
Modeling and Tradespace Exploration of a Space
Suit Hip Bearing Assembly using

Multi-Degree-of-Freedom Range of Motion Analysis

by

Patrick Calvin McKeen

B.S., Harvey Mudd College (2017)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 22, 2019

Certified by .
Leia Stirling

Assistant Professor
Charles Stark Draper Professor of Aeronautics and Astronautics
Associate Faculty, Institute for Medical Engineering and Science

Thesis Supervisor

Accepted by. .
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Commitee

2

Modeling and Tradespace Exploration of a Space Suit Hip

Bearing Assembly using Multi-Degree-of-Freedom Range of

Motion Analysis

by

Patrick Calvin McKeen

Submitted to the Department of Aeronautics and Astronautics
on August 22, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Space suits are crucial to human spaceflight, but can restrict motion, require addi-
tional energy, and increase injury risk. Previous planetary suits were largely based on
flexible components, which generate additional forces on the occupant as they resist
volumetric changes from flexing components. The NASA Mark III suit addresses this
problem using a Hip Brief Assembly (HBA), composed of rigid, constant-volume sec-
tions connected by bearings. However, due to the rigid components and fixed degrees
of freedom (DoFs), the HBA and other hard-component joint assemblies (HCJAs)
have stricter bounds on motion. For example, previous analysis shows that the hip
multi-DoF range of motion (ROM) for an HBA occupant is not well-aligned with the
nominal hip ROM during gait (gait NHROM).

In this thesis, a set of methods for describing HCJA geometry and the effect
on occupant ROM is presented. A generalized model builds on Denavit-Hartenberg
parameterization to describe HCJA structure, rotation, and surface shape. Also
included is a computational approach, compatible with standard 3D model files, to
estimate the multi-DoF ROM for joints of an HCJA occupant, and compare and
score the suit-restricted ROMs against nominal, unencumbered ROMs.

These models are utilized to analyze HBA geometry and improve alignment be-
tween in-suit occupant ROM and gait NHROM. A set of design constraints based on
feasible geometries and parameter bounds were devised and used to limit a tradespace
analysis of alternate geometries in the HBA model. The geometries were evaluated

3

and given an ROM score based on occupant access to gait NHROM. Over 1.3 billion
alternate geometries were tested, and 10,912 met or bested the nominal geometry.
The top-scoring geometry showed a more than sixfold improvement on access to gait
NHROM, as well as a more natural neutral leg position, a significant increase in
adduction range, and improved kneeling ability. The tradespace data set is also used
to analyze trends in HBA geometry, suggesting two-bearing HBAs would have very
poor hip ROM and the most dominant factors behind a high ROM score is the extent
of the cant in the HBA Proximal and Distal sections.

Thesis Supervisor: Leia Stirling
Title: Assistant Professor
Charles Stark Draper Professor of Aeronautics and Astronautics
Associate Faculty, Institute for Medical Engineering and Science

4

Acknowledgments

I don’t know where I would be without my advisor, Prof. Leia Stirling. She made

sure that I could work on research topics that matched my interests and abilities and

encouraged me every step of the way. She gave me the confidence that MIT (and the

strange, foreign world of academia in general) was within my ability. She has given

me invaluable advice, academically, professionally, and otherwise. Thank you.

As I have completed my Master’s Degree and written this thesis, I have been

lucky to get to know many different people. People all around MIT have made me

feel welcome. The Human Systems Lab and MakerWorks communities, in particular,

are groups I have been fortunate to be a part of. Specific thanks to Alexa, Brad,

Cadence, Chris, Colin, Elliott, Hilary, Jess, Liam, and Michael for making MIT feel

like home.

Stephen, you have supported me throughout a difficult and stressful process.

Thank you for making sure I survived thesis-writing.

To the Mudd trivia-week squad: thank you for trying to make sure I didn’t.

There are many more people to thank for helping me get this far. I would not

be the person and engineer I am today without my childhood friends, who continue

to influence me after all these years: Sam, you’ve been a great friend all my life, one

that I’m lucky to have; Jake, I don’t think I’d have gotten here without some of our

crazy ideas; Alex, you are missed.

To Evan, Melissa, and Morgan: You three are major influences on me (in very

different ways) and I am very fortunate indeed to have friends like you. I wouldn’t

be who I am without you and I am grateful to have you as my friends.

To Cherry: Everyday, I use lessons you taught me. I would not be able to do all

that I do without all the things I learned from you. Thank you.

5

Finally, thank you to my family, who have always been a source of strength,

usually a source of comfort, and sometimes a source of wisdom. Mom and Dad, you

have been inspirations throughout my life. Your advice and support have helped

me every step of the way. Anna, you continue to amaze me and I am grateful to

have you as my sister. My aunts and uncles: Nate, Amy, Scott, and Jane, I am glad

how frequently I get to see you all now that I am in New England. You have been

supportive and welcoming, even during a somewhat-concerning thesis-writing craze.

Aunt Susie, you have been a pillar of support my entire life. And to my grandparents:

Grandpas George, Ed, and Woody, you are missed. Grammy, you have always shown

me such love and encouragement. Nana, you have always brightened my days, and

made sure that I know I am cherished. Poppa, Mom says it’s your fault that I am

the engineer and person I am. Thank you.

6

Contents

1 Introduction 17

1.1 Background . 18

1.2 Thesis Aims and Outline . 22

2 Hard-Component Joint Assembly Model 25

2.1 Model Simplifications . 26

2.2 Parameterization . 29

2.3 Physical Structure . 36

2.4 Surface Generation . 43

2.4.1 Standard Components . 45

2.4.2 Non-standard Components . 46

2.5 Bearings . 58

3 Multi-Degree-of-Freedom Range of Motion Testing 63

3.1 Unsuited Range of Motion . 64

3.2 Suited Range of Motion . 67

3.2.1 Simulated Limb . 69

3.2.2 Suited Range of Motion Estimation 76

3.3 Comparison of Unsuited and Suited Ranges of Motion 77

7

4 Hip Bearing Assembly Design Constraints 89

4.1 Geometric Constraints . 90

4.1.1 Geometric Constraints for Briefs 91

4.1.2 Geometric Constraints for Proximal and Distal Sections 97

4.2 Parameter Bounds . 105

5 Hip Bearing Assembly Tradespace Analysis 111

5.1 Tradespace Exploration Method . 112

5.2 Preliminary Tradespace Exploration 115

5.3 Refined Tradespace Exploration . 118

5.4 Suggested Geometries . 121

5.5 Discussion . 125

5.5.1 Number of Joints . 125

5.5.2 Geometric Trends . 127

5.5.3 Effect on Kneeling . 129

6 Conclusion 131

6.1 Thesis Summary . 131

6.2 Contributions . 132

6.3 Limitations . 133

6.4 Future Work . 136

A Definition of Anatomical Terms 139

B Sinusoidal Projection Proof 143

C Homogeneous Transformations 149

8

D Briefs Bottom Edge Orientation Proof 153

E Constraint Simplification 157

E.1 Briefs Constraints . 157

E.2 Proximal and Distal Sections Constraints 166

9

10

List of Figures

1-1 Mark III space suit [22]. 21

1-2 Mark III Hip Bearing Assembly. 22

2-1 Sample oblique frustum. 28

2-2 Example of DH parameters describing a robotic arm. 32

2-3 Illustration of HCJA model parameters using HBA. 35

2-4 HCJA example with components and edges highlighted. 41

2-5 HBA Briefs surface regions. 48

2-6 HBA Briefs edges and reference points used in Briefs surface generation. 49

2-7 HBA Briefs top edge zones for surface generation. 52

2-8 Arrangement of points used to form HBA Briefs surface. 53

2-9 Point groupings by zone HBA Briefs top edge 55

3-1 Convention to transform ab/adduction and flexion/extension angles

to a vector in R3. 66

3-2 Unsuited gait hip ROM as region on unit sphere surface. 67

3-3 HCJA simulated limb example: thigh inside HBA model. 72

3-4 Difficulties with spherical geometry without axis rotation and sinu-

soidal projection. 79

11

3-5 Rotation range for vectors in ROM comparison. 83

3-6 Steps to calculate ROM score. 88

4-1 Leg Direction geometric constraint. 92

4-2 Briefs Height geometric constraint. 94

4-3 Leg Gap geometric constraint. 95

4-4 Leg Holes inside Briefs geometric constraint. 96

4-5 Examples of Briefs failing geometric constraints. 98

4-6 Examples of oblique frusta failing geometric constraints. 103

5-1 Histograms of parameter value usages in preliminary tradespace ex-

ploration. 117

5-2 ROM scores distribution per parameter in preliminary tradespace ex-

ploration . 117

5-3 Histograms of parameter value usages from refined tradespace explo-

ration. 120

5-4 ROM score distribution per parameter from refined tradespace explo-

ration. 121

5-5 Top-scoring HBA geometries from tradespace explorations 123

5-6 Suited ROM for top-scoring HBA geometries from tradespace explo-

ration. 124

5-7 HBA geometry featuring adjacent aligned bearings. 126

5-8 Suited ROM for example HBA with adjacent aligned bearings and

nominal HBA. 128

5-9 Ab/adduction required for kneeling/squatting for various HBA ge-

ometries. 130

12

A-1 Sagittal plane. 139

A-2 Flexion and extension of the hip. 140

A-3 Abduction and adduction of the hip. 141

13

14

List of Tables

2.1 Conditions defining HBA Briefs top edge zones. 51

3.1 Angular bounds of hip position in nominal human gait [17]. 65

3.2 Dimensions of simulated thigh used in HBA ROM analysis. 75

4.1 Geometric constraints on HBA components, in terms of model param-

eters. 104

4.2 HBA parameter bounds. 110

5.1 Parameter values explored from preliminary tradespace exploration. . 115

5.2 Parameter values for Mark III HBA and top-scoring HBA geometries

from tradespace exploration. 116

5.3 Parameter values explored in the refined tradespace exploration. . . . 119

5.4 ROM scores for top-performing HBA geometries in tradespace explo-

rations. 122

5.5 ROM score statistics for HBA geometries featuring adjacent aligned

bearings. 126

5.6 VIP scores from PLS on refined tradespace HBA parameters and ROM

scores. 129

15

16

Chapter 1

Introduction

Fifty years before I wrote these words, Commander Neil Armstrong became the first

person to stand somewhere other than Earth. As he descended the ladder and took

his “small step,” the space suit protecting him from the harsh lunar environment was

on display on millions of screens around the world. Since the first human spaceflight,

space suits have played a critical role protecting astronauts and facilitating further

exploration. However, since the end of the Apollo program 47 years ago, no space

suit has been used in a planetary environment. NASA hopes to return humans to

the Moon (and onwards to Mars) in the coming decade, and a number of private

companies and organizations are planning trips of their own. New versions of space

suits are being designed for these missions. This thesis introduces techniques to

understand the effect of space suits on occupant mobility and provides information

to be considered in the design process, with a specific focus on facilitating human

gait for planetary missions. These ideas could be used in the development of the

next-generation space suits that will make it easier for the next Neil Armstrong to

take her “small step.”

17

1.1 Background

First, a note on terminology is required. The term “space suit” can refer to two

different types of garments and a distinction is necessary. The first is a “flight suit,”

which is worn by astronauts during the ascent and descent of their vehicle. The

baggy, bright orange Advanced Crew Escape Suit (ACES) worn by crew members

on the space shuttle may be the most recognized example of these suits [2]. Flight

suits are pressure suits, designed to keep the astronauts safe in the event of vehicle

depressurization during their ascent or landing and are only worn on Earth or inside

the main vehicle [37]. An Extravehicular Activity (EVA) suit, on the other hand, is

the type of space suit worn by Armstrong on the Moon and can be used in space.

EVA suits are effectively miniaturized vehicles, providing life support and protection,

but mobile and shaped around the crew member [27]. EVA suits are the type of suit

worn on a “spacewalk” and are the focus of this thesis. When not otherwise specified,

“space suit,” “suit,” and similar terms all refer to an EVA suit.

EVA suits were first designed in the 1960s for the Gemini and Vokshod missions,

and further developed during the Apollo and Soyuz programs. Suits with similar

designs are still in use today: the American Extravehicular Mobility Unit (EMU)

and Russian Orlan space suits on the International Space Station [13]. These suits

are examples of brilliant engineering, but do have weaknesses. Space suits can cause

discomfort, increase the difficulty of motor tasks, increase injury risk, and require

additional time and energy to complete tasks [3][33]. These issues stem from a variety

of causes, such as the added inertia of the suit components, but one problem, that

of “springback” forces, has a particular source [7][23][25].

The Apollo, EMU, and Orlan suits share this problem because they all feature

limbs made entirely of flexible materials [13]. These flexible limbs allow for many

18

types of motion, but are susceptible to a specific problem: when the limbs are moved,

the suit bends and changes shape, resulting in a change in the suit’s volume. As the

suit is sealed, changing the volume will change the pressure, so moving from the suit’s

neutral, fully-inflated position produces springback forces that resist any deforma-

tion or movement [3][23][29]. These springback forces can cause a variety of issues,

including reduced mobility and increased energy usage for the suit occupant [3].

With missions to the Moon and other bodies under consideration for the near

future, springback forces are particularly relevant. The upcoming surface missions

will require astronauts to do something they have not done in 50 years: walk. The

EMU suit, for example, was designed for spacewalks, which do not require the same

lower limb involvement as surface EVAs [15]. It severely restricts the occupant’s hip,

allowing only 37 degrees of hip flexion,1 compared to 68 degrees in the Apollo suit

and 107 degrees for an unsuited individual [12]. Even without that limitation, lower

limb movements can present serious problems stemming from springback forces and

the suit’s resistance to motion; Apollo astronauts reported not only great difficulty

with locomotion, but exertion in their thighs to the point of fatigue [4][28]. Such

extensive use of the thigh was likely connected to motions of the hip used for walking,

indicating the suit hip joint and the gait motion may be particularly susceptible to

springback forces [12][38].

The problems caused by springback forces, particularly on gait, have been ad-

dressed in various ways. One approach is to lower the suit’s operating pressure,

but doing so can increase the risk of decompression sickness when transitioning to

the primary vehicle and necessitate that astronauts pre-breathe pure oxygen before

donning the suit [3][10][28]. An alternative approach uses suits built from bear-

ings and rigid components instead of flexible materials [10][16]. As the suit moves,
1Flexion is defined, along with other anatomical terms used in this thesis, in Appendix A.

19

the rigid components pivot on their bearings, but the volume of the suit does not

change; springback forces are mitigated or eliminated and a higher operating pres-

sure is possible. This approach has been used to create space suits consisting entirely

of hard components, but hybrid suits with a mix of hard and soft parts are more

common [10][13]. For example, the EMU and Orlan suits both use rigid components

around the upper torso, but soft materials elsewhere [13]. This thesis will focus

on suits with at least one “hard-component joint assembly” (HCJA), where the de-

grees of freedom (DoFs) of the occupant’s corresponding joint are matched entirely

through hard components. This includes both suits that are entirely rigid or those

which feature a mix of materials. The umbrella term “hard-joint suits” will be used.2

One of the most prominent examples of a hard-joint suit is the NASA Mark III

demonstrator space suit, shown in Figure 1-1. First designed in the late 1980s to

test a higher-pressure suit design, it has since become a test platform for space suit

concepts and technologies [16][36]. Due to its higher operating pressure, the Mark III

was created with springback forces specifically in mind [16]. To counter springback

forces, particularly those that would fatigue the thigh during gait, the suit uses an

HCJA at the hips [16]. The assembly for this joint is called the Hip Bearing Assembly

(HBA) is composed of several rigid components: the Briefs, a Proximal Section for

each leg, and a Distal Section for each leg. The HBA can be seen as part of the

Mark III in Figure 1-1 and in isolation, with labeled components and bearings, in

Figure 1-2.

HCJAs, like the Mark III HBA, reduce problems associated with springback

forces, but do not alleviate all space suit difficulties. In fact, hard-joint suits can

exacerbate some of these issues by restricting the occupant’s mobility [7][25]. Soft

2Though the EMU and Orlan suits are previously mentioned as hybrid suits, they are not hard-
joint suits. They have hard components, but the limbs are made entirely of soft goods.

20

Figure 1-1: Picture of the Mark III suit. Above the waist is the Hard Upper Torso
(HUT), below the waist is the Hip Bearing Assembly (HBA). Source: NASA [22].

suits can flex to many positions (though the pressurization and springback forces can

make this difficult), but hard-joint suits are bounded by the geometry and placement

of their bearings [16]. If these bounds are misaligned with the occupant’s natural

motions, they are forced to use “programmed” motions [1][6][31]. Programmed mo-

tions, which can be new and unnatural to the occupant, can increase injury risk,

discomfort, and energy expenditure [6][31]. While the Mark III has much greater

mobility than the EMU or Apollo suit, it still suffers from this problem [15]. In

particular, previous research has shown that the motion envelope of the Mark III

21

Figure 1-2: Model of the Mark III suit Hip Bearing Assembly (HBA), with the
components and bearings labeled. Bearings are highlighted and labeled in blue,
while primary components are in black. Image Source: Cullinane [8]. Labels added.

occupant’s hips is severely misaligned with the hip positions usually used for gait [5].

As a result, occupants of the Mark III are forced to use programmed motions for

ambulation [1][15].

1.2 Thesis Aims and Outline

This thesis explores the geometry of hard-joint suits and their impact on occupant

mobility. The approaches for these techniques are then applied to the Mark III HBA

to understand its design constraints and to explore possible alternate geometries.

Specifically, the aims of this thesis are as follows:

1. Develop a generalized model of HCJA geometry, including kinematic and phys-

ical structure, rotation and DoFs, and overall shape. This model is presented

22

in Chapter 2.

2. Demonstrate a new method of estimating and quantifying the impact of an

HCJA on the mobility of the suit’s occupant. This method is described in

Chapter 3.

3. Explore potential HCJA design constraints, and the connections with the pa-

rameters of the geometric model. This is discussed in Chapter 4, with a focus

on the HBA.

4. Suggest novel alternate geometries of the HBA that could facilitate a more

natural gait. The tradespace of the HBA was analyzed for impact on gait-

related mobility and a new alternate geometry is proposed in Chapter 5.

23

24

Chapter 2

Hard-Component Joint Assembly

Model

A general model of the geometry of hard-component joint assemblies (HCJAs) was

created to define and describe design possibilities. An HCJA is a portion of a hard-

joint space suit consisting of a number of independently-mobile rigid components

connected by bearings. Other assumptions and definitions used in this model are

listed in Section 2.1.

The kinematic structure such as reference frames and degrees of freedom (DoFs)

of the components and bearings are defined with an extension of Denavit-Hartenberg

parameters (described in Section 2.2). The Mark III Hip Bearing Assembly (HBA),

for example, was described with twenty-two parameters. To define the physical

structure of HCJAs, the edges of each component is defined from the parameters.

These edges describe the locations of the bearings and physical joints as well as the

interfaces between components. The derivation of the geometry of these edges (and

thus the overall physical structure of the HCJA) from the parameter set is presented

25

in Section 2.3. Finally, to describe the overall shape of the components, surfaces are

generated for each (Section 2.4).

2.1 Model Simplifications

To model HCJA geometry, some simplifications were made:

1. The HCJA is treated as a simple rigid body tree (RBT). Each component

has exactly one component immediately proximal to it, and there is only one

kinematic path from every component to the base.

2. The HCJA is assumed to exclude the final segment of a space suit on every limb,

such that there is one or more suit segment between all HCJA components and

the end of a suit limb. This segment could be soft goods covering the remainder

of the occupant’s limb, a boot, a glove, or some combination. As they do not

include the ends of suit limbs, all components of the HCJA have at least two

edges.

3. The HCJA being modeled is reduced to a minimal number of relevant compo-

nents responsible for structure and shape, along with the bearings. Adjacent

soft-good components, in particular, are excluded. For example, the Mark III

HBA was reduced to the bearings and the following components: the Briefs,

a Proximal Section for each leg, and one Distal Section per leg, labeled in

Figure 1-2. The soft goods and their bracket were not included in the param-

eterization.

4. Motion between HCJA components is assumed to be ideal. The components

do not flex or bend, and the rotation at HCJA joints is entirely around the

26

defined axes, with no translation or rattling.

5. The geometries of HCJA components are simplified. Every edge of a component

was treated as a single circle in R3.

6. Overlap between HCJA components is assumed to be zero. In physical suits,

the components extend past one another, overlapping with the bearing be-

tween them. While the bearings are included in this model, the overlap is not

parameterized separately and represented.

7. The shapes of HCJA components (but not the bearings) are modeled as two-

dimensional infinitely thin surfaces in R3.

8. All HCJA components are designated as either standard or non-standard com-

ponents. Standard components have only one component connected to them

distally. Non-standard components have more than one component directly

distal to them. In other words, standard components have exactly one bearing

at either end, while non-standard components have more than one at their

distal end. Non-standard components correspond to points in the RBT where

it branches, as they have more than one distal neighbor. These components

are treated identically,1 except for describing the overall shape of the compo-

nent: standard components use a standard method to define surfaces, while

non-standard components do not (see Section 2.4.)

9. The shape of a standard HCJA component is defined by a surface between the

circles that make up the edges of the component. The shape formed is similar to
1While the mathematics is identical, the implementation of HCJAs with non-standard compo-

nents may be somewhat more complex, as indexing is less intuitive and the non-standard compo-
nents have more than one distal neighbor, and those transformations and their associated parame-
ters must be distinguished from one another.

27

Figure 2-1: Example of an oblique frustum, used to model the shapes of standard
HCJA components.

a truncated oblique cone, where the cone’s axis is not necessarily perpendicular

to the base and the truncation plane is not required to be perpendicular to the

axis or parallel to the base. We call this shape, an example of which is shown

in Figure 2-1, an oblique frustum.

10. Non-standard HCJA components do not have a standard method to generate

the surfaces representing their shape. The surface generation method required

may vary heavily based on the application of the model. Due to this variability,

no general method to describe the surfaces of non-standard components is

presented here, though an example is provided.

11. Bearings are treated as three-dimensional flat rings, with a constant height.

They were not parameterized separately. Instead, the internal and external

radii were treated as equal to the radii of the edges of the two components the

bearing is between (see Section 2.5).

28

2.2 Parameterization

With the simplifications in Section 2.1 applied, the HCJA can be treated like any

rigid body system of motion, and its kinematic structure can be described using

Denavit-Hartenberg (DH) parameterization [24]. DH parameterization is a standard

way of describing coordinate transformations in an RBT, using four parameters for

each transformation. A brief introduction is given here. For more information, see

Introduction to Robotics: Analysis, Control, Applications [24].

The HCJA is divided by degrees-of-freedom (DoFs). The one or more DoFs of

every joint in the HCJA is assigned a coordinate frame, which moves with the DoF.2

These frames are indexed from 1 to 𝑁𝐷𝑜𝐹 , where 𝑁𝐷𝑜𝐹 is the number of DoFs in

the system. The indices are arranged such that every frame has a unique index and

the kinematic chain from any frame 𝑛 to the base contains no frames with a lower

index than 𝑛. The origin and axes of each frame is based on the geometry of the

associated DoF and joint in some neutral position defined for the system. For every

frame 𝑛, its 𝑧-axis, 𝑧𝑛, is collinear with the axis of the affiliated DoF and passes

through the center of the corresponding joint.3 The 𝑥-axis for frame 𝑛, 𝑥𝑛, is the

common normal of 𝑧𝑛 and 𝑧𝑛−1, the 𝑧-axis of the preceding joint.4 The origin of

frame 𝑛 is the intersection of 𝑧𝑛 and 𝑥𝑛, and the 𝑦-axis, 𝑦𝑛, is defined to create a

2If a physical joint has more than one DoF, it will have more than one frame to capture its
motion.

3For the purposes of this work, only rotational joints are considered. DH parameters also work
with translational joints, but that is unnecessary for this research.

4If the 𝑧-axes are parallel or intersect, there are infinite or zero common normals. In all other
cases, where the 𝑧-axes are skew, there is only one. If the 𝑧-axes are parallel (with an infinite
number of common normals), the 𝑥-axis of the previous joint is used, for simplicity. When the
𝑧-axes intersect (with zero common normals or a common normal of length zero), then the cross
product (in either direction) of the two 𝑧-axes is used as the 𝑥-axis.

29

right-hand reference frame.5

As all DoFs and joints are paired with exactly one frame, there can be no move-

ment within a frame or at locations other than the defined joints. Therefore, the

components of the system between joints6 𝑛 and 𝑛+ 1 are fixed in the frame 𝑛. The

component (one or more rigidly-connected parts of the HCJA) between joints 𝑛 and

𝑛+ 1, fixed in frame 𝑛, will be called component 𝑛.7

With this procedure, the origin and coordinate frame for every joint are defined,

and the position and orientation of every component in the HCJA can be described

using the frames. An example of a robotic arm with origins and coordinate axes

(as well as the DH parameters) labeled can be seen in Figure 2-2. With the “nodes”

of the kinematic structure of the system defined, the transformations between each

pair of adjacent frames are described by four parameters (each corresponding to a

portion of the transformation) in the following order:

1. 𝜃: The most proximal coordinate frame of the pair, denoted by frame index

𝑛, has 𝑥-axis 𝑥𝑛, 𝑦-axis 𝑦𝑛, and 𝑧-axis 𝑧𝑛. This frame is rotated by 𝜃𝑛 around

𝑧𝑛 until 𝑥𝑛 is parallel to 𝑥𝑛+1, the 𝑥-axis of the second, more distal coordinate

frame of the pair (frame 𝑛+ 1). (Given the rules defining the axes, there will

always exist some rotation 𝜃𝑛 which will make 𝑥𝑛 and 𝑥𝑛+1 parallel.)
5Note that 𝑥𝑛, 𝑦𝑛, and 𝑧𝑛 do not have a vector hat or arrow above them. This notation means

that the axes are not simply directions, but represent the actual axes of the frame, which intersect
at the frame origin.

6The notation here, and throughout this section, of 𝑛 and 𝑛+ 1 generally assumes that adjacent
frames have adjacent indices. This is not the case when the RBT has branches. This notation is
used, however, because the convenient similarities between the indices of the frames, parameters,
origins, and components can be very helpful for those new to the topic and the 𝑛 → 𝑛+ 1 relation-
ship can help intuitively. The only difference in the expressions in this section for the case where the
RBT has branches are the indices. All equations and definitions are equivalent. In cases where a
frame has more than one distal neighbor, the parameters affiliated with the various neighbors have
no influence or impact on one another, and are all treated as if they were the only distal neighbor.

7By extension, in our assigned rigid body chain, the base of the system is component 0, associated
with frame 0, which is the global frame. This is a useful and logical connection.

30

2. 𝑑: The rotated coordinate frame is shifted by distance 𝑑𝑛 along 𝑧𝑛,8 until the

now-shifted 𝑥𝑛 is collinear with 𝑥𝑛+1.

3. 𝑎: The already-shifted coordinate frame 𝑛 is shifted again, along its current 𝑥-

axis (which is collinear with 𝑥𝑛+1) by distance 𝑎𝑛, until the origins of coordinate

frames 𝑛 and 𝑛+ 1 overlap.

4. 𝛼: With the origins of coordinate frames 𝑛 and 𝑛+ 1 overlapping, the frames

differ only by a rotation. The parameter 𝛼𝑛 provides this rotation, and coor-

dinate frame 𝑛 is rotated about its shifted 𝑥-axis (identical to 𝑥𝑛+1) until the

frames are identical.

The subscripts of each parameter 𝜃, 𝑑, 𝑎 and 𝛼 identify the transformation to which

it belongs: parameters with subscript 𝑛 are used to transform between frames 𝑛 and

𝑛+ 1. The transformations are simple to adjust when the system has moved from

its neutral position, into a new “pose.” If joint 𝑛 rotates by angle 𝜑𝑛, 𝜃𝑛 is replaced

in the transformation by 𝜃𝑛 + 𝜑𝑛.9

These DH parameters encode the location of frame origins and the HCJA’s axes

of motion, but, as can be seen in Figure 2-2, they do not specify the actual location

of each physical joint or the physical structure of each component at those joints. To

fully describe the HCJA, these must be modeled. Thus, a parameter ℎ is added for

8The rotation in step 1 was about 𝑧𝑛, and thus 𝑧𝑛 did not change. The axis along which the
frame is now translated can be considered either the original 𝑧-axis or the 𝑧-axis after the 𝜃 rotation,
as these axes are identical.

9It is possible to treat this rotation by 𝜑𝑛 as a change in the value of 𝜃𝑛, so that 𝜃𝑛 simply
changes as the system moves. For this research, however, we are explicitly concerned with the
geometry of the HCJA, which is described with 𝜃. Thus, we treat 𝜃 as constant, so the geometry is
constant, and use the 𝜑 variables to represent changes in kinematics or poses of the HCJA.

31

Figure 2-2: Example of DH parameters describing a robotic arm, as well as the origins
and axes of each coordinate frame. The red box is the the robot base, the green bar
is component 1, the blue bar component 2, and the yellow structure component 3.
Dotted lines indicate transformations associated with one of the DH parameters,
while solid lines are the axes of each coordinate frames. The origin of each frame lies
at the junction of the three frame axes. Note that the reference frames are aligned
with the joints, but do not always sit on them. Several additional details to note: (1)
the first coordinate frame (frame 0) is not defined by a joint, but by the robot base,
affiliated with the global frame; (2) To better demonstrate DH parameterization
and how it applies, this robot has been moved from its neutral position (The DH
parameters were defined with the green bar entirely horizontal, and then moved
with the robot. In the neutral position, 𝑥1 and 𝑥2 would be parallel, as 𝑧1 and 𝑧2 are
parallel.); and (3) there is an additional pair of dotted lines that do not correspond to
DH parameters, showing the path from the origin of frame 3 to the tip of component.

