at a certain level

of abstraction, solving the problem at a higher level, then using that solution to create

easier lower-level planning problems is a useful approach. In the context of unknown

environments, using an abstraction that depends on reasoning about the state of the

map in some unknown region is difficult both because of the high dimensionality of

the problem, as well as the fact that the true distribution over maps is unknown.

Instead, we propose planning using high-level actions, which is a different way of

abstracting the planning problem.

What it means to plan using higher-level actions in the context of a navigation

problem is actually quite intuitive. When solving path planning problems for our-

selves, humans do not think about the low-level actions required to put one foot in

front of the other. Even further, humans generally do not discretize their environment

into a grid, and think about going from one grid cell to the next as they make their

way down some path. Instead, when making a plan to navigate to a goal outside of

direct line of sight, humans will plan at a much higher level of abstraction as depicted

20

Figure 1-2: An action-centric abstraction, where each high-level action available to the robot (𝑎1,
𝑎2, 𝑎3) is represented by a boundary between free and unknown space. By reducing the action space
to only these three option, it is much less computationally expensive to reason about which action
to take.

in Fig 1-2. For example, if placed inside an unknown building, the actions a person

might consider if they were trying to navigate through it could be to go down the

hallway in either direction, or enter one of the rooms that branch off along it. It

is not useful to consider each individual trajectory that goes down the hallway as a

different plan because they all enter unknown space through the same “frontier,” and

so can be grouped together.

One benefit of using high-level actions as the basis for an abstraction is that

it greatly reduces the dimensionality of the problem of planning through unknown

space in a way that state-centric abstractions do not. It is generally not feasible to

reason about the distribution over maps because the number of possible maps is so

large. However, the possible outcomes of taking the type of action described above

is that either the goal exists along that path, or it does not, meaning that if it were

possible to estimate certain properties of taking an action from data, that information

could be used to solve the planning problem tractably. Moreover, because of the low-

dimensionality of the action space, it is significantly easier to use data-driven methods

to learn such a distribution [52].

The first major contribution of this thesis is as follows. To reduce the complexity

21

of planning in partially explored environments, a higher-level of abstraction for nav-

igation is presented, which allows an autonomous agent to reason about plans that

enter unknown space. The costs of these actions are not known exactly, and so are

estimated by a neural network trained on data from environments similar to the one

being navigated. Learning properties of these actions allows the abstraction to be

useful for making more efficient, long-term plans.

1.5 Building a Graph of Actions

For the task of navigating to an unseen goal, the only information the robot needs

in order to plan its path are the actions available to it, and the costs of taking those

actions. As such, a map is sufficient for navigation if for any robot pose, it can be

queried to give all available actions for that position, and their costs. Assuming the

robot has the ability to generate the low-level motor commands from any high-level

plan by using local sensor information, storing any further information in the map is

not necessary for navigation, and so can be discarded. Thus, the minimal, sufficient

map for navigation in the action-centric abstraction defined above is one that stores

actions as nodes in a graph, with edges connecting actions that can be combined to

form a plan through, and beyond, known space.

In order to build such a map, an autonomous agent must: 1) be able to extract

high-level actions from sensor input, and 2) associate these detections from frame to

frame in order to build this action-graph. To that end, the second major contribution

of this thesis is a learned detector that allows the robot to extract high-level actions

from vision, and a method for integrating those detections into a graph that represents

what actions the robot can take at any point in the environment. Critical in this graph

building process is that the agent is able to tell when an action it has detected already

exists in the graph, or if it is a new action entirely. Thus, the “data-association”

problem is also investigated, with two different approaches discussed in detail.

22

1.6 Thesis Overview

The remainder of the thesis is organized as according to the following outline:

In Chapter 2, previous approaches to solving the problem of navigating unknown

environments will be discussed, in addition to other background information perti-

nent to this thesis. A description of the Learned Subgoal Planning approach will be

presented in Chapter 3, which proposes using high-level actions to greatly simplify

the problem. Chapter 4 considers the problem of extracting these high-level actions

from vision, and addresses the challenge of data-association as it relates to building

a sparse map for navigation. Finally, Chapter 5 summarizes the work presented in

the previous four chapters, and highlights the connection between the two main con-

tributions. Possible directions for future work are also discussed here, particularly as

it relates to integrating the work presented in Chapters 3 and 4.

23

24

Chapter 2

Technical Background and

Foundational Related Works

This chapter presents work in the field of mobile robotics relevant to the research

that will be discussed later in this thesis. The focus of this chapter will be on previ-

ous efforts in the space of navigation in unknown environments, as well as mapping

techniques, and methods to associate sparse landmark detections frame to frame. To

support that discussion, background information on a variety of topics will be pre-

sented, including POMDPs (Section 2.3), different map representations for robotics

(Section 2.1), and solutions to the data-association problem (Section 2.2).

2.1 Estimating and Representing the State of the

World

As discussed in Chapter 1, there are two primary problems associated with navigating

unknown environments. One of these is reasoning about plans which enter unknown

space and how to deal with the uncertainty inherent in deciding what action to take

when it is not possible to know what lies around a corner. The other problem is, once

previously unknown space is revealed, how should it be represented such that a robot

can plan to navigate through it.

25

In order to navigate through unknown environments, a robot must construct a

map as it travels so as to update its belief of the state of the world. The goal of

robotic mapping is to build a spacial representation of the environment from sensor

measurements [62]. When navigating through a previously unexplored environment,

regions of the world that were once unknown are revealed as new observations are

received. In the process of searching for an unseen goal, an autonomous agent might

encounter a dead-end — or otherwise decide to turn around — and be forced to

double back through known space. Thus, the robot must build a representation of

the world online that allows it to optimally plan trajectories through these regions in

order to continue exploring. In the context of navigation, a map is useful insofar as it

allows a robot to efficiently solve for the optimal plan to traverse through the space

it represents.

2.1.1 Different Map Representations

Generally speaking, there are two main classes of map representations for robotics:

metric maps, which encode geometric information about an environment, and topo-

logical maps, which describe the connectivity of different regions [62]. Topological

representations treat “significant” regions of an environment as nodes in a graph struc-

ture, with edges indicating traversability (and often containing information about how

to navigate between regions). While the sparse nature of topological maps can make

planning computationally easier, they are often times much harder to build accurately

in the presence of noise due to the difficulty of knowing when the robot has returned

to a previously seen region [62]. Moreover, the trajectories produced by planning

through such maps may not make it possible to find optimal low-level paths between

the elements of the higher-level plan [61]. As such, the majority of maps utilized by

robots in practice are metric, or some combination of both known as “topometric.”

The following discussion presents several examples of metric and topometric maps

that have been developed over the last few decades of robotics.

One of the most common map representations used in robotics (and one of the

first hypothesized) is the occupancy grid. Developed by Elfes and Moravec in the

26

1980’s, occupancy grid mapping is a popular way to convert depth measurements

into a dense representation of obstacles in the world [15, 16, 44]. Occupancy grids

probabilistically represent the world as a discretized grid, where each cell is either free

space, occupied by an obstacle, or unobserved. An advantage of this representation

is that it is well understood how to plan through such a grid [12, 24]. Furthermore,

because it is capable of representing unexplored space, it is possible to generate plans

through an occupancy grid which can be useful for navigation through partially ex-

plored environments. In fact, the work in Chapter 3 takes advantage of this property.

However, though there exist systems to estimate depth from monocular camera im-

ages, without specialized hardware or stereo cameras, it can be difficult to reliably

construct an occupancy grid on a robot. Moreover, as the size of the map grows, it

can be expensive to maintain such a dense representation of the environment, so a

more minimal representation would be preferable.

The type of map best suited for a particular robot depends in part on the way it

perceives the world — i.e., the sensors available to it — and the task it is trying to

accomplish. Consider a robot equipped with a sensor that is able to determine the

distance of obstacles within direct line of sight. Hardware like LIDAR or SONAR are

examples of such specialized hardware that provide this information and are common

in the field of robotics [36]. Similarly, range information can be extracted from depth

cameras (RGB-D), or even a well-tuned stereo camera system. Systems such as these

are well suited to build an occupancy grid representation of the world. However, if

a robot is equipped with a monocular camera (a lightweight, inexpensive alternative

to laser range sensors), or if it is limited computationally, representations other than

occupancy grids are generally more popular.

An alternative to dense representations such as the occupancy grid are sparse

maps, which detect landmarks in space and track them from frame to frame. Land-

marks can be defined as any point in physical space the robot is able to detect and

keep track of in its map. What these landmarks are, as discussed above, depend on

the sensors available to the robot, but can be utilized in both topometric [50], and

metric approaches [43].

27

Consider the maps generated by modern visual SLAM (Simultaneous Localization

and Mapping) algorithms. The goal of these systems is to estimate a robot’s trajectory

through space from camera input, and so build a factor graph of landmarks and poses

which is optimized using bundle adjustment [65]. So called “sparse” methods such as

ORB-SLAM detect visual features — in this case ORB features [55] — and maintain

a point-cloud of these detections as the landmarks [45]. A benefit of these systems

is that, because there are so many landmarks maintained in the map, localization

within that map can be highly accurate. However, there are several drawbacks. One

particularly relevant to the work presented in this thesis is that there is no notion

of unknown space in these representations because the map is just a collection of

points in space. Thus, while extremely useful for localization, these maps are not

easily used for building plans that reason about paths through unexplored parts of

the environment. Additionally, because there may be regions where there are no

visible features, collision checking in sparse maps is difficult.

One map representation which does specifically encode the actions a robot might

take to explore its environment is Gap Navigation Trees [64], which construct a min-

imal map representation of gap detections — discontinuities in depth from the per-

spective of the robot — and traversed space. The resulting tree-structured map is

designed with navigation in mind: the map’s unexplored nodes correspond to de-

tected gaps the robot has never revealed, and each of these special nodes corresponds

to a route through which the robot can enter unknown space in an effort to find the

unseen goal. However, Gap Navigation Trees are notably limited to navigation in

simply-connected environments [46] and require an infinitely-precise, noiseless sensor,

thus limiting their utility in practice. Chapter 4 presents a novel map representa-

tion that keeps track of unknown space by maintaining a graph of high-level actions

with monocular visual input in order to enable high-level planning. As with all maps

however, being robust to noise in the system is something that must be considered.

28

2.1.2 Probabilistic Mapping

There are two primary challenges facing a robot that is trying to build a map as

it travels, both of which are directly related to noise in the system. Noise in state-

estimation means that the robot may not have an accurate estimate of its position

in the world relative to a global reference frame. This uncertainty is compounded

by the fact that there also may exist noise in sensor measurements, meaning each

observation does not necessarily represent the true state of the world. In order to

deal with this reality, the robotics community has converged on probabilistic mapping

techniques that explicitly reason about uncertainty [62].

Over the past few decades, the use of probabilistic methods in mapping in the

field of robotics has greatly matured. Initially, filtering techniques like the Extended

Kalman Filter (EKF) were relied upon to update the estimated location of landmarks

(physical points in 3D space) in a map [56, 7, 21, 17]. While effective in some cases,

early forms of this approach only maintain the most likely estimate of the map,

updated at each time step. Thus, they are unable to recover if some error was made

in the map building process. Rao-Blackwellized particle filters are another popular

approach, which represent states of the world as particles with different weights,

and so are better able to represent multiple hypotheses of the world in cases where

observations are uncertain [13, 43]. However, issues like particle death make it difficult

to correct for errors in the case of drift over large time scales. Additionally, storing and

constantly updating multiple different maps can be overly computationally expensive

as the size of maps grow.

It is important to note that these approaches were developed primarily in an

effort to solve the SLAM problem (Simultaneous Localization and Mapping). SLAM

entails both estimating properties of the map, as well as the robot’s position in that

map. However, by their very nature, filtering approaches are imperfect in solving

SLAM because they do not update estimates of past poses with new measurement

information, which makes the problem of loop closure more difficult [62]. The reason

this was not done in the past was, for the most part, due to limits in available

29

computation. However, recent state-of-the-art SLAM systems have begun to rely on

smoothing approaches to incorporate all measurements into estimates. One algorithm

that has been extensively used in modern systems is bundle-adjustment [65], which

is a method for solving the non-linear least squares problem of optimizing the 3D

estimate of each pose and measured landmark simultaneously. Compared to filtering

approaches, which marginalize out past pose and sensor information, solving the full

optimization produces a better solution to the SLAM problem [57].

In Chapter 4, a novel map representation is presented that deals with noise by

maintaining a posterior over the space of possible maps based on sensor observations.

Then, by comparing the likelihood of different map proposals using this posterior, it

can determine the most likely map. This technique is possible due to how sparse the

features in the map are, and would not be feasible for maps composed of point-clouds

such as those is modern visual SLAM systems.

2.2 Data-Association in Mapping

The second major challenge in robotic mapping is also a direct result of measurement

noise, specifically as it relates to the so called data-association problem (also known as

the correspondence problem). The data-association problem refers to the challenge

of determining if a measurement at one instance in time corresponds to the same

physical entity as a measurement at some other time. For example, if a robot is

equipped with a sensor that detects doors, and it sees a door in two different images,

the data-association problem refers to the task of determining if those two detections

are of the same door. If there were no noise in the system, data-association could be

solved easily by simple checking where in space each detection is, and comparing it

for exact matches, though this is not realistic.

How the data-association problem is solved depends on the type of map representa-

tion a robot builds. For example, because an occupancy grid is a dense representation

of the world, data-association is ignored when the robot localizes itself in the map.

This is because each measurement informs the value of a certain number of grid cells,

30

which depends only on the robot’s position within the map and the measured ranges.

For sparse maps however, each time a landmark is detected, the robot must determine

if that landmark already exists in the map it is building, or if it is a new landmark

that must be added.

The goal of data-association is to determine if a detection is one the robot has

already seen before. One intuitive approach is to define a distance metric from each

new landmark detection to landmarks that exist in the map. From there, it is a simple

matter of determining the landmark that is closest to the new detection according

to this distance metric, and, if it is within a certain threshold, update the estimated

position of that landmark with the new observation [48, 61]. This leaves three ques-

tions to be answered in regards to data association. 1) How do we choose the distance

metric? 2) How do we update the map assuming we can have multiple detections in

each observation? 3) How can we be robust to errors in data association?

2.2.1 Distance Metrics

How to choose the distance metric depends on the information available to a robot.

