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Abstract

Free-flying teleoperated satellites have been proposed as a replacement for astro-
naut extravehicular activities (EVA), such as inspection or maintenance, to reduce
astronaut risk. A major concern for this type of operation is ensuring the human
operator has sufficient spatial and temporal knowledge of the free-flying spacecraft
and environment to safely complete the task. This research evaluates Augmented
Reality (AR) as a means of providing spatial and temporal information to an oper-
ator controlling a free-flying robot to perform an inspection task. Specifically, the
research focuses on the effect of command input mode and environmental risk on
performance of an EVA inspection task and the strategies adopted by the operator
in completing the inspection.

Subjects performed a simulated inspection task of a space station using an in-
spector small satellite and the Microsoft Hololens platform. Subjects commanded
the inspector satellite in three operation modes; satellite body (local) reference frame
control, global reference frame control, and global waypointing system (placing mark-
ers for the inspector to follow in the global reference frame). Subjects were instructed
to inspect the exterior of the station and identify any surface anomalies. Anomalies
could occur in areas with low and high risk of contact with the station structure.
Subjects performed the inspection task using each of the three fixed command modes

(order randomized), with different anomaly configurations. Subjects then performed
the inspection task but with free choice of when and how often they utilized the
different control modes. Performance was evaluated through primary task measures
including percentage of station inspected and accuracy in locating anomaly sites,
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number of AR interactions, and number of collisions with the station. Workload was
also assessed using the NASA TLX survey.

Operation in both the global and local frame controls was found to maximise the
percentage of the station that could be inspected, while the waypoint system was
found to minimize the number of collisions between the inspector and the station.
When operating with free choice of command mode, subjects preferred to stay in
a single mode, typically either the global or local controls, likely due to the high
usability of these modes for the selected inspection task. Environmental risk area
was not found to have a signficant effect on either detection of anomalies or number
of collisions.

Findings of this paper will inform a follow-on study at NASA's HERA facility,
with a full analog-crewed mission operating multiple inspection agents over several
days.

Thesis Supervisor: Leia A. Stirling
Title: Charles Stark Draper Assistant Professor of Aeronautics and Astronautics
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Engineering is the art of modelling materials we do not wholly under-

stand, into shapes we cannot precisely analyse so as to withstand forces

we cannot properly assess, in such a way that the public has no reason

to suspect the extent ofour ignorance.

Dr A. R. Dykes
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Chapter 1

Introduction

1.1 Background and Motivation

Future human space missions will rely heavily on human-robotic systems for plane-

tary surface and in-space operations, including mobility, exploration, maintenance,

and assembly tasks. Human-robotic collaboration in these scenarios will include

teleoperation (robots operated remotely by astronauts) and human-robot teaming

(humans and robots co-located in the same environment), requiring both the human

and robot to react to dynamic and off-nominal situations in real-time. Effective com-

munication and information gathering between the human and robotic components

is vital for operational efficiency and risk mitigation in these scenarios.

Exterior inspection tasks are a key component of maintaining safe operations for

long-duration crewed spacecraft. The Space Shuttle and International Space Station

(ISS) both relied on routine inspections for maintenance, anomaly investigation, mit-

igation of debris impact risk and reporting on configuration of hardware [31, 49], and

inspection tasks will continue to be a vital component of any future crewed space
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mission [71] that will require a combined human-robotic effort. Currently, inspec-

tion of the ISS exterior primarily occurs through two methods: manual inspections

via astronaut extravehicular activities (EVA), and robotic platforms like the Space

Station Remote Manipulator System (SSRMS, or Canadarm2). When shifting to a

long-duration exploration mission (LDEM) scenario such as the proposed National

Aeronautics and Space Administration (NASA) Lunar Gateway mission or future

crewed Mars missions, both inspection methods have serious limitations.

Current EVAs are rehearsed extensively on the ground and strictly choreographed

on-orbit. During operation they are supported byan extensive ground team, and

performed in near constant communication with ground-based Mission Control. This

EVA model becomes inviable for LDEMs which will essentially operate independently

of Earth. High communication latencies prevent real-time ground support and as-

tronauts may be required to react to off-nominal scenarios without the benefit of

rehearsal. Additionally, proposed LDEMs may require up to 24 hours of astronaut

EVA per week 1211, exposing the astronauts to dangerous space radiation doses as

they transit beyond Earth's protective magnetosphere [101.

Fixed robotic platforms like the SSRMS are teleoperated by astronauts inside

the space station, using manual interfaces and multiple display screens showing fixed

external camera views of the arm. Astronauts can also use a simulated exocentric

view of the arm, however all control decisions must be made based on real camera

views. The SSRMS has 7 degrees-of-freedoms (DOF) [32], and when combined with

the Special Purpose Dextrous Manipulator (SPDM or Dextre) and the Mobile Base

System (MBS) a total of 23 DOF, making coordinated control movements very dif-

ficult [55]. Manipulation of these systems by a human operator is highly complex

due to the restricted camera views, multiple DOF, and high cost of error (possible

collisions with the station) and requires excellent coordination, manipulation, and
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spatial awareness skills [11]. Errors in robotic manipulation on a LDEM could be

catastrophic without possible repair and resupply from Earth.

Free-flying teleoperated satellites represent a possible alternative to EVA and

fixed robotic platforms for Earth-based and long duration deep-space missions. Small

satellites carrying sensors and cameras could be deployed from the exterior of the

station to perform surface inspections, while tele-operated by astronauts inside the

space station. Free-flyers operate in six degrees of freedom without limits on motion,

offering greater flexibility of motion than their fixed robotic counterparts, and greatly

reducing the complexity of control required by the human operator. Free-flying satel-

lites would reduce risk to astronauts by decreasing crewed EVA time for inspection

tasks, and could also be used to evaluate trajectories, risks, and procedures prior to

required crewed EVA missions, without the need for full ground support. Addition-

ally, free-flying satellites are less massive to carry to orbit, and cheaper than current

fixed platform systems.

Despite enormous strides in robotic sensing and control, humans remain supe-

rior to robots in building insightful models of our environment and recognising off-

nominal situations [3]. Consequently proposed free-flying systems would be semi-

autonomous, using a human-in-the-loop for exterior spacecraft operations. Thus a

key consideration for the use of semi-autonomous free-flying satellites is the inter-

face type and interaction scheme selected to enable the operator's ability to control

and supervise the satellite. Veteran astronauts and EVA operators have highlighted

the information-poor environment of space as a key limiting factor of current EVAs.

Likewise the fixed camera views used by the SSMRS provide limited viewpoints

of the robotic operation. A major concern for operation of free-flyers in space is

ensuring the human operator has sufficient spatial and temporal knowledge of the

free-flying spacecraft and environment to safely complete the inspection task. Aug-
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mented reality (AR) presents a one possible solution, providing both a means of

display and control for the free-flying satellite. Augmented reality platforms can

render three-dimensional holographic displays of the exterior space station environ-

ment and free-flyer motion, and provide a means of operator control through the use

of gestures, voice, hand-held controllers, and gaze. NASA's Jet Propulsion Labo-

ratory (JPL) is currently developing a video processing pipeline that could overaly

real-time video from the free-flyer satellite onto the 3D model of the station exterior.

In order to properly assess the viability of Augmented Reality for use in spacecraft

inspection tasks, a suitable AR interface must be developed, and optimal methods

of commanding the free-flyer determined. This thesis details investigations into the

use of Augmented Reality as a means of both control and display for free-flying

teleoperated satellites. An interface was developed to simulate an on-orbit inspection

task, and different modes of commanding a free-flyer were assessed based on operator

performance.

1.2 Previous Literature

1.2.1 Free-flying Robots for Space

Several free-flying satellite platforms have been developed for maintenance, assem-

bly, inspection, EVA support, and intravehicular support on the ISS. The Japanese

Engineering Test Satellites VII (ETS VII), launched by the Japanese Aerospace

Exploration Agency (JAXA), were a pair of free-flyer satellites demonstrated on-

orbit in 1997 [27]. The satellites performed several bilateral teleoperation tasks

on-orbit, including the autonomous inspection and capture of one satellite by the

other. The operator received haptic feedback through a 6-DOF robotic manipulator
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on the ground.

Other free-flying satellites, such as the Experimental Small Satellite-10 (XXS-

10) developed by the United States Air Force Research Lab [12], the Micro-Satellite

Technology Experiment (MiTEx) developed by the Boeing Company [9] and the

Demonstration of Autonomous Rendezvous Technology (DART) developed by NASA

[52] were each used to demonstrate key technologies for on-orbit servicing, guidance

and rendezvous, and autonomous maneuvering and station keeping respectively.

The Autonomous Extravehicular Robotic Camera (AERCam) was specifically de-

signed as an inspection free-flyer for human spaceflight [7]. The satellite featured a

stereo-vision camera that could provide on-orbit astronauts and a ground team with

visual feedback on the exterior state of the Space Shuttle and ISS. The AERcam was

remotely piloted inside the Space Shuttle payload bay on STS-87, demonstrating

the viability of free-flyer robots for inspection tasks. The AERcam used a combi-

nation rotational and translational hand controller from within the cockpit, with

visual feedback on the system through the Space Shuttle payload bay windows [19].
NASA subsequently developed the Miniature Autonomous Extravehicular Robotic

Camera (Mini ARECam), a nanosatellite variant of the AERCam [20]. The Mini

ARECam was capable of both remote piloted and supervised autonomous flight, and

was designed for automatic station-keeping and point-to-point maneuvering.

NASA has previously developed several free-flying systems aimed at aiding as-

tronaut activities within the ISS. The Personal Satellite Assistant (PSA) was an

autonomous intravehicular spacecraft developed by NASA Ames to perform sensing

activities such as monitoring, diagnosing and calibrating the environmental control

and life support systems, and crew support such as visual monitoring, task record-

ing, and scheduling [13]. More recently, NASA Ames has developed the Astrobee

platform, to perform mobile sensor and camera tasks within the ISS and provide a
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testbed for microgravity robotic research [2]. The system is remotely operated from

the ground, and can also interact autonomously with the crew.

The work for this thesis was heavily inspired by the Synchronized Position, Hold,

Engage, Reorient Experimental Satellites (SPHERES) testbed, a free-flying satellite

developed by the Massachusetts Institute of Technology's (MIT) Space Systems Lab

and flown on the ISS. The SPHERES were initially conceived as a testbed for dis-

tributed satellite systems, and subsequently expanded their functionality to support

the development and test of control, autonomy, and visual navigation algorithms,

and human-factors experiments [54]. While SPHERES was primarily used as an

autonomous system, Stoll et al. [62] outlined a series of experiments conducted on

the ISS to assess the potential benefits of human-controlled inspector satellites. The

SPHERES were controlled by a human operator through a series of navigation and

avoidance maneuvers using keyboard commands and visual feedback, at varying lev-

els of autonomy and signal delay. One of the key challenges of the human-robot

interaction was maintaining operator recognition of the satellite trajectory. Ground

tests utilised a virtual reality interface on a computer screen to aid operators, however

this system could not be implemented on-orbit. Stoll noted that human operators

also struggled with reorienting after relocation of the satellite and suggested virtual

reference points may aid in this reorientation. Subsequent ground studies further

explored the use of SPHERES as part of a human-robot team in avoiding debris

impacts [56].
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1.2.2 Teleoperation Interfaces for Free Flying Robots

Teleoperation tasks pose challenges to human operators, due to the difficulty in oper-

ators' ability to maintain situational and spatial awareness and build mental models

of the remote environment [18]. In teleoperated tasks, the operator's perception is

decoupled from the physical environment [5] often due to a lack of sensory feedback,

leading to an inability to maintain appropriate situational awareness and thus an

inaccurate mental model. While operators do not need a complete mental model

of a system's operation to use said system 146], conflicts between the user's mental

model and the true system model can lead to degradations in performance. Per-

formance decrements during teleoperations have been consistently identified as the

result of key limitations in the user interface [6]. Safe teleoperation tasks, particu-

larly inspection tasks, require the operator to estimate absolute and relative sizes of

objects to determine the risk level of a given environment, and a decoupling of per-

ception caused by poorly designed telerobotic interfaces can lead to scale ambiguity

during operation [73]. Kanduri et al. found that remote rover operators struggled to

estimate the size of geographical features from monoscopic images [29]. Restrictive

fields of view, such as those provided by 2D computers screens showing live video

feed, have been shown to hinder object identification and spatial orientation [30] as

well as degrading depth perception and distance cues [72].

Inappropriate use of viewpoints can detrimentally affect performance in given

tasks. Egocentric viewpoints refer to those from the perception of the robot, e.g.

placing a camera at the end of a manipulator arm. Exocentric viewpoints are those

that are placed on the body of the robot, or suspended behind and above it, provid-

ing a wider field of view. A study conducted by Thomas and Wickens found that an

egocentric viewpoint induced perceptual narrowing in subjects compared to exocen-
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tric displays 166], where subjects would focus on specific areas of the display to the

exclusion of other information. An exocentric view of the environment, when com-

pared to two-dimensional first-person viewpoint, can lead to improved navigational

performance [53], even when navigating through a restricted or occluded environment

[16].

Traditional displays for on-orbit telerobotic tasks like the SSRMS use multiple

display screens and manual interfaces. While this type of multi-camera display has

been shown to compensate for decreased remote perception [26], this type of display

requires an operator to mentally correlate, fuse and rotate data, increasing their

mental workload [45]. Studies of remote control of UAV formations have shown the

optimal viewpoint changes based on subtask, with egocentric viewpoints supporting

improved perception of the immediate environment, but exocentric viewpoints sup-

porting overall task awareness [37]. While the optimal solution would seem to be pre-

senting both viewpoints simultaneously, Olmos et al. found that using dual displays

that provided both ego- and exo-centric viewpoints for navigation to a waypoint re-

sulted in a substantial cost to performance, attributed to attentional switching costs

[47].

The capability of free-flying robots to maneuver in six DOF during teleoperation

tasks adds further complication when compared to terrestrial robots with limited

planes of motion. Working in a three-dimensional environment with the uncon-

strained motion of a free-flyer can make it difficult for observers and operators to

project a free-flyer's future state and determine whether or not an action has been

executed properly [64]. Stoll found that the SPHERES motion patterns on board

the ISS were difficult for humans to recognise [62]. Stoll noted that the lack of ref-

erence fames degraded performance due to poor spatial understanding when moving

in three dimensions. Tasks may be simplified by changing the command reference
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frame, depending on if the task is centered on the free-flyer or on another agent/ob-

ject. In analyzing human-human interactions on cooperative space tasks, Trafton

et al. identified that reference frames often changed, and required communication

to coordinate this shift [67]. Thus moving from human EVAs to human-controlled

robotic EVAs, use of and communication of appropriate frames is likely to be crucial.

1.2.3 Command Modes in Telerobotics

Modes of control for teleoperated systems vary greatly from robot to robot. Early

teleoperated systems relied on joysticks and game controllers to enable low-level

command of robots. Later systems used hand-held devices and cell phones, and more

recently telerobotic control has utilised augmented and virtual reality. In his overview

of teleoperation interfaces, Fong highlights that display and mode of control is highly

context dependent [17]. In a review by Sigrist et al. 58], they highlight that efficacy

of certain augmented strategies for display are not necessarily transferrable beyond

an examined task, and highly task dependent. In order to understand performance

as it relates to these variables, operationally relevant tasks are crucial.

Szafir et al. found that implementing interfaces that supported replanning, com-

bined with three-dimensional spatial waypoints, significantly improved users' effi-

ciency in the completion of inventory tasks and data collection [65]. Their work

illustrated the need for planning phases in addition to execution phases during a

free-flyer task, which a waypoint-based and planner-based (waypoint combined with

scheduler) mode afforded.

Previous studies have examined distribution of control modes during robotic oper-

ations. Wang and Lewis studied the effect of waypointing issuing (specifying markers

to follow), low-level teleoperation (manual, continuous driving of the robots), and
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camera control (issuing desired poses to the robot camera) for a single operator and

robot team completing a search and rescue task [69]. The task examined both a

semi-autonomous robot state, where the human was not required but could inter-

vene, and a completely manual state. Wang and Lewis found that when in either

semi-autonomous state or manual state, operators rarely used the teleoperation mode

or camera mode.

In implementing different control and command modes, like those available for

commanding different segments of a manipulator arm, there will be an associated

cognitive cost to switching between modes [39]. Squire et al. examined the im-

pact of interface and interaction scheme on switching costs and overall performance

(mission execution time) in controlling teams of simulated robots [60]. A flexible

delegation interface enabled users to switch between a lower level waypoint con-

trol scheme (specifying desired goal states for robots) and higher level play control

scheme (pre-programmed sets of maneuvers). The study found a marginally signifi-

cant improvement in mission completion time when subjects could flexibly use either

control scheme. While this study supported manual switching of control modes,

studies using robotic arms have employed automatic and forced mode switches when

completing tasks 25]. Herlant et al. found that while forcing or automating control

mode switches did not improve overall performance, user satisfaction with the system

greatly increased. Wang and Lewis examined performance associated with cost of

switching attention between different robotic agents within a team and found that,

despite expectations, switching attention between robotic agents in a manual mode

and supervisory modes actually improved performance [69]. It has been posited that

to reduce switching costs, interfaces should be designed to maintain the operator's

awareness of the robot state, helping the operator recover robot position and pose

more quickly after switching.
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1.2.4 Virtual and Augmented Reality Interfaces

Virtual and augmented reality interfaces have been suggested through the 1990s and

2000s as a means of assisting in mental model formation [38], and reducing risk in

complex telerobotic tasks throughout the late 1990s and early 2000s [1, 28, 35, 63].

Augmented reality addresses some of the concerns regarding viewpoint during teleop-

eration tasks, providing virtual models of the environment that can be manipulated

for improved spatial awareness [61, 38]. While there may be decreased performance

when providing an operator with both ego- and exo-centric viewpoints simultane-

ously [47], gesturally-controlled augmented reality allows an operator to switch be-

tween the two camera viewpoints as desired, simply by manipulating the size and

position of the environment. The current work at JPL into combining real-time video

feed onto virtual holograms of the environment could further help enhance spatial

understanding. Previous studies into contextualized videos (combinations of videos

with a model of the 3D environment) within displays have shown that users unfa-

miliar with an environment can achieve comparable performance to users who had

worked in the environment [34, 70]. Thus in navigating the exterior of a space station

with changing configuraiton (like the ISS), contextualized videos may aid users in

developing a mental model of the environment.

In reviewing human-human collaboration as a means to inform human-robotic

interaction, Green et al. proposes that human-robotic systems should seek to emulate

human-human communication. Humans rarely achieve communication with each

other through voice alone, and likewise robotic systems should recognize more than

just verbal cues from operators [22]. Humans use speech, gaze, gestures and other

non-verbal cues to facilitate meaning. Augmented reality systems like the Microsoft

HoloLens platform enable such multimodal control through gaze, gestures, voice and
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optionally game controllers [401. Hall has found that gestures mapped most closely

to the natural motions of the human arm seem most promising for gesture-based

telerobotics when using gestures to control a robotic manipulator [23].

Augmented reality headset like the Microsoft HoloLens combine interface and dis-

play through this use of gestural control to directly manipulate holographic images,

without the need for a physical controller. Sita et al. used the 3D visualization and

gestural control of the Microsoft HoloLens to control a segmented robotic arm [59].

A 3D model of the arm was generated and users could manipulate this hologram

using gestures to control a holographic target at the end-effector of the simulated

arm. Kot et al. developed a virtual operator station for a teleoperated mobile robot

within the HoloLens framework [33], building an interactive 3D model of a mobile

robot along with fixed camera displays within the AR interface. Erat et al. used

the HoloLens systems to combine live drone and human vision of an environment,

providing an 'x-ray' view point into occluded environments, combined with basic ges-

tural commands as a means of high-level control of the drone [16]. The study found

that the exocentric viewpoint afforded by the HoloLens resulted in signficantly bet-

ter task completion time compared to a standard egocentric drone interface using a

joypad. Additionally, egocentric viewpoints in this study provided less spatial aware-

ness compared to exocentric modes, and gestural commands like picking and placing

waypoints were more readily adopted in an exocentric HoloLens viewpoint.

1.2.5 Performance measures in telerobotics

Selection of appropriate performance metrics in telerobotic and free-flyer interfaces

is vital in determining the effectiveness of an interface in supporting a given task.

Szafir et al. [64] used several objective measures to assess the how specific de-
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sign elements of interfaces affected operator strategies and performance in free-flyer

inventory tasks, including communication bandwidth (number of interface interac-

tions/commands by the user), efficiency in task completion (total task time divided

by bandwidth), and planning time used. For controlling free-flyers through various

navigation and proximity operations, Stoll et al. [62] evaluated human performance

through maneuver completion time and fuel consumption, forcing subjects to find

a trade-off between the two factors in order to maximise overall task performance.

For proximity operations, relative position of the free-flyer to the target was used

as an indication of success in collision avoidance. A study of free-flyer avoidance

of space debris measured collision count as an indication of performance [56]. The

NASA Task-Load Index (TLX) [15] has repeatedly been used a subjective measure of

cognitive load, or workload [64, 56]. The Index includes ratings of mental, physical,

and temporal demand as well as performance, frustration and effort.

Previous telerobotic studies have highlighted the need for operators to main-

tain good awareness of their surroundings and develop accurate mental models [5].

Endsley's decomposition of situational awareness (SA) into three levels (perception,

comprehension, and projection) aligns with this development of a mental model [14].

It is important to assess how interfaces support the development of a mental model,

so breakdowns in these SA levels should be identified. Schneider used a post-test

questionnaire, asking subjects to answer probe questions pertaining to the three SA

levels, to assess subjects' SA during the collision avoidance task [56].

1.3 Research Gaps and Thesis Objectives

This thesis seeks to investigate the following research questions:

• Research Question 1: Can augmented reality (AR) technologies be used as an ef-
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fective means of controlling a free-flying teleoperated satellite for on-orbit tasks?

