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Abstract

Aircraft condensation trails, known as contrails, are estimated to account for approx-
imately half of all climate warming resulting from aviation emissions, but uncertainty
in coverage is high [12, 2]. These artificial clouds form behind aircraft and trap out-
going infrared radiation, leading to a warming effect [12, 3, 28, 40, 3]. With aviation
forecast to contribute up to 15% of total anthropogenic warming by 2050 [18], an
accurate estimate of total contrail-attributable warming is required. Automated de-
tection of contrails using satellite images has not been feasible to date due to the
complex evolution of contrail shapes and their similarity to cirrus clouds and land
features [21, 12, 39]. This has been a limiting factor in quantifying contrail climate
impacts [39, 3]. We use a deep learning approach to overcome these difficulties. In-
stead of relying on fragile, hand-engineered features, we train a deep convolutional
neural network directly on a dataset of annotated infrared images from a geostation-
ary satellite. We estimate year-round contrail coverage over the continental United
States, based on automated classification of imagery extracted from the Geostationary
Operational Environmental Satellite system. We find that contrails cover an average
of 0.55% of the contiguous United States, an area equivalent to a quarter of the size
of Florida. We show that the relationship between total contrail coverage and air
traffic varies as a function of time and location, with greater contrail area produced
in early morning than in the afternoon even if traffic volume is the same. We also find
a seasonal dependence, with contrail coverage reaching a minimum in late summer
at the same time that air traffic peaks. We create contrail maps showing maxima
over major air traffic hubs like San Francisco, Chicago, Dallas and highlighting major
contrail-producing airways. We release the first publicly available benchmark dataset
of contrail annotations to serve as a platform for future research of contrail formation
and impacts.
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Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Contrails are thin ice clouds produced by aircraft engines during cruise, at altitudes

of 8 to 13 km [12]. Contrails disturb the balance between outgoing thermal radiation

from the Earth's surface and downwelling solar radiation, leading to a net warming

effect [14]. Radiative imbalances such as these can be quantified as a positive radiative

forcing (RF) [29], from which climate damages are calculated. Contrails have been

estimated to be the largest single RF component associated with aviation [2, 12],

potentially exceeding impacts due to cumulative aviationCO 2 emissions [12]. With

aviation traffic forecast to double in the next 18 years, these impacts are expected to

grow with total aircraft traffic, while changes in aircraft efficiency and background

climate are thought to result in further increases in contrail formation likelihood

[10, 18]. However, significant uncertainties still exist regarding the magnitude of the

RF contribution, properties, and lifecycle of contrails [12, 40, 2, 18, 8, 14]. These have

been attributed to scarce and low-quality observational data [12, 2, 3]. In particular,

no observational data yet provides continuous contrail coverage information. The

current state-of-the-science for contrail detection is performed using hand-calibrated

legacy algorithms, which rely on post-processing using external flight routes databases

[39]. Research is also hindered by a lack of data sharing, as existing datasets have not

been made publicly available. These issues need to be addressed if effective policy

decisions for reducing the impact of aviation on the climate are to be made.

Recently-launched, high-resolution geostationary satellites (GOES-East, GOES-
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West) offer an opportunity to study contrail evolution over the Western Hemisphere

in near real-time. However, with the expected increases in the daily volume of satel-

lite imagery (50 PB of data per year by 2023 [27]), automated algorithms are needed

to quickly and accurately extract scientific variables of interest. Deep learning is a

possible solution to this problem, given the progress that has been made in recent

years in developing robust vision systems based on deep convolutional neural net-

works (CNNs), which are able to learn the features in images without direct human

supervision [13]. Machine learning using satellite imagery is a growing area of research

[4, 11, 16, 17, 15]. However, neural networks for contrail detection were previously

deemed infeasible due to classification difficulty [12] and excessive data and training

time requirements [21, 22]. In this work, we overcome these limitations by revisiting

key assumptions made in previous analyses - we collect a new, high resolution con-

trail dataset; use modern convolutional neural network architectures, and train our

models on Graphical Processing Units (GPUs), optimized for this task. We aim to

quantify diurnal variations in contrail coverage by applying deep learning methods

to high temporal-resolution satellite observations. Comparing these observations to

schedule data, will enable us to determine the empirical relationship between contrail

coverage and flight volume by time of day, season, and region.

1.1 Related Work

In order to understand the approach being employed, we first outline the approach

used for a similar problem - the detection of roads from satellite imagery. We then

discuss the current state-of-the-science for contrail detection, and highlight three key

areas in which these approaches are failing.

1.1.1 Road detection from satellite images

A task similar to linear contrail detection that has garnered more interest from the

computer vision community is road detection from satellite images. Roads on satellite

images are, similarly to contrails, slender and sparse features. Detecting roads is
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a relatively simpler task to learn because of their predictable, uniform color and

sharp edges. However, it still took 30 years of work on the problem to solve it,

with Mnih et al. neural-network based solution reaching feasibility first in 2010 [26].

Figure 1-1 shows road segmentation maps closely resembling the contrail segmentation

task. Since then, a number of more modern approaches using fully convolutional

encoder-decoder neural networks have emerged [1, 45]. This work builds on the

recent generative adversarial network (GAN) based approach that requires minimum

post-processing [6]. The modern, GAN approach promises an opportunity to exploit

the semantic structure of images, intuitively understood by humans, directly during

training.

(a) (b)

Figure 1-1: Road segmentation maps (a) before and (b) after post-processing by Mnih

et al [26], closely resembling contrail segmentation task

1.1.2 Contrail detection from observational data

The previous observational studies of contrail coverage suffered from at least one of

the three fundamental drawbacks. These are:

• Relying on low earth orbit satellites, which provide at most two overpasses a

day, making it impossible to capture the diurnal trends in contrail coverage

11



• Using algorithms with noise characteristics that drown out contrail patterns

and necessitated filtering with flight datasets

• Lack of scalability due to human labor involved (manual parameter tuning or

manual data collection)

All but four previous studies were based on a single traditional computer vision

algorithm [21, 39, 31, 41, 43, 30, 42]. Two other works attempted neural network based

methods, but were unable to produce a comprehensive contrail inventory [22, 44]. The

remaining two used sparse ground observations [24, 20].

The traditional approach relied on hand-engineered features designed to detect

contrails of a set width on a particular type of satellite imagery and required extensive

pre-processing [21]. Due to the low signal-to-noise ratio in the traditional contrail

detection algorithm, contrail patterns reveal some broad trends, but do not appear

accurate enough to resolve any flight corridors, as shown in Figure 1-2. The algorithm

also constrained the viewing zenith angles to less than 50 for its optimal performance

[31] and had a tendency to pick up linear land features and elongated cirrus as false

positives [25]. This necessitated filtering with external flight path datasets [39], which

makes analysis of how flight traffic affects contrails very difficult, because of the

introduced coupling.