For example, if all that is known about a landmark is its position in space, Euclidean

distance may be the only option. This is often the case with the types of visual

features utilized in many sparse visual SLAM systems [45]. For each feature detected

in a particular frame, a so-called “descriptor” – a fixed-dimensional embedding meant

to distinguish this feature from others — is computed. How these descriptors are

computed depends on the type of feature detected [37, 5, 55], but in general, they are

compared to descriptors of past features, and if they are close enough in Euclidean

distance according to some threshold, the features are matched [45]. In this framework

Euclidean distance can be an effective metric, as long as the dimensionality of the

descriptor is complex enough.

Recent developments in the field of learned descriptors have also shown promise.

Learned descriptors, like their hand-crafted counterparts, are mappings from an

image-patch to a fixed-dimensional space. Unlike hand-crafted descriptors however, a

learned feature descriptor uses a convolutional neural network for its mapping. Recent

31

works, like “L2-Net” [63] (published in 2017), show improvement over well established

traditional descriptors for certain data-sets. If the descriptors effectively differentiate

between unique points in space and are invariant to the orientation and distance of

the camera from the feature, feature matching can be an effective way to solve the

data-association problem.

However, in maps where visual features are not the landmarks, it is not as well

understood how to compute descriptors. Instead of comparing distances in some high

dimensional feature space, systems that detect physical landmarks often estimate the

3D pose of objects, and measure distance in that space. With a different observation

model, metrics that incorporate noise can be used as well. For example, one popular

approach is to model each landmark as a Gaussian, and to use the Mahalanobis

distance [38] as the distance metric [46]. In principle however, any metric can be used

as long as the information stored in the landmark and observation allow for it to be

computed. In Chapter 4, both a Mahalanobis distance based approach, and a learned

association metric based on learned feature descriptors are compared in the context

of building a map from vision to be used for navigation.

2.2.2 Data-Association with Multiple Detections

Regardless of the metric, given all information, for single hypothesis data-association,

the optimal technique would be to find the maximum likelihood association for each

detection. In other words, associate each detection with the landmark that was most

likely to generate it [42]. In the case where there are multiple detections at a given

time, there may be instances where two different detections are most likely to be

associated with the same landmark, and are within the threshold for association.

This can happen when two landmarks are particularly close in terms of the distance

metric, even though they are distinct. In this case, the concept of mutual exclusion

[42] — that each landmark can only be associated with one detection per observation

— is useful for overcoming an imperfect distance metric.

In order to ensure that the optimal associations are found, even in the case where

multiple detections meet the criteria for association with the same landmark, certain

32

detections that would otherwise be associated with a landmark will have to search for

a different correspondence (or form a new landmark). The Hungarian algorithm is

known to be able to solve for the optimal assignments for all detections in polynomial

time [33]. The Hungarian algorithm is a combinatorial optimization algorithm, which

can be modified to find the optimal solution in 𝑂(𝑛3) [33]. If the number of landmarks

in the map are of too great a number however, some implementations use greedy

approaches in order to reduce computational load [42]. This is true particularly in

maps built from visual features, and can lead to errors in data-association.

2.2.3 Errors in Data-Association

For any system in the presence of noise, there will likely be cases where landmarks

are associated incorrectly. The cause of these errors can be from noise in the sys-

tem (either in observations or localization), a distance metric that is an imperfect

model, false-positive/negative detections of landmarks, or shortcuts taken to reduce

computational load. The problems caused by incorrect data-association can be very

difficult to overcome. If detections are incorrectly added to the map, or landmarks

are updated with detections that do not correspond to them in reality, the map the

robot builds will not accurately represent the underlying environment. These errors

can compound, and lead to a robot failing to reach its goal. For a robot tasked with

navigating to an unseen goal, this can mean that certain routes might be blocked off

to it, preventing it from accomplishing the task.

How errors in data-association are dealt with once again depends upon the type of

map a robot is building. Maps composed of 3D point-clouds, due to the fact that they

track so many landmarks, rely on approaches such as RANSAC (random sample con-

sensus) to prune failures in association [45]. Proposed by Fischler and Bolles in 1981,

RANSAC [18] is a method to remove outliers from data by iterative removing points

at random to see if the remaining data better fits some model. Though incredibly

popular as a method for correcting data-association in visual SLAM, it is stochastic,

and can be computationally expensive for large numbers of features. Moreover, once

an outlier is removed via RANSAC, it can not be added back into the graph, meaning

33

if something is removed incorrectly, the map will not be able to accurately represent

the environment.

Other methods for overcoming errors in data-association include maintaining mul-

tiple hypotheses of the world, weighted by their probability. In this way, the robot

can plan using the most likely map, while still being able to switch to a map that

made a different choice in data association if new measurements dictate. This is the

approach taken in particle filter based SLAM system [43, 50], as well as more modern,

factor graph based approaches [19]. An unfortunate downside is that these methods

can be very computationally expensive, and so may be difficult to deploy on a robot

operating in real-time.

Data-association is a critical module in any sparse map building procedure. In

Chapter 4, a map representation is presented that can be built from monocular vision,

and which allows a robot to plan via high-level actions. This map is shown to be

robust to noise in both the learned action detector as well as in data-association.

Additionally, different methods for data-association are considered in the context of

building a graph of high-level actions that a robot can take in order to navigate

through unknown space.

2.3 Navigating Under Uncertainty

For a robot to be able to interact with the world, it must have a model of both itself

and its environment. The best choice of this model is dependant on the task the robot

is trying to accomplish, as well as what information about the world is available to

it. If a robot has full knowledge of its environment, it would be able to generate a

perfect map in order to represent the world, with no regions that are unexplored.

When tasked with navigating through an unknown world however, an autonomous

agent must construct its map as it travels.

With an incomplete map, it is impossible for a robot to decide how to navigate

optimally with complete confidence. How could a robot be expected to find the best

trajectory to a goal when it can not be sure what lies around each corner? In order to

34

solve this problem, an autonomous agent must be able to incorporate this uncertainty

into its model of the world.

In an ideal world, the navigation problem could be modeled as a sequential decision

making process with perfect information. First the robot receives an observation of

its surroundings, then decides how best to act. After it has taken that action, the

process repeats until the robot reaches its goal. If an observation contains information

about the full state of the world, and that world is deterministic, then the robot can

plan to navigate optimally. If we make the assumption that the optimal plan from a

given state is independent of previous states — the Markov assumption [39] — this

problem is well modeled by a MDP (Markov Decision Process), and can be solved

using such techniques as value or policy iteration [6].

Unfortunately, the types of sensors available to a mobile robot are limited in a

way that prevents the problem from being framed simply as an MDP: they can only

observe what is in direct line of sight and within some limited range [25]. Laser

range sensors are only reliable up to a certain distance, and neither they nor cameras

can “see” through walls. Thus, even if a robot’s sensors are perfectly noise free, and

detect everything within their range exactly, there will inevitably be regions of the

environment where the robot has incomplete information. In order to account for this,

we must incorporate the fact that each observation only includes partial information

about the environment in our model.

2.3.1 Navigation as a POMDP

The problem of autonomously navigating unknown environments can be formulated

as a Partially Observable Markov Decision Process (POMDP) — a generalization

of an MDP [28]. In an MDP, an agent knows exactly the state of the world, what

actions it can take for each state, and the possible outcomes of taking a given ac-

tion. In a POMDP however, the agent is not certain of the state of the world, and

instead has some belief, represented as a distribution over all possible states, that is

informed by observations [28]. If we define the state of the world as a static map plus

the robot’s position within that map, we can represent the problem of navigating

35

unknown environments in this framework by defining the belief of unexplored regions

as uncertain.

The following tuple can be used to represent the different elements of a POMDP:

(𝑆,𝐴, 𝑇,𝑅,𝑂,Ω), each of which is described below in the context of navigation of

unknown environments.

1. 𝑆 State: The state represents both the internal state of the robot, and the state

of the world, usually represented by a map. Depending on the robot, a robot’s

state can have many components such as various joint angles and velocities, or

be as simple as a pose in 2D. The state of the map, which can be continuous

or discretized (like an occupancy grid), is unchanging. Note that, in this work,

we are only concerned with discrete state-spaces. What distinguishes a POMDP

from a standard MDP however, is that in the case of an MDP, the state is known

perfectly, while this is not the case in a POMDP. For example, for the problem

of the navigation of unknown environments, even with a perfect sensor, due to

limitations of range and occlusion, not all of the map’s state is known at all times,

because not all of the map has been seen by the robot’s sensors.

2. 𝐴 Actions: The actions available to the robot at any given instance. An action

takes the robot from one state to another with some probability. In many robotics

problems, the action set is some low-level control, like changing the steering angle

or velocity. In this work however, we present a method for simplifying the problem

by considering a set of high-level actions. This will be discussed in greater detail

in chapter 3. In general, by solving a POMDP, the robot will know for any given

state what the optimal action is with respect to some objective function.

3. 𝑇 Transition: The probability that taking a certain action will result in the robot

being in a given state. For example, if a wheeled robot is directed to make a turn,

there may be some probability that the wheels will slip, and the robot will end up

in a different state than what was intended.

4. 𝑅 Reward: The reward (sometimes formulated as a cost) is an element in the

agent’s objective function that the autonomous agent is maximizing (or minimizing

36

in the case of cost) to solve the POMDP. Rewards can be given for taking certain

actions, or for reaching intermediate states, though in the context of this work,

the navigation task is formulated as a min-distance problem. In other words, the

optimal path a robot can take is the one that reaches the goal in the shortest

possible distance.

5. Ω Observation: An observation is all information that an agent receives about the

world at a given time. The observation contains information about the state of the

world, and in the case of a POMDP, is accompanied by some uncertainty. For the

case of a discretized state-space, an observation contains information about which

cells in the grid are occupied by obstacles.

6. 𝑂 Conditional Observation Probability: The conditional observation probability

represents the probability that a given observation correctly represents the world.

The inaccuracy in an observation can come from a noisy sensor, though in this

work we are primarily concerned with incomplete observations received by a mobile

robot. For example, if the robot receives an observation from a laser-range sensor,

it only has information about the environment that is in direct line of sight from

the sensor. Obstacles occlude whatever is behind them, so information in that

region which is occluded would have a conditional observation probability of zero.

2.3.2 Belief States and the Bellman Equation

The defining characteristic of a POMDP is that the agent does not have full knowledge

of the state of the world at all times, and so must maintain a belief of the true state

based on its observations. The belief at a particular state 𝑏[𝑠𝑡] can be defined as

the pr obability that 𝑠 represents the true state at a given time. It has been shown

that the belief is a sufficient statistic for for all past observations and the initial prior

belief state of an agent, meaning the distribution encodes all information needed to

act under uncertainty [28, 3].

As mentioned above, navigation through unknown environments is often modeled

as a POMDP, where the belief state of unobserved regions is uncertain. To “solve”

37

such a problem, the agent searches for the best action it can take in a given state,

with the goal of optimizing some objective function. The expected cost of an action

under the optimal policy can be computed recursively using the Bellman Equation

[6]:

𝑄*(𝑏𝑡, 𝑎𝑡 ∈ 𝒜(𝑏𝑡)) =
∑︁
𝑏𝑡+1

𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡)
[︂
𝑅(𝑏𝑡+1, 𝑏𝑡, 𝑎𝑡) + min

𝑎𝑡+1∈𝒜(𝑏𝑡+1)
𝑄(𝑏𝑡+1, 𝑎𝑡+1)

]︂
(2.1)

where 𝑅(𝑏𝑡+1, 𝑏𝑡, 𝑎𝑡) is the expected cost of reaching belief state 𝑏𝑡+1 from 𝑏𝑡 by taking

action 𝑎𝑡. We can define the belief state to be a two-element tuple consisting of the

partially observed map 𝑚𝑡 and the robot pose 𝑞𝑡: 𝑏𝑡 = {𝑚𝑡, 𝑞𝑡}.

In order to highlight the focus of the research in chapter 3, we make some sim-

plifying assumptions. First among these is that we have a noiseless sensor, meaning

that everything that is within sight of our robot can be perfectly detected. Addi-

tionally, we assume that, at the lowest level of abstraction, we have a deterministic

transition function. In other words, this means that every action the robot takes will

be executed perfectly (e.g., no wheel slip), though this may not necessarily be true

at higher levels of abstraction. Finally, we do not attempt to solve the problem of

localization in this work, and assume the position of the robot relative to some global

reference frame is known perfectly.

Even with these simplifying assumptions however, the problem is still extremely

difficult to solve. The robot can only observe what is within its direct line of sight,

and so cannot update its belief of the entire map with each observation. If the goal

exists outside of the region the agent has seen, it must in some way attempt to solve

the POMDP in order to plan to that goal even with this incomplete information.

Unfortunately, in practice, computing the expected cost via Eq. (2.1) is intractable,

both because the complexity scales poorly for large problems, and because it requires

taking an expectation over the distribution of all possible maps.

38

2.4 Solving the POMDP

Work on solving navigation and exploration tasks in uncertain environments using

POMDPs dates to the mid-1990’s [28, 35, 60]. Due to the computational challenges

of solving POMDPs however, most techniques established through 1990 were too

inefficient to be used on anything beyond very simple cases (2-5 states at most) [8].

In 1994, Michael Littman pushed the field forward when he published his work on

the “Witness Algorithm,” which is capable of solving POMDPs in environments with

up to 16 states exactly [34].

Later, work from Littman, Cassandra, and Kaelbling compared methods for solv-

ing POMDPs approximately using such techniques as truncating the evaluation of the

witness algorithm, solving the underlying MDP by ignoring the observation model

(𝑄𝑀𝐷𝑃), and applying different Q-Learning techniques from reinforcement learning

literature [35]. They found these methods were more or less comparable, though

thoroughly unable to solve problems of as few as even 57 states. Through combining

techniques however (specifically by seeding Q-learning with 𝑄𝑀𝐷𝑃), the authors were

able to satisfactorily approximate the solutions to POMDPs with “nearly 100 states”

[35].

Despite these advancements however, as the size of environments expands beyond

simple toy examples, these methods are no longer tractable for a robot operating in

real time. Instead of solving the POMDP completely, recent efforts have been made

to approximate it to solve problems of a larger scale.

