
LUI: A scalable, multimodal gesture- and voice-

interface for Large Displays

by

Vikraman Parthiban

M.S. Electrical Engineering, The University of Texas at Austin (2016)
B.S. Computer Engineering, The University of Texas at Austin (2014)

B.A. Liberal Arts, The University of Texas at Austin (2014)

Submitted to the Program in Media Arts and Sciences, School of
Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Massachusetts Institute of Technology 2019. All rights reserved.

- ii
Signature redacted

Author ..
Program in Media Arts and Sciences, School of Architecture and

Planning

August 9th 29

Certified by............................. Signature redacted
V. Michael Bove

Principal Research Scientist
I/ - ,

Accepted by Signatu
MASSACHUSETTS NSTITUTEl

1 JAcademic He d,Program in Med

Thesis Superviso

re redacted
LI1 Tod Machover
ia Arts and Sciences

OCT 0 4 2019

LIBRARIES ARCHIVES

2

LUI: A scalable, multimodal gesture- and voice- interface for

Large Displays

by

Vikraman Parthiban

Submitted to the Program in Media Arts and Sciences, School of Architecture and
Planning

on August 9th 2019, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

With the rise of augmented and virtual reality, new interactive technologies are
incorporating immersive user interfaces that leverage gesture and voice recognition in
addition to existing controller inputs. However, the state-of-the-art interfaces are quite
rudimentary and not widely accessible for the user. Such interfaces require significant
amount of sensors, extensive calibration, and/or high latency in the gestural commands.
LUI (Large User Interface) is a scalable, multimodal interface that uses a framework
of nondiscrete, free-handed gestures and voice to control modular applications with a
single stereo-camera and voice assistant. The gestures and voice input are mapped to
web UI elements to provide a highly-responsive and accessible user experience. The
menu screen consists of an extendable list of applications, currently including photos,
YouTube, etc, which are navigated through the input framework. This interface can
be deployed on an AR or VR system, heads-up displays for autonomous vehicles, and
everyday large displays.

Thesis Supervisor: V. Michael Bove
Title: Principal Research Scientist

3

4

I

This thesis has been submitted and approved by the following committee
members:

Thesis Supervisor
Signature redacted

V. Michael 13ove, PhD
Principal Research Scientist

Program in Media Art and Sciences

T hesis R eader
John Underkoffler, PhD
CEO, Oblong Industries

T hesis R eader ...
Zachary Lieberman

Co-Founder, OpenFrameworks
Parsons School of Design

6

LUI: A scalable, multimodal gesture- and voice- interface for
Large Displays

by

Vikraman Parthiban

The following person served as a reader for this thesis:

Thesis ReaderSignatureredacted
John Underkoffler, PhD

Oblong Industries

LUI: A scalable, multimodal gesture- and voice- interface for
Large Displays

by

Vikraman Parthiban

The following person served as a reader for this thesis:

Signature redacted
Thesis Reader

Zachary Lieberman
Parsons School ofDesign

Acknowledgments

I would first like to thank my advisor V. Michael Bove and Sunny Jolly for giving

me a home at the MIT Media Lab. Leaving my career, family, and warm weather

in Texas was a difficult moment in my life, but the Media Lab provided a warmer

welcome. Michael, you encouraged me to look at challenging projects at the Media

Lab where I started my work in the holographic video space. This led to my work

on LUI, because I commonly found myself frustrated when working with new poorly

designed interfaces for augmented and mixed reality.

I want to thank John Underkoffler, whom I was fortunate to meet during a conference

and lunch at the MIT Media Lab and inspired me to start building LUI. John, you

taught me the history behind gestural interfaces and encouraged me to not give up.

And of course, I would not be here if it were not for our mutual colleague Michael Klug.

Michael, your advice while I was a full-time engineer at Magic Leap was instrumental.

You told me that I would not regret coming to the Media Lab, and it's definitely true.

I also thank Zach Lieberman. Zach, you constantly offered up time via office hours to

help and motivate students in artistic areas of their career. Your work in computation

and design encouraged me to instill similar qualities in LUI.

And of course, I would be remiss if I did not thank my wonderful UROP students,

Ashley Lee, Claire Tang, Kathryn Jin, and Jeremy Ma who committed their time and

energy to mold LUI into what it is today.

To my MIT Hyperloop II team, you all gave me an outlet to work on a project so fun

and MIT-worthy. The experience of building an award-winning electric Hyperloop

vehicle in 6 months (and later 3 weeks) was incomparable.

I want to thank my family. Mom, Dad, Pradeepan, and Kayal, I am blessed to have

11

you in my life, and I promise I will call more often. And to my dear Zainab, you gave

me a reason stay in Boston. We met at such a unique moment at MIT, and I would

not have it any other way. I love you so much :)

Lastly, I thank God for giving me the strength and ability to get through these tough

years at MIT. It was probably the most challenging two years of my life, and I'm

excited to see where I'm going next.

12

Contents

1 Introduction 17

1.1 W hat is LUI? . 18

1.2 Motivations . 19

2 Prior Art 21

3 LUI Design Guidelines 27

3.1 Accessible . 27

3.2 Extensible . 29

3.3 Non-discrete gestures . 29

4 Software/UT Architecture 31

4.1 Navigation Schema . 31

4.1.1 Lock Screen . 32

4.1.2 Main Menu . 33

4.1.3 Photos . 35

4.1.4 Videos . 38

4.1.5 3D Models . 40

4.1.6 Augmented Reality mode . 43

4.2 React.JS Framework . 45

4.2.1 Index.js . 46

4.2.2 Pages.js . 47

4.2.3 App.js . 47

13

5 Gesture and Voice Pipeline

5.1 Gesture Protocol

5.1.1 Leap.js

5.1.2 Swipe gesture

5.1.3 Airtap gesture

5.1.4 Bloom gesture

5.1.5 Second hand input

5.2 Voice protocol

5.2.1 Commands

5.2.2 Dialogflow.js

5.2.3 Firebase

6 Ethics and Evaluation

6.1 Setup

6.2 Procedure

6.3 Survey and Analysis

6.4 Improvements and Next Steps. .

14

55

55

56

61

62

63

64

65

65

66

70

73

74

74

75

80

List of Figures

1-1 LUI demo on 17 ft diagonal display 19

2-1 Put-that-there . 22

2-2 G-speak by Oblong Industries . 24

3-1 Leap Motion . 28

3-2 Google Assistant . 29

4-1 Lock Screen 33

4-2 Menu screen . 34

4-3 Menu screen with hand gesture . 34

4-4 P hotos . 35

4-5 Photos with hand gesture . 36

4-6 Photos single view with hand swipe 36

4-7 Photos option 1 . 37

4-8 Photos option 2 . 37

4-9 V ideos . 38

4-10 Videos with hand gesture . 38

4-11 Videos single view . 39

4-12 Videos volume minimize (CCW) . 40

4-13 Videos volume maximize (CW) . 40

4-14 M odels v1 . 41

4-15 Models App Right hand to zoom out 42

4-16 Models App Right hand to zoom in 42

15

4-17 Models App Left hand to pan . 43

4-18 LUI in Augmented Reality . 44

4-19 LUI Main Menu in Augmented Reality 44

4-20 LUI 3D model in Augmented Reality 45

4-21 LUI source directory . 46

5-1 Swipe gesture . 62

5-2 Airtap gesture . 63

5-3 Bloom gesture . 64

5-4 Volume control . 65

5-5 Voice pipeline . 66

5-6 Dialogflow Intents . 67

5-7 Voice current Home . 71

5-8 Voice current photos . 71

6-1 Question 1 . 76

6-2 Question 2 . 76

6-3 Question 3 . 77

6-4 Question 4 . 77

6-5 Question 5 . 78

6-6 Question 6 . 78

16

Chapter 1

Introduction

Large 4k and 8k TVs have been entering the market to help visualize immersive

datasets and media. However, these displays do not leverage the screen real-estate

provided to the users but rather rely on pointers or controllers to manipulate the con-

tent. Multimodal interfaces create new ways of interacting and visualizing content on

displays which are otherwise static. In this thesis, we specifically look at the combina-

tion of free-handed gesture and voice input on a large 2D display. Research has shown

that gestures can be used with speech to provide additional information or meaning [8].