• Research Question 2: What are the effects of command reference frame and

environmental risk on performance, situational awareness and workload during

operation of a on-orbit robotic free-flyer?

" Research Question 3: How does availability of command mode affect perfor-

mance, workload and strategy during operation of a on-orbit robotic free-flyer?

• Research Question 4: What strategies do operators adopt when using augmented

reality display and interface for on-orbit tasks?

1.4 Thesis Outline

This thesis is structured as follows

• Chapter 1: Motivation of the thesis, critical review of current research in

the fields of on-orbit robotics, telerobotics, human-robotic interfaces, and aug-

mented reality, objectives of thesis and addressed research gaps.

" Chapter 2: Development of augmented reality interface.

* Chapter 3: Experimental design and summary of test protocols, results and

data analysis for human-subject tests, and discussion of results.

* Chapter 4: Conclusions of thesis, final outcomes of the study, limitations, and

recommendations for future development and testing of the system.
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Chapter 2

Development of Augmented Reality

Interface

To conduct a study investigating the use of Augmented Reality in supporting teleop-

eration tasks on-orbit, and address Research Question 1, an AR interface that enabled

gestural control had to be built. Gesturally-controlled Augmented Reality has not

previously been applied to a scenario of commanding free-flying robots on-orbit, and

so an appropriate architecture needed to be developed. Initial development focused

on the incorporation of robotic hardware, however the subsequent iteration focused

solely on a simulated robotic tasks to reduce complexity. This chapter describes the

development of the augmented reality interface.

2.1 On-Orbit Task Concept

Following a review of the literature, and discussion with astronauts, EVA operators,

and telerobotics engineers, it was determined that the simulated on-orbit task would
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take the form of an inspection of a space station using a free-flying robot. The simu-

lated task would require the operator to manuever a free-flying robot (the inspector

satellite) around a simulated space station, looking for surface anomalies on the ex-

terior of the station. To address the research questions listed in section 1.3, the space

station simulation needed to (1) incorporate areas of high and low level risk to the

inspector, (2) incorporate different methods of commanding the inspector, and (3)

record measures of performance during the simulation.

2.2 Augmented Reality Interface Development

The on-orbit inspection task was originally proposed with a robotic hardware com-

ponent, inspired by previous studies done by the Human Systems Lab and Space Sys-

tems Lab at MIT, which studied human-subject experiments of fatigue for on-orbit

operations using the Synchroniszed Position, Hold, Engage, Reorient Experimental

Satellites (SPHERES) platform [56]. A full outline of this initial development can

be found in Appendix A. Based on the limitations of the SPHERES platform (see

Appendix A.4), the researchers made the decision to remove the hardare component

of the study, and instead emulate the functionality of the SPHERES within a simu-

lated AR environment. This afforded the researchers greater flexibility in the design

of an AR interface and space station environment, and the various command modes

that could be investigated.

2.2.1 HoloLens

The Augmented Reality system used in this study is the Microsoft HoloLens Mixed

Reality Platform (Figure 2-1). The HoloLens is an Augmented Reality (AR) Head
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Mounted Display (HMD), first released as a development edition in 2016, with a

second development edition planned for release in 2019. The device consists of a

self-contained headset weighing 579g. The HoloLens is a pass-through device, so

images (holograms) are projected out in front of the user, whilst being able to view

the real world through the device's lenses. The HoloLens optics system is comprised

of two HD 16:9 light engines, rendering a resolution of 1268x720 pixels per eye, with

a refresh rate of 60 Hz. These light engines provide a total holographic resolution

of 2.3M light points and a holographic density of greater than 2500 radiants (light

points per radian), projecting images out throgh the HoloLens's tinted holographic

lenses. The onboard sensing system is comprised of the following:

* 4 environment understanding cameras

* 1 depth camera (120° x 120)

* 1 RGB 2MP photo/HD video camera

* 1 Inertial Measurement Unit (IMU) containing accelerometers, gyroscopes, and

a magnetometer

* 1 ambient light sensor

* Integrated speakers and 4 microphones for two-way communication

The onboard cameras (depth, RGB, environment understanding) enable the HoloLens

to spatially map its environment and thus allow interaction between the virtual and

the real world while tracking user movements with the onboard IMU, hence the term

'mixed reality'. The HoloLens uses an Intel 32-bit (1GHz) CPU and a custom-built

Microsoft Holographic Processing Unit (HPU). The HoloLens has 2GB RAM storage

and 64 GB Flash Storage, a battery life of 2-3 hours while in active use, and WiFi
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Figure 2-1: The Microsoft HoloLens Mixed Reality headset, generation 1

and Bluetooth connectivity [41]. HoloLens operates using the Windows Holographic

Platform under the native Windows 10 operating system, and device's internal stor-

age can be accessed via the Windows Device Portal, a web server on the HoloLens

that can be accessed from a web browser on a PC.

The Microsoft HoloLens has several advantages over earlier AR HMDs. The

device is self-contained, not relying on a tether to an external computer in order

to operate. It uses gaze tracking, gestural input, voice commands (known as Gaze-

Gesture-Voice input) and/or bluetooth-connected clickers for user interaction. Unlike

other AR headsets, the HoloLens is capable of running user-designed applications,

and is compatible with the Unity 3D gaming engine for application design.

The nature of augmented reality devices means that users' eyes will accomodate

to the focal distance of the display, while converging to the distance of the hologram.

HoloLens has a fixed optical distance approximately 2 meters from the user, so acco-

modation occurs at 2 meters [40]. Keeping holographic content around this 2 meter

plane reduces eye fatigue caused by conflict between converging and accomodating

distances. Holograms should be placed in the optimal zone of 1.25-5 meters from the
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user. HoloLens has a clipping plane at 30cm from the user to prevent eye fatigue due

to focusing on very close objects. Any hologram closer than 30cm from the user will

disappear. The HoloLens has a Gesture Frame measuring approximately two feet on

either side of the user's head (Figure 2-2a). This region detects hand gestures. The

main disadvantage of the HoloLens platform is the limited field of view (FOV) of the

device, measuring approximately 35 wide. Users have a restricted view of projected

holograms. The 2nd generation HoloLens development model is expected to have a

700 field of view.

2.2.2 Gestural Controls

When not being interacted with, holograms are fixed in the real-world. The HoloLens

uses gaze-tracking (i.e. tracking motion of the head) to determine where users are

looking in the real world (Figure 2-2b). HoloLens simulations contain a cursor object

which acts like a computer mouse and is locked to the position of the user's head. The

cursor always appears in the center of the frame. In order to interact with a hologram,

the cursor must be on the hologram, i.e. the user head must be pointed at the

hologram. The HoloLens utilizes several in-built gestures for hologram interaction.

The bloom gesture (Figure 2-2c) is the equivalent of a 'home' button and is used for

returning to the main menu of the HoloLens. When performed inside an application,

it will generate a menu that allows you to exit the app. The tap gesture is used

to interact with Holograms (Figure 2-2d). The hand is placed out in front of the

user in a 'ready' position, which signals to the HoloLens that a tap gesture is about

to be performed and the cursor will change shape. A single tap down is used for

holographic button presses and single point interactions. If the tap is held, and the

hand moved around, the holograms can be dragged around.
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(a) Gesture Frame

1.Finger in the redy poson 2. Prm finger down to tap or click

(c) Bloom Gesture (d) Tap Gesture

Figure 2-2: HoloLens user interactions [43]

The on-orbit inspection task also allowed for scaling, rotating and repositioning

of the simulation environment, to allow the user to change their view of the space

station throughout the task. Repositioning of the simulation is achieved through

a single-handed tap-and-drag gesture. Scaling and rotating requires two-handed

manipulation. Both hands are placed in the ready gesture and then tapped and

held. Moving closer/further apart scales the hologram. Moving hands in opposite

directions rotates the object in the horizontal (Figure 2-3b) and vertical (Figure 2-3c)

directions.

2.2.3 Simulation Environment

The simulation environment for the HoloLens was built using the Unity 3D Gaming

Engine and Microsoft Mixed Reality Toolkit and compiled in Microsoft Visual Studio
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(a) Scaling (b) Rotating about hori- (c) Rotating about vertical

zontal axis (roll) axis (yaw)

Figure 2-3: Two-handed gestural controls for HoloLens. Note that rotation works

best in the yaw and roll directions. Due to the reduced height of the gesture frame,

HoloLens struggles to detect rotation in the pitch direction.

2017. Unity is a cross-platform gaming engine that supports the creation of 2D, 3D,

VR, and AR games and simulations. Unity offers a primary scripting API in C#, as

well as the importation of 3D models from computer graphics programs like Blender.

Unity provides the framework for game development, allowing the importing of assets

(models, characters, audio, textures), assembly of these assets into scenes, and the

ability to add physics models, interactivity, and gameplay logic. The core building

blocks of Unity games are Game Objects, empty containers into which lighting and

audio components, scripts, and objects for the scene are placed.

Unity uses a concept called Parenting to organise the Game Objects. Game Ob-

jects are organised into a hierarchy which constitute a scene for your game. The

top most game object is the Parent Game Object, and all objects grouped under-

neath it are Child Objects. Child Objects inherit the movement and rotation of

the Parent Game Object. Figure 2-4 shows the hierarchy of the on-orbit inspec-

tion simulation developed for this thesis. A number of Game Objects are from

the Microsoft Mixed Reality Toolkit, a GitHub repository of scripts and assets de-

veloped by Microsoft and other developers specifically for use with the HoloLens.

The MixedRealityCaeraParent is the standard Camera Object used when build-
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ing HoloLens simulations, placing a camera within the game at the location of the

HoloLens user's head. InputManager is the HoloLens Object which organises all

gestural, verbal and gaze input that is detected, and Def aultCursor provides the

cursor users see within the HoloLens that lets them interact with the simulation.

DirectionalLight is the default Light Object within Unity to illuminate the scene,

as holograms would not be lit by ambient light within the room.

The remainder of the Game Objects were custom built for this simulation and

will be discussed in the subsequent sections. The primary Parent Objects are the

newISSmodules2, which contains the simulation environment, and ControlPad, which

contains the user interface for controlling the inspector.

The simulation environment was designed to simulate an on-orbit inspection task

of a space station. The environment consisted of a space station model, a floor sur-

face, an inspector satellite, a control pad, and a waypoint (if active). Figure 2-5

depicts the holographic environment. It should be noted that all distance measure-

ments given regarding the simulation and the results of the simulation are given in

Unity unit measurements. In Unity simulations, 1 Unity unit typically corresponds

to 1 meter, however HoloLens simulations allow scaling of objects and thus distance

units are subject to change. For this study, all distance were measured relative to the

world frame of the space station and units scale when objects are scaled, so relative

distances between objects were maintained even under scaled conditions.

Space Station

The space station model was constructed in the Blender computer graphics pro-

gram and imported into Unity. To address aspects of environmental risk outlined

in Research Question 2, the design of the space station incorporated various ge-
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V Q Experiment*
0 MixedRealityCameraParent
0 InputManager
1 DefaultCursor

Directional Light
V newlSSmodules2

I Station
iFloor

V SPHERES
+CollisionDetector

*;(WaypointMarker
CritDebrislmpactSiteHigh

W NonCritDebrisImpactSite
CritDebrisImpactSiteLow

T ControlPad
qWaypointToggle

V ,iWaypointButtons
0 MakeWaypoint
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*VPanLeftButton

1 PanRightButton
V DPad
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0 ForwardButton
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W PanRightButton
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Figure 2-4: Hierarchy of Game Objects for on-orbit inspection simulation. Drop-
down arrows have been used to show the key Parent and Child Objects used in the
simulation.
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Figure 2-5: Simulation environment within Unity. The inspector is shown in red.
The space station, floor, and control pad are shown.

ometries, classified as either high or low risk. Inspiration was drawn from existing

and previous space stations designs (Figure 2-6) in the design of the station and

these risk areas. High risk areas were areas of limited clearance for the inspector

and required increased localization to inspect the region of interest, such as highly

concave geometries (e.g. nodes between connecting modules), high vertex objects

(e.g. complex attachments on the station like communication dishes), and protru-

sions (e.g. solar panels). Low risk areas were areas with flat or convex geometries,

or limited vertices (e.g. the surface of a module). The final station model is shown

in Figure 2-7. The station is comprised of two modules joined parallel, and a third

module perpendicularly attached. These modules are modelled after the Harmony

and Columbus modules onboard the ISS. Two solar panels and a communication

dish are attached to the exterior, and a cupola is attached to the end of one module.

Figure 2-8 highlights the areas of high and low risk around the station model.

In order to detect when the inspector satellite collided with the station, colliders

needed to be implemented on the station model. Colliders are invisible objects
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(a) Mir Space Station (b) International Space Station

(c) Proposed NASA Lunar Gateway

Figure 2-6: Previous, current and future space stations.
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(a) Forward isometric view

Figure 2-7: Final space station model constructed in Blender.
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(a) High risk environments (b) Low risk environments

Figure 2-8: Location of high and low risk environments around the exterior of the

space station. High risk areas are labelled with letters, low risk areas are labelled

with numbers.
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Figure 2-9: Colliders used for the space station model in Unity. Colliders are shown
as green transparent shapes.

described by mathematical equations which are used to detect physical collisions

between objects within the environment. The least-processor intensive colliders are

primitive colliders; box (rectangular prisms), sphere, and capsule (two hemispheres

and a cylinder). Mesh colliders can be used to exactly match the contours of a given

object, however thiey are more computationally intensive and cannot be used to

collide with other mesh colliders. For the on-orbit inspection simulation, the space

station was approximated by a number of box and capsule colliders (see Figure 2-9).

The inspector collision detection will be discussed below.

Users were able to move, scale and rotate the space station (and all Child Ob-

jects), using the HoloLens two-handed gesture commands. The HoloLens script

TwoHandManipulatable. cs (available from the Mixed Reality Toolkit) is attached

to the space station Game Object in order to make it interactable with two-handed

gestures. This script can restrict two-handed gestures to operate in specific axes,
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(a) Default inspector state (b) State of inspector on collision

Figure 2-10: Inspector satellite model in Unity.

and for specific functions (moving, scaling, rotating). For this simulation, two-hand

manipulation was restricted to scaling and rotating with no axis restrictions.

Inspector Satellite

The inspector satellite simulation model was originally designed for the hardware ex-

perimental tests, and as such is modelled off the SPHERES platform. The inspector

model was also built in Blender, based off the polyhedral design of the SPHERES.

The forward facing face of the inspector is identified by an arrow representing the

normal vector of this face. The default inspector color is red, to match the SPHERES

satellite (Figure 2-10a).

As would be the case with the ground-based SPHERES platform, the inspector

is restricted to motion in the X-Y plane, and rotations about its vertical Z-axis.
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The inspector satellite object (SPHERES) is a child of the station object (Station),

and consequently whenever the station is scaled, rotated, or repositioned by the

operator, the inspector moves with it, maintaining its relative position. The inspector

is controlled via the control pad, which is discussed in Section 2.2.4. When the

inspector collides with the station object, it changes color to white to indicate a

collision (Figure 2-10b). Unity uses in-built trigger functions OnCollisionEnter

and OnCollisionExit to determine when an object interacts with a collider. A

code containing these functions is attached to the inspector object and whenever the

inspector interacts with the station collider, this triggers the above functions, records

the collision, and changes the color of the inspector.

2.2.4 Command Modes for Inspector

The inspector is controlled by the user via the ControlPad Game Object, which is

decomposed into 3 methods of command; Waypoint Mode, Global Mode and Local

Mode. The control pad is composed of holographic buttons that register single taps

from the user which translate to commands for the inspector. Buttons for a single

command mode are visible at one time, and users can switch between command

modes by tapping the frame toggles in the uppermost left and right corners of the

control pad. While the station object can be repositioned by the user, the control

pad remains fixed in the world frame, only rotating about its axis to ensure it always

faces the user if they move slightly.

Waypoint Command Mode

Waypointing is a high-level method of commanding robots that uses intermediate

target points along a route as goal states for the robot. These waypoint target points
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specify a high-level state (usually position coordinates and orientation), rather than

dictating the precise control movements a robot must follow. The SPHERES robots

use waypoints as a means of navigation. Within the on-orbit inspection simulation,

the Waypoint control pad is used for the various functions within the Waypoint Mode

(Figure 2-11). Once active, waypoints appear as red flags in the simulation (Figure

2-12). The Waypoint system is based off the SPHERES robot, which can only send

data packets containing one waypoint at a time, therefore within the simulation only

one waypoint can be active at once. Another waypoint cannot be placed until the

inspector has reached the current waypoint, at which point the current waypoint

deletes.

The Waypoint Mode has 4 different command functions

" Generate - Waypoints are not always active in the simulation, they must be

generated. The Generate button on the waypoint control pad spawns a flag

marker at the location of the inspector at the beginning of the simulation.

Waypoints always spawn in the same position.

" Move - Once a waypoint is generated, it can be moved around the simulation

to the desire location by tapping and dragging the flag marker.

* Set - Once the user is satisfied with the position of the flag marker as a target

position for the inspector, the waypoint must be set by tapping on the Set

button. This commands the inspector to move towards this waypoint. The

waypoint will disappear once the inspector reaches its location.

* Delete - A currently active waypoint can be deleted by pressing the Delete

button. Delete can be used prior to the Set function if the user loses the

waypoint, or whilst the inspector is en route to the waypoint. If the inspector
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Figure 2-11: Control pad in Waypoint Mode. The toggle in the upper left indicates

that Waypoint Mode is switched on.

I
Figure 2-12: Waypoint marker as it appears in the simulation

is en route when a waypoint is deleted, the inspector will stop at its current

position.

The Pan Left and Pan Right buttons rotate the inspector ±15° about its vertical

axis. The inspector moves in a straight line from waypoint to waypoint at a fixed

speed of 1 Unity unit per second. No path planning algorithm has been incorporated

into this simulation.
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Global Command Mode

The Global Command Mode is a low-level command mode that commands the in-

spector to move in specific directions and orientations, rather than giving it target

locations. Commands in the Global Command Mode are given relative to the Global

World Frame of the space station (Figure 2-13). Directional command is achieved by

tapping on one of the directional pad buttons, and rotational command is achieved

by tapping the panning buttons, as described below:

• Forward: +Y

" Backward: -Y

* Right: +X

" Left: -X

• Pan Right: +Z rotation

• Pan Left: -Z rotation

Holographic buttons could not be scripted to respond to a tap-and-hold, therefore

only single taps on buttons could be implemented. Thus the Global Command Mode

has discrete, rather than continuous, control. Each directional movement moves the

inspector 0.2 Unity units, and each rotation movement rotates the inspector 15.

Local Command Mode

The Local Command Mode is operated in an identical manner to the Global Com-

mand Mode, but moves the inspector relative to its own local body frame (Figure

2-15). Commands are input by pressing buttons on the Local Command directional
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Figure 2-13: Global world frame of the space station, used for Global Command
Mode. Note that the + Z axis points up out of the page.

Figure 2-14: Control pad in Global Mode. The toggle in the upper right indicates
that Global Mode is switched on.
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Figure 2-15: Local body frame of the inspector, used for Local Command Mode.
Note that the + Z axis points up out of the page.

pad and panning buttons (Figure 2-16). Rotating the inspector about its vertical

axis will rotate this local frame. The Local Mode is active when the toggle in the

upper right corner of the control pad reads 'Local' and is colored gray.

2.2.5 Anomaly Detection

The goal of this simulation was to detect anomalies on the surface of the space

station. Each simulation run contained a number of hidden anomalies, classified as

critcal and non-critical (Figure 2-17).

To simulate 'detection' of anomalies by the inspector, anomalies remained inactive

until certain conditions within the simulation were met:

1. Proximity: Inspector is within 0.5 units of the anomaly

2. Orientation: Inspector is oriented such that the anomaly falls within its camera

field of view.

48



- - ------- ---- =--- - __

Figure 2-16: Control pad in Local Mode. The toggle in the upper right indicates
that Local Mode is switched on.

V Z

(a) Critical Anomaly (b) Non-Critical Anomaly

Figure 2-17: Anomaly images used on the surface of the space station model. Anoma-
lies were approximately the same diameter as the inspector.
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The inspector satellite emulated the SPHERES detection capability by having

simulated cameras on its faces. There were two Inspector configurations used in

the simulation tests. For configuration 1, the inspector was assumed to a have

360 FOV (i.e. cameras on all faces) and so orientation of the inspector was not a

consideration in detecting anomalies. For configuration 2, the inspector was assumed

to have a more realistic single-front facing camera with a FOV of 45°. For the second

configuration, anomalies would only be detected when the relative angle between the

normal to the front-face of the inspector, and the vector from the inspector camera

to the anomaly must be less than half the camera field of view (i.e. 22.5°)

0 = cos_ ri V,) (2.1)
ni ||vi,« a

where ni is the normal to the inspector, and Vi,a is the vector from the inspector

to the anomaly (Figure 2-18). Once anomalies are detected by the inspector, they

remain active for the remainder of the simulation.

Critical anomalies were required to be logged by the operator, by airtapping on

the Log Anomaly button (Figure 2-19). Non-critical anomalies were not logged.

Logging was incorporated to encourage operators to fully inspect the station and

make a determination on whether an anomaly was critical or non-critical, rather

than just a cursory glance.

Exporting Simulation Data

A method had to be developed to record and export data during the simulation. The

Parent Object Logger keeps track of the game time, camera (user head), station and

inspector states, and anomalies. The Logger generates a HoloLens empty text file

within the HoloLens' local drive, using the following command:
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Figure 2-18: Diagram of anomaly detection for inspector configuration 2

Figure 2-19: Log Anomaly Button on the Simulation Control Pad.
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path = Path.Combine(Application.persistentDataPath, "HoloLogFile.txt");

Tracked data is then packaged as a string array and appended to the text file as

File.AppendAllLines(path,<stringarray>). This log file can then be accessed

via the Windows Device Portal. The log file must be downloaded at the end of each

simulation run, as the file is locally stored and overwritten each time a simulation is

opened.