Neural networks are another potential solution, but were previously deemed in-

feasible due to classification difficulty [12] and excessive data and training time re-

quirements [21, 22]. Meinert et. al failed to produce any results [21], while Zhang et

al. (2018) claimed to have successfully trained a shallow neural network to recognize

contrails over Japan, but no coverage estimates, trends, or datasets were provided

[44], making this finding of limited usefulness.
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Figure 1-2: Mean 2001 daytime contrail coverage over USA domain estimated using
Mannstein's contrail detection algorithm on NOAA-15 and NOAA-16 satellite images
[31]

1.2 Method outline and key concepts

This section introduces the methods used in this thesis and provides an overview of

the following chapters. The key idea of this work is to connect the developments

in remote sensing and computer vision in light of the pressing concerns of aviation's

climate impact. To date, no public datasets of contrail annotations are available, im-

peding progress and creating a barrier to entry for improving the automated contrail

detectors (referred to here as "classifiers" or "detectors"). Existing work on observa-

tional estimates of contrails is not sufficiently temporally resolved to capture high

frequency trends, is too noisy to accurately resolve contrail maxima and not scalable

to new instruments without manual algorithm tuning or heavy post-processing.

In this work, we train a deep, convolutional neural network to identify contrails

using a dataset of hand-annotated satellite images. We use high-frequency satellite

images from easily-accessible cloud-based sources for easy replicability and extensi-

bility of results. We leverage established computer vision methods from similar tasks

e.g., road detection from satellite images with a focus on end-to-end learning (no

post-processing). As an additional product we create a public dataset of contrail

annotations to serve as an algorithm's benchmark.

Chapter 2 describes how we acquire and prepare the data for training and infer-

ence. We provide a rationale for why GOES-East satellite is selected as a source of

13



imagery and explain the details behind dataset acquisition and pre-processing. We

also describe the labeling process for a large dataset of binary ("yes/no") classifica-

tions, in addition to a smaller set of pixel-level classifications, and discuss dataset

split and verification. In Chapter, 3 we show how we selected and trained architec-

tures for a simple binary classifier and pixel-level segmentation network. We provide

quantitative proof that the networks are able to capture the complex structure of

contrails using infrared satellite images. Finally, Chapter 4 outlines the scientific

results achieved with the help of the developed contrail classifiers. We show daily

and seasonal trends in contrail cover and compare it to air traffic. We end with a

discussion of limitations and future work in Chapter 5.
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Chapter 2

Data acquisition and preparation

To generate high-quality contrail coverage maps, two components are required: a

high-resolution satellite dataset; and a high-precision, generalizable classification al-

gorithm. This section describes the steps taken to select and prepare the most suitable

satellite dataset for both classifier training and generating contrail maps for scientific

use.

2.1 Satellite selection

Satellite imagery selection is driven by a trade-off between spatial and temporal res-

olution. For a fixed optical instrument quality, an imager in a lower orbit will create

a higher resolution image at the cost of decreased swath width (and thus decreased

temporal resolution). In the extreme case, geostationary (GEO) orbits provide a near-

real time view of a large fraction of the Earth's surface, but at the cost of decreased

spatial resolution. The satellites considered at the time of writing of this thesis are

shown in Table 2.1.

We select GOES-16 (a.k.a. GOES-East) as the source of imagery. It satisfies our

requirements, because of its very high temporal resolution, potential for scalability,

and good spatial resolution and coverage. For a comprehensive estimate of contrail

cover over the United States all of these are required. Good temporal resolution

is needed to capture high-frequency air traffic and meteorological effects on contrail

15



Satellite name Coverage Spatial res. [m] Temporal res. Cloud availability

GOES-16 Americas (GEO) 500- 2000 5 - 15 minutes Yes
Himawari-8 Australia, Asia (GEO) 500- 1000 10 minutes No
MODIS Aqua+Terra Global (LEO) 250- 1000 0.5 - 2 days Selected products
AVHRR Global (LEO) 1100 0.5 days No
Landsat 8 Global (LEO) 30 16 days Yes
Sentinel-2 Global (LEO) 10 10 days Yes

Table 2.1: Satellite imagers considered as data inputs to the contrail detector. GEO
indicates geostationary orbit, LEO indicates low Earth orbit. Cloud availability is
determined through Amazon Earth.

cover. Moreover, a temporally-coherent, static view of the whole domain provided by

a GEO satellite will let us see coherent patterns of contrail distribution. Algorithms

developed for a portion of the GOES-16 domain will be readily extensible to other

areas covered by the satellite (e.g., South America), as well as other satellites in the

fourth generation of GOES family (e.g., GOES-17). The planned mission duration

for GOES-16 and GOES-17 reaches until year 2031, ensuring at least 12 years of

additional data. With small adjustments the developed detectors should also be

applicable to similar instruments such as Himawari-8 as well as satellites that will be

launched in the future.

2.2 Dataset retrieval

We use 28 terabytes (TB) of full-disk images acquired by Advanced Baseline Imager

(ABI) on board of GOES-East and downloaded from NOAA's Comprehensive Large

Array-data Stewardship System (March 1, 2017 - July 9, 2017) and Open Commons

Consortium (OCC) Environmental Data Commons (July 10, 2017 - July 1, 2019).

We download the data using Amazon Web Services Command Line interface:

aws s3 sync s3://noaa-goes16/ABI-L2-MCMIPF/

/workspace/data/noaa-goesl6/ABI-L2-MCMIPF/ --no-sign-request

--endpoint-url https://osdc.rcc.uchicago.edu --no-verify-ssl

Based on the physical properties of contrails, we use four out of 16 infra-red

frequency bands: 8.5 im ("Cloud-Top Phase"), 10.35 pm, 11.2 im, 12.3 Pm ("IR

Longwave Windows") all at a spatial resolution of 2 km. We also use three additional
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visible light frequency bands for labeling: 0.64 rm ("Red"), 0.87 rm ("Veggie"), 0.47

m ("Blue") at higher spatial resolution between 0.5-1.0 km. Full-disk images of the

Earth are captured at 15 minute intervals throughout most of the dataset, with 10

minute intervals from 2 April 2019 onward. In the interval of interest 98.2% of data

is available before outlier filtering, excluding the Nov 30 - Dec 14, 2017 period when

the satellite was repositioned from 89.30 W to 75.20 W.