Previously working in the augmented reality industry, I was frustrated with how we still

interact with content and media. The hand and gesture tracking currently available

on AR headsets are limited in functionality. We still use remotes to view content on

large TV screens or controllers for augmented and virtual reality environments. Our

current methods to interact with such content creates a barrier between information

and the user. LUI, or Large User Interface, came out of this frustration and a desire to

remove that barrier. I envision a new "visual Al" that would be natural to the user's

sensory inputs including gestures and voice. One day I hope to build the interactive,

holographic Jarvis from the movie Iron Man.

17

1.1 What is LUI?

LUI is a scalable, multimodal web-interface that uses a custom framework of nondis-

crete, free-handed gestures and voice to control modular applications with a single

stereo-camera and voice assistant (see Figure 1-1). The gestures and voice input are

mapped to ReactJS [13] web elements to provide a highly-responsive and accessible

user experience. This interface can be deployed on an AR or VR system, heads-up

displays for autonomous vehicles, and everyday large displays.

Integrated applications include media browsing for photos and YouTube videos. View-

ing and manipulating 3D models for engineering visualization are also in progress,

with more applications to be added by developers in the longer-term. The LUI menu

consists of a list of applications which the user can "swipe" and "airtap" to select

an option. Each application has its unique set of non-discrete gestures to view and

change content. If the user wants to find a specific application, they can also say a

voice command to search or directly go to that application.

Developers will be able to easily add more applications because of the modularity and

extensibility of this web platform. Most of the gestures are discrete actions followed

by a UI response instead of a continuous action that changes UI in real-time. The

space of multimodal gesture- and voice- interfaces is more limited, and LUI hopes to

create a more seamless experience for the user with technology that is readily available

and easy to integrate.

18

Figure 1-1: LUI demo on 17 ft diagonal display

1.2 Motivations

During my research, I had the opportunity to interview one of my readers, Dr. John

Underkoffler, about his pioneering work in the space of gestural interfaces. His in-

vention, g-speak [12], was part of his dissertation work at the MIT Media Lab. He

mentioned that existing tools didn't have a great way of expressing space and time, so

he built a general purpose software stack to represent just that. G-speak's gestural

schema relied on "partially quantizing finger flex, where each finger can be in one of

many positions, such as closed, curbed, or extended." There was a "time-slider" pose

and "camera pic snapshot" pose. The hardware required a pair of gloves that was

based on 6DOF pose and identity and required little dots and retroreflective marks on

each finger.

G-speak never went through a formal user study, but it did achieve mainstream

Hollywood popularity through the movie "Minority Report." Much of the development

happened in house and there were often debates about finger markers on finger tips or

19

further down. G-speak didn't take off as a company or product for several reasons. The

technology was expensive (about $150,000 to $200,000) since it required a sequence

of cameras also facing the user. The goal was to provide high fidelity at high Field

of View (FOV), but hurdles included standardizing vocabulary and the necessity of

wearing the gloves at all times. At the same time, it was commonly agreed that the

public wasn't ready for such a system yet.

Given this insightful conversation from John, I hoped to make a new gestural interface

that would be low-cost, easily accessible, and developer-friendly which is the top of

my design guidelines in Chapter 3. I hope that in the next 5 years, we won't have to

stick with poor desktop based UI experiences for the future of storytelling, interaction,

and holographic displays.

20

Chapter 2

Prior Art

There has been much work done in the space of gestural interfaces, but many require

significant amount of sensors, extensive calibration, and/or high latency in the gestural

commands. Most of the gestures are discrete actions followed by a UI response instead

of a continuous action that changes UI in real-time. Below is a list of related work

in the field of multimodal, gesture, and voice interfaces. Some use pen-input or

touch-input, but the UI designs contain unique qualities the we hope to extend in

LUI.

Put-That-There (1980)

In 1980, Richard Bolt, Chris Schmandt, et. al. from the Architecture Machine Group

at the Massachusetts Institute of Technology revealed the first voice- and gesture- inter-

face called Put-That-There [21. The system utilized word-by-word speech-recognition

and hand-pointing as inputs for controlling a large graphics display (see Figure 2-1).

The hand tracking sensor used was called ROPAMS (Remote Object Position Atti-

tude Measurement System), which was based on "measurements made of a mutating

magnetic field. The item had a small cord and could be mounted to the finger or

wrist." The speech recognition sensor was the DP-100 manufactured by the Nippon

Electric Company.

21

Though Put-That-There was ahead of its time, the gestures were limited to point-and-

click and there were a limited framework of actions to enable more functionality. The

UI elements were delegated to static icons and figures to demonstrate the functionality

of this interface. Ultimately, the user was able to instantiate objects on the screen,

such as squares, rectangles, and circles as well as placing them in respective areas of the

screen by pointing at the location. This interface helped abstract the specific actions

required by a mouse and keyboard and provided the user the ability to point-and-click

on maps to move labels and icons.

Figure 2-1: Put-that-there

BumpTop (2006)

In 2006, Anand Agarwala and Ravin Balakrishnan developed a virtual desktop interface

called Bumptop [1] at the University of Toronto. The goal was to reimagine the

personal desktop interface hierarchy and enable a "piling"-first instead of a "filing"-

first approach. This meant that instead of applications and documents hiding inside

22

folders, they would be piled on top for easier visibility and access. The interface used

a pen input and a physics-based simulation to make the UI icons more playful and

responsive to the pen inputs. One of the interesting features of their interface was how

UI elements took the form of cards which the user throws away or keep. The discarded

cards would crumple up and exit to the corner of the display. The prioritized cards

were piled closer to the user and enlarged to show significance. We hope to extend

this playful methodology in the gestural and voice commands.

WUW (2009)

In 2009, Pranav Mistry, Pattie Maes, et al. from the Massachusetts Institute of

Technology demonstrated a wearable gesture interface called Wear Ur World (WUW)

[10]. The idea was to move away from screens and displays and make the physical

world a desktop. The user wore a projector around their neck to display the interface

onto surfaces and used computer vision to detect hands. These hand gestures, detected

via color markers on the user's hands, were postures such as "Namaste" or "pointing"

that resulted in altering the UI state. They enabled the user to zoom-in or zoom-out

on a Maps application, but only tracked four fingers, index fingers and thumb. Though

this work was innovative in its field, it still required the user to wear a projector and

labels on the hand.

G-stalt (2010)

In 2010, Jamie Zigelbaum, Alan Browning, et al. from the Massachusetts Institute

of Technology presented a chirocentric (hand-centric) interface, called g-stalt [14],

for interacting with video on a large 2D screen. This system was built on top of

the g-speak gestural sensing platform by Oblong Industries [12], which used a Vicon

motion capture system along with a passive IR retroreflective dots arranged on the

back of the hand, the thumb, index, and middle fingers of simple nylon gloves (see

Figure 2-2). The actual interface consists of a cubical arrangement of media such

23

as photos and videos which the user could sort through, play, and reorganize the

structure into meaning arrangement. This cube of media could be further rotated

and zoomed using a set of hand motions. The gesture set involved actions such as

two-handed pinch, telekinetic actions, stop all, lock, and unlock. Though the methods

and technology worked well, it came with a price of multiple IR cameras, projectors,

and expensive hardware that required calibration.

Figure 2-2: G-speak by Oblong Industries

Data Mining (2011)

In 2011, Christian Holz from Hasso Plattner Institute and Andrew Wilson from

Microsoft Research created Data Miming [4] a system which formed images such as

boxes, tables, or office chairs directly from gestures used to describe such objects.

The study consisted of two parts: observation of how people naturally use gestures

to describe physical objects and a prototype consisting of a Microsoft Kinect camera

to capture such gestures. This free-handed gesture detection is similar to what LUI

proposes but does not track all necessary fingers and palm vectors. The Data Miming

system would compare the captured gestures to a stored list of objects to confirmation

24

the accuracy. Though the application worked pretty well, the gestures were discrete

actions, which caused latency in the response, making the overall experience slower

and not real-time.