2.4.1 Approximating short-horizon POMDPs for Navigation

Recent efforts in approximately solving POMDPs online involve solving smaller prob-

lems which yield a policy similar to the solution to the full POMDP. DESPOT searches

a set of randomly sampled scenarios, which helps alleviate the problems associated

with solving POMDPs in high-dimensional state-spaces [67]. The algorithm finds an

approximately optimal policy by simulating the execution of all policies in the belief

tree of sparcified samples. The authors show they can find an estimate of the true

39

value of a policy even in large state-spaces given that a good small policy exists.

However, long-term planning in the context of navigation in this framework is still

difficult.

While the goal of this thesis is the navigation of large-scale environments, work

in navigating short-horizon navigation problems can be insightful. Recently, progress

has been made in searching for collision-free paths through partially explored envi-

ronments, wherein an autonomous agent must reason about unknown space, albeit

on a smaller scale than the work presented in this thesis. Karaman and Frazzoli [31]

navigate unknown random forest environments by making strong assumptions about

the environment distribution. Since they know the locations of trees are generated by

a homogeneous Poisson process, and know the dynamics of their agent (modeled after

a bird at high-speeds), the authors are able to bound collision probabilities for given

speeds. Some recent work has instead focused on using a dynamic action set [54]

or boundaries between free and unknown space [2, 48] for navigation/exploration of

unknown environments.

If the distribution over states is not known, learning is required to estimate the ex-

pected cost [52]. Most literature that uses learning to explore unknown environments

focuses on short time horizon planning. Richter et al. [51] learn to solve an approx-

imate POMDP for navigation of unknown environments, yet restrict their planning

horizon to only a few time-steps. In Richter and Roy’s later work [53], the authors

leverage supervised learning to estimate the collision probabilities of trajectories that

enter unknown regions of the map in order to navigate structured environments more

quickly. Though predictions are limited to short-term trajectories, these publications

were inspirational in a number of ways. First, the authors utilize a discrete action set

of 50 different actions as an action-centric abstraction for planning. Second, approxi-

mations are made to the Bellman equation to allow it to be factored into components

(such as collision probability) that can be estimated via learning.

40

2.4.2 Navigation using Deep Reinforcement Learning

While progress has been made in utilizing the Bellman equation to plan through

unknown space, the deep reinforcement learning (Deep RL) community has been

making rapid progress towards model-free navigation of unknown environments [22,

58, 68, 41, 14]. Once again however, most such research focuses on small environments

or, as in Kahn et al. [29], use time-horizons insufficient for making reasoned decisions

in environments of our size, which can require recall of information over thousands of

steps.

The MERLIN agent [66] uses a differentiable neural computer to tackle maze

navigation and other goal-oriented tasks, which enables storage and recall of informa-

tion over much longer time-horizons than is typically realizable by standard “end-to-

end” Deep RL systems. However, their approach requires orders of magnitude more

data than is used in the approach described in Chapter 3 (billions of samples versus

hundreds-of-thousands) and on environments considerably smaller than ours, owing

to the difficulties associated with model-free reinforcement learning with delayed re-

wards [11, 32]. Like other Deep RL agents, they also lack guarantees their agent will

ultimately succeed at the assigned task.

The work presented in Chapter 3 expands upon the work that utilizes supervised

learning to plan into unknown space, with a focus on long-horizon planning. The

primary contributions are an abstraction that allows for efficient planning, and a

factorization of the Bellman equation that enables reasoning about long term plans.

Chapter 4 will present an alternative to the mapping techniques discussed earlier in

order to enable efficient navigation of unknown environments with visual input.

41

42

Chapter 3

Learned Subgoal Planner

As stated Chapter 1, in order to navigate to an unseen goal, an autonomous agent

must reason about plans through unknown space. Returning to the motivating ex-

ample from Chapter 1, we imagine a robot tasked with navigating a previously unex-

plored building, adding to its partial map of the environment as it travels. Reaching

its goal requires the robot to generate plans which enter unknown parts of the map,

and in so doing, reason about the cost of trajectories through space which has not

yet been observed. As was discussed in Chapter 2, past solutions to problems like

this one avoid the difficulties associated with reasoning about unknown space by op-

timistically assuming all unobserved regions of the map are free of obstacles [4, 20].

However, attempting to travel across a building using this approach will lead such

an optimistic planner to make sub-optimal decisions while navigating. If tasked with

reaching a far away conference room, for example, we would expect a naive robot to

encounter many dead-ends and other local minima, greatly increasing travel time. If

we aim to navigate partially-revealed environments in minimum distance, the robot

will need to reason more intelligently about unknown space.

3.1 Planning Using High-Level Actions

Planning more intelligently requires making inferences about environmental topol-

ogy, so that likely dead-ends may be predicted and avoided. For example, offices

43

in a building usually only have a single entrance and very rarely connect different

regions, so any proposed motion plans that attempt to reach a faraway goal via an

unexplored office should have a higher expected cost than those that plan to navigate

through hallways. We have shown that navigating in a partially-revealed environment

can be modeled as a Partially Observable Markov Decision Process [28] (POMDP),

which can be leveraged to compute the expected minimum cost path. However, us-

ing this model to evaluate the expected costs of actions, like comparing trajectories

which go in different directions down a hallway, is impossible in practice. Not only

does this comparison require enormous computational effort for large maps, but it

also necessitates access to a distribution over possible environments. Obtaining such

a distribution in a form that is useful for navigating unknown space is difficult in

practice for complex environments.

Despite the advances of learning-based approaches for navigating in unknown

environments [51, 22, 68], there are still limitations. One key drawback of many

approaches so far has been in their ability to learn policies that reason over long time

horizons, since previous efforts have focused predominantly on short-horizon costs.

Methods such as those presented in Richter et al. [51, 52] and Kahn et al. [29],

while useful for avoiding obstacles, are insufficient for recognizing and avoiding the

long-term implications of actions, which may impact navigation over hundreds of

meters. Those approaches which use reinforcement learning to plan over longer time

horizons suffer from practical limitations associated with data complexity [11, 66] or

delayed rewards [32], and so make it difficult for such agents to learn policies that

can effectively navigate large-scale, unknown environments.

In order to reason about the structure of an unobserved environment beyond the

short term more easily, we introduce an abstraction to the planning problem that

enables us to efficiently make predictions about actions which lead the robot to enter

unknown space. To that end, we associate “subgoals” in the planning problem with

each boundary between free and unknown space in our map. We define a dynamic

action set where each high-level action corresponds to the robot traveling to the

goal through a particular subgoal. Using subgoals to define the set of actions, we

44

begin with the Bellman equation to derive an algorithm that allows us to use those

actions to plan. By reducing the complexity of the action set in this way, we are

able to avoid the computational challenges of reasoning over individual trajectories

or motion-primitives, and estimate the expected cost of navigating to the goal via

one of the subgoals.

Representing the possible paths to the goal, one of the subgoals must be passed

through for the robot to enter unknown space and reach the unseen goal. Thus, the

set of subgoals represents all possible avenues for exploration of the environment. The

set of dynamic actions (subgoals) is computed on-line from the map and updates as

the robot explores. Using a neural network, our approach learns the properties of

the unknown environment beyond each subgoal: e.g., the likelihood that attempting

to reach the goal via a subgoal will ultimately lead to the goal or to a dead end.

By learning these values, our algorithm is able to incorporate prior information from

similarly structured environments, and estimate the long-time-horizon cost of our

actions, while avoiding the computational costs usually incurred when planning under

uncertainty.

Our approach enables experience-guided navigation of unknown environments in

real-time on an autonomous platform. Moreover, once a high-level action is chosen,

we use classical planning techniques to navigate toward each subgoal, meaning our

planner is guaranteed to reach the goal if a feasible path exists, even in unfamiliar

environments where learning may not provide accurate predictions. We demonstrate

the effectiveness of our technique in simulation by showing that the expected cost of

using our planner for navigation is 21% lower on real-world floor plans as compared

to a standard optimistic heuristic. We also include real-world experiments on an RC

car and show promising performance consistent with the simulated results (Section

3.4), thus demonstrating that our algorithm is suitable for operation on a real-world

robot.

45

3.2 Planning with Subgoals

When navigating to a goal in a static, unknown environment, a robot’s objective is to

minimize the distance it will travel in expectation. As stated in Chapter 2, navigating

an unknown environment can be modeled as a Partially Observable Markov Decision

Process. Using this framework, the expected cost of an action under the optimal

policy can be computed recursively using the Bellman Equation, re-presented here

from 2.1:

𝑄*(𝑏𝑡, 𝑎𝑡 ∈ 𝒜(𝑏𝑡)) =
∑︁
𝑏𝑡+1

𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡)
[︂
𝑅(𝑏𝑡+1, 𝑏𝑡, 𝑎𝑡) + min

𝑎𝑡+1∈𝒜(𝑏𝑡+1)
𝑄(𝑏𝑡+1, 𝑎𝑡+1)

]︂
(3.1)

As before, 𝑅(𝑏𝑡+1, 𝑏𝑡, 𝑎𝑡) is the expected cost of reaching belief state 𝑏𝑡+1 from 𝑏𝑡 by

taking action 𝑎𝑡. For a robot navigating while building a map, the belief state can be

represented as a two-element tuple consisting of the partially observed map 𝑚𝑡 and

the robot pose 𝑞𝑡: 𝑏𝑡 = {𝑚𝑡, 𝑞𝑡}.

To simplify the calculation of the expected cost, we introduce our Learned Subgoal

Planning algorithm, which we use to evaluate the expected cost of selecting a motion

plan that passes through a particular subgoal. In our abstraction, each subgoal

corresponds to a boundary between free and unknown space, and a plan through

a particular subgoal represents a path towards the goal which enters unknown space

through that boundary.

At the time of planning, the subgoals define the set of actions available to a robot,

where each action corresponds to traveling to the goal via the unknown space that

exists beyond the frontier of a particular subgoal. The action loop for our subgoal

planning agent is as follows: (1) we obtain the set of subgoals from the map (this

yields a set of actions 𝒜(𝑏𝑡)), (2) we compute the expected cost of selecting an action

𝑎𝑡 using the process described in Section 3.2.1, (3) we choose the subgoal 𝑞*𝑔 that

minimizes the expected cost of navigating to the goal, (4) we compute a motion plan

passing through subgoal 𝑞*𝑔 , and (5) we select a low-level motion primitive that moves

along the computed path. This repeats at each time step until the goal is within the

46

Figure 3-1: This schematic gives an overview of our subgoal planning algorithm, which allows us to
plan through an unknown environment by computing the expected cost of each action in a way that is
computationally feasible. Learning is used to estimate the terms 𝑃𝑆 , 𝑅𝑆 and 𝑅𝐸 , thereby introducing
prior knowledge about the environment class of interest into the decision-making procedure. This
equation is derived and discussed further in Sec. 3.2.1.

revealed map, and the agent is able to plan to it directly.

3.2.1 Approximating Expected Cost via the Subgoal Planner

In order to take advantage of our action-centric abstraction, we first factor the Bell-

man Equation according to our abstraction and introduce terms we later estimate

with learning. Without loss of generality, we can split the future belief states 𝑏𝑡+1

into two sets: future states in which the robot has reached the goal, which we write

as 𝑏𝑡+1 ∈ 𝐺, and future states in which it has not, 𝑏𝑡+1 ̸∈ 𝐺. This reduction of the

state space allows for the problem to be computationally tractable, and is possible

because of the high-level action set. Noting that the future cost is identically zero for

states that reach the goal (no more actions are necessary once the robot is in the goal

state), we can eliminate 𝑄(𝑏𝑡+1, 𝑎𝑡+1) when 𝑏𝑡+1 ∈ 𝐺 and rewrite Eq. (3.1) as follows:

𝑄(𝑏𝑡, 𝑎𝑡 ∈ 𝒜(𝑏𝑡)) = 𝑃𝑆(𝑏𝑡+1 ∈ 𝐺|𝑏𝑡, 𝑎𝑡)
∑︁

𝑏𝑡+1∈𝐺

𝑃𝐺(𝑏𝑡+1|𝑏𝑡, 𝑎𝑡)𝑅(𝑏𝑡+1, 𝑏𝑡, 𝑎𝑡) +

(1 − 𝑃𝑆(𝑏𝑡+1 ∈ 𝐺|𝑏𝑡,𝑎𝑡))
∑︁

𝑏𝑡+1 ̸∈𝐺

𝑃𝐺̄(𝑏𝑡+1|𝑏𝑡, 𝑎𝑡)
[︂
𝑅(𝑏𝑡+1, 𝑏𝑡, 𝑎𝑡) + min

𝑎∈𝒜(𝑏𝑡+1)
𝑄(𝑏𝑡+1, 𝑎)

]︂
,

(3.2)

47

where 𝑃𝑆(𝑏𝑡+1 ∈ 𝐺|𝑏𝑡, 𝑎𝑡) ≡
∑︀

𝑏𝑡+1∈𝐺 𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡) is the proportion of states in which

the agent successfully reaches the goal after selecting action 𝑎𝑡 from belief state 𝑏𝑡

and 𝑃𝐺(𝑏𝑡+1|𝑏𝑡, 𝑎𝑡) ≡ 𝑃 (𝑏𝑡+1|𝑏𝑡, 𝑎𝑡)/𝑃𝑆(𝑏𝑡+1 ∈ 𝐺|𝑏𝑡, 𝑎𝑡) is normalized according to∑︀
𝑏𝑡+1∈𝐺 𝑃𝐺(𝑏𝑡+1|𝑏𝑡, 𝑎𝑡) = 1, so that the first term in Eq. (3.2) can be thought of as the

expected cost over states that reach the goal times the proportion of states that reach

the goal (both of which we estimate using learning - Section 3.2.2). 𝑃𝐺̄ is defined in

the similar way, though for states which do not successfully reach the goal. Evaluating

the recursive term in Eq. (3.2) remains particularly difficult to compute, because it

implies knowledge about the actions which will be available to the robot after the

selected action has been taken. This requires predicting the influence of taking an

action on other actions. We reduce this term with a simplifying assumption: that the

expected cost of the future states can be approximated using the current observed map

𝑚𝑡. Specifically, we assume that the set of actions which remain after one has been

selected is simply the current set of actions minus the action that was just chosen:

𝒜(𝑏𝑡+1) = 𝒜(𝑏𝑡) ∖ {𝑎𝑡}. These assumptions make computing the expected cost of

an action significantly easier, since the recursive term in the resulting approximate

Bellman Equation only depends on the current observed map 𝑚𝑡:

min
𝑎∈𝒜(𝑏𝑡+1)

𝑄(𝑏𝑡+1, 𝑎) ≈ min
𝑎∈𝒜(𝑏𝑡)∖𝑎𝑡

𝑄({𝑚𝑡, 𝑞𝑡+1}, 𝑎), (3.3)

where {𝑚𝑡, 𝑞𝑡+1} is a belief state consisting of the current observed map state 𝑚𝑡

and the next robot pose 𝑞𝑡+1. To compute the expected cost-to-go at time 𝑡 via our

subgoal based abstraction, we first compute the set of actions, 𝒜(𝑏𝑡), which each

correspond to planning to the goal through one of the available subgoals. Following

Eqs. (3.2) & (3.3), the expected cost can be written as,

𝑄(𝑏𝑡, 𝑎𝑡) =

1.⏞ ⏟
𝐷(𝑚𝑡, 𝑞𝑡, 𝑞𝑔) +𝑃𝑆(𝑏𝑡+1 ∈ 𝐺|𝑏𝑡, 𝑎𝑡)

2.⏞ ⏟
𝑅𝑆(𝑏𝑡, 𝑞𝑔, 𝑞𝐺, 𝑎𝑡) +

(1 − 𝑃𝑆(𝑏𝑡+1 ∈ 𝐺|𝑏𝑡, 𝑎𝑡))

⎡⎣𝑅𝐸(𝑏𝑡, 𝑞𝑔, 𝑎𝑡)⏟ ⏞
3.