2.3 Summary of Augmented Reality Interface Ca-

pabilities

An augmented reality simulation environment was developed for the Microsoft HoloLens

platform. The environment contains a three-dimensional representation of a space

station and inspector satellite, to be used for a simulated on-orbit inspection task.

Control of the inspector satellite is enabled via a virtual control pad that operated in

three command modes; Waypoint Mode, Global Mode, and Local Mode. The space

station could be manipulated gesturally to alter its size, position, and orientation,

thus changing the operator's viewpoint of the station environment. The simulation

contains anomalies that can be detected by the operator, dependent on the orienta-

tion and proximity of the inspector. Simulation data is logged into a local textfile

and exported to a computer for processing via the Windows Device Portal. The AR

simulation was used in a human-subject study, described in Chapter 3.
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Chapter 3

Experimental Evaluation of the

Simulation Environment

The chapter describes the experimental design, testing procedures, data collection

and analysis, and experimental evaluation for the human study conducted for this

thesis. After the successful development of the Augmented Reality Interface, a

human-subject study was conducted to examine how augmented reality is used to de-

tect anomalies in a simulated space environment. The research questions addressed

were: (2) What are the effects of command reference frame and environmental risk

on performance, situational awareness and workload during during operation of a

on-orbit robotic free-flyer? (3) How does availability of command mode affect per-

formance, workload and strategy during operation of a on-orbit robotic free-flyer?

(4) What strategies do operators adopt when using augmented reality display and

interface for on-orbit tasks? Testing also aimed to demonstrate proof-of-concept

of the interface as a viable method of commanding inspector satellites for on-orbit

inspection tasks. Results will inform subsequent iterations of the interface design.
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3.1 Design and Hypotheses

The Augmented Reality simulation was designed to simulate an on-orbit inspection

task for a crewed space station. Subjects were required to command an inspector

satellite around the exterior of the space station, inspecting the surface for anomalies.

Subjects had 390 seconds to complete an inspection.

Research questions (2) and (3) were addressed through analysis of recorded de-

pendent variables during this inspection task. Performance in the context of these

research questions was assessed based on the initial criteria given to the subjects

(in order of priority), through analysis of three dependent variables: collision count,

missed anomaly count, and percentage of station inspected. The research questions

were formalized with the following hypotheses:

• Collision Count: Number of collisions between the inspector satellite and the

space station

HI: Subjects will have fewer collisions between the inspector satellite and

the station when operating in a globally oriented frame of reference (i.e.

global command mode or waypoint).

H2: Subjects will have have superior collision avoidance when all com-

mand modes are available to the operator.

" Missed Anomalies Count: Number of anomalies passed by the inspector satel-

lite but not detected or logged by the operator.

H3: Operation in the body reference frame of the inspector will enable

superior anomaly localisation in high risk areas of the station.

H4: Operation in the world reference frame will enable superior anomaly
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localisation in low risk areas of the station.

H5: Anomaly localization will be higher when operating in the unfixed

command mode.

e Percentage of Station Inspected: the percentage total of the station that could

theoretically be seen from the inspector's path, given the detection distance (0.5

Unity units). Note: orientation of the inspector was not taken into account.

H6: Waypoint command mode will enable a higher percentage of the sta-

tion to be inspected, compared to other command modes.

H7: Percentage of station inspected should be maximised when operating

with full access to all command modes.

Workload, as described in research questions (2) and (3) was subjectively assessed

through the administration of the NASA Task Loading Index (TLX) survey. The

following was hypothesized:

H8: Waypoint command mode will require the least cognitive load.

Research questions (3) and (4) were assessed through comparisons of strategy,

interactions with the augmented reality system, and button interactions during the

task. It was hypothesized (HI, H3, H4, H6) that different command modes support

different performance measures overall and within different environmental risk areas.

Thus it was hypothesized:

H9: Different command modes will be selected during a trial dependent

on perceived level of environmental risk and performance

H1O: Subjects will adopt different strategies when command modes are

fixed compared to unfixed.
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Additional dependent variables considered in the discussion were the Completion

Time (total time taken for subject to report a full inspection of the station) and

Path length (total distance the inspector satellite travelled). These variables were

used to support analysis of overall strategy.

3.2 Methods

3.2.1 Subject Recruitment

This study was approved by the MIT Committee on the Use of Humans as Exper-

imental Subjects (COUHES) and written informed consent was obtained from all

subjects who participated in the study. Subjects were compensated USD$40.00 for

participation in both testing and training for the study. Subjects were recruited

from the MIT Department of Aeronautics and Astronautics. All subjects were ei-

ther graduate student and post-doctoral researchers. These groups are considered

representative of the astronaut population, being technologically literate in a man-

ner similar to that of astronauts, and falling within the age range of 20 - 50 years

old. Potential subjects were contacted via a COUHES-approved recruitment email

(Appendix D.2), or via word of mouth from the study researchers. Interested parties

were asked to schedule a training and testing time over two consecutive days with

the researchers.

Subjects were approved for the study provided they had no self reported au-

ditory or visual impairment that would impede the use of the HoloLens platform.

Additional exclusion criteria were an inability to see a computer screen with cor-

rected/uncorrected vision, less than full mobility in hands and arms, or a history
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of vestibular/visual/auditory discomfort or motion sickness/nausea when using aug-

mented or virtual reality (see the Screening Matrix in Appendix D.4).

Additional screening took place during the training day. Subjects were excluded

from the study if they were unable to complete the three training programs. Subjects

were asked to ensure they got 6-8 hours sleep on nights preceeding their training and

testing days, to avoid fatigue as a confounding factor.

3.2.2 Experimental Design

The indepedent variable for this experiment was the command mode, which could be

either a Fixed Command (FC) or an Unfixed Command (UC) for the duration of the

trial. Command mode had four levels (Waypoint - FC, Global - FC, Local - FC, and

Unfixed - UC). Each subject performed the inspection task in each mode twice, for a

total of eight trials. To address learning effects, order of trials was randomised for the

first three FC trials. This order was then mirrored for the subsequent three FC trials,

so that the average time (since beginning all tests) for each FC command mode was

the same. Each FC trial contained two critical anomalies (one in a high risk location,

one in a low risk location) and one non-critical anomaly (low risk location). These

locations were randomised across each trial, so every trial had different anomaly

locations (Appendix C.1).

After completing the FC trials, subjects then completed two UC trials. In the UC

trials, command mode was not dictated by the researcher and could be freely selected

and toggled between by the subject during the trial. The order of the UC trials was

not randomised, with all subjects completing UC Scenario 1 (UC 1) followed by UC

Scenario 2 (UC 2). UC 1 had zero critical anomalies and 4 non-critical anomalies

(two high risk, two low risk). UC 2 had one critical anomaly (high risk) and three
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non-critical anomalies (all low risk). A full testing matrix is given in Appendix D.1.

After starting the human trials, the researchers made the decision to alter the

design of the inspector satellite, to assess participant performance and strategies.

The first six partipants (Group A) completed all trials using an inspector with cam-

eras around its circumference, providing 3600 field of view. In this scenario anomaly

detection was only dependent on the detection distance, and not on the orientation

of the inspector. The final six participants (Group B) completed all trials using an

inspector with a single camera on one face, providing 45 field of view. Anomaly

detection for Group B was dependent on both the detection distance and the orien-

tation of the inspector.

Table 3.1 shows the eight treatment types, with Subject Group (two levels) and

Command Mode (four levels).

_ Waypoint (FC) Global (FC) Local (FC) Unfixed (UC)

Group A + Group A + Group A + Group A +
Group A

Waypoint Global Local Unfixed

Group B + Group B + Group B + Group B +
Group B

Waypoint Global Local Unfixed

Table 3.1: Matrix of command test treatment types

3.2.3 Testing Environment and Hardware

The study used the Microsoft HoloLens Mixed Reality platform. The simulated

virtual environment was created using the Unity Gaming Engine. Unity built each

gaming simulation as a Microsoft Visual Studio solution file, and the simulation was

loaded from a connected computer onto the HoloLens from Microsoft Visual Studio.
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An application was generated on the HoloLens which was then selected by the study

participant.

A consistent light and audio environment needed to be maintained for all tests,

as well as sufficient space for subjects to move around and perform gestures. The

testing environment also needed to feature minimal distracting objects (such as wall

decorations or furniture) that might affect the visibility of the holograms. All human

subject testing took place in an office, performing the tests in ambient light conditions

between 9 am and 5 pm, with the light level controlled by window blinds. The

room was kept quiet, with only the subject and researcher present. Subjects were

instructed to stand for the duration of each trial, resting between trials, and were

told to select a corner of the room to stand in, facing the open space. The room

provided an approximate 2.5 x 2.5 meter open space for subjects to move around in.

3.2.4 Experimental Procedure

Day 1 (Training)

After providing consent, participants were given a brief overview of the project moti-

vation and scope, and an introduction to the training and testing procedures. To en-

sure consistent information between participants, the researcher followed the script in

Appendix D.5. Participants answered basic demographic questions (see Demographic

Matrix in Appendix D.6) and then given the Study Training Document (Appendix

D.7) and asked to review the section on the HoloLens. This document gave an

overview of the HoloLens platform and introduced the basic gestures of bloom, tap,

and the two-handed gestures required for rotating, scaling, and moving the space sta-

tion. Participants were trained using three programs. The first training program was

a standard HoloLens tutorial to teach the in-built gestural commands of the HoloLens
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(bloom and tap). The second training program was custom-made by the researchers

for this study. The program stepped the subject through the required two-handed

gestures for positioning, scaling, and rotating a model of the space station. To pass

the training program, subjects were required to manipulate the space station model

to match the position, scale, and orientation of a target model. Participants were

then able to take a break and finish reading the training document, which outlined

the various commands modes and button interfaces required for the study. The final

training step was a full mock-up of the test simulation, introducing the subject to the

three fixed command mode test conditions. Subjects were instructed in the use of

each mode and then required to navigate the inspector along a designated path first

in the local mode, then the global mode, and finally the waypoint mode. To pass the

training, subjects were required to correctly follow these paths in each mode within

10 minutes (per mode). Subjects were guided to the location of two anomalies (one

critical, one non-critical) by the researcher and purposely collided with the station

to become accustomed to the detection distance, inspector's field of view (Group B

only) and collisions with the station. To aid subjects in reaching a steady state level

of performance and help mitigate learning effects, subjects were then encouraged to

continue to play with the simulation and the various command modes until they were

comfortable with the system.

Day 2 (Testing)

Upon successful completion of the training programs, participants completed 8 ex-

perimental trials that were up to 390 seconds, with breaks between trials to allow

for subject recovery and time for the test administrator to load the next simulation.

Each trial required the subject to maneuver the inspector satellite around the space
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station and locate anomalies on the surface of the station.

Before beginning testing, subjects reviewed key information from the training

day (gestures, command mode functionality). Subjects were told to complete each

trial with the follwoing performance goals, in order of priority:

1. Avoid collisions between the inspector and the space station.

2. Locate anomalies, both critical and non-critical, and log critical anomalies using

the Anomaly log button.

3. Attempt to fully inspect the space station as quickly as possible. The simulation

will time out after 6.5 minutes, however subjects may terminate the simluation

early if they are satisfied they have completed their inspection.

Subjects were then given an overview of the testing procedure and briefed on

the FC and UC tests. They were informed that each trial would have multiple

critical and non-critical anomalies. At the conclusion of the six FC trials, subjects

were informed they would now be completing the UC trials, with free choice of

command mode during the trial. After each FC and UC trial, subjects completed

a post-trial Situational Awareness questionnaire (Appendix D.9) and a NASA Task

Load Index (TLX) survey to subjectively assess their workload. A qualitative post-

test questionnaire was administered at the conclusion of the two UC trials, to get

participant feedback on the usability of the AR system (Appendix D.10). All subjects

were administed a Vandenberg Mental Rotation Test (MRT) at the conclusion of

testing [68].
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3.2.5 Data Collection

Trial data was collected on subject performance and interaction with the AR envi-

ronment. Data was recorded via the HoloLens logger object, which would print data

values to a log file stored in the HoloLens Web Portal. After each trial, this log file

could be accessed via a laptop and downloaded. These data were used in custom

Matlab software.

The following state data was recorded every 10 frames (at approximately 30

frames per second, however framerate can vary slightly due to CPU load), along

with a timestep:

• Camera State: the 'camera' within the HoloLens environment refers to the

location of the HoloLens headset (i.e. the subject's head) and is always aligned

to the direction the subject's head is pointing. Camera state refers to both the

position and rotation of the subject's head in virtual world coordinates, output

as a 3D position vector and quaternion.

" Station State: the virtual world position and orientation of the holographic

space station, output as a 3D position vector and quaternion.

" Station Scale: the scale factor of the space station.

* Inspector State: the position and orientation of the inspector satellite relative

to the space station, output as a 3D position vector and quaternion.

The following event-based data was recorded whenever the corresponding event oc-

cured, along with a timestep:

*Button Press: all button presses (waypoint, global, local, anomaly logged) were

recorded, along with the button type.
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" Waypoint Position: when a waypoint is set, its position and the corresponding

timestep of the set press are recorded.

• Anomaly Detected: the first time an anomaly is detected by the inspector,

together with the anomaly type and risk region.

• Collision: timestep of collision between station and inspector.

The raw data was processed in MATLAB and used to develop the following

dependent variables:

" Collision Count: total number of collisions between the inspector and the sta-

tion.

" Percentage of Station Inspected: gives an indication of how much of the station

was actually seen by the inspector. It was calculated by discretizing the station

boundary, and checking which discretized points fell within detection distance

(0.5 Unity units) of a recorded inspector position. Inspector orientation was

not taken into account for the results of either Group.

" Anomalies Missed: an appropriate metric needed to be developed to assess how

successful subjects were at detecting anomalies, since the number of anomalies

detected was coupled to the percentage of the station inspected. Anomalies

missed was calculated as follows

Amissed = Apassed - Adetected (3.1)

where the number of anomalies passed (Apassed) was defined as the number of

anomalies located at points on the station that the inspector path passed by,
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even if not sufficiently close to detect them. Anomalies detected (Adetected)was

determined from raw data.

" Total Test Time: time taken for the subject to be satisfied that they have

completed a full inspection of the station. If the simulation timed out before a

full inspection could be completed, this value would be 390 seconds.

• Total Path Length: total distance the inspector traversed within a single trial,

determined from inspector state values.

" Button Interactions: count of button presses during each trial, and command

mode changes during UC trials.

NASA TLX survey data was recorded using the NASA TLX iPhone app and

exported to Microsoft Excel, then parsed to MATLAB for data analysis. Workload

was recorded as a dependent variable, using the NASA TLX Composite Score as an

indication of overall workload. Component workload scores were also analysed.

3.2.6 Statistical Analysis

All statistical analysis was completed in MATLAB 2017b. Continuous dependent

variables (percentage of station seen, path length, workload) were assessed using a

n-way Analysis of Variance (ANOVA), with factors subject (random), group (fixed)

and command mode (fixed). Subject was a nested factor within group. If a significant

main effect was found in ANOVA, appropriate post-hoc pairwise comparison analysis

was performed to assess the effect.

Ordinal data (collision count) was assessed using a nonparametric Friedman test,

with a fixed factor (command mode). If the Friedman test revealed a significant

effect, a post-hoc Wilcoxon Signed-Rank test was performed.
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Effects of order were not assessed, as order of the trials was randomized across

each subject, and within group A and B each order was only performed once. Effects

of learning were not incorporated into the statistical model, given the small sample

size.
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3.3 Results

The following section reports the results of the human-subject experiments. The

results section will be organized as follows:

* Subject demographic information and mental rotation test scores

• Effects of command mode on collisions

* Effects of command mode on anomaly detection - anomalies missed will be

examined across high and low risk areas.

* Effects of command mode on percentage of station seen. Path length and total

time will also be discussed.

* Effects of command mode on measures of workload

• Effects of commmand mode on button interactions for each trial, and results

of command mode changes in UC trials.

Results across all subjects will be presented, and subjects 5 and 12 will be high-

lighted, as they exhibited different strategies and performance to the rest of the

subjects.

3.3.1 Subject Demographics

Twelve subjects completed the full study protocol, six in group A (three men, three

women) and six in group B (five men, 1 woman). All subjects were aged between

23 and 29 years (mean age 26.08, SD: 1.93). All twelve subjects reported frequent

use of computers and touch screen devices (smartphones, tablets). Eight reported

previous limited experience with either virtual or augmented reality. When asked
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about previous experience to the current study, seven subjects reported relevant

experience: video gaming on either a console or computer, work with 3D modelling

through Vicon or SolidWorks, and previous experimental work with telerobotics.

In both cases of reported experimental work, the experiment was conducted in the

Human Systems Lab at MIT, examining the use of body motion as a means of

controlling a teleoperated robotic arm.

Mental Rotation Ability

The mean scores for the Vandenberg MRT were 21.33 for Group A (SD: 6.19) with a

minimum score of 15 and maximum score of 32 out of a possible 40. Group B scored

a mean of 29 (SD: 6.99) with a minimum of 20 and maximum of 40 (Figure 3-1). A

two sample t-test revealed no significant difference in MRT scores between Group A

and Group B (t(df = 10) = -2.0126, p = 0.0719).

40A
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Figure 3-1: MRT total scores. Gray markers depict individual scores, black markers
and error bars show the overall mean and standard deviation for the indicated group
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3.3.2 Effects of Command Mode on Collisions

Figure 3-2 shows the average collision counts across the connand modes. A Wilcoxon

Rank Sum Test was performed comparing Group A to B within each command mode.

to see if data could be pooled. The Wilcoxon Rank-Sum test revealed no significant

difference between Groups A and B in any command mode (Waypoint: p = 0.731.,

Global: p = 0.584, Local: p = 0.290). As such, results from Groups A and B were

pooled for further analysis.
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Figure 3-2: Subject average collision
indicate group A, red boxplots group

Local Unfixed 1 Unfixed 2
Command Mode

count across command modes. Blue boxplots
B, and gray markers show the subject average.

A Friedman test (with Groups pooled) supported a significant effect of command

mode on collision count (x2 (df = 3) = 12.875, p < 0.001). Post-hoc comparisons

using the Wilcoxon Signed-Rank test found that Waypoint Mode had significantly

fewer collisions than Global (p = 0.00488), Local (p = 0.00195) and Unfixed Modes

(p = 0.00244). There was no significant difference between the Global and Local
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Modes in average collision count (p = 0.5638). The Unfixed Mode had significantly

higher collisions than all three fixed command modes (Waypoint: p = 0.00488,

Global: p = 0.00537, Local: p = 0.00293). Significant differences in collision counts

can be summarised as Waypoint < Global, Local < Unfixed. Qualitatively the UC

trials showed greater variability than the FC trials, however this may have been

driven by having a small number of subjects.

Distribution of Collisions Across Risk Areas

The station object was designed with both high and low risk areas, defined by the

concavity and risk of collision of the area (Section 2.2.3). Figure 3-3 shows the

distribution of total collision impacts around the station perimeter, across all subjects

within each FC mode. The density of collisions in some high risk areas was lower

when operating in Waypoint mode compared to both Global and Local, for example

when maneuvering through the intersection of all three station modules (Risk Area

A and B, see Table 3.2).

When looking at Global and Local Modes, there did not seem to be a great

difference between the density of collisions occuring in high risk versus low risk areas,

except when it comes to high convex regions like the cupola (Table 3.2). There was

a high density of collisions at both the cupola (low risk area), around the end of

Module 3 (low risk area), and at high risk node intersections. The communication

dish represented a high-density collision environment.

3.3.3 Effect of Command Mode on Anomaly Detection

Table C.1 shows the total count of anomalies missed during each trial, where missed

anomalies were defined as anomalies that should have been detected by the subject
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Collision Count
Area Waypoint | Global I Local

High Risk A and B 14 22 21
High Risk D 8 6 7

Communication dish 10 43 50
Cupola 44 45 28

Table 3.2: Select examples of collisions counts from various areas of the Space Station

-2

-6

-6 -4 -2 0 2 4 6 -6 -4 -2

(a) Waypoint Mode (b) Global Mode

4 -2 0 2

(c) Local Mode

Figure 3-3: Distribution of collisions around the station object. Subjects are shown
in different colors.
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Group Subject WiJ W21 G 1 G2 LI L2 UC 1 UC2 Total

1 1 0 0 1 0 X 1 5
2 1 0 r 0 0 0 0 3
3 X 0 0 0 0 1 0 2 3

A 4 1 0 0 0 0 1 0 0 2
5 0 2 13
6 1 0 0 0 0 0 0 2 3

Total 7 5 5 12 29

7 0 1 0 1 0 0 0 4
8 0 0 0 1 0 0 1 0 2
9 0 1 0 2 0 0 1 0 4

B 10 0 1 0 0 1 0 X 3
11 0 E 1 1 0 0 1 6
12 0 1 0 0 0 1 0 1 3

Total 6 6 4 6 22

Table 3.3: Total anomlies missed (passed and not detected). Trials in which no
anomalies were passed are indicated by an X. Orange squares indicate that 1 anomaly
was missed, red squares indicate that more than 1 anomaly was missed. Note that
W = Waypoint Mode, G = Global Mode, L = Local Mode, UC = Unfixed Mode.
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but were not due to the inspector's distance to the station in Groups A and B, and

the inspector's orientation in Group B. Similar numbers of missed anomalies were

observed across all FC modes. Differences in the results become apparent when

examining subjects rather than command modes or groups. Overall, it appeared

Group B was more successful in detecting anomalies (i.e. fewer misses) than Group

A, across all subjects and command modes. However this result seemed to be skewed

by Subject 5, who consistently missed anomalies in the majority of trials. Subject

5's missed anomalies account for almost half of the total missed anomalies for Group

A.