SpaceTop (2013)

In 2013, Jinha Lee et al. introduced SpaceTop [9], an integrated 2D and 3D spatial

environment on a see-through LCD display to better support spatial memory. The

system enabled a more immersive experience for the user, providing the ability to do

document editing or 3D modeling without being restricted to a 2D interface. The

sensors consisted of one Kinect camera pointed towards the user's head to enable

motion parallax and another Kinect camera pointed down at the user's hands to detect

position and pinch gestures.

One key interaction method revolved around the position of the user's hands. When

the user lifted her hands, the 2D display would fade out or slide up to reveal a 3D

interface. Conversely, when the user placed her hands on the surface, the display

would revert back to 2D. Similarly, in LUI, the interface only recognizes the hands

when they are lifted about the sensor and remains locked when the user removes them.

The preliminary user study of SpaceTop showed that users felt comfortable sifting

through a pile of documents with one hand while the other was focused on the main

task. However, this interface also confused some users who had a hard time switching

between the 2D and 3D modes.

Magic Leap (2018)

Magic Leap [3] is the first consumer-grade Mixed Reality headset to co-locate 3D

visualizations with an input framework of depth cameras, eye-tracking, and electromag-

netic six degrees-of-freedom (6DOF) spatial tracking. Though the wearable device can

detect the hand, all of the interactions occur with the 6DOF remote controller. Though

25

the controller provides critical feedback when working with the content, gestural and

voice interfaces will ultimately provide a key experience if wearable platforms hope

to one day just become a pair of glasses. One of LUI's stretch goals is to integrate

the gestural and voice system into AR wearables such as the Magic Leap wearable to

evaluate its function and usability in augmented and mixed reality.

26

Chapter 3

LUI Design Guidelines

While designing LUI, we came up with several criteria to make the system easily-

accessible and scalable, and exhibit low latency. LUI requires only 1 Leap Motion

[11] camera sensor (for gestures) and a Google Assistant-enabled [7] smartphone or

smartspeaker (for voice) to operate. One could imagine the mobile phone ultimately

operating as both the gestural and voice sensor for LUI. As technology progresses, we

see depth camera sensors and voice recognition being embedded into large displays

and TVs.

3.1 Accessible

In most prior art, the gestural interfaces require a specific arrangement of cameras,

sensors, and platform-specific software to install and run. From the very beginning, we

wanted to incorporate their gestural interface on the web to make it easily-accessible.

Other options were developing on a local desktop platform such as Unity, but this

requires users to install the software on each device. But with a web application that

could be quickly accessed via an URL, the user could interact with the media and

content immediately. This could also be quickly deployed in any display connected to

the Internet.

For the input camera sensor, LUI requires 1 Leap Motion sensor which could be

27

plugged in via USB (see Figure 3-1) and a Google Assistant enabled smartphone or

smartspeaker (see Figure 3-2). The Leap sensor allows for free-handed gestures (no

gloves or markers on hand needed) and is much more precise and cheaper than the

Kinect motion sensing or Intel Realsense platform. One of the drawbacks is that the

Leap Motion does not provide as much field-of-view (FOV) as the aforementioned

devices, but our use case doesn't require high FOV because it is single-user focused.

The sensor can be placed on a podium or stand about 8 feet away from the display to

mark the placement of the interaction box.

The extremely simple boot up experience of LUI sets apart the interface from past

gestural interfaces which require gloves or finger tags, multiple camera calibration,

and custom equipment space. In contrast, this interface only needs access to a web

browser, an $80 sensor, and a smartphone.

Figure 3-1: Leap Motion

28

Figure 3-2: Google Assistant

3.2 Extensible

The initial design was a static web app where all of the HTML, CSS, and JavaScript

was custom. Realizing this would not scale with new gestural and voice applications,

we move to the ReactJS framework. The modularity of ReactJS allows the user to add

extensions without worrying about the underlying structure of the codebase. ReactJS

enables us to create a dynamic single page application, where the hierarchical structure

and the modularity of the application allows extend implementation for the developers.

User can easily add, delete, and modify individual applications in a few simple steps.

Also, each application development cycle is independent from each other so any bugs

or issues with one application do not affect the rest of the environment. The web

application can be easily converted to any iOS or Android devices using React Native

framework.

3.3 Non-discrete gestures

Most of the gestural interfaces from prior art are based on discrete actions, where the

user makes a gesture and then the computer reacts only after the gesture is completed.

This creates latency which makes gestural interfaces not real-time and frustrating

to work with. The Leap Motion sensor provides a real-time hand tracking solution

29

that outperforms every other sensor on the market. With this device, the we can

customize the gestures to work off of the continuous finger coordinates instead of

discrete gestures.

30

Chapter 4

Software/UI Architecture

LUI consists of a front end ReactJS web interface with dynamic UI elements and

animations, a framework of gesture and voice inputs, and a list of real-world applica-

tions. The backend processes only the voice inputs via the Google Assistant Firebase

database. The system is as modular as possible so more applications could be easily

integrated to this platform.

4.1 Navigation Schema

This section first describes the navigation schema on how a user would interact with

the web application using gestures and voice. As a reminder, LUI requires 1 Leap

Motion[11] camera sensor (for gestures) and a Google Assistant-enabled[7] smartphone

or smart-speaker (for voice) to operate. Below is the following procedure for booting up

LUI. More details of how the gesture and voice pipeline actually work are in Chapter 5.

1. Install Leap Motion v2 software to computer

2. Connect Leap Motion to computer via USB

3. Connect computer to large display via HDMI

4. Ensure Leap Motion is about 8 feet away from the large display

31

5. Ensure Leap Motion is at least chest height to the user

6. Open LUI website, https: //lui-medialab. f irebaseapp. com/

7. Connect Google Assistant-enabled smartphone to same Wi-Fi as LUI

8. Login Google Assistant to lui.medialab~gmai1. com

The latest version of LUI consists of the following UI tree: Lock Screen, followed

by Main Menu, and finally the applications. LUI also fully functions with a mouse.

The interface always maps the fingers of the hand directly to the screen via circular

markers to provide real-time location feedback. The index finger is considered the

default, but it can be changed to user preference.

Since each application is modular and independent from the main menu and other

applications, the gesture handling functions can be either largely similar to the handlers

in other applications or perform app-specific tasks.

4.1.1 Lock Screen

Lock screen is a gentle introduction to the system (see Figure 4-1). It uses particles.js

to add in tiny moving particles to the lock screen to add a layer of interaction on top.

Simple swiping up motion unlocks the lock screen and leads the user to the menu

interface.

When the user extends their hand over the sensor, their fingers are mapped to circular

UI elements that hover on the display and follow the fingers. The feedback produces

responses in the interface to show that the user is pointing at a specific location on

the display. The system currently uses the index finger as the cursor to allow the user

to pick an application.

32

Figure 4-1: Lock Screen

4.1.2 Main Menu

The main menu is the page where the user can view all applications integrated into

LUI (see Figure 4-2). The current applications integrated are Photos, Videos, and

3D Models, but near future applicatons include Augmented Reality mode, Gesture

Keyboard, and Games. The user hovers over specific application to determine which

one to enter and air tap an application to view the application in full screen. User can

also use swipe up gesture to return to the lock screen. As more applications are added,

users will be able search through the list of applications by swiping left and right. The

voice command used to open an application is "Go to [Name of Application]."

33

Figure 4-2: Menu screen

Figure 4-3: Menu screen with hand gesture

In the main menu, hovering the hand over the input sensor changes the state of each

app that is visible (see Figure 4-3). Specific apps highlight as the fingers hover over

the icon. Whenever there is a gesture action or voice command, LUI provides real

time feedback by not only updating the UI elements, but also adding animation. For

example, when the user unlocks the lock screen or enters an application from the main

menu, the backdrop slides out and the UI zooms into the new page. Applications

expand and collapse when user opens up the applications with an air tap and closes

with a swipe up motion.