2.3 Data preparation

We select our region to include the contiguous US, capturing 60% of the air traffic

(by fuel burnt in 2016) in the GOES-16 domain. We reproject, re-center, and crop

the original full disk images to minimize the distortion in this area. We warp the

GOES-East images to orthographic projection centered on the geographic center of

the contiguous United States (39.82830 N, 98.57950 W) using nearest neighbor in-

terpolation at single-precision floating point to avoid introducing sampling artifacts.

Figure 2-1 shows a sample reprojected image, warped to minimize distortions in con-

trail area and shape.

Figure 2-1: US-centered ortographic reprojection sample (right). Source full disk
image (left) taken on Sunday, Dec 17, 2017, 18:00 UTC

17



The spatial extent of the resulting image is 63.130 W - 134.03° W and 10.41° N

- 50.08° N, projected onto a six megapixel bitmap. The total area covered by our

domain is 23.73 million km2, covering 26% of Canada, 87% of Mexico and all of the

contiguous United States (i.e., excluding Hawaii and Alaska). The maximum viewing

angle in the total domain is 72.40 (61.8 for the United States). 99% of the contigu-

ousUnitedStatesareaisdistored(A ted )by less than 15.5%. Re-centering and

cropping allow us to decrease the dataset size by 80%, from 28 TB to 6TB. High

resolution maps of viewing angle and area distortion are available in Appendix A.

The target projection is defined in Geospatial Data Abstraction Library as:

t_p = '+proj=ortho +elps=GRS80 +lat_0=39.8283 +lon_0=-98.5795

* +sweep=x +nodefs'

Whereas the boundaries of the domain are calculated as:

1 tempPrj.ImportFromProj4('+proj=longlat +ellps=GRS80 +nodefs

I +sweep=x')

2 tx_r= osr.CoordinateTransformation(tempPrj, t_p)

3

4 (urx, ury, ulz) = tx_r.TransformPoint(max_ion, maxlat)

5 (lix, 11y, lrz) = tx_r.TransformPoint(min_ion, min lat)

6

7 dest= gdal.GetDriverByName('MEM').Create(', (int((urx - llx) /

pixelspacing)),int((ury - 11y) / pixelspacing), 1,

gdal.GDT_Float32)

For [min-lon,min_lat,max_lon,max_lat,pixelspacing]=[-134.03,10.41,-63.

13, 50.08, 2004] this results in a 2000 by 3000 pixel image.

18



2.4 Contrail labeling

Deep learning classification algorithms aim to robustly separate the features describ-

ing each class ("contrail"/"no contrail") . Precision and generalization of this separa-

tion depend on the model architecture and the training dataset. This section explains

how we create the latter.

In order to train a neural network we start with a model architecture, consisting

of filters arranged in consecutive layers. Filters consist of weights that are randomly

initialized. As we pass the training images through all of the filters we get an initial

(bad) prediction. We compare this prediction against a training set label using a

predefined loss function (e.g., mean squared error) and "backpropagate it" i.e., take a

derivative with respect to all of the weights. Each of the weights is then appropriately

updated to minimize the prediction error. The process is repeated until the error on

the validation set (separate from the one we train on) is minimized.

When showing data to labelers for the purposes of creating an annotated training

set, we use seven image channels, displayed to labelers as three images: "True Color"

(wavelengths: 0.64 im, 0.87 im, 0.47 pm) , "Infra-red" (difference between 12.3 im

and 10.35 pm) and "Infra-red False Color" (8.5 im, 11.2 pm, 12.3 pm). For ease of

interpretation we augment "True Color" images with infra-red (IR) 10.35 im channel

for pixels where IR intensity exceeds color intensity (at night). Contrails appear as

white streaks in "True Color" and "Infra-red" imagery and dark blue lines in "IR False

Color", where they can be also easily distinguished from non-ice clouds - see Figure

2-2. The process of generating "IR False Color" images is described in more detail at

the end of this chapter.

We create two datasets, each containing a comparable number of pixels. The

first is a "coarse" corpus, consisting of 24,321 250A 0250 pixel tiles, each of which

has a single binary label indicating whether or not any contrails are present in the

tile. This corpus was created by a group of 16 atmospheric science and engineering

experts, with self-consistency verification performed through labeling 10% of the im-

ages twice. The second set is of 110 2,000x3,000 pixel-level annotations. In this set,

19



Figure 2-2: Cross-hatching contrail breakout south of Houston and Louisiana in RGB,
IR False Color and Infra-red. Tile dimension is approximately 350km. Image taken
on Monday, Jan 15, 2018, 17:15 UTC

individual contrails are outlined, providing pixel-level contrail annotations. This set

was produced by two labelers, each provided with dedicated training to recognize and

annotate contrails.

Labelers of both datasets were trained to recognize and focus on persistent linear

contrails and contrails in the initial diffusion phase, which maintain linear shape -

see Appendix B for details. They were also trained on how to recognize and avoid

labeling cloud edges, static features, stratified clouds, and high aspect ratio cirrus.

We verify the coarse dataset through self-consistency and adversarial checks. Each

image is labeled at least twice and 10% of the dataset is replicated. This allows us to

assess self-consistency (how likely is it that the same image will get labeled the same

way twice) and adversarial consistency (how likely is it that labelers will agree) - the

results of this study are summarized in Table 2.2.

#1 #2 #3 #4 #5 #6 Mean
Self-consistency #1 89 90 81 89 85 87 88
Self-consistency #2 88 93 88 92 91 88
Adversarial consistency 81 85 79 87 77 81 82

Table 2.2: Percentage agreement between tile labels for six coarse data packages

20
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We remove all tiles that are not adversarially matching from the dataset. The

final dataset consists of 21,888 training labels, 1,946 validation labels, and 487 test

labels. Of this set of tiles, 42% include contrails. For the pixel-level annotations

0.65% of pixels are labeled as contrails. A random selection of labeled tiles is shown

in Figure 2-3.

M

Figure 2-3: Examples of contrail and non-contrail labeled tiles

Similarly, each pixel-level annotation is verified by two labelers independently.

The result, plotted by aggregating across all observations, shows expected spatial

patterns (see Figure 2-4). For example, we see more contrails on the coasts and

around major airports, consistent with both our expectations based on aircraft traffic

and with prior studies of contrail behavior.