32

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
// http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
// http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

each joint, and a pair of parameters 𝑟𝑡 and 𝑟𝑏 are added for each component.10 An

example of these parameters in the Mark III HBA is shown in Figure 2-3.

The definition of the ℎ parameter for joint 𝑛 (between frames 𝑛 and 𝑛+ 1) takes

advantage of the fact that the the physical actualization of the joint corresponding to

the DoF represented by joint 𝑛 lies along 𝑧𝑛. This means the location of the physical

joint can be identified by a displacement along 𝑧𝑛. For each joint in the HCJA,

we add an ℎ parameter to indicate the distance between the frame’s origin and

the location of the physical joint, measured along 𝑧𝑛. The DH parameters apply to

transitions between joints, and govern the geometry of the single component between

those joints. The ℎ parameters, in contrast, affect the geometry of the components

on both sides of the joint. Due to this shared significance, a different index style

is used. The distance from the origin of frame 𝑛 to the center of the physical joint

associated with joint 𝑛+ 1, measured along 𝑧𝑛, is defined as ℎ𝑛/𝑛+1.

We must describe not just the locations of the physical joints, but the physical

structure of the components. As mentioned in the simplifications list earlier in Sec-

tion 2.1, this model assumes HCJA components are infinitely thin surfaces, beginning

and ending in circles in R3. Thus, we can describe the physical structure of each

HCJA component, and its interactions with the joints on either side, with a pair of

circles. With surfaces generated (see Section 2.4), the component’s shape will be an

oblique frustum, like the one seen in Figure 2-1. We know the location of the circle

10As previously mentioned, the notation assumes all components are standard such that adjacent
frames and components have adjacent indices. Non-standard components have more than one
distal neighbor. If a non-standard component has 𝑁 distal neighbors, there will be 𝑁 values for 𝑟𝑏
(𝑟𝑏 𝐼 , 𝑟𝑏 𝐼𝐼 , . . .), not just one, corresponding to 𝑁 + 1 circles (not just 2) used to define their edges.
Similarly, there will be 𝑁 different ℎ parameters to indicate the offset to the physical locations of
those distally-located joints. All formulae are the same, except for indexing like this. Each of these
values is applied and defined as if it were the only distal edge. The only difference in the math
occurs for surface generation, where non-standard components do not have a standard approach to
generate their surface and may not be oblqiue frusta.

33

centers and the planes in which they lie (they must be normal to and centered on

the 𝑧-axis of the joints at each end of the component, as the bearings rotate around

those axes), so all that is necessary to describe the edges of a component is the radii

of the two circles.

The radii can be thought of in pairs, corresponding to the “top” (proximal) and

“bottom” (distal) ends of a component. The top radii for a component is indicated

by 𝑟𝑛𝑡 and the bottom radii by 𝑟𝑛𝑏, where 𝑛 is the index of the component or frame.

These radii are used to create the top and bottom edges of each component, a process

which is discussed further in Section 2.3.

A visual example of this parameterization applied to the Mark III HBA (all pa-

rameters labeled) can be see in in Figure 2-3. The specific values of these parameters

for the HBA can be found in Table 4.2.

34

Figure 2-3: An overview of the parameters used to describe the geometry of a HCJA,
applied to the Mark III HBA. The parameters are color-coded by component. Red
values/lines correspond to the Briefs (frame 1), green corresponds to the Proximal
Section (frame 2), and blue corresponds to the Distal Section (frame 3). The origin
of each component reference frame is indicated by a 3-axis coordinate marker, in its
own color. The Denavit-Hartenberg parameters used to describe each component
are included in the same color, as well as the additional parameters (top and bottom
radii 𝑟𝑡 and 𝑟𝑏, and physical joint offset ℎ) in a darkened hue of the same color. The
dotted lines are the component edges and the dotted-dashed lines are lines along the
axes used by the offset parameters. The global frame (frame 0) axes are also included
in the bottom left corner.

35

2.3 Physical Structure

To fully describe HCJA geometries using the parameterization described in Sec-

tion 2.2, there must be a clear method to derive the HCJA’s physical structure from

the parameter set. After the physical structure of the HCJA is defined, the location

and orientation of each component in the global frame can be found.

The approach to defining the suit structure described in this section relies heavily

on homogeneous transformations. The notation of, and a simple primer in, these

transformations can be found in Appendix C. The homogeneous transformation to

frame 𝑛 from its distally adjacent neighbor 𝑛+ 1 (without joint rotation, so 𝜑𝑛 = 0),

is represented by 𝑛𝑇𝑛+1 and can be defined using the DH parameters of the frame.11

The formula is

𝑛𝑇𝑛+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos 𝜃𝑛 − sin 𝜃𝑛 cos𝛼𝑛 sin 𝜃𝑛 sin𝛼𝑛 𝑎𝑛 cos 𝜃𝑛

sin 𝜃𝑛 cos 𝜃𝑛 cos𝛼𝑛 − cos 𝜃𝑛 sin𝛼𝑛 𝑎𝑛 sin 𝜃𝑛

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.1)

11The notation here, and throughout this section, assumes adjacent frames have adjacent indices.
This is not the case when the RBT has branches. This notation is used, however, for clarity and
simplicity. The only difference in the expressions for an RBT with branches is the indices. All
equations and definitions are equivalent. In cases where a frame has more than one distal neighbor,
the parameters affiliated with the various neighbors have no influence or impact on one another,
and are all treated as if they were the only distal neighbor. All of the distal or bottom edges for
the different frames are created as if they were the only distal neighbor.

36

The transformation for the rotation 𝜑𝑛 about joint 𝑛 is

𝐽(𝜑𝑛) = 𝑇 (𝜑𝑛, 0, 0, 0) =

⎡⎢⎢⎢⎢⎢⎢⎣
cos𝜑𝑛 − sin𝜑𝑛 0 0

sin𝜑𝑛 cos𝜑𝑛 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.2)

Transformations between frames are applied by simply pre-multiplying a vector

in frame 𝑛+ 1 by these matrices. For detailed information, see Appendix C.

Locations in each component or its affiliated frame, both indexed from 0 to

𝑁𝐷𝑜𝐹 ,12 can be converted to the global frame (or any other frame in the HCJA)

using homogeneous transformations. The transformation matrix from frame 4 to the

global frame, for example, would be

0𝑇4 = 0𝑇1 𝐽(𝜑1)
1𝑇2 𝐽(𝜑2)

2𝑇3 𝐽(𝜑3)
3𝑇4 𝐽(𝜑4) .

As described in Section 2.2, every component 𝑛 is fixed within corresponding

reference frame 𝑛 that is described relative to the other frames by the sets of four DH

parameters. The position and structure of component 𝑛 and its joints are described

by the additional 𝑟 and ℎ parameters. It has circular edges of radii 𝑟𝑛𝑡 and 𝑟𝑛𝑏 at

the top and bottom, respectively. The position of this top edge is defined by ℎ𝑛−1/𝑛,

while ℎ𝑛/𝑛+1 governs the bottom edge. We can use these values to describe the

positions of the component edges.

Consider the component 𝑛, corresponding to frame 𝑛, with top edge at joint 𝑛

12Due to the methods by which edges are described (detailed in this section), the frame after the
final HCJA component may be utilized. As mentioned in Section 2.1, the HCJA does not contain
the final portion of the suit for any limb, so there will always be at least one part of the space suit
remaining, such as boot or glove. The geometry or details of that part are not used, just the frame.

37

and bottom edge at joint 𝑛+ 1. The top edge circle can be most easily described in

frame 𝑛, the component’s own frame. The top edge is centered at a point we call

�⃗�𝑛𝑡, located a distance of ℎ𝑛−1/𝑛 along 𝑧𝑛 from the origin of frame 𝑛. The value of

�⃗�𝑛𝑡 (or any vector �⃗�) in frame 𝑛 is indicated by a pre-appended superscript with the

frame index. In this case, we have

𝑛�⃗�𝑛𝑡 =
[︁
0 0 ℎ𝑛−1/𝑛 1

]︁𝑇
(2.3)

in frame 𝑛.13. The circle that forms this top edge has radius 𝑟𝑛𝑡 and is normal to 𝑛𝑧,

so it is located in a plane parallel to the 𝑥𝑦-plane of frame 𝑛. Using this information,

we will describe the top edge of component 𝑛 as the set of points traced out by the

vector parametric equation �⃗�𝑛(𝑝), where 𝑝 is a parametric variable on the interval

[0, 2𝜋). In frame 𝑛, we have

𝑛�⃗�𝑛(𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝑟𝑛𝑡

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣cos 𝑝

sin 𝑝

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑡 cos 𝑝

𝑟𝑛𝑡 sin 𝑝

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦ , ∀𝑝 ∈ [0, 2𝜋) . (2.4)

The bottom edge circle can be most easily described in frame 𝑛+ 1,14 the frame

13The pre-affixed subscript indicates the frame in which a vector is expressed when the com-
ponents of the vector are specified. When working with multiple frames, this is an important
distinction. For example, 𝑛�⃗�1𝑡 and 0�⃗�1𝑡 would refer to the same point in space, but they refer to
that point from different frames and origins, so the components composing the vector may differ.
When a frame transformation like 𝑛𝑇𝑛+1 is used, it is not modifying the vector, but modifying the
frame in which it is expressed. This notation is used throughout.

14This approach is simpler because the bottom edge of component 𝑛 is coplanar with the top edge
of component 𝑛+ 1. The bottom edge is described identically to the top edge, but it is described
in the next frame and then undergoes a coordinate transformation. This is the reason behind the
previous footnote about in some instances requiring the frame after the end of the HCJA. It is used
to define the bottom edge of the most distal component in the HCJA.

38

of the next component, and then transformed back to frame 𝑛. The bottom edge is

centered at �⃗�𝑛𝑏 = �⃗�(𝑛+1)𝑡, described in frame 𝑛+ 1 as 𝑛+1�⃗�𝑛𝑏 =
[︁
0 0 ℎ𝑛/𝑛+1 1

]︁𝑇
.

In other words, it is a distance ℎ𝑛/𝑛+1 along 𝑧𝑛+1 from the origin of frame 𝑛 + 1.

The circle that forms this bottom edge is normal to this vector, so it is located in

aa plane parallel to the 𝑥𝑦-plane of frame 𝑛+ 1, and it has radius 𝑟𝑛𝑏. To transform

these vectors back into frame 𝑛, we can use the transformation 𝑛𝑇𝑛+1𝐽(𝜑𝑛+1). As we

are transforming a circle centered on and normal to 𝑧𝑛+1 and 𝐽(𝜑𝑛+1) represents a

rotation about 𝑧𝑛+1, we can ignore the 𝐽 matrix representing the kinematic rotation,

as it just transforms the circle onto itself. This is a circle centered at the point

�⃗�𝑛𝑏 = �⃗�(𝑛+1)𝑡. Described in the frame 𝑛+ 1, it is

𝑛+1�⃗�𝑛𝑏 = 𝑛+1�⃗�(𝑛+1)𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦
and lies in the plane described by coordinate frame unit vectors15

𝑛+1�̂�𝑛+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ and 𝑛+1𝑦𝑛+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ .

15Unlike the previously defined axes with no hat, the hat-topped unit vectors �̂�𝑛, 𝑦𝑛, and 𝑧𝑛
describe directions parallel to the frame axes, not inherently the lines of the axes themselves.

39

Transformed into the 𝑛 frame, we have the center

𝑛�⃗�𝑛𝑏 = 𝑛𝑇𝑛+1
𝑛+1�⃗�𝑛𝑏 = 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

and the vectors for the plane

𝑛�̂�𝑛+1 = 𝑛𝑇𝑛+1
𝑛+1�̂�𝑛+1 = 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ and 𝑛𝑦𝑛+1 = 𝑛𝑇𝑛+1
𝑛+1𝑦𝑛+1 = 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ .

We describe this bottom edge as the set of points traced out (in frame 𝑛) by the

vector parametric equation �⃗�𝑛(𝑝), where 𝑝 is a parametric variable16 on the interval

[0, 2𝜋). In frame 𝑛, this is

𝑛𝑏𝑛(𝑝) = 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝑟𝑛𝑏
𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣cos 𝑝

sin 𝑝

⎤⎦ , ∀𝑝 ∈ [0, 2𝜋) ,

16Please note that while this is the same 𝑝 as used to define �⃗�𝑛(𝑝), 𝑝 simply denotes the parametric
variable in both cases. It describes how the function relates to its arguments, and should only be
considered within the function for which it is being used.

40

which simplifies to

𝑛𝑏𝑛(𝑝) = 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑏 cos 𝑝

𝑟𝑛𝑏 sin 𝑝

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦ , ∀𝑝 ∈ [0, 2𝜋) . (2.6)

An example of an HCJA with 𝑟𝑛𝑡’s, 𝑟𝑛𝑏’s, and ℎ𝑛/𝑛+1’s labeled can be seen in Figure 2-

3. The same HCJA with the edges and their associated components highlighted can

be found in Figure 2-4.

Figure 2-4: Figure showing edges for each component of an HCJA, using the HBA as
an example. The top and bottom edges, �⃗�𝑛(𝑝) and �⃗�𝑛(𝑝), respectively, are shown for
each component. The color of the surface of each component, the top and bottom
edges of that component, and the labels all match. The Briefs are red, the Proximal
Section is green, and the Distal Section is blue. Only the edges of the components
on the left side of the HBA are shown, as this model focuses on the left side. As
symmetry is assumed in this model, the right side components are simple reflections
of their counterparts. The global coordinate frame axes are also visible in the lower
left.

When describing the circular edges of a component, the specific values of the

parametric variable 𝑝 in �⃗�𝑛(𝑝) and �⃗�𝑛(𝑝) do not matter, as moving 𝑝 through the

41

interval [0, 2𝜋) generates the same circular edge. A problem can arise, however, if

one attempts to attribute significance to the points that �⃗�𝑛(𝑝) and �⃗�𝑛(𝑝) return for

the same 𝑝. There is no inherent significance to the points on the edges for the

same 𝑝. There is sometimes the need to determine corresponding points between the

two edges, such as for generating the surfaces of HCJA components, as discussed in

Section 2.4. In that case, there is a need for points on the top edge to correspond with

points on the bottom edge, so they can be connected for the surface. Simply using

the same values for 𝑝 can result in absurd geometries.17 A number of approaches

could be used here, but this model relies on a rather simple one, dependent on the

frame’s 𝜃𝑛 parameter. Determining the corresponding points between the two edges

and thus rotationally aligning the two edges of a component can be done with the

formulae18

𝜏𝑛(𝑝) =

⎧⎪⎨⎪⎩
(︀(︀
𝑝+ 𝜃𝑛 − 𝜋

⌈︀
𝜃𝑛
𝜋

⌉︀)︀
mod 2𝜋

)︀
𝜃𝑛 < 𝜋(︀(︀

𝑝+ 𝜃𝑛 − 𝜋
⌊︀
𝜃𝑛
𝜋

⌋︀)︀
mod 2𝜋

)︀
𝜃𝑛 ≥ 𝜋

, (2.7)

where ⌈*⌉ is the ceiling function and ⌊*⌋ is the floor function, and

𝛽𝑛(𝑝) =

⎧⎪⎨⎪⎩((𝑝+ 𝜋) mod 2𝜋) cos 𝜃𝑛 < 0

(𝑝 mod 2𝜋) cos 𝜃𝑛 ≥ 0

, (2.8)

where 𝑝 ∈ [0, 2𝜋) is a parametric variable to find 𝜏 and 𝛽, which can be used them-

selves as the parametric variables for �⃗�𝑛(𝑝) and �⃗�𝑛(𝑝). In other words, to find the

17Connecting points between two parallel circles with a rotational offset is one way a hyperboloid
of one sheet can be defined.

18The function for 𝜏𝑛(𝑝) looks oddly complex, but it is much simpler to code. In Matlab, if the
parametric variable 𝑝 is a vector of values p and the parameter 𝜃𝑛 is thn, then the code equivalent
would be simply p+rem(thn-pi,pi), where rem is Matlab’s remainder after division function and pi
is 𝜋.

42

corresponding points on the two edges of a standard HCJA component,19 compute

�⃗�𝑛 (𝜏𝑛 (𝑝)) and �⃗�𝑛 (𝛽𝑛 (𝑝))

for the same 𝑝 ∈ [0, 2𝜋). To reduce confusion, it is simplest to always compute the

top and bottom edge like this from the same 𝑝.

2.4 Surface Generation

To fully model the geometry of the HCJA, the overall shapes of the components

must be described. This extension can be critical. In Chapter 3, for example, the

shapes of the components are used to determine the range of motion for the suit’s

occupant. These shapes are also invaluable when visualizing the HCJA geometry.

The shape of each component is described as a two-dimensional surface in R3,

defined by a set of points identified in a manner similar to the .STL file format.

The .STL file, a common standard for describing three-dimensional structures, relies

on a numbered set of points in R3 and a list of triangular faces, each defined by

the numbers of the three points that are its vertices [34]. While there are many

ways to describe a surface, the .STL format was selected due to its ubiquity. The

surfaces output from this model in this format can be imported into many different

three-dimensional modeling programs. Similarly, analyses using this model, such as

the one in Chapter 3, can be applied to .STL file data with no modification. There

19This approach is for standard HCJA components. In non-standard components, the rotational
alignment of the top and bottom edges may be more complex, as more than one edge must be
aligned. (The exception is a symmetric non-standard component with only two distal neighbors.
See Section 2.4.2). The alignment described here is primarily used for generating the surfaces of the
components. There is no standard method to generate the surfaces for non-standard components,
and the method of aligning points along the various edges is a non-trivial part of each special
method.

43

are also tools available to convert many other three-dimensional formats to .STL

(SolidWorks and most other 3D design programs can save as .STL, for example), so

analyses based off this model are compatible with many file types.

To create the .STL files, Matlab three-dimensional surfaces were converted using

a modified20 version of the surf2stl function [19]. These Matlab surfaces had to be

generated, which required creating input acceptable to Matlab’s surf function. The

Matlab surface for each component requires three matrices, X, Y, and Z as input.

These correspond to a 𝑥, 𝑦, and 𝑧 coordinates of the rectangular grid of points that

make up the surface. The point in row 𝑖 and column 𝑗 (the (𝑖, 𝑗)-th point) of the

grid for component 𝑛 is denoted by the vector21 �⃗�𝑛:𝑖,𝑗. The input matrices can thus

be found as

X𝑖,𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ · �⃗�𝑛:𝑖,𝑗, Y𝑖,𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ · �⃗�𝑛:𝑖,𝑗, and Z𝑖,𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ · �⃗�𝑛:𝑖,𝑗, (2.9)

where A𝑖,𝑗 denotes the element in the 𝑖-th row and 𝑗-th column of the matrix A.

Points that are vertically or horizontally (but not diagonally) adjacent in this

grid (and thus the input matrices) are connected with an edge. For example, �⃗�𝑛:3,5

would be adjacent to (and share an edge with) �⃗�4,5 and �⃗�3,6, but not �⃗�4,6. Each

20The modifications were made for speed and efficiency. Some portions of this research (such as
the tradespace explorations in Chapter 5) required performing these calculations on hundreds of
thousands of geometries. To make that process more efficient, unused generalizations and input
checking were removed from the code. To further reduce computation time, the code was modified
in some cases to output the data as a pair of arrays containing .STL-formatted data, rather than
saving every geometry as a file.

21The vectors �⃗�𝑛:𝑖,𝑗 are used to define component 𝑛 and are expressed in coordinate frame 𝑛
(though parts of their derivation may use other frames. Therefore, the frame-related notation of
𝑛�⃗� is normally extraneous and clutters the equations. Unless otherwise specified, �⃗�𝑛:𝑖,𝑗 = 𝑛�⃗�𝑛:𝑖,𝑗 .

44

“square” of four entries in the grid, and the edges between them, are connected in

the Matlab surface to form a face. To create the surfaces, the grid of points �⃗�𝑛:𝑖,𝑗

for each component must be determined. The grids for standard and non-standard

HCJA components are discussed further in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 Standard Components

Standard components of the HCJA (those connected to exactly one component on

each end, as described in Section 2.1), the creation of the surface grid of points

�⃗�𝑛:𝑖,𝑗 is relatively simple. These components are oblique frusta (see Figure 2-1) and

can be thought of similarly to deformed cylinders. Only points on the top and

bottom edges must be defined, with surface edges in between. The only additional

information required is the number of points on each component edge, denoted 𝑁1,22

and the alignment of the top and bottom component edges. The value of 𝑁1 will be

based on the accuracy required for the implementation of the model. The rotational

alignment of the edges was determined using the functions 𝜏𝑛(𝑝) and 𝛽𝑛(𝑝), described

in Equations 2.7 and 2.8.

With only two rows of points (one each for the top and bottom component edges),

�⃗�𝑛:𝑖,𝑗 is simple to describe. The index 𝑗 values 1 and 2 (indicating top or bottom

component edge), while 𝑖 takes integer values between 0 and 𝑁1, inclusive (indicates

which point along component edges). Thus, the points can be defined by the formula

�⃗�𝑛:𝑖,𝑗 =

⎧⎪⎨⎪⎩�⃗�𝑛
(︁
𝜏𝑛

(︁
2𝜋𝑗
𝑁1

)︁)︁
𝑗 = 1

�⃗�𝑛

(︁
𝛽𝑛

(︁
2𝜋𝑗
𝑁1

)︁)︁
𝑗 = 2

, ∀𝑖 ∈ {0, 1, . . . , 𝑁1} , ∀𝑗 ∈ {1, 2} .

22There were actually 𝑁1 + 1 points between 0 and 2𝜋, but when considering a circle, 0 and 2𝜋
are equivalent, so there are only 𝑁1 distinct points.

45

Note that �⃗�𝑛:𝑖,0 = �⃗�𝑛:𝑖,𝑁1 . This makes the surface wrap around and close against itself.

The surfaces for each standard component can then be found using Matlab’s surf

function with input matrices defined according to Equation 2.9.

2.4.2 Non-standard Components

As stated in Section 2.1, the structural portions (both kinematic and physical) of

this model defined in Sections 2.2 and 2.3 are applicable to both standard and non-

standard components (with slight modifications to indexing and number of bottom

edges) with little complexity. However, the difference is more significant when con-

sidering the surfaces of the components. The surfaces describing the overall shapes

of standard components can be found with a consistent formula for its points, de-

scribed in Section 2.4.1. The shapes of non-standard components, in contrast, can

vary wildly based on the HCJA being modeled,23 and a method of defining the sur-

face points must be created for each specific usage. This section presents an example

of such a method, generating the grid of points �⃗�1:𝑖,𝑗 for the non-standard Briefs

component of the Mark III HBA. The two-dimensional grid of points for the Briefs

surface, �⃗�𝑛:𝑖,𝑗, must be generated, but, due to the complexity of its shape, it cannot

simply be two rows corresponding to the top and bottom edges.

Instead, working in the Briefs own coordinate frame, frame 1, the Briefs surface

was divided into five regions:

• the under side, which connects portions of the left and right bottom edges of

the Briefs to one another,

• the left side, which connects a portion of the left bottom edge to points on the
23For example, the shapes and surfaces of an HCJA for the shoulder, hips, knee, or hands would

all look very different.

46

top edge,

• the right side, which connects a portion of the right bottom edge to points on

the top edge,

• the back side, which connects a portion of the top edge to points on the under

side, and

• the front side, which also connects a portion of the top edge to points on the

under side.

The regions of the Briefs surface can be seen in Figure 2-5. These regions each form

a sub-surface, which are combined to form the surface for the Briefs.

Some simplifications are applied. The Briefs are treated as symmetric across the

sagittal plane,24 so any point in the Briefs frame on the right half 1�⃗�𝑅 can be converted

from the equivalent left-half vector, 1�⃗�𝐿 by changing the sign on the 𝑦1-coordinate,25

or:

1�⃗�𝑅 = R 1�⃗�𝐿, where R =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.10)

This simplifies the physical structure of the Briefs. Only one bottom edge radius,

𝑟1𝑏 is required, and the bottom edge on the left side is simply reflected across the

sagittal plane to find the right side. The 𝜏𝑛(𝑝) and 𝛽𝑛(𝑝) index adjustments for the

component edges, described in Equations 2.7 and 2.8, are used as well.
24The definition of the sagittal plane and other anatomical terms can be found in Appendix A.
25This term “𝑦1-coordinate” of a specific vector means the 𝑦-component of that vector, when that

vector is expressed in frame in 1. The subscript means that it is measured along the 𝑦1 axis, no
matter in what frame the vector is expressed. In other words, the 𝑦𝑛 component for �⃗� is equal to
𝑛�⃗� ·

[︀
0 1 0 0

]︀𝑇 . This also can be applied to 𝑥 and 𝑧 axes.

47

Figure 2-5: The surface generated for the Briefs of the Mark III HBA, with the
different regions of the surface specified. The under side region is shown in red, the
left side in green, the right side in blue, the back side in magenta, and the front side
in cyan. Uncolored areas are the seams between the regions. The colors used match
those in Figure 2-7, which shows the zones which determine the Briefs region for
each top edge point.

The top edge of the Briefs component is divided according to the region each

point joins. The bottom edges are divided between points that connect to the top

edge, and those that connect with each other to form the under side. They form the

bounds of the sub-surfaces, which are formed by interpolating between them.

As shown in Figure 2-5, portions of the top edge form parts of four different

regions (left, right, front, and back). The region to which a top edge point belongs

depends on the location of the point relative to several landmark points on the Briefs:

• the center of the top edge of the Briefs, which we call �⃗�1𝑡;

• the two points (denoted as 𝑓𝐿 and �⃗�𝐿, for the fore- and rearmost of the pair,

48

respectively, using the 𝑥1-coordinates) of the left26 bottom edge which have

𝑧1-coordinates equal to those of the centers of the bottom edges; and

• the two points (denoted as 𝑓𝑅 and �⃗�𝑅, for the fore- and rearmost of the pair,

respectively, using the 𝑥1-coordinates) of the right27 bottom edge which have

𝑧1-coordinate equal to those of the centers of the bottom edges.

These landmark points are labeled in Figure 2-6.

Figure 2-6: The edges for the Briefs of the Mark III HBA, with the generated surface
visible and landmark points for Briefs surface generation labeled. The zones created
from these points can be seen in Figure 2-7.

The landmark points are used to form a set of zones around the top edge, shown

in Figure 2-7. The top edge points that fall into each zone are used to form a
26As stated in this section, this model assumes symmetry and is based on the left side. Thus,

using the coordinate transformation formulae and given DH parameters finds the left bottom edge.
27Due to the symmetry assumption, the points in frame 1 on the right bottom edge for the

Briefs can be found by taking the points for the left bottom edge and changing the sign on the
𝑦1-coordinate. See previous footnote or Equation 2.10.

49

specific region of the Briefs. The conditions28 defining these zones are summarized

in Table 2.1. They can are defined as follows:

• Front side: Parallel to the 𝑦-axis of the Briefs frame, 𝑦1, points must fall on

or between 𝑓𝑅 and 𝑓𝐿. Points must also be in the front half of the waist edge,

with a greater 𝑥1-coordinate than �⃗�1𝑡.

• Left side: Points must either be in the front half of the waist edge (𝑥1-coordinate

greater than or equal to 1�⃗�1𝑡) and fall on or outside 𝑓𝐿 (compared using 𝑦1-

coordinates), or be in the rear half of the waist edge (𝑥1-coordinate less than

or equal to �⃗�1𝑡) and fall on or outside �⃗�𝐿 along the 𝑦1-axis.

• Right side: Points must either be in the front half of the waist edge (𝑥1-

coordinate greater than or equal to �⃗�1𝑡) and fall on or outside 𝑓𝑅 (compared

using 𝑦1-coordinates), or be in the rear half of the waist edge (𝑥1-coordinate

less than or equal to that of �⃗�1𝑡) and fall on or outside �⃗�𝑅 along the 𝑦1-axis.

• Back side: Points must either fall on or between �⃗�𝐿 and �⃗�𝑅 (compared using

𝑦1-coordinates) and be in the back half of the waist edge, with an 𝑥1-coordinate

less than or equal to that of �⃗�1𝑡.

As defined in Equation 2.4, the location of the points on the top edge them-

selves are defined by �⃗�1(𝜏𝑛(𝑝)). In frame 1, the center of the top edge is the ori-

gin, so 1�⃗�1𝑡 = 0⃗. It can be shown (see Appendix D) that 1𝑓𝐿 = 1⃗𝑏1(𝛽1(0)) and
1�⃗�𝐿 = 1⃗𝑏1(𝛽1(𝜋)). Given the symmetry assumption, right-side points 1𝑓𝑅 and 1�⃗�𝑅

28We assume that �⃗�𝐿 (and thus �⃗�𝑅 as well) is in the rear half of the Briefs, with an 𝑥1-coordinate
less than or equal to that of �⃗�1𝑡. An alternative method to describe the Briefs surfaces for cases
where �⃗�𝐿 is in the front half of the Briefs, was created, but not finalized. With the bounds and
constraints in Chapter 4, as well as the values of the radii, no such cases arose during this research.