34

4.1.3 Photos

Photos', a gallery like UI, is an application core to LUI (see Figure 4-4 and 4-5). It

consists of a carousel of photo pages that the user can swipe and select using hover and

airtap. As the cursor hovers over the photo, the specific photo enlarges slightly. This

application was the first developed for LUI to understand how gestures can browse

media content.

Figure 4-4: Photos

'special contributions made by UROP students Ashley JiEun Lee, Kathryn Jin

35

LM09 10!6-1

Figure 4-5: Photos with hand gesture

Each photo can assume full screen view by a further airtap or voice command. The

airtap gesture is decribed in more detail in Chapter 5. Alternatively, the user can

simply point to the photo of interest and say "Open this." Once the photo is selected,

LUI zooms to that specific photo via an animation transition. If the user would like

to change the photo, they can swipe left or right (see Figure 4-6). To exit the photos

app, the user can swipe up or say "Go back" which will trigger LUI to go to the main

menu.

Figure 4-6: Photos single view with hand swipe

36

The left hand can also be used to change various aspects of the photo such as brightness,

contrast, saturation, etc. This is an experimental feature but reveals what can be

accomplished with this interface ((see Figure 4-7 and 4-8).

U,

X

* ~

Figure 4-7: Photos option 1

0

* I.I i

*

Figure 4-8: Photos option 2

37

'777

'116

-'C 'RumMMMM"" . M.

0 0- w,_-

4.1.4 Videos

The Videos2 application is the second application created for LUI (see Figure 4-9 and

4-10). Similar to Photos application, this app also uses a carousel approach to swipe

left or right between pages. As the user hovers over each video, the video will slightly

enlarge showing where the pointer is at.

Figure 4-9: Videos

Figure 4-10: Videos with hand gesture

2special contributions made by UROP student Claire Tang

38

To select a video to full screen mode, the user can do an airtap (see Figure 4-11). To

move to the next video, the user swipes left or right. To exit video full screen, the

user swipes up. To exit the video application entirely, the user must swipe up again.

Figure 4-11: Videos single view

A unique component of the videos app is the abilty to use the left hand to control

the volume of each the videos. We added this feature to understand how additional

commands could be visualized, besides hovering and selecting, on large displays. While

in the single video view, the user rotates the left hand clockwise to increase the volume

or counterclockwise to decrease the volume. The visual feedback takes the form of

a light blue-colored filled circle that indicated where the left hand was located. The

volume feedback is given by a curved slider that increases or decreases in length right

above the circle (see Figure 4-12 and 4-13).

39

A

Figure 4-12: Videos volume minimize (CCW)

Figure 4-13: Videos volume maximize (CW)

4.1.5 3D Models

The 3D Models3 app is the third application for LU. The purpose of this app is

to understand how to manipulate and view 3D models using gestures. This is the

3 special contributions made by UROP student Claire Tang

40

most complex application because it not only uses two hands, but also each hand

had a specific function. The content being rendered has multiple axes of orienta-

tion making the interaction more difficult to accomplish than the Photos or Videos app.

The models app v1 relies on an open source Javascript library called three.js. Three.js

uses WebGL to render 3D models such as FBX fies onto the browser. We integrated

this library into our ReactJS platform to give users access to models using gestures.

Below is our version 1 attempt to control and view a series of blocks using free handed

gestures (see Figure 4-14).

Figure 4-14: Models v1

Figures 4-15 and 4-16 reflect how the right hand interacts with the 3D model. As

the hand moves closer to the Leap sensor, the app zooms outs of the model. Inversely,
as the hand moves away from the Leap sensor, the app zooms into the model.

41

Figure 4-15: Models App Right hand to zoom out

Figure 4-16: Models App Right hand to zoom in

The left hand plays a different role from the right. In the case of the models app, the

left hand allows the user to pan around the scene (see Figure 4-17). This provides an

additional layer of interaction besides zooming in and out. As the models interaction

was being designed, we needed to estabilish a method of interaction which was not

immensely involved or required detailed instructions to learn. As a result, we avoided

the use of individual fingers to trigger options and rather focused on overall movement

of hands (i.e. distance between hand and sensor to zoom and relative distance from

42

left hand to right hand to pan).

Figure 4-17: Models App Left hand to pan

One of the difficulties of the Models app was determining when LUI should stop
recognizing the hands. As long as the sensor sees a pair of hands, it will trigger the

interface to operate. One of the ideas moving forward was to create a start command

(either using voice or gestures) to begin an action such as browsing content, zooming

in, panning, etc).

4.1.6 Augmented Reality mode

One of the most exciting aspects of LUI is that it can be ported to any augmented

reality or virtual reality environment since the platform is all web-based. Below is
an example of the user opening LUI on a Magic Leap wearable device browser (see

Figure 4-18). In the current version, the Magic Leap controller takes the place of a

gestural input.

4special contributions made by UROP student Jeremy Ma

43

Figure 4-18: LUI in Augmented Reality

The main page is also clearly visible in augmented reality. The hand control currently

points to the Photos application (see Figure 4-19).

Figure 4-19: LUI Main Menu in Augmented Reality

Prismatic is a Javascript framework exposed by Magic Leap for viewing models in

44

'U

augmented reality on the web browser. We did a brief integration of this library within

the LUI React framework. In this current implementation, we can access a 3D model

and animation of a whale by simply navigation to the "Prismatic" app (see Figure

4-20).

Figure 4-20: LUI 3D model in Augmented Reality

4.2 ReactJS Framework

ReactJS [13] runs many of the popular websites today, such as Facebook, Instagram,

BBC, and Netflix. It allows the user to build complex UIs from small isolated parts of

code called "components." For LUI's development, each application consists of its own

component (see Figure 4-21). Properties (or props) are used to pass data between

each component. There are three main javascript files in the source directory that

determine the functionality of LUI. They are index.js, Pages.js, and App.js which

are described in the following sections 5. The other two critical files are leap.js and

5special contributions made by UROP student Ashley JiEun Lee

45

dialogflow.js, which describe the gestural interaction and voice interaction respectively.

These last two files will be covered in Chapter 5.

Figure 4-21: LUI source directory

4.2.1 Index.js

Similarly to any simple HTML page which contains an index.html page, when you

start a ReactJS project, you must have an index.js file to specify the root path to

render. In the case of LUI, we first render Pages.js through our index.js file:

ReactDOM.render(

<Pages />,

document. getElementByd ('root')

46

4.2.2 Pages.js

Pages.js will then route all links to each app developed on LUI. In this case, the apps

that will be rendered are the Intro menu, Photos menu, Videos menu, GestureKeyboard

menu, CandyCrush menu, Model menu, and-Prismatic menu. Each menu will have it

subsequent index.js.

class Pages extends Component {

render() {

return (

<Router>

<Switch>

{/* <Route exact path='/' component={Intro}/>

<Route path='/Home' component={App}/> */}

<Route exact path='/' render={(props) => <Intro {... props}

page={" intro "}/>}/>

<Route path='/Home' component={App}/>

<Route path='/Photos' component={Photos}/>

<Route path='/Videos' component={Videos}/>

<Route path='/ GestureKeyboard ' component={GestureKeyboard}/>

<Route path='/ CandyCrush' component={CandyCrush}/>

<Route path='/Model' component={Model} />

<Route path='/ Prismatic ' component={Prismatic} />

<Route path='*' component={App}/>

</Switch>

</Router>

}
}
export default Pages;

4.2.3 App.js

Menus will include the the lock screen, main menu, and submenus containing each

application. Before jumping into the detail of each menu, we must describe how the

menus themselves must function. For that, there is another App.js file in the root

47

folder (complementing index.js and Pages.js) which will do exactly that. This file

dictates how the gestures and voice will interact with each app.