Across the two trials within each command mode, numbers of missed anomalies

were similar. Interestingly, the first Waypoint Mode trial for Group B had zero missed

anomalies across all subjects, however there was a increase in missed anomalies when

doing the second Waypoint Mode trial in five out of six subjects. In constrast, Group

A's first Waypoint Mode trial resulted in five out of six subjects missing at least one

anomaly, compared to their second trial where only one subject missed one. The

second UC trial resulted in more missed anomalies than the first UC trial in both

Group A and Group B.

Table 3.4 shows only the number of high risk anomalies missed in each trial. Recall

that Waypoint, Global, Local Mode and UC 2 trials all included 1 high risk anomaly,

and UC 1 had two high risk anomalies. Group A performed poorly in detecting high

risk anomalies while in Waypoint Mode, with 4 out of 6 subjects missing the anomaly

on their first waypoint trial. Group A's performance in detecting high risk anomalies

improved by the second Waypoint trial. By comparison, Group B had 4 subjects

correctly locate the high risk anomaly on the first and second Waypoint Mode trials.

Group B had a number of trials in Waypoint, Global and Local Mode that resulted

in no anomalies being passed at all. This suggests that Group B was less likely to
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Group Subject Wi W2 G1I G2L1 L2UC1 JUC2Total

1 1 X 0 1 0 X 1 1 4
2 1 0 0 0 X X 0 0 1
3 X X 0 0 0 1 0 0 1

A 4 0 0 X 0 0 0 0 0 0
5 1 1 1 1 0 1 1 8
6 1 0 0 0 X 0 0 0 1

Total 5 3 2 5 15

7 0 X 0 0 X 0 0 1 1
8 0 0 0 0 0 X 0 0 0
9 X 0 0 X 0 X 0 1

B 10 X 1 0 0 0 1 0 X 2
11 0 0 1 X 1 X 0 1 3
12 0 0 X X X X 0 1 1

Total 1 1 2 4 8

Table 3.4: High risk anomlies missed (passed and not detected). Trials in which no
high risk anomalies were passed are indicated by an X. Orange squares indicate that
1 high risk anomaly was missed, red squares indicate that more than 1 high risk
anomaly was missed. Note that W = Waypoint Mode, G = Global Mode, L = Local
Mode, UC = Unfixed Mode.
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Group Subject WI W2 GI G2 LI L2 UCI UC2 Total

1 X 0 X 0 0 X 0 1 1
2 X 0 1 0 1 0 0 0 2
3 X 0 0 0 X 0 0 2

A 4 1 0 0 X 0 1 0 0 2
5 1 0 0 1 0 1 1 1 5
6 0 X 0 0 0 0 0 2

Total 2 2 3 7 14

7 X 0 0 1 0 X 0 1 2
8 X 0 0 1 0 0 & 0 2
9 0 X 0 1 0 0 0 0 1

B 10 0 0 X X 1 0 0 X 1
11 0 X X 1 0 0 0 0 1
12 X X 0 0 0 1 0 0 1

Total 0 4 2 2 8

Table 3.5: Low risk anomlies missed (passed and not detected). Trials in which no
low risk anomalies were passed are indicated by an X. Orange squares indicate that 1
low risk anomaly was missed, red squares indicate that more than 1 low risk anomaly
was missed. Note that W = Waypoint Mode, G = Global Mode, L = Local Mode,
UC = Unfixed Mode.

reach a high risk anomaly during their trial using an FC mode.

In examining the Unfixed Mode, performance in reaching high risk anomalies was

considerably better than in previous trials in both Group A and B. Recall that UC

1 has 2 high risk anomalies, and therefore in all but one trial at least one high risk

anomaly was detected. By comparison, in UC 2, five out of 12 trials missed the high

risk anomaly.

Overall, Group A missed a greater number of high risk anomalies, but again this

appears to have been driven by Subject 5, who accounts for over half of the missed

High Risk anomalies in group A, and Subject 1.

Table 3.5 shows the number of missed low risk anomalies. Within Group A, the
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number of missed anomalies across the three FC modes was similar. Performance

in detecting anomalies seemed to improve in Waypoint Mode for Group A when

moving from the first waypoint trial to the second, with fewer misses and fewer

subjects where no anomaly is passed. For Group B, Global Mode resulted in the

highest missed low risk anomalies, with four subjects missing a low risk anomaly in

their second trial.

UC mode resulted in few trials where the anomalies were not passed. Group

A performed poorly in UC when compared to Group B. Overall Group A had a

greater number of missed low risk anomalies. This was partially driven by Subject

5, although misses were seen across 4 of the 6 subjects in Group A. Across both

the high and low risk anomalies, results showed that the UC modes made it more

likely for subjects to pass an anomaly, possibly the result of the increased number of

anomalies in the UC trials.

3.3.4 Effect of Command Mode on Efficiency of Station In-

spection

Percentage of the space station seen by the inspector (percentage inspected) was

analyzed using an n-way ANOVA (Factor 1: Subject (random), Factor 2: Command

Mode (fixed), Factor 3: Group (fixed), with Subject nested within Group) with two

replicates. Analysis of Variance revealed a signficant main effect of command mode

on percentage of station seen (F(3,94) = 28.51,p << 0.001).
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Figure 3-4: Subject average percentage of station seen across command modes. Blue
markers and red markers indicate subject means in Group A and B respectively.
Black markers and error bars indicate the standard deviation from the overall mean.

Group had no main effect (F(1, 94) = 1.42, p = 0.260) or interaction effect(F(3,94)=

0.49, p = 0.670). The lack of an interaction effect between Mode and Group sug-

gests that both Group A and Group B have a similar behaviour, with both groups

having higher average percentage inspections for Unfixed and lowest average per-

centage inspections for Waypoint. A Tukey post-hoc comparison found Waypoint

Mode resulted in a signficantly smaller percentage of the station being inspected

(p << 0.001 in all cases). Overall the average percentage of the station inspected in

Waypoint Mode was 28.2766% (SD: 10.6904%), approximately half of either Global

Mode (Mean: 57.40% , SD: 23.41%), Local Mode (Mean: 55.93%, SD: 19.35%) or

Unfixed Mode (Mean: 69.03%, SD: 20.28%).

There was no signficant'difference between the amount of station inspected in

either Global or Local Mode (p = 0.967), however the Unfixed Mode resulted in a
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significantly higher percentage of the station being inspected than either Global or

Local (p < 0.001 for all cases).

There was an interaction effect of Subject and Mode (F(30,94) = 2.12, p

0.0103). However Figure 3-4 reveals a fairly consistent trend in the subject data

across modes, with an increasing trend from Waypoint to Global, and Local to

Unfixed, and a decrease from Global to Local, in terms of percentage of station

seen. The interaction effect may arise from the magnitude of this decrease/increase

across subjects. The n-way ANOVA also revealed a significant effect of subject

(F(10, 94) = 6.54, p < 0.001), suggesting that there was significant difference in the

amount of station inspected across the different subjects.

Figure 3-5 shows the data from each subject's trials for percentage of station seen.

There appears to be an upward trend across subjects in Group A when examining

the raw trial data between repetitions of the same mode. Learning was not explicitly

investigated, but could be examined in longer follow-on studies with a higher number

of repetitions within modes.

Duration of Inspection

Figure 3-6 shows the amount of time each subject spent completing their inspec-

tion. Seven of the twelve subjects used the maximum allowable time (390 seconds)

to complete their inspection for all trials, meaning the simulation timed out before

they could terminate the test themselves. One subject (Subject 1, Group A) demon-

strated a consistently faster time across their trials, achieving a total test time of

approximately 5 minutes in their final trial. Of particular note is Subject 5 (Group

A) who had the lowest inspection duration time across all trials except Waypoint 1,

exiting the trial after approximately two minutes in their second Global and Local
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indicate subject times in each trial within Group A and B respectively.
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trial, and both Unfixed trials. Overall Group B had a higher total test time than

Group A, driven primarily by Subjects 1 and 5.

Path Length of Inspection

An n-way ANOVA was fit to examine the average path covered by the inspector

across command modes. The ANOVA revealed a main effect of group on the distance

covered (F(1, 94) = 5.28, p = 0.0444). Post-hoc independent t-tests showed that

Group B covered significantly less distance overall than Group A (t(df = 45) = 2.88,

p = 0.006). No interaction effect of group was observed (F(3, 94) = 1.19, p = 0.3302).

Command mode was found to have a significant effect on path length (F(3,94) =

42.89, p << 0.001). Post-hoc Tukey comparisons revealed that Waypoint had sign-

ficantly lower path length than any other mode for both Group A and Group B

(p << 0.001 in all cases). There was no statistical difference of Global mode with

Local mode for either Group A (p = 0.633) or Group B (p = 0.563). In Group

A, there was no signficant difference between the Unfixed Mode and either Global

(p = 0.696) or Local (p = 0.128) whereas Group B showed a signficantly greater path

length for Unfixed when compared to Global (p = 0.0018) and Local (p << 0.001).

Subject was found to have a main effect on path length achieved (F(10, 94) =

5.62, p << 0.001), as some subjects were less successful than others at moving

the inspector large distances. An interaction effect of subject and mode was also

observed (F(30,94) = 3.1, p << 0.001) however from Figure 3-7 it appears that

subjects generally trended in the same direction.
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Figure 3-7: Average subject path length across each trial. Blue markers and red
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Black markers and error bars indicate the standard deviation from the overall mean.

3.3.5 Effect of Command Mode on Workload

An n-factor ANOVA supported a significant main effect of command mode on NASA

TLX composite scores (F(3, 94)= 7.86, p << 0.001). Group was found to have no

significant main effect (F(1, 94)= 0.97, p = 0.348) or interaction effect (F(3,94) =

1.33, p = 0.282) on Workload composite score. Figure 3-9 reveals both Group A

and B trending downward from Waypoint through to the Unfixed Mode. A post-

hoc Tukey comparison found that Waypoint had a significantly higher composite

score than either Global (p << 0.001), Local (p = 0.009), or Unfixed (p << 0.001).

Global and Local Mode were not signficantly different (p = 0.991), however the

Unfixed Mode had the lowest composite score, signficantly lower than Waypoint,

Global (p = 0.0072) or Local (p = 0.0049).

The ANOVA revealed both a significant effect of subject on composite workload

score (F(10, 94) = 7.97, p << 0.001) and interaction effect of subject with command
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Figure 3-9: NASA TLX average composite workload across command modes. Blue
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mode (F(30,94) = 2.45, p = 0.0029). There were significant differences in the way

that individual subjects rated overall workload in their various trials, and significant

differences in how each mode was rated between subjects. Looking at the Unfixed

Mode ratings, subjects ratings range from approximately 10 to 95 out of a possible

100. By comparison, the range of workload scores for Waypoint Mode is smaller

(between 50 and 95). Some subjects consistently awarded a high workload rating

across all modes.

The TLX composite score is generated from six weighted components; mental

demand, physical demand, temporal demand, performance, effort and frustration

(Figure 3-8). These components are weighted based on an initial scoring of the

subject from pairwise comparisons between components at the beginning of the ex-

periment. ANOVAs were fit to each workload component score, and Group was

found to have no significant effect in any case (p >> 0.05). In removing group from

the model, ANOVA revealed a significant effect of mode on rating for Physical De-

mand (F(3,94) = 3.11, p = 0.0393), Temporal Demand (F(3,94) = 3.5, p = 0.026),

Performance (F(3,94) = 11.49, p << 0.001), and Frustration (F(3,94) = 5.16,

p = 0.049), with these components contributing to the shape of the TLX data for

overall composite workload score. For both the temporal and frustration scores, Way-

point was given a significantly high workload rating than any other mode (p < 0.05

in all cases), while there was no statistically significant difference between the ratings

of any other mode. Waypoint mode was also given a signficantly high workload score

for Performance (p < 0.01 in all cases) whereas the Unfixed Mode was rated sign-

ficantly lower in terms of workload than all other modes (p << 0.001 in all cases).

Local was rated significantly lower than Unfixed for physical demand (p = 0.0052)

however not signficantly different to either Waypoint or Global.
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3.3.6 Effect of Command Mode on Button Interactions

An n-way ANOVA showed a statistically significant effect of command mode on the

number of times a subject interacted with the virtual buttons within the augmented

reality system (f(3, 94) = 106.9, p << 0.001). Group was found to have no significant

main effect (F(1, 94) = 2.3, p = 0.1603) or interaction effect (F(3, 94) = 0.88,

p = 0.461) on button presses. Tukey post-hoc tests revealed a signficantly lower

button press count in Waypoint Mode than any other mode (p << 0.001 in all

cases). These Waypoint button presses were required to place an average of 11.92

(SD 2.78) waypoint markers in Group A, and an average of 12 (SD 3.52) waypoint

markers in Group B.

There was no signficant difference in button presses found between Global and

Local modes (p = 0.994) however Unfixed Mode utilised signficantly more button

presses than either Global (p = 0.006) or Local (p = 0.0032). There was both pri-

mary and interaction effects of subject on the number of button presses (Subject:

F(10, 94) = 6.59, p << 0.001, Interaction: F(30,94) = 2.57, p = 0.0018). There

appears to be a visual trend in the number of butotn presses across subjects, increas-

ing across modes with Waypoint < Global, Local < Unfixed, however two subjects

in Group B do not appear to fit this trend. Further study, with a larger pool of

subjects, may provide additional insight on subject button strategy.

Unfixed Command Mode Effects

Of particular interest is how command mode was utilised when subjects had control

over which mode they could use and when. In analysing the composition of button

presses in Group A, it initially appeared that both the Global and Local Modes were

being utilised for the Unfixed Modes. Closer inspection revealed that for 5 out of the
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Figure 3-10: Count of button interactions across all trials. Blue and red markers
indicate subject counts within Group A and B respectively. Black markers and error
bars indicate the standard deviation from the overall mean

6 subjects in Group A, there was no rotation of the Local Frame during the trial.

The frame remained aligned to the station (i.e. the world frame) acting as a globally-

oriented reference frame. The final subject of Group A employed a single rotation

of the local frame in UC 2, and performed the entire trial in the Local Command

Mode, however no other rotations were recorded. Only one subject opted to utilise

the Waypoint Mode at any point in the UC trials, placing a single waypoint in UC

1.

Conversely, four out of six subjects in Group B utilised the Local Mode exclusively

for both Unfixed Trials. One subject exclusively used the Global command mode

for both UC trials. Subject 12 is the only subject across both groups to interchange

between Global and Local Modes of command. In Unfixed 1, subject 12 changed

command modes 10 times, and in Unfixed 2 the subject changed command modes

85

A A- -A



6 times. Comparing the command modes selected (Figures 3-11a and 3-11b) to the

path taken by the inspector (Figure 3-11 and Figure 3-11d), it appears that the

Local Command Mode was utilised when the subject desired to move in a direction

not orthogonal to the axes of the space station.
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Figure 3-11: Subject 12 Unfixed trial command mode selections and path around
the station. For (a) and (b), grey markers show button presses, vertical red lines
indicate an idle time of greater than 5 seconds between button presses. For (c) and
(d), lue markers show inspector position. The red crosses position when inspector
idle for more than 5 seconds between button presses.
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Figure 3-12: Subject 5 and 12 data against study data

3.3.7 Additional Subject Results

Both Subject 5 and 12 exhibit unique behaviour in this study. This behaviour will

be discussed in section 3.4. Figure 3-12 highlights Subject 5 and Subject 12 results

against the study results. Subject 5 took the shortest amount of time in each trial,

remaining at distance greater than the detection distance for much of the trial. Sub-

ject 5 inspected between 30 and 70 % of the station across their 8 trials, performing

worst in UC 1. Subject 12 adopted a switching strategy for the unfixed trials, re-

sulting in this subject seeing a higher percentage of the station in the two UC trials

compared with the FC trials.

3.4 Discussion

This study examined ten hypotheses relating to interface command mode for the

inspector satellite, and the level of environmental risk of the area being inspected.
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Hypotheses one, three, four and six relate specifically to the effect of command

mode on measures of performance across different command modes, anticipating

that command mode would have a significant effect on performance. Hypotheses

three and four also suggest a relationship between performance, interface and the

level of environmental risk. Hypothesis two, five and seven predict an improvement

in performance measures when command modes are unfixed and subjects have free

choice over which to employ. Hypothesis eight examines the effect of command

mode on cognitive load. Hypotheses nine and ten pertain to strategies adopted by

the subjects in order to maximise performance.

Subjects were instructed to prioritise avoidance of collisions over other aspects of

performance. While it was hypothesized that subjects would accrue fewer collisions

when operating in a globally oriented frame of reference (Hypothesis 1), this was

found to be only partially supported. Both Waypoint and Global Mode are consid-

ered 'globally-oriented' frames, however each mode require the subject to interact

with the system differently. It was hypothesized that these globally-oriented com-

mand modes would support a greater spatial awareness of the station boundaries,

and thus result in fewer collisions. Additionally, the Waypoint Mode forces the sub-

ject to plan and place waypoints in a global environment, which may have supported

a heightened awareness of the station extremeties. There was a significant decrease

in collision count when operating in Waypoint Mode across all subjects. It is difficult

to assess if this low collision count in Waypoint Mode is purely a result of a globally-

oriented command mode and not also a shift in strategy motivated by the Waypoint

Command Mode. There was also no significant difference in collisions between the

Local and Global Modes. If globally-oriented reference frames were found to sup-

port a greater ability to avoid collisions, we should see a significant improvement

in collision avoidance when comparing Global to Local. Pooled results in Table C.1
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show that Waypoint mode resulted in the fewest correctly detected anomalies, and

Figure 3-4 shows Waypoint Mode resulting in the lowest percentage of station seen.

The low percentage and poor anomaly detection suggests a less agressive strategy

when subjects were operating in Waypoint Mode, moving around the station at a

much greater distance than in Global and Local Modes. These results indicate that

Waypoint Command Mode has potential as a command interface for scenarios where

a detailed inspection of all areas is not required, for example, navigating around

known exteriors of the ISS to get to a suspected anomaly location.

Of particular interest was how collision count was affected by the designated risk

level of the environment. The lower collision density in high risk areas when operating

in Waypoint Mode is likely a result of subjects opting for a more cautious strategy

when operating in this mode, as described above. However there does not seem to

be a noticeable trend in collisions across risk areas (Figure 3-3). Some convex areas

exhibit lower collision density in Local Mode (e.g. the cupola and ends of station

modules) whereas highly concave areas (e.g. node intersections) exhibit high density

collisions across all command modes. A larger sample size, with an increase test time

to allow subjects to perform multiple inspections of the station may shed light on

any patterns in collision distribution.

Hypothesis 2 (subjects will have have superior collision avoidance when all com-

mand modes are available to the operator) was not supported. When comparing

the results of UC trials to the FC trials, UC trials were found to have a statistically

higher collision count than all three FC modes. The increase in number of collisions

may be indicative of a more agressive strategy in searching for anomalies, taking

greater risks when inspecting close to the station in an effort to increase anomaly

localisation. A contributing factor to this result may also be that subjects became

more comfortable with the AR system by trial 7 and 8 (UC trials) and were therefore
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less cautious in operating the system. In examining the mode usage in the UC mode

(see Section 3.3.6), it should be noted that even when permitted to alter command

mode during a trial, few subjects opted to switch. In Group A they operated almost

exclusively in the Global Command Mode, and in Group B the Local Command

Mode was favoured. Hypothesis 2 predicted that subjects would alter their com-

mand mode at different points during the trial, to optimize their performance. In

the case of collision count, it would seem that the Waypoint Mode offers the superior

choice in avoiding collisions, however this option was never selected.

The large variance in the UC collision counts, particularly in Group B, is possibly

a result of learning and fatigue confounds. Subjects were trained on collision during

the training day, however there is no visual indicator of the true collider boundaries,

which are not always perfectly aligned with the station rendering (see Section 3.5).

Thus there is a degree of learning that occurs on the testing day, with the UC

trials always conducted last, which may lead to some subjects exhibiting improved

collision avoidance. Increased training time, to bring all subjects to the same steady

state prior to testing, may alleviate some of these confounds. Further study of the

learning curve, and the shifts in strategy and performance optimisation that occur

across a series of trials, could aid in optimizing training. Additionally, while it is

difficult to refine the collision boudaries without a signficant increase in computing

power onboard the HoloLens, future studies could employ predictive warnings to

alert operators to impending collisions, or visually depict colliders with a rendered

boundary.

Physical fatigue may be a confounding factor in later tests. The simulation

required subjects to stand upright with arms outstretched for 6.5 minutes at a time,

and repeated use of AR has been known to cause eye fatigue. As a result, subjects

may have reduced motor control and visual perception of the station, leading to an
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increase in collisions. Both Groups opted to use either Global or Local Modes when

in the UC trials. The Global and Local Command Modes require considerably more

interactions to move the inspector, and Figure 3-10 shows a high number of button

interactions in both groups for the unfixed modes, which likely added to fatigue

levels. While physical demand was consistently scored lower than other workload

components in the NASA TLX survey (Figure 3-8b), the effect of fatigue should

not be neglected, particularly when shifting from a simulated to real environment.

Greater rest periods between trials, or a redesigned control interface could aid in

reducing physical fatigue.

Hypothesis 3 posited that operation in the body reference frame of the inspector

would enable superior anomaly localization in high risk areas, while Hypothesis 4

posited that operation in the world reference frame would enable superior anomaly

localization in low risk areas of the station. Waypoint Mode provides a much coarser

degree of control over the inspector than either Global or Local, and so it was hy-

pothesized that the fine control provided by both the Global and Local Mode was

superior in enabling navigation close to the surface of the station to detect anoma-

lies. When operating in high risk areas, station design may occlude or restrict access

to anomalies, and subject's attention is likely to be highly focused on the high risk

region, rather than the station as a whole. Consequently it was hypothesized that

the Local Mode of control, which enables navigation without reference to the station

itself, would enable superior navigation in this scenario. In low risk areas, where less

attentional narrowing is likely to occur, the Global Mode aligned to the station was

hypothesized to enable better anomaly localizaiton.