50

Region Conditions for Point �⃗�1(𝜏1(𝑝))
Front side −𝑦𝑓 ≤ 𝑦𝑝 ≤ 𝑦𝑓 and 𝑥𝑝 > 0

(𝑦𝑝 ≥ 𝑦𝑓 and 𝑥𝑝 ≥ 0)
Left side or

(𝑦𝑝 ≥ 𝑦𝑟 and 𝑥𝑝 ≤ 0)
(𝑦𝑝 ≤ −𝑦𝑓 and 𝑥𝑝 ≥ 0)

Right side or
(𝑦𝑝 ≤ −𝑦𝑟 and 𝑥𝑝 ≤ 0)

Back side −𝑦𝑟 ≤ 𝑦𝑝 ≤ 𝑦𝑟 and 𝑥𝑝 ≤ 0

Note: The following shorthand is used:
1�⃗�1(𝜏1(𝑝)) =

[︀
𝑥𝑝 𝑦𝑝 𝑧𝑝 1

]︀𝑇
1𝑓𝐿 =1 �⃗�1(𝛽1(0)) =

[︀
𝑥𝑓 𝑦𝑓 𝑧𝑓 1

]︀𝑇
1�⃗�𝐿 =1 �⃗�1(𝛽1(𝜋)) =

[︀
ℎ𝑟 𝑦𝑟 𝑧𝑟 1

]︀𝑇
1𝑓𝑅 =

[︀
𝑥𝑓 −𝑦𝑓 𝑧𝑓 1

]︀𝑇
1�⃗�𝑅 =

[︀
𝑥𝑟 −𝑦𝑟 𝑧𝑟 1

]︀𝑇
Table 2.1: Conditions defining HBA Briefs top edge zones.

equal the equivalent left-side points with the sign changed on the 𝑦1-coordinate, or

1𝑓𝑅 = R 1𝑓𝐿 and 1�⃗�𝑅 = R 1�⃗�𝐿,

with R defined according to Equation 2.10. These definitions simplify the assignment

of top edge points to each region, resulting in the conditions given in Table 2.1.

Using the top edge points in each zone, we can generate the sub-surface for each

region and combine them to form the Briefs surface. One aspect of the Matlab surf

function simplifies this: the function ignores values that are Not a Number (NaN), a

data type in Matlab that can be treated as a number for all calculations (though

any operation between a NaN and a number or between two NaNs results in a NaN)

and is therefore useful as a placeholder. This feature is utilized to avoid forcing the

51

Figure 2-7: An illustration of the zones used to divide the Briefs top edge, with the
corresponding regions indicated. The left side zone is in green, the right side in blue,
the back side in magenta, and the front side in cyan. These colors match those in
Figure 2-5, to show the surface regions of the top edge points in these zones. Also
note the red stars, matching the points in Figure 2-6, that serve as the divisions
between the zones.

grid of points, �⃗�1:𝑖,𝑗, to match the rectangular shape of the grid. Instead, a sort of

“T” shape of relevant points fills part of the grid, with the unused areas filled with

NaNs. The grid of surface points forms something like the bottom half of an infant’s

onesie, where the tongue of the “T” (or flap of the onesie) is the under side of the

Briefs, and the other four regions in the top bar across the “T” wrap around the

waist. Rectangular blocks of NaNs under the top bar of the “T,” and on either side

of the tongue of the “T,” correspond to the leg holes of the Briefs. The points on the

grid around these NaN-blocks are the bottom edges of the Briefs, and the top line

of the grid is the top edge of the Briefs. The leftmost and rightmost columns are

identical, to force the surface to self-intersect and seal. The form of this grid can be

seen in Figure 2-8.

Similar to Section 2.4.1, the circles forming both the top and bottom edges are

52

𝑞 1
𝑙:
0
,0

𝑞 1
𝑙:
1
,0

..
.

𝑞 1
𝑙:
𝑀

𝑙
,0

𝑞 1
𝑏
:0
,0

𝑞 1
𝑏
:1
,0

..
.

𝑞 1
𝑏
:𝑀

𝑏
,0

𝑞 1
𝑟
:0
,0

𝑞 1
𝑟
:1
,0

..
.

𝑞 1
𝑟
:𝑀

𝑟
,0

𝑞 1
𝑓
:0
,0

𝑞 1
𝑓
:1
,0

..
.

𝑞 1
𝑓
:𝑀

𝑓
,0

𝑞 1
𝑙:
0
,0

𝑞 1
𝑙:
0
,1

𝑞 1
𝑙:
1
,1

..
.

𝑞 1
𝑙:
𝑀

𝑙
,1

𝑞 1
𝑏
:0
,1

𝑞 1
𝑏
:1
,1

..
.

𝑞 1
𝑏
:𝑀

𝑏
,1

𝑞 1
𝑟
:0
,1

𝑞 1
𝑟
:1
,1

..
.

𝑞 1
𝑟
:𝑀

𝑟
,1

𝑞 1
𝑓
:0
,1

𝑞 1
𝑓
:1
,1

..
.

𝑞 1
𝑓
:𝑀

𝑓
,1

𝑞 1
𝑙:
0
,1

. . .
. . .

. .
.

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. .
.

. . .
. . .

. . .
. .

.
. . .

. . .
𝑞 1

𝑙:
0
,𝑁

2
𝑞 1

𝑙:
1
,𝑁

2
..
.
𝑞 1

𝑙:
𝑀

𝑙
,𝑁

2
𝑞 1

𝑏
:0
,𝑁

2
𝑞 1

𝑏
:1
,𝑁

2
..
.

𝑞 1
𝑏
:𝑀

𝑏
,𝑁

2
𝑞 1

𝑟
:0
,𝑁

2
𝑞 1

𝑟
:1
,𝑁

2
..
.
𝑞 1

𝑟
:𝑀

𝑟
,𝑁

2
𝑞 1

𝑓
:0
,𝑁

2
𝑞 1

𝑓
:1
,𝑁

2
..
.
𝑞 1

𝑓
:𝑀

𝑓
,𝑁

2
𝑞 1

𝑙:
0
,𝑁

2

N
aN

N
aN

..
.

N
aN

𝑞 1
𝑢
:0
,0

𝑞 1
𝑢
:1
,0

..
.

𝑞 1
𝑢
:𝑀

𝑏
,0

N
aN

N
aN

..
.

N
aN

N
aN

N
aN

..
.

N
aN

N
aN

N
aN

N
aN

..
.

N
aN

𝑞 1
𝑢
:0
,1

𝑞 1
𝑢
:1
,1

..
.

𝑞 1
𝑢
:𝑀

𝑏
,1

N
aN

N
aN

..
.

N
aN

N
aN

N
aN

..
.

N
aN

N
aN

. . .
. . .

. .
.

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. .
.

. . .
. . .

. . .
. .

.
. . .

. . .
N

aN
N

aN
..
.

N
aN

𝑞 1
𝑢
:0
,
𝑁

1 2

𝑞 1
𝑢
:1
,
𝑁

1 2

..
.
𝑞 1

𝑢
:𝑀

𝑏
,
𝑁

1 2

N
aN

N
aN

..
.

N
aN

N
aN

N
aN

..
.

N
aN

N
aN

𝑀
𝑙
+

1
𝑀

𝑏
+

1
𝑀

𝑟
+

1
𝑀

𝑓
+

1
1

𝑁2+1
𝑁1
2+1

F
ig

ur
e

2-
8:

T
he

ar
ra

ng
em

en
t

of
th

e
gr

id
of

po
in

ts
us

ed
to

m
ak

e
th

e
B

ri
ef

s
su

rf
ac

e.
T

he
co

lo
re

d
bo

xe
s

in
di

ca
te

th
e

as
so

ci
at

ed
re

gi
on

of
th

e
su

rf
ac

e,
co

rr
es

po
nd

in
g

to
th

e
co

lo
rs

us
ed

in
F
ig

ur
es

2-
5

an
d

2-
7.

T
he

un
de

r
si

de
re

gi
on

is
sh

ow
n

in
re

d,
th

e
le

ft
si

de
in

gr
ee

n,
th

e
ri

gh
t

si
de

in
bl

ue
,t

he
ba

ck
si

de
in

m
ag

en
ta

,a
nd

th
e

fr
on

t
si

de
in

cy
an

.
G

re
y

ar
ea

s
co

rr
es

po
nd

to
ar

ea
s

th
at

ar
e

le
ft

as
N

aN
(a

no
n-

nu
m

er
ic

pl
ac

eh
ol

de
r

va
lu

e)
so

th
er

e
is

no
su

rf
ac

e
at

th
e

le
g

ho
le

s.

53

divided into 𝑁1 equally-spaced points.29 The value of 𝑁1 can change based on the

implementation of the model. The bottom edge points30 are at

�⃗�1

(︂
𝛽1

(︂
2𝜋𝑘

𝑁1

)︂)︂

and the top edge points lie at

�⃗�1

(︂
𝜏1

(︂
2𝜋𝑘

𝑁1

)︂)︂
,

where 𝑘 is an integer between 0 and 𝑁1, inclusive.

The top edge is divided into zones based on the regions each point will join, based

on the conditions in Table 2.1 and Figure 2-7. The top edge points within each zone

are then ordered such that they form a consistent circle as the top line of the grid of

points defining the Briefs surface, as shown in Figure 2-8. We sort the top edge points

that are in the left side zone, ordered with decreasing 𝑥1-coordinates, to form the

ordered set of points �⃗�𝑙,𝑖, where 𝑖 is an integer between 0 and 𝑀𝑙 (inclusive). There

are a total of 𝑀𝑙 + 1 points of top edge points in the left side zone, all included in this

set. We arrange the points in the other three top edge zones like this, so the 𝑀𝑏 + 1

points in the back side zone are ordered with decreasing 𝑦1-coordinates to form �⃗�𝑏,𝑖,

the𝑀𝑟 + 1 points in the right side zone ordered with increasing 𝑥1-coordinates as �⃗�𝑟,𝑖,

and the 𝑀𝑓 + 1 points on the front side zone ordered by increasing 𝑦1-coordinates as

�⃗�𝑓,𝑖. The ordering of each region results in a continuous progression of points around

the top edge that is anticlockwise if viewed from above. An example of these points

(with 𝑁1 = 50, 𝑀𝑓 = 4, 𝑀𝑟 = 17, 𝑀𝑏 = 9, and 𝑀𝑙 = 16) can be seen in Figure 2-9.

29Also similar to Section 2.4.1, there are actually 𝑁1 + 1 points between 0 and 2𝜋, but the first
and last overlap.

30For the left side. The right side bottom edge points are the same, but with the sign of the
𝑦1-coordinate’s sign changed. See Equation 2.10.

54

Figure 2-9: Point groupings by zone of Briefs top edge points for 𝑁1 = 50, 𝑀𝑓 = 4,
𝑀𝑟 = 17, 𝑀𝑏 = 9, and 𝑀𝑙 = 16. The colors of the top edge points (the squares) and
the color-coded regions match the colors in Figures 2-5, 2-7, and 2-8. The black
arrows indicate the direction in which points are sorted for each zone.

Like the top edge, the bottom edges must be divided, but in a much simpler

manner. They are divided based which points will join the under side and which

will join one of the other regions. This division splits the set of points in half.31 The

lower half of the bottom edges (those with 𝑧1-coordinates less than or equal to the

𝑧1-coordinate of the bottom edge center) are connected to their equivalent points on

the opposite leg hole to form the under side region of the Briefs. The upper halves

of these edges (points with 𝑧1-coordinates greater than or equal to the 𝑧1-coordinate

of the bottom edge center) are connected to the left and right side regions of the

Briefs. As shown in Appendix D, 1⃗𝑏𝑛(𝛽𝑛(0)) and 1⃗𝑏1(𝛽1(𝜋)) are the points with the

same 𝑧1-coordinate as the bottom edge’s center. The upper half are the points with

integer indices 𝑖 ∈
{︀

0, 1, . . . , 𝑁1

2

}︀
. The points in the lower half of the Briefs bottom

31The two points which define the dividing line, 𝑓𝐿 and �⃗�𝐿 for the left bottom edge and 𝑓𝑅 and
�⃗�𝑅 for the right bottom edge, are both used in both halves.

55

edge correspond to integer indices 𝑖 ∈
{︀

𝑁1

2
, 𝑁1

2
+ 1, . . . , 𝑁1

}︀
. For this reason, we

only use even values for 𝑁1.

With the top and bottom edges divided by region, the edges are connected to

form the sub-surfaces. A second dimension of this surface is required (beyond the

points-per-edge 𝑁1): the number of points, denoted 𝑁2, between the top edge of

the Briefs and the bottom edges. With this value, we can define the points of each

sub-surface as a rectangular sub-grid of points (Figure 2-8) by interpolating between

the edges of the region.

The front side is the simplest. The top line of this sub-grid of points runs along

the Briefs top edge as �⃗�𝑓,𝑖, with 𝑖 varying from 0 to 𝑀𝑓 (inclusive). The bottom of

this sub-grid as the same number of points (𝑀𝑓 + 1) and runs between 𝑓𝑅 and 𝑓𝐿.

The bottom line is found by interpolating:

𝑓𝑅
𝑖

𝑀𝑓

+ 𝑓𝐿
(1 − 𝑖)

𝑀𝑓

.

By interpolating between the top and bottom lines of the grid, we can find the points

on the front side sub-surface, denoted �⃗�1𝑓 :𝑖,𝑗. The formula is

�⃗�1𝑓 :𝑖,𝑗 = �⃗�𝑓,𝑖
(1 − 𝑗)

𝑁2

+

(︂
𝑓𝑅

𝑖

𝑀𝑓

+ 𝑓𝐿
(1 − 𝑖)

𝑀𝑓

)︂
𝑗

𝑁2

,

where 𝑗 is an integer between 0 and 𝑁2, inclusive, and 𝑖 is an integer between 0 and

𝑁1, also inclusive.

The back side is similar to the front, connecting the 𝑀𝑏 + 1 points on the top

edge in �⃗�𝑏,𝑖 to the interpolated line between �⃗�𝑅 and �⃗�𝐿. The interpolated bottom

line is:

�⃗�𝐿
𝑖

𝑀𝑏

+ �⃗�𝑅
(1 − 𝑖)

𝑀𝑏

.

56

By interpolating between the top and bottom line, we can find the points on the

back side sub-surface, denoted �⃗�1𝑏:𝑖,𝑗. The formula is

�⃗�1𝑏:𝑖,𝑗 = �⃗�𝑏,𝑖
(1 − 𝑗)

𝑁2

+

(︂
�⃗�𝐿

𝑖

𝑀𝑏

+ �⃗�𝑟
(1 − 𝑖)

𝑀𝑏

)︂
𝑗

𝑁2

,

where 𝑖 is an integer between 0 and 𝑁1, inclusive, and 𝑗 is an integer between 0 and

𝑁2, also inclusive.

The left side connects the 𝑀𝑙 + 1 left side top edge points in the left side zone,

�⃗�𝑙,𝑖, to the upper half of the left bottom edge. Unlike the front and back sides, these

sets do not inherently contain the same number of points. There are more points in

the top half of the leg hole, so they cannot connect one-to-one. Therefore, we need to

adjust the indices of the connections. The top edge has 𝑀𝑙 + 1 points and the upper

half of the bottom edge has 𝑁1

2
+ 1 points. We adjust the index of the connections

by the ratio of the number of points,
𝑁1
2

+1

𝑀2+1
. This gives us the formula

�⃗�1𝑙:𝑖,𝑗 = 1�⃗�𝑙,𝑖
(1 − 𝑗)

𝑁2

+ 1⃗𝑏1

(︃
𝛽1

(︃
2𝜋𝑖

𝑁1

[︃
𝑁1

2
+ 1

𝑀𝑙 + 1

]︃)︃)︃
𝑗

𝑁2

,

where 𝑖 is an integer between 0 and 𝑀𝑙, inclusive, 𝑗 is an integer between 0 and 𝑁2,

also inclusive, and [*] indicates rounding to the nearest integer.

The right side is found similarly, though the indices are reversed. This gives32

�⃗�1𝑟:𝑖,𝑗 = 1�⃗�𝑟,𝑖
(1 − 𝑗)

𝑁2

+ R 1⃗𝑏1

(︃
𝛽1

(︃
2𝜋

𝑁1

(︃
1

2
− 𝑖

[︃
𝑁1

2
+ 1

𝑀𝑟 + 1

]︃)︃)︃)︃
𝑗

𝑁2

where 𝑖 is an integer between 0 and 𝑀𝑟, and 𝑗 is an integer between 0 and 𝑁2.

32Note that this is using the right side �⃗�1, while the Briefs are parameterized based on the left
side. This is the same as all other uses, but the sign on the 𝑦1-coordinate is changed. To achieve
this, the matrix R as defined in Equation 2.10 is included.

57

inclusive.

Finally, the under side can be described. It interpolates between the bottom

halves of the bottom edges. Horizontally, it has 𝑀𝑏 + 1 points, so it can match the

points in the middle part of the back side region and fit into the grid of points. The

formula is

�⃗�1𝑢:𝑖,𝑗 = 1⃗𝑏1

(︃
2𝜋(𝑁1

2
+ 𝑗)

𝑁1

)︃
𝑖

𝑀𝑃

+ R 1⃗𝑏1

(︃
2𝜋(𝑁1

2
+ 𝑗)

𝑁1

)︃
(1 − 𝑖)

𝑀𝑏

,

where 𝑖 is an integer between 0 and 𝑀2𝑏, and 𝑗 is an integer between 0 and 𝑁1

2
, both

inclusive. These sub-grids of points, �⃗�1𝑓 , �⃗�1𝑙, �⃗�1𝑟, �⃗�1𝑏, and �⃗�1𝑢, are then arranged

as shown in Figure 2-8. With the grid of points defined, the surface for the Briefs

can be found using Matlab’s surf function with input matrices defined according

to Equation 2.9. Similar approaches can be derived for other non-standard HCJA

components.

2.5 Bearings

In this model, the bearings are considered differently than the rigid components

which they connect. While physically critical, they have little impact on the overall

geometry of the HCJA. They are placed between components, are aligned with the

axes of rotation, and do not add new reference frames or alter the structure of

the model. However, the geometry of the bearings themselves can be important

in answering certain questions. For example, when studying the mobility of the

occupant of a suit (see Section 3.2.2), bearings are considered because their presence

inside the HCJA would restrict the occupant. Answering this, and other questions,

motivates describing the bearing geometry inside the HCJA model.

58

Each bearing, which we will identify using the index 𝑛/𝑛+ 1,33 exists between

the components 𝑛 and 𝑛+ 1 in the RBT described in Section 2.2. As the bearings

are treated as circles (and thus rotating with one frame or the other does not affect

their geometry), there is no significance to the component frame in which the bearing

is placed.34 Like the bottom edge circle of component 𝑛 and the top edge circle of

component 𝑛+ 1, which should be very close to it, the 𝑛/𝑛+ 1 bearing is located

centered around and normal to the axis of the relevant joint, 𝑧𝑛+1.

The bearing is modeled as a ring or annular cylinder. For bearing 𝑛/𝑛+ 1, the

two radii are 𝑟𝑛𝑏 and 𝑟(𝑛+1)𝑡, so that the bearing has the same radii as the components

to which it connects. Either component can provide the internal and external radii.

To preserve generality, we will not assign one to be internal or external and instead

call these 𝑟𝑛/𝑛+1;𝐼 and 𝑟𝑛/𝑛+1;𝐸, respectively. The bearing also requires a height,

represented by variable 𝑙𝑛/𝑛+1. As the bearing is defined with respect to frame 𝑛+ 1,

and is centered around and normal to 𝑧𝑛+1, the only other parameter necessary to

define the bearing is the distance along the 𝑧-axis from the origin (this is exactly

like the ℎ𝑛/𝑛+1 parameter for the top edges of each component in Section 2.3). This

parameter, which we can call 𝑔𝑛/𝑛+1, should be equal to ℎ𝑛/𝑛+1.

The bearing, unlike the other components, is not treated as a infinitely-thin

surface. Therefore, while other components have two edges, the bearings each have

four. We will call the functions describing the points on these edges �⃗�𝑛/𝑛+1;𝐼(𝑝) and

�⃗�𝑛/𝑛+1;𝐸(𝑝) for the bottom inner and outer edges, respectively, and �⃗�𝑛/𝑛+1;𝐼(𝑝) and

�⃗�𝑛/𝑛+1;𝐸(𝑝) for the top inner and outer edges, respectively. Note that 𝑝 is, once again,

33This uses the same naming convention as the ℎ𝑛/𝑛+1 parameters in Section 2.2, because the
bearings and that parameter interact with both components 𝑛 and 𝑛+ 1.

34For non-dynamics applications. If dynamics and mass or inertia properties are being considered,
the component frame in which the bearing is placed is important, but that is beyond the scope of
this thesis.

59

the parametric variable to define each function, and should vary between 0 and 2𝜋.

The edges are

�⃗�𝑛/𝑛+1;𝐼(𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛/𝑛+1;𝐼 cos 𝑝

𝑟𝑛/𝑛+1;𝐼 sin 𝑝

𝑔𝑛/𝑛+1 + 𝑙𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦ , �⃗�𝑛/𝑛+1;𝐸(𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛/𝑛+1;𝐸 cos 𝑝

𝑟𝑛/𝑛+1;𝐸 sin 𝑝

𝑔𝑛/𝑛+1 + 𝑙𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

�⃗�𝑛/𝑛+1;𝐼(𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛/𝑛+1;𝐼 cos 𝑝

𝑟𝑛/𝑛+1;𝐼 sin 𝑝

𝑔𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦ , and �⃗�𝑛/𝑛+1;𝐸(𝑝) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛/𝑛+1;𝐸 cos 𝑝

𝑟𝑛/𝑛+1;𝐸 sin 𝑝

𝑔𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Like in Section 2.4, the parameter 𝑁1, the number of points used to define the

circles that are the edges, is required to generate the bearing surfaces.35

The bearing surface is constructed using the Matlab surf function in the same

manner described in Section 2.4. The points which form the input matrices are called

�⃗�𝑛/𝑛+1:𝑖,𝑗, where 𝑛/𝑛+ 1 is the bearing identifier and 𝑖 and 𝑗 are the matrix indices.

The points are ordered:

1. along the outside face from the bottom outer edge to the top outer edge,

2. along the top face from the top outer edge to the top inner edge,

3. along the inside face from the top inner edge to the bottom inner edge, and

4. along the bottom face from the bottom inner edge back to the bottom outer

edge.

35As discussed in Section 2.4, there are 𝑁1 + 1 points used, but 0 and 2𝜋 are equivalent.

60

For this surface definition, there is no advantage to using extra points on each face

between the edges, so only the edge points are needed. The formula for the points

of the surface matrices is thus

�⃗�𝑛/𝑛+1:𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�⃗�𝑛/𝑛+1;𝐸

(︁
2𝜋𝑖
𝑁1

)︁
𝑗 = 1

�⃗�𝑛/𝑛+1;𝐸

(︁
2𝜋𝑖
𝑁1

)︁
𝑗 = 2

�⃗�𝑛/𝑛+1;𝐼

(︁
2𝜋𝑖
𝑁1

)︁
𝑗 = 3

�⃗�𝑛/𝑛+1;𝐼

(︁
2𝜋𝑖
𝑁1

)︁
𝑗 = 4

�⃗�𝑛/𝑛+1;𝐸

(︁
2𝜋𝑖
𝑁1

)︁
𝑗 = 5

where 𝑗 is an integer between 1 and 5, inclusive, and 𝑖 is an integer between 0 and

𝑁1, also inclusive.

The surface for each bearing in the HCJA can then be found using Matlab’s

surf function with input matrices defined according to Equation 2.9.

61

62

Chapter 3

Multi-Degree-of-Freedom Range of

Motion Testing

As discussed in Chapter 1, the hard-component joint assemblies (HJCAs) of hard-

joint suits can affect the occupant’s range of motion (ROM) and negatively impact

mobility. An approach was developed to quantify and measure that impact, based on

comparing the unsuited and suited multi-degree-of-freedom (MDoF) ROMs for the

occupant’s joint corresponding to the HJCA under consideration.1 The comparison

is performed by treating the center of rotation of the occupant’s joint as the origin of

a unit sphere, with the limb segment immediately distal to the joint treated as a unit

vector. When considered in this manner, every position of the joint can be imagined

as both a unit vector and point on the surface of the unit sphere. The ROMs thus

can be defined as a region or shape on the surface of the unit sphere.

To use this comparison method, the ROMs must first be described as unit vectors

1This research focuses on ranges of motion with two degrees of freedom. A single-DoF ROM
is simply the comparison of one-dimensional angular ranges. It might be possible to extend the
approach presented here to systems with three DoFs (perhaps using quaternions instead of spherical
coordinates), but that is not examined here.

63

or points on the unit sphere surface. Sections 3.1 and 3.2, respectively, detail the

specifics of Unsuited and Suited ROM calculation in this form. The comparison

method itself is described in Section 3.3.

3.1 Unsuited Range of Motion

The Unsuited ROM is the control for the comparison method described in this chap-

ter. It is the nominal ROM for the occupant’s joint corresponding to the HCJA,

when unsuited and unencumbered. The Unsuited ROM of the joint can be calcu-

lated either for specific tasks (such as the ROM of the hip used during gait, the

ROM of the knee used in kneeling, the ROM of the wrist used in sample collection,

or similar definitions) or for the joint’s entire possible motion envelope (the full range

angles of the shoulder, hip, wrist, or other joint usable when unsuited). In either

case, the ROM bounds must be described as unit vectors to be compatible with the

comparison method described in Section 3.3. The exact method of conversion de-

pends on the manner in which the ROM is initially described. The remainder of this

section is an example of Unsuited ROM calculation, showing the conversion of the

hip position angular ranges (one common method of describing ROM in literature)

for nominal gait to an Unsuited ROM.

We begin with the angular bounds of hip position used during gait. These values

were sourced from the Clinical Gait Analysis Normative Gait Database [17]. The

bounds are defined by the maximum flexion, extension, abduction, and adduction

used in a nominal human gait, presented in Table 3.1.2

These angles are converted to unit vectors by using them to rotate a unit vector

2The definition of these terms can be found in Appendix A.

64

Maximum Value (∘) Converted Value (∘)
Flexion 40 -40

Extension 10 10
Abduction 5 5
Adduction 10 -10

Table 3.1: The extreme values for human gait, used to define the
necessary ROM [17]. Flexion and adduction values have negative
signs that were not present in the source, which were added to
indicate the direction.

initially pointing in the −𝑧 direction.3 This unit vector is first rotated around the

positive �̃�-axis by the converted ab/adduction angle, then rotated around the origi-

nal 𝑦-axis by the converted flexion/extension angle. This conversion is demonstrated

in Figure 3-1. It should be noted that this approach differs from the standard estab-

lished by the International Society of Biomechanics (ISB), where rotation is intrinsic

instead of extrinsic4 and flexion/extension is applied before ab/adduction [39].5

To define the Unsuited ROM, these rotations are applied to all four combinations

of flexion/extension and ab/adduction. Rotation matrices corresponding to rotations

about the 𝑦-axis are created for extension and flexion:

𝑅flex =

⎡⎢⎢⎢⎣
cos𝜓flex 0 sin𝜓flex

0 1 0

− sin𝜓flex 0 cos𝜓flex

⎤⎥⎥⎥⎦ and 𝑅ext =

⎡⎢⎢⎢⎣
cos𝜓ext 0 sin𝜓ext

0 1 0

− sin𝜓ext 0 cos𝜓ext

⎤⎥⎥⎥⎦ .
3In Chapters 2 and 4, various specific definitions for the axes and unit vectors parallel to axes

are used. To specify the axes that are not part of a physical model, we use the �̃� mark. These are
used mainly when calculating and rotating ROM unit vectors.

4For intrinsic rotations, each rotation is about the axes of the current frame. These axes them-
selves may have been rotated by the previous rotations. In extrinsic rotation, every rotation is
applied about the original coordinate frame axes.

5The approach used here also discounts internal and external rotation of the hip, as well as any
translation of the hip joint.

65

(a) Unrotated (b) �̃� rotation complete (c) �̃� and 𝑦 rotation complete

Figure 3-1: Visual representation of the convention used to transform converted
flexion/extension and ab/adduction angles to a vector in R3. The blue line is the
vector representing the “leg” as each rotation is applied. The rotation is indicated
by a red arc, and the rotation’s axis is also highlighted in red.

Similarly, rotation matrices corresponding to rotations about the �̃�-axis are created

for abduction and adduction:

𝑅ab =

⎡⎢⎢⎢⎣
1 0 0

0 cos𝜓ab − sin𝜓ab

0 sin𝜓ab cos𝜓ab

⎤⎥⎥⎥⎦ and 𝑅ad =

⎡⎢⎢⎢⎣
1 0 0

0 cos𝜓ad − sin𝜓ad

0 sin𝜓ad cos𝜓ad

⎤⎥⎥⎥⎦ .