IR False Color

Ash false-color (referred to in this work as "IR False Color") RGB product was origi-

nally designed to identify volcanic ash and sulphur dioxide clouds [32], but can also

make contrail identification easier. To enhance ash features the 12.3 Pm - 11.2 im

difference, the 11.2 pm - 8.5 pm difference, and the 11.2 im channels are constrained

to a predefined range when the color shading is assigned. The color intensity is given

by Equation 2.1 [5].
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Figure 2-4: Aggregate of 110 pixel-level human annotations of contrails. Red dots
represent major airports: Seattle, NYC JFK, Boston, Miami, LA, Houston, Atlanta,
Chicago, Mexico City

(R,CGB) 255(TR,G,B or ATRG,B) - Tmin TR,G,B

Tmax - Tmin
(2.1)

Ash product is JR-based and therefore available 24 hours a day. Tmax and Tmi

represent the range of values used to constrain each of the color components, while

- is the enhancement factor [5]. The temperature ranges for each of the channels

are summarized in Table 2.3. Ash product's utility for contrail detection can be

attributed to the blue-channel temperature range designed for distinguishing between

surface and cloud temperatures and tuned for highlighting ice clouds [32].

Color Wavelength Interpretation Min [°K] Max [°K]
Red 12.3 pm - 11.2 pm Optical thickness -4 2 1
Green 11.2 m - 8.5 pm Particle phase -4 5 1
Blue 11.2 um Temperature 243 303 1

Table 2.3: Bands used to create a composite false-color IR image from [34] including
physical interpretation and temperature ranges

22
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Chapter 3

Network development

In order to generate contrail maps, we need a high precision, generalizable classifier.

This chapter explains the details behind our two-stage approach to training and

evaluating deep neural network architectures on the two separate datasets described

in Section 2.4. We first train a binary classifier, which determines if a 250-500 km

tile contains contrails or not. We then train a semantic classifier which refines its

predictions on a pixel-level (approximately 2 km resolution) contrail map.

3.1 Binary classification

To train a binary classifier we implement a widely used residual neural network ar-

chitecture "ResNet50. The network is first pretrained to 92% accuracy (counting top

five classes) on the 1,000 object classes (1.2 million images) of the 2012 ImageNet

Challenge. We then modify it for the purpose of this project by replacing ResNet's

average pooling layer with a PyTorch's adaptive average pooling and substituting the

last fully connected layer with a new one with 2-class output. The overview of the

network architecture is shown in Figure 3-1. We finally train it on the coarse tile-level

dataset using three IR channels as input: 8.5 lm, 11.2 pm and the difference between

12.3 pm and 10.35 pm.

We use Facebook's PyTorch deep learning framework to train, validate, and test

our network. To match the range of ImageNet pretraining inputs we normalize (center

23



4

.. ..i.h.i. ........
Figure 3-1: Modified ResNet50 architecture used for coarse dataset classification [7]

at zero and scale by standard deviation) the tile images with data_mean=[274.16,

275.74,3.051 and datastd=[18.37,19.50,1.85] for respective IR channels. We

perform network weights update based on a gradient from 50 randomly selected train-

ing images (training batch size). We augment the dataset with random horizontal

and vertical flipping. For smaller datasets, we also find that color jittering (slightly

changing values of hue, contrast, saturation, brightness) is effective at preventing over-

fitting. We train our CNN using backpropagation with stochastic gradient descent

- the optimizer parameters are [learningrate,momentum, weightdecay]=[le-3,

0. 9, 1e-5]. We use a learning rate schedule which decreases the learning rate by 10x

after the third, sixth, and 20th iteration, found empirically. We train until validation

loss stops decreasing.

The resulting classifier is 90% accurate (fraction of images that are correctly clas-

sified) at a 97% precision (fraction of positives that are true). We correctly classify

99% of clear-sky images and 79% of contrail-containing images. This is shown in the

confusion matrix in Figure 3-2 (left panel).

We explore the network predictions further by inspecting a sample of its outputs.

Figure 3-3 shows correct predictions with the highest and lowest contrail probabilities

and their corresponding images in IR False Color. Tiles with a high proportion of

contrail pixels are detected with high probability, whereas tiles that lack contrails and

are comprised mostly of non-ice clouds, land, and ocean are assigned 0.0 probabilities.

Figure 3-4 shows the classifications that are "the most incorrect" i.e., their esti-

mated probability is the farthest from a human-assigned label. These false positives

and false negatives visibly contain very little information to make a tile-level dis-

tinction between contrail and non-contrail images for both the classifier and human
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2-class Precision-Recall curve: AP=0.97
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Figure 3-2: Confusion matrix and precision-recall curve for the trained binary contrail
classifier
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Figure 3-3: Correct classifications: first row shows true positives, second row true
negatives. Number above the tile represents the estimated probability of a contrail
detection, while the number in a bracket is the human-assigned label

labelers. We speculate that the classifier learns to detect difficult examples better

than individual humans, as it attempts to match the common set of contrail features

implicitly used by multiple human labelers.

3.1.1 Gradient visualization

For a trained neural network, the output probability depends on how particular input

pixels or pixel patches "activate" the learned filters in the network. We take advantage

of that, by tracing the gradients of contrail detection flowing into the final (8th)
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Figure 3-4: Incorrect classifications: first row shows false positives, second row false
negatives. Number above the tile represents the estimated probability of a contrail
detection, while the number in a bracket is the human-assigned label

convolutional layer of the ResNet network to highlight the relevant regions in the

image. We use approaches and concepts described in [38, 9, 33] to produce coarse

localization maps shown in Figure 3-5.

Figure 3-5: Gradient-based highlight of the pixels important for positive contrail
classification, overlaid on a False-color IR image

Resulting localization maps largely overlap with contrails in the images. However,

they are prone to spanning very large areas also including cirrus clouds. The coarse

quality of the localizations combined with the diffuse nature of contrails (difficult
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to extract sharp object edges) makes it insufficient for estimating metric contrail

area coverage, necessitating a different approach if automated, pixel-level contrail

identification is to be achieved.

3.2 Adaptive generative segmentation

To compute the high-resolution metric area coverage of contrails over the GOES do-

main, we re-formulate the problem as semantic segmentation and apply an encoder-

decoder convolutional neural network architecture. Fully convolutional neural net-

works are capable of producing high accuracy segmentations for natural images and

have been successfully applied in recent years to a wide variety of tasks [19] [35].

However, the formulation of the task as pixel-wise classification, while particularly

suited for detecting large objects with minimum circumference, is ill-posed for other

tasks such as road or lane detection [6]. Similarly, for slender, sparse contrails, an

alternative is required to minimize blotches created by naive architectures, as shown

in Figure 3-6.