+ min
𝑎∈𝒜(𝑏𝑡)∖𝑎𝑡

𝑄({𝑚𝑡, 𝑞𝑔}, 𝑎)⏟ ⏞
4.

⎤⎦ ,

(3.4)

48

where we define the following terms:

1. 𝐷(𝑚𝑡, 𝑞𝑡, 𝑞𝑔): the cost of traveling from 𝑞𝑡, the current location of the agent, to

a subgoal 𝑞𝑔 (as specified by an action 𝑎𝑡). Determining this cost is as simple

as planning the shortest cost path through the known map from the robot to

the chosen subgoal. Since this motion plan occurs entirely within known space,

we use Dijkstra’s algorithm as a heuristic to calculate this cost. Note that in the

recursive part of this cost function, 𝐷(𝑚𝑡, 𝑞𝑡, 𝑞𝑔) becomes the cost of traveling from

one subgoal to the next. This represents the cost of trying the next action after

one has failed to find the goal.

2. 𝑅𝑆(𝑏𝑡, 𝑞𝑔, 𝑞𝐺, 𝑎𝑡): the expected cost of success. Suppose the robot succeeds in

reaching the goal via the subgoal specified by action 𝑎𝑡 with a probability 𝑃𝑆(𝑏𝑡+1 ∈

𝐺|𝑏𝑡, 𝑎𝑡). Then, with probability 𝑃𝑆, we accrue an expected cost of traveling from

the subgoal 𝑞𝑔 to the goal 𝑞𝐺 via unknown space.

3. 𝑅𝐸(𝑏𝑡, 𝑞𝑔, 𝑎𝑡): the exploration cost. In the event that the agent does not reach the

goal, we say that it instead explores the space beyond the subgoal of interest. With

probability 1 − 𝑃𝑆, the agent then accumulates an exploration cost, the expected

cost of trying to navigate to the goal via 𝑎𝑡 and returning to the subgoal 𝑞𝑔.

4. 𝑄({𝑚𝑡, 𝑞𝑔}, 𝑎): the future expected cost. If the robot does fail to reach the goal

through a particular subgoal 𝑞𝑔, this represents the cost of considering a different

action. After exhausting one action, we choose a new action from the reduced set,

𝑎 ∈ 𝒜(𝑏𝑡) ∖ 𝑎𝑡. We compute this final term recursively until the costs of all actions

in 𝒜(𝑏𝑡) have been computed.

An illustration of our procedure for a simple example can be found in Fig. 3-1.

3.2.2 Learning Properties of Unknown Space

The proposed abstraction has greatly reduced the complexity of the planning problem.

Given access to the terms in Eq. (3.4) — the probability of succeeding in reaching

the goal 𝑃𝑆, the success cost 𝑅𝑆, and the exploration cost 𝑅𝐸 — and solving for

49

the order of actions which minimizes the equation, we can solve for the optimal

high-level plan in a computationally tractable way. However, each of these terms are

implicit expectations over the future belief 𝑏𝑡+1 and, as before, require great effort and

knowledge about the distribution over environments to compute exactly. So, rather

than attempting to compute these terms, we endeavor to learn them, allowing us to

predict information about actions that enter the unseen regions of the environment.

One point of note is that, since using Dijkstra’s algorithm to compute the distance

between the goal 𝑞𝐺 and each subgoal 𝑞𝑔 provides a reasonable estimate of the success

cost, we instead learn the delta success cost, the difference between the two: ∆𝑅𝑆 =

𝑅𝑆(𝑏𝑡, 𝑎𝑡) −𝐷(𝑏𝑡, 𝑞𝑔, 𝑞𝐺). These terms are learned in a supervised manner: we train

a fully-connected neural network to take as input (1) a single sensor observation, a

256-element vector of LIDAR range measurements, (2) the 2D robot-frame position

of the goal, and (3) the robot-frame position of the subgoal, and predict the terms

specified above. As new observations are incorporated into the map and the set of

subgoals changes — i.e., the boundary of observed space changes — any new subgoal

is passed to the neural network, which then estimates the properties of the unknown

space beyond that subgoal.

The neural network used in this implementation is a fully connected network

with hidden layers of width {256, 128, 48, 16}, each followed a batch normalization

layer, 50% dropout, and a sigmoid activation function. We trained our network

using the Adam optimizer in TensorFlow (default parameters) over 100k steps with

a batch size of 256 and using roughly 300k training samples for each environment.

The learning rate begins at 0.004 and decreases by a factor of 0.9 every 5k steps;

the relatively fast learning rate decay and the dropout regularize the network and

reduce overfitting. The performance is largely insensitive to changes in the random

seed, adding additional layers, or changing the number of hidden nodes. We trained

a few dozen different networks with variations on these parameters, and found that

the standard deviation in the loss between these different networks was only 4.2%.

The output of the neural network has three dimensions, for each of the three desired

outputs; a sigmoid activation and weighted cross-entropy loss is used to predict the

50

success probability while a linear activation and a squared error loss is used for the

two regression outputs. Loss for the success cost is only applied when a plan through

a subgoal does lead to the goal and the loss for the exploration cost is only applied

when it does not.

One additional consideration is that the effective cost of misclassifying a subgoal

strongly depends on a number of factors. For example, if a subgoal constitutes the

only path to the goal, then the penalty for misclassifying this subgoal is very high.

By contrast, deciding to explore a small room near the goal will not likely take

long and is therefore of relatively low cost. Computing the relative importance of

correctly classifying a subgoal would require solving the full Bellman Equation and

is therefore too expensive to compute. Instead, we provide a heuristic for computing

this misclassification cost at training time. For subgoals that do not lead to the goal,

misclassification results in the exploration cost 𝑅𝐸 described above, which is roughly

the cost of exploring the space beyond the chosen subgoal. For subgoals that do lead

to the goal, the robot could travel across the entire map before returning; therefore,

the penalty is the cost of traveling to the furthest point beyond a subgoal that does not

lead to the goal and back. The computed costs are then used as weights for the cross-

entropy loss used to train the classifier. Our heuristic matches intuition: subgoals

that lead to the goal are naturally more important to correctly classify than those

that do not. Finally, we also use class reweighting to compensate for the asymmetry

in the proportion of subgoals that do and do not lead to the goal.

3.2.3 Training Data Generation

We require data to train our network to learn the properties of unknown space beyond

each subgoal. In order to generate this data, we build simulated maps from a few

different classes of environment (presented in Section 3.3), and have a point robot

navigate from a randomly generated start pose to a randomly chosen goal position.

We choose to have the agent assume that all space it has not yet seen is free of

obstacles in order for it more fully explore the simulated world to ensure it collects

data that will help it learn to recover from dead-ends. As the simulated agent explores,

51

it reveals its environment and generates new boundaries between free and unknown

space. We extract the newly updated subgoals at each step, and using the underlying

map, we determine if planning through each subgoal will lead to the goal, and its cost

of success (if the subgoal does lead to the goal) or its exploration cost (if the subgoal

does not lead to the goal). Each new subgoal corresponds to a single training datum.

For each environment, we generate a few hundred maps and collect data from each

run of the optimistic planner. The resulting data is then used to train the neural

network described in the previous section. We note that the maps we use for training

are distinct from those used for testing, though are of the same class of environment.

Additionally, for our floor plan environment, the maps we use to generate our training

data are from different buildings than the floor plans we use to evaluate performance,

so that we may show that we learn generally informative features about human-

structured environments instead of memorizing the environments themselves.

3.2.4 Implementation Details

In this implementation of the Learned Subgoal Planning algorithm, the robot builds

a 2D occupancy grid as it travels, and from that map extracts the subgoals in order to

plan its path. The abstraction of using these high-level actions to plan is what makes

this approach computationally tractable. The process of extracting the actions from

the grid is as simple as identifying each continuous instance where there exists grid

cells marked as “free” adjacent to grid cells that are “unknown.” These boundaries

mark the complete set of frontiers which the robot can travel through in order to

enter unknown space. Since the robot must pass through one of these to reach the

goal, the action set that we have defined ensures that by picking one of these actions

until the goal is found, the robot is guaranteed to eventually accomplish its task.

It is important to note that if it is not possible to build a reliable occupancy map

— for example if the robot was equipped with a monocular camera instead of a laser

scanner — then a different method of computing the set of high-level actions would

be necessary. This is touched on in Chapter 4. In principle, as long as the robot is

capable of extracting a set of actions where, when all actions have been exhausted,

52

the robot is guaranteed to either find its goal or determine the goal cannot be reached,

then the Learned Subgoal Planner can be utilized.

Another detail in the implementation of this work relates to how the robot chooses

which action to take in the Learned Subgoal Planner. While this has been described

above, the planning loop is outlined here for clarity.

1. The robot extracts all frontiers from the environment, and associates a subgoal

with each.

2. For each subgoal, the properties highlighted in Figure. 3-1 —the probability of

succeeding in reaching the goal 𝑃𝑆, the success cost 𝑅𝑆, the exploration cost

𝑅𝐸 — are calculated by the neural network in order to compute the overall cost

of taking each individual action.

3. The robot computes its high-level plan by solving the travelling salesman prob-

lem associated with determining in which order it should plan to take each

action.

4. Once the full high-level plan is found, the robot takes the first action in that list

of actions by computing the low-level plan that would take the robot through

the subgoal.

5. After this plan is found, the robot travels along this path until it receives a

new observation of the world, at which point it updates its map, and starts the

planning loop from the beginning again.

Though replanning at each time step might seem computationally expensive, there

are a few ways this process can be accelerated. First, the properties of a frontier only

change when it has been observed in a given time step. Thus, only the frontiers near

the robot that have been seen are updated by the neural network. Second, it was

found experimentally that certain actions can be ignored without much effect in the

planning loop if they have a low enough probability of success. So, in both simulated

and real trials, it is wise to limit the robot to consider only the 𝑛 most likely subgoals

53

Figure 3-2: A comparison between the cost-to-go of the optimistic planner baseline and our subgoal
planner for 1,200 simulated trials in the Guided Maze Environment. The blue line represents the
calculated fit line of data points selected by RANSAC (filled circles). The Learned Subgoal Planning
agent travels a total of 22.3% less distance than the optimistic baseline over these trials, which is
shown in the scatter plot by the fit line being in the green colored region. In plots of the subgoal
planner’s path, boundaries associated with each subgoal are colored from green to red so as to
visualize 𝑃𝑆 , the estimated likelihood that it will lead to the goal.

when it is on the third step of the planning loop described above. How 𝑛 is chosen

depends on the environment type and the available computation. These optimizations

allowed us to run the subgoal planning algorithm at approximately 2-Hz on the real

robot, the specs for which are described in Section 3.4.

3.3 Simulation Results

To evaluate the performance of our approach to planning, we generate simulated

occupancy grids from four different classes of environments: “guided” mazes, random

forests, office-like environments, and real-world floor plans. From these samples of

these environments, we generate training data and train a neural network for each

class, as described in Sec. 3.2.2 & 3.2.3. In each environment, individual trials consist

of our simulated RC Car agent navigating between a random start/goal location for

each of the optimistic planner — which plans as if all unknown space is unoccupied

— and Learned Subgoal Planner. For each environment we test in, we compare the

length of the resulting trajectories to determine how the Learned Subgoal Planner

performed relative to the baseline.

54

3.3.1 “Guided” Maze Navigation Results

We generate maze environments using Kruskal’s Algorithm [1] as a proof of concept

for the Learned Subgoal Planning Algorithm. We use the term guided to mean that

the maze is designed in such a way that local features give immediate guidance on

which way to go. Specifically, this means the hallways along the most-direct path

between the start and the goal are twice as wide as any other branches of the maze.

With this clear marker, we would expect our planner to be able to learn that the

expected cost to reach the goal will likely be much lower for an action that stays

to the wider path. Because this information is in the geometry of the environment,

individual laser scans should be enough to estimate properties of the unknown space

beyond each subgoal with reasonable reliability. We evaluate navigation performance

of the simulated agents through 1,200 runs in our synthetic maze environment, and

include a scatter plot in Fig. 3-2 that gives the net distance traveled of each trial by

both the optimistic planner baseline and our subgoal planner.

Evaluating the results of our trials in the “guided” mazes, we find the net cost

incurred by the robot summed over all trials (each from start to goal) shown in Fig. 3-

2 is 22.3% lower for our subgoal planner than for the optimistic planner. Furthermore,

fitting a line to 95% of the data — as selected by RANSAC — compares the incurred

cost of our planner to that of the optimistic planner, yielding a cost ratio of 0.570:

the expected cost of the motion plan executed by our subgoal planner is 43% lower

than that of the optimistic planner for the same environment configuration. Fig. 3-2A

shows one example where the subgoal planner, using local features to estimate the

expected cost of each subgoal, navigates directly to the goal, yet the optimistic planner

unnecessarily explores much of the environment before eventually reaching the goal.