Applying the rotation convention shown in Figure 3-1 yields the four vectors

𝑅ext𝑅ad

⎡⎢⎢⎢⎣
0

0

−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
− sin𝜓ext cos𝜓ad

sin𝜓ad

− cos𝜓ext cos𝜓ad

⎤⎥⎥⎥⎦ , 𝑅flex𝑅ad

⎡⎢⎢⎢⎣
0

0

−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
− sin𝜓flex cos𝜓ad

sin𝜓ad

− cos𝜓flex cos𝜓ad

⎤⎥⎥⎥⎦ ,
66

𝑅flex𝑅ab

⎡⎢⎢⎢⎣
0

0

−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
− sin𝜓flex cos𝜓ab

sin𝜓ab

− cos𝜓flex cos𝜓ab

⎤⎥⎥⎥⎦ , and 𝑅ext𝑅ab

⎡⎢⎢⎢⎣
0

0

−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
− sin𝜓ext cos𝜓ab

sin𝜓ab

− cos𝜓ext cos𝜓ab

⎤⎥⎥⎥⎦ .
These four unit vectors, shown in Figure 3-2, define the bounds of the Unsuited gait

hip ROM.

Figure 3-2: The Unsuited hip ROM for gait, represented as a region on the surface
of the sphere. The light blue box is the Unsuited ROM, with the darker blue lines
at each of the corners indicating the vectors of the four extrema used to create that
box. Labeled black arcs indicate the angles of flexion/extension and ab/adduction
defining the ROM.

3.2 Suited Range of Motion

The Suited ROM is the envelope of the motions available to the occupant when

limited by the HCJA. Unlike its Unsuited counterpart, the Suited ROM always

67

describes the total motion envelope available to the occupant’s joint.6 This measure-

ment includes all HCJA poses, so that all possible motions of the occupant’s joint are

considered. The term “poses” here refers to a kinematic configuration of the different

HCJA components. A pose can be specified by indicating an angular displacement

for every bearing in the HCJA. If using the model from Chapter 2, a pose can be

described by specifying 𝜑1, 𝜑2, . . . , 𝜑𝑁𝐷𝑜𝐹
, where 𝑁𝐷𝑜𝐹 is the number of DoFs in the

HCJA.

The ROM could be measured experimentally or gathered from literature. In

those cases, the Suited ROM should be approached in the same manner as the

Unsuited ROM in Section 3.1 and converted directly to unit vectors. However, space

suits are expensive and testing can be difficult or time-consuming. Experimental

verification is also difficult to use during the design process, as it may not be feasible

to prototype every various design under consideration. A more general approach was

developed, described in this section, which estimates the Suited ROM for an HCJA

with arbitrary geometry. The estimation is approached by considering the space

of possible poses of the HCJA, estimating the position of the occupant’s limb, and

testing for intersection between the limb and suit. To test for intersection, the limb

must be simulated for every pose. This topic is further discussed in Section 3.2.1. The

detailed explanation of the Suited ROM calculation can be found in Section 3.2.2.

6Even if the Unsuited ROM is task-based, the total ROM is used for the Suited ROM. The
methodology described in this chapter is designed to evaluate how a suit impacts the motion of the
occupant. Always using the total ROM avoids making assumptions about the occupant’s strategy
or experience. For example, the way the occupant performs a task might change in the suit due to
problems with visibility instead of motion restrictions.

68

3.2.1 Simulated Limb

When analyzing the Suited ROM, HCJA poses where the occupant’s body would

be forced to pass through the HCJA surfaces must be detected so body positions

for those poses are not counted as part of the ROM.7 To detect these cases when

estimating the Suited ROM (see Section 3.2.2), the relevant body parts must be

simulated for every HCJA pose considered.

Several simplifications were applied:

• Only one body part is considered for the HCJA: the limb (or limb segment)

immediately distal to the occupant’s joint, from the joint to the end of the limb

(or next major joint). For example, if the HCJA is around the hips, the limb

is the thigh; an HCJA about the knee has a limb corresponding to the shank

and foot; and the limb for an HCJA around the wrist is the hand.8

• The limb is assumed to have a single specific position for every HCJA pose.

• The simulated limb is composed of two pieces used to estimate Suited ROM: a

set of line segments indicating the limb’s shape and a pair of points indicating

the limb’s orientation.

• The limb is assumed to be a constant shape, independent of motion and ori-

entation. This shape is represented by a set of line segments. The positions

of the line segments in the global frame must be entirely specified by HCJA

position.

7In a physical suit, the body would not actually pass through the HCJA. Instead, the occupant-
suit system would simply not be able to assume the pose.

8The definition of where the limb ends, is dependent on the implementation of the model. For
example, the ankle may or not be a major joint for different questions.

69

• The limb’s orientation can be described by two points: the base point, corre-

sponding to the base of the limb at occupant’s relevant joint and the tip point

at the opposite end of the limb. As the limb position is determined entirely

by the HCJA pose, these points (in the global frame) must be functions of the

HCJA pose.

The base and tip points, which we will call �⃗�base and �⃗�tip, are critical to defining

the Suited ROM. As functions of the HCJA pose (which can be represented by an

angle for each of the 𝑁𝐷𝑜𝐹 bearings in the HCJA), they can be described as

𝑚�⃗�base = 𝑚𝐹base (𝜑1, 𝜑2, . . . , 𝜑𝑁𝐷𝑜𝐹
)

and
𝑛�⃗�tip = 𝑛𝐹tip (𝜑1, 𝜑2, . . . , 𝜑𝑁𝐷𝑜𝐹

) ,

where 𝑚 and 𝑛 are frames in the HCJA and the 𝐹 (*) functions, indicating the point

locations in the respective frames, depend on the limb and HCJA under consider-

ation. The frames of vectors �⃗�base and �⃗�tip, 𝑚 and 𝑛 respectively, are important to

consider. The points may be simple to describe in some frames, but complex in

others.9 The values of 𝑚 and 𝑛 are also bounded. It is required that 𝑚 ≥ 0 and

𝑛 ≥ 0, as frames are not defined for values less than 0 and 𝑛 ≥ 𝑚, because 𝑛 defines

tip of the limb, 𝑚 indicates the base of the limb, and the tip must be distal to the

base. We also know 𝑚 ≤ 𝑁𝐷𝑜𝐹 and 𝑛 ≤ 𝑁𝐷𝑜𝐹 , because the positions of the tip and

base must be expressed in the global frame based solely on the HCJA pose. If the

points were expressed in a frame with an index greater than 𝑁𝐷𝑜𝐹 , they would be

in a frame that is not part of the HCJA and their position would depend on other
9For example, one simple method is to define a point in frame 0 as the base point and a point in

frame 𝑁𝐷𝑜𝐹 as the tip point. The functions are constants in those frames, but complex in others.

70

factors (such as the rotation of other frames in the suit).10

To be used in Section 3.2.2, these vectors should be converted to the global frame,

which is performed using the transformations

0�⃗�base = 0𝑇1 𝐽(𝜑1)
1𝑇2 𝐽(𝜑2) . . .

𝑚−1𝑇𝑚 𝐽(𝜑𝑚) 𝑚𝐹base (𝜑1, 𝜑2, . . . , 𝜑𝑁𝐷𝑜𝐹
)

and
0�⃗�tip = 0𝑇1 𝐽(𝜑1)

1𝑇2 𝐽(𝜑2) . . .
𝑛−1𝑇𝑛 𝐽(𝜑𝑛) 𝑛𝐹tip (𝜑1, 𝜑2, . . . , 𝜑𝑁𝐷𝑜𝐹

) .

The vector between these points is used to describe the orientation of the limb (and

thus the position of the human’s joint). That vector,

0�⃗�tip −0 �⃗�base,

is used in Section 3.2.2 in the estimation of the Suited ROM.

The other details of the simulated limb, including the line segments used to

represent the limb’s surface, cannot be universally defined, but will depend on the

purpose of the experiment as well as the HCJA and limb under consideration. The

remainder of this section contains an example of a simulated limb: the thigh used

with the Mark III Hip Bearing Assembly (HBA).

For the HBA Suited ROM estimation, the limb under consideration was the thigh.

The thigh reaches from the base point at the hip to the tip point at the knee. The

base point is the centroid of the upper bearing and the tip point is located a constant

distance from the origin of frame 4, as can be seen in Figure 3-3.

For this analysis, the distance was the value in the nominal Mark III geometry.

10There is one exception to this bound: if the tip point falls on the 𝑧-axis of the frame immediately
distal to the HCJA (𝑧𝑁𝐷𝑜𝐹+1), the point can be expressed in the 𝑁𝐷𝑜𝐹 + 1 frame, because the
rotation of that frame is about 𝑧𝑁𝐷𝑜𝐹+1, so the point would not be affected by the rotation.

71

Figure 3-3: The simulated thigh inside the HBA model. The dots at either end
represent the base and tip points, and the long lines running between them are the
line segments use to simulate the shape.

Using that value, the tip point is positioned in frame 4 (thigh frame) at

4�⃗�tip =

⎡⎢⎢⎢⎣
0

0

−0.3759 m

⎤⎥⎥⎥⎦ .

Note that while 𝑁𝐷𝑜𝐹 = 3 for the Mark III HBA, the point can be defined in the

frame distal to the HCJA under consideration, as it falls on the 𝑧-axis of that frame

72

and is unaffected by that frame’s rotation. In the global frame, this vector is

0�⃗�tip = 0𝑇1 𝐽(𝜑1)
1𝑇2 𝐽(𝜑2)

2𝑇3 𝐽(𝜑3)
3𝑇4 𝐽(𝜑4)

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−0.3759 m

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with the appropriate transformation matrices based on the HBA geometry according

to Equation 2.1.

We ignore HBA torso rotation in the HBA in our approach because we are only

concerned with components below the waist. Thus, we can treat 𝜑1 as 𝜑1=0. Simi-

larly, we have not found 0𝑇1, but we can treat it as an identity matrix.11 As already

mentioned, the point falls on the 𝑧4-axis, so the last rotation 𝐽(𝜑4) (about 𝑧4) can

also be discounted. With these simplifications, the expression for the tip point can

be simplified to

0�⃗�tip = 1𝑇2 𝐽(𝜑2)
2𝑇3 𝐽(𝜑3)

3𝑇4

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−0.3759 m

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The base point (which, for this application, we will treat as independent of the

HCJA pose) is defined as a constant position in the Proximal Section frame (frame

2) and located at 2�⃗�base =
[︁
0 0 ℎ1/2 1

]︁𝑇
, where ℎ1/2 is one of the parameters from

11We are focused on the hip joint and the limb distal to it, so the components proximal to it
can be simplified. In the code for this approach, and the later ROM tests, this transformation
was not an identity matrix, but was described as having 𝜃0 = 𝑎0 = 𝛼0 = 0 and 𝑑0=-6 inches. This
additional translation of 6 inches was purely for visualization purposes, so a stand-in for the HUT
could be clear in the visual representations.

73

Chapter 2 used to describe the HBA. This point is the centroid of the top edge of

the Proximal Section, the bottom edge of the Briefs, and the bearing between them.

The base point was tied to the HCJA geometry for convenience, but it means this

approach will evaluate the best-case possibility for ROM [5]. In the global frame,

the base point is at

0�⃗�base = 0𝑇1 𝐽(𝜑1)
1𝑇2 𝐽(𝜑2)

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with the appropriate transformation matrices based on the HBA geometry,12 accord-

ing to Equation 2.1. We can again treat 𝜑1 as equal to 0 and 0𝑇1 as an identity

matrix, so the expression simplifies to

0�⃗�base = 1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is clear from this result that the hip point does not change with kinematic rotation

(no 𝜑 values in the equation), as desired.

The other component of the simulated thigh that we must create is the set of line

segments used to describe the shape of the thigh. For simplicity, it is approximated

12The base and tip points used in this example (and in the tradespace analysis in Chapter 5)
create a simple and logical approximation of the thigh, but suffer from a particular problem. By
setting the base and tip points as constants within the separate frames, the distance between the
points will change between different HCJA positions, so the simulated thigh grows and shrinks as
the HCJA moves. For simplicity and computational efficiency, this was allowed.

74

using eight line segments forming a truncated cone. The 2012 Anthropometric Sur-

vey of U.S. Army Personnel (ANSUR II) was used to specify the circumference at

each end of this shape: the hip and knee circumferences (see Table 3.2) [11]. For

this analysis, the fiftieth percentile male values were selected. As noted in Table 3.2,

certain leg dimensions did not come directly from ANSUR II, but instead were cal-

culated from raw ANSUR II values. The hip and knee radii were estimated using the

equivalent circumferences from ANSUR II, divided by 2𝜋. Additionally, to account

for tissue compression and motion within the suit, these values were scaled by 0.7

and 0.85, respectively, in the simulated leg.13

Dimension Value (cm) ANSUR #/Title or Equation
Hip Circumference 62.40 #78/Thigh Circumference
Knee Circumference 40.80 #60/Lower Thigh Circumference

Thigh Radius 6.95
(︀
0.7
2𝜋

)︀
* (Hip Circumference)

Knee Radius 5.52
(︀
0.85
2𝜋

)︀
* (Knee Circumference)

Table 3.2: Table showing dimensions of simulated thigh used in HBA range
of motion analysis. The Circumference dimensions are from ANSUR II [11].
The Radius dimensions are calculated based off their respective circumfer-
ences, using the equations in the table.

The radii in Table 3.2 are used to form circles centered on the hip and knee points,

respectively, with the cone’s axis running between. The circles lie on planes normal

to this axis. The line segments intersect the planes at points equally spaced around

the circles. The line segments of the simulated thigh can be seen in Figure 3-3.

13The knee end was reduced by less than the hip end for several reasons. There is more bone
and less muscle around the knee, so tissue compression should be less. Additionally, the knee may
be more constrained and less free to move within the suit, due to the smaller suit diameter there.

75

3.2.2 Suited Range of Motion Estimation

The Suited ROM is estimated by considering the space of possible HCJA poses,

simulating the limb inside the HCJA, and noting the positions where the limb and

HCJA do not intersect. The set of possible poses (with the possibility of repetition)

is the set of 𝑁𝐷𝑜𝐹 real numbers on the range [0, 2𝜋), where 𝑁𝐷𝑜𝐹 is the number of

DoFs or bearings in the HCJA. Each number indicates the angular displacement of a

DoF. Thus, the space of possible poses forms an 𝑁𝐷𝑜𝐹 -dimensional hypercube. The

space of HCJA poses can be reduced when estimating the Suited ROM by limiting

the angles considered for each DoF, based on the feasibility of possible motions of

the suit’s occupant and the relevance to the topic at hand.14 This changes the space

of possible poses from a hypercube to a set of 𝑁𝐷𝑜𝐹 angular ranges.15 For each joint

𝑛 (see Section 2.2 for an explanation of the indexing), there will be an upper and

lower bound on the angles considered, denoted 𝜑𝑛,min and 𝜑𝑛,max.16 To estimate the

Suited ROM, the set of possible poses is sampled over its entire (finite) volume. The

sampled angles for joint 𝑛, are found by sampling its bearing ranges with an increment

specified by ∆𝜑𝑛, between bounds 𝜑𝑛,min and 𝜑𝑛,max. This sampling generates 𝑁𝐷𝑜𝐹

sets of angles. The poses created from these sets, used to estimate the Suited ROM,

correspond to the possible ways to choose one angle from each of these sets, so the

total number of poses is the product of the cardinality of these sets.

For a given pose, the relevant limb is simulated (see Section 3.2.1) within the

14If the Suited ROM is being calculated to define the ROM score as described in Section 3.3, then
bearing positions which would prohibit the relevant limb (estimated in Section 3.2.1) from being
inside or near the Unsuited ROM can be discounted for efficiency. The ROM score is based on the
overlap between the Suited and Unsuited ROM, so points which will not contribute to the overlap
can be ignored. If the shape of the ROM (and not just the score) is a desired value, this should not
be done.

15This new set of pose possibilities is a subset of the hypercube.
16These are measured from the joint’s neutral position, 𝜂𝑛. See Chapter 2.

76

HCJA. The simulated limb and the surfaces of the HCJA (sourced from a .STL file

or the model in Chapter 2) are tested for intersection. If the limb is simulated with a

set of lines, as recommended in Section 3.2.1, and the HCJA surfaces are composed

of triangles (like a .STL file or the surfaces in Section 2.4), this can be achieved with

a triangle/ray intersection algorithm.17 If there is no intersection, the orientation

of the simulated limb is considered to be within the Suited ROM and the vector

corresponding to the limb’s orientation (expressed in the global frame), 0�⃗�tip − 0�⃗�base

(see Section 3.2.1), is recorded. This process is repeated for each HCJA pose sampled

from the space of possible poses.18

The non-intersecting limb position vectors recorded across the space of possible

poses are normalized to unity, then used to generate the Suited ROM. The ROM

comparison method described in Section 3.3 uses the vectors in this form, with no

further modification required, as input. To find the Suited ROM for other purposes,

the points on the unit sphere surface corresponding to the vectors can be used to

generate a shape,19 or the vectors themselves can be used to estimate the solid angle

of the ROM.

3.3 Comparison of Unsuited and Suited Ranges of

Motion

To accurately assess the impact of an HCJA on the occupant’s MDoF ROM, the Un-

suited ROM (described in Section 3.1) and the Suited ROM (found in Section 3.2)

17For this research, a version from Matlab Central File Exchange was downloaded and modified
for speed and efficiency [35].

18One possible implementation is 𝑁𝐷𝑜𝐹 nested loops, iterating over each sampled bearing angle,
one dimension at a time.

19One method is to follow steps one through four in Section 3.3, ignoring the Unsuited ROM.

77

can be compared. The Unsuited ROM should be in the form of a set of unit vectors

that define a shape on the surface of the unit sphere, where the shape is the limits

of the relevant ROM when unencumbered. The Suited ROM is also a collection of

unit vectors, which correspond to positions of wearing the HCJA.20 These ROMs can

be compared by converting the scattered points of the Suited ROM into a bounded

shape, and comparing this shape to the Unsuited ROM. A quantifiable metric termed

the “ROM score” is defined. The ROM score is proportional to the amount of the

Unsuited ROM shape that overlaps with the Suited ROM shape (at maximum, iden-

tical to the Unsuited ROM if the Suited ROM entirely contains the Unsuited ROM),

and describes what portion of the Unsuited ROM remains accessible when suited,

and indicates to what extent the HCJA restricts the joint or task. This section will

describe the process for calculating ROM score.

The ROM vectors cannot simply be converted to spherical coordinates and the

area overlap found, due to problems stemming from spherical geometry. The most

significant problem was the Unsuited ROM (and, in many cases, the Suited ROM as

well) containing the “south pole” (−𝑧-axis) of the unit sphere, which is a singularity in

spherical coordinates. Simply converting to spherical coordinates and plotting results

resulted in shapes wrapping around the borders of the plot, making it impossible to

calculate an accurate area representation, as shown in Figure 3-4. The simple shape

on the surface of the sphere in Figure 3-4a becomes divided and complex in Figure 3-

4b. For proper measurement, a different axis for the unit sphere must be chosen,

such that the singularity does not fall within the overlap of the ROMs. As a sphere

20Technically, this is not an ROM but a sampling of points within it. As described in Section 3.2,
the region that contains these points can be converted to an estimate of the Suited ROM by
following steps one through four in this section. The points are converted to the ROM as this
process proceeds. For simplicity, these set of points are still referred to as the Suited ROM in this
section.

78

is uniform in all directions, changing the axis can also be thought of as rotating

our points of interest on the surface of the sphere. The magnitude of this rotation

depends on the data itself. Figure 3-4 also highlights another problem that requires

correction: the distortion of area in spherical coordinates, based on proximity to the

poles. The red circles in Figure 3-4a are the same size, but appear quite different

when plotted in Figure 3-4b. Rotation cannot solve this issue, which applies over the

entire sphere. Instead, a specific area-preserving projection is used when mapping

the coordinates. The following procedure to calculate the ROM score avoids these

issues. The steps of this process are illustrated in 3-6. We begin with the unit vectors

of the Suited and Unsuited ROMs, illustrated in Figure 3-6a.

(a) Shapes on sphere surface. (b) Shapes plotted without correction.

Figure 3-4: Example of problems with spherical geometry when axis rotation and the
sinusoidal projection are not used. Note how the blue shape is warped and divided
across the plot and how the red circles, which are the same size (1/3 steradian) on
the surface of the sphere, are wildly different in size in the projection.

1. Rotate Suited and Unsuited ROM Vectors: To avoid geometric distortion

shown in Figure 3-4, the Suited and Unsuited ROM vectors must be rotated

79

away from spherical coordinate singularities (the “poles” or ±𝑧-axes). This

rotation, by angle 𝜌, occurs around the 𝑦-axis in the negative direction.21

The amount of rotation to move the ROMs away from the singularities is

bounded. The vectors must be rotated enough to move away from the −𝑧

singularity, but not rotated so much as to intersect the +𝑧 singularity. The

following example uses the simple rectangular Unsuited gait hip ROM from

Section 3.1, but similar approaches can be used to find the rotation bounds for

any Unsuited ROM.

The Unsuited hip gait ROM example from Section 3.1 spans angles from −𝜓flex

to 𝜓ext around the positive 𝑦-axis, so the rotation must be more than −𝜓ext

and less than 𝜋 + 𝜓flex. Thus,

−𝜓ext < 𝜌 < 𝜋 + 𝜓flex.

The calculation is more complex for the Suited ROM vectors, which do not

have a simple shape. The rotation is around the 𝑦-axis, meaning the vectors

that have any significant 𝑦-coordinate will not be distorted by the singularity

for any rotation (no value of 𝜌 will bring those points close to the poles). We

focus on Suited ROM vectors with small 𝑦-coordinates, which we can, in this

approach, conveniently define as vectors with a 𝑦 component that satisfies22

sin𝜓ab ≥ 𝑦 ≥ sin𝜓ad. This subset of vectors covers a range defined by their

�̃�-coordinates,23 which we can say have a minimum of 𝑥min and a maximum of

21A vector pointing down from the hip would move like a thigh in flexion.
22If there are no such vectors, no rotation is needed. We do not need to do area-comparison,

because we already know that there is no overlap between the ROMs, as there are no Suited ROM
vectors with the appropriate 𝑦-coordinates, and thus no ROM overlap. The ROM score is 0.

23This assumes that none of them are in the upper hemisphere.

80

𝑥max. Given they are all of length unity, their angular range can be expressed

as going from arcsin𝑥min to − arcsin𝑥max, so we know the rotation must be

more than − arcsin𝑥min, but less than 𝜋 − arcsin𝑥max, indicating that

− arcsin𝑥min < 𝜌 < 𝜋 − arcsin𝑥max.

The magnitude of the rotation 𝜌 must fall within the rotational bounds estab-

lished for both the Suited and Unsuited vectors. To rotate both ROMs away

from the −𝑧 singularity, we need to rotate by an angle that is greater than

both −𝜓ext and − arcsin𝑥min, so our minimum rotation is the maximum of

these values, or

𝜌min = max(− arcsin(𝑥min),−𝜓ext).

Similarly, to ensure that neither ROM interacts with the +𝑧 singularity , we

cannot rotate by an angle that will bring either set of vectors to the “north

pole”. Therefore, our angle of rotation must be less than both 𝜋 + 𝜓flex and

𝜋 − arcsin𝑥max, so we can describe our maximum rotation as

𝜌max = min(𝜋 − arcsin(𝑥max), 𝜋 + 𝜓flex).

With the range of possible rotations established,24 between 𝜌max and 𝜌min,

a value between them must be selected to rotate the vectors. To provide a

24There is theoretically a possibility that 𝜌min ≥ 𝜌max, meaning there is no possible rotation.
This would also mean that the area of possible overlap (or actual overlap) being studied spans
180∘, which is somewhat unlikely in a space suit (it may be possible, for example, in the shoulder
joint). If it did occur, and defining the area of possible overlap more strictly did not resolve the
problem, an additional rotation can be added. A single rotation around 𝑦-axis was chosen for
simplicity. Really, any set of rotations that are consistently applied and move the ±𝑧 singularities
outside of overlap areas (or either ROM, preferably) will work.

81

consistent approach that is near the minimum rotation but sufficiently far from

the borders, the rotation value is selected to be 20% of this range away from

𝜌min. In other words

𝜌 = 𝜌min + 0.2(𝜌max − 𝜌min).

Every vector in the Suited or Unsuited ROM, is rotated by 𝜌 around the nega-

tive 𝑦-axis (or −𝜌 about the positive 𝑦-axis), using a standard rotation matrix.

Every vector in either ROM is treated as �⃗�0 and converted to �⃗� by:

�⃗� =

⎡⎢⎢⎢⎣
cos(−𝜌) 0 sin(−𝜌)

0 1 0

− sin(−𝜌) 0 cos(−𝜌)

⎤⎥⎥⎥⎦ �⃗�0 =

⎡⎢⎢⎢⎣
cos 𝜌 0 − sin 𝜌

0 1 0

sin 𝜌 0 cos 𝜌

⎤⎥⎥⎥⎦ �⃗�0.

The definition of this rotation range can be seen in Figure 3-5 and the rotated

vectors can be seen in Figure 3-6b.

2. Convert to Spherical Coordinates: The now-rotated vectors of the Suited

and Unsuited ROM are converted to spherical coordinates. There are at least

two conventions for spherical coordinates, where 𝑟 or 𝜌 is the vector length and

𝜑 and 𝜃 are either the inclination or azimuth angles. As 𝜃 and 𝜑 are already

used in this text, we will use a convention where 𝜆 is inclination (measured from

the 𝑥𝑦-plane), 𝜉 is azimuth, and 𝑟 is length. (All vectors under consideration

are normalized, so length 𝑟 is ignored.) For a given unit vector 𝑣 =
[︁
𝑥 𝑦 𝑧

]︁𝑇
,

conversion follows according to:

𝑟 =
√︀
𝑥2 + 𝑦2 + 𝑧2 𝜆 = arccos

𝑧

𝑟
= arccos 𝑧 𝜉 = atan2(𝑦, 𝑥).

To ensure there is no issue with the discontinuity from atan2, the range of 𝜉

82

Figure 3-5: Illustration of the minimum and maximum rotations possible to move
the vectors away from the singularities. Also shown is the rotation range and selected
rotation, 𝜌. The pink dots represent the points identified to be within the Suited
ROM, and the blue box is the Unsuited ROM. The red dots indicate the points in
the Suited ROM that are considered relevant to rotation, and the red lines indicate
the maximum/minimum points in that group (those that limit the overall rotation
the most). The blue lines represent the maximum/minimum points for the Unsuited
ROM, and the black dotted lines represent the overall maximum/minimum points
from both ROMs. The maximum and minimum values of 𝜌 are found from there.

83

can be adjusted based on the positions of the ROMs. For example, it could be

adjusted to go from −𝜋
2

to 3𝜋
2

by incrementing all values of 𝜉 ≤ −𝜋
2

by 2𝜋.

With the length constant, the vectors are now expressed as points in two di-

mensions, as shown in Figure 3-6c.

3. Sinusoidal Projection: With the conversion to spherical coordinates, the

regions on the sphere are projected to a two-dimensional map to estimate the

overlapping area. There are several projections that can be used (exactly like

there are many map projections), with some variants causing distortions that

we want to eliminate, like those seen in Figure 3-4 [30][32]. The approach used

here to avoid distortion is similar to the sinusoidal projection [30]. We scale

the 𝜉 component (offset from a arbitrary middle point) by the sine of the 𝜆

component. The middle point selected is the mean of all 𝜉 values25 for all vec-

tors in the Suited ROM, 𝜇𝜉,suit. All vectors retain the same relative position to

each other, but move towards 𝜇𝜉,suit near the “poles” of the spherical coordinate

system. In other words, for every vector 𝑢 = (𝜉, 𝜆), there is a transformation

to 𝑢′ = (𝜉′, 𝜆) by the rule

𝜉′ = (𝜉 − 𝜇𝜉,suit) sin𝜆+ 𝜇𝜉,suit.

A shape formed by parts which have undergone this transformation will have

a Cartesian area proportional to the area of the original shape on the unit

25Note that while the mean is of just the vectors in the Suited ROM, this transformation is
applied to all vectors, including the boundary vectors of the Unsuited ROM. This value was chosen
as it produced good visualizations.

84

sphere surface.26 With this transformation, the Cartesian area of any shape

formed by the point of the form (𝜉′, 𝜆) will now be proportional to the area of

a shape on the surface of a sphere, traced out in the same manner. See proof

in Appendix B. The effect of this projection can be seen in Figure 3-6d.

4. Define Polyshapes for ROMs: With ROM vectors rotated, transformed,

and projected, the actual comparison can proceed. If there are 10 or fewer27

valid points in the Suited ROM, the code returns to an area overlap of zero.

Otherwise, it continues as described here.

Shapes were created using Matlab’s polyshape functionality. However, certain

HCJA geometries produce unconnected areas of points within the ROM. These

areas are in the Suited ROM, but areas between them may not be. To prevent

the creation of inaccurate “bridge” areas between these areas, a cluster analysis

was performed on the set of (𝜉′, 𝜆)-encoded Suited ROM points, using Mat-

lab’s evalclusters function. A 𝑘-means clustering algorithm is used, using the

silhouette clustering evaluation criterion. Clustering is attempted for a cluster

number from 1 to 5, and the optimal number is found by the function, using

the criteria established by Matlab [18]. The use of clustering also seems to

improve matching the concave surfaces of shapes.28

For each of the clusters identified (shown in Figure 3-6e, the points in the

26For shapes with few vertices, this depends somewhat on the manner in which the lines between
the points are transferred to the sphere. When there are few vertices and each side is comparatively
long there is a difference between transforming the sphere surface points corresponding to each
vertex with simple connecting lines and transforming each point along the great-circle edges of the
sphere. However, for complex shapes or shapes with many vertices (as we have here), where each
line between vertices is short, this question quickly diminishes.