const firebaseConfig = {

apiKey: "AIzaSyDjM37 DSv2RvPQzl5YiVzmgRHfpd4rJFU",

authDomain: "lui-medialab. firebaseapp. com",

databaseURL: "https://lui-medialab.firebaseio.com",

projectld: "lui-medialab",

storageBucket: "lui-medialab.appspot .com",

messagingSenderld : "247289397118",

appId: "1:247289397118: web: eb2bcbOO76d4bb4d"

if (!firebase.apps.length) {

firebase . initializeApp (firebaseConfig)

}

var database = firebase.database();

var currentRef = database. ref ('voice');

class App extends Component {

constructor(props) {

super (props);

this .state {

cards : [}

hovered ""

clicked: "

page: "home"

};
}

componentDidMount(){

currentRef . update({" current ":"home"})

const cards = [this. refs. card1, this. refs. card2, this. refs. card3

this. refs. card4, this. refs. card5, this. refs. card6]

this. setState({

cards ,

48

exit: false

1)
7/firebase cloud (sockets)

var something = this;

currentRef. on('value' , function(snap

let appClicked;

var db = snapshot. val()

var name = db. goto;

if (db.update){

if (name "photos") {

appClicked = "card1";

something . setState ({ clicked

}else if (name "videos") {

appClicked = "card2 ";

something . setState ({ clicked

}else if (name "prismatic")

appClicked = "card3";

something . setState ({ clicked

}else if (name "game") {

appClicked = "card4";

something. setState({ clicked:

shot) {

appClicked });

appClicked });

{

appClicked });

appClicked });
}else if (name "gesture keyboard") {

appClicked = "card5";

something. set State ({ clicked: appClicked

}else if (name "model") {

appClicked = "card6;

something. set State ({ clicked: appClicked

}else if (name "landing") {
something. setState({ exit: true });

}
currentRef .update ({"update": false});

}
if (db. clicked&&db. hovered!=null){

something. handleClick (db. hovered);

currentRef.update({" clicked ": false})

}

49

});

if (db.back){

something . setState ({ exit : true })

}

//voice end

}

handleHover = (card) => {

// console. log("HOVER", card);

this.setState({ hovered: card })

}

handleClick = (card) => {

// console. log ("CLICK", card);

this. setState({ clicked: card })

}

handleExit = () => {
console . log (" Exit to Intro")

this. setState({ page: "intro"

/7localStorage . setItem (" page", this . state . page)

}

handleUnlock =()> {

console. log("Unlock to Main");

this . setState ({
page: "main"

})

/ localStorage . setItem ("page", this.state.page);

}

handleSwipeUp ()=> {
this. setState({ exit: true })

}

50

render() {

const { classes } this. props

if (this.state.exit) {

console. log ("EXITING")

return <Redirect from="/Home" to=/"' />

}

return (

<Wrapper isMounted={this. props.isMounted} exit=f{this. state. exit}>

<div>

<Leap

cards={this. state. cards}

clicked=f{this . state . clicked}

handleHover={this. handleHover}

handleClick={this . handleClick}

handleUnlock=f{this . handleUnlock}

handleSwipeUp={this . handleSwipeUp}

page={this. state. page}

<Grid className={classes mainContainer} container>

<Grid className=f{classes . rowContainer} container>

<Grid ref="card1" item xs={4} onClick={() => { this . setState

({ clicked: "card1" }) }}

onMouseEnter={()=> { this. setState({ hovered: "card1"

}} onMouseLeave={() => { this.setState({ hovered: ""

}) }} >
<Photos isMounted = {this .state. clicked "cardl"}

hovered={this. state. hovered "card1"} clicked={this

.state.clicked "card1"} />

</Grid>

<Grid ref="card2" item xs={4} onClick={() => { this. setState

({ clicked: "card2" }) }}

51

onMouseEnter={() => { this. setState ({ hovered: "card2" })

}} onMouseLeave={() => { this . setState ({ hovered:

}) }}
<Videos hovered={this. state.hovered "card2"} clicked={

this. state. clicked = "card2"} />

</Grid>

<Grid ref="card3" item xs={4} onClick={() => { this. setState

({ clicked: "card3" }) }}

onMouseEnter={() => { this. setState({ hovered: "card3" })

}} onMouseLeave={() -> { this.setState({ hovered:

}) }} >
<Prismatic hovered={this . state. hovered "card3"}

clicked=f{this . state . clicked = "card3"} />

</Grid>

</Grid>

<Grid className={classes rowContainer} container>

<Grid ref="card4" item xs={4} onClick={() => { this . setState

({ clicked: "card4" }) }}

onMouseEnter={() => { this . setState({ hovered: "card4" })

}} onMouseLeave={() => { this .setState({ hovered:

}) }} >
<CandyCrush hovered={t his. state. hovered "card4"}

clicked={false} />

</Grid>

<Grid ref="card5" item xs={4} onClick={() => { this. setState

({ clicked: "card5" }) }}

onMouseEnter={() => { this.setState({ hovered: "card5" })

}} onMouseLeave={() => { this.setState({ hovered:

}) }} >
<GestureKeyboard hovered={this. state. hovered "card5"}

clicked={this. state. clicked = "card5"} />

</Grid>

<Grid ref="card6" item xs={4} onClick={() => { this. setState

({ clicked: "card6" }) }}

52

onMouseEnter={() => { this.setState({ hovered: "card6" })

}} onMouseLeave={() => { this. setState ({ hovered:

}) }} >
<Model hovered={this. state. hovered "card6"} clicked={

this. state. clicked "card6"} />

</Grid>

</Grid>

</Grid>

{/* <Intro page = {this.state.page}/> */}

{/* <DelayedComponent isMounted={this. state. page "intro"}

page={this. state. page} handleUnlock=f{this. handleUnlock} />

*/}

</div>

</Wrapper>

}

}
export default withStyles(styles)(App)

render(

The render() function is critical in ReactJS as that dictates what is drawn on the

frontend UI. In this App.js, we create a grid which stores information about each card

and its gesture and voice status. We also have a <div> for passing the Leap motion

(gesture camera sensor) parameters to the front end.

The states that are passed include "cards," "clicked," "handleHover," "handleClick,"

"handleUnlock," "handleSwipeUp," and "page" status. handleHover passes information

on whether the user is hovering over a certain card. handleClick passes information on

whether the user has clicked (or airtapped) a certain card. handleUnlock determines

when to set the state back to Main menu. handleSwipeUp is a boolean for determine

if a swipe up action has occured.

53

Cards

As noted above, we designate a "card" for every app. Each card lists a separate

app name and handles a series of commands such as "handleHover," "handleClick,"

"handleExit," and "handleUnlock." These commands are properties passed from the

leap.js file containing the LEAP Motion camera sensor information, which will be

described further in the gesture and voice chapter. For example, if a user's hands

hover over a card, the "handleHover" property is active and triggers a response on

the application UI.

firebaseConfig

The firebaseConfig sets up the interaction Google Home smartphone or smartspeaker.

More info on this will be covered in the gesture and voice chapter.

54

Chapter 5

Gesture and Voice Pipeline

LUI maintains a limited list of gestures and voice to keep the interaction scheme simple.

This chapter contains two sections: gesture protocol and voice protocol. For gesture

protocol, we first explain how the Leap sensor works, followed by an explanation of

the Javascript codebase. Lastly we describe how the gestures were computed. The

LUI voice commands currently include "Go to [Application]," "Go back", and "Open

this." For this section, we first explain how the Google Assistant operates followed by

how we store voice data for retrieval and LUI feedback.

5.1 Gesture Protocol

The input camera sensor is a low-cost, off-the-shelf Leap Motion Controller[11] which

tracks all 10 fingers, including the palm vector and hand radius. This sensor is

comprised of two cameras and three infrared (IR) LEDs. The interaction space is

2ft wide by 2ft long by 2ft deep, resulting in an 8 cubic feet volumetric space which

takes shape of an inverted pyramid above the sensor. The current device promotes a

150-degree field-of-view (FOV), but our research was provided a newer model consisting

of a 180 FOV for more interaction space in augmented and virtual reality applications.

The device is plugged via USB to the TV or computer. We leverage the finger tracking

API to create custom gestures mapped to LUI.