While Hypothesis 3 and 4 could not be statistically verified, given the small

sample size and small range of results, a review of the results can provide insight
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into the effects of command mode on the success of anomaly detection. Anomaly

detection was the second priority for subjects, and they were directed to locate

both critical and non-critical anomalies, which were distributed across both high

and low risk areas. There were similar numbers of missed anomalies across all FC

modes, which does not support the above hypotheses. Within each command mode,

results from trial 1 to trial 2 were also similar. Breaking anomaly detection down

by risk level, results were again relatively similar across command modes with each

risk group. It is difficult to make an assessment on which mode supports anomaly

detection in different areas of risk due to the small sample size, when trials with

no anomalies passed are removed. A future study should increase the number of

replicates subjects perform, allow greater time for the inspection, and increase the

number of anomalies in each trial to aid in identifying any signficant trends across

risk area or command mode. Future study designs should also consider research

questions related to the detection of anomalies compared to subject vigilance in

finding anomalies when few anomalies are present.'

When operating in the UC modes with free choice of command mode, it was

hypothesized that anomaly localization would be higher compared to the FC modes

(Hypothesis 5), as subjects could select the command mode they felt gave them the

best performance in anomaly detection. Hypothesis 5 could also not be statistically

verified. Group B's missed anomalies for UC are higher than of its FC modes, and

higher than Group A's results, however this appears to be driven primarily by Subject

5. Subject 5 consistently missed a large number of anomalies in each command mode,

and thus with the high number of anomalies present in the UC trials, this drove

the Unfixed Mode results for Group A. Subject 5 consistently passed and missed

anomalies, suggesting they were moving around a large portion of the station, but

not at sufficiently close range to detect anomalies. Looking at Figure 3-12, subject
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5 had above average percentage of station seen in Waypoint Mode compared to the

group mean, and below average percentage of station seen in Local 2 and Unfixed

when compared to the group mean. Figure 3-6 also highlighted that Subject 5

completed their station inspections the fastest of all subjects, suggesting Subject 5

reprioritized the goals for the simulation, attempting to complete a full inspection of

the station as quickly as possible at a greater distance from the surface, rather than

moving in closer to detect anomalies.

Anomalies missed in Group B were similar across FC and UC. Further investi-

gation is required to determine if permitting subjects to select their own command

mode does in fact affect their anomaly localization. Studies should aim to isolate the

Unfixed and Fixed modes, possibly testing across multiple days with adequate rest.

While missed anomaly count was higher in the Unfixed Mode, the Unfixed Mode

consistently demonstrated better performance in actually passing anomalies with all

subjects passing anomalies in each trial, aligning with the results below regarding

percentage of station inspection.

Hypothesis 6 was that waypoint command would enable a higher percentage of

the station to be inspected. This hypothesis was not supported by the study results.

Participants were instructed to attempt a full inspection of the space station in the

alotted time as their third performance priority, with the ability to exit early if they

deemed their inspection complete. It was initially hypothesized that the Waypoint

Command Mode would enable a greater percentage of the station to be inspected

as it was predicted that the design of the Waypoint Mode provided more idle time

for the subject and thus facilitated greater planning, allowing a subject to maximise

their inspection performance in the given test time. In a study examining differ-

ent telerobotic free-flyer interfaces for inventory tasks, Szafir et al. [64] found that

waypoint methods of navigation significantly improved user efficiency in completing
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tasks as compared to a manual game controller. Contrary to these expectations,

Waypoint Mode resulted in the lowest percentage of station being inspected (less

than 30% on average), significantly less than either the Global or Local Modes. In

practice, the Waypoint Mode had poorer usability than either of the Local or Global

Modes. The poor usability can be seen in both the time taken for inspection (Figure

3-6) and total path length (Figure 3-7). In all but one case, subjects operating in

Waypoint Mode used the full 390 seconds and had a shorter path length compared

to other modes. The method of generating, moving and setting a waypoint proved

cumbersome and subjects were often required to delete and re-generate waypoints

when they became stuck inside the space station model or were lost in the field of

view. Additionally, the generation of waypoints at the same location introduced an

inherent delay in the trial, as subjects had to return to the starting inspector position

to acquire a waypoint. Increased training, and a more refined waypoint interface,

that spawns waypoints at the current inspector location, and has finer motor con-

trol, may address some of these concerns. Global and Local Modes did not result in

significantly different percentages of station inspected.

No effect of group on percentage of station inspected was detected. Whilst per-

centage of station inspection did not take inspector orientation into account, Group

B was required to rotate their inspector in order to detect anomalies. The added

rotation command takes up time, thus leaving less time for translation. Group B

subjects routinely used the maximum allowable inspection time (Figure 3-6). Group

B also demonstrated a significantly lower total path length than Group A (Figure

3-7), however not significantly less percentage inspected. This suggests that Group

B was moving their inspector more efficiently in terms of station inspected per unit

path length. They were moving the inspector around the station close enough to de-

tect anomalies, but without moving the inspector more than was needed. In reality,
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robotic systems are likely to adhere more closely to the Group B scenario, and so

future studies should take this additional rotation time into account when designing

experiments.

The UC trials demonstrated a signficantly improved performance in percentage

of station inspected when compared to the FC trials, however 11 out of 12 subjects

did not continuously switch modes during the UC trials, so Hypothesis 7 was not

supported. Qualitative feedback from the subjects highlighted their preference for

the Unfixed Mode in providing the switching capability, however only one subject

actually chose to switch modes during the UC trials. Some subjects achieved near

95% station inspected in the UC trials. Upon starting the UC trials, each subject

has conducted two trials in each command mode and is very familiar with their per-

formance and limitations within each. The higher percentage of station inspected

in these unfixed trials may suggest that subjects were selecting the command mode

which would maximise this performance criteria, however improvements in percent-

age inspection may also be the result of additional time with the system. Considering

fatigue is likely a confounding factor in results for the UC trials, even with fatigue

subjects still achieved a high percentage inspection in the final two trials. These re-

sults indicate that training is an important component in maximising the percentage

of station seen.

Hypothesis 8 postulated that the increased subject idle time provided by the

Waypoint Mode would result in a lower cognitive load. This hypothesis was not

supported. Waypoint Mode was found to have the highest composite workload score,

driven primarily by its significantly poor (high) performance rating, physical demand

rating, temporal demand rating, and frustration rating. While this is a subjective

analysis, these workload measure results are supported by the poor path length

performance, long test time, poor percentage inspection results seen previously, and
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the usability issues discussed above. In contrast to Waypoint Mode, Unfixed Mode

had a signficantly lower rating than all other modes in performance workload, despite

self-reported fatigue in subject evaluations.

Hypothesis 9 and 10 both address the UC state. Hypothesis 9, that command

mode selected would be dependent on perceived level of risk and performance, was

not supported. It was predicted that based on their baseline performance in each of

the three command modes, subjects would appropriately select and switch between

command modes during the UC trials, to maximise different performance aspects. In

Group A, four out of six trials remained in a globally oriented command mode (either

Global, or globally-aligned Local). Of the two remaining subjects, both remained

in a globally-oriented frame with the exception of two waypoints placed (Subject

4, UC 2) to maneuver from the starting point to the first solar panel, and a single

local rotation (Subject 6, UC 2). In Group B, four out of six subjects remained

exclusively in the Local Mode (recall that inspector rotation is required for detection

in Group B) and one subject remained in Global mode exclusively. The final subject

did routinely swap between modes (Subject 12) for both UC trials. These results

suggest that generally subjects preferred an exclusive command mode, as opposed to

toggling between them. Likewise, in a study conducted by Wang and Lewis [69], they

found that operators tasked with controlling a robot team for search and rescue using

an unfixed command mode, operators rarely opted to switch modes. Previous studies

have found an associated cost with switching modes of control [60, 39] which may

be contributing to the choice of an exclusive command mode. In Wang and Lewis'

study, a waypoint mode was favoured more heavily than a low-level teleoperating

mode. The negilible use of the waypoint mode in the UC trials for this study is

understandable considering the poor performance it yielded in both percentage of

station inspected and anomalies detected.
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While subjects were not switching command mode based on risk level, the choice

of using Global or Local Mode over Waypoint Mode is indicative of selecting a com-

mand mode that will yield superior performance for percentage of station inspected.

There is possibly a disconnect between subject perception and reality driving this

choice. Qualitative feedback from subjects shows that most had a preference for

either Global or Local, however this did not always align with the mode that gave

them optimal performance. Selection of mode may have been driven by greater trust

in one mode over another. Follow-on studies should examine the effect of trust in

dictating command mode selection, and how training can affect this trust.

It was hypothesized that subjects would adopt different strategies when com-

mand modes were fixed compared to unfixed (Hypothesis 10). Hypothesis 10 was

examined by looking at trends in the data across different performance metrics. A

possible explanation for the increased number of collisions for some subjects in the

Unfixed Mode is that subjects had reprioritised their performance metrics, rating

collisions lower and thus taking more risk with their navigation around the station

in an effort to detect more anomalies. Figure 3-6 clearly shows some subjects priori-

tising achieving a 'full' inspection of the station as quickly as possible, with reduced

test durations in the UC trials. There is an obvious tradeoff between speed and effec-

tiveness of inspection, and as expected subjects that prioritised speed had a higher

count of missed anomalies.

Subject 12 is an interesting case study in strategy, as they were the only subject

to routinely swap between modes (Global and Local). From the path generated

by this subject (Figure 3-11), they utilised the Local Mode to perform maneuvers

around irregularly shaped portions of the station (e.g. the cuppola and the ends of

modules) before returning to the Global Mode. Looking at the performance metrics

for Subject 12, in switching between command modes, the subject increased their
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percentage of station seen when compared to the FC trials. In their post-experiment

evaluation, Subject 12 highlighted their preference for the Unfixed Mode.

Overall, with the exception of Subject 12, subjects were self-selecting a single

mode of command. Subjects were not trained on risk areas, or on using different

command modes at particular times within the simulation. Thus a determination

cannot be made if toggling mode improves performance in certain risk areas. Future

studies could have subjects explicitly trained on when to switch modes during the

simulation, and determine if there is an improvement in performance across the

criteria decribed above, and within difference areas of risk.

3.5 Additional Limitations

The nature of augmented reality interfaces introduces inherent errors into the results,

particularly with regards to collision count. The Unity 3D Gaming Engine used to

render the station and build the AR interface has limited ways of building colliders

for irregularly shaped objects. A mesh collider perfectly sculpted to the surface of an

object results in degraded game performance and latency due to the high vertex count

of the object, thus introducing lag and severely reducing frame count. Instead, collid-

ers are typically constructed from simple mathematical models (ellipsoids, cubes etc)

which are easier to render, but do not perfectly match object surfaces. Consequently

there are sections of the space station where the perceived boundary (rendered sur-

face) and the true boundary (collider surface) are misaligned. This is particularly

true in High Risk Area A, and around protrusions. The high collision count around

the communication disk is likely a result of a poorly fitting collider. This can be ad-

dressed in future studies through the incorporation of a warning system, that alerts

subjects to an impending collision.
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The gestural controls were highly sensitive to hand motions within the gesture

frame, and sometimes had difficulty distinguishing between a ready gesture and a tap

gesture. Subjects would accidentally 'drop' the station when trying to move their

hand out of the frame of reference, because the HoloLens mistook the gesture for

a repositioning of the station. The near clipping plane at 30 cm also also required

a small learning curve, as subjects would try to move the station closer in order

to improve their view, and consequently lose sight of the station. Additionally the

two-handed rotation gestures were limited to yaw and roll motions, with limited

success in the pitching direction due to the height of the gesture frame. Pitching of

the station necessitated a roll and yaw motion. These limitations of the HoloLens

interface may have contributed to a slight degradation in performance over the course

of the trials. The increased FOV and gesture frame of the HoloLens generation 2

may address some of these limitations in subsequent studies.

Demographic data was gathered prior to testing, in an effort to identify con-

founding factors such as a subject's prior experience with augmented/virtual reality

or telerobotics. These parameters were not included in the statistical model. The

above analysis is by no means definitive due to the limited subject pool, and a larger

follow-on study with more targeted subject recruitment may investigate the effect

of prior AR/VR experience on performance. Given that the target population for

applications of this study is on-orbit servicing, future studies should recruit subjects

with astronaut, or astronaut-equivalent training.
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Chapter 4

Conclusions, Limitations, and

Recommendations

This chapter summarizes the conclusions of the human-subject protocol and devel-

opment of the AR interface. Limitations of the current study are highlighted, with

implications for future study iterations. Further areas of research are highlighted.

4.1 Conclusions of Study

Telerobotic systems and human-robotic teams will form a core component of future

Earth-orbit and deep-space crewed missions. In future space exploration, tasks such

as inspection, maintenance, and assembly can no longer be carried out solely by

astronaut EVA or fixed robotic platforms. Free-flying telerobotic spacecraft present

an appealing alternative due to their greater maneuverability and flexibility, lower

cost and weight, and wider applications for EVA planning and astronaut support.

Advances in visualization and augmented reality technologies can now address the
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shortfalls of previous teleoperation and free-flyer interfaces, providing greater spatial

awareness and more intuitive control during free-flyer inspection tasks.

Through the development and testing of a custom AR interface for on-orbit in-

spection, this work has demonstrated that augmented reality technologies can be an

effective means of controlling a free-flying satellite for an on-orbit inspection task

(Research Question 1). A simulated on-orbit environment was constructed for the

Microsoft HoloLens using the Unity 3D Gaming Engine and Mixed Reality Toolkit.

The AR interface developed incorporated gestural control to command a small in-

spector satellite in three different command modes and allowed users to manipulate

their viewpoints of the station environment. The HoloLens AR headset appears to

be a suitable technology for controlling small satellites, and subjects gave positive

feedback on the experience of using the simulator. Additional features of the inter-

face are required to improve performance, such as indication of predicted collisions,

and improved waypointing functions. A hardware-in-the-loop architecture was also

designed using the SPHERES platform, HTTP servers, and the HoloLens headset

(Appendix A). Future iterations of this study should implement components of this

architecture in building a more realistic on-orbit simulation with hardware.

This study investigated how command modes within the AR interface might af-

fect measures of human performance in inspecting a space station (Research Question

2). It was initially hypothesised that different command modes would supported dif-

ferent performance criteria. Waypoint Mode was found to support better collision

avoidance as users appeared to adopt less agressive inspection strategies when in

Waypoint Mode, though collision impacts were not noticeably higher in high risk re-

gions compared to low risk regions, as would be expected given the resticted motion.

There were no significant differences in anomaly detection between the command

modes, however follow-on studies involving a larger number of anomalies within a
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longer trial may reveal more distinction between command modes. Contrary to ex-

pectations, the Global and Local Modes supported the highest percentage of station

inspected in a fixed mode. Waypoint placement took longer than simply driving the

inspector in Global or Local Mode, and subjects operating in Waypoint Mode often

used the full game time to attempt an inspection whilst moving the least distance

of any mode. By comparison, the better usability and finer control of the Global

and Local Modes resulted in several subjects inspecting over 90% of the station sur-

face. Contrary to expectations, the complexity of waypoint movements led to higher

cognitive load. In selecting modes to optimise performance in future AR interfaces,

the lower collision count and less agressive strategies seen when using waypoints

suggests that Waypoint Mode could be used as the command mode when detailed

inspections are not required. When the amount of ground covered is of high priority,

interfaces should support lower levels of control that operate using directional pads,

however results suggest the frame of reference of these controls is not important for

the selected inspection task.

A key area of interest in this study was how the Unfixed Command Modes were

utilized by the subjects (Research Question 3). Previous studies [60] have observed

improved performance when operators have flexibility of command mode. Subjects

were expected to switch between command modes in order to prioritize aspects of

performance, or when inspecting different areas of the station. Waypoint Mode was

expected to support more of a navigational function, and thus allow subjects to

maximise station inspection percentage (i.e. see more of the station). The Local

and Global Modes were hypothesized to support the inspection aspect of the task,

the finer control enabling greater anomaly localisation. Based on these initial hy-

potheses, it was predicted that when permitted to use any or all of these command

modes, subjects would select certain command modes at different times/subtasks
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during the simulation to maximise their performance. However, while Waypointing

may facilitate planning, as suggested by Szafir et. al. [64], its poor usability and

idle time generated frustration from the user and so its use was limited in the UC

mode. Discrete waypointing may not be well-aligned with a continuous inspection

task. Based on the linear algorithm for the waypoint motion, additional waypoints

would be needed to track the station geometry and perform the inspection whereas

the manual control of the Global and Local Modes permitted continuous inspection

with with the inspector's motion. Subjects who used the inspector with 360° FOV

never rotated their local frame, operating in either Global or Local Mode in an ex-

clusively global reference frame. Subjects with a restricted FOV exclusively used

either Global or Local modes, with the exception of one subject who opted to switch

modes frequently throughout the UC trials. In this study subjects were not forced to

switch modes at any point, however previous studies have highlighted this technique

as a means of increasing user satisfaction with the system 1251. Training subjects on

when to use different modes, or forcing mode changes may yield interesting results in

subsequent studies and should be further explored. This thesis suggests that provid-

ing flexibility in command mode does not affect performance as this flexibility was

not utilised.

Across both FC and UC trials, subjects adopted different strategies and priori-

tized different aspects of performance (Research Question 4). Over the course of 8

trials, results suggest that performance metrics were re-prioritized in an order other

than that given to subjects. More collisions with a greater percentage of station

inspected suggest that subjects were performing riskier maneuvers in an effort to

find anomalies, at the cost of a higher collision count. While strategies in AR in-

teractions were not specifically analysed within this study, subject feedback reveals

differing preferences in viewpoint, display position, and movement around the room
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while in simulation. Some subjects preferred a top-down isometric viewpoint to en-

able better navigation and collision avoidance, whereas others opted for zoomed-in

front-facing views that they felt improved anomaly localization. Several subjects

moved around the virtual space station, moving themselves rather than the station

to change viewpoint. These qualitative results highlight the flexibility and suitability

of AR interfaces for this type of task. Further investigation is required to determine

if this led to improved performance, and thus an advantage of AR interfaces over

more conventional displays.

Overall AR has been demonstrated as a viable method for inspection in simu-

lation, and so this must now be verified using hardware. There is a clear effect of

command mode on performance of an inspection task, however further studies are

required to clarify which modes can optimally support different aspects of perfor-

mances. During a true on-orbit inspection of a spacecraft, there will be multiple

subtasks that need to be completed, such as navigation to the suspected anomalous

site, inspection of the site, proximity maneuvers around delicate hardware, and au-

tonomous docking and undocking of the inspector. Each of these subtasks prioritises

different performance metrics, e.g. proximity maneuvers require vigilance in avoiding

collisions, rather than in performing the maneuver quickly. While flexible command

modes were not used by subjects in this study, different subtasks may require the

use of different command modes.

The lessons learned from this research study have direct applications to future

telerobotic research. A follow-on study conducted at the Human Exploration Re-

search Analog (HERA) facility at NASA Johnson Space Center will perform multi-

day studies to investigate the use of AR interfaces in commanding multiple semi-

autonomous free-flying agents. These HERA tests will simulate a long-duration

exploration mission and examine the effects of fatigue, learning, and trust on perfor-
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mance, as well as clarify results of this study. The HERA tests will also incorporate

work done by JPL in scene reconstruction, combining live video from robotic agents

with the 3D holographic model of the station to give a high fidelity real-time visual-

ization of the environment.

4.2 Limitations and Implications for Further Study

The investigation outlined in this study had several limitations which should be ad-

dressed in future iterations of the interface and architecture design. Hardware was

not incorporated into the study and thus results and recommendations from sim-

ulated inspection tasks may not directly migrate across to applications involving

real robots. Humans have been shown to perform differently in simulated envi-

ronments as compared to real-life scenarios with robotic agents [4]. Based on the

researchers' experience with SPHERES, future studies should use unmanned aerial

vehicles (UAVs) as an alternative analog for on-orbit free-flyers, given their greater

flexibility and faster control loop (SPHERES uses 1Hz). Additionally, a major draw-

back of the current test architecture is the communication framework required. The

framework requires several laptops, incorporating the HoloLens Web Portal and an

HTTP server, and is not easily compatible with external hardware. The Robotic

Operating System (ROS) presents a viable alternative to the SPHERES communi-

cation architecture. UAVs can be configured to work with the Robotic Operating

System (ROS) [51], an open-source operating system that provides a structured com-

munication layer to interface different robotic components. Recent advances in Unity

3D mean ROS is compatible with the HoloLens architecture and HoloLens-Robotic

systems using ROS have been demonstrated in studies of Unity-ROS integration

for simulated robots [8], hand-gesture-controlled robots [50], and robots controlled

106



through hologram manipulation [59].
As the study was initially designed as a hardware ground test, the AR interface

restricted the plane of motion of the inspection to the horizontal plane only. Free-

flying robots (either UAVs or satellites) have 6 degrees of freedom (DOF). While the

majority of subjects expressed or demonstrated a preference for either the Global or

Local Mode when operating the inspector, the restricted plane of motion meant that

simplistic directional pad was sufficient to provide control for these limited degrees

of freedom. Controlling a robot in six degrees of freedom, as would be the case on

the ISS, would necessitate a redesign of the control interface, and consequently may

alter subject performance and preference in the various modes. Szafir et al. found

that when controlling a UAV in 6 DOF inside a warehouse to perform inventory

tasks, task completion performance in Waypoint Mode was signifcantly better than

when using a low-level game controller [65], in contrast to the results of this study.

Future studies should expand the architecture to a more realistic on-orbit scenario,

incorporating a free-flyer with 6 DOF, as this may reveal different preferred modes

of command.