27The use of 10 points as the boundary was selected by trial-and-error.
28This seems to stem from the clustering algorithm dividing a strongly concave shape into two

or more sub-shapes that are less concave.

85

cluster are considered and an attempt is made to form a sub-shape. First,

the boundary points of the cluster are found using the boundary function in

Matlab. The “shrink factor” of this function, which governs how tightly the

boundary hugs the data, is set to 0.8 in all cases, for consistency. This value was

found by trial-and-error to produce a tight-fitting edge that still represented the

general shape of the region, not affected by gaps between points. If the boundary

command returns a list of three29 or more points, a shape is created from these

points using Matlab’s polyshape function, which returns a polyshape object.

To ensure good meshing with other sub-shapes (as the clustering algorithm does

sometimes divide one large, cohesive group into smaller groups), the shape is

then grown or “buffered,” creating a rim around the shape. This is achieved with

the polybuffer function, and the distance of buffering is set to the square root30

of the area of the shape (calculated using the area function of the polyshape

object), scaled by 0.02. This ratio was determined by trial-and-error. The

shape is then simplified using the simplify function for polyshape objects, which

removes duplicate vertices or edges which cross one another.

The process is applied to each cluster. Using the union function, the resulting

shapes from each cluster are combined. If all clusters are tested, and no clusters

have produced valid boundaries and shapes, all sub-shapes are non-valid and

the ROM score is 0.

A polyshape object is also calculated from the transformed vectors of the Un-

suited ROM. The generated polyshapes can be seen in Figure 3-6e.

29If a sub-shape has only 2 or fewer boundary points, it is either a line or not a valid shape and
so it is discarded.

30On occasion, for reasons unknown, Matlab returns a negative or imaginary area for a shape
that is clearly valid. Due to issues calculating this area, this buffering is only applied if the area
returned is real and positive.

86

5. Calculate Overlap Area: The overlap between the polyshape objects rep-

resenting the Suited and Unsuited ROMs is found using Matlab’s intersect

function for polyshape objects. This returns a new polyshape object that is the

intersection, or overlap, of the two ROMs, as shown in Figure 3-6f. The area

of this overlap polyshape is found using the area function. This area indicates

the Suited and Unsuited ROMs overlap. Thus, the overlap area, scaled31 by
1
4𝜋

, is the ROM score.

31The area is unitless, as it is on the surface of the unit sphere and composed by unitless vectors,
so normalization is not needed. However, the area is scaled by 1

4𝜋 , the surface area of a unit sphere,
to better define the area covered.

87

(a) Unsuited ROM and Suited ROM
points.

(b) Rotated on surface of unit sphere.

(c) Converted to spherical coordinates. (d) Sinusoidal projection.

(e) Polyshapes generated. Suited ROM
points colored by cluster.

(f) Unsuited and Suited ROM Overlap.

Figure 3-6: Steps to calculate ROM score.

88

Chapter 4

Hip Bearing Assembly Design

Constraints

With the geometric model discussed in Chapter 2, the design of an HCJA can be

created from an arbitrary set of the parameters defined in Section 2.2. However,

when the set of parameters is arbitrary, the geometry generated can be a such that

the hard-component joint assembly (HCJA) would be impossible to wear or use. To

understand the connection between parameters and these situations, a method of

detecting impossible or useless HCJA geometries from the parameters was desired.

However, the definition of useless or impossible is highly dependent on the HCJA, the

corresponding occupant’s joint, and its purpose. Universal constraints were deemed

impractical. Instead, the question was applied to a specific example: the Mark III

Hip Briefs Assembly (HBA).

The Briefs was treated as symmetric across the sagittal plane, so any point in

the Briefs frame on the right half, 1�⃗�𝑅, can be converted from the equivalent left-half

89

vector, 1�⃗�𝐿, by changing the sign on the 𝑦1-coordinate,1 as seen in Equation 2.10.

This simplifies the physical structure of the Briefs. Only one bottom edge radius,

𝑟1𝑏 is required, and the bottom edge on the left side is simply reflected across the

sagittal plane to find the right side. The 𝜏𝑛(𝑝) and 𝛽𝑛(𝑝) index adjustments for the

component edges, described in Equations 2.7 and 2.8, are used as well.

A set of constraints was created to detect infeasible HBA geometries (Section 4.1).

These are converted to parameter form in Appendix E. Additionally, to explore the

possibility space of HBA geometries, parameter bounds were considered. Certain pa-

rameters were defined as constants, while others were given upper and lower bounds,

as detailed in Section 4.2.

4.1 Geometric Constraints

The HCJA geometry model outlined in Chapter 2 permits a set of arbitrary param-

eters, but these parameters often fail to produce a viable geometry, instead resulting

in geometries that could not be worn or even constructed. Tests were created to

detect these conditions specifically in the Mark III HBA.2 The tests are applied to

each component of the HBA separately, with the constraints for the Briefs laid out in

Section 4.1.1 and those for the Proximal and Distal Sections detailed in Section 4.1.2.

1This term of 𝑦1-coordinate of a specific vector, means the 𝑦-component of that vector, when
that vector is expressed in frame in 1. The subscript means that it is measured along the 𝑦1 axis,
no matter in what frame the vector is expressed. In other words, the 𝑦𝑛 component for �⃗� is equal
to 𝑛�⃗� ·

[︀
0 1 0 0

]︀𝑇 . This also can be applied to 𝑥 and 𝑧 axes.
2As mentioned in the introduction to this chapter, these constraints are highly dependent on the

specific HCJA under consideration. These constraints are only for the Mark III HBA, but some of
them could be generalized. The constraints on the Proximal and Distal Sections in Section 4.1.2,
in particular, could be extended for all or most standard HCJA components.

90

4.1.1 Geometric Constraints for Briefs

The geometric constraints for the Briefs are listed below, with examples of geometries

that violate each test shown in Figure 4-5.

• Leg Direction: The human leg generally points downwards, forward, outward,

or some combination of the three. This is also the range of the hip most used

for movements. There is a greater range of motion (ROM) at the hip for flexion

than for extension, and for abduction than adduction [26].3

Due to these natural limits, a constraint on the “direction” of the bottom holes

in the Briefs was created. The vector normal to the upper bearing, or “leg

vector” pointing out of the bottom holes of the Briefs, must not be pointing

backwards, upwards, or inwards. A visualization can be seen in Figure 4-1.

This constraint is met in the nominal HBA.

The leg vector can be defined as the negative 𝑧-axis of the Proximal Section co-

ordinate frame4 (frame 2), − 2𝑧2 =
[︁
0 0 −1 0

]︁𝑇
, so the mathematical con-

straint can be stated:⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 0,

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 0,

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0,

where · is the dot product. Examples of Briefs which fail this constraint can

be seen in Figures 4-5a, 4-5b, and 4-5c.

3The definition of these terms terms can be found in Appendix A.
4The circle forming the bottom edge of the Briefs lies in a plane normal to this vector. See

Section 2.3.

91

Figure 4-1: The surface for the nominal HBA Briefs, along with the limits imposed
by the Leg Direction geometric constraint. The “leg vector” shown as the red line
begins in the centroid (red star) of the bottom edge of the Briefs (also highlighted in
red). This vector is normal to the plane containing the edge. To pass this constraint,
the vector must point somewhere within the blue surface, which forms an octant of
a sphere.

• Briefs Height: The HBA should minimally constrain the occupant. With

the top edge of the Briefs at a fixed position on the body, the bottom edge

should not be too far from it. In other words, the Briefs should not be too

“tall.” If the HBA were donned by a shorter occupant, Briefs that are too tall

would place the bottom edges of the Briefs around the thighs. The lower the

edges fall along the thigh, the more hip motion would be limited. Therefore,

the Briefs are constrained to have a maximum height of 𝑧1,max, measured from

the plane containing the top edge (the 𝑥𝑦 plane in frame 1). All points of the

bottom edge of the Briefs must be a distance less than or equal to 𝑧1,max from

that plane. The value of 𝑧1,max could be altered in other implementations of

this model, dependent on the model’s purpose, but 𝑧1,max = 0.3 m was used

92

here. This value was selected to avoid over-limiting the HBA geometry model.

There is also a minimum distance between the top and bottom edges. While

not represented in the model in Chapter 2, the physical HBA will have a non-

zero thickness as well as supporting structures and mounting for the bearing

hardware at the joints. There must be space in the design for those additions,

so a constraint of 𝑧1,min is imposed. All points on the bottom edge must be at

least 𝑧1,min away from the plane containing the top edge (the 𝑥𝑦 plane in frame

1). Similar to 𝑧1,max, this value could be altered in other implementations of

this model, but 𝑧1,min = 0.03 m was used here. This value was based on the

Briefs of the nominal HBA, where the minimum gap between any two edges is

a distance of 3.04 cm between the left and right bottom edges.

Because the top edge is in the 𝑥𝑦 plane, we can state this constraint more

simply: all points of the bottom edge of the Briefs (defined by 1⃗𝑏1(𝑝) in

the appropriate frame5) must have a 𝑧-coordinate (in frame 1) in the range

of [−𝑧1,max,−𝑧1,min] = [−0.3 m,−0.03 m] from the origin and top edge of the

Briefs. In the model of the nominal HBA, the 𝑧1-coordinate of the bottom edge

runs from -0.2898 m to -0.0786 m, meeting this constraint. A visualization can

be seen in Figure 4-2.

Using Equation 2.6 we can define this constraint as:

∀𝑝 ∈ [0, 2𝜋) , −𝑧1,max ≤

⎛⎜⎜⎜⎜⎜⎜⎝
1⃗𝑏1(𝑝) ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ −𝑧1,min.

5Note that the 𝛽1(𝑝) conversion formula in Equation 2.8 is not used. This formula must apply for
all points, so specifying the angular offset is unnecessary and makes the constraint more complicated.

93

Figure 4-2: The surface for the nominal HBA Briefs, with the limits imposed by the
Briefs Height geometric constraint. All points on the bottom edge must fall between
the blue planes.

Examples of Briefs which fail this constraint can be seen in Figures 4-5d and 4-

5e.

• Leg Gap: The necessity of a minimum distance between locations of bearings,

the motivation for the lower bound of the Briefs Height, also applies to the gap

between the two bottom edges of the Briefs. The leg holes must have sufficient

distance, a minimum of 𝑦1,min, between them to support the bearings. As in

previous constraints, this value could be altered in other implementations of

this model, but here the same value as for the Briefs Height lower bound was

used: 𝑦1,min = 0.03 m. As the Briefs are symmetric, this constraint can be

enforced by considering the minimum distance between the bottom edge and

the sagittal plane.

Thus, all points of the bottom edge of the Briefs must have a 𝑦-coordinate

greater than or equal to 𝑦1,min
2

= 0.03 m
2

= 0.015 m, to ensure that there is a gap

94

of 3 cm between the left and right leg holes. In the model of the nominal HBA,

the bottom edge of the Briefs has a minimum 𝑦-coordinate of 0.0152 m.

A visualization can be seen in Figure 4-3.

Figure 4-3: The surface for the nominal HBA Briefs, with the limits imposed by the
Leg Gap geometric constraint. The bottom edges must not intersect the blue planes.

Using Equation 2.6 we can define this constraint as:

∀𝑝 ∈ [0, 2𝜋) ,

⎛⎜⎜⎜⎜⎜⎜⎝
1⃗𝑏1(𝑝) ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ≥ 𝑦1,min

2
.

An example of Briefs which fails this constraint can be seen in Figure 4-5f.

• Leg Holes inside Briefs: This constraint is related to the Briefs Height upper

bound and prevents the Briefs from being too “wide,” with the leg holes falling

too far from the waist hole in the 𝑥𝑦 plane. To enforce this constraint, all

95

points of the bottom edges must fall within the cylinder formed by the 𝑧-axis

and the top edge of the brief. This requirement is met in the nominal HBA.

A visualization can be seen in Figure 4-4.

Figure 4-4: The surface for the nominal HBA Briefs, with the limits imposed by the
Leg Holes inside Briefs geometric constraint. All points on the bottom edges must
fall within the blue cylinder.

The expression for this constraint is based off the cross product identity

�⃗�× �⃗� = �̂�
⃦⃦⃦
�⃗�
⃦⃦⃦ ⃦⃦⃦⃗

𝑏
⃦⃦⃦

sin𝜑, (4.1)

where �̂� is the unit vector normal to both �⃗� and �⃗�, 𝜑 is the angle between the

vectors, and ‖*‖ is the Euclidean norm. This definition can be converted to⃦⃦⃦
�⃗�× �⃗�

⃦⃦⃦
=
⃦⃦⃦
�⃗�
⃦⃦⃦ ⃦⃦⃦⃗

𝑏
⃦⃦⃦

sin𝜑, which would the length of the projection of �⃗� onto the

plane normal to �̂�. Using this identity, we can find the distance in the 𝑥𝑦 of a

96

point from the frame’s origin by finding its projection into that plane as

⃦⃦⃦
�⃗�× �⃗�

⃦⃦⃦
=
⃦⃦⃦
𝑧
⃦⃦⃦ ⃦⃦⃦⃗

𝑏
⃦⃦⃦

sin𝜑 =
⃦⃦⃦⃗
𝑏
⃦⃦⃦

sin𝜑,

where 𝑧 is the unit vector parallel to the 𝑧-axis for the relevant frame. We

can apply this to Equation 2.6 and limit the distance to less than the top edge

radius, giving the constraint

∀𝑝 ∈ [0, 2𝜋) ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
(︁

1⃗𝑏1 (𝑝)
)︁
1:3

×

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦ ≤ 𝑟1𝑡.

An example of Briefs which fails this constraint can be seen in Figure 4-5g.

4.1.2 Geometric Constraints for Proximal and Distal Sections

The Proximal and Distal Sections are functionally and geometrically similar to one

another. Therefore, the same constraints were used for both. As they are both

oblique frusta, like the example in Figure 2-1, they are often limited based on fea-

tures of frusta. The geometric constraints for these components are as follows, with

examples of geometries that violate each test shown in Figure 4-6.

• Frusta Length: Similar to the Briefs Height limits in Section 4.1.1, there

are limits on the length of these components, to avoid lengthy components

limiting movement. This is determined by the distance between the centers of

the top and bottom edges, which must be less than or equal to some bound,

denoted 𝑙max. Like in previous constraints, this value could be altered in other

97

(a) Leg points inwards. (b) Leg points backwards. (c) Leg points upwards.

(d) Bottom edge too far
from top edge.

(e) Bottom edge too close
to top edge.

(f) Bottom edges too near
each other.

(g) Bottom edges outside of cylinder normal to top edge.

Figure 4-5: Examples of Briefs failing geometric constraints listed in Section 4.1.1.

98

implementations of this model, but 𝑙max = 0.15 m was used here. In the model

of the nominal HBA, the distance between the edge centers are 6.47 cm and

10.31 cm for the Proximal and Distal Sections, respectively, so they meet this

constraint.

From Equations 2.3 and 2.5, we know the centers of the top and bottom edges

and can define this constraint as

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦− 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝑙max.

An example of a component which fails this constraint can be seen in Figure 4-

6a.

• Frusta Angle: If either the Proximal or Distal Section had too sharp of an

angle between the top and bottom edge planes, the occupant’s thigh would

not be able to pass through the component. The angle between these planes

is therefore limited to be less than or equal to 𝛾max. The value of this limit

may change based on the model’s implementation, but in this case the value

was set to be 𝛾max = 60 degrees. For simplicity, this constraint is enforced by

considering the cosine of the angle between the planes, which must be greater

than or equal to cos 𝛾max = cos(𝜋
3
) = 1

2
. In the model of the nominal HBA, the

cosines of the angles between the edge planes are 0.9220 and 0.9196 for the

Proximal and Distal Sections, respectively.

Mathematically, we can say find the angle between the edge planes by con-

99

sidering the angle between the vectors normal to each of them. From Equa-

tions 2.4 and 2.6, these are the 𝑧-axes 𝑧𝑛 and 𝑧𝑛+1. Described in the same

frame, we have, 𝑛𝑧𝑛 and 𝑧𝑛+1 = 𝑛𝑇𝑛+1
𝑛+1𝑧𝑛+1. We enforce this limit with the

cosine definition of the dot product �⃗� · �⃗� =
⃦⃦⃦
�⃗�
⃦⃦⃦ ⃦⃦⃦⃗

𝑏
⃦⃦⃦

cos𝜑, where 𝜑 is the angle

between the vectors. Applied to this case, we have

∀𝑛 ∈ {2, 3} ,

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ≥ cos 𝛾max

An example of a component which fails this constraint can be seen in Figure 4-

6b.

• Frusta Skew: It is simple to create an oblique frustum where few straight

lines can go through both ends. If either the Proximal or Distal Section took

a shape like this, they would not fit around the occupant. This constraint is

defined by projecting both the top and bottom edges into normal cylinders.

The center of each edge must fall within the cylinder of the opposite edge.

In other words, if the center of the one edge were projected onto the plane

of the opposite edge, the projected point must fall within that opposite edge.

This requirement is met in the nominal HBA for both the Proximal and Distal

Sections.

Like the Leg Holes inside Briefs constraint in Section 4.1.1, this constraint

is based off the cross product identity in Equation 4.1. Applied to Equa-

100

tions 2.3 and 2.5, we find

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝑟𝑛𝑡

and

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛+1𝑇𝑛

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝑟𝑛𝑏.

An example of a component which fails this constraint can be seen in Figure 4-

6c.

• Frusta Height: Like the previous two, this constraint helps to ensure that

the occupant’s leg will fit through the component. We require the bottom edge

to not cross the plane in which the top edge lies, which is parallel to the 𝑥𝑦

plane of a given component’s frame, offset by the joint’s proximal ℎ, all of the

bottom edge must have a 𝑧𝑛-coordinate less than the top edge, ℎ𝑛−1/𝑛. This

constraint is met for both Proximal and Distal Sections in the nominal HBA.

Considering Equations 2.6 and 2.4, we find

∀𝑛 ∈ {2, 3} , ∀𝑝 ∈ [0, 2𝜋) ,

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ · 𝑛𝑏𝑛(𝑝)

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ ℎ𝑛−1/𝑛.

101

An example of a component which fails this constraint can be seen in Figure 4-

6d.

• Frusta Edge Gaps: Similar to the Briefs Height lower bound and the Leg

Gap constraint in Section 4.1.1, this constraint ensures an acceptable distance

between the edges of the component, to provide space for structure and the

hardware of the bearings themselves. The top and bottom edges must be at

least 𝑙min distance apart at their closest points. The value of this limit could be

altered when the model is implemented elsewhere, but 𝑙min = 0.005 m was used

here. This value was chosen to serve as a small value that would not over-limit

the design space while requiring some space for the bearing hardware. In the

model of the nominal HBA, the closest the opposite edges come to each other

are 0.88 cm and 4.84 cm for the Proximal and Distal Sections, respectively.

Based on Equations 2.4 and 2.6, we can describe the constraint as

∀𝑛 ∈ {2, 3} , ∀𝑝𝑡 [0, 2𝜋) , ∀𝑝𝑏 ∈ [0, 2𝜋) ,
⃦⃦⃦

𝑛�⃗�𝑛(𝑝𝑡) − 𝑛𝑏𝑛(𝑝𝑏)
⃦⃦⃦
≥ 𝑙min.

An example of a component which fails this constraint can be seen in Figure 4-

6e.

Using the previously-written formulae for transformations and edges, the con-

straints discussed in Sections 4.1.1 and 4.1.2 can be re-written in terms of our pa-

rameters. The simplifications of these equations can be found in Appendix E, and

the results are given in Table 4.1.

102

(a) Frusta too long. (b) Frusta too angled. (c) Frusta too skewed.

(d) Bottom edge crosses the
plane of the top edge.

(e) Edges too close.

Figure 4-6: Examples of oblique frusta failing geometric constraints for Proximal and
Distal Sections listed in Section 4.1.2.

103

Leg
Direction

(︀(︀
3𝜋
2
≤ 𝜃1 ≤ 2𝜋

)︀
∧
(︀
0 ≤ 𝛼1 ≤ 𝜋

2

)︀)︀
or(︀(︀

𝜋
2
≤ 𝜃1 ≤ 𝜋

)︀
∧
(︀
3𝜋
2
≤ 𝛼1 ≤ 2𝜋

)︀)︀
Briefs
Height

𝑟1𝑏 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1 ≤ −𝑧1,min

and
−𝑟1𝑏 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1 ≥ −𝑧1,max

Leg Gap
(︁
𝑎1 − 𝑟1𝑏

√︀
1 + (cot 𝜃1 cos𝛼1)2

)︁
sin 𝜃1 − ℎ1/2 cos 𝜃1 sin𝛼1 ≥ 𝑦1,min

2

Leg Holes
inside Briefs

(𝑎1 + 𝑟1𝑏 cos 𝑝)2 + (ℎ1/2 sin𝛼1 − 𝑟1𝑏 cos𝛼1 sin 𝑝)2 ≤ 𝑟21𝑡

for all 𝑝 such that
0 = 𝑎1 sin 𝑝+ 𝑟1𝑏 cos 𝑝 sin 𝑝 sin2 𝛼1 + ℎ1/2 sin𝛼1 cos𝛼1 cos 𝑝

(a) Briefs geometric constraints

Frusta
Length

𝑎2𝑛 + ℎ2𝑛/𝑛+1 + (𝑑𝑛 − ℎ𝑛−1/𝑛)2

+ 2ℎ𝑛/𝑛+1(𝑑𝑛 − ℎ𝑛−1/𝑛) cos𝛼𝑛 ≤ 𝑙2max

Frusta Angle
𝛾max is in 1st quadrant,
−𝛾max ≤ 𝛼𝑛 ≤ 𝛾max

ℎ2𝑛/𝑛+1 sin2 𝛼𝑛 + 𝑎2𝑛 ≤ 𝑟2𝑛𝑡

Frusta Skew and
(ℎ𝑛−1/𝑛 − 𝑑𝑛)2 sin2 𝛼𝑛 + 𝑎2𝑛 ≤ 𝑟2𝑛𝑏.

Frusta
Height 𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛 + 𝑟𝑛𝑏 |sin𝛼𝑛| ≤ ℎ𝑛−1/𝑛.

Frusta Edge
Gaps

∀𝑝𝑡 ∈ [0, 2𝜋) , ∀𝑝𝑏 ∈ [0, 2𝜋) , (𝑟𝑛𝑡 cos 𝑝𝑡 ± 𝑟𝑛𝑏 cos 𝑝𝑏 ± 𝑎𝑛)2

+
(︀
𝑟𝑛𝑡 sin 𝑝𝑡 ± 𝑟𝑛𝑏 sin 𝑝𝑏 cos𝛼𝑛 ∓ ℎ𝑛/𝑛+1 sin𝛼𝑛

)︀2
+
(︀
(ℎ𝑛−1/𝑛 − 𝑑𝑛) − 𝑟𝑛𝑏 sin 𝑝𝑏 sin𝛼𝑛 − ℎ𝑛/𝑛+1 cos𝛼𝑛

)︀2 ≥ 𝑙2min,

where the sign of ± is the sign on cos 𝜃𝑛

(b) Proximal and Distal Sections (𝑛 ∈ {2, 3}) geometric constraints.

Table 4.1: Summary of geometric constraints on HBA components, described in
Sections 4.1.1 and 4.1.2, expressed in parameter variables. Derivations can be found
in Appendix E.

104

4.2 Parameter Bounds

The geometric constraints in Section 4.1 are applicable to any implementation of this

model on the HBA, as they are applied to ensure the HBA is wearable and usable.

The parameter bounds discussed in this section are not. These bounds were derived

to limit the HBA tradespace, discussed in Chapter 5.

To arrive at a tradespace that could be deeply investigated, simplifying assump-

tions were made. Some parameters were set to constants. All radii of the component

edges (𝑟1𝑡, 𝑟1𝑏, 𝑟2𝑡, 𝑟2𝑏, 𝑟3𝑡, and 𝑟3𝑏) were kept the same as in the nominal HBA. The

radii are germane to a number of questions regarding space suit design, such as fleet

sizing, but they do not affect the motion of the HBA model, which depends only

on the DH parameters. The radii do affect the ROM of the occupant, discussed in

Chapter 3, as the occupant’s limbs have greater range to move within components

that have larger radii. However, the magnitude of this effect would be highly cou-

pled to the size of the occupant’s leg, which was also kept constant in this research

and not considered here. Additionally, an HBA with different radii would require

different bearings, making the cost/benefit analysis of different radii more complex.

For this research, the radii were kept constant, assuming the same bearing hardware

was used in the new geometries, and exploring the best HBA geometry that did not

require new bearings.

The 𝜃 parameters for the Proximal and Distal Sections were also kept constant,

set to 𝜋 and 0, respectively. These are the same as the values in the nominal HBA.

All other parameters had upper and lower bounds determined. Some bounds were

selected to enforce desired structure, such as requiring all values of 𝑑 and 𝑥 param-

eters to be less than 0. Other bounds were generally selected to give a reasonably

large exploration region. To ensure the possibility space was fully explored, bounds

105

outside the space of valid geometries were preferred (when possible), so that geomet-

ric constraints would limit the explored geometries, not the bounds themselves.6 The

bounds, the reasoning behind them, and the value of each parameter in the nominal

HBA can be seen below. If not otherwise specified, the values of the bounds bounds

were selected to produce a reasonably large exploration region. The specific values

are also listed in Table 4.2.

• ℎ0/1 was kept constant as this parameter specifies the distance between the

HBA and HUT, which does not affect the estimated hip ROM, which is the

metric analyzed in the tradespace exploration.

• 𝑎1 has a nominal value of 0.0316 m and represents the radial distance that

the Proximal Section origin lies from the Briefs origin. A value that is nearly

400% of the nominal was permitted, as well as a negative value of the same

magnitude, limiting 𝑎1 between -0.125 and 0.125. This range is a superset of 𝑎1

values that appear in valid geometries. The values of 𝑎1 in viable geometries are

limited by the Leg Holes inside Briefs constraint in Section 4.1.1, which enforces

|𝑎1| ≤ 𝑟1𝑡 − 𝑟1𝑏. With the values of 𝑟1𝑡 and 𝑟1𝑏, this means |𝑎1| ≤ 0.0978.

• 𝑑1 is the vertical separation between the Briefs origin and the Proximal Section

origin. In the nominal HBA, it has a value of -0.1057 m. The Briefs should not

be too tall, so a limit of -0.2 m was selected as the lower bound. For an upper

bound, the model detailed in Chapter 2 assumes the origin of the Proximal

Section frame (frame 2) must be beneath the origin of the Briefs frame (frame

1). Thus, the upper bound of 𝑑1 was set to be 0.
6Due to this, for many of the bounds, there are zero viable geometries with parameters with

that value. One clear example is the bounds on 𝛼1, which are ± 5𝜋
8 . The Leg Direction constraint

in Section 4.1.1 requires cos𝛼1 ≥ 0, so the space of explored values of 𝛼1 is a superset of the values
of 𝛼1 that appear in valid geometries.

106

• 𝜃1 is related to 𝑎1. It represents the radial direction of the Proximal Section

origin from the Briefs origin (𝑎1 is the radial distance). The nominal HBA has

a value of 2.7925 radians. We could allow the angle to vary from 0 to 2𝜋, but

this was found to be unnecessary. As 𝑎1 was permitted the same range with

both signs, the same result can be achieved with half of the angle. Thus, 𝜃1

was limited between 𝜋
2

and 3𝜋
2

. 𝜃1 also controls the direction of 𝛼1 rotation and

the 𝑥-axis of the Proximal Section Frame. However, as shown in the following

item, 𝛼1 was allowed to hold the same values with both positive and negative

signs, so the same set of possible rotations could be achieved with these limits

on 𝜃1. This same argument applies for all subsequent transformations. All

parameters used in transformations that would be affected by the direction of

𝜃1 could assume the same positive or negative values of the same magnitude,

preserving generality. These include 𝑎1, 𝛼1, 𝑎2, 𝛼2, 𝑎3, and 𝛼3.

• 𝛼1 represents the 𝑥1-axis rotation between the Briefs frame and the Proximal

Section frame. It has a value in the nominal HBA of -0.9076 radians. For

the geometry to be viable, the leg holes of the Briefs must not point upwards.

Thus, 𝛼1 was allowed to represent up to a right angle in either direction. The

boundaries were set at ±5𝜋
8

to provide some margin, though the geometric

constraints from Section 4.1 mean that the values in that margin were not

valid geometries.7

• ℎ1/2 nominally has a value of -0.1275 m. It was allowed to nearly double,

with an upper bound of −0.25 m. This bound is reasonable; for values of a

larger magnitude, the Briefs would become impracticably large. For the HBA
7This is acceptable, as it is better for the exploration space to be bounded by geometric con-

straints based on what geometries are viable than the assigned parameter bounds, so the tradespace
is not limited by the parameter bounds selected.

107

structure to be valid, the Briefs bottom edges were required to fall below the

Proximal Section frame (frame 2) origin, so we the upper bound was set to

zero.