55

5.1.1 Leap.js

The Leap Motion archive provides extensive documentation and material to capture

this data. The platform is developer friendly and it is quite simple to extract data

via Javascript. More information at Leap lotion v2 Developer Archive. Our imple-

mentation ported the Leap frames into ReactJS and we computed all the UI elements

locally1 .

import PropTypes from 'prop-types';

import React from 'react ';

import ReactDOM from 'react-dom';

import LeapMotion from 'leapjs';

const fingers = ["#9bcfed", "#B2EBF2", "#80DEEA", "#4DDOE1", "#26C6DA"];

const paused-fingers = ["#9bed9b", "#blf0b1", "#80ea80", "#4cel4c", "#25

da25 "1;

class Leap extends React.Component {

constructor(props) {

super (props)

this.state {

frame: {},

rightHand:

thumb: " " ,

indexFinger:

hovered: "",

clicked: ""

pinch: "

pause: 4

}
}

componentDidMount() {
this .leap = LeapMotion.loop((frame) => {

let hands = frame. hands;

special contributions made by UROP student Ashley JiEun Lee

56

let rightHand = "";

for (const hand of

if (hand.type

rightHand =

}
}
this . setState ({

frame ,

rightHand

hands) {

- "right") {
hand;

});
this . traceFingers (frame);

});

this . timer = setInterval (() => {

if (this.state.pause > 0) {
this .setState ({ pause: this .state .pause - 1

}
if (this state rightHand) {

var {rightHand , thumb, indexFinger , hovered, clicked

pause } = this.state;

/ hovering

hovered = this. checkHover()

this.setState({ hovered });

this .props .handleHover(hovered);

let gestureDetected = false

if (pause -- 0) {

/swipe up

if (rightHand.palmVelocity[1] > 400) {

t his . props . handleSwipeUp()

gestureDetected = true;

}

airtap

if (indexFinger.vel[2] < -300 && (hovered)) {

57

});

this. setState({ clicked: hovered })

this. props. handleClick(hovered);

gestureDetected = true

}
}
//pause if gesture detected

if (gestureDetected) {

this.setState({ pause: 4 });

}

I
}, 100);

I

componentWillUnmount(){

clearlnterval(this. timer)

this. leap. disconnect()

}

traceFingers (frame) {

try {
// TODO: make canvas and ctx global

const canvas = this.refs.canvas;

canvas. width = canvas. clientWidth;

canvas. height = canvas . clientHeight;

const ctx = canvas. getContext("2d")

ctx.clearRect(0, 0, canvas. width, canvas.height);

const { rightHand , pause } = this . state;

if (rightHand) {

rightHand. fingers . forEach((pointable) => {

const color = pause > 0 ? pausedfingers pointable.

type] : fingers[pointable. type];

const position = pointable . st abilizedTip Position;

const normalized = frame.interactionBox.

normalizePoint (position);

const x = ctx. canvas. width * normalized [0;

58

const y = ctx. canvas . height * (1 - normalized [1);

const radius = Math.min(20 Math.abs(pointable.

touchDistance), 50);

this . drawCircle ([x, y] , radius , color , pointable .

type 1);

if (pointable. type 0) {

this . setState ({
thumb: { x, y, vel: pointable . tipVelocity }

})

if (pointable.type 1) {

this . setState ({
indexFinger: {x, y, vel: pointable.

tipVelocity }

})

}}

}catch (err) {

console. log ("ERR", err);

}
}

drawCircle (center, radius, color, fill){

const canvas = this.refs.canvas;

const ctx = canvas.getContext("2d")

ctx.beginPath();

ctx.arc(center[O], center[1], radius, 0, 2 * Math.PI);

ctx. closePath () ;

ctx.lineWidth = 10;

if (fill) {

ctx. fillStyle = color;

ctx. fill()

}else {

ctx.strokeStyle = color;

59

ctx . stroke () ;

}
}

checkHover(){

// calculate location of cards

const cards = this.props.cards;

const { x, y } = this. state.indexFinger;

for (let i = 0; i < cards.length; i++) {

if (cardsfi]) {

const dims = ReactDOM. findDOMNode (cards [i).

get BoundingClient Rect () ;

if (x > dims. left &&x < dims. right&&

y > dims.top &&y < dims.bottom) {
return ("card" + String(i + 1));

}
}

}
return ("")

}

render() {

const {classes } this.props;

return (

<canvas className={classes canvas} ref="canvas"></canvas>

)
}

Leap.propTypes {

cards: PropTypes.array

handleHover: PropTypes. func,

handleClick: PropTypes. func,

handleExit: PropTypes.func

60

As seen in the Leap.js file, there is a loop that processes all the Hand frames and we

select which hand we want to use for our gesture detection. Currently, we assume the

right hand is the dominant hand and we determine if gestures are detected via three

main states: pause, hovered, clicked. If there are no gestures detected, the pause is

set to 0. If a gesture is detected (airtap, swipe up, etc), pause is set to 4. This is to

allow for a delay to prevent gestures being triggered immediately again. There are

two other functions called traceFingers() and drawCircle(which are computing the

locations and drawing the circles for the visual feedback of the fingers.

Currently, the leap.js is partially replicated within each component, making the

codebase more repetitive that it should. For example, the Photos, Videos, Models, etc

all each have their own leap.js file. One of the next goals that need to be implemented

is to create shared components where the leap.js file is used across all applications.

5.1.2 Swipe gesture

The swipe gesture is used to transition between photos, videos, or submenus. Once

the stream of data from the Leap Motion Controller is initiated as the user enters LUI,

the application will constantly listen to the palm vector to detect swiping motion. If

the magnitude of the velocity exceeds the set threshold at any given frame, the system

registers a swipe motion (see Figure2 5-1), and dispatches an event so that the UI

can get updated accordingly based on the direction of the vector. For example, as

used in the Photos application, if there is a swiping motion detected in a positive x

direction, the gallery will slide right in response. In the future, LUI can listen to the

x, y, and z coordinates to make any tweaks to the gestures.

2illustrations made by UROP student Dominic Lim Co

61

Figure 5-1: Swipe gesture

5.1.3 Airtap gesture

The airtap is used to enter a specific application from the Main Menu, "click" on a

photo or video, "enlarge" a photo or video, etc. For the airtap gesture (see Figure

5-1), the system will listen to the vector of the index finger. If there is a movement

in z direction with velocity above the threshold, the system registers air tap event.

Based on the size of the UI and space covered by the leap motion controller, we can

calculate the relative coordinate of the finger tip on the screen to figure out which

element on the screen is being clicked. From the main menu, the user can air tap one

of the applications to enter and explore the application in full screen.

62

-:7

Figure 5-2: Airtap gesture

5.1.4 Bloom gesture

Once the user enters an application, the user can exit out of the screen and go back to

the main menu with bloom gesture (see Figure 5-3). For the bloom motion, the system

listens to the pinch strength of the palm at each frame. Pinch refers to the action

of gathering all five fingers by closing the palm. Bloom event is dispatched as the

user pinches and then opens up the palm and stretch all fingers in a short frame of time.

After conducting some user studies, many users were having difficulty with this gesture

as it placed quite a bit of strain on the hand. Furthermore, the bloom readily got

confused with the airtap gesture. As a result, this action was deprecated and replaced

with a "swipe up" motion to exit apps.

63

4b
01

Al.

Figure 5-3: Bloom gesture

5.1.5 Secondhand input

All of the gestures created so far only use one hand. However, when it comes to more

complex commands or trying to visualize and control information beyond degree of

freedom, it is essential that we have a second hand as well. In LUI, the second hand

had multiple functions depending on what app it was in. For the Photos app, the left

hand is change saturation, color, brightness. For the Videos app, the second hand was

used to control volume up and down. For the Model app, the second hand was used to

pan the 3D models. More information is described in Chapter 4.1 Navigation Schema.

64

Figure 5-4: Volume control

5.2 Voice protocol

The voice application runs on a Google Assistant-enabled[7] smartphone or smarts-

peaker and a Firebase database[6] integrated to the ReactJS web app (see Figure 5-5).