Figure 3-6: "Blotching" effect caused by neural network unable to learn the semantic
structure of contrails through cross-entropy pixel loss. Human labels are shown in
yellow, while positive detections of a naive U-Net architecture are shown in light blue.

Based on the ideas discussed in [6], the problem can be instead formulated as

a generative adversarial network (GANs) to better preserve the high level structure

of contrails, make the detections more realistic and eliminate post-processing. The
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key idea is to use an 'embedding loss" to add structure to the generator training, as

shown in Figure 3-7. "Pixel-level loss cannot easily enforce high-level qualities such as

thinness, straightness or the uniqueness of the detected line. The fundamental reason

behind this is the way the training loss is formulated (e.g., per-pixel cross entropy),

such that each output pixel in the segmentation map is evaluated independently of

all others, i.e. no explicit inter-pixel consistency is enforced." [6] Intuitively, in this

training setup, the discriminator becomes an adaptive content loss that's able to

better capture a "human-like" semantic understanding of an image.

y
GOgen G(x; Ogen)

X Di 0 isc

shared weights ..y ____ _emb
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Figure 3-7: Generative adversarial network architecture

We use a two-stage training protocol, building on the network described in Section

3.1. We reuse the binary classifier as an encoder, tasked with generating a deep feature

representation for each image. We then extend the network with a decoder designed to

generate pixel-level predictions. The decoder upsamples the low-resolution, feature-

rich representation using skip connections and trained weights. We train the complete

model using pixel loss and adaptive perceptual loss [6] on 100 densely annotated

images. During training, images are augmented by random cropping and flipping of

448x448 pixel patches. The generator is first pre-trained for 1000 epochs at a 0.04

learning rate with an exponential decay of 0.99, 0.9 momentum and 0.0001 weight

decay. The discriminator is pre-trained for 400 epochs at 0.001 learning rate with

an exponential decay of 0.99 and 0.0001 weight decay. The GAN is trained until
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validation loss stops decreasing at 0.001 learning rate. We use 100:1 weighted cross

entropy loss to balance the dataset.
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Figure 3-8: Precision-recall curve of the generator (red), relaxed precision-recall curve
(blue)

We evaluate the performance of the trained generator on a validation set of 10 six-

megapixel images using relaxed precision recall introduced by [26]. Relaxed precision

recall introduces a buffer of p pixels within the range of pixels labeled as positives

[45, 26]. Each pixel predicted as positive in this range is considered to be correctly

classified. We set p = 3, which is consistent with existing literature [36, 26, 45].

The generator achieves 75% mean average precision and a smooth precision recall

curve as shown in Figure 3-8. Our fully-convolutional neural network learns a multi-

scale representation of contrails and does not impose constraints on input resolution.

We also investigate the output contrail maps in Figure 3-9 and 3-10 - generator

captures the majority of the area covered by contrails with high precision.

3.3 Inference and outlier filtering

We use Nvidia Quadro P6000 with 24 GB of vRAM for training and generating

detections. We run neural network inference using two overlapping 1792 by 1792 pixel

windows with a batch size of three. The inference windows are averaged and checked

for discrepancies in the 584 pixel wide overlapping region. The deep learning model

outputs probabilities that need to be thresholded to create a contrail map. We set the
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Figure 3-9: Sample automated detection on a validation set image #1. In a clockwise
order: True Color, IR False Color, IR, automated contrail mask. Green indicates true
positive, blue false negative and red false positive

Figure 3-10: Sample automated detection on a validation set image #2. In a clockwise
order: True Color, IR False Color, IR, automated contrail mask. Green indicates true
positive, blue a false negative and red a false positive

threshold at 92% to minimize area coverage bias. We find the threshold by setting

the relaxed precision equal to relaxed recall for all validation images, resulting in an

approximately equal number of false positive and false negative pixels. We then apply

an area-correction matrix to account for reprojection distortions and convert the pixel

map to km2 /px coverage map. We split the resulting map in 11 channels representing
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different geographical regions (Canada, United States, Mexico, Other Land, Ocean,

Eastern Canada/Greenland/Iceland (SREX CGI), Western North America (SREX

WNA), Central North America (SREX CNA), Eastern North America (SREX ENA),

Central America/Mexico (SREX CAM) and aggregate their coverage in a timeseries.

For analysis, we remove images with artifacts based on GOES-East health-masks

provided with the imagery - we reject a sample if any channel has over 0.005% bad

pixels. Additionally, we remove 12 hours of data before and after all training samples

to ensure no overfitted results. This represents respectively 4.5% and 10.4% of all

samples.
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Chapter 4

Results and discussion

We use the pipeline shown in Figure 4-1 to process 85,064 satellite images taken

between March 1, 2017 and July 1, 2019. The total inference time is 30 hours, an

estimated 2,800x improvement over human speed and 30x improvement over legacy

algorithms (our implementation). A single human working continuously would need

to spend 42 years on this task. We exclude all samples before July 1, 2017 because

of high proportion of artifacts.

Raw 6ES-Et an US-ced Wkred knages noedrw-m a C"m a%*

96-144images/day soasrs soLayr

Figure 4-1: We use deep encoder-decoder CNN architecture for contrail classifica-

tion. A raw GOES-East scan is retrieved online and reprojected to yield a 4-channel

US-centered infra-red image (shown in false-color above). The infra-red channels are

fed into the Encoder-Decoder Convolutional Neural Network. The CNN output is a

1:1 pixel-level map of contrail probabilities. By batching multiple images and thresh-

olding the output, we obtain a prediction for the mean level of contrail coverage in

km 2

Figure 4-1d shows the annual-average contrail coverage for the period July 2017

to July 2019, based on automatic analysis of 65,000 satellite images (390 billion

pixels). Bulk metrics and trends in coverage are consistent with prior studies (0.5-1%
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coverage over similar domain; winter maximum; summer minimum) [24, 31]. We find

an average coverage of 0.55% of the area of the United States (excluding Hawaii and

Alaska in all cases in this paper), equivalent to a quarter of the area of Florida. Over

the entire domain, we also find that 35% of all contrail coverage occurs at night,

while 38% is over ocean - conditions under which climate damages are expected to

be maximized [40, 37].
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Figure 4-2: Mean diurnal contrail patterns averaged over two years. Left panel (a)

shows contrail coverage in three regions - East, Central and West North America.