• 𝑎2 and 𝑎3 have nominal values of 0.0049 m and 0 m, respectively. 𝑎2 represents

the radial distance that the Distal Section frame (frame 3) origin lies from the

Proximal Section frame (frame 2) origin, while 𝑎3 does the same for between

the Distal Section frame (frame 3) origin and the thigh component’s frame

(frame 4) origin. Both were limited between -0.1 and 0.1, as a component with

too large of a translation would be infeasible.

• 𝑑2 is the vertical displacement between the Proximal Section frame (frame 2)

origin and the Distal Section frame (frame 3) origin. 𝑑3 is the same between the

Distal Section frame (frame 3) and the next section’s frame (frame 4) origin. In

the nominal HBA, they have a value of -0.1027 m and -0.0897 m, respectively.

To avoid lengthy components a limit was created for both, setting -0.2 m as

the lower bound. The model of HBA structure in Section 2.3 assumes each

origin is “beneath” the previous origin, so zero was set as the upper bound.

• 𝜃2 and 𝜃3 are the directions of the translation between the Proximal Section

frame (frame 2) origin and the Distal Section frame (frame 3) origin and be-

tween the Distal Section frame (frame 3) origin and the thigh component’s

frame (frame 4) origin, respectively. They have values of 𝜋 and 0, respectively,

in the nominal HBA and were kept as such. The components rotate around

their 𝑧-axes due to the motion of their bearings, the same motion controlled

by 𝜃. Any change in 𝜃 can be duplicated or countered by rotating the bearing.

Therefore, the only effect of 𝜃 is to adjust the neutral or zero position of the

108

bearing. Without loss of generality, we assigned them to specific values and

removed a dimension from the problem. They were assigned 𝜋 and 0 because

these values were convenient, matched the nominal HBA, and placed the axes

in an easily-understood manner (𝑥-axes pointing forward).8

• 𝛼2 and 𝛼3 have nominal values of -0.3976 rad and -0.4037 rad, respectively. 𝛼2

represents the 𝑥2-axis rotation between the Proximal Section frame (frame 2)

and the Distal Section frame (frame 3), while 𝛼3 does the same for the Distal

Section frame (frame 3) and the thigh component’s frame (frame 4). They

control the angles between the two holes of the Proximal and Distal Section.

If either component had too sharp of a bend, the occupant would not have

been able to wear it and it would not be a viable geometry. Thus, both were

bounded at ±𝜋
2
, allowing a wide range of angles. This limit is beyond the

values of 𝛼2 and 𝛼3 allowed in valid HBA geometries. They are restricted to

±𝜋
3

by the Frusta Angle constraint in Section 4.1.2.

• ℎ2/3 and ℎ3/4 currently have values of -0.0867 m and -0.1003 m, respectively.

We set the upper bounds for both to be −0.25 m. These bounds are reasonable

as, for larger values, the Proximal/Distal Sections would become impractically

large. For a valid geometry, the bottom edge should be distal to the origin of

the next frame. This required the upper bound to be zero.

8While we set 𝜃2 and 𝜃3 to specific values as described here, we did also add a neutral ro-
tation to make the 𝑥-axes level in the zero position. For a specific position, this could be con-
sidered equivalent to having a different 𝜃 value, but in other positions this 𝜃 would not bring
the relevant 𝑥-axes into alignment. Instead we simply follow the DH procedure as described,
then redefine the neutral position as the zero position and assign rotation values from there.
The formula we use to find this neutral position is only used for the middle bearing, and is
𝜂3 = −atan2(− sin(𝜃1),− cos(𝜃1) cos(𝛼3 + 𝛼2 − 𝛼1)). In other words, we adjust a provided 𝜑, repre-
senting the kinematic position of the bearing, by 𝜂3. It would also be applied to the upper bearing,
but the solution is always 0, rendering it unnecessary for that bearing.

109

Parameter Unit Mark III Value Lower Bound Upper Bound
ℎ0/1 m 0 0 0
𝑟1𝑡 m 0.2318 0.2318 0.2318
𝑎1 m 0.0316 -0.125* 0.125*

𝑑1 m -0.1057 -0.2 0†

𝜃1 rad 2.7925 𝜋
2

‡ 3𝜋
2

‡

𝛼1 rad -0.9076 −5𝜋
8

* 5𝜋
8

*

ℎ1/2 m -0.1275 -0.25 0†

𝑟1𝑏 m 0.1340 0.1340 0.1340
𝑟2𝑡 m 0.1575 0.1575 0.1575
𝑎2 m 0.0049 -0.1 0.1
𝑑2 m -0.1027 -0.2 0†

𝜃2 rad 𝜋 𝜋 𝜋
𝛼2 rad -0.3976 −𝜋

2
* 𝜋

2
*

ℎ2/3 m -0.0867 -0.25 0†

𝑟2𝑏 m 0.1275 0.1275 0.1275
𝑟3𝑡 m 0.1400 0.1400 0.1400
𝑎3 m 0 -0.1 0.1
𝑑3 m -0.0897 -0.2 0†

𝜃3 rad 0 0 0
𝛼3 rad -0.4037 −𝜋

2
* 𝜋

2
*

ℎ3/4 m -0.1003 -0.25 0†

𝑟3𝑏 m 0.1135 0.1135 0.1135
* This bound is outside the limits on the parameter established by geometric constraints

in Section 4.1, and thus does not prevent consideration of any viable geometries.
† This bound ensures proper structure.
‡ This bound limits the exploration space to improve computation time, but all possible

geometries are preserved.

Table 4.2: Table summarizing bounds on HBA parameters, including name,
units of measurement, and value in the nominal HBA, the Mark III. Tinted
rows indicate parameters that were kept constant in this research. Parameters
are described in Section 2.2 and shown in Figure 2-3, while their bounds can
be found in Section 4.2.

110

Chapter 5

Hip Bearing Assembly Tradespace

Analysis

The possibility of adjusting the Mark III Hip Bearing Assembly (HBA) geometry to

improve occupant’s mobility during gait was considered. The model in Chapter 2

was applied to the HBA. By changing the parameters, new HBA geometries could

be generated.

Potential new HBA geometries were evaluated in a tradespace analysis. The

tradespace was bounded by the limits described in Chapter 4. The geometries within

these bounds were evaluated using the ROM-scoring method detailed in Chapter 3

(scored against the hip gait Unsuited ROM example, Section 3.1). The details of the

method used for the tradespace analysis are described in Section 5.1. A preliminary

tradespace exploration was conducted, analyzed in Section 5.2. Based on those

results, a second, more refined, exploration was performed, detailed in Section 5.3.

These explorations generated new ideas for HBA geometries, which are discussed in

Section 5.4, and provided insight into a number of questions related to suit geometry,

111

detailed in Section 5.5.

5.1 Tradespace Exploration Method

Even with the focus limited to the human hip range of motion (ROM) and the HBA

geometry parameterized into a thirteen-dimensional space, the space of possible HBA

geometries is complex to explore. The impact of the parameters on the ROM score

in Section 3.3 is highly nonlinear, with many local minima and maxima. These

issues preclude an optimization approach. Instead, to explore the tradespace and

understand how ROM score variations, the HBA geometry was sampled at a number

of points throughout and the ROM was analyzed for each.

To explore the tradespace, ten values were selected for each parameter, evenly

spaced between the boundaries in Section 4.2, in addition to the parameter’s value

in the nominal HBA. For both explorations, a subset of these eleven values was

considered for each parameter. Every combination of parameter values was tested.

If a geometry was invalid, by breaching any of the geometric constraints described in

Section 4.1, that geometry was discarded. Geometries that were deemed viable had

structures and surfaces generated using the methodology described in Sections 2.3

and 2.4, and their Suited ROMs calculated and scored as detailed in Sections 3.2

and 3.3. This approach was implemented in Matlab.

The tradespace was explored using fewer faces per surface and fewer poses to

estimate the ROM score of every geometry. After the tradespace was tested at this

level of accuracy, select geometries (such as those discussed in Section 5.4, as well as

the nominal HBA) were re-evaluated with a higher fidelity. The differences between

the calculations are:

112

• There were 𝑁1 = 20 points1 around the edge of each component for tradespace

tests, but 𝑁1 = 50 for visualization and higher-fidelity calculations.

• There were 𝑁2 = 5 points2 along each subsurface used to generate the Briefs

surface during tradespace tests, but 𝑁2 = 20 for visualization and higher-

fidelity calculations.

• Bearing thicknesses were set to 𝑙𝑛/𝑛+1 = 0.01 m for all bearings.

• For the tradespace tests, the increment in bearing position angle used to gen-

erate Suited ROM was ∆𝜑 = 5∘. For the higher-fidelity tests, ∆𝜑 = 2∘.

• For both the tradespace tests and higher fidelity calculations, the bounds on the

bearing positions for both the upper and middle bearings were 𝜑𝑛,min = −90∘

and 𝜑𝑛,max = 90∘.

Several simplifications were also made:

• The HBA was treated as symmetric across the sagittal plane up to rotation of

the bearings. For both the Proximal and Distal Sections, the right-leg compo-

nent had the same parameterization as the left-leg, with the signs of the 𝛼 and

𝜃 inverted. The Briefs were symmetric across the sagittal plane, so any point

in the Briefs frame on the right half 1�⃗�𝑅 can be converted from an equivalent

left-half vector, 1�⃗�𝐿 by changing the sign on the 𝑦1-coordinate, as seen in Equa-

tion 2.10. This simplifies the physical structure of the Briefs and HBA. Only

one bottom edge radius, 𝑟1𝑏 is required for the Briefs, and the bottom edge on

the left side is simply reflected across the sagittal plane to find the right side.
1As mentioned in Section 2.4, there were actually 𝑁1 + 1 points between 0 and 2𝜋, but when

considering a circle, 0 and 2𝜋 are equivalent, so there are only 𝑁1 distinct points.
2As mentioned in Section 2.4, there were actually 𝑁2 + 1 points along each sub-surface.

113

The 𝜏𝑛(𝑝) and 𝛽𝑛(𝑝) index adjustments for the component edges, described in

Equations 2.7 and 2.8, are used as well.

• Only the Briefs and Proximal and Distal Sections were tested for intersection

with the simulated thigh in Suited ROM estimation. The waist bearing was

not considered due to it’s distance well above the hip. The lower bearing and

the material corresponding to the soft goods distal to the HBA could be tested,

but it is unnecessary. The simulated thigh starts within the HBA. Given the

location of the hip and knee points and the lower sections, the thigh cannot

be exiting the suit volume from those sections. Therefore, if there was any

intersection with those component surfaces, it would come from the thigh re-

entering the suit volume. For that to occur, there must be another intersection

in the higher components. Thus, no intersection would occur in the lower

bearing or thigh component without an intersection in the components already

being tested. The lower bearing and thigh component can be neglected for

efficiency.

• The hip and knee positions of the simulated thigh are defined as specific points

relative to the HBA geometry (see Section 3.2.1), so the length of the simulated

thigh changes with different HBA geometries and different parameters. In ad-

dition to the geometry, this length changes with the pose of the HBA, as noted

in Section 3.2.1. Therefore, selecting a specific thigh length and constraining

the HBA geometry to meet that length requires choosing a reference position

in which to measure. Given the variability of the distance between two points

on the suit geometry (an issue in the nominal HBA and any design with a

construction such as this), the specific-length approach was rejected. Instead,

the simulated thigh was represented by a pair of two specific locations in the

114

HBA, defined relative to the geometry. As detailed in Section 3.2.1, the hip

point was the centroid of the upper bearing and the knee point was located a

constant distance from the origin of frame 4.

5.2 Preliminary Tradespace Exploration

The initial attempt at sampling the tradespace used five values for each of the thirteen

parameters, including the value held by the parameter in the nominal HBA. The

values considered for each parameter are presented in Table 5.1.

Parameter (Units) Values Explored
ℎ1/2 (m) -0.219 -0.188 -0.128* -0.125 -0.0625
𝑎1 (m) -0.0625 0.00 0.0313 0.0316* 0.0625
𝑑1 (m) -0.175 -0.150 -0.106* -0.100 -0.0500
𝜃1 (deg) 113 135 160* 180 225
𝛼1 (deg) -56.3 -52.0* -28.1 0.00 56.3
ℎ2/3 (m) -0.188 -0.125 -0.0938 -0.0867* -0.0625
𝑎2 (m) -0.0750 -0.0500 0.00 0.00492* 0.0500
𝑑2 (m) -0.175 -0.150 -0.103* -0.100 -0.0500
𝛼2 (deg) -45.0 -22.8* -22.5 0.00 45.0
ℎ3/4 (m) -0.219 -0.188 -0.125 -0.100* -0.0625
𝑎3 (m) -0.0750 -0.0500 0.00* 0.00 0.05
𝑑3 (m) -0.175 -0.150 -0.100 -0.0897* -0.05
𝛼3 (deg) -45.0 -23.1* -22.5 0.00 45.0

Table 5.1: Values for each parameter that were explored in the preliminary tradespace
exploration. The values equal to those of the parameter in the nominal HBA are
indicated with an asterisk. (In some cases, such as 𝑎3, the same value may have
been used twice, due to the nominal value overlapping with one of the sample space
values.)

Of the 513 = 1.22 billion combinations of parameter values explored, 168,709 pro-

duced a viable geometry. Of these, 6,038 geometries had an ROM score greater than

115

Parameter (Units) Mark III HBA Preliminary Best Refined Best
ℎ1/2 (m) -0.128* -0.128* -0.128*
𝑎1 (m) 0.0316* 0.0313 0.0316*
𝑑1 (m) -0.106* -0.106* -0.106*
𝜃1 (deg) 160* 160* 160*
𝛼1 (deg) -52.0* -52.0* -52.0*
ℎ2/3 (m) -0.0867* -0.188 -0.0867*
𝑎2 (m) 0.00492* 0.0500 0.0500
𝑑2 (m) -0.103* -0.0500 -0.175
𝛼2 (deg) -22.8* -22.8* -45.0
ℎ3/4 (m) -0.100* -0.219 -0.188
𝑎3 (m) 0.00* 0.0500 0.0750
𝑑3 (m) -0.0897* -0.0500 0.00
𝛼3 (deg) -23.1* -23.1* 22.5

Table 5.2: Parameter values for Mark III HBA and top-scoring HBA geometries from
tradespace exploration.

or equal to the nominal HBA. The HBA geometry with the highest ROM Score of

those explored used the parameters listed in Table 5.2. This geometry is further

discussed in Section 5.4.

The distribution of viable geometries across the values for different parameters

can be seen in Figure 5-1. The specific score distribution across the parameters can

be seen in Figure 5-2. For every parameter (excluding the Briefs parameters: ℎ1/2,

𝑎1, 𝑑1, 𝜃1, and 𝛼1), it was observed that the the top-scoring value for the parameter

does not have the most valid geometries. For example, there are more geometries

where 𝛼1 takes value 1 than value 2, but they have lower scores. This may indicate a

difference between the Briefs and other components, a suggestion further supported

by the observation that Briefs variables appear to have little effect on the design’s

ROM score.

There is only one valid value for 𝑎1, and only two for 𝑑1, 𝛼1, and ℎ1/2. This is

116

Figure 5-1: Histograms of parameter values occurrences in viable geometries from
preliminary tradespace exploration. The red crosses indicate the parameter values
of the nominal HBA.

Figure 5-2: Distribution of ROM scores over parameter values from preliminary
tradespace exploration. The red crosses indicate the score and parameter values of
the nominal HBA.

117

generally a good sign, as it indicates the parameter bounds established in Section 4.2

did not artificially limit the possibility space. But the scores also show an interesting

trend. In every case where there are two or more values, changing from the nominal

value of the parameter to a different value has either no effect on the score distribution

and top ROM score, or decreases the scores. There is generally little room for the

Briefs to move from their current design, so many changes to the Briefs may simply

result in nonviable geometries. It is also worth noting that the hip point used when

calculating ROM falls in the centroid of the upper bearing, whose location is defined

by the Briefs. Due to this connection, changing the Briefs moves the hip point (and

simulated leg). Most of the Briefs geometry is therefore above the simulated leg and

would not cause intersection or a lower ROM score. This could mitigate some of the

losses in ROM that might otherwise occur.

5.3 Refined Tradespace Exploration

The results discussed in Section 5.2 indicated that altering the geometry of the

Briefs generally did not impact the results. The altered Briefs were either an invalid

geometry or had little impact on the Suited ROM. Thus, the tradespace was re-

explored, with the Briefs held constant and the other components explored more

deeply.

For the refined tradespace sampling, the Briefs parameters (ℎ1/2, 𝑎1, 𝑑1, 𝜃1, and

𝛼1) were set to their values from the nominal HBA, and the remaining eight were ex-

plored with ten possibilities each, including their nominal value. The values explored

can be seen in Table 5.3.

Of the 108 = 100 million combinations of parameter values explored, 124,390 had

a viable geometry. Of these, 5,142 geometries had an ROM score greater than or

118

V
al

u
es

E
xp

lo
re

d
ℎ
1
/
2

(m
)

-0
.1

28
*

𝑎
1

(m
)

0.
03

16
*

𝑑
1

(m
)

-0
.1

06
*

𝜃 1
(d

eg
)

16
0*

𝛼
1

(d
eg

)
-5

2.
0*

ℎ
2
/
3

(m
)

-0
.2

50
-0

.2
19

-0
.1

88
-0

.1
56

-0
.1

25
-0

.0
93

8
-0

.0
86

7*
-0

.0
62

5
-0

.0
31

3
0.

00
𝑎
2

(m
)

-0
.1

00
-0

.0
75

0
-0

.0
50

0
-0

.0
25

0
0.

00
0.

00
49

2*
0.

02
50

0.
05

00
0.

07
50

0.
10

0
𝑑
2

(m
)

-0
.2

00
-0

.1
75

-0
.1

50
-0

.1
25

-0
.1

03
*

-0
.1

00
-0

.0
75

0
-0

.0
50

0
-0

.0
25

0
0.

00
𝛼
2

(d
eg

)
-9

0.
0

-6
7.

5
-4

5.
0

-2
2.

8*
-2

2.
5

0.
00

22
.5

45
.0

67
.5

90
.0

ℎ
3
/
4

(m
)

-0
.2

50
-0

.2
19

-0
.1

88
-0

.1
56

-0
.1

25
-0

.1
00

*
-0

.0
93

8
-0

.0
62

5
-0

.0
31

3
0.

00
𝑎
3

(m
)

-0
.1

00
-0

.0
75

0
-0

.0
50

0
-0

.0
25

0
0.

00
*

0.
00

0.
02

50
0.

05
00

0.
07

50
0.

10
0

𝑑
3

(m
)

-0
.2

00
-0

.1
75

-0
.1

50
-0

.1
25

-0
.1

00
-0

.0
89

7*
-0

.0
75

0
-0

.0
5

-0
.0

25
0

0.
00

𝛼
3

(d
eg

)
-9

0.
0

-6
7.

5
-4

5.
0

-2
3.

1*
-2

2.
5

0.
00

22
.5

45
.0

67
.5

90
.0

Ta
bl

e
5.

3:
V
al

ue
s

fo
r
ea

ch
pa

ra
m

et
er

ex
pl

or
ed

in
th

e
re

fin
ed

tr
ad

es
pa

ce
ex

pl
or

at
io

n.
T

he
va

lu
e

in
th

e
no

m
in

al
H

B
A

is
in

di
ca

te
d

w
it

h
an

as
te

ri
sk

.

119

equal to the nominal HBA. The geometry with the highest ROM Score of those

explored used the parameters listed in Table 5.2. This geometry is further discussed

in Section 5.4. We can see in Figures 5-3 and Figure 5-4 that there are a number of

valid and well-scoring geometries spread across the values for each parameter.

Figure 5-3: Histograms of parameter value occurrences in viable geometries from
refined tradespace exploration. The red crosses indicate the parameter values of the
nominal HBA.

From the score distribution and histogram, we can see that ℎ2/3 is the most

limiting parameter of the remaining eight. Only three values yield any viable geome-

tries at all. This likely stems from some combination of the geometric constraints

described in Section 4.1. The other parameters appear to have more complex re-

lationships with the ROM scores. For example, it appears the the maximum score

increases with 𝛼2 decreases and 𝛼3 increases, suggesting that the angles of the of the

Proximal and Distal Sections may play a key role in the ROM score. Some of these

trends are further explored in Section 5.5.2.

120

Figure 5-4: Distribution of ROM scores over parameter values from refined
tradespace exploration. The red crosses indicate the score and parameter values
of the nominal HBA.

5.4 Suggested Geometries

The parameters of the top-scoring HBA geometries are presented in Table 5.2. The

scores of these geometries are detailed in Table 5.4. Additionally, a programming

implementation error resulted in the bearings used in the ROM calculations for

tradespace exploration taking 𝑔𝑛/𝑛+1 values that were off by 0.0014 and 0.003 m. The

effect of this offset should be similar to using slightly thinner or shorter bearings. The

two top-performing ROM and the nominal design had their ROM scores re-calculated

with the error resolved. These results are also shown in Table 5.4. In that table, we

can see that the ROM score of the nominal HBA is stable over changes in fidelity

and the bearing error. Changing from low- to high-fidelity for the other geometries

affected the ROM scores to a greater extent, but did not dramatically change their

standing. Correcting for the bearing error had little effect on the scores, as well.

121

All further discussion using these geometries will be based on the high-fidelity scores

with corrected bearings.

Nominal Preliminary Refined
low-fidelity ROM score 0.0023 0.0121 0.0128
high-fidelity ROM score 0.0023 0.0115 0.0148

Fidelity % change 0.9% -5.6% 15.3%
ROM score with corrected bearings 0.0023 0.0121 0.0141

Bearing error % change 0% 5.3% -5.1%
% improvement on nominal HBA - 429.5% 515.8%

Table 5.4: Summary of ROM scores for the nominal HBA and the top performing
geometries in the preliminary and refined tradespace explorations. The ROM score
with corrected bearings uses the high-fidelity calculation. The bearing error change
compares the high-fidelity scores with and without the bearing correction. The
overall improvement percentage compares the high-fidelity, corrected-bearings scores
between the new geometries and the nominal.

One other clear takeaway from Table 5.4 is the marked improvement that both

tradespace-derived HBA geometries have over the nominal case. The Suited ROMs

of these designs and the nominal case are shown in Figure 5-6 and the geometries

themselves can be seen in Figure 5-5. It is immediately apparent from Figure 5-6

that the Suited ROMs of the geometries found during tradespace exploration have

a much greater overlap with the Unsuited ROM, compared to the nominal HBA.

Both the preliminary and the refined geometries permit markedly more adduction,

allowing the occupant’s feet to be placed closer to the sagittal plane (running through

the body midline) or even in line with one another. This increased adduction, along

with the greater overlap with the Unsuited ROM, should allow occupants to have a

more natural gait.

The recommended geometries also make the Unsuited ROM extension range more

accessible, due to the increased overlap. The ROMs of both highlighted HBA ge-

122

(a) Top-scoring geometry in preliminary tradespace.

(b) Top-scoring geometry in refined tradespace.

Figure 5-5: Visualization of top-scoring HBA geometries from preliminary and refined
tradespace explorations. Visualizations were created using the model in Chapter 2.

123

Figure 5-6: Visualization of Suited ROM for top-scoring geometries from prelimi-
nary and refined tradespace explorations, compared against the Unsuited ROM for
gait and the Suited ROM for the nominal case. ROMs are plotted according to
the methodology described in Section 3.3. The black star indicates the downward
direction, corresponding to the leg’s neutral position.

124

ometries include the leg’s neutral position (straight down, indicated by the black

star in Figure 5-6), allowing for a more natural neutral stance. While both are ad-

vantageous, the result from the refined tradespace has a higher score and its overlap

with the Unsuited ROM is a superset of the overlap from the preliminary tradespace

result. Thus, the geometry from the refined tradespace geometry is recommended.

5.5 Discussion

The results in Sections 5.2 and 5.3, as well as the highest-scoring geometry presented

in Section 5.4, raise a number of interesting points regarding suit geometry. Several

are explored in this section. The impact of joint number (simulated with aligned

bearings) is discussed in Section 5.5.1. A basic analysis of the overall impact of HBA

geometry is detailed in Section 5.5.2. The effect of the top-scoring HBA geometry

on the ability of an occupant to kneel is considered in Section 5.5.3.

5.5.1 Number of Joints

The HBA geometries tested were all modified from the Mark III HBA, which has

three bearings.3 Two-bearing geometries were not specifically considered. However,

HBA geometries with adjacent aligned bearings were considered. Adjacent aligned

bearings are two bearings separated by a single component, where the axis of the

bearings are collinear, making the component between them form a simple cylinder.

In the parameterization detailed in Section 2.2, geometries where 𝑎2 = 𝛼2 = 0 or

𝑎3 = 𝛼3 = 0 have adjacent aligned bearings. An example can be seen in Figure 5-7.
3To measure the ROM, as described in Section 3.2, the upper and middle bearing are rotated.

There is also the lower bearing, which is assumed to be aligned with the leg. Rotating that joint
would correspond to internal/external rotation of the leg (turning the foot), and not affect the
hip-knee line.

125

For designs described according to the model in Chapter 2, HBA geometries with

Figure 5-7: HBA geometry featuring adjacent aligned bearings.

adjacent aligned bearings are analogous to suit designs with only two bearings. A

summary of the statistics affiliated with the ROM scores for geometries with adjacent

aligned bearings is shown in Table 5.5. It is clear these geometries score much lower

than the HBA geometries overall. In both the preliminary and refined results (from

Sections 5.2 and 5.3, respectively), the maximum and mean scores of geometries with

adjacent aligned bearings are less than 10% of the maximum and mean scores of the

geometries as a whole.

Results from Preliminary Results from Refined
ROM Score Stat Set 1* Set 2† All Set 1* Set 2† All

Quantity 26628 45765 168709 8516 14266 124390
Min 0 0 0 0 0 0
Max <0.001 0.0018 0.012 0 <0.001 0.013
Mean <0.001 <0.001 <0.001 0 <0.001 <0.001

* Set of geometries with 𝛼2 = 𝑎2 = 0.
† Set of geometries with 𝛼3 = 𝑎3 = 0.

Table 5.5: ROM score statistics from HBA geometries with adjacent aligned
bearings. For comparison, the nominal HBA has a score of 0.0023 and the
best-performing geometry has a score of 0.0141.

The HBAs with adjacent aligned bearings have lower ROM scores because their

126

motion is less similar to the actual hip, as they have only one degree of freedom

(DoF). Restricting the multi-degree-of-freedom (MDoF) human hip joint to a single

degree of freedom severely limits the Suited ROM of the occupant. Figure 5-8 shows

the Suited ROM points for the geometries with adjacent aligned bearings that have

the maximum ROM scores, for both the preliminary and refined results. The Suited

ROM points (rather than the Suited ROM shape itself) were used to highlight how

all the points fall on a single curve, due to the single degree of freedom in these de-

signs. The points trace out single curves, indicating the significantly restricted ROM.

The designs with adjacent aligned bearings would likely have significant impact on

occupant mobility. This supports previous results that locking a bearing in the HBA

would drastically reduce ROM [5].

5.5.2 Geometric Trends

With the hundreds of thousands of ROM scores for various HBA geometries, there is

a question of what factors dominate the score or are shared between the top-scoring

geometries, like those in Section 5.4. We can see in Figures 5-5a and 5-5b that the

top-scoring suits from both the preliminary and refined tradespace explorations have

a Proximal Section which is canted outward from the sagittal plane, and a Distal

Section which is canted back towards the sagittal plane. This “out-in” geometry

could be a key factor in the higher scores. The larger angles of the components allow

for more of the unit sphere to be accessed, and the magnitude of the angles appears

to allow greater adduction, a key factor in high ROM scores, given the location of

the Unsuited ROM. To determine possible causes for the higher scores, a Partial

Least Squares Regression (PLS) was applied to the data from the refined tradespace

study. The predictors used were the eight parameter variables that were not kept

127

Figure 5-8: Comparison of Suited ROM for nominal HBA and an HBA with adjacent
aligned bearings. The Unsuited ROM for human gait is in blue, while the Suited
ROM for the nominal HBA is in red. The green crosses show the points used in
Suited ROM calculation for the top-scoring HBA geometry with adjacent aligned
bearings.

constant in the refined tradespace study, and the responses were the ROM scores.

The number of components was set at eight, equal to the number of variables. The

Variable Importance in Projection (VIP) score was then determined from the loading

matrices, to measure the impact of each parameter. The resulting VIP scores can be

seen in Table 5.6. The VIP scores of parameters 𝛼2 and 𝛼3 were both greater than 1,

indicating they were the most influential. These parameters seem to have the most

influence on the ROM score of a given suit geometry.

128

Parameter VIP Score
ℎ2/3 0.1731
𝑎2 0.1367
𝑑2 0.3403
𝛼2 2.2906
ℎ3/4 0.6474
𝑎3 0.6074
𝑑3 0.6083
𝛼3 1.19661

Table 5.6: VIP scores from PLS (𝑁 = 8) on HBA geometry parameters and ROM
scores from refined tradespace. The parameters 𝛼2 and 𝛼3 have VIP scores over 1,
indicating influence.

5.5.3 Effect on Kneeling

The effect of the HBA geometry on gait is introduced in Chapter 1, and the par-

ticular impact of high-scoring suits from the tradespace exploration is discussed in

Sections 5.4. While walking is a critical motion for astronauts in surface missions,

kneeling or squatting motion should also be considered in space suit design. This

motion is important for tasks as varied as scientific research, equipment setup and

maintenance, and recovery after a fall. These tasks can be made easier or more diffi-

cult by the suit. Hard-joint suits have an advantage here. The soft hip joints of the

EMU and Apollo suits make kneeling extremely difficult [1]. Hard-component hip

joints, however, with their constant volume, are well-suited to solve this problem.