As described previously, the HoloLens Generation 1 interface had several limit-

ing factors. The HoloLens Generation 1 has a very small 35 FOV and restricted

gesture frame. The gestural controls employed in the simulation were restricted to

the existing controls inbuilt in the HoloLens, limiting the possible control inputs

that could be tested, as holograms interactions were limited to taps, drags and scal-

ing/rotating. Research has been done into customized hand gestures such as finger

tracking and continuous button input, however the researchers in this study found

the custom gestures suffered from lag and could not match the HoloLens gestures

in terms of tracking speed and accuracy. Continuous low-level control in the Global

and Local Modes was not possible with the tap gesture and instead all commands
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had to be discrete. In the post-experiment questionnaires, several subjects expressed

frustration and reported fatigue with having to continually tap the global and local

buttons. Continuous controls for directional pads are far more intuitive, particularly

to people with experience in gaming or telerobotics. Additionally, the gaze control

meant that users had to move their head in order to focus on a new object. Some sub-

jects reported fatigue due to this feature, particularly when switching from moving

the station to interacting with the buttons. The HoloLens Generation 2 reportedly

uses eye-tracking and will employ a navigation gesture that operates as a virtual

joystick, moving your hand around a virtual 3D cube for velocity-based continuous

control [421, and thus may be able to address the fatigue and control limitations of

this study's interface.

4.3 Recommendations for Future Work

Over the course of this thesis study, several areas of future work were identified.

Previous studies have highlighted interface design for teleoperations tasks as a key

factor in contributing to a poor mental model [61 and consequently degradations in

performance. Endsley's decomposition of situational awareness[14] aligns with the

development of a mental model, informed by what the operator perceives and un-

derstands from their experience, and is used to project future states. Breakdowns

can occur at any of the three levels of situational awareness (perception, compre-

hension, projection) and thus influence the fidelity of the mental model. Situational

awareness was not explicitly measured in this study, and instead implicitly evalu-

ated through performance metrics like collision count and anomaly localization. The

post-trial questionnaire also incorporated probe questions aligned with the levels of

situational awareness to reveal the underlying mental model of the participants. A
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full investigation of these results was not included in this study but merits further

investigation to assess if the proposed AR interface contributed to breakdowns in SA

and consequently the fidelity of the mental model. Additionally, secondary tasks that

align with the natural tasks could be incorporated into future studies to gauge break-

downs in SA levels during the task, such as required call-outs of inspector clearance

distances, or responding to a secondary task using a required gesture.

Traditional space teleoperation displays and interfaces use fixed 2D camera views,

3D visualization software to show perspective views, and manual control interfaces

(joysticks, keyboards etc), compared to the stereoscopic 3D environment representa-

tion of Augmented Reality. Previous studies have shown that use of a head-mounted

display for search tasks decreases subject performance time for search tasks [48].

While literature hypothesizes that synthesizing the visual information in this man-

ner would increase situational awareness and decrease cognitive workload, there may

be a trade-off with physical workload due to the nature of gestural control. Several

subjects reported fatigue after completing the 8 trials and commented that a game

controller might be easier to use than the gestural controls. Future studies should

incorporate a control study that uses current telerobotic controls and displays, and

compare to a gesturally-controlled AR HMD interface to assess the tradeoff between

physical and cognitive workload. The physical demands of the AR system should

also be assessed in the proposed operational environment of the system, on-orbit

inspection. Physical fatigue may be less of a concern in microgravity, however given

the complexity and delicacy of the tasks required by astronauts, this should be inves-

tigated. A possible platform for this investigation would be NASA's new Astrobee

platform on the ISS, a free-flying robot which can be used by guest scientists for

human factors experimentation.

Further, the use of various AR viewpoints was not analysed in this study. Pre-
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liminary data, analysis of head position and virtual station position/scale/orientation

during the tasks indicates a variety of strategies in the interactions with the AR in-

terface among participants, with some subjects remaining in a primarily zoomed-out

top-down to isometric viewpoint and others favouring a close-up, horizontal view-

point. Several subjects expressed a desire for preset viewpoints to be available, in the

manner used in modelling software such as SolidWorks. Fixed viewpoints or adaptive

displays that shift viewpoint depending on the task/location may lessen the physical

requirements by decreasing the need for hologram interaction while still maintaining

the benefits of a 3D projected model.

Human trust in a robotic system is a crucial element of effective human-robotic

collaboration as it directly effects how and when the system is used, and thus the

benefit of integrating the system into operational tasks. The goal is to achieve cal-

ibrated trust, where the operator has the appropriate trust level aligned with the

robotic system's capability and thus the system is not misused or unused. Issues of

mistrust arose during the study as a result of misaligned colliders and missed reg-

istering of gestures. While this study maintained a fixed low level of automation,

future studies may examine varying automation levels and thus the issue of trust will

be of greater concern. Many factors have previously been found to influnce trust,

including factors relating to the operator's performance, the capability of the robot,

and the operational environment [24]. Measures such as the amount of human and

robot idle time, and probe questions on the perceived reliability of the interface,

the inspector capability, and human characteristics (self-esteem, trust in technology,

attitude towards robots) may provide insight into levels of trust in future studies.

Calibrated trust may be inferred by quantitative surrogate measures such as the hu-

man operator using fewer waypoints in navigation, or by reductions in human/robot

idle time with the human performing concurrent tasks to robotic operations. Trust
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can also be enhanced in future studies through improvements to the display such as

collision indications, increased training on the system and its reliability, and by show-

ing the process by which inspectors make decisions at higher levels of autonomy [36].

Trust in the robotic system will be even more crucial when dealing with off-nominal

scenarios which may occur during a real on-orbit inspection. Operators need to have

calibrated trust to ensure appropriate actions are taken when unexpected events oc-

cur. Szafir highlighted the importance of interface design in dealing with off-nominal

scenarios [64], showing interfaces that supported planning performed better when

dealing with off-nominal scenarios. Future work should incorporate off-nominal sce-

narios during inspection to assess if displays are supportive of better performance

and appropriate trust.

With further study, hardware integration, and practical applications of this work

to long-duration analogue missions, AR interfaces for teleoperation can be refined,

with designs that maximise SA and performance, enable calibrated trust, support

human decision-making and strategy, and improve human-robot collaboration for

space operations.
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Appendix A

Initial Development with SPHERES

Hardware

The study described in this thesis was initially conceived as a robotic hardware task,

using the HoloLens headset to command a real free-flying satellite around a model

space station while presenting the operator with a virtual model of this station and

inspector via the headset. This initial concept was inspired by previous studies done

by the Human Systems Lab and Space Systems Lab at the Massachusetts Institute

of Technology, which had incorporated robotic hardware into human-subject exper-

iments of fatigue for on-orbit operations [56]. Testing with hardware offers several

advantages over testing purely in simulation. Simulations often cannot capture the

full complexity of the real system [74], and a human operator may behave differently

when working with a real robot versus a simulated robot.
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A.1 SPHERES Testbed

The proposed robotic hardware was the Synchronized Position, Hold, Engage, Reori-

ent Experimental Satellites (SPHERES) testbed (Figure A-1). SPHERES are small

satellites originally borne out of a senior capstone project in the Department of Aero-

nautics and Astronautics at the Massachusetts Institute of Technology (MIT), under

Professor David Miller. The project migrated to the Space Systems Laboratory (SSL)

at MIT, and three SPHERES were launched to the ISS in 2006. The satellites were

in operation onboard the ISS from 2006 to 2019, used primarily as a testbed for guid-

ance, navigation, and control algorithms; autonomous docking; formation flying; and

vision-based navigation 44]. In addition to the microgravity test facility onboard the

ISS, there were two ground facilities for SPHERES; the SSL flat floor facility, and

the SSL micro-friction glass testbed. Both MIT facilities could be used to test the

SPHERES for planar translation (X and Y axes translation) and single axis rotation

(rotation about the Z axis). The SSL flat floor facility is an octagonal poured epoxy

surface, measuring 5 meter diameter. The SSL micro-friction glass testbed is a 1.2

x 1.2 meter glass surface mounted horizontally on a lab bench. For both the flat

floor and micro-friction glass surfaces, the SPHERES are mounted to an air carriage

system, which stands on three porous carbon pucks. Compressed carbon dioxide

is forced through these pucks, allowing the SPHERES to float on the surface with

micro-friction. SPHERES are actuated by twelve cold-gas carbon dioxide thrusters

that enable them to move in six degrees of freedom in microgravity, and three de-

grees of freedom on the ground when levitating. SPHERES house onboard power,

propulsion, communications, sensing, and computer subsystems, and are capable of

operating semi-autonomously (requiring human operators to change the propulsion

tanks and battery power packs). SPHERES localize their position and orientation
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Figure A-1: SPHERES onboard the JEM Module of the International Space Station.
performing a formation flight maneuver

within the test volume by means of the Position and Attitude Determination System

(PADS), an ultrasonic beacon system mounted around the test volume. They also

carry inertial measurement units (IMUs) for state estimation.

A.2 Experimental Setup

Figure A-2 shows the proposed experimental set-up incorporating the SPHERES

testbed and SSL flat floor facility. A model space station would be constructed out

of cardboard boxes and placed on the flat floor for the SPHERES to inspect. The

HoloLens headset would project a scaled hologram of the model space station and

current SPHERES position. The operator could then interact with this hologram

gesturally and/or verbally to send commands to the SPHERES. Figure A-3 shows

a screenshot from the initial HoloLens simulation. The operator would be visually

isolated from the flat floor. A screen in front of the operator would project a live
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Figure A-2: Proposed experimental set-up for SPHERES hardware tests with Aug-
mented Reality. Subject is visually isolated from the SPHERES.

camera feed from a camera mounted on the front face of the SPHERES, to allow

the operator to inspect the station surface. Anomalies on the surface would take the

form of visual markers that the operator had to detect and correctly identify.

A.3 System Architecture

A system architecture needed to be developed which would enable data to be parsed

back and forth between the HoloLens platform and the SPHERES. The SPHERES

uses a Flight GUI program for ground and on-orbit tests, which allows tests to

be loaded onto the SPHERES. This GUI incorporates a MATLAB plugin, which

allows users to do real-time data processing and visualization of data parsed from

the SPHERES. The SPHERES GUI Gateway program is a backend program that

acts as the interface between the MATLAB plugin and the Flight GUI.

SPHERES completes maneuvers by periodically executing a closed-loop control

function to make estimates on thrust requirements to maneuver the SPHERES to
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Figure A-3: Initial HoloLens simulation. The red SPHERES hologram corresponds
to the current state of the true SPHERES, and can be commanded through direct
manipulation of the hologram or by interacting with the collection of grey buttons.
The station object is shown in grey and corresponds to a model station constructed
out of cardboard boxes on the flat floor. The faint hand icons indicate that gestural
control is engaged, and are not visible when simulation is running on the HoloLens

the desired goal state. Within this control loop, SPHERES parses data packets

containing state information, telemetry, and state-of-health to the GUI using a radio

transceiver. The Gateway program imports this data and organises it into structure

arrays which can be accessed via the MATLAB plugin. SPHERES has the capability

of receiving data packets from the MATLAB plugin via the GUI during this periodic

call (every time the control cycle of the SPHERE executes). The initial concept

for the on-orbit inspection simulation was to utilise this capability to pass target

locations for the SPHERES to move to, from the HoloLens headset into the MATLAB

plugin, and then onto the SPHERES. A template code for SPHERES is included in

Appendix B.1.

SPHERES and the MATLAB plugin have no way of directly interfacing with the

HoloLens, so an HTTP server was developed in Python to act as the go-between

between the AR Headset and the SPHERES (See server script in Appendix B.2).
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The send(request,uri) inbuilt function in MATLAB allows requests to be sent

to HTTP servers via the MATLAB. net. http. RequestMessage class. HoloLens apps

are built using the Unity 3D Gaming Engine, and coded in C#. Unity can use

the UnityWebRequest class of functions to send POST and GET requests to HTTP

servers (See Appendix B.3 for an example).

When the HTTP server receives a GET request, it will return to plain text

file. When the HTTP server receives a POST request, the server will write the

incoming data to a plain text file. Figure A-4 gives an overview of the system

architecture. SPHERES parses its state information to the SPHERES Flight GUI

using the Gateway Program and MATLAB plugin. The MATLAB program would

then restructure this state data, and send it as a POST request to the server, which

prints this state data to a text file. When HoloLens makes a GET request (which

would occur every few frames), the server pushes this text file to the HoloLens.

HoloLens can then use this state data to update its simulation of the SPHERES and

station. When the HoloLens user moves virtual SPHERES in the AR simulation,

this is converted to a commanded position (or waypoint), which is sent to the server

via a POST request, and printed to a plain text file. The MATLAB plugin within

the Flight GUI would be configured to periodically make GET requests to the server

and the server would return the plain text file containing the new waypoints. These

waypoints can then be parsed to the SPHERES in a data packet from the MATLAB

plugin via the radio transceiver and added to the waypoint queue onboard.

An independent camera system would also be mounted to the front of the SPHERES

and be transmitting a live camera feed via Bluetooth to a laptop.
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Figure A-4: Proposed architecture for SPHERES hardware tests with Augmented

Reality. SPHERES state information is fed to the SPHERES Flight GUI to the

Hololens via the HTTP server. Commands made by the human operator in AR

are translated into waypoint commands which are uploaded to the server from the

HoloLens. The SPHERES Flight GUI pulls any new waypoint commands from the

Server and incorporates these waypoints into the SPHERES running waypoint queue.

The SPHERES also carries a camera which provides a live feed to a laptop, which

can be seen by the operator while in AR

A.4 Limitations and Recommendations

Working with hardware can introduce uncertainty into an experiment, such as time

lags or sensor noise. In the case of the SPHERES testbed, imperfections and con-

taminants on the glass surface and flat floor perturb the motion of the SPHERES

during a simulation. SPHERES also had several communication limitations. There

was a significant time delay in receiving and transmitting data. The state data would

be parsed at a frequency of 1Hz, making precise time measurements of SPHERES

state difficult. This would also made updating the HoloLens simulation with current

state information very slow. The radio transmitter the SPHERES use to send and

receive data would randomly lose connection, meaning data packets to and from the
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SPHERES could be dropped. The Flight GUI MATLAB plugin was not configured

to support the needed MATLAB functions to access the HTTP server, and difficul-

ties arose in trying to connect the SPHERES GUI to an outside server. A possible

solution would be to have the MATLAB GUI write and read directly to the plain

text file, and have the HoloLens access this local text file via the HTTP server.

The main limitation of the SPHERES was the manner in which the SPHERES

are commanded. The current code architecture for SPHERES is constructed to

support either designated waypoints (commanded position, orientation, velocity),

or specific thrust times and directions. Previous experiments have incorporated

user input during tests [57], however this capability is limited to either keyboard

presses or a joystick, and a means could not be found to utilise this capability via

the MATLAB plugin. Any commands the user made in HoloLens, (designating a

waypoint, commanding the SPHERES in a particular direction) had to be converted

to waypoints for the SPHERES in order for MATLAB to parse the data. This method

was clumsy and did not accurately represent non-waypoint modes of command.
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Appendix B

Initial development code

B.1 SPHERES Template Code

This code was intended for use on the SPHERES platform. The gsp.c file is the

Guest Scientists Program file, providing to engineers and scientists who wish to use

the SPHERES platform. The code is a customisable front-end script, with maneuvers

for the SPHERES to follow placed into the gspControl function. The function

gspProcessRXData is used o process incoming data packets from the Flight GUI.

Listing B.1: gsp.c

* gsp.c

*

* SPHERES Guest Scientist Program.

*

* MIT Space Systems Laboratory

* SPHERES Guest Scientist Program

* http://ssl.mit.edu/spheres/
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*

* Copyright 2018 Massachusetts Institute of Technology

*

* Input Waypoint Testing *

* By: Jessica Todd *

**

* Building on the SPHERES Training Program 2014 and *

* the Matlab Demo code *

* Last modified: 28 Apr 2019 *

/* --------------------------------------------------------------------

/* Do not modify this section. *

/* -------------------------------------------------------------------- *

28 #include

29 #include

:w #include

31 #include

32 #include

33 #include

34 #include

3 #include

36 #include

37 #include

38 #include

39 #include

"comm.h"

"commands.h"

"control.h"

"gsp.h"

"gsp-task.h"

"pads.h"

"prop.h"

"spheres-constants.h"

"spheres-physical-parameters.h"

"spheres-types.h"

"std_includes.h"

"system.h"
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T!#include "utilmemory.h"

42 --------------------------------------------------------------------

43 /* Modify as desired below this point. *

S/* --------------------------------------------------------------------*

4 // C includes

47 #include <string.h>

48 #include <math.h>

49 #include <stdio.h>

51 // Controller and Mixer

52 #include "ctrlmix.h"

sa #include "ctrlattitude.h"

54

s5 #include "ctrl-position.h"

// Standard mixer functions

// Standard 'non-linear PID'-type

// attitude controllers

// Standard 'PID'-type position controllers

57 // Additional Includes

58 #include "comm-datacomm.h"

59 #include "comm-internal.h"

6o #include "comm-process-rx-packet.h"

61 #include "padsinternal.h"

62 #include "SMT335Async.h"

63 #include "find-stateerror.h"

64 #include "gsutilthrtimes.h"

65 #include "gsutil-checkout.h"

66 #include "housekeeping.h"

67 #include "housekeeping-internal.h"

68 #include "controlinternal.h"

69 #include "pads-convert.h"

70 #include "fpga.h"
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71

72 //My algorithms

7:3 //#include "gspWaypoint.h"

74 //#include "gspWaypointCopy.h"

75 //#include "gspWaypointLarge.h"

//#include "gsutilcheckout.h"

Th // Standard maneuvers

79 //#include "gspJoyStick.h"

80

81 #ifdef SPHMATLABSIM

82 #include "mex.h"

83 #define DEBUG(arg) mexPrintf arg

84 #else

sr #define DEBUG(arg)

#endif

so // Initialize variables

90 // Incoming comms

91 default-rfm-payload data-payload;

92

93

94 // Flags

95 unsigned int loops-without-answer = 0;

O u

or I/unsigned intstoredPacket = 0;

38 //unsigned int askPacket = 0;

99 //unsigned int sentPacket = 0;

io unsigned int packetError = 0;

// 37 byte (32?) data packet

//to signal request for commands

//-

//I

//I

//I

//I

//I

Number of loops with no

MPC packets received

1: new packet stored

1: new packet requested

# packets sent to Matlab

# errors in packets

101
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102 // Tolerance

103 /*statevector prev-ctrlStateError = {0.0f,0.0f,0.0f,

104 0.0f,0.Of,0.0f, 0.0f,0.0f,0.Of,0.Of, O.Of,0.Of,0.0f};

io // State Vector Error (target -- > state) from previous control loop

10 int counterman;

107 // Count for number of control movements in each maneuver

ios float tol = 0.02f;

109 // Tolerance value for terminating maneuver

no unsigned int waypointtimemax = 75000;

il // Maximum allowable maneuver time

112 float distto-target = 99.0f; // Current distance to target

n1 *

114

15 // Vectors

11 //float inputStateVector[13] = {0 }; // Empty input vector for incoming data packet

117

18 float shortPacket[3]; // Empty input vector [posX, posY, quat_1]

in state-vector ctrlStateInput = { 0 }; // Inputed target vector from Matlab

120

121 short DebugShort[16]; // For output (debug vectors)

122 float DebugFloat[16]; // short DebugVector-short[16];

123

124 // Sets the Satellite identity (Called when sat powered on/reset or powered on)

125 void gspIdentitySet()

126 {

127 // Set the logical identifier (SPHERE#) for this vehicle

128 sysIdentitySet(SPHEREID);

129 }

130

131

132 // Intitializes Communications and PADS subsystems

133



133 // (Called when sat powered on/off /reset)

134 void gspInitProgram()

136 / Set the unique program identifier (to be assigned by MIT)

sysProgramIDSet(PROGCID);

139 / Set up communications TDMA frames

1-o0 commTdmaStandardInit(COMMCHANNELSTL, sysIdentityGeto,

1i . NUMSPHERES);

112

143 // Enable communications channels

144 commTdmaEnable(COMMCHANNELSTL);

145 //commTdmaEnable(COMMCHANNELSTS);

146

147/ Allocate storage space for IMU samples

14s padsInertialAllocateBuffers(50);

14!9

15o // Inform system of highest beacon number in use

151 padsInitializeFPGA(NUMBEACONS);

152

15: }3 end of gspInitProgram function

154

15'

156 // Specifies task trigger masks. Also called when the satellite is

157 // reset or powered on

158 void gspInitTask()

I151) {

1) // NOT USED

161

162 //taskTriggerMaskSet(PADSGLOBALBEACONTRIGIPADSINERTIALTRIG);

163

134



} // end of gspInitTask

is // Performs test-specific configurations.

168 // Called at the start of each test

10 void gspInitTest(unsigned int test-number)

17 {

171

172 / Set SPHERE initial position in estimator

1s7/ NB: (does not necessarily need to match where SPHERE is initially

17// placed but will aid in convergence)

175 / vector = {x, y, z, vx, vy, vz, q1, q2, q3, q4, omegax, omegay, omegaz}

#ifdef GROUNDTEST

state-vector initState = {0.0f,0.0f,0.8f, 0.0f,0.0f,0.0f, .

1.0f,0.0f,0.0f,0.Of, 0.0f,0.0f,0.0f};

#else

state-vector initState = {0.0f,0.0f,0.0f, 0.0f,0.0f,0.0f, ...

1.0f,0.0f,0.Of,0.Of, 0.0f,0.0f,0.0f};

#endif

// Turn on background telemetry

commBackgroundTelemetryPeriodSet(200);

// Tell background comm to send this state vector

commBackgroundPointerDefault(;

// Set the control period (How often gspControl is executed in ms)

ctrlPeriodSet(1000);
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ma // Initialize estimator by providing initial condition, setting the

// inertial period to 50ms, the global period to 200ms, the wait time

197 // to 105ms, modeling/propogating thruster forces & torques, and by

o9 // setting the beacon numbers from 1 to 9

19m padsEstimatorInitWaitAndSet(initState, ...

200 padsInertialBufferCapacity(), 200, 105,...