The red dotted line represents flight activity scaled to 100,000 mkm-2 . Diurnal

flight patterns are averaged using 2018 traffic data. Gray shading indicates the 95%

confidence interval of the mean (1.96 standard deviations). Right panel (b) shows

four averaging periods selected to highlight independent patterns of coverage at night,
morning, afternoon, and late evening. The red outlines highlight the East and West

regions. Contrail intensity is normalized on a scale from 0 (dark blue) to 2.5%. (bright

yellow)

Thanks to the 10-15 minute temporal resolution of the GOES-East satellite data,

we are also able to quantify sub-hourly trends in contrail coverage. Correlating these

trends with air traffic volume data allows us to empirically quantify for the first time

the relationship between contrail coverage and traffic volume. Figure 4-2 shows daily

trends in coverage (averaged over the full observational period) using regions defined

by the Intergovernmental Panel on Climate Change [28]. Contrail coverage follows

a diurnal pattern, with the maximum coverage exceeding the minimum by 210% as

shown in Figure 4-2a. Coverage peaks around 8-10 AM local time, reaching 8500,
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10500 and 7900 m2 km- 2 for East, Central and West regions respectively. This is

followed by a gradual reduction in coverage, reaching a minimum at around 3-5 AM

local time. Prior estimates based on low Earth orbit satellites made observations at

7:30 AM and 2:30 PM local time, meaning that they likely captured the maximum

but did not resolve the daily minimum in coverage and may have overestimated total

contrail impact as a consequence [31].

Contrail coverage starts increasing rapidly in all regions approximately two hours

after the morning rise in traffic. This delay can be attributed to contrail formation

and growth until they are large enough to appear in the imagery. Flight activity

and rise in contrail coverage are offset by approximately three hours between East

and West regions, corresponding to the time zone difference between Eastern and

Pacific time. Average contrail coverage is comparable between East and Central at

5600 m 2km 2 , with West slightly lower at 4400 m2 km 2 . Central region reaches

highest average peak coverage at 10500 m 2 km- 2, with maxima over Chicago and

Dallas-Houston-Austin area (see Figure 4-2b).

While the initial morning contrail peak appears driven by air traffic, subsequent

tail off in the afternoon is not correlated with flight activity, which remains rela-

tively steady throughout the day. The drop in traffic in the evening is followed by

an increase in the slope of contrail decay approximately 1-2 hours later. East and

Central regions reach a distinct minimum in the early morning hours, while West re-

gion coverage stays relatively constant between 2500 - 2800 m 2km- 2 throughout the

night, despite dropping traffic. During the day contrail coverage averages respectively

60,000, 80,000 and 100,000 m2 per air-kilometer for Central, East and West regions

respectively. Apparent contrail persistence at night makes this ratio peak to 0.4, 0.6

and 0.6 km2 km 2 for the same regions.

Figure 4-2b shows contrail clusters visible over airports, with maxima over Seattle,

Los Angeles, San Francisco, Chicago, Dallas, New York City, and Atlanta. High traffic

routes are also visible, both along the original paths and as the contrails are advected.

The pattern of the early morning rise up to a noon peak and gradual drop-off appears

to be upheld in all regions. East and West regions coverage is driven by maxima over
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major hubs, while Central coverage is more distributed. Central region also supports

less contrail coverage, despite high overpass traffic.

Finally, we analyze the dependence of contrail coverage on season. Figure 4-

3 shows total contrail coverage split by surface type throughout the year and by

meteorological season. Overall seasonal variation in coverage is consistent with prior

satellite- and ground-based studies [20, 31]. We observe a different seasonal trend for

contrail coverage over ocean than over land. Contrail coverage over land is maximized

in late summer and minimized in winter (80% decrease in coverage between January

2018 and August 2018). Peaks in over-ocean coverage correspond to peaks over-land,

however the late summer/fall minimum lags that over land by approximately two

months. Coverage over the Ocean, primarily Atlantic dominates the domain coverage

in July 2017 - August 2017 and June 2018 - August 2018, which is also noticeable in

the third panel of Figure 4-3b. These trends are not reflected in the traffic data, which

exhibits the opposite trend (summer peak) and is characterized by low intra-annual

variability of 25%.
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Figure 4-3: Mean contrail coverage throughout the year. Left panel (a) shows average
monthly contrail coverage split by surface type. The red dotted line represents flight
activity scaled to 100,000 m km-. Gray shading indicates the 95% confidence interval
of the mean (1.96 standard deviations). Right panel (b) shows averaged contrail
coverage maps by meteorological season. Contrail intensity is normalized on a scale
from 0 (dark blue) to 2.5% (bright yellow).

We also observe significant interannual variability. Peak coverage in the first 12

month period occurs in January for both land and ocean. However, in the second 12
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month period, coverage during January is 25% lower than in 2018, and peak coverage

instead occurs during May 2019. This is not correlated with traffic, which is expected

to be consistent between both periods.
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Chapter 5

Limitations and future work

We discuss the limitations of our work and proposed next steps below.

5.1 Limitations

Key limitations of our approach revolve around assumptions of how various physical

effects and dataset characteristics impact the predictions of the contrails detector.

We make the following assumptions:

• The detector is not sensitive to area distortions, shape distortions, viewing

angle, surface illumination angle and satellite distance effects

• Contrails in the initial stages of formation and spreading (before detection) do

not meaningfully contribute to contrail coverage

• Contrails in the final stages of spatial dilution, when they lose contrast to the

background and are not detected do not meaningfully contribute to contrail

coverage

• Contrails are counted equally whether they do or do not overlap with other

clouds

• Trained human labelers are able to correctly annotate all contrails visible in an

image
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• The detector's estimated probability of a contrail presence is independent of

position and time of day, month or year.

5.2 Future work

Going forward, we see opportunities for expanding the work described in this thesis

both in the context of contrail detection and other applications. In this section we

present actionable next steps for contrail detection to address the issues outlined

above, in addition to new research directions outside of contrail detection which are

enabled by this work.

5.2.1 Contrail detection

Following from this work, we see three major areas for improvement in contrail de-

tection - data quality and scope, science objectives and data availability. First, the

current model can be expanded in terms of detection fidelity (quality of output) and

scope by increasing the domain of detection, processing data from other satellites, and

tracking individual contrails over time. Specific recommendations are listed below:

• Expand the domain to GOES-East full disk for coverage between 52° N and

52° S, enabling contrail detection for both North and South America

• Expand coverage to Himawari-8 and GOES-17 (GOES-West) for a maximum

theoretical coverage of 292 0 (80 W to 600 E)

• Improve spatial resolution by combining GOES-16 high-frequency imagery with

NOAA-20 high-resolution (0.4 km) imagery

• Expand the classifier to recognize individual contrail instances and track them

over time

• Refine the classifier through finding incorrect or weak (low probability) predic-

tions, re-annotating them and re-training the model (hard example mining)
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These improvements will enable new scientific objectives to be reached, reducing

the uncertainty in contrail lifetime, overlap with lower clouds, radiative forcing and

impact of individual routes:

• Estimate the contrail lifetime by tracking individual contrail instances

• Estimate contrail radiative forcing by detecting contrail edges more accurately

and using other satellite instruments for assistance

• Compare contrail modelling and observational results for cross-validation

• Run case studies of RF impact of individual aircraft or routes

Finally, improved data availability will make it easier for other researchers to build on

top of this work without encountering excessive storage and compute requirements.