Upon first look, integrating voice seemed a very difficult challenge, but by leveraging

the Google Voice Assistant and the Firebase database', we could focus on more of the

interaction schema with LU. Making our own voice engine was out of scope for this

project.

5.2.1 Commands

Upon connection to the same WiFi network as LUI, the user must first tell the Google

Assistant the following command:

"Talk to my test app"

The Google Assistant greets the users with "Welcome to LUI," and waits for voice

inputs that specifies the name of the application to open. Expected voice intents

include:
3special contributions made by UROP student Jeremy Ma

65

"Go to [Application]"

"Go back"

"Open this"

If the system heard the word "Open" but didn't register the actual name of the

application, it prompts the users to specify the name of the application to explore.

5.2.2 Dialogflow.js

In order for the Google Assistant and LUI to communicate with each other, they

leverage Dialogflow[5] (see Figure 5-5), which is Google's natural language processing

(NLP) framework. Dialogflow offers a web interface to test if the voice commands being

received are correct and provides methods to parse the data. The API matches intent

(see Figure 5-6) to fulfillment as shown in code below. In other words, it matches the

action being sent ("Go to Photos," "Open this," etc) to an output (in our case LUI).

Since LUI requires asynchronomous fullfillments, we must employ "promises."

TextA

Us r DiaDoS1%w Agent

Voice Intent

Fulfillment

Figure 5-5: Voice pipeline

66

9DlalogfJ intents

"- .

Q T

Figure 5-6: Dialogflow Intents

const functions = require (' firebase -functions ') ;

const {WebhookClient} = require ('dialogflow -fulfillment')

const {Card,Suggestion} = require('dialogflow -fulfillment')

const requestNode require ('request')

const rp = require ('request -promise')

const NUMBER_ARGUMFNT = 'number';

process. env.DEBUG= 'dialogflow: debug'; //enables lib debugging

statements

exports . dialogflowFirebaseFulfillment functions . https . onRequest((

request , response) => {
const agent = new WebhookClient({request , response});

console . log ('Dialogflow Request headers:'+ JSON. stringify (request .

headers));

console . log ('Dialogflow Request body: ' +

JSON. stringify (request . body));

function welcome(agent) {

agent. add ('Welcome called');

}

function goTo(agent) {

return new Promise((resolve reject) =>{

const options = {

67

lot

urI: 'https ://lui-medialab .fire baseio .com/voice. json',

method: 'PATCH',

headers: {

'Content-Type': 'application/json

},

body: JSON.stringify({

" goto": agent. parameters. noun,

"update ": true

})

//get stuff

rp('https://lui-medialab.firebaseio.com/voice. json')

.then(function (body) {

const apps = ["photos"," videos"," prismatic" ,"game" ,"

model"," landing "," gesture "];

var content = JSON.parse(body);

if ((content . current "home" && apps. includes (agent .

parameters . noun)) |(agent . parameters . noun = "home"

&& apps. includes(content . current))){

//patch

rp(options)

.then(function (body) {

if (agent. parameters. noun =="game"){

agent. add ("Game is in development");

}

else {

agent. add('going to ' + agent. parameters.

noun);

}
resolve()

.catch(function (err) {

agent.add('go to failed')

resolve();

68

}

else{

rp(options)

.then(function (body) {

agent.add('Path does not exist');

console.log(body);

resolve()

catch(function (err) {

agent . add ('go to failed')

resolve()

}

}

function open(agent){

const options = {
url: 'https://lui-medialab. firebaseio .com/voice. json

method: 'PATCH'

headers: {

'Content-Type': 'application json

body: JSON. stringify({

"clicked ":true

rp(options)

.then(function (body) {

}) ;

agent. add('opening')

}

function back(agent){

const options = {

69

url: 'https:// lui-medialab. fire baseio .com/voice. json',
method: 'PATCH',

headers: {
'Content-Type 'application /json

},

body: JSON. stringify({

"back ": true

rp(options)

.then(function (body) {

}) ;

agent. add('going back')

}

function fallback(agent) {

agent.add('Invalid command');

}

let intentMap = new Map();

intentMap. set ('Default Welcome Intent', welcome);

intentMap.set('Default Fallback Intent', fallback);

intentMap.set('Go to', goTo);

intentMap. set ('open this', open);

intentMap. set('go back ' , back);

agent . handleRequest (intentMap)

5.2.3 Firebase

Once Google Assistant registers the voice input via Dialogflow, LUI extracts the name

of the application to open, and saves it to Google Firebase database via PUT requests

and websockets. The voice JSON packets can be viewed at https://lui-medialab.

f irebaseio. com/voice. json Any change in the database is detected by the system

and the UI updates accordingly (see Figure 5-8 and 5-8).

70

9 0

Figure 5-7: Voice current Home

FurN

Figure 5-8: Voice current photos

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

Chapter 6

Ethics and Evaluation

LUI aims to be useful for people of all age ranges, from children to adults to seniors.

At the moment it requires the user to be standing up facing a large display with

hands able to freely move. LUI can also function while sitting in a chair as long as the

Leap Motion sensor is placed above chest height. It is also important to consider the

privacy of the users with a new technology like LUI This interface requires a camera

and voice speaker that constantly observes the user's hands and listens for commands.

In our user study, we did not store any data of the hands or of the voice.

The purpose of the study was to discover new methods of how people interact with a

large display using gestures and voice. By understanding how people use this interface,

we can design novel applications that take into account user preferences, etc. The

study took place in front of the display over 20 minutes. The user would engage with

the display using their hand movements and voice commands. After the study, 10

minutes will be devoted to survey response.

On the research side, multimodal interfaces have become a core area of interest given

the rise of new display technologies and interfaces. We hope this study can teach

us about how the field of human-computer interaction is rapidly developing. We are

familiar with the mouse and keyboard, but this study goes beyond that and tries to

look at the combination of voice and gesture- input.

73

6.1 Setup

The LUI interface was deployed on an 8k large TV with a Leap Motion controller

connected via USB and Google Home connected to the internet. The UIl web page is

accessed via an online web-link (more information in Chapter 4 Navigation Schema).

Each subject was given the opportunity to play with the interface without any prior

knowledge of how it works. They were then individually primed (shown how to do a

swipe, air tap, etc) to navigate the screen using only their hand gestures above the

Leap Motion sensor. When they saw their fingers mapped to the UI in real-time, they

were then allowed to experiment with various gestures such as pinches and swipes.

6.2 Procedure

Below is the procedure used to conduct the user study on LUI.

1. Setup (done by organizer): A large 80inch 8k TV with a camera sensor and

voice speaker hooked to the monitor. Note: The camera will not be recording

the individual.

2. Setup (done by organizer): Ensure camera sensor is at chest height for user to

wave their hands above

3. User approaches the 8k TV and stands 6feet away in front of the camera sensor

table

4. User navigates the interface without instruction

5. User navigates the interface using a list of gesture and voice commands

6. User unlocks the screen with gestures

7. User enters an app with gestures

8. User browses the app with gestures

9. User exits the app with gestures

74

10. User navigates and explores another app with gestures

11. User enters an app with voice

12. User browses the app with voice

13. User exists the app with voice

14. User navigates and explores another app with gesture and voice together

15. User fills out survey (10min)

After the study, users were told they can use voice and given some commands to use.

After spending some time getting used to the interface, each subject filled out a survey

of questions corresponding to a Likert scale of 5 options ranging from strongly disagree

to strongly agree. The total study takes no more than 20 minutes per individual:

10min for the experiment and 10min for the survey.

6.3 Survey and Analysis

We first surveyed an initial 10 subjects for beta testing. We did a subsequent study with

10 more subjects all in the same room in collaboration with Simmons University. The

participants provided subjective responses via survey of ten questions give immediately

after they learned how to use LUI. One of the observations made was that it was much

easier to navigate LUI once a user showed the subject how to do it. The experience

was akin to showing a person how to use a controller, mouse, or keyboard. The

application became more intuitive once the intial list of commands were at least shown

by example (swipe, airtap, etc).