The impact of the recommended and nominal HBA geometries on kneeling is

shown in Figure 5-9. The ROM plots from Section 5.4 were transformed to show

the possible kneeling positions for each geometry. The shapes show the possible

combinations of ab/adduction and flexion/extension (using the convention described

in Section 3.1) for each design’s occupant. Any squatting or kneeling motion that

requires flexion of more than 40 degrees will require at least 10 degrees of abduction

129

Figure 5-9: Comparison of ab/adduction required for kneeling/squatting between
HBA geometries. The range of hip ab/adduction required for a given angle of hip
flexion/extension is shown for each suit geometry. The nominal HBA is in blue,
the best-performing suit geometry from the preliminary exploration is in red, and
the best-performing geometry from the refined exploration is in yellow. The dashed
black line shows the line of zero ab/adduction.

in the nominal HBA design. The recommended suit, described in Section 5.4, can

reach over 50 degrees of flexion without requiring abduction. This design will allow

a much greater range of kneeling or squatting motions4 by allowing a greater degree

of pure flexion/extension.

4This research is focused on ROM and the effect of hard joint suits. While the ROM may allow
kneeling an squatting, other issues such as collisions between the legs (as referenced in Section 6.3)
could inhibit these motions.

130

Chapter 6

Conclusion

6.1 Thesis Summary

The original Apollo space suit (the only space suit to be used on-mission in a plane-

tary environment) used soft, flexible components for the limbs, which are susceptible

to the springback forces caused by changes in volume. An alternative is using hard-

component joints assemblies (HCJAs), like those used in the Hip Bearing Assembly

(HBA) of the Mark III suit. However, the rigid components on these act as bounds

on motion, which can restrict the mobility of the suit’s occupant. This research de-

veloped a way to describe and study HCJAs and their effect on the occupant’s range

of motion.

A method of modeling the geometry of HCJAs was developed in Chapter 2 based

on Denavit-Hartenberg parameters, with additional parameters to account for the

size and placement of component edges and bearings. A method of generating edges

from these parameters was explained, as well as an algorithm to generate surfaces

representing the overall shape of each component. These surfaces are in the same

131

format as .STL files, allowing the output of this model to be easily converted and

imported to various computer modeling programs.

In Chapter 3, a system to find and describe the range of motion (ROM) of

an HCJA occupant’s joint was described, as well as a method of comparing it to

the overall ROM for that joint or the task-specific ROM. The approach considered

human-suit interaction as well as the different kinematic arrangements of the suit.

The model was applied to the HBA, and the parameters were used to develop de-

sign constraints for the HBA based on utility and feasibility, described in Chapter 4.

Bounds for various parameters were also created, to limit the design space.

A wide range of alternate HBA geometries were evaluated in two tradespace

analyses, where a variety of values for thirteen model parameters were explored.

The possible designs were scored using the ROM comparison method, focusing on

potential geometries that could improve the Suited hip gait ROM. From the results of

these tradespace analyses, a new suit geometry was suggested, detailed in Chapter 5.

The range of motion of this geometry was visualized and compared to the range of

motion necessary for gait and the range of motion for the nominal Mark III HBA.

The effect of this design on kneeling was also discussed. The overall data set resulting

from these analyses was used to consider the effect of the number of bearings and

component angle on the occupant mobility.

6.2 Contributions

The key contributions found in this thesis are:

1. Developed a method of parameterizing the geometry of HCJAs in hard-joint

suits using DH parameters, component edge radii, and bearing placement.

132

2. Presented a method of unambiguously converting HCJA models parameters

into a three-dimensional representation of motion axes, edges, and surfaces,

including in the .STL file format.

3. Analyzed possible constraints on HBA geometry necessary to ensure usability

and feasibility, and simplified these constraints to the basic parameters used to

describe the geometry.

4. Designed a method of estimating the ROM of a human’s joint when wearing a

hard-joint suit.

5. Created a metric to compare the ROM of a hard-joint suit occupant to the

ROM necessary for gait or other unsuited tasks.

6. Explored two tradespaces defined by the geometric parameters and generated

a recommended suit geometry that has significantly greater overlap with the

Unsuited gait ROM than the nominal suit.

7. Investigated the HBA tradespace data set for notable conclusions, which sug-

gested suits with fewer joints will have poor ROM and that the angles of the

Proximal and Distal Sections had the largest influence on ROM score.

6.3 Limitations

The approach and results in this thesis were limited by, among other things, com-

putational complexity. Simplifications (such as those listed in Sections 2.1 and 5.1)

had to be made and some effects were not considered. These include:

• Collision between legs: The possible intersection of the legs is not inherently

a problem; human legs have the range of motion to be in the same place at the

133

same time, but the Pauli exclusion principle prevents this, as it does with the

suit. However, by comparing the Suited ROM to the Unsuited ROM of gait, we

are assuming that the occupant could use the Unsuited ROM as effectively as

an unsuited person. Copying unsuited gait motions while suited could result in

collision between the legs of the suit, which was not considered. Further study

and a more in-depth exploration of this question is needed, as mentioned in

Section 6.4.

• Varying thigh length: As stated in Section 3.2.1, the simulated thigh used in

this thesis varied in length based on the suit geometry and position of the knee.

A different approach that adjusted the suit parameters but had a specified thigh

dimension could result in improved estimations of ROM.

• Human motion within the suit: In this thesis, both the occupant’s hip and

knee had a specific position relative to the suit geometry. This likely resulted

in a reduced ROM measurement. When the occupant’s hips and knees can

move around within the suit, a given kinematic arrangement can allow a range

of occupant leg positions.

• Leg compression: To simulate the compression of the leg soft tissue against

the components, a leg with reduced thigh and knee diameters was used. A

more nuanced approach, considering how the leg would compress and to what

extent, could produce more accurate results. To model human-suit interaction,

this could also be incorporated with a finite element model, such as the one

developed by King [14].

• Motion of the rolling convolute: The HBA of the Mark III suit is described

as having three bearings, but actually has four degrees of freedom. In addition

134

to the upper, middle, and lower bearings, there is a convolute connected to the

lower bearing that allows for small amounts of ab/adduction of the hip. This

motion was not included when determining the Suited ROM in Section 3.2.2.

Considering this motion in both the nominal suit and the geometries considered

during tradespace exploration would yield ROMs with more ab/adduction.

• Continuity of motion paths: The Suited ROM regions is generated accord-

ing to Section 3.2.2, where the relevant bearings are set to a given number of

positions, and the thigh vector between the hip and knee is found. All of these

vectors are considered as within the Suited ROM, and it does not consider

whether two nearby vectors had bearing positions that were similar. Consid-

ering the bearing positions necessary for each point, and how to adjust the

bearings to move between two thigh positions, could produce valuable insight

into gait and other motions which require motion continuity.

• Shape of human thigh: The simulated thigh used in this thesis was treated

as a truncated cone, while actual human thighs have a more complicated shape.

• Internal and external rotation of the hip: Due to the lower bearing being

discounted (and allowed to assume any position), only the flexion/extension

and ab/adduction of the hip were considered. However, the hip also allows for

internal and external rotation, which is important during gait. As the human

thigh is not actually a rotationally-symmetric truncated cone (see previous

point), the internal and external rotation could affect the interactions between

the suit and occupant.

135

6.4 Future Work

Many of the limitations discussed in Section 6.3 and simplifications mentioned in

Section 2.2 could be addressed in future work on this material by:

• allowing varying component radii in the model,

• parameterizing the overlap of the different components,

• modeling components with non-zero thicknesses,

• allowing motion of the rolling convolute,

• testing and considering occupant motion within the suit, or

• better simulating the human thigh and the positions of the knee.

Any or all of these extensions should be considered, to find their effect on results

shown here and to improve the accuracy of the model and methods discussed in this

thesis.

The model and approach considered here could be applied to other problems.

Particularly, extending this model to consider variations in anthropometry could

be a very useful tool when considering fleet sizing for space suit components. By

considering how various suit geometries affect ROM and fit for human bodies of

various dimensions, a set of components could be found that maximize range of

motion across people of different sexes, heights, weights, and proportions.

The techniques detailed in Chapters 2 and 3 can be applied to joints other than

the hip. Space suits with HCJAs at locations other than the hips (including suits

with rigid components over the entire body) have been considered in the past [10].

136

The techniques discussed in this thesis could be applied to HCJAs at the shoulder,

ankle, or other joints, to understand the impact of the geometry on human mobility.

The boundaries and constraints described in Chapter 4 come from a variety of

sources. However, some of the limiting values used in the constraints, such as the

maximum height of the Briefs, could be varied to understand the impact on suit

geometries in tradespace exploration.

This work is focused on the geometry of the components and the impact on human

mobility. However, there are other important factors that should also be considered.

One possible extension would be using or modifying this model to consider the effect

of the structure of the suit necessary to support the bearings and fulfill the suit

requirements. Other work that could be valuable would be to explore the tradespace

using a more complex objective function. Instead of just mobility or ROM score,

using a metric that also includes cost and mass could produce different conclusions

and better reflect real-world concerns. Mass, in particular, is a significant downside

to hard-joint suits [15].

Finally, the model described in Chapter 2, the bounds and constraints in Chap-

ter 4, and the ROM calculations in Chapter 3 come from a foundation in mathematics

and base principles. One clear extension to build on this work would be to construct

physical models of various suit geometries (such as the top-scoring geometry in Sec-

tion 5.4) and test them to determine their impact on ROM. This could be used to

validate or improve the methods and model described in this thesis, and to better

calibrate the constraints.

137

138

Appendix A

Definition of Anatomical Terms

This appendix is a brief description of several anatomical terms used in this thesis.

Sagittal Plane: The sagittal plane is one of three planes used to describe the

body,1 and runs through the midline of the body, dividing it into left and right sides.

The sagittal plane of the Mark III Hip Bearing Assembly can be seen in Figure A-1.

Figure A-1: Sagittal plane. The sagittal plane is divides the body into the left and
right sides. The sagittal plane shown is for the Mark III Hip Bearing Assembly.

1The others are the frontal plane, which divides the body into front and back, and the transverse
plane, which divides the body into top and bottom.

139

Figure A-2: Flexion and extension of the hip. Moving the hip forward is flexion,
backward is extension. Source: NASA [20]. Image cropped and arrows added.

Flexion/Extension: Flexion describes bringing body parts closer together, re-

ducing the angle between them. Extension describes moving body parts further

apart, increasing the angle. In this thesis, flexion and extension of the hip is dis-

cussed. Flexion of the hip means bringing the thigh forward, as if kicking. Extension

of the hip is the motion in the opposite direction. These can be seen in Figure A-2.

Abduction/Adduction: Abduction describes spreading the body further from

the center, relative to the sagittal plane. Adduction describes bringing body parts

closer to the center, in terms of the sagittal plane. In this thesis, abduction and

adduction of the hip is discussed. Abduction of the hip would bring the knees

further apart, such as widening one’s stance. Adduction the hip is the motion in the

opposite direction. These can be seen in Figure A-3.

140

Figure A-3: Abduction and adduction of the hip. Moving the thigh inward, closer
to the sagittal plane is adduction, moving outward or it further away is abduction.
Source: NASA [21]. Image cropped and arrows added.

141

142

Appendix B

Sinusoidal Projection Proof

This appendix contains a proof that the sinusoidal projection and area calculation

used in Section 3.3 provide an accurate measure of area on the surface of a sphere.

Consider the surface of the unit sphere, 𝑆0. We aim to determine the area of a

region on this surface, 𝑆. This can be done with a surface integral. The general form

of surface integral is ∫︁∫︁
𝐷

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑆,

where 𝐷 is the region on the surface to be measured in Cartesian space, 𝑑𝑆 is the

infinitesimal portion of the surface (again, in Cartesian space), and 𝑓(𝑥, 𝑦, 𝑧) is the

value of the function being integrated over, described in Cartesian coordinates. If

the surface is parameterized, as in our case, with

�⃗�(𝑢, 𝑣) = 𝑎(𝑢, 𝑣)�̂�+ 𝑏(𝑢, 𝑣)𝑦 + 𝑐(𝑢, 𝑣)𝑧,

143

then this formula can be rewritten as

∫︁∫︁
𝐷′

𝑓 (�⃗�(𝑢, 𝑣))

⃦⃦⃦⃦
𝜕�⃗�

𝜕𝑢
× 𝜕�⃗�

𝜕𝑣

⃦⃦⃦⃦
𝑑𝐴,

where 𝐷′ is the bounds of the region to be integrated over expressed in terms of 𝑢

and 𝑣, and 𝑑𝐴 is the infinitesimal area in terms of 𝑢 and 𝑣. The key difference in

this expression is that, instead of integrating over 𝑥, 𝑦, and 𝑧, we are now integrating

over 𝑢 and 𝑣.

For the region of the sphere we previously mentioned, this is exactly what we need.

In our case, as we only care about area, 𝑓(𝑥, 𝑦, 𝑧) = 𝑓 (�⃗�(𝑢, 𝑣)) = 1, a constant. The

region 𝐷 is our region on the surface of the sphere 𝑆, and our parametric variables

are 𝜆 and 𝜉, which (as stated in Section 3.3) are the variables used to represent

spherical coordinates. Finally, because we are working on the surface of the unit

sphere, we have

�⃗�(𝜆, 𝜉) = (cos 𝜉 sin𝜆) �̂�+ (sin 𝜉 sin𝜆) 𝑦 + (cos𝜆) 𝑧 =

⎡⎢⎢⎢⎣
cos 𝜉 sin𝜆

sin 𝜉 sin𝜆

cos𝜆

⎤⎥⎥⎥⎦ .

With these substitutions, the formula for surface area in our case becomes

∫︁∫︁
𝑆′

1 ·
⃦⃦⃦⃦
𝜕�⃗�

𝜕𝜆
× 𝜕�⃗�

𝜕𝜉

⃦⃦⃦⃦
𝑑𝐴,

where 𝑆 ′ is the bounds of 𝑆 expressed in terms of 𝜆 and 𝜉 and 𝑑𝐴 is the differential

of area in terms of 𝜆 and 𝜉, generally something like 𝑑𝜆 𝑑𝜉. We can reduce this

144

expression. We know the value of �⃗�(𝜆, 𝜉), so we find

𝜕�⃗�

𝜕𝜆
=

𝜕

𝜕𝜆

⎡⎢⎢⎢⎣
cos 𝜉 sin𝜆

sin 𝜉 sin𝜆

cos𝜆

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos 𝜉 cos𝜆

sin 𝜉 cos𝜆

− sin𝜆

⎤⎥⎥⎥⎦
and

𝜕�⃗�

𝜕𝜉
=

𝜕

𝜕𝜉

⎡⎢⎢⎢⎣
cos 𝜉 sin𝜆

sin 𝜉 sin𝜆

cos𝜆

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
− sin 𝜉 sin𝜆

cos 𝜉 sin𝜆

0

⎤⎥⎥⎥⎦ .
We can therefore simplify the expression

⃦⃦⃦
𝜕�⃗�
𝜕𝜆

× 𝜕�⃗�
𝜕𝜉

⃦⃦⃦
to be

⃦⃦⃦⃦
𝜕�⃗�

𝜕𝜆
× 𝜕�⃗�

𝜕𝜉

⃦⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
cos 𝜉 cos𝜆

sin 𝜉 cos𝜆

− sin𝜆

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
− sin 𝜉 sin𝜆

cos 𝜉 sin𝜆

0

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦ =

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
cos 𝜉 sin2 𝜆

sin 𝜉 sin2 𝜆

cos𝜆 sin𝜆

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦ .

Evaluating this norm, we arrive at

⃦⃦⃦⃦
𝜕�⃗�

𝜕𝜆
× 𝜕�⃗�

𝜕𝜉

⃦⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
cos 𝜉 sin2 𝜆

sin 𝜉 sin2 𝜆

cos𝜆 sin𝜆

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦ =

√︁
cos2 𝜉 sin4 𝜆+ sin2 𝜉 sin4 𝜆+ cos2 𝜆 sin2 𝜆.

With the identity cos2 𝜉 + sin2 𝜉 = 1, this quickly simplifies and rearranges to⃦⃦⃦⃦
𝜕�⃗�

𝜕𝜆
× 𝜕�⃗�

𝜕𝜉

⃦⃦⃦⃦
=
√︁

sin2 𝜆
(︀
sin2 𝜆+ cos2 𝜆

)︀
=
√︀

sin2 𝜆 = sin𝜆.

145

We can substitute this into our surface integral to find

∫︁∫︁
𝑆′

sin𝜆 𝑑𝐴.

While we have determined the formula for the area of the region 𝑆 on the surface of

the unit sphere (using spherical coordinates), we still have a problem. As mentioned

in Section 3.3, this area is tedious to find directly, due to the sin𝜆 term in the

integral. This is exactly the issue that causes maps that plot latitude and longitude

as 𝑥 and 𝑦 to be distorted, or the areas used in Section 3.3. A change of variables is

used to simplify the area calculations in that section. We substitute

𝜆′ = 𝜆 and 𝜉′ = (𝜉 − 𝜇) sin𝜆+ 𝜇.

Or, conversely,

𝜆 = 𝜆′ and 𝜉 =
𝜉′ − 𝜇

sin𝜆
+ 𝜇.

The variable 𝜇 can be any real value. Here, we will limit it to values within the range

of values of 𝜉 found in 𝑆. For example, in Section 3.3, the mean of the values of 𝜉

in the relevant points is used. However, the exact nature of the value of 𝜇 does not

impact this proof.

For the general double integral of function 𝑓(𝑥, 𝑦), over variables 𝑥 and 𝑦, within

the bounds of region 𝐷, the change of variables formula is

∫︁∫︁
𝐷

𝑓(𝑥, 𝑦) 𝑑𝐴 =

∫︁∫︁
𝑅

𝑓(𝑎(𝑢, 𝑣), 𝑏(𝑢, 𝑣))

⃒⃒⃒⃒
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)

⃒⃒⃒⃒
𝑑𝐴′,

where 𝑢 and 𝑣 are the new variables such that 𝑥 = 𝑎(𝑢, 𝑣) and 𝑦 = 𝑏(𝑢, 𝑣), 𝑅 is the

146

region of integration in terms of 𝑢 and 𝑣, and 𝑑𝐴′ is the differential, now also in

terms of 𝑢 and 𝑣. Finally,
⃒⃒⃒
𝜕(𝑥,𝑦)
𝜕(𝑢, 𝑣)

⃒⃒⃒
is the Jacobian, which we can find as

⃒⃒⃒⃒
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒𝜕𝑥𝜕𝑢 𝜕𝑥

𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
𝜕𝑣

⃒⃒⃒⃒
⃒⃒ .

In our case, with 𝑥 = 𝜉, 𝑦 = 𝜆, 𝑢 = 𝜉′, and 𝑣 = 𝜆′. the Jacobian is

⃒⃒⃒⃒
𝜕(𝜉, 𝜆)

𝜕(𝜉′, 𝜆′)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 𝜕𝜉𝜕𝜉′

𝜕𝜉
𝜕𝜆′

𝜕𝜆
𝜕𝜉′

𝜕𝜆
𝜕𝜆′

⃒⃒⃒⃒
⃒⃒ .

With the definitions above, we find

⃒⃒⃒⃒
𝜕(𝜉, 𝜆)

𝜕(𝜉′, 𝜆′)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 1
sin𝜆′

−(𝜉′−𝜇) cos𝜆′

sin2 𝜆′

0 1

⃒⃒⃒⃒
⃒⃒ =

1

sin𝜆′
.

With these new definitions and the formula for change of variables, our formula for

the area in 𝜉 and 𝜆, ∫︁∫︁
𝑆′

sin𝜆 𝑑𝐴,

becomes, in terms of 𝜉′ and 𝜆′

∫︁∫︁
𝑆′′

sin𝜆′
⃒⃒⃒⃒
𝜕(𝜉, 𝜆)

𝜕(𝜉′, 𝜆′)

⃒⃒⃒⃒
𝑑𝐴′ =

∫︁∫︁
𝑆′′

sin𝜆′

sin𝜆′
𝑑𝐴′ =

∫︁∫︁
𝑆′′

𝑑𝐴′.

This simple formula is exactly the formula used for area on a plane with Cartesian

coordinates. Therefore, to find the area of the region 𝑆 on the surface of the unit

sphere, we simply need to describe the bounds of 𝑆 in terms of spherical coordinates

147

𝜉 and 𝜆, perform the substitution

𝜆′ = 𝜆 and 𝜉′ = (𝜉 − 𝜇) sin𝜆+ 𝜇,

and plot the bounds of 𝑆 in 𝜆′ and 𝜉′ as if they were 𝑥 and 𝑦 on a plane. The simple

Cartesian area of this transformed shape is the area of 𝑆 on the surface of the unit

sphere.

148

Appendix C

Homogeneous Transformations

Most of the concepts contained in this appendix can also be found in Introduction

to Robotics: Analysis, Control, Applications [24].

Homogeneous transformations are based on a 4 × 4 matrix to represent trans-

lation and multi-axis rotation between frame 𝑛 and frame 𝑛+ 1. Specifically, the

matrix 𝑛𝑇𝑛+1 is applied to the position of point �⃗� =
[︁
𝑟𝑥𝑛+1 𝑟𝑦𝑛+1 𝑟𝑧𝑛+1 𝑠

]︁𝑇
, ex-

pressed relative to the 𝑛+ 1 reference frame,1 to convert it to the 𝑛 reference frame

by 𝑛𝑇𝑛+1�⃗�. This matrix is of the form

𝑛𝑇𝑛+1 =

⎡⎣𝑛�⃗�𝑛+1
𝑛�⃗�𝑛+1

𝑛�⃗�𝑛+1
𝑛𝑝𝑛+1

0 0 0 1

⎤⎦ =

⎡⎣𝑛𝑅𝑛+1
𝑛𝑝𝑛+1

0⃗𝑇 1

⎤⎦ (C.1)

where 𝑛�⃗�𝑛+1 represents the 𝑥-axis of the 𝑛+ 1 frame, expressed in the coordinates

of frame 𝑛. The same is true for the values of 𝑦𝑖 and 𝑧𝑖. The standard 3×3 rotation

1The 𝑠 value in this vector is either 1 or 0, and it indicates whether the vector being transformed
describes a point in space or a direction. If the value is 𝑠 = 1, it describes a point, and thus it is
affected by translation during the ensuing multiplication. If 𝑠 = 0, it describes a direction, and is
not affected by translation.

149

matrix 𝑛𝑅𝑛+1 also represents the rotation in three-space described by these three

vectors. The vector 𝑛𝑝𝑛+1 =
[︁
𝑝1 𝑝2 𝑝3

]︁𝑇
is the location of the origin of frame 𝑛+1

in frame 𝑛. As an example, consider the transformation of the previously-described

�⃗�, with its coordinates given in frame 𝑛+ 1:

𝑛𝑇𝑛+1�⃗� =

⎡⎣𝑛�⃗�𝑛+1
𝑛�⃗�𝑛+1

𝑛�⃗�𝑛+1
𝑛𝑝𝑛+1

0 0 0 1

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑥𝑛+1

𝑟𝑦𝑛+1

𝑟𝑧𝑛+1

𝑠

⎤⎥⎥⎥⎥⎥⎥⎦
= 𝑟𝑥𝑛+1

⎡⎣𝑛�⃗�𝑛+1

0

⎤⎦+ 𝑟𝑦𝑛+1

⎡⎣𝑛�⃗�𝑛+1

0

⎤⎦+ 𝑟𝑧𝑛+1

⎡⎣𝑛�⃗�𝑛+1

0

⎤⎦+ 𝑠

⎡⎣𝑛𝑝𝑛+1

1

⎤⎦ .
As we can see, this vector is now described in the 𝑛 frame as 𝑟𝑥𝑛+1 distance along

the 𝑛+ 1 𝑥-axis, 𝑟𝑦𝑛+1 distance along the 𝑛+ 1 𝑦-axis, and 𝑟𝑧𝑛+1 distance along

the 𝑛+ 1 𝑧-axis, from the origin of frame 𝑛+ 1.2 If these placeholder variables were

replaced with relevant values, we would have a simple 4-vector representing the point

in the 𝑛 frame. The transformation from any frame to itself, 𝑛𝑇𝑛, is necessarily the

identity matrix. Transformations can be inverted and used to transform in the other

direction, such that

(𝑛𝑇𝑛+1)
−1 = 𝑛+1𝑇𝑛 =

⎡⎣𝑛𝑅𝑇
𝑛+1 −(𝑛𝑅𝑇

𝑛+1)
𝑛𝑝𝑛+1

0⃗𝑇 1

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛�⃗�𝑇𝑛+1 − 𝑛�⃗�𝑛+1 · 𝑛𝑝𝑛+1

𝑛�⃗�𝑇𝑛+1 − 𝑛�⃗�𝑛+1 · 𝑛𝑝𝑛+1

𝑛�⃗�𝑇𝑛+1 − 𝑛�⃗�𝑛+1 · 𝑛𝑝𝑛+1

0⃗𝑇 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

2Assuming 𝑠 = 1. As mentioned previously, if 𝑠 = 0, this vector represents a direction, not a
point. If so, this transformation would be the same except without adding the origin, thus keeping
the direction the same as reference frames change.

150

where · is the dot product operator.

While the derivation is not shown here, there is a reasonable formula to go from

DH parameters to a transformation matrix:

𝑛𝑇𝑛+1 = 𝑇 (𝜃𝑛, 𝑑𝑛, 𝑎𝑛, 𝛼𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎣
cos 𝜃𝑛 − sin 𝜃𝑛 cos𝛼𝑛 sin 𝜃𝑛 sin𝛼𝑛 𝑎𝑛 cos 𝜃𝑛

sin 𝜃𝑛 cos 𝜃𝑛 cos𝛼𝑛 − cos 𝜃𝑛 sin𝛼𝑛 𝑎𝑛 sin 𝜃𝑛

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Rotation of a joint in the robot, using our 𝜑 formulation where changes in robot

kinematics are independent from changes in geometry, can be expressed by a sim-

plified version of this matrix. A rotation of 𝜑𝑛 in the joint 𝑛 between components

𝑛− 1 and 𝑛 (and corresponding the 𝑧-axis of frame 𝑛) can be represented by

𝐽(𝜑𝑛) = 𝑇 (𝜑𝑛, 0, 0, 0) =

⎡⎢⎢⎢⎢⎢⎢⎣
cos𝜑𝑛 − sin𝜑𝑛 0 0

sin𝜑𝑛 cos𝜑𝑛 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that this transformation is identical to a rotation about the 𝑧-axis, which is

what we would expect. The position of point �⃗�, with its coordinates given in frame

𝑛, while 𝜑𝑛 ̸= 0, could then be converted to frame 𝑛− 1 using

𝑛−1𝑇𝑛 𝐽(𝜑𝑛) �⃗�

Chaining the transformation matrices 𝑛−1𝑇𝑛 and 𝐽(𝜑𝑛) can also be thought of as an

151

extension of the transformation matrix 𝑛−1𝑇𝑛 itself, so that

𝑛−1𝑇𝑛 𝐽(𝜑𝑛)

represents both the geometric structure and kinematic position associated with that

coordinate transform.

The use of these transforms means many points and directions will be represented

as 4-vectors. While 3-vectors are more standard, the usage of 4-vectors generally does

not cause difficulty, with a few small exceptions, such as the application of the cross

product. In cases where the three-vector form of a 4-vector is desired, the conversion

will be indicated by (�⃗�)1:3, such that

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑧

𝑠

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

=

⎡⎢⎢⎢⎣
𝑥

𝑦

𝑧

⎤⎥⎥⎥⎦ .

The opposite conversion is simply achieved by writing

⎡⎣�⃗�
1

⎤⎦.

152

Appendix D

Briefs Bottom Edge Orientation

Proof

This appendix is based on the Mark III HBA model generated by the methods in

Sections 2.2 and 2.3. It focuses on the two points (denoted as 𝑓𝐿 and �⃗�𝐿, for the

fore- and rearmost of the pair, respectively) of the left bottom edge which have 𝑧1-

coordinates equal to those of the centers of the bottom edges. This appendix proves
1𝑓𝐿 = �⃗�1(𝛽1(0)) and 1�⃗�𝐿 = �⃗�1(𝛽1(𝜋)),

Based on Equations 2.6 and 2.8, we know

1⃗𝑏1(𝛽1(𝑝)) = 1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟1𝑏 cos(𝛽1(𝑝))

𝑟1𝑏 sin(𝛽1(𝑝))

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

153

With

1𝑇2 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos 𝜃1 − sin 𝜃1 cos𝛼1 sin 𝜃1 sin𝛼1 𝑎1 cos 𝜃1

sin 𝜃1 − cos 𝜃1 cos𝛼1 − cos 𝜃1 sin𝛼1 𝑎1 sin 𝜃1

0 sin𝛼1 cos𝛼1 𝑑1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
determined by applying Equation 2.1, we can rewrite �⃗�1(𝛽1(𝑝)) as

⎡⎢⎢⎢⎢⎢⎢⎣
(𝑎1 + 𝑟1𝑏 cos(𝛽1(𝑝))) cos 𝜃1 +

(︀
ℎ1/2 sin𝛼1 − 𝑟1𝑏 sin(𝛽1(𝑝)) cos𝛼1

)︀
sin 𝜃1

(𝑎1 + 𝑟1𝑏 cos(𝛽1(𝑝))) sin 𝜃1 −
(︀
ℎ1/2 sin𝛼1 + 𝑟1𝑏 sin(𝛽1(𝑝)) cos𝛼1

)︀
cos 𝜃1

𝑟1𝑏 sin(𝛽1(𝑝)) sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

We can see that the only values where the 𝑧1-coordinate of �⃗�1(𝛽1(𝑝)) is equal to the

bottom edge center 𝑧1-coordinate (ℎ1/2 cos𝛼1 + 𝑑1) are when sin(𝛽1(𝑝)) = 0. The

two conditions that fulfill this are 𝛽1(𝑝) = 0 and 𝛽1(𝑝) = 𝜋.