By learning to stick to the wide hallways, our planner has a distinct advantage over

one which assumes all paths through unknown space lead directly to the goal.

There are a handful of cases however in which the optimistic planner outperforms

the Learned Subgoal Planner. Examples of these cases are typically a result of incor-

rect predictions from the network near the start of a plan. This is potentially because

55

Figure 3-3: A comparison between the cost-to-go of the optimistic planner baseline and our Learned
Subgoal Planner for 1,000 simulated trials in the Forest Environment. Our agent closely matches
the performance of the optimistic baseline, which already achieves near-optimal navigation.

it can be difficult to determine which path is wider in certain starting positions. If

our planner incorrectly predicts that the subgoal leading to the goal is a dead end, it

will navigate a portion of the remaining environment before returning to correct its

mistake. We show one such example in Fig. 3-2B. These cases are uncommon, how-

ever, (roughly 2.5% of results) and are outweighed by the trials in which our planner

outperforms the optimistic planner.

3.3.2 Forest Navigation Results

Having demonstrated that our algorithm is capable of using local features to aid

navigation, it is also important to show that the Learned Subgoal Planner does not

lower performance in the case were there is not much information to be gained from

local geometry. If the world were completely random, the optimal policy might be

to enter unknown space in the region closest to the goal, which is approximately

the policy of the optimistic planner. To show that the Learned Subgoal Planner

can navigate in such environments, we have our simulated agent navigate in a set of

random forests, generated in such a way that gaps between each individual cylinder

is large enough to allow the agent to pass between them. We conducted 1,000 trials

in the random forest environments and plot the results in Fig. 3-3, which shows a

good agreement between the cost of the motion plans from the optimistic planner and

our subgoal planner. Fitting a line to 95% of the data — as selected by RANSAC

— yields a cost ratio of 1.006 between the planners, confirming the good agreement.

56

Figure 3-4: A comparison between the cost-to-go of our Learned Subgoal Planner and the optimistic
planner baseline for 2,500 simulated trials in the Office-Like environment.

In addition, the cost of using our subgoal planner summed over all trials is only

2% higher than the net cost from the optimistic planner, suggesting that using our

subgoal planner does not substantively lower performance in environments for which

the optimistic planner is already very effective.

It is worth noting that outlying points, those visibly above the line, are uncommon

and have only a small impact on the overall navigation performance; such points, such

as the one shown in Fig. 3-3B, frequently occur near the goal, when small fluctuations

in the learning output may cause our planner to change directions while encircling

a cylindrical object. There are surprisingly a few cases where the Learned Subgoal

Planner outperforms the optimistic planner in this environment type. As shown in

Fig. 3-3A, such instances are caused mostly by luck, when the two motion plans

deviate around an obstacle which was occluding another.

3.3.3 Office-Like Environment Navigation Results

The previous environments were illustrative of two important properties of the Learned

Subgoal Planner. The guided maze environment demonstrated that the deep network

was able to learn to associate useful structural information with the higher level ac-

tions, while the random forest showed the algorithm was able to efficiently navigate

to the goal even in the worst case scenario when the was no usable information in

the structure to be leveraged. However, neither of these were particularly realistic

environments that a robot might face when solving a navigation task. In order to

57

Figure 3-5: A comparison between the cost-to-go of our Learned Subgoal Planner and the optimistic
planner baseline for 2,000 simulated trials in the Floor Plan Environment. The subgoal planning
agent travels a total of 12.5% less distance than the optimistic baseline.

demonstrate that the Learned Subgoal Planner approach was able to navigate envi-

ronments that a robot might actually see in the real wold, we first hand-crafted an

offlice-like environment that mimics what a human-structured indoor environment

looks like.

In Fig. 3-4 we see the results of 2,500 simulated trials in these office-like envi-

ronments. The environment is structured as one long hallway, with small offices

attached. Within each office is an obstacle (similar to a desk) placed such that the

robot cannot reveal the full space without entering each room. Given enough data,

we would expect the robot to learn not to enter the small rooms until it is near the

goal, and that is exactly what we saw in the results. Cases where the optimistic

planner outperforms the Learned Subgoal Planner were generally due to cases where

the robot had to guess going either left or right down a hallway. In instances where it

is not clear, we would expect the robot to occasionally choose the “wrong” direction.

As shown in the scatter plot however, in expectation, the learned subgoal planning

approach well outperforms the optimistic planner.

3.3.4 Floor Plan Environment Navigation Results

Finally, we conducted trials in the floor plan environment : maps of our floor plan

environment are occupancy grids generated from blueprints of real-world buildings

around the MIT campus with obstacles added at random, so as to mimic real-world

furniture and clutter. A scatter plot showing the results of these trials can be found

58

in Fig. 3-5. Our Learned Subgoal Planner achieves better performance in expectation

for the floor plan environments, which is impressive due to the complex nature of

some of the maps. The net cost over all runs is 12.5% lower for the subgoal planner

than for the optimistic planner. We again fit a line to 95% of the data, as selected by

RANSAC; the cost ratio is 0.784, suggesting that the expected cost of a plan using

the Learned Subgoal Planner is 21% shorter than that of the optimistic planner.

In Fig. 3-5A, we show a typical sample from the navigation trials, in which our

Learned Subgoal Planner avoids many dead ends — which take the form of offices

and lab spaces — that lead the optimistic planner astray. In most floor plan maps,

hallways define the most likely routes between faraway start and goal locations; thus,

subgoals that lead down hallways are frequently of lowest expected cost. As with the

office-like environments, most outliers in Fig. 3-5 occur when the two planners travel

in different directions at a branching point in the environment.

What is particularly interesting about these environments based on the real world

is that the fastest route to the goal is not always found by sticking to hallways.

Because of this, unlike the office-like environments, we found that the learned planner

will occasionally enter a room far from the goal if it can see from outside that a

shortcut might exist. Relatedly, we highlight in Fig. 3-5B one case in which following

the hallway does not lead to the goal. After traveling much of the hallway, the subgoal

planning agent recovers and turns back to seek more probable route to the goal. It

reaches the goal 22% faster than the the optimistic agent, which goes on to explore

the upper-left portion of the map.

3.4 Real-world Experiments

Finally, we integrated our Learned Subgoal Planner with a physical platform so as to

observe its performance in the real world. For our experimental platform, we used a

RC car [49] with a Hokuyo LIDAR [25] and a Microstrain IMU [40]. Several modi-

fications were made to the robot, including replacing the suspension system with a

rigid support to prevent the LIDAR from changing its angle as the robot acceler-

59

Figure 3-6: This figure shows an experimental run on our RC Car, in which our Learned Subgoal
Planner (left) outperforms the optimistic planner (center) in navigating to an unseen goal. In (A),
we observe the subgoal planner choose to pass the room and continue down the hallway. By contrast,
the optimistic planner enters the room (C). On the far right, our Learned Subgoal Planner knows
to enter the room when the goal is placed in a position where the lowest expected cost path is to go
inside.

ated. Additionally, a camera was mounted to capture images from the perspective

of the robot. The Robot Operating System was used for interprocess communica-

tion, run on a NUC computer [27]. The Octomap package [26] was used to build

a 2D occupancy grid from the incoming laser scans and the robot pose, provided

by an Extended Kalman Filter that fuses the output from a laser scan matcher and

IMU measurements. The planning process on the car was almost exactly same as

in simulation. The primary difference was, once a subgoal had been selected, a pure

pursuit controller [10] was used to determine the robot’s motion primitive. Rather

than collect a large-volume of real-world data, we instead trained in simulated floor-

plan environments with a realistic distribution of open doorways. Using this data

was a natural choice, since the real-world environments we use for testing are similar

in structure to the floor plans.

We focused on locations known to cause problems for optimistic approaches to

navigating unknown spaces, particularly hallways with classrooms or other rooms. As

in our simulation results, agents using an optimistic planner frequently entered rooms,

even when the goal was sufficiently far away that reaching the goal via entering the

room was unlikely. In three distinct, real-world environments, we observed similar

behavior: the subgoal planning agent would actively avoid unnecessarily entering

dead-ends — including classrooms, a lecture hall, an apartment, and numerous closets

— which the optimistic planner would enter. Yet if the goal was placed inside these

60

regions, the subgoal planner would know to enter them, showing that the agent knew

more than to simply follow hallway-like features. We highlight one of our real-world

experiments in Fig. 3-6, in which the agent demonstrates the aforementioned behavior

in an apartment complex. By avoiding the open rooms and dead-ends, the agent

running our planner reached faraway goals more quickly than the optimistic planner,

thus corroborating our simulation results with a real-world platform.

One impact of implementing the Learned Subgoal Planner using an occupancy

grid was that, because the input to the network was range data from a laser scanner,

the network that was trained on simulated data in the MIT floorplan environments

was able to generalize to the real world. Though the range measurements used in

the simulator likely had different noise characteristics than the LIDAR used on the

robot, the discrepancies were not significant enough to affect the output of the neural

network. This made testing the system on the robot far easier than it would have

been otherwise, as it was not necessary to collect new data on the robot where we did

not always have access to a ground-truth map. Work in the next chapter will discuss

incorporating visual input into the Learned Subgoal Planning approach, which while

a valuable source of useful information for the robot, makes this once seamless transfer

significantly less so.

3.5 Discussion

In this chapter, the Learned Subgoal Planner was presented as an approach to use sub-

goals, each corresponding to a boundary between free and unknown space, to reduce

the complexity of navigating unknown environments. An accompanying factorization

of the Bellman Equation was also given for evaluating the expected cost of navigating

through unknown space to reach an unseen goal in partially-revealed environments

by learning properties related to the subgoals. Each subgoal represents an action

the robot might take to explore unknown space, and, since these are the full set of

actions available to the robot, we are guaranteed to eventually reach the goal. With

this planning framework, we can incorporate prior information into our decision mak-

61

ing process in a way that deterministically reaches the goal and is computationally

tractable. We show that our Learned Subgoal Planner is capable of making informed

decisions in both simulated environments and on real-world hardware. One potential

avenue to improve our work is augmenting the learning pipeline to use more than a

single sensor observation, which could allow the system to update the properties of

faraway subgoals as the robot explores.

This representation is also not without limitations. We make an independence

assumption between our actions so that our model does not capture the impact of in-

formation gathering actions. Second, our neural network model returns only the max-

imum likelihood value for each learned subgoal property: our model may have trouble

when higher-order moments of the distribution matter a great deal. Despite these lim-

itations, our planner demonstrates reductions of over 20% in the expected cost-to-go

in simulated floor plan environments. Furthermore, we demonstrate promising results

on a real-world platform, showing that our Learned Subgoal Planner is a practical

method for improving autonomous navigation of structured unknown environments.

Another way this work could be improved would be to include visual input into

the learning pipeline. Image a robot tasked with exiting a building. If the agent

were able to identify markers such as exit signs above doors, the task would be much

easier than if it were forced to rely only on the geometric input provided by a laser

scan. In fact, if we were able to replace the laser scanner entirely with a monocular

camera, it would be much more reasonable to extend this work to platforms (such as

quad-rotors) where laser scanners are often imperfect sensors due to their size and

weight.

In order to make this leap however, the occupancy grid, which is relied upon to

both build a map of explored space and extract the available subgoals for high-level

planning, would need to be replaced with a system that can replicate those properties

from visual input. In the next chapter, we investigate a different map representation,

generated from visual input, that allows for a robot to utilize the Learned Subgoal

Planner by directly identifying actions from a panoramic monocular image. Though

the extension of incorporating this map with the planner is left for future work, with

62

this framework we hope to be able to plan with the Learned Subgoal Planner without

relying upon specialized hardware, using a sparse map representation.

63

64

Chapter 4

Mapping and Data-Association with

High-Level Actions

The work presented in Chapter 3, as discussed in the introduction to this thesis,

addresses one of the two primary challenges in the problem of the autonomous navi-

gation of unknown environments. By reasoning between which action to take to enter

unknown space, a robot using the Learned Subgoal Planner is capable of intelligently

planning to navigate through unknown regions of its world. Also necessary however,

is the ability to build a map of the environment as the robot travels. In Chapter 3,

the map used was a 2D occupancy grid, though this brings with it a few limitations,

particularly that it can be difficult to reliably construct such a map from monocular

visual input (Section 4.1). Moreover, planning through such an environment can be

complex as the size of the map grows. In this chapter, we investigate a novel map

representation which directly identifies the actions available to a robot at any position

by detecting high level actions from a panoramic image. From these detections we

build a sparse map of high-level actions to use for planning. A major focus of this

chapter addresses the data-association problem for these detected actions.

65

4.1 Constructing a Map of Actions

The Learned Subgoal Planner approaches navigation in partially explored environ-

ments by considering entering unknown space through different frontiers as explicitly

different high-level actions in order to efficiently reason about the implications of tak-

ing one of these actions. Implicit in this approach is the ability to extract higher-level

actions from the map representation of the environment in a way that guarantees

all possible options are considered. For simple cases where the only actions that are

available to the robot are entering unknown space in a 2D occupancy grid, this prob-

lem can be solved by manipulating the map after it has been built. However, as the

action space becomes more complex, or the sensors available to build a map change,

how to decide what constitutes an action becomes less clear.

The field of mobile robotics has become increasingly interested in systems that

operate with a single monocular camera for a multitude of reasons, not the least of

which is that weight and cost considerations often make mounting a laser scanner

atop a mobile robot such as a quad-rotor impractical [25]. Common approaches to

vision-based map construction and navigation rely on storing many sparse landmarks

to represent the geometry, making reasoning about false-positive and false-negative

detections computationally intractable for non-trivial problems [45]. Furthermore,

most such representations unnecessarily include elements like small clutter or dynamic

objects that complicate the map building process, and which a local reactive planner

is well-suited to avoid.

Maps produced by modern monocular SLAM systems are designed to be used for

localization, and are not inherently useful for navigation. Consider, for example, the

map output by a modern feature based SLAM system such as ORB-SLAM [45]. While

sparse visual features are well-suited for the task of building a map for localization,

reasoning about higher-level actions in these maps is difficult, if not impossible. The

reason for this is that, unlike an occupancy grid, point-clouds of visual features do

not distinguish between known and unknown space directly, and therefore, it is not

feasible to estimate the properties of plans which enter unknown space in a POMDP

66

framework, as was presented in chapter 3.