PADS_ INITTHRUSTINTENABLEPADSBEACONSSET_ 1T09);

Reset relevant values for each test

205 // Calculate any initial values that need to be calculated

201

2} / end of gspInitiTest

20x

2wi

21) / Perform state estimation based on inertial data. Called periodically.

211 void gspPadsInertial(IMU-sample *accel, IMUsample *gyro,

212 unsigned int num-samples)

2 1 3 {

21A / NOT USED

2} / end of gspPadsInertial

216

217

21s // Records global data. Called at the end of each beacon's

219 / transmission period.

220 void gspPadsGlobal(unsigned int beacon,

22 beacon-measurement-matrix measurements)

222{

223 / NOT USED

224 } // end of gspPadsGlobal

225
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227 // Event-driven task for estimation, control and communications.

228 //Called whenever a masked event occurs.

229 void gspTaskRun(unsigned int gsp-task-trigger, unsigned int extra-data)

230 {

231 // NOT USED

232 } // end of gspTaskRun

233

234

235 // Apply control laws and set thruster on-times. Called periodically.

236 // This is the control interrupt

237 void gspControl(unsigned int test_number, unsigned int test-time,

238 unsigned int maneuver-number, unsigned int maneuver-time)

239 // test/man number = current number, test/man time = elapsed test time

240 {

241

242 // Initialise state vectors

243 state-vector ctrlState = { 0 };// Current estimated state of SPHERE

244 state-vector ctrlStateTarget = {0 }; // Current target state of SPHERE

245 state-vector ctrlStateError = {0 }; // Error b/wn target & current

246

247 // Declare control variables declaration

248 float ctrlControl[6]; //6 element vector (3 forces, 3 torques)

249 prop-time firing-times; // Prop vector for thruster firing times

250 float duty-cycle = 40.0f;

251 const int min-pulse = 10;

252

253 // Control loop default gains from position-derivative controller

254 extern const float KPpositionPD; // Prop. gain for position PD controller

255 extern const float KDpositionPD; //Deriv. gain for position PD controller

256 extern const float KPattitudePD; // Prop. gain for attitude PD controller
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extern const float KDattitudePD; // Deriv. gain for attitude PD controller257

258

25 9

2601

2u1

262

2i-I

2(1s

// Get current state estimate, load SPHERES state into 'ctrlState'

padsStateGet(ctrlState);

switch (testnumber) {

case 1: // Receive commands from Matlab

switch (maneuver-number)

f

case 1: //Maneuver 1: Estimator Convergence

// (move on after 7 sec)

261

270

271

272

274

271

277

278

27!j

281

232

214

285

287 ctrlManeuverTerminate(;
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// Clear memory of control variables

memset(ctrlControl, 0, sizeof(float) * 6);

memset(&firingtimes, 0, sizeof(prop-time));

memset(ctrlState, 0, sizeof(state-vector));

memset(ctrlStateError, 0, sizeof(state-vector));

memset(ctrlStateTarget, 0, sizeof(state-vector));

memset(DebugShort, 0, sizeof(short) * 16);

memset(DebugFloat,0,sizeof(float) * 16);

memset(data-payload,0,sizeof(datapayload));

// default-rfm-payload => 32 unsign char (uint8)

// At end of estimator convergence, terminate maneuver

if (maneuver-time > 7000)

{



289 // At end of estimator convergence, ask for

290 // first data packet

291 //askPacket = 1;

292 }

2m break; // End Maneuver 1

DEBUG (("Est imator Convergence"));

297 case 2: //Maneuver 2: Command SPHERES to

298 // incoming packet State Info

299

3o DEBUG(("Receivinguinputs"));

:301

302 // Set current state target to stored data packet state

33 ctrlStateTarget[POSX] = ctrlStateInput[POSX] ;

304 ctrlStateTarget[POSY] = ctrlStateInput[POSY];

305 ctrlStateTarget[POSZ] = 0.Of;

3(6 ctrlStateTarget[QUAT_1] = ctrlStateInput[QUAT_1];

307

30 // Keep track of how many control inputs per maneuver

309 /*if (maneuver-time == 0) {

310 counter-man = 0;

311 } else {

312 counter-man = counterman + 1;

313 } */

314

315 //Calculate current absolute distance to target

316 distto-target = sqrt(prevctrlStateError[POSX]*

317 prev-ctrlStateError[POSX] +

31s prevctrlStateError[POSY]*
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prev-ctrlStateError[POSY]);

//Terminate current data packet if sufficiently close to

// target, or we've done too many loop iterations

//(i.e. counter is too high)

if ((counter-man > 0 && dist.to-target < tol) |.

counter-man == 100 )

{

//Reset data packet and counter

counter-man = 0;

storedPacket = 0;

askPacket = 1;. // i.e. we've reached the current

// target waypoint, ask for next

// Terminate navigation maneuver after 4 minutes

if (maneuver-time > 4*60*1000)

{
ctrlManeuverTerminate(;

}

break;

case 3: // Maneuver 3: Position hold at end of test

if (maneuver-time > 10000){

ctrlTestTerminate(TESTRESULTNORMAL);

}

break; // end of Maneuver 3
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3s // If the test number does not match a test

351 //end the test and return error code

352 def ault

353 ctrlTestTerminate(TESTRESULTERROR);

break;

3} / end of switch(maneuvernumber)

357

358 //Execute control loop after estimator convergence

359 if (maneuver-number > 1)

360

361 // Copy input vector from matlab to target state

362 ctrlStateInput[POSX] = shortPacket[0];

363 ctrlStateInput[POSY] = shortPacket[1];

364 ctrlStateInput[POSZ] = 0.Of;

365 ctrlStateTarget[QUAT_1] = shortPacket[2];

366

367 // Clear shortPacket vector

36N memset(shortPacket,O,sizeof(shortPacket));

369

370

371 Find error between target state and current state

372 findStateError(ctrlStateError, ctrlState, ctrlStateTarget);

373

374 // Position Control Law

375 ctrlPositionPDgains(KPpositionPD, KDpositionPD,

376 KPpositionPD, KDpositionPD, KPpositionPD,

377 KDpositionPD, ctrlStateError, ctrlControl);

378

379 // Attitude Control Law

380 ctrlAttitudeNLPDwie(KPattitudePD, KDattitudePD,
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3i KPattitudePD, KDattitudePD, KPattitudePD,

382 KDattitudePD, ctrlStateError, ctrlControl);

383

384 // For ground test, ensure no thrusting in z-direction

35 #ifdef GROUNDTEST // only 3 DOF on the table

38( //(NB: sometimes 'wrong' thruster will fire due to mixing

387 // -- > Look at REDDISession_1\MITP4100\...\gsp.c

388 // Cancel forces and torques in unwanted axis because

389 // 3 DOF ground test

391 ctrlControl[FORCEZ] = 0.0f;

391 ctrlControl[TORQUEX] = 0.0f;

392 ctrlControl[TORQUEY] = 0.0f;

393 #endif

394

:3(9 // Mixer

3W, ctrlMixWLoc(&firing-times, ctrlControl, ctrlState,

397 min-pulse, duty-cycle, FORCEFRAME_INERTIAL);

399 / Disable Estimator

400 padsGlobalPeriodSet(SYSFOREVER); //padsGlobalPeriodSetAndWait(

4101

402 // Set Firing Times

10:, propSetThrusterTimes(&firingtimes);

i(14

40r / Reset Estimator

406 padsGlobalPeriodSetAndWait(200, 205); //(200,400)

407

401 } End of Control If Statement

410

411 / Send packet info to Flight Laptop
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DebugFloat[0] = shortPacket[0];

DebugFloat[1] = shortPacket[1];

DebugFloat[2] = shortPacket[2];

commSendPacket(COMMCHANNELSTL, GROUND, sysIdentityGeto,

COMMCMDDBGFLOAT, (unsigned char *)DebugFloat, 0);

// Download commanded data in Unsigned Short Debug Vector

412

4 13

; 1

41-

41-

4 1

420

4121

422

423

-424

425

4 2

42'S

429

430

431

432

433

434

43

436

437

43N

43

440

441

442

= (float)ctrlStateTarget[POSX] *

= (float)ctrlStateTarget[POSY] *

= (float)ctrlStateTarget[POSZ] *

= (float)ctrlStateTarget[VELX] *

= (float)ctrlStateTarget[VELY] *

= (float)ctrlStateTarget[VELZ] *

= (float)ctrlStateTarget[QUAT_1]

= (float)ctrlStateTarget[QUAT_2]

= (float)ctrlStateTarget[QUAT_3]

= (float)ctrlStateTarget[QUAT_4]

= (float)ctrlStateTarget[RATEX]

= (float)ctrlStateTarget[RATEY]

= (float)ctrlStateTarget[RATEZ]

= (short)(test-time / 100.0f);

1000;

1000;

1000;

1000;

1000;

1000;

* 1000;

* 1000;

* 1000;

* 1000;

* 1000;

* 1000;

* 1000;

// send back test time

//in 10ths of a second

commSendPacket(COMMCHANNELSTL, GROUND, sysIdentityGet0,

COMM.CMDDBGSHORTSIGNED,

(unsigned char *)DebugShort, 0);

default:

ctrlTestTerminate(TESTRESULTUNKNOWNTEST);
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DebugShort[11]

DebugShort[12]
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break;

} // end of switch(test-number)

} // end of gspControl function

4s // This function is used to process RX data

451 // (data that the SPHERES satellite receives)

452 void gspProcessRXData(default.rfm-packet packet)

454

455 // Should only be receiving data here when SPHERES

456 / has told Matlab it needs it

45 7 i.e. askPacket = 1;

// Put new state info into shortened vector (NB: start at

// 6th byte, first 5 are metadata)

memcpy(&shortPacket, &packet[5], sizeof(shortPacket));

length = sizeof(shortPacket)/sizeof(shortPacket[0]);

for (i = 0; i < length; i++){

// NB: shortPacket = [posX, posY, quat_1]

shortPacket[i] = shortPacket[i] - 10;

}

// Reset flag values

//storedPacket = 1;

//askPacket = 0;
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4775 }

476

477 //U se this function if you want to do something right

478 // at the end of a test

419 #ifdef TESTENDTRIG

iSo void gspEndTest(unsigned int testnumber, Lnsgned char ctrlresult)

i {

482 }

asa #endif

B.2 Python HTTP Server

B.2.1 Python Server Script

This is the basic HTTP server code, developed by Andrew Liu in the Human Systems

Lab, MIT.

Listing B.2: server.py

i # Basic http server for the AR-SPHERES project

2 # Andrew Liu - 20 March 2019

3 # When a GET request is sent to this server, it should return a

4 # plain text file

# When a POST request is sent, this server should write the

# incoming data to a file

7

8

o from http.server import BaseHTTPRequestHandler

10 from pathlib import Path

ii import time # Just for time stamps
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ii import cgi

import os

class Server(BaseHTTPRequestHandler):

17 def _set-headers(self):

1s self.send-response(200)

m- self.send-header('Content-type', 'text/plain')

20 self.end-headers()

21

22 def doHEAD(self):

23 self._set-headers()

2 5 def doPOST(self):

26 # open the data file, log file, and a lock file

27 # All of these are in the same filder as the python scripts.

fdlock = open("datafile.lock","w")

29 fddata = open("datafile.txt","w")

fdlog = open("datafile.log","a")

31

32 # Another from https://www.codexpedia.com/python/python-

s 3 # web-server-for-get-and-post-requests/

34 # need to 'import cgi'

35 # Data will come in as one keyword with a string that needs

36 # to be parsed for individual values

37

self._setheaders()

39 form = cgi.FieldStorage(

3) fp=self. rfile,

a headers=self.headers,

42 environ={'REQUESTMETHOD': 'POST'}
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43

44 ## print(form.getvalue ("state"))

45 dataline = "State(" + form.getvalue('state') + ")\n"

46 fddata.write(dataline)

47 datalog = time.asctime() + "," + dataline

fdlog.write(datalog)

5u ## self.wfile.write("<html><body><hl>POST

51 ## Request Received!</h1></body></html>")

52

53 # Close up files and remove lock file?

54 fdlock.close()

55 os.remove(Path("datafile.lock"))

56 fddata.close()

57 fdlog.close()

59 ## return

60

61 # The code for serving a GET request based on the lesson from this URL

62 # https://medium.com/©andrewklatzke/creating-a-python3-webserver-

63 # from-the-ground-up-4ff8933ecb96

64

6s def doGET(self):

66 self.respond()

67

68 def handle-http(self):

69 status = 200

7o content-type = "text/plain"

71 response-content =

73 response-content = open("datafile.txt", encoding=('utf-8'))
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7- response-content = response-content.read()

76 self.send-response(status)

77 self.send-header('Content-type', content-type)

7N self. end-headers()

return bytes(response content, "UTF-8 ")

def respond(self):

content = self.handlehttp()

,4 self.wfile.write(content)

B.2.2 Python Script to run Server

This python script is run from the command line, and starts the HTTP server.

Listing B.3: startServer.py

1 # Main python script to start an HTTP server for the AR-SPHERES project

2 # Make sure that the file server.py is also in the same directory.

3 # Code is from the following URL

4 # https://medium.com/©andrewklatzke/creating-a-python3-webserver-from-the

5 # -ground-up-4ff8933ecb96

6

s import time # Just use this to get time stamps

9 from http.server import HTTPServer

i) from server import Server

1-1

12 HOSTNAME = 'localhost' # May need to change this to ipaddress

13 PORTNUMBER = 8080
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ir if __name__ == '__main__':

16 httpd = HTTPServer((HOSTNAME, PORTNUMBER), Server)

1- print(time.asctimeo, 'ServeruUPu-u%s:%s' X (HOSTNAME, PORTNUMBER))

18 try:

19 httpd.serve _forever()

20 except KeyboardInterrupt:

21 pass

22 httpd.server-close()

23 print(time.asctimeo, 'ServeroDOWN,-ujs:%s' % (HOSTNAME, PORT_NUMBER))

B.3 Unity Web Request Code

B.3.1 Unity C# POST Server Script

This C# script uses the inbuilt Unity class UnityWebRequest to push data to the

server via the POST request. Note that this script is simplified to show the basic

functionality of the UnityWebRequest class. It simply verifies that a connection to

the Server has been made and POSTS a simple message to the Server text file.

Listing B.4: PostData.cs

i using System.Collections;

2 using System.Collections.Generic;

using UnityEngine;

using UnityEngine.Networking;

public class PostData : MonoBehaviour

/

IStart is called before the first frame update
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void Start()

1 {

12 StartCoroutine(Upload();

}

IEnumerator Upload()

130 {

17/ First create data in the form of formData

WWWForm form = new WWWFormo;

20 //Add field to the form

21 string state = "3.14159";

22 form.AddField("state", state);

2.3

24

25 //UnityWebRequest.Post requires URL and postData

2( //(i.e. Form body data)

27 //Sets the url = uri string argument

2S/ Sets method to POST

29 // "localhost:3000/api/post-diag"

31 //Create object for UnityWebRequest class from

32 //unityengine.networking

-33 /using (UnityWebRequest www = UnityWebRequest.Post(...

34 // "http://localhost:8080", form))

,11 using (UnityWebRequest www = UnityWebRequest.Post(...

36 "http://18.20.234.155:8080/", form))

37 {

:39// We should return in ienumerator

40 yield return www.SendWebRequest(;
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43

44

45

465

47

151

// Check API is valid

if (www.isNetworkError || www.isHttpError)

{

Debug.Log(www.error);

}

//If completed

else

{

Debug.Log(" Formuuploadu complete!");

}

}

}

//Update is called once per frame

void Update()

{

}
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B.3.2 Unity C# GET Server Script

This C# script uses the inbuilt Unity class UnityWebRequest to request data from

the server via the GET request. Note that this script is simplified to show the basic

functionality of the UnityWebRequest class. It simply verifies that a connection to

the Server has been made and GETS a simple message from the Server text file.

Listing B.5: GetData.cs

i using System.Collections;

2 using System.Collections.Generic;

using UnityEngine;

4 using UnityEngine.Networking;

; // Using UnityWebRequest.Get to download a page and test a

7 // non-existent page

o public class GetData : MonoBehaviour

mn {

11

12 //public GameObject

13

14

i1 //Start is called before the first frame update

IG void Start()

17 {

/ A correct website page

I9 //StartCoroutine(GetRequest("http://www.google.com"));

20 //StartCoroutine (GetRequest ("http : //localhost :8080 ")) ;

21 St art Cor out ine (GetReque st ("htt p ://18. 20. 234 . 155: 8080/"));

22 Debug. Log("We 'reuin");

23 // A non-existent page
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//StartCoroutine (GetRequest ("https ://error. html ")) ;

}

IEnumerator GetRequest(string uri)

{

using (UnityWebRequest webRequest = UnityWebRequest.Get(uri))

{

24

25

27

28

29

30

311

32

33

34

3s

string[] pages = uri.Split('/');

int page = pages.Length - 1;

if (webRequest .isNetworkError)

{

Debug.Log(pages[page] + ":oErroru" + webRequest.error);

}

else

{

Debug.Log(pages[page] + ":\nReceived:u" +

webRequest.downloadHandler.text);

}

}

}

//Update is called once per frame

void Update()

{

}

}

153

// Request and wait for the desired page

yield return webRequest .SendWebRequest(;
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Appendix C

Final Simulation

C.1 Anomaly Locations

A total of eight simulations were built, two for each command mode. Each simulation

had a different anomaly configuration, as described by Table C.1.
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Command Mode Critical Anomalies Non-Critical Anomalies
Mal Waypoint A, 5 7
Zoe Waypoint E ,1 3

Wash Global D, 3 9
Inara Global C ,7 1
Jayne Local B, 4 6
Simon Local F , 2 5
River UF - B, E, 4, 1

Kaylee UF C 2, 5, 7

Table C.1: Distribution of anomlies at high/low risk areas for each simulation. Let-
ters and numbers correspond to high and low risk station areas respectively, as per
Figure 2-8
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Appendix D

Human Study Protocol Documents

D.1 Subject Testing Matrix

Each experimental scenario was named after a different Firefly TV character, corre-

sponding to the appropriately configured HoloLens simulation.
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Group Subject Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8

1 Mal Wash Jayne Simon Inara Zoe River Kaylee

2 Mal Jayne Wash Inara Simon Zoe River Kaylee

3 Wash Mal Jayne Simon Zoe Inara River Kaylee
A

4 Wash Jayne Mal Zoe Simon Inara River Kaylee

5 Jayne Wash Mal Zoe Inara Simon River Kaylee

6 Jayne Mal Wash Inara Zoe Simon River Kaylee

7 Mal Wash Jayne Simon Inara Zoe River Kaylee

8 Mal Jayne Wash Inara Simon Zoe River Kaylee

9 Wash Mal Jayne Simon Zoe Inara River Kaylee
B

10 Wash Jayne Mal Zoe Simon Inara River Kaylee

11 Jayne Wash Mal Zoe Inara Simon River Kaylee

12 Jayne Mal Wash Inara Zoe Simon River Kaylee
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D.2 Subject Recruitment Email

Recruitment Email

Subject Line: Subjects needed for Astronaut Study on Robotic Operations in Space

Email:

Have you ever wanted to experience what's its like to be an astronaut? Or get to
work with an augmented reality system to control robots remotely?

MIT AeroAstro Department's Human Systems Lab is looking for subjects for a study
on Astronaut operations. The study is examining how astronauts could communicate
with and control small robotic satellites for future spacewalks, making it safer and
more efficient for astronauts on deep space missions to the Moon and Mars.

The study will be conducted over 2 days (2-3 hours each day) in which you'll get to
play with the Microsoft HoloLens, control actual robots designed for outer space, and
get to pretend to be an astronaut.

All subjects will be compensated $20 for their time and participation in the study.

If you're interested, please email Jessica Todd (Office 41-206, PH: 857-998-1463,
Email: ietoddamit.edu) or fill in this google form:
https://goo.gl/forms/s33uEDGVAKAC48kX2
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D.4 Screening Matrix

Screening Matrix

DATE:

Please tick in the appropriate box for the following conditions.

Yes No

Do you have any auditory impairment that might

prevent you from following auditory commands

spoken to you by the investigator?

Can you see a computer screen with

corrected/uncorrected vision?

Do you have any visual impairment that will

affect your ability to use the HoloLens

augmented reality system? (Note, the system can

be used with glasses)

Do you have full mobility in your hands and arms

to perform gestural motions?

Have you previously experienced any significant

visual/auditory/vestibular discomfort when using

an augmented reality/virtual reality system that

you believe will affect your use of the system

now?

Have you previously experienced any significant

motion sickness/nausea when using an

augmented reality/virtual reality system that you

believe will affect your use of the system now?

Are you comfortable using the HoloLens

augmented reality system?
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D.5 Study Protocol Script

D.5.1 Training Day

1. Subjects are asked screening matrix questions.

2. Following screening form, given consent form to review and sign.

3. Test administer gives overview of experiment and the training and test proce-

dures.

Script: Thank you for agreeing to be a test subject for my Masters Thesis work.

Let me give you some context for the experiment you're about to take part in. Cur-

rent maintenance and inspection of the space station and other crewed spacecraft re-

lies heavily on EVAs ('spacewalks'), which are strictly choreographed and rehearsed,

and rely on constant communication and support from the ground. NASA's plans

to push crewed missions further into deep space, meaning a harsher radiation envi-

ronment outside the spacecraft, and communication delays with Earth. So we need

alternatives to sending humans out to perform EVA. One option is to use small,

free-flying inspector spacecraft that can be operated from inside the space station by

astronauts. The purpose of this study is to examine the use of Augmented Reality

in controlling such a free-flying inspector robot for performing an on-orbit inspection

tasks. You will be using the Microsoft HoloLens headset to perform these experi-

ments. The experiment requires you to navigate around the exterior of the space

station to look for surface anomalies.