1. I found the system unnecessarily complex.

75

Answered:19 Skipped.I0

Strongly agree

Agree

Neither agree
nrdisagree

Disagree

Strongly
disagree

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ANSWER CHOICES

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

TOTAL

RESPONSES

0.00%

0.00%

21.05%

73.68%

5.26%

0
0

4

14

1

19

Figure 6-1: Question 1

2. I found the system very easy to use.

Answered: 19 Skipped: 0

Strongly agree

Agree

Neither agree
nor disagee

Disagree

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ANSWER CHOICES RESPONSES

Strongly agree 0.00% 0

Agree 47.37% 9

Neither agree nor disagree 21.05% 4

Disagree 26.32% 5

Strongly disagree 5.26%

TOTAL 19

Figure 6-2: Question 2

3. I like to use this interface for media browsing (photos, videos, etc).

76

m

Answered: 19 Skipped: 0

Strongly agree

Agree

Neither agree
nor disagre

Disagree

Strongly
disagree

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ANSWER CHOICES

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

TOTAL

RESPONSES

15.79%

57.89%

10.53%

10,53%

5.26%

3

11

2

1

19

Figure 6-3: Question 3

4. Did adding the voice help you navigate the interface better than gestures?

Answered:12 Skiri:7

Strongly agree

Agree

Neither agrem
nor disagree

Strongly
disagree

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ANSWER CHOICES

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

TOTAL

RESPONSES

8.33%

16.67%

75.00%

0.00%

0.00%

1

2

0

12

Figure 6-4: Question 4

5. Most people would learn to use this system very quickly.

77

-I

Answered: 19 Skipped: 0

Strongly agree

Agree

Neither agree
nor disagre

Disagree

strongly
disagree

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ANSWER CHOICES RESPONSES

Strongly agree 10.53% 2

Agree 68.42% 13

Neither agree nor disagree 10.53% 2

Disagree 5.26% 1

Strongly disagree 5.26% 1

TOTAL 19

Figure 6-5: Question 5

6. I would recommend using this kind of interaction for large displays.

Answered; 19 Skipped:O

Stronglyagree

Agree

Neither agree
nor disagree

Disagree

Strongly
disagree

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ANSWER CHOICES RESPONSES

Strongly agree 31.58% 6

Agree 57.89% 11

Neither agree nor disagree 5.26% 1

Disagree 0.00% 0

Strongly disagree 5.26% 1

TOTAL 19

Figure 6-6: Question 6

7. What do you like about this system?

"finger gesture based"

"swipe movement is simple and natural"

"intuitive, responsive"

78

"don't need extra equipment or sensors"

"being able to use just my hands and not a keyboard and a mouse"

8. What do you dislike about this system?

"arm feels tired"

"Results feel a little unpredictable"

"the learning curve"

"less precise than a mouse"

"gestures could be trained better"

9. How would you improve this system?

"some instruction with swiping, etc to learn swiping"

''arm supports to hold arms up"

"Calibrate the system on a user-by-user basis"

"Let people pick associates gestures for events"

"Differentiate tap slightly, like require tap to be held for some time"

10. Narrate your experience as you would explain the interface to your friend. What

you would recommend them to use it for?

"Hold your hand over a certain space and select options on your tv without the need for a remote"

"Swiping gestures to move left or right and a swipe up to exit the screen, and a pinch to expand"

"Gaming, 3D visualization for complex business meetings"

A user subject wrote, "What I enjoyed about this system is the advanced techniques

that would be able to be employed by those with disabilities. Creating a hands free

system would increase the amount of user possibilities as well as provide freedom to

those who may not have the dexterity to use wired devices and accessories." This

concept of hands-free gestures was one of the reasons why we made a significant effort

in the original design of this interface.

79

6.4 Improvements and Next Steps

LUI is the only low-cost gesture- and voice-based interface that is easily accessible

today. In the future, we believe that both the gesture and voice protocol will be

supported by the smart-phone itself, thereby eliminating the need for a separate

depth camera. We hope more developers will leverage LUI for integrating new ap-

plications beyond the scope of this work. We successfully demonstrated photos,

videos, and models exploration with gestures and voice, but we are excited to see addi-

tional media, content, games, and visualizations developed on this interactive platform.

One could imagine browsing a company's latest products, portfolios, or data visualiza-

tions with LUI. Museums and art galleries can leverage LUI to allow spectators not

only view but also interact with content. We also saw the power of augmented reality

with LUI. By leveraging the web and frameworks already created for the web, we can

make AR content easier to create. Since augmented reality is yet to reach mainstream

popularity, we believe that LUI can become a platform that powers this future.

Based on our user study feedback, several users mentioned arm fatigue inherent to the

system. This was important feedback because the sensor is required to be placed in

front of the user asking them to extend their arms at all times. One next step is to make

the UI more focused on voice and allow gestural commands only when necessary. Since

voice was not well integrated in this study, users had to use gestures for all actions.

This may suggest that that a gesture-only interface may not work as a scalable solution.

We have since developed a v2 of LUI based on the feedback of this first user study.

Further fixes and updates have been made to the voice input and control, and the

bloom gesture was replaced with a swipe up gesture to avoid fatigue. The 3D models

application has been revamped to match the photos and videos UI. We now have a

carousel of models where each model is selectable using gestures and voice. The user

can not only expand or contract each model, they can rotate and pan as well. We

80

also have a Gesture Keyboard application where the user can paint onto the interface

and the Firebase backend uses machine learning to determine what the user has drawn.

What still remains to be done is further optimization of each gesture and voice in-

teraction for a smooth user experience. Due to interest of time another user study

has not yet been scheduled. This work hopes to be a starting point for new ideas

and development in the near future. One day, many of our interactions will become

context-aware and not requiring a controller. Until we achieve telepathy, we believe

LUI can support that future.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

Bibliography

[1] Anand Agarawala and Ravin Balakrishnan. Keepin'it real: pushing the desktop
metaphor with physics, piles and the pen. In Proceedings of the SIGCHI conference
on Human Factors in computing systems, pages 1283-1292. ACM, 2006.

[2] Richard A Bolt. "Put-that-there": Voice and gesture at the graphics interface,
volume 14. ACM, 1980.

[31 Gary R Bradski, Samuel A Miller, and Rony Abovitz. Methods and systems
for creating virtual and augmented reality, January 28 2016. US Patent App.
14/738,877.

[4] Christian Holz and Andrew Wilson. Data miming: inferring spatial object
descriptions from human gesture. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 811-820. ACM, 2011.

[5] Alphabet Inc. Dialogflow I google cloud. https://cloud.google.com/
dialogflow/.

[6] Alphabet Inc. Firebase. https: //f irebase. google. com/.

[7] Alphabet Inc. Google assistant is now available on android and iphone mobiles.
https://assistant.google.com/platforms/phones/.

[8] Adam Kendon. The study of gesture: Some remarks on its history. In Semiotics
1981, pages 153-164. Springer, 1983.

[9] Jinha Lee, Alex Olwal, Hiroshi Ishii, and Cati Boulanger. Spacetop: integrating 2d
and spatial 3d interactions in a see-through desktop environment. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages
189-192. ACM, 2013.

110] Pranav Mistry, Pattie Maes, and Liyan Chang. Wuw-wear ur world: a wearable
gestural interface. In CHI'09 extended abstracts on Human factors in computing
systems, pages 4111-4116. ACM, 2009.

[11] Leap Motion. Leap motion. https://www.leapmotion.com/.

[12] John S Underkoffler, Kevin T Parent, and Kwindla H Kramer. System and
method for gesture based control system, October 6 2009. US Patent 7,598,942.

83

[131 Jordan Walke. React - a javascript library for building user interfaces. https:
//reactjs.org/.

[14] Jamie Zigelbaum, Alan Browning, Daniel Leithinger, Olivier Bau, and Hiroshi
Ishii. G-stalt: a chirocentric, spatiotemporal, and telekinetic gestural interface.
In Proceedings of the fourth international conference on Tangible, embedded, and
embodied interaction, pages 261-264. ACM, 2010.

84