The difficulty of using point-clouds for navigation is that they are not intended to

represent the structure of an environment. No matter how the map is manipulated,

there will always be a risk that the true topology of the environment is not captured,

because that is not what these features are designed to do. It is possible of course, from

a map of sparse landmarks, to discretize the space, and consider regions that contain

a certain number of landmarks to be obstacles in order to construct an estimate of

space that contains an obstacle. Combining the projection with the complete history

of robot poses would, in theory, give the ability to construct an occupancy grid from

a point-cloud. Unfortunately however, monocular sensing is imperfect and noisy

measurements may occlude critical routes to the goal or introduce non-existent free

space that can lead an agent astray or, worse, mark as visited unseen space that may

have contained the goal. Even if the detector extracts features well, there may be

regions of the environment, such as a blank wall, where there are simply not enough

features to support such a system reliably.

Instead of trying to build a dense map that represents the structure of the envi-

ronment perfectly, then extracting high-level actions from the map (as in chapter 3),

the work in Chapter 4 first discusses a novel method to build a map from the high-

level actions directly, represented as a graph. To construct the map, the underlying

structure of obstacles in the environment is inferred using a Convolutional Neural

Network (cnn) to detect polygonal corners from panoramic images and estimate an

additional property that represents whether or not occluding structure exists between

each landmark. By building this structure, and storing a history of past robot poses,

we are able to track what regions of space have been observed, and thus can know

which regions of space have never been seen. With the action based map representa-

tion, as well as a reactive planner to help avoid obstacles not included in the map, the

robot is capable of reasoning about the high-level actions available to it for navigation

directly at any time.

Critical in building any map on a real robot is the ability to be robust to noise,

both in the detection of landmarks, as well as the the data-association problem. In this

67

chapter, the map building process with a sparse action detector is described first for

noiseless detections (Section 4.2). Then, the case of an imperfect sensor is discussed,

and a method for eliminating outlying detections by using information about occluded

space is presented (Section 4.3). Once the map building process has been introduced,

special attention is paid to the process of data-association, which is a primary focus of

this work (Section 4.4). Two different metrics for data-association are explored, one

of which is a novel method that incorporates visual information using convolutional

neural networks. These techniques are compared using simulated, noisy data.

4.2 Map-Building

Before discussing how we build a map of actions from a noisy, learned, vision-based

sensor, we first present how we construct our map representation using perfect sensing.

Here, we introduce key terms and show that our map is sufficient for navigation of

unknown environments.

4.2.1 Noiseless Map Building

To build our map, a robot is equipped with a sensor that can detect the presence and

form of obstacles by decomposing an image into features that correspond to locally

visible actions (e.g. corners or vertices) and the occluding structure that connects

them (e.g. the presence and geometry of walls). The reason we have chosen this

form is that, in the context of navigating two dimensional environments, the actions

available to a robot are to travel around a corner in order to reveal the unknown

space beyond it. Thus, if we are able to construct a map of polygonal vertices,

plus information about whether it is possible to travel in-between these vertices, we

will have a map representation where the robot will know exactly what actions are

available to it at all times.

The actual detection of both the vertices and their connecting walls is accom-

plished with a convolutional neural network, which will be discussed in chapter 4.2.2.

The output of this network is an observation 𝑧, which contains an ordered list of these

68

Figure 4-1: This figure depicts the star shaped region of local free space visible to a robot detecting
vertices and the structure connecting them. Vertices (black dots) that lie on the boundary of that
space (red dashed lines) constitute the actions available to the robot.

vertex detections 𝜎𝑣 ∈ R2 and whether or not occluding structure connects pairs of

co-visible vertices 𝜎𝑤. In the ideal case, our sensor is noise-free and detections of 𝜎𝑤

alone can be used to define a star-shaped region of local free space 𝑠(𝑧) originating

from the robot (See Fig. 4-1). In totality, the union of the regions observed by the

robot as it navigates forms the set of observed space 𝑆 =
⋃︀𝑁obs

𝑖=0 𝑠(𝑧(𝑖)). We can define

an action as the robot rounding any corner that exists on the boundary of 𝑆.

Navigating the environment involves revealing unknown space, either by sight

or by traversal, which can be accomplished by navigating to the frontier — the

traversable boundary of 𝑆 — defined as 𝐹 = 𝜕𝑆 −
⋃︀
𝜎𝑜, where 𝜕𝑆 is the boundary

of 𝑆. We represent the map state 𝑚 as a graph, where the nodes in the graph 𝑉

encode information about the set of vertices and the edges of the graph 𝑊 encode the

relationships between vertices as defined by the set of occluding structure between

vertices. It is important to note that this information can be used to determine

whether an action can be taken from the robot’s current position. If a vertex has

structure between it and its neighboring vertex — given by 𝜎𝑤 — it is not possible

to enter unknown space by going between those two vertices. When there is no such

occluding structure between vertices, there is a local frontier between them. From

the map 𝑚 and observed space 𝑆, the frontier 𝐹 can be computed. Our planner

69

Figure 4-2: Here we see the output of the neural network in a simulated indoor environment. In
addition to estimating the position at which a vertex exisits relative to the robot, the network also
estimates the orientation (classification) of each vertex, which are then used to construct the map.

explores or navigates to an unseen goal by choosing to take an action on the frontier

(rounding a corner that exists on the frontier), thus traversing it. In so doing, we are

guaranteed to advance the frontier, which makes our map representation sufficient

for goal directed navigation through unexplored environments. In a task like the one

presented in Chapter 3, navigation terminates either when the goal is reached or when

the frontier is the null set, indicating we have completely explored the environment.

4.2.2 Detecting Actions with Convolutional Neural Networks

In the case of perfect sensing, we imagined the robot to be equipped with an action

sensor such that each observation 𝑧 contains a list of vertex detections 𝜎𝑣, ordered by

the angle at which they were observed. Instead of relying on some imagined sensor,

we endeavor to learn how to detect vertices and their properties from a panoramic

image in simulated environments. To do this, we must first define the simulated

environment in which our robot will navigate. We generated hundreds of simulated

indoor environments, each composed of a small labyrinth of rooms connected by

corridors, using a Unity Game and Physics Engine. To collect data, we simulated

the traversal of these worlds by a point-robot equipped with a panoramic camera.

An image from one instance of these environments, taken from the perspective of the

robot, can be seen in figure 4-2.

70

Attempting to directly learn whether a wall exists between vertices (𝜎𝑤) is chal-

lenging, so instead each detected vertex is classified according to whether or not it

connects to its neighbors (in angle order). For each observation, the 4-class classifi-

cation — which we refer to as vertex orientation — of neighboring vertices can be

combined to estimate the likelihood a wall exists between them. Each vertex de-

tection therefore consists of a position with hand-coded covariance and the vertex

orientation, which is a point on a 4D simplex. The corners of the simplex represent

if the vertex only connects to the vertex on its right, only connects to the vertex on

its left, connects to both, or connects to neither. The sensor itself is assumed to be

fundamentally noisy, and each observation may have extraneous landmark detections

(false-positive detections) or missing detections (false-negative detections) each with

an approximately known rate of occurrence.

We train a convolutional neural network (cnn) to estimate the likelihood of a

vertex existing in a particular position relative to the robot, along with a few other

properties: the 4d estimated vertex orientation (classification). The network takes a

128 × 512 pixel RGB panoramic image as input and outputs the likelihood a vertex

exists at a point in a 32×128 output representing relative range and bearing from the

robot. For each point in the output, the network also predicts the estimated vertex

orientation at the same resolution . The network begins with 5 convolutional layers

— of kernel dimension ([3,3,3,64], [3,3,64,64], [3,3,64,128], [3,3,128,128], [3,3,128,256])

— each executed twice, and followed by batch normalization and a max-pool layer.

Following the convolutional encoder layers, we add 3 convolutional decoder layers —

of kernel dimension ([3,3,256,128], [3,3,128,64], [3,3,64,64]) — followed again by batch

normilization and max-pooling. The output of this decoder portion is then of dimen-

sion [32, 128, 5], and is fed to two different output layers (each fully connected) with

different activation functions: a sigmoid output for the vertex likelihood, and a 4-way

softmax output the four matrices of the vertex orientation. Fig. 4-2 shows the output

of the vertex detection part of the neural network trained on a simulated hallway

environment. The output of the network includes the vertex likelihood, on which we

use peak detection to convert the measurement to discrete vertex observations and

71

Figure 4-3: This figure shows how we construct a map online. The first row is a visualization of the
best estimate for the map at each frame. Black lines represent wall edges, light blue points represent
vertices, and red points represent vertices that have been removed from the graph via sampling.
To remove these erroneous detections, we sample over the map domain, enabling and disabling
potential walls and vertices, to determine the most likely map as the robot travels (see Sec. 4.3.1).
The estimate of known space is lighter grey, while the darker surrounding is unexplored. Yellow
points in the image represent clutter in the world, which the vertex detector is capable of ignoring
The second row is the panoramic point of view of the robot in each frame, where purple circles show
vertex detections. By the end of travel, the estimated map closely matches the underlying geometry;
erroneous vertex detections do not appear.

covariances. In addition to this output is a four-channel matrix of the same dimension

corresponding to the vertex orientation. Though the network does occasionally suffer

from false-positive and false-negative detections, our mapping procedure (Sec. 4.3) is

designed with a noisy sensor in mind, and is robust to occasional errors like these.

4.2.3 Noisy Map Building Procedure

Environments that we want robots to traverse are complex, and mapping is necessary

to track high-level structure. In practice, our learned vertex detector will unavoidably

produce noise. This requires a probabilistic model so that the most likely map can

be estimated from the set of observations.

As our robot travels through the world, at each time-step it obtains a new ob-

servation from the neural network. The output of each observation is a set of vertex

detections which must be used to build a map of vertices and walls in order to repre-

sent the environment. Here, we will define the process by which that happens in our

framework.

1. First, the robot receives an observation 𝑧, an ordered list of vertices 𝜎𝑣 and

72

whether or not occluding structure exists between each vertex and the vertex

beside it 𝜎𝑤.

2. Each vertex in this observation is compared to the vertices that exist in the map

in order to determine how each detection should be associated. This process

is explained in greater detain in section 4.4. The result of this is that either a

vertex is matched with an existing one, or it was selected to be a new vertex

that must be added to the map.

3. If a vertex is unmatched, it is added to the map, represented by a position

in 2D, and a covariance that indicates the uncertainty about that pose. For

each vertex detection that was associated with an existing one, the position

and covariance are updated via a Kalman Filter.

4. It is at this point in our map building process where we must account for errors

in the system. After data-association, we consider removing or adding vertices

to the map, and comparing a certain number of maps to find the one that is

the most likely given our sensor observations. How this is done (and how we

determine where the walls in a map are) is presented in section 4.3.

5. Once the most likely map has been found, the robot can identify which action

it wants to take by selecting a vertex that is on the boundary between free and

unknown space. If this vertex is not directly visible, it must plan a path through

the map by connecting co-visible vertices. With each step along a planned path,

the map building process is repeated.

4.3 Map Estimation with Noisy Sensing

The output of each observation is a set of vertex detections which, by the process

discussed in Section 4.4, will be associated with one of the vertices that exist in

the map. Due to noise in the detector, some of these vertices may be false-positive

detections. Similarly, the detector may have failed to recognize a vertex, marking a

73

false-negative detection. Perhaps most significantly, errors in the estimated position

of a vertex detection might cause it to be associated with the wrong vertex in the map.

These compounding sources of noise may lead to a map where there exist vertices

which do not belong.

In order to overcome these sources of potential error, we recognize that only a

subset of the vertices which have been detected over the life of the robot should appear

in the final map. The set of all vertices defines the space of possible maps, where a

proposed map is an inclusive subset of this and a set of wall edges that connect pairs

vertices from the selected subset. We sample over this space in order to determine

the most likely arrangement of vertices and walls based on the robot’s history of

observations. In particular, each sampling step we randomly select a potential vertex

and either add or remove it from the set of selected vertices. Note that a vertex can

only be added back to the map if it were previously removed. By turning vertices on

and off in this way, we can create a set of maps to compare. In order to determine

which of these is the most likely however, it is necessary to define a posterior based

on observations of the world the robot has seen over past poses.

4.3.1 Defining the posterior

The posterior over maps can be expanded as follows using Bayes Rule:

log𝑃 (𝑚|𝑧1, · · · , 𝑧𝑁) =
𝑁∑︁
𝑖=0

log𝑃 (𝑧𝑖|𝑚) + log𝑃 (𝑚) − log𝑃 (𝑧1, · · · , 𝑧𝑁) (4.1)

where 𝑧 represents an observation, 𝑚 represents a map, and we have assumed that

the sensor observations are i.i.d to factor log𝑃 (𝑧1, · · · , 𝑧𝑁 |𝑚). The final term, the

likelihood of a sensor measurement, is a constant and can be ignored. The prior

distribution over maps, 𝑃 (𝑚), is intractably difficult to obtain in practice. Yet we

can use this term to incorporate some global priors about the map, namely biases

against the addition of new vertices and walls, which helps to eliminate false-positive

landmarks.

The likelihood of a sensor observation 𝑃 (𝑧𝑖|𝑚) is at the heart of the posterior

74

distribution. To compute this likelihood, we generate a hypothetical observation 𝑧ℎ

from the robot’s position at time 𝑖, 𝑥𝑖, and compare it to the real observation 𝑧𝑖. A

hypothetical observation is generated by ray-casting against the proposed map, and

determining what the robot would have seen had it received a perfect observation in

that map at that pose. Any points that appear in the real observation that are not

in the expected vertex detection set are false-positive detections. Conversely, vertices

that appear in the expected vertex detection set but were not in the real observation

are false-negative detections, since it is expected that the robot should have seen them.

We separately reason about each output of the sensor by splitting the sensor

likelihood into two components: (1) the vertex likelihood and (2) the wall likelihood,

and evaluate them. The vertex likelihood depends only on the number of false-

positive/negative detections: 𝑃𝑣 = 𝑅
𝑁𝑓𝑝

fp 𝑅
𝑁𝑓𝑛

fn , where 𝑅𝑓𝑝, 𝑅𝑓𝑛 are the rates of false-

positive/negative detections and 𝑁𝑓𝑝, 𝑁𝑓𝑛 are the number of false-positive/negative

detections.