Today will be a training day, where you will learn the basics of the Augmented

Reality headset, the Microsoft HoloLens, and how you will be interacting with the ex-

perimental simulation. This training is a screening process, if you fail to successfully
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complete all training to a satisfactory level, you will not be permitted to perform the

experimental stage tomorrow. Tomorrow, you will undergo a quick review of what

you learned today, and then proceed to perform 8 tests using the HoloLens to inspect

a virtual space station. I'll give you more details on that tomorrow.

If you need to take breaks at any point during this training, please ask.

5. Demographic matrix completed.

6. Subjects given reference handout to read over for a few minutes and informed

about what data will be recorded during training.

7. Subject instructed to read HoloLens section of training document.

Script: HoloLens is a mixed reality platform, meaning it allows you to see both

the real world, and a virtually generated world, simultaneously. This kind of system is

being considered for on-orbit use, as it would allow astronauts to maintain awareness

of their surroundings while performing inspection tasks outside the space station.

8. Subject puts on Hololens and is introduced on how to perform basic Hololens

gestures (bloom and click) and the cursor, with demos from the test administer.

Script: Hololens utilises two basic gestures, the bloom gesture and the tap gesture.

The bloom gesture is used exclusively for exiting an app and returning to the main

menu. Pinch all your fingers together in front of you, pointing up, and then spread

your fingers. You should see the main menu of the HoloLens appear, and hear a

small tone in your ear.

While we're here, lets introduce the cursor. The cursor is essentially your mouse,

and allows you to indicate what you want to interact with. It always appears in the

center of the frame, in line with your head. Move your head around a bit to see how
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the cursor follows your head movements. To click on something in HoloLens, the

cursor must be hovering over that hologram.

The tap gesture is used for interacting with holograms. To perform the tap

gesture, raise your dominant hand in front of you, pinch your thumb and middle,

ring and pinky fingers, and stick your index up to form an 'L' shape. This is the

ready gesture, and it signals to the HoloLens that you are about to perform a tap

gesture. Focus your cursor on the menu item that says AAIJAll Apps&Al off to the

right. Now click your index and thumb together to perform the tap gesture and

select this menu item. Practice the bloom (return to menu) and tap gesture a few

times.

9. Subject is introduced to the restricted Hololens field of view, and then in-

structed to complete introductory HoloLens tutorial.

Script: The Hololens has a field of view of approximately 35 degrees. The

Hololens will not register any gestures outside of this field of view. Place your hand

in the open click position (the 'L') and move your hand in and out of your field of

view one at a time to get a sense of the boundaries of the Hololens sensors. When

the hand is in the field of view, the cursor should expand into'an open circle. Now

try your other hand.

To make sure you understand all the HoloLens components, we'll do a quick run

through of a HoloLens training app. Tap on the icon called AAIJLearn GesturesAAi,

and complete the tutorial. Let me know when you've finished.

10. Subject instructed to select first training app. Subject works through scaling,

rotating and moving objects with demos from the test administer.
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Script: Now we will start your astronaut training. We will be learning how to

move, rotate and scale holograms. In our experiment, you will be able to move, scale

and rotate the space station to change your viewpoint.

Please navigate to the main menu, and select the app called "Alpha Training&Ai

by moving the cursor over the app and tapping. I'll walk you through the training.

The space station can be moved by placing the cursor over the object, tapping

and holding, and then dragging your hand around in 3D space. Try moving the

station object around. Then click the 'next' arrow.

To change the scale of the space station, you need to perform a two-hand tap.

Focus your cursor on the station, tap and hold with both hands, and pull your hands

apart and back together to watch the station expand and shrink. Try and scale the

station. Then click the 'next' arrow.

Finally, rotating. Once again, we need to use the two-hand tap. Tap and hold

with both hands, then move your hands around a central point in between them,

as if rotating a real object. You can rotate in all three directions as shown by the

demonstrator. It can sometimes be difficult to rotate around the horizontal axes due

to the limited field of view. In this case you'll need to perform two rotations around

the other two axes to get the station where you want. Try and rotate the station in

each of the three directions, then click next.

Now we can combine moving, scaling and rotating. Manipulate the station to

match the position, scale and orientation of the red station. The red station should

turn green when you match up. During your experiment, your virtual station can be

rotated, moved and scaled to provide you with different viewpoints during the test.

When the station moves, any tethered features, such as waypoints you place, or the

inspector satellite, will move and scale with it.

To exit the app, perform the bloom gesture, then use the cursor and tap on the
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'Home' button.

11. Subject removes HoloLens and takes a break.

12. Subject instructed to read the Experimental Set-Up section of the document.

13. Subject then goes through the second training app to learn to navigate us-

ing waypointing, and d-padding. If completed to satisfactory level, subject is

cleared to continue with study.

Script: You've completed basic hologram training, congratulations! Now its time

to practice the different types of control you will use for the experiment. During the

experiment, you will be controlling the inspector satellite, to maneuver it around the

exterior of the space station, looking for anomalies on the surface that may pose a

risk to you and your crew. You will be asked to locate both critical and non-critical

anomalies. There will be multiple anomalies in each test. These anomalies will only

appear when you are within a certain proximity.

For the experiments tomorrow. I will be assessing your performance while under-

going these tasks. You should prioritise your performance based on the following, in

order of priority:

1. Avoid collisions with the station or with any delicateprotrusions such

as solar panels or communication disks.

2. Locate anomalies. Prioritise critical anomalies and log them using the

anomaly log button.

3. Complete a full inspection of the station and locate anomalies in a

timely manner. The simulation will time out after 6.5 minutes.

You may manipulate the station to achieve different viewpoints however you like

to help you best complete the inspection task.
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You will perform the test using three different control modes for the inspector,

repeating each mode twice. The modes are:

• Navigating using a directional pad, in the world frame. This axis are locked to

the station itself, as you can see in

" Navigating using a directional pad, in the body frame of the satellite. If you

look at the tutorial document you can see how the axis of the inspector are

oriented.

" Waypointing. This will require you to place markers for the inspector to move

to.

Navigate to the training called AAIJBeta TraininghA. As you saw in your train-

ing packet, movement of the inspector is restricted to the x-z plane. Lets first try

toggling between these different control modes, by clicking the toggles in the upper

left and right hand corners. You'll notice that different buttons will appear and

disappear.

Lets first try navigating using the global directional pad. Click the global/local

toggle in the upper right of the control pad so that it read global and glows blue.

Try following the white path as closely as you can, using the global directional pad

buttons. It will turn green when you're on the right path. Feel free to manipulate

the station view to assist you in navigating.

Its also important to remember that the directional pad does not change position

when the station does. So even if the station is rotated in a different direction, the

forward area will still move the inspector along the +Z axis of the station.

Now try navigating in the local frame back along the same path. Toggle back

to a local directional pad, and once again move along the white path. Now you are
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moving relative to the body frame of the inspector. A small arrow jutting out from

the satellite indicates the forward direction. Note the difference between the world

and local coordinate frames when you rotate and then move the inspector. You are

now following its body coordinate frame, as opposed to the world frame.

Finally, lets try navigating using waypoints. Waypoints act as markers for your

inspector, giving it a target location to move to. If you toggle the waypoint button

in the upper left, you'll notice that the d-pads disappear and three waypoint buttons

appear. These allow you to generate, set and delete a waypoint. When clicking the

generate button, you'll see a small flag appear in front of you, near to the starting

position of the inspector. This is the Waypoint marker. This flag will always generate

at the same spot on the station, and then you are free to tap and drag this marker

to your desired location. If you click the delete button, this waypoint will disappear.

This is also useful if you lose track of a waypoint. To make the inspector move

towards a waypoint, you must 'set' it by clicking the set button. This commands

the inspector to move in a straight-line path to the x-z coordinate of the waypoint.

If you click delete while the inspector is en-route, it will stop at its current location.

Try placing some waypoints along the white path.

Ok, lets talk anomalies. You should also notice, as you near the end of the white

path closest to the station, you will see a critical anomaly appear. If it doesn't appear

immediately, navigate closer to the surface and it should appear. This is a critical

anomaly, and poses risk to your crew. Click on the exclamation icon-ned button, to

log the anomaly and notify your crew. There is another non-critical anomaly hidden

on this part of the station, where the two modules join together. See if you can

navigate over and find it. You do not need to log this kind of anomaly.

14. Subject given free time to play with the Hololens app to familiarise themselves
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with the modes of control and interaction. May continue until they are satisfied

that they can use the system sufficiently.

Script: If successful: Congratulations, you've completed your astronaut training!

Please take some time now to play around with the HoloLens Beta Training app,

familiarising yourself with the gestures and control modes until you're confident you

can repeat this tomorrow in test conditions.

If unsuccessful: Unfortunately, you have not been able to complete the necessary

astronaut training to proceed with this experiment. Thank you for your time in

performing the training procedure.

D.5.2 Testing Day

1. Subjects are quickly reviewed on training from the previous day to ensure they

can continue with the study.

Script: Thank you for agreeing to continue the testing today. Today is the fun

stuff! As I said yesterday, you will be performing several different tests to study your

performance using different control modes. You will perform 8 tests in total, 2 in

each control mode with the control mode fixed, and then 2 tests in which the control

mode is unfixed and you have free choice over which control mode you use.

Before we begin, lets review the training from yesterday very quickly. (If they

don't know the answer, walk them through it).

• What are the goals in order of priority of the simulation?

1. Avoid collisions with the station.

2. Local critical and non-critical anomalies and log appropriately.

3. Complete inspection in a timely manner.
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" Demonstrate how you would move the station or a waypoint, scale

the station, and rotate the station.

• What is the difference between the global and local d-pads and how

do you change between them?

- Global is in the world frame of the station , Local is in the body

frame of the satellite. They are toggled.

• How do you place a waypoint?

- Generate, move to position, Set, Delete.

• Can you identify which anomaly is critical and which is non-critcial?

3. Subjects are given the cheat sheet and post-test questionnaire to review before

starting the tests.

4. Subjects move through each fixed mode trial as specified by test matrix.

Script: Lets begin the tests. The goals of each test, in order of priority, are as

follows:

1. Inspect the exterior of the space station while avoiding collisions.

2. Locate critical and non-critical anomalies.

3. Complete inspection of the station in a timely manner. The simulation

will time out after 6.5 minutes.

In each test there are multiple anomalies to detect, both critical and non-critical.

Between each test you will be given some time to rest and remove the HoloLens.

At the end of each test, you will fill out this post-test questionnaire. Questions differ

slightly depending on the control mode you are using. You will also complete a

NASA-TLX survey to gauge your workload during the test.
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During the test I will be recording your HoloLens viewpoint and hand movements.

Your first test will be (trial name) so please select Simulation (trial name). When

you are satisfied that you have completed your inspection, perform the bloom gesture

to return to the main menu.

Please verbally confirm that you see the application window, followed by the

Unity logo. These may take a few seconds to appear. Good luck!

5. At the conclusion of each test, subject is permitted a break while test personnel

save the video recording of the test, and download the log file from the Web

Portal.

6. At the conclusion of each test, subject fills out the SA questionnaire and NASA

TLX assessment.

7. After completing 6 structured tests, subjects are instructed to perform 2 un-

structured tests.

Script: You have completed your first 6 tests. The final two tests are called

'unstructured' tests. This means that the control mode you perform the test in is

not fixed. You may use any of the modes (waypoints, global d-pad, local d-pad) and

may switch between them as you prefer during the test. The simulation will open on

the default local dpaf setting, but you may change it immediately if you wish. The

conditions of the test are the same. There are multiple anomalies to detect, and the

test will time out after 6.5 minutes. At the conclusion of each unstructured tests you

will fill out the post-test questionnaire.

First, select Simulation River and complete. When you are satisfied you have

finished your inspection, perform the bloom gesture to exit.
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Your second Simulation Kaylee . Please select it and complete. When you are

satisfied you have finished your inspection, perform the bloom gesture to exit.

8. At the conclusion of all testing, subjects are asked to provide qualitative feed-

back on their experience of the station inspection task.

9. Subject completes an MRT.
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D.6 Demographic Data Matrix

Demographic Information Matrix

DATE:

Please fill in the following matrix.
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Gender

Age

Are you an MIT student/staff member?

Do you use a computer regularly?

Do you use a touch-screen device

regularly?

Have you previously used a virtual reality

system? (e.g. Oculus rift, HTC Vive etc).

If yes, please specify.

Have you previously used an augmented

reality system? (e.g. Microsoft HoloLens,

Magic Leap One etc). If yes, please

specify.

Do you have any relevant prior

experience to the current study? If yes,

please specify.

Have you previously worked with the

SPHERES platform? If yes, please specify

in what capacity.

Have you previously worked with a tele-

operated robotic system? If yes, please

specify in what capacity.



D.7 Subject Training Document

Station Inspection Training Document

Experiment Overview

During this experiment, you will be using the Microsoft HoloLens. You will be
acting as an IVA (intra-vehicular) astronaut, tasked with performing an
inspection of the exterior of your space station to look for anomalies on the
surface. The Microsoft HoloLens enables you to interact with an Augmented
Reality display depicting your space station, and the small inspector satellite you
can control to detect the anomalies.

HoloLens Overview

The Microsoft HoloLens platform is a mixed reality head-mounted display. The
visor projects a virtual reality image or 'hologram' out in front of the user, and
uses sensors mounted into the front of the unit to track hand movements. The
HoloLens uses a Gaze-Gesture-Voice input model to interact. For this experiment
we will only be utilising the Gaze and Gesture functionality.

Gesture Frame and Field of View

The field of view of the Hololens is approximately 35°. This view can be quite
restrictive and objects will disappear outside of this view, or if you move them to
close to you.

The Hololens will not register any hand gestures outside of its Gesture Frame.
This is the boundary of where the HoloLens can detect hand gestures,
approximately a foot on either side of the user. In order to perform a two-handed
gesture, both hands must be within this field of view.

r--------------------------- ------------ -------
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Gestures

HoloLens utilises two basic gestures:

Bloom: this is the "home button" and is exclusively used to exit an app and
return to the main menu.

Tap: this is used to interact with holograms. Place fingers into an 'L' shape to
signal to HoloLens you are in the ready position (cursor should become an
open circle). A single tap down can be used for button presses. If you tap and
hold, you can drag holograms around.

1. Finger in the ready position 2. Press finger down to tap or click

TAP

Scaling and Rotating
Two hands can be used to scale and rotate holograms. Place both hands in the 'L'
shape, tap and hold. To scale, move hands closer together/further apart. To
rotate, rotate hands around a central point

Io-
SCALING

c-iTh

ROTATING
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Gaze and Cursor

Holograms are fixed in the real world. The HoloLens uses head-tracking to
determine where the user is looking in the world, not eye-tracking, with the
cursor always appearing in the centre of the frame as a small white dot. Think of
your head like a computer mouse, used to move the cursor around.

To interact with holograms, your cursor must be on the hologram, so your head
must be pointed at the object. If your hand is in the frame when you perform a
gesture, the cursor will expand from a dot into an open circle, meaning the
HoloLens has detected the gesture. If the cursor is hovering over an object you
can interact with, the cursor will morph to the shape of the object.

When you tap on an object, the cursor will shrink back to a white dot, until you
release the tap.
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Experimental Set-Up

During the experiment, you will be moving the inspector satellite around the
virtual station. The virtual station scene can be scaled, rotated and moved to give
you different viewpoints at any time throughout the test. You are encouraged to
use this feature as much or as little as you would like to, to help you best
complete the inspection task. When the station moves, rotates and scales, all
tethered features (i.e. the inspector satellite, any waypoints you've placed) will
move and scale with it.

During the experiment, you will be controlling the inspector satellite. For this
experiment, its movement will be restricted to two dimensions (x and z in world
coordinates), and all anomalies will be located at the same height as the
inspector. You will control the inspector in 3 different control modes.

Control Pad
Control of the inspector is achieved through the holographic control pad that will
appear in front of your eyes. This control pad cannot be moved during the
simulation. You can toggle between waypointing and directional navigation pads,
as well as toggle the directional navigation pad between a global and a local
mode, as explained below.
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Global Directional Pad

The global directional pad allows the inspector to be moved incrementally
relative to the world frame of the space station. The global directional pad acts
like a d-pad on a game controller, allowing you to move the inspector
forward/back/left/right and to pan left/right relative to the world coordinate
frame (see diagram).

WORLD
FRAME a

Note: the directional pad buttons cannot be held down for continuous
movement. To move the inspector repeatedly in one direction, the button must
be pressed multiple times.

Directional Pad:
anFoard (+Z)

Back (-Z)
Anticlockwise Clockwise 15 Right (+X)
15° Left (-X)
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LocalD-Pad

The local directional pad allows the inspector to be moved incrementally relative
to its own body frame. The local directional pad allows you to move the
inspector forward/back/left/right and to pan left/right relative to its own body
coordinate frame (see diagram).

LOCAL BODY
FRAME

Note: the directional pad buttons cannot be held down for continuous
movement. To move the inspector repeatedly in one direction, the button must
be pressed multiple times.

Anticlockwise
150

par
Clockwise 150

Forward (+Z)
Back (-Z)
Right (+X)
Left (-X)

179



Waypointing

Waypointing is used by placing a marker in the virtual world, as a target for the
inspector to move to. The waypoint command mode can be operated by first
toggling on the waypoint buttons (see diagram). The three buttons have the
following function:

- Generate: this generates a new waypoint object in front of the user. The
user can then move this waypoint around on the station and position it as
desired.

- Set: this sets the waypoint as the current target for the inspector. When
this button is pressed, the inspector will begin to move towards the
waypoint, and the waypoint will disappear when the inspector reaches it.

- Delete: this deletes the current waypoint. If the sphere is moving towards
the waypoint when you delete it, it will stop at its current position. Delete
can also be used prior to set, to remove the active waypoint object.

X

Genera Set waypoint

Note: only one waypoint can be placed at a
time. You cannot place the next waypoint
while the sphere is moving to the first
waypoint. When you scale/rotate/move the
space station, any existing waypoints will
also scale/rotate/move with it.

Also it is important to realise that the
inspector will only move in straight lines
between waypoints at a fixed speed. To avoid
collisions with the station, you must place
your waypoints accordingly.

WAYPOINT
MARKER

180



Anomalies

There are multiple anomalies in each test, and between 0 and 3 of these will be
critical anomalies. To simulate navigation around an unknown space station,
anomalies will only appear when 'detected' by the inspector, i.e. when the
inspector gets within certain proximity of the anomaly. The direction the
inspector is pointing does not matter for the detection of anomalies, only its
position relative to the space station. At the conclusion of the test, you will be
given a post-test questionnaire that will ask you to identify the locations at which
you found critical and non-critical anomalies.

Critical Anomaly Non-critical Anomaly

Anomalies can be located anywhere on the surface of the space station, at the
same y ('vertical') coordinates as the inspector satellite, i.e. at inspector eye level.
When you detect an anomaly and determine it to be critical, you must notify your
crew by logging the anomaly. You do this by tapping on this button, located in
the upper center of your control panel.
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Collision

Your inspector satellite is a delicate piece of equipment, and as such, you want to
avoid collisions with the space station which could damage the inspector. When
your inspector satellite collides with the space station, the inspector will change
colour, from red to white, to indicate you have collided. When the inspector
moves away from the station, it will return to its red colour.

Nominal Inspector on
Inspector Collision
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Running the HoloLens App

When you initially turn on the HoloLens, and whenever you return to the main
menu. You should see the image below. If you have exited an app and do not see
this image, perform the 'bloom' gesture to return here.

When you initially start one of the HoloLens apps, you should see an application
window like the one below. Please verbally confirm you can see this window to
your test administer. If you do not see this window before the app opens, inform
the administer.

Following the application window, your screen should go black, and then the
UNITY Gaming Engine logo should appear. As before, please verbally confirm you
see this window, and if you do not, please tell the test administer.
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Exiting the HoloLens App

You may exit the app in one of two cases:
- when you are satisfied that you have completed your inspection of the

space station, OR
- when the game timer runs out and a pop-up appears telling you its game-

over.

To exit the app, perform the 'bloom' gesture. When the following menu appears,
select the centre 'Home' button with your cursor and 'tap'.
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D.8 Subject Cheat Sheet

Station Inspection CHEAT SHEET

Frames of Reference

Global D-Pad:
WORLD FRAME

LocalD-Pad:
LOCAL BODY FRAME

NON-critical Anomaly
CRITICAL Anomaly
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D.9 SA Questionnaire

Post-Test Questionnaire:

Please fill out the following questions at the end of each trial:

Subject ID:
Trial Name:

1. On the diagram of the station below, please draw the path you
believe the inspector satellite took on its inspection of the
space station using a red marker.

2. How many critical anomalies did you detect?

Please place a blue X on the diagram at the location of the
critical anomalies.

3. How many non-critical anomalies did you detect?

Please place a green circle on the diagram at the location of the
non-critical anomalies.
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4. How many collisions do you think you made with the space
station over the course of the test?

5. ONLY IF WAYPOINTING:

a. How many waypoints did you place?

b. Please indicate with a purple X on the diagram above
where you placed waypoints.

6. Approximately how many times do you think you

a. Moved the station?_

b. Rotated the station?_

c. Scaled the station?_
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D.10 Post-Test Qualitative Questionnaire

Post-Experiment Questionnaire:

Please fill out these questions at the end of the unstructured tests

1. Were there any areas you took longer to inspect than others?

2. What areas of the station did you consider high risk? Did your strategy
change based on the control mode you were using?

3. What areas of the station did you consider low risk? Did your strategy
change based on the control mode you were using?

4. Did you have a preference of control mode? Did this preference change
across the task?

5. Which viewpoints of the station did you prefer and why? Did this
preference change across the task? (Consider scale, position and
orientation in your answer)

6. How does your performance in the unstructured test compare to that of
the structured test?
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7. Would you prefer to perform this task in an unstructured or structured
way? If structured, which of the three modes would you prefer?

8. Overall, how did you find the experience of using this simulation? Would
you use this system again?

9. Other comments/feedback?
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