The proposed improvements in this space are:

• Simplify access to contrail estimates: expose an API to request contrail detec-

tions for a particular date and time (or an aggregate) online

• Reach broader audience: collaborate with online visualization tools [23] to dis-

play real-time contrail detections

• Reduce the storage overhead of contrail detections: store contrail labels in a

sparse format (e.g., polylines instead of pixel-level annotations)

5.2.2 Other applications

Machine learning approaches open a number of new avenues for Earth science. In

addition to further work on contrail impact estimation, we have identified two major

research directions which are natural extensions of this thesis.

Empirical estimation of ship track impacts

Commercial shipping is estimated to cause climate impacts which are comparable to

aviation in magnitude, and expected to increase over coming decades. These impacts

are in part offset by the low-altitude marine clouds which form in ship exhausts.
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Unlike contrails, these clouds are thought to provide an overall global cooling effect.

However, lack of coverage data makes these impacts uncertain, while some work has

suggested that these ship tracks may actually have a smaller or even net warming

impact due to a suppressive effect on natural clouds. This hypothesis will likely

be tested in the near future when new rules from the UN International Maritime

Organization significantly reduce the mean sulfur content of shipping fuel, from 3.5%

sulfur to 0.5% sulfur. However, without direct observations, the actual impacts of

this change will be difficult to assess.

We propose an extension to our contrail work, allowing us to automatically iden-

tify ship tracks from visual-spectrum satellite imagery. This will provide a direct,

empirical estimate of low-altitude cloudiness resulting from ships. It will also allow

us to directly quantify the effect of changes in shipping sulfur. By comparing esti-

mated ship-attributable cloudiness before and after the implementation of new fuel

sulfur requirements, we will be able to assess the direct impact on the production of

line-shaped marine clouds. Finally, we will combine this information with existing

data on ship movements. By calculating observations of total marine cloud coverage

along the routes taken by ships, comparing this before and after the implementa-

tion of ship sulfur regulation, and quantifying the contribution of machine-identified

line-shaped ship tracks, we will be able to empirically evaluate whether ship sulfur

increases or decreases the surface albedo of the ocean.

Tracking of intercontinental pollution plumes

Recent work on air quality has begun to acknowledge the role that remote sources

have in dictating local air quality. Elevated ozone episodes in California have been

attributed to emissions from Asia, while European air quality is adversely impacted by

outflow from North America. However, atmospheric modeling techniques are unable

to accurately reproduce these flows, preventing accurate, automated attribution of

sources and complicating regulatory efforts. Automated identification and tracking

of these plumes would permit two major advances. Firstly, it would provide an

empirical mechanism to quantify the rates of atmospheric diffusion experienced by
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these plumes, critical to improving the aforementioned atmospheric models. Secondly,

it would enable the routine, quantitative attribution of pollution events to remote

sources. Our proposed approach is to use a convolutional neural network to identify

new pollution plumes, and to track the migration and evolution of these plumes over

the days and weeks which follow. The neural network would utilize information from

the observation time series to identify physically realistic movement of pollution.

This will provide an ongoing, global, empirical estimate of the impact of remote

pollution sources on remote air quality. This will provide actionable information on

pollution impacts. Furthermore, by directly observing the rate of increase of polluted

area, the effective diffusion rate of plumes in different locations and seasons can

be determined, providing physical information which can be used to improve global

modeling techniques.
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Chapter 6

Conclusion

In this thesis, we demonstrate a novel approach for detecting contrails using deep

learning. We show that the previously posed challenges in data collection and training

time are surmountable and provide a near real-time contrail coverage over the US

with minimal manual parameter tuning and post-processing. Our results empirically

demonstrate for the first time how air traffic affects cloud cover on a sub-hourly basis.

This analysis provides new insight into contrail coverage patterns across the US and

the relationship between contrail formation and aircraft traffic.

Using our automatic detection algorithm on GOES-East data, we exceed the tem-

poral resolution of the LEO satellite [31] and scalability and spatial resolution of the

ground observations [20]. Our fully-convolutional neural network learns a multi-scale

representation of contrails and does not impose constraints on input resolution. We

expect our approach to improve further once sub-km resolution geostationary infrared

imagers become available.

We find that contrails cover an average of 0.55% of the contiguous United States,

an area equivalent to a quarter of the size of Florida. Over the entire domain, we

also find that 35% of all contrail coverage occurs at night, while 38% is over ocean

- conditions under which climate damages are expected to be maximized [40, 37].

Average contrail coverage is comparable between US East and Central regions at

5600 m2 km- 2 , with West region slightly lower at 4400 m2 km-2

Coverage peaks around 8-10 AM local time, reaching 8500, 10500 and 7900 m2 km-2
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for East, Central and West regions respectively. This is followed by a gradual reduc-

tion in coverage, reaching a minimum at around 3-5 AM local time. Contrail coverage

over land is maximized in late summer and minimized in winter (80% decrease in cov-

erage between January 2018 and August 2018).

The dataset produced here is freely available on request, constituting the first

open-source, temporally- and spatially-resolved, publicly available dataset of contrail

coverage. We have also made the network architecture and weights required to process

future GOES-East data available for download on GitHub, allowing researchers to

directly apply this technique without the need for additional tuning.

To date, studies estimating contrail coverage over the US relied on low earth

orbit satellites with low temporal resolution (1-2 measurements per day) and retrieval

and processing latencies measured in days [21, 39, 31]. The processed data and

algorithms used were siloed and transferring them to new satellite datasets required

manual tuning. With our algorithm, we demonstrate for the first time that contrail

detection algorithms can be fast, generalizable, and adaptive. We demonstrate a

30x improvement in contrail detection speed over legacy algorithm [21], allowing to

process a full year of satellite observations in under 15 hours on a single consumer

GPU. Combined with the satellite downlink latency below 5 min, this method can

deliver a near real-time view of the contrail-covered sky over the US.