The wall likelihood uses the real and hypothesized observations to estimate the

likelihood that either walls or free space connect vertices. The vertex orientation is a

direct measure of structure surrounding a vertex and so the likelihood a wall or free

space exists between a pair of vertices depends on the vertex orientation of each. The

likelihood of a free space edge 𝑤𝑙𝑟 existing between two neighboring vertices (the left

𝑙 and right 𝑟 vertex observations 𝜎𝑙 and 𝜎𝑟) depends on their respective orientations

(𝑙𝑙 and 𝑙𝑟) and is given by:

𝑃 (𝑤𝑙𝑟|𝑧) = (1 − 𝑃 (𝑙𝑙 = no rightward wall))(1 − 𝑃 (𝑙𝑟 = no leftward wall)) (4.2)

Each hypothesized vertex observation is paired with the vertex orientation from its

associated counterpart; hypothetical detections without an associated real vertex

detection (false-negatives) are assigned a value of [0.25, 0.25, 0.25, 0.25]. We loop

through all pairs of consecutive (in angle) vertex detection and accumulate a factor

of 𝑃 (𝑤𝑙𝑟|𝑧) if a wall exists between the two vertices in the proposed map and a factor

of 1 − 𝑃 (𝑤𝑙𝑟|𝑧) if not.

75

As stated in equation (4.1), in order to evaluate the posterior for a potential map,

we evaluate the probability of an observation for a given map at each pose the robot

received an observation for. In other words, we compare what the robot did see to

what it should have seen for a proposed map at all time steps. By summing the log

likelihood for each observation, we can determine the probability of the current map

to compare to other proposals.

Our posterior codifies a number of behaviors we would expect to see during our

map-building process. First, the posterior allows us to rule out false-positive vertices

in a principled manner. Since false-positive vertices can result in hypothetical false-

negative observations in the calculation of the posterior, the vertex is ultimately less

likely to appear in the underlying geometry. Second, the existence of a wall depends

on both its ability to occlude vertices and the impact it has on the orientation (class)

of the hypothetical vertices to which it connects. By occluding portions of the map,

the walls also influence the number of false-positive and false-negative detections

recorded during the evaluation of map likelihood. The occlusions allow us to reason

about which vertices should be compared to at each robot pose.

4.4 Data-Association

The posterior over maps gives us the ability to determine which of two maps is more

likely given a set of sensor observations. However, due to the high dimensionality

of the space of possible maps, and the fact that calculating the posterior can be

computationally expensive, it is not feasible to consider each possible map that might

exist from the observations of our noisy sensor. Thus, in order to find the best possible

map in a reasonable number of samples of the posterior (Eq. 4.1), it is important to

begin sampling from a map that is near the optimal.

Beginning with an initial map estimate, as new observations are added online, we

must use some metric to associate detections. Successful associations of a detected

vertex with a vertex in the graph are ultimately used to update the position and

covariance of the existing vertex by using a Kalman Filter. Detections which are

76

unassociated with an existing vertex create new vertices in the graph, under the

constraint that no two detections from a single observation can be associated with a

single existing vertex. The following sections present different metrics for solving the

data-association problem.

4.4.1 Mahalanobis Distance for Data-Association

One straightforward technique for data-association takes advantage of how the ver-

tices are represented in the map. Each vertex is represented in the map not only as

an x, y position in two dimensions, but also includes a covariance, which is a measure

of the confidence in that position. Similarly, each vertex detection, as output from

the learned detector, has both a position and covariance estimate as well. Instead of

simply comparing the Euclidean distance between a vertex and a vertex detection,

we can incorporate more information by including the covariance of the detection in

the metric.

The Mahalanobis distance, a measure of distance between a point 𝑥 and a distri-

bution with mean 𝜇 and covariance 𝑆, is a metric for determining how many standard

deviations away from the mean of a distribution a point is.

𝐷𝑚 =
√︀

(𝑥− 𝜇)𝑇𝑆−1(𝑥− 𝜇) (4.3)

By using the Mahalanobis distance as our metric, we can account for the fact that

our vertex detector is, in general, more confident about the position of a vertex in

bearing than it is in distance. A vertex that is detected to be five meters away from

another might only be one standard deviation away from if we define our covariance

to appropriately capture the noise in the range estimate.

Using the Mahalanobis distance as a metric, as new vertex detections are gener-

ated, each new detection is associated with an existing vertex if the vertex is within

some defined threshold (often one standard deviation of the detection’s estimated

covariance). Note that we use the covariance of the detection and not the covariance

of the existing vertex for Mahalanobis distance, because as more observations are

77

associated with a vertex, the confidence in its position generally increases. Thus, its

covariance shrinks, and it becomes more difficult for a detection to be within the

defined threshold. It would be incorrect to have a detection be less likely to be as-

sociated with a vertex that has been seen many times (in fact the reality is that a

vertex that has been seen many times should be more likely to be seen again). Thus,

it is the covariance of the detected vertex that is used to determine the Mahalanobis

distance.

An interesting result of using Mahalanobis distance for data-association is that

multiple vertex detections might be within the threshold of association of a single

vertex, and vice versa. In this case, we take advantage of the concept of mutual

exclusion [42], which stipulates that each landmark can only be associated with one

detection per observation. In order to ensure that the optimal associations are found,

even in the case where multiple detections meet the criteria for association with the

same landmark, certain detections that would otherwise be associated with a land-

mark will have to search for a different correspondence (or form a new landmark). To

account for this, we use the Hungarian algorithm to solve for the optimal assignments

for all detections [33].

4.4.2 Incorporating Visual Input into Data-Association

Applying the Mahalanobis distance metric to solve data-association is effective in the

context of building our map, but there are reasons to believe it could be improved.

For example, though the vertex detections are made from visual input, we do not take

advantage of any visual information when using the Mahalanobis distance for data-

association. Imagine a situation where a vertex detection is equidistant (according

to the Mahalanobis distance) from two separate vertices in the map. In these cases,

often just by looking at the images captured by the panoramic camera, a human

would easily be able to correctly match vertex detections where a system relying on

other metrics might fail. So, the question becomes, how do we allow our robot to

take advantage of the information in an image to improve its solution to the data-

association problem?

78

Fortunately, the problem we are trying to solve — match a feature detected in an

image from frame to frame — has been well studied in the field of computer vision. As

discussed in Chapter 2.2, feature descriptors map image patches to fixed-dimensional

latent spaces. From there, one can measure the distance between descriptors using

euclidean distance, and define a threshold for association as one would the Maha-

lanobis distance. Unfortunately, handcrafted feature descriptors (such as SIFT or

ORB) are not well-suited for our task, as the features we are detecting — vertices

output from our neural net — are not necessarily well described by these mappings.

So, we instead turn to the much newer domain of “learned descriptors.”

A learned descriptor, like the one presented in the 2017 paper: “L2-Net” [63],

works by passing an image patch through a convolutional neural network, and having

the network project that patch into a latent space much like a hand-crafted feature.

The difference between learned features and hand-crafted features is that a learned

feature uses a convolutional network for its mapping, while traditional features use a

human designed mapping. Because the task of matching vertex detections from frame

to frame is a unique problem, relying on learned descriptors is a natural approach.

However, it would wasteful to discard information that may be useful in the data-

association process and rely solely on visual data. Ideally, we could find a way to

incorporate both visual input and a distance in physical space to utilize the advantages

of both approaches. In order to do that in a way that does not require hand tuning

the influence of different metrics, we propose a network which also learns the mapping

from the latent space plus a physical distance to a binary decision of correspondence.

In other words, we give our network two images, as well as a physical distance metric,

and have it map them to a single probability of association.

4.4.3 Network Architecture

Very recently, approaches in this mold have been developed for learned features.

“Match-Net” [23], implements a unified approach that jointly learns a mapping into a

fixed-dimensional descriptor space, then uses a learned distance metric to determine

the probability of a feature match in and end-to-end approach. Here, we extend that

79

Figure 4-4: Depiction of association network. The full network is depicted on the left, including
sample input. The convolutional towers (A), concatenation layer (B),fully connected metric layers
(C), and output layer (D) are expanded on the right.

work to, at the latent descriptor layer, add an additional input of the Bhattacharyya

distance between vertex detections.

Taking inspiration from the “Match-Net” architecture, our system employs a two-

part network composed of a dual-tower convolutional structure with tied parameters

(often referred to as a Siamese network) to learn the latent descriptor representation,

and a fully connected network to learn the mapping from the latent descriptor layer

to a single output measuring the probability of association. Where our networks

differ is that, at the transition between the two sections of the network, we introduce

an additional parameter to the fully connected network: a physical distance metric

between two vertices. In this way, we are capable of incorporating both visual input,

and physical distance in data-association. The architecture of our network is depicted

in figure 4-4.

80

The input to each “tower” in our network is based on the output of the learned

vertex detector network. For each detected vertex, we take a 28 × 28 pixel image

patch centered around its bearing at the mid-line of the panoramic image. After the

robot takes a single step, we repeat the process, and extract the vertex patches for

the new panoramic image. We want to know if the vertices these patches depict from

each panoramic image are the same. Thus, for each pair of patches across time-steps,

we input one to each of the “towers” of the network.

The task of encoding image patches to a fixed-dimensional descriptor requires that

the mapping each image patch goes through be the same. In other words, the two

convolutional networks in each tower that process the image patches are identical in

both their design, and parameters. In the training process, updates to the parameters

of either tower would be applied to the shared coefficients in the same way. As a result,

if the same image patch were input to each tower, they would each map it to the exact

same point in the latent space. This architecture is based on past implementations

of “Siamese networks,” which also use this design, but stop at the descriptor layer.

Each tower is composed of four convolutional layers — of kernel dimension ([3,3,3,32],

[3,3,32,64], [3,3,64,64], [3,3,64,128]) – each followed by a max pool layer and a ReLU

activation layer. At the end of the final ReLU layer, the output is flattened to a single

vector of length 128.

Once the images pass through their respective towers, we continue by concate-

nating the flattened final layers from each towers along with the normalized Bhat-

tacharyya distance computed between the two vertex detections for each image patch.

Bhattacharyya distance is a generalization of the Mahalanobis distance which incor-

porates the noise from both detections. We use this metric instead of Mahalanobis

distance because the network does not have a notion of which patch was detected

first. Once these values have been concatenated, this single vector — now of size 257

— is passed through four fully connected layers — 257 to 128 to 32 to 8 — to a single

output which represents the probability that the detections represented by the image

patches are from the same vertex. At all except the final layer, the output of each

fully connected layer is activated by a sigmoid activation function. The final logit also

81

is passed through a sigmoid after the cross-entropy loss is computed by comparing to

the ground-truth label.

4.4.4 Training the Network

Generating data for training the association network requires creating “simulated”

vertex detections. We cannot simply use the output of the learned vertex detector,

because it does not have ground truth labels of association we can use to train (if it

did, the data-association problem would be solved). To get around this, we simulate

the robot traveling through our environment, extracting the exact locations of vertices

relative to the robot from the simulator. We then define a Gaussian around the perfect

detection, and draw from it a 2D point which represents the estimated location of our

simulated detection. We do the same for the next position of the robot, and because

we know from which vertex the noisy detection originated, we have the label needed

to train our network.

The robot was simulated in 100,000 different poses scattered through hundreds

of different hallway environments. At each pose, the robot takes a 512 × 128 pixel

panoramic image, from which it extracts the perfect vertex detections. For each simu-

lated vertex detection, we extract a 28×28 image patch, as well as the Bhattacharyya

distance between it and any detections in the subsequent pose based on a Gaussian

defined around it. We collect test data in the same way, being sure to also save the

Mahalanobis distance between detections in sequential frames in order to compare the

different metrics. As with training, in order to determine the actual rates of success

and failure for our different data-association techniques, we must rely on simulated

data to compare to the ground-truth labels.

4.4.5 Comparing Data-Association Metrics

Using a data-set of 100,000 poses taken from several different procedurally generated

simulated environments with approximately ten vertices visible in each pose (note this

was a different set of poses and environments then the training set), we compared our

82

Figure 4-5: The precision recall curve for both the learned association and Mahalanobis distance
metric. Each point in the curve represents a different threshold for association. That the learned
metric always outperforms Mahalanobis distance regardless of the threshold shows that it is an im-
provement as a metric for data-association. The area under the curve for the the learned association
metric was 0.224, compared to 0.217 for the Mahalanobis distance metric, demonstrating a small,
but observable improvement.

learned association network to a baseline of Mahalanobis distance. Because the rates

of positive and negative detections depend greatly on how the output of each metric

is thresholded, we tested each system on thousands of different thresholds each. The

precision-recall curve of both systems is plotted in figure 4-5

At each point on the curve, the learned system outperforms the Mahalanobis

distance metric, meaning that at each level of recall, the learned association has

a higher level of precision. Though this is not the only method for analyzing the

effectiveness of classification metric, it is a useful indicator that we have improved

upon our baseline using the learned association network.

However, the above curves also show that both systems are imperfect. To get

further insight on where these metrics fail, we can look at the counts of false-positive

and false-negative detections. Inspecting the confusion matrices for selected thresh-

olds of 1 for Mahalanobis distance, and 0.5 for the learned metric (Table 4.1), we see

that each system exhibits both failures with false-negatives, and false-positives.

Building a map well in the presence of this noise demonstrates the importance of

sampling the posterior in our process. Anecdotally, one of the most important aspects

of either approach to data-association is the concept of mutual exclusion [42], which

83

Mahalanobis Distance Learned Association
p n p n total

p′ TP
430

FN
10089

TP
8317

FN
2202

10519

n′ FP
33

TN
89448

FP
1029

TN
88452

89481

total 463 99537 9346 90654

Table 4.1: Confusion matrices for both the Mahalanobis distance metric thresholded at 1, and the
learned association metric thresholded at 0.5. These values are illustrate some of the failure modes
of different metrics at different thresholds. Regardless of the metric, the proposed map building
procedure is better equipped to handle false-negative detections compared to false-positives.

is valuable in preventing errors when two vertices are very close to each other.