If cos 𝜃1 < 0, so 𝛽1(0) = 𝜋 and 𝛽1(𝜋) = 0, we have the 𝑥1-coordinate of �⃗�1(𝛽1(0))

as

−𝑟1𝑏 cos 𝜃1 + ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1

and of �⃗�1(𝛽1(𝜋)) as

𝑟1𝑏 cos 𝜃1 + ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1.

Knowing cos 𝜃1 < 0, we see that the foremost of the two points is 𝑓𝐿 = �⃗�1(𝛽1(0)) and

the rearmost is �⃗�𝐿 = �⃗�1(𝛽1(𝜋)).

On the other hand, if cos 𝜃1 ≥ 0, so 𝛽1(0) = 0 and 𝛽1(𝜋) = 𝜋, we have the 𝑥1-

154

coordinate of �⃗�1(𝛽1(0)) as

𝑟1𝑏 cos 𝜃1 + ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1

and of �⃗�1(𝛽1(𝜋)) as

−𝑟1𝑏 cos 𝜃1 + ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1.

Keeping in mind cos 𝜃1 ≥ 0, we see once again that the foremost of the two points is

𝑓𝐿 = �⃗�1(𝛽1(0)) and the rearmost is �⃗�𝐿 = �⃗�1(𝛽1(𝜋)).

155

156

Appendix E

Constraint Simplification

We know the formulae for the constraints from Section 4.1. Using other formulae we

have defined and various identities, we can rewrite and simplify the constraints. We

also know that 𝜃2 = 𝜋 and 𝜃3 = 0. Using these, we can rewrite our constraints.

E.1 Briefs Constraints

• Leg Direction: We start with the constraint in Section 4.1.1:⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 0,

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 0,

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0,

157

where · is the dot product. We can see that⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
− sin 𝜃1 sin𝛼1

cos 𝜃1 sin𝛼1

− cos𝛼1

0

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, we have cos𝛼1 ≥ 0, cos 𝜃1 sin𝛼1 ≥ 0, and sin 𝜃1 sin𝛼1 ≤ 0. Knowing co-

sine and sine and treating 𝜃1 = 𝜃1 mod 2𝜋 and 𝛼1 = 𝛼1 mod 2𝜋, we see that

these can be rewritten as:

𝜋

2
≥ 𝛼1 ∨ 𝛼1 ≥

3𝜋

2
,

(︂(︂
3𝜋

2
≤ 𝜃1 ∨

𝜋

2
≥ 𝜃1

)︂
∧ 0 ≤ 𝛼1 ≤ 𝜋

)︂
∨
(︂(︂

𝜋

2
≤ 𝜃1 ≤

3𝜋

2

)︂
∧ (𝜋 ≤ 𝛼1 ≤ 2𝜋)

)︂
,

and

(0 ≤ 𝜃1 ≤ 𝜋 ∧ 𝜋 ≤ 𝛼1 ≤ 2𝜋) ∨ (𝜋 ≤ 𝜃1 ≤ 2𝜋 ∧ 0 ≤ 𝛼1 ≤ 𝜋) .

Asserting that all conditions are simultaneously true reduces the conditions to

(︂(︂
3𝜋

2
≤ 𝜃1 ≤ 2𝜋

)︂
∧
(︁

0 ≤ 𝛼1 ≤
𝜋

2

)︁)︂
∨
(︂(︁𝜋

2
≤ 𝜃1 ≤ 𝜋

)︁
∧
(︂

3𝜋

2
≤ 𝛼1 ≤ 2𝜋

)︂)︂

• Briefs Height: We start with the constraint in Section 4.1.1:

∀𝑝 ∈ [0, 2𝜋) , −𝑧1,max ≤

⎛⎜⎜⎜⎜⎜⎜⎝
1⃗𝑏1(𝑝) ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ −𝑧1,min.

158

We can show this by showing the points on 1⃗𝑏1(𝑝) with the minimum and

maximum 𝑧 values satisfy the bounds. Using Equation 2.6, we find

1⃗𝑏1(𝑝) ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟1𝑏 cos 𝑝

𝑟1𝑏 sin 𝑝

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
With Equation 2.1, this can be rewritten as⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
cos 𝜃1 − sin 𝜃1 cos𝛼1 sin 𝜃1 sin𝛼1 𝑎1 cos 𝜃1

sin 𝜃1 cos 𝜃1 cos𝛼1 − cos 𝜃1 sin𝛼1 𝑎1 sin 𝜃1

0 sin𝛼1 cos𝛼1 𝑑1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟1𝑏 cos 𝑝

𝑟1𝑏 sin 𝑝

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
and simplified to

𝑟1𝑏 sin 𝑝 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1.

These are the 𝑧1 values of the points on �⃗�1(𝑝). We need to identify the minimum

and maximum (with respect to 𝑝). By inspection, we can see that the mini-

mum and maximum occur when the first term equals −𝑟1𝑏 sin𝛼1 and 𝑟1𝑏 sin𝛼1,

respectively. Thus, we have the two constraints of

𝑟1𝑏 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1 ≤ −𝑧1,min

and

−𝑟1𝑏 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1 ≥ −𝑧1,max.

159

• Leg Gap: We start with the constraint in Section 4.1.1:

∀𝑝 ∈ [0, 2𝜋) ,

⎛⎜⎜⎜⎜⎜⎜⎝
1⃗𝑏1(𝑝) ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ≥ 𝑦1,min

2
.

This inequality is satisfied for all points if it is satisfied by the point on �⃗�1(𝑝)

with the minimum 𝑦 value. From Equation 2.6, we find

�⃗�1(𝑝) ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎛⎜⎜⎜⎜⎜⎜⎝
1𝑇2

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟1𝑏 cos 𝑝

𝑟1𝑏 sin 𝑝

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
With Equation 2.1, this can be rewritten as⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
cos 𝜃1 − sin 𝜃1 cos𝛼1 sin 𝜃1 sin𝛼1 𝑎1 cos 𝜃1

sin 𝜃1 cos 𝜃1 cos𝛼1 − cos 𝜃1 sin𝛼1 𝑎1 sin 𝜃1

0 sin𝛼1 cos𝛼1 𝑑1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟1𝑏 cos 𝑝

𝑟1𝑏 sin 𝑝

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
and simplifies to

𝑟1𝑏 (sin 𝜃1 cos 𝑝+ cos 𝜃1 cos𝛼1 sin 𝑝) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1. (E.1)

These are the 𝑦1 values of the points on �⃗�1(𝑝). We need to identify the minimum

(with respect to 𝑝). We use the critical point test. We set the derivative of the

160

function, with respect to 𝑝, to 0:

𝑟1𝑏 (cos 𝜃1 cos𝛼1 cos 𝑝− sin 𝜃1 sin 𝑝) = 0.

Thus, we find, at the critical points,

tan 𝑝 = cot 𝜃1 cos𝛼1. (E.2)

Plugging Equation E.2 into Equation E.1, we find the 𝑦1 values at the critical

points to be

𝑟1𝑏√︀
1 + tan2 𝑝

(±1 sin 𝜃1 ±2 cos 𝜃1 cos𝛼1 tan 𝑝) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1

which simplifies to

𝑟1𝑏 sin 𝜃1√︀
1 + (cot 𝜃1 cos𝛼1)2

(±11 ±2 (cot 𝜃1 cos𝛼1)
2) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1.

Knowing that 𝑟1𝑏 and both terms inside the parentheses are positive, we can see

that the the minimum value occurs when both of the ±’s are negative. Thus,

we have our minimum value as

− 𝑟1𝑏 sin 𝜃1√︀
1 + (cot 𝜃1 cos𝛼1)2

(1 + (cot 𝜃1 cos𝛼1)
2) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1,

which simplifies to

𝑎1 sin 𝜃1 − 𝑟1𝑏 sin 𝜃1
√︀

1 + (cot 𝜃1 cos𝛼1)2 − ℎ1/2 cos 𝜃1 sin𝛼1.

161

Our constraint is thus

𝑎1 sin 𝜃1 − 𝑟1𝑏 sin 𝜃1
√︀

1 + (cot 𝜃1 cos𝛼1)2 − ℎ1/2 cos 𝜃1 sin𝛼1 ≥
𝑦1,min

2
.

• Leg Holes inside Briefs: We start with the constraint in Section 4.1.1:

∀𝑝 ∈ [0, 2𝜋) ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
(︁

1⃗𝑏1 (𝑝)
)︁
1:3

×

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦ ≤ 𝑟1𝑡,

where ‖*‖ is the Euclidean Norm.

We know 𝑟1𝑡 and the result of ‖*‖ are always positive, so we can rewrite this

as

∀𝑝 ∈ [0, 2𝜋) ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
(︁
𝑏1(𝑝)

)︁
1:3

×

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

≤ 𝑟21𝑡. (E.3)

Using Equations 2.1 and 2.6, we find
(︁
𝑏1(𝑝)

)︁
1:3

is equal to

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
cos 𝜃1 − sin 𝜃1 cos𝛼1 sin 𝜃1 sin𝛼1 𝑎1 cos 𝜃1

sin 𝜃1 cos 𝜃1 cos𝛼1 − cos 𝜃1 sin𝛼1 𝑎1 sin 𝜃1

0 sin𝛼1 cos𝛼1 𝑑1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟1𝑏 cos 𝑝

𝑟1𝑏 sin 𝑝

ℎ1/2

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

162

and simplifies to⎡⎢⎢⎢⎣
𝑟1𝑏(cos 𝜃1 cos 𝑝− sin 𝜃1 cos𝛼1 sin 𝑝) + ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1

𝑟1𝑏(cos 𝑝 sin 𝜃1 + sin 𝑝 cos 𝜃1 cos𝛼1) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1

𝑟1𝑏 sin 𝑝 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1

⎤⎥⎥⎥⎦ .

The main expression of Equation E.3 can thus be rewritten as

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
𝑟1𝑏(cos 𝜃1 cos 𝑝− sin 𝜃1 cos𝛼1 sin 𝑝) + ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1

𝑟1𝑏(cos 𝑝 sin 𝜃1 + sin 𝑝 cos 𝜃1 cos𝛼1) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1

𝑟1𝑏 sin 𝑝 sin𝛼1 + ℎ1/2 cos𝛼1 + 𝑑1

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

and simplified to

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
𝑟1𝑏(cos 𝑝 sin 𝜃1 + sin 𝑝 cos 𝜃1 cos𝛼1) − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1

−𝑟1𝑏(cos 𝜃1 cos 𝑝− sin 𝜃1 cos𝛼1 sin 𝑝) − ℎ1/2 sin 𝜃1 sin𝛼1 − 𝑎1 cos 𝜃1

0

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

.

Finding the norm, this equation becomes

(𝑟1𝑏𝛾 − ℎ1/2 cos 𝜃1 sin𝛼1 + 𝑎1 sin 𝜃1)
2 + (𝑟1𝑏𝜅+ ℎ1/2 sin 𝜃1 sin𝛼1 + 𝑎1 cos 𝜃1)

2

where

𝛾 = cos 𝑝 sin 𝜃1 + sin 𝑝 cos 𝜃1 cos𝛼1 and 𝜅 = cos 𝜃1 cos 𝑝− sin 𝜃1 cos𝛼1 sin 𝑝.

163

Expanding and simplifying, we arrive at

𝑟21𝑏
(︀
𝛾2 + 𝜅2

)︀
+ ℎ21/2 sin2 𝛼1 + 𝑎21

+ 2𝑟1𝑏
(︀
(𝜅 sin 𝜃1 − 𝛾 cos 𝜃1)ℎ1/2 sin𝛼1 + 𝑎1 (𝜅 cos 𝜃1 + 𝛾 sin 𝜃1)

)︀ (E.4)

We note

𝜅 sin 𝜃1 − 𝛾 cos 𝜃1 = − cos𝛼1 sin 𝑝

and

𝜅 cos 𝜃1 + 𝛾 sin 𝜃1 = cos 𝑝,

so Equation E.4 can be rewritten as

𝑟21𝑏
(︀
𝛾2 + 𝜅2

)︀
+ ℎ21/2 sin2 𝛼1 + 𝑎21 + 2𝑟1𝑏

(︀
𝑎1 cos 𝑝− ℎ1/2 cos𝛼1 sin 𝑝 sin𝛼1

)︀
.

(E.5)

We also note

𝛾2 + 𝜅2 = cos2 𝑝+ sin2 𝑝 cos2 𝛼1,

so we Equation E.5 can be rearranged further to

𝑟21𝑏
(︀
cos2 𝑝+ sin2 𝑝 cos2 𝛼1

)︀
+ ℎ21/2 sin2 𝛼1

+ 𝑎21 + 2𝑟1𝑏
(︀
𝑎1 cos 𝑝− ℎ1/2 cos𝛼1 sin 𝑝 sin𝛼1

)︀
.

Grouping similar terms, this equation becomes

(𝑎1 + 𝑟1𝑏 cos 𝑝)2 + (ℎ1/2 sin𝛼1 − 𝑟1𝑏 cos𝛼1 sin 𝑝)2

164

and the constraint can be rewritten as

∀𝑝 ∈ [0, 2𝜋) , (𝑎1 + 𝑟1𝑏 cos 𝑝)2 + (ℎ1/2 sin𝛼1 − 𝑟1𝑏 cos𝛼1 sin 𝑝)2 ≤ 𝑟21𝑡. (E.6)

We can simplify this by considering the maximum value of the main expression

and setting that to meet the constraint. We can find the maximum value using

the critical point test. We set the derivative of Equation E.6, with respect to

𝑝, to 0:

0 = −2(𝑎1 + 𝑟1𝑏 cos 𝑝)𝑟1𝑏 sin 𝑝− 2(ℎ1/2 sin𝛼1 − 𝑟1𝑏 cos𝛼1 sin 𝑝)𝑟1𝑏 cos𝛼1 cos 𝑝

Thus, we find

0 = (𝑎1 + 𝑟1𝑏 cos 𝑝) sin 𝑝+
(︀
ℎ1/2 sin𝛼1 − 𝑟1𝑏 sin 𝑝 cos𝛼1

)︀
cos𝛼1 cos 𝑝

or

0 = 𝑎1 sin 𝑝+ 𝑟1𝑏 cos 𝑝 sin 𝑝 sin2 𝛼1 + ℎ1/2 sin𝛼1 cos𝛼1 cos 𝑝

There is no simple solution for this, so we cannot simply find a value and plug

it back in. But we know that for a given geometry, we can solve the above,

find the zeros, and plug them back into the previous expression. This limits

the points that must be considered for Equation E.6.

Thus, our constraint simplifies to

(𝑎1 + 𝑟1𝑏 cos 𝑝)2 + (ℎ1/2 sin𝛼1 − 𝑟1𝑏 cos𝛼1 sin 𝑝)2 ≤ 𝑟21𝑡

165

for all 𝑝 such that

0 = 𝑎1 sin 𝑝+ 𝑟1𝑏 cos 𝑝 sin 𝑝 sin2 𝛼1 + ℎ1/2 sin𝛼1 cos𝛼1 cos 𝑝

E.2 Proximal and Distal Sections Constraints

• Frusta Length: We start with the constraint equation from Section 4.1.2:

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦− 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝑙max.

We can immediately simplify the math necessary, knowing both 𝑙max and the

output of ‖*‖ to be positive, by the constraint as

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦− 𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

≤ 𝑙2max.

166

Knowing 𝜃2 = 𝜋 and 𝜃3 = 0, as specified in Section 4.2 and applying Equa-

tion 2.1, the main expression can be rewritten as

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
∓1 0 0 ∓𝑎𝑛
0 ∓ cos𝛼𝑛 ± sin𝛼𝑛 0

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

which simplifies to

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
∓𝑎𝑛

±ℎ𝑛/𝑛+1 sin𝛼𝑛

𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
±𝑎𝑛

∓ℎ𝑛/𝑛+1 sin𝛼𝑛

ℎ𝑛−1/𝑛 − 𝑑𝑛 − ℎ𝑛/𝑛+1 cos𝛼𝑛

0

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

and

𝑎2𝑛 + ℎ2𝑛/𝑛+1 sin2 𝛼𝑛 + (ℎ𝑛−1/𝑛 − 𝑑𝑛 − ℎ𝑛/𝑛+1 cos𝛼𝑛)2.

This expression can be rearranged as

𝑎2𝑛 + ℎ2𝑛/𝑛+1 + (𝑑𝑛 − ℎ𝑛−1/𝑛)2 + 2ℎ𝑛/𝑛+1(𝑑𝑛 − ℎ𝑛−1/𝑛) cos𝛼𝑛

Therefore, we can rewrite our constraint as

∀𝑛 ∈ {2, 3} , 𝑎2𝑛 + ℎ2𝑛/𝑛+1 + (𝑑𝑛 − ℎ𝑛−1/𝑛)2 + 2ℎ𝑛/𝑛+1(𝑑𝑛 − ℎ𝑛−1/𝑛) cos𝛼𝑛 ≤ 𝑙2max.

167

• Frusta Angle: We start with the constraint equation from Section 4.1.2:

∀𝑛 ∈ {2, 3} ,

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ≥ cos 𝛾max

Knowing 𝜃2 = 𝜋 and 𝜃3 = 0, as specified in Section 4.2 and applying Equa-

tion 2.1, the main expression can be rewritten as⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
∓1 0 0 ∓𝑎𝑛
0 ∓ cos𝛼𝑛 ± sin𝛼𝑛 0

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
or ⎡⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0

± sin𝛼𝑛

cos𝛼𝑛

0

⎤⎥⎥⎥⎥⎥⎥⎦ = cos𝛼𝑛

Therefore, we can rewrite our constraint as

∀𝑛 ∈ {2, 3} , cos𝛼𝑛 ≥ cos 𝛾max.

Assuming these 𝛼𝑛 are in the range [−𝜋, 𝜋], we can rewrite this even more

simply as

∀𝑛 ∈ {2, 3} , |𝛼𝑛| ≤ 𝛾max,

168

where |·| is the absolute value symbol. Assuming 𝛾max is in the first quadrant,

this can also be written as

∀𝑛 ∈ {2, 3} , −𝛾max ≤ 𝛼𝑛 ≤ 𝛾max

• Frusta Skew: We start with the constraint equation from Section 4.1.2:

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝑟𝑛𝑡

and

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛+1𝑇𝑛

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝑟𝑛𝑏.

To simplify the mathematics, knowing that all radii and the outputs of ‖*‖ are

positive, we rewrite this as

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

≤ 𝑟2𝑛𝑡

169

and

∀𝑛 ∈ {2, 3} ,

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝
𝑛+1𝑇𝑛

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

≤ 𝑟2𝑛𝑏.

Knowing 𝜃2 = 𝜋 and 𝜃3 = 0, as specified in Section 4.2 and applying Equa-

tion 2.1, the main expression can be rewritten as

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
∓1 0 0 ∓𝑎𝑛
0 ∓ cos𝛼𝑛 ± sin𝛼𝑛 0

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

and ⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
∓1 0 0 −𝑎𝑛
0 ∓ cos𝛼𝑛 sin𝛼𝑛 −𝑑𝑛 sin𝛼𝑛

0 ± sin𝛼𝑛 cos𝛼𝑛 −𝑑𝑛 cos𝛼𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

.

We can simplify:

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
∓𝑎𝑛

±ℎ𝑛/𝑛+1 sin𝛼𝑛

𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
∓𝑎𝑛

±ℎ𝑛/𝑛+1 sin𝛼𝑛

𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

170

to ⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
∓ℎ𝑛/𝑛+1 sin𝛼𝑛

∓𝑎𝑛
0

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

= ℎ2𝑛/𝑛+1 sin2 𝛼𝑛 + 𝑎2𝑛

and⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦×

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑎𝑛

(ℎ𝑛−1/𝑛 − 𝑑𝑛) sin𝛼𝑛

(ℎ𝑛−1/𝑛 − 𝑑𝑛) cos𝛼𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1:3

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

=

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
−𝑎𝑛

(ℎ𝑛−1/𝑛 − 𝑑𝑛) sin𝛼𝑛

(ℎ𝑛−1/𝑛 − 𝑑𝑛) cos𝛼𝑛

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

to ⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

⎡⎢⎢⎢⎣
−(ℎ𝑛−1/𝑛 − 𝑑𝑛) sin𝛼𝑛

−𝑎𝑛
0

⎤⎥⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

= (ℎ𝑛−1/𝑛 − 𝑑𝑛)2 sin2 𝛼𝑛 + 𝑎2𝑛.

Thus, our constraints can be rewritten as

∀𝑛 ∈ {2, 3} , ℎ2𝑛/𝑛+1 sin2 𝛼𝑛 + 𝑎2𝑛 ≤ 𝑟2𝑛𝑡

and

∀𝑛 ∈ {2, 3} , (ℎ𝑛−1/𝑛 − 𝑑𝑛)2 sin2 𝛼𝑛 + 𝑎2𝑛 ≤ 𝑟2𝑛𝑏.

171

• Frusta Height: We start with the constraint equation from Section 4.1.2:

∀𝑛 ∈ {2, 3} , ∀𝑝 ∈ [0, 2𝜋) ,

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ · 𝑛𝑏𝑛(𝑝)

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ ℎ𝑛−1/𝑛.

Knowing 𝜃2 = 𝜋 and 𝜃3 = 0, as specified in Section 4.2 and applying Equa-

tions 2.1 and 2.6, the main expression can be rewritten as⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
∓1 0 0 ∓𝑎𝑛
0 ∓ cos𝛼𝑛 ± sin𝛼𝑛 0

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑏 cos 𝑝

𝑟𝑛𝑏 sin 𝑝

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ .

This simplifies to⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
∓(𝑟𝑛𝑏 cos 𝑝+ 𝑎𝑛)

±(ℎ𝑛/𝑛+1 sin𝛼𝑛 − 𝑟𝑛𝑏 sin 𝑝 cos𝛼𝑛)

𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛 + 𝑟𝑛𝑏 sin 𝑝 sin𝛼𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
and

𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛 + 𝑟𝑛𝑏 sin 𝑝 sin𝛼𝑛.

Thus, our constraint can be rewritten as

∀𝑛 ∈ {2, 3} , ∀𝑝 ∈ [0, 2𝜋) , 𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛 + 𝑟𝑛𝑏 sin 𝑝 sin𝛼𝑛 ≤ ℎ𝑛−1/𝑛.

172

We can enforce this by finding the maximum of the main expression (with

respect to 𝑝), and forcing it to satisfy the constraint. By inspection (and

knowing 𝑟𝑛𝑏 > 0), we can see that the maximum will occur when sin 𝑝 has a

magnitude of 1 and the same sign as sin𝛼𝑛. In other words, this expression

is maximized when sin 𝑝 sin𝛼𝑛 = |sin𝛼𝑛|. Therefore, we can summarize our

constraint as

∀𝑛 ∈ {2, 3} , 𝑑𝑛 + ℎ𝑛/𝑛+1 cos𝛼𝑛 + 𝑟𝑛𝑏 |sin𝛼𝑛| ≤ ℎ𝑛−1/𝑛.

• Frusta Edge Gaps: We start with the constraint equation from Section 4.1.2:

∀𝑛 ∈ {2, 3} , ∀𝑝𝑡 [0, 2𝜋) , ∀𝑝𝑏 ∈ [0, 2𝜋) ,
⃦⃦⃦

𝑛�⃗�𝑛(𝑝𝑡) − 𝑛𝑏𝑛(𝑝𝑏)
⃦⃦⃦
≥ 𝑙min.

The variable 𝑙min is always positive, as is the output of ‖*‖. Therefore, we can

simplify this constraint by rewriting it as

∀𝑛 ∈ {2, 3} , ∀𝑝𝑡 ∈ [0, 2𝜋) , ∀𝑝𝑏 ∈ [0, 2𝜋) ,
⃦⃦⃦
�⃗�𝑛(𝑝𝑡) − �⃗�𝑛(𝑝𝑏)

⃦⃦⃦2
≥ 𝑙2min.

Applying Equations 2.4 and 2.6, this simplifies as

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑡 cos 𝑝𝑡

𝑟𝑛𝑡 sin 𝑝𝑡

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦−𝑛 𝑇𝑛+1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑏 cos 𝑝𝑏

𝑟𝑛𝑏 sin 𝑝𝑏

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

.

173

Given that 𝜃2 = 𝜋 and 𝜃3 = 0, this simplifies as

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑡 cos 𝑝𝑡

𝑟𝑛𝑡 sin 𝑝𝑡

ℎ𝑛−1/𝑛

1

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
∓1 0 0 ∓𝑎𝑛
0 ∓ cos𝛼𝑛 ± sin𝛼𝑛 0

0 sin𝛼𝑛 cos𝛼𝑛 𝑑𝑛

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑏 cos 𝑝𝑏

𝑟𝑛𝑏 sin 𝑝𝑏

ℎ𝑛/𝑛+1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

.

Simplifying we arrive at

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑛𝑡 cos 𝑝𝑡 ± 𝑟𝑛𝑏 cos 𝑝𝑏 ± 𝑎𝑛

𝑟𝑛𝑡 sin 𝑝𝑡 ± 𝑟𝑛𝑏 sin 𝑝𝑏 cos𝛼𝑛 ∓ ℎ𝑛/𝑛+1 sin𝛼𝑛

ℎ𝑛−1/𝑛 − 𝑟𝑛𝑏 sin 𝑝𝑏 sin𝛼𝑛 − ℎ𝑛/𝑛+1 cos𝛼𝑛 − 𝑑𝑛

0

⎤⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
2

,

which can be calculated as

(𝑟𝑛𝑡 cos 𝑝𝑡 ± 𝑟𝑛𝑏 cos 𝑝𝑏 ± 𝑎𝑛)2

+
(︀
𝑟𝑛𝑡 sin 𝑝𝑡 ± 𝑟𝑛𝑏 sin 𝑝𝑏 cos𝛼𝑛 ∓ ℎ𝑛/𝑛+1 sin𝛼𝑛

)︀2
+
(︀
(ℎ𝑛−1/𝑛 − 𝑑𝑛) − 𝑟𝑛𝑏 sin 𝑝𝑏 sin𝛼𝑛 − ℎ𝑛/𝑛+1 cos𝛼𝑛

)︀2
.

While this constraint can be written in terms of the parameters, as is done here,

it could not be simplified. It effectively requires finding the minimum distance

between two arbitrary circles in R3, which does not have a simple solution [9].

174

Thus, this constraint is re-written as

∀𝑛 ∈ {2, 3} , ∀𝑝𝑡 ∈ [0, 2𝜋) , ∀𝑝𝑏 ∈ [0, 2𝜋) ,

(𝑟𝑛𝑡 cos 𝑝𝑡 ± 𝑟𝑛𝑏 cos 𝑝𝑏 ± 𝑎𝑛)2 +
(︀
𝑟𝑛𝑡 sin 𝑝𝑡 ± 𝑟𝑛𝑏 sin 𝑝𝑏 cos𝛼𝑛 ∓ ℎ𝑛/𝑛+1 sin𝛼𝑛

)︀2
+
(︀
(ℎ𝑛−1/𝑛 − 𝑑𝑛) − 𝑟𝑛𝑏 sin 𝑝𝑏 sin𝛼𝑛 − ℎ𝑛/𝑛+1 cos𝛼𝑛

)︀2 ≥ 𝑙2min,

where the sign of ± depends on 𝜃𝑛. If 𝜃𝑛 = 0, then it is positive, and if 𝜃𝑛 = 𝜋,

it is negative.

175

176

Bibliography

[1] Isaac Abramov, N. Moiseyev, and A. Stoklitsky. Concept of Space Suit Enclosure
for Planetary Exploration. In 31st International Conference On Environmental
Systems, Jul 2001. doi:10.4271/2001-01-2168.

[2] Daniel M. Barry and John W. Bassick. NASA Space Shuttle Advanced Crew
Escape Suit Development. SAE Transactions, 104:696–701, 1995.

[3] Steven P. Chappell, Jason R. Norcross, Andrew F. J. Abercromby, Omar S.
Bekdash, Elizabeth A. Benson, Sarah L. Jarvis, Johnny Conkin, Michael L.
Gernhardt, Nancy House, Jennifer Jadwick, Jeffrey A. Jones, Lesley R. Lee,
Richard A. Scheuring, and Jennifer A. Tuxhorn. Evidence Report: Risk of
Injury and Compromised Performance due to EVA Operations. National Aero-
nautics and Space Administration, Jan 2017. Available on NASA Technical
Reports Server at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.
gov/20170002574.pdf.

[4] Cinda Chullen, Joe McMann, Ken Thomas, Joe Kosmo, Cathleen Lewis, Re-
becca Wright, Rose