We expect on-demand, cloud-based deep learning detectors to be the key to mak-

ing the petabytes of environmental data more accessible to atmospheric scientists.

The findings of this study, which resolve the relationship between individual flight

tracks and contrail formation at an unprecedented spatial and temporal scale, will

directly enable reductions in aviation's climate impacts. The model presented here

could be the first step to optimize flight routes and flight times for minimum climate

impact, and analyze the effectiveness of aircraft convoys aiming to avoid forming

contrail cirrus.
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Appendix A

Distortion maps
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Figure A-1: Viewing angle in degrees for the contiguous US domain. Black contour
line delineates 50° viewing angle boundary for reference. Angle is calculated using
spherical approximations.
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Appendix B

Labelling guidelines

The following information was shared with all data labellers, along with examples of

correctly annotated images.

Introduction

Condensation trails (contrails) are line-shaped clouds produced by aircraft engine ex-

haust. They are primarily composed of condensed water, which freezes after exiting

the engine. You can sometimes observe them from the ground forming behind an

aircraft as shown in Figure B-1. Contrails are usually short-lived (less than 30 min-

utes), but in suitable atmospheric conditions, they can persist for up to 12 hours. We

are interested in studying their formation, coverage and evolution because of their

impact on Earth's climate.

More specifically, the purpose of labeling contrails on satellite images is to pro-

duce the first-ever dataset of labelled contrail images captured using a geostationary

satellite. This dataset will then be used to train an algorithm, which will be able to

detect contrails in near-real time. It is critical to collect very high-quality data to

allow the machine learning algorithm to learn the correct image features. Your job

will be to help annotate the satellite images - this document outlines how.
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Figure B-1: Contrails forming behind aircraft as seen from the ground

Background

A geostationary satellite orbits the Earth at an altitude of over 35,000 km always

pointing at the same location on the ground. It collects light in 16 frequency bands -

some of the examples are human-visible "RGB" spectrum (Figure B-2, left) or infrared

spectrum (Figure B-2, right). These bands capture different physical phenomena

ranging from vegetation to cloud particle size.

Figure B-2: North America as seen from a geostationary satellite in RGB (left) and
infrared (right)

When contrails form behind an aircraft, their initial span is on the order of the

wingspan of the aircraft (approx. 50 m). However, if weather conditions let the

contrail persist, it will diffuse and grow in width. After reaching a critical width of a

few hundred meters, it is possible to spot it on a satellite image. Figure 3C shows an

area above Los Angeles in RGB with color-coded contrails as seen from the ground

(Figure B-3B).
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Figure B-3: Area above Los Angeles as seen from above (A) and below (B) the
atmosphere with color coded contrails (B and C) [contrailscience.com]

We note that contrails only appear in region, where the weather conditions are

favorable for their formation and persistence. As such, you cannot expect a contrail

to form throughout the entire flight path of an aircraft, but only in selected spots.

A particular feature of contrails is that they absorb infrared light emitted from

Earth's surface, causing them to appear darker on an infrared image (Fig. B-4).

Most of the objects at room temperature radiate their heat away as infrared light.

The Earth also "glows" in infrared light, invisible to the human eye, because of its

temperature.

Figure B-4: Formation of condensation trails on an infrared image, note the slender
dark grey streaks as highlighted in red boxes, which can be considered contrails

To make it easier for humans to see contrails, we can combine three infrared

channels into a single false-color image, using the so-called "ash transformation" (Fig.

B-5). In an ash-transformed image, contrails and their natural counterparts - cirrus

clouds - appear in dark blue/indigo color. The ash transformation will most often
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show thick, cold ice clouds in dark red and thin cirrus clouds in dark blue to black.

Mid-level water clouds are yellow or brown.

Figure B-5: Formation of condensation trails on acomposite image consisting of
three infrared channels, note how contrails appear as slender dark blue streaks as
highlighted in red boxes

There are three key difficulties in detecting contrails on ash-transformed satellite

images:

• Contrails appear almost identical in color to natural cirrus clouds (examples to

follow)

• Contrails lose their linear shape over time, diffused by the movement of air at

high altitudes

• Contrails typical width barely exceeds the detection threshold ofbest-in-class

geostationarysatellites

• Static land features can sometimes be mistaken for contrails

To mitigate these difficulties, we will restrict our annotations to contrails which

maintain approximately linear shape and arewideenough tobe detected by our

geostationary satellite. A number of example snippets with and without contrails

under this definition are shown in Figure B-6.

Distinguishing between contrails and natural cirruscloudsisa bit moredifficult

andrequires somepractice and judgement. A helpful heuristic is torememberthat
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Figure B-6: Ash-transformed satellite images snippets with contrail formations (top).
Highlighted contrail features (bottom)

contrails are created by an artificial process. The speed of an aircraft is orders of

magnitude larger than the rate of atmospheric diffusion, resulting in "unnatural-

looking" extremely slender clouds. Often, because of overlapping flightpaths, multiple

contrails will be approximately aligned in the same direction or perpendicular to each

other in a given air patch - see Figure B-7.

4

Figure B-7: Additional examples of ash-transformed images of contrail formations
- from left to right: occluded parallel contrails; partially occluded parallel contrails;
partially occluded cross-hatched contrails; lightly diffused approximately parallel con-
trails. Original images (top); Highlighted contrail features (bottom)

Because the conditions required for formation of cirrus clouds and contrails are
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very similar, both phenomena commonly occur together. This further increases the

difficulties for distinguishing between contrail and those natural clouds. Their shapes

and surrounding cloudiness provide some guidance though. A number of cases show-

ing cirrus clouds (not contrails) are shown in Figure B-8 for reference, alongside an

example which shows overlapping cirrus and contrails (Figure B-8C).

Figure B-8: Examples of cirrus clouds which have similar IR signature (color) to
contrails - A and B: natural linear-like formations; C: contrails covered in a diffused
cirrus cloud; D: large cirrus cloud

Finally, to help reject static land features you will be provided with two "before"

and "after" satellite images that will show the movement of clouds.

Labelling process

Your task will be to take preprocessed ash-transformed satellite images and carefully

annotate them on a pixel-by-pixel basis. The expected end goal is a "contrail mask"

accompanying each image. It is expected that each image will take from 45 to 75

minutes to densely annotate (depending on contrail coverage). Figure B-9 contains a
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number of examples of correct contrail annotations.

Please see additional attachments for high definition examples of complete contrail

masks.

Figure B-9: Examples of densely annotated satellite images
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