4.5 Discussion

In this chapter, we presented a method for building a sparse map from vision designed

explicitly for navigation. This map utilizes a learned action detector in order to

identify the high-level actions available to a robot equipped with a panoramic camera,

and is capable of fusing those detections into a graph of polygonal vertices and walls in

the presence of noise. In order to be robust to noise, a posterior over maps was defined,

enabling the robot to sample different possible graphs to find the most likely map

given its observations of the world. A major focus of the chapter was the development

of a method for data-association in the context of the proposed map. Specifically, a

learned association network was presented which was shown to outperform a baseline

of Mahalanobis distance for frame-to-frame association.

The analysis of the association metric was based on data collected in simulation.

Future work will involve having both the learned action detector and learned asso-

ciation modules working on a robot operating in the real world. Preliminary efforts

have found data collection to be particularly challenging however, in part due to the

difficulty of getting ground truth labels for the action detector. The ultimate goal

84

will be to integrate the map representation described here with the Learned Subgoal

Planner presented in 3. The following chapter (Chapter 5), will discuss how the work

presented in this thesis has been related, and consider future directions to integrate

and extend the two lines of research.

85

86

Chapter 5

Conclusion

This thesis presented work relating to the topic of autonomous navigation of unknown

environments. As stated in Chapter 1, this problem can be broken up into two parts.

First, the robot must be able to build a representation of the world as it travels, so in

the event it has to retrace its steps it can take advantage of past observations to do so

efficiently. Second, a robot must be able to reason about paths that enter unknown

space in order to make intelligent decisions about how to plan to reach its goal.

Planning in a POMDP framework can be very computationally expensive, however

it is a popular way to model the navigation unknown environments because it properly

captures the uncertainty of planning through unobserved space. In Chapter 3, the

Learned Subgoal Planner was presented to address this problem, and takes advantage

of high-level actions for navigation to generate plans which reason about the properties

of unknown space. Training on MIT floor-plans, we demonstrated a 21% increase over

the naive approach to navigation. Additionally, our technique translates well from

simulation to the real world, and was shown to work on an RC car equipped with a

laser scanner.

Despite great advancements in the field of robotic mapping, outside of dense rep-

resentations which can be very computationally taxing, few maps are designed to be

useful for the task of navigating partially explored environments. Chapter 4 discussed

a novel method for creating a map of an environment from vision, explicitly designed

to be used for the task of navigation. A learned action detector was presented, which

87

generates observations of the high-level actions available to a robot. A technique for

fusing these detections into a map of actions was presented, and special attention was

paid to the process of data-association within that map. Specifically, a learned associ-

ation metric was proposed, which, inspired by the field of learned feature descriptors,

showed improvement over a baseline of the Mahalanobis distance.

One assumption that was made in the map building process of Chapter 4 was

that the robot was not tasked with solving the localization problem. In other words,

it was presumed to know exactly where it was at all times. Localization was not

the focus of this research, but is an important part of map-building, and so must be

addressed. One unexplored impact of using visual input for data-association is that

it may allow the robot to be robust to drift in estimation as it returns to previously

visited locations. If association relied entirely on a physical metric like Mahalanobis

distance, errors in state estimation would make the task extremely difficult. The

problem of loop closure is something not considered in our work, but by using the

learned association network (or some variant thereof), we might hope to allow our

map to incorporate loop-closure detections.

Though it was not implemented in this thesis, future work will involve an analysis

of the entire map building process, particularly as it relates to the usefulness of the

representation to the problem of navigation toward an unseen goal. Though the

Learned Subgoal Planner was implemented with an occupancy grid to both represent

the world and allow for the extraction of subgoals, in principle any map representation

which allows the robot to efficiently navigate known space, while representing high-

level actions can be used in the planning framework. Incorporating the action based

map with the Learned Subgoal Planner will enable solving navigation tasks in larger

scale, which might include obstacles which were outside the range of a laser scanner.

Additionally, with a map built from vision, we can also include visual information

in the training of the Learned Subgoal Planner. This could allow for more complex

tasks, such as finding a specific item in a grocery store, to be solved.

An interesting potential extension to this work would be to include actions which

are not explicitly related to navigation in both the Learned Subgoal Planner and the

88

proposed map representation. This would require some method of detecting actions

beyond simply rounding a corner, though one could imagine tasks such as opening

a door or picking up an object being detectable from a camera image. Including

different tasks into a more general map of actions would give a representation which

can be used for more complex planning tasks. However, generating data from such

actions to train the Learned Subgoal Planner might be more difficult, and a more

complex simulator would likely be required to pursue this line of research.

The navigation of unknown environments is a problem which affects many different

areas of the field of mobile robotics. This thesis has presented work to address two

aspects of that problem — map-building and planning — and showed promising

results on both fronts by taking advantage of high-level actions. Continued research

with regards to the integration of these works is an important milestone left to be

reached in this direction.

89

90

Bibliography

[1] Introduction to Algorithms, Third Edition. MIT Press, 2009.

[2] I. Arvanitakis, K. Giannousakis, and A. Tzes. Mobile robot navigation in un-
known environment based on exploration principles. In Conference on Control
Applications (CCA), Sept 2016.

[3] K.J. AstrÃűm. Optimal control of markov decision processes with incomplete
state estimation. J. Math, pages 174–205.

[4] Abraham Bachrach. Trajectory Bundle Estimation For Perception-Driven Plan-
ning. PhD thesis, Massachusetts Institute of Technology, 2017.

[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[6] Richard Bellman. On the theory of dynamic programming. Proceedings of the
National Academy of Sciences, 38(8):716–719, 1952.

[7] Jose A. Castellanos and Juan D. Tardos. Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

[8] Hsien-Te Cheng. Algorithms for partially observable Markov decision processes.
PhD thesis, University of British Columbia, 1988.

[9] Wendell H. Chun and Nikolaos Papanikolopoulos. Robot Surveillance and Secu-
rity, pages 1605–1626. Springer International Publishing, Cham, 2016.

[10] R. Craig Conlter. Implementation of the pure pursuit path tracking algorithm,
1992.

[11] Marc Deisenroth and Carl E. Rasmussen. Pilco: A model-based and data effi-
cient approach to policy search. International Conference on Machine Learning
(ICML), 2011.

[12] Edsger. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

91

[13] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. In Proceedings of
the 16th Conference on Uncertainty in Artificial Intelligence, UAI ’00, pages
176–183, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[14] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. RL2: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016.

[15] A. Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, June 1989.

[16] Alberto Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception
and Navigation. PhD thesis, Pittsburgh, PA, USA, 1989. AAI9006205.

[17] Hugh F. Durrant-Whyte, Somajyoti Majumder, Sebastian Thrun, Marc De Bat-
tista, and Steven Scheding. A bayesian algorithm for simultaneous localisation
and map building. pages 49–60, 01 2001.

[18] M. Fischler and R. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

[19] D. Fourie, J. Leonard, and M. Kaess. A nonparametric belief solution to the
bayes tree. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2189–2196, Oct 2016.

[20] Thierry Fraichard. A short paper about motion safety. International Conference
on Robotics and Automation (ICRA), 2007.

[21] M.W.M. Gamini Dissanayake, P M. Newman, Steven Clark, Hugh F. Durrant-
Whyte, and M.A. Csorba. A solution to the simultaneous localization and
map building (slam) problem. Robotics and Automation, IEEE Transactions
on, 17:229 – 241, 07 2001.

[22] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jiten-
dra Malik. Cognitive mapping and planning for visual navigation. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[23] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C.
Berg. Matchnet: Unifying feature and metric learning for patch-based matching.
In CVPR, pages 3279–3286. IEEE Computer Society, 2015.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, July 1968.

[25] Hokuyo. Hokuyo UTM-30LX Scanning Laser Rangefinder. https://www.hokuyo-
aut.jp/search/single.php?serial=169, 2018.

92

[26] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 2013.

[27] Intel. NUC 7 Enthusiast Mini PC. https://www.intel.com/content/www/us/
en/products/boards-kits/nuc/mini-pcs/nuc7i7bnkq.html,.

[28] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99–134, 1998.

[29] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine.
Self-supervised deep reinforcement learning with generalized computation graphs
for robot navigation. In International Conference in Robotics and Automation
(ICRA), 2018.

[30] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. CoRR, abs/1105.1186, 2011.

[31] Sertac Karaman and Emilio Frazzoli. High-speed flight in an ergodic forest.
International Conference on Robotics and Automation (ICRA), 2012.

[32] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. International Journal of Robotics Research, 2013.

[33] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1âĂŘ2):83–97, 1955.

[34] Michael L. Littman. The witness algorithm: Solving partially observable markov
decision processes. Technical report, Providence, RI, USA, 1994.

[35] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning
policies for partially observable environments: Scaling up. In Armand Prieditis
and Stuart Russell, editors, Machine Learning Proceedings 1995, pages 362 –
370. 1995.

[36] Jorge Lobo, Lino Marques, Jorge Dias, Urbano Nunes, and Aníbal T. de Almeida.
Sensors for mobile robot navigation. In Anibal T. de Almeida and Oussama
Khatib, editors, Autonomous Robotic Systems, pages 50–81, London, 1998.
Springer London.

[37] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vision, 60(2):91–110, November 2004.

[38] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Pro-
ceedings of the National Institute of Sciences (Calcutta), 2:49–55, 1936.

93

[39] A.A. Markov. Extension of the law of large numbers to quantities, depending on
each other (1906). reprint. Journal ÃĽlectronique d’Histoire des ProbabilitÃľs et
de la Statistique [electronic only], 2(1b):Article 10, 12 p., electronic only–Article
10, 12 p., electronic only, 2006.

[40] Lord MicroStrain. 3DM-GX4-45âĎć Industrial-Grade All-In-One Navigation So-
lution. https://www.microstrain.com/inertial/3dm-gx4-45.

[41] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Bal-
lard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray
Kavukcuoglu, et al. Learning to navigate in complex environments. arXiv
preprint arXiv:1611.03673, 2016.

[42] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with
unknown data association using fastslam. In 2003 IEEE International Conference
on Robotics and Automation (Cat. No.03CH37422), volume 2, pages 1985–1991
vol.2, Sep. 2003.

[43] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
slam: A factored solution to the simultaneous localization and mapping prob-
lem. In Eighteenth National Conference on Artificial Intelligence, pages 593–598,
Menlo Park, CA, USA, 2002. American Association for Artificial Intelligence.

[44] Hans P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine,
9(2):61, Jun. 1988.

[45] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: a versatile
and accurate monocular SLAM system. CoRR, abs/1502.00956, 2015.

[46] Liz Murphy and Paul Newman. Using incomplete online metric maps for topo-
logical exploration with the gap navigation tree. In International Conference on
Robotics and Automation (ICRA), 2008.

[47] Robin R. Murphy, Satoshi Tadokoro, Daniele Nardi, Adam Jacoff, Paolo Fiorini,
Howie Choset, and Aydan M. Erkmen. Search and Rescue Robotics, pages 1151–
1173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[48] Reem Nasir and Ashraf Elnagar. Gap navigation trees for discovering unknown
environments. Intelligent Control and Automation, 6(04):229, 2015.

[49] RACECAR/J. RACECAR/J Platform. https://racecarj.com/, 2018.

[50] Ananth Ranganathan and Frank Dellaert. Online probabilistic topological map-
ping. The International Journal of Robotics Research, 30(6):755–771, 2011.

[51] C. Richter, J. Ware, and N. Roy. High-speed autonomous navigation of unknown
environments using learned probabilities of collision. In International Conference
on Robotics and Automation (ICRA), 2014.

94

[52] Charles Richter. Autonomous navigation in unknown environments using ma-
chine learning. PhD thesis, Massachusetts Institute of Technology, 2017.

[53] Charles Richter and Nicholas Roy. Safe visual navigation via deep learning and
novelty detection. 07 2017.

[54] Nicholas Roy and Caleb Earnest. Dynamic action spaces for information gain
maximization in search and exploration. In American Control Conference (ACC),
Minneapolis, MN, 2006.

[55] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In Proceedings of the 2011 International Con-
ference on Computer Vision, ICCV ’11, pages 2564–2571, Washington, DC, USA,
2011. IEEE Computer Society.

[56] R. Smith, M. Self, and P. Cheeseman. Autonomous robot vehicles. chapter Es-
timating Uncertain Spatial Relationships in Robotics, pages 167–193. Springer-
Verlag, Berlin, Heidelberg, 1990.

[57] Hauke Strasdat, J Montiel, and Andrew J. Davison. Real-time monocular slam:
Why filter? pages 2657–2664, 05 2010.

[58] L. Tai, G. Paolo, and M. Liu. Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation. In International Con-
ference on Intelligent Robots and Systems (IROS), 2017.

[59] Josh D. Tenenberg. Abstraction in Planning. PhD thesis, Rochester, NY, USA,
1988. Order No: GAX88-16885.

[60] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT press, 2005.

[61] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot
navigation. Artif. Intell., 99:21–71, 1998.

[62] Sebastian Thrun. Exploring artificial intelligence in the new millennium. chapter
Robotic Mapping: A Survey, pages 1–35. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[63] Yurun Tian, Bin Fan, and Fuchao Wu. L2-net: Deep learning of discriminative
patch descriptor in euclidean space. pages 6128–6136, 07 2017.

[64] Benjamin Tovar, Luis Guilamo, and Steven M LaValle. Gap navigation trees:
Minimal representation for visibility-based tasks. In Algorithmic Foundations of
Robotics VI, pages 425–440. Springer, 2005.

[65] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgib-
bon. Bundle adjustment — a modern synthesis. In Bill Triggs, Andrew Zis-
serman, and Richard Szeliski, editors, Vision Algorithms: Theory and Practice,
pages 298–372, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

95

[66] Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Ag-
nieszka Grabska-Barwinska, Jack W. Rae, Piotr Mirowski, Joel Z. Leibo, Adam
Santoro, Mevlana Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson,
Shakir Mohamed, Danilo Jimenez Rezende, David Saxton, Adam Cain, Chloe
Hillier, David Silver, Koray Kavukcuoglu, Matthew Botvinick, Demis Hassabis,
and Timothy P. Lillicrap. Unsupervised predictive memory in a goal-directed
agent. CoRR, abs/1803.10760, 2018.

[67] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. Despot: Online pomdp
planning with regularization. J. Artif. Int. Res., 58(1):231–266, January 2017.

[68] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Bur-
gard. Deep reinforcement learning with successor features for navigation across
similar environments. In International Conference on Intelligent Robots and Sys-
tems (IROS), 2017.

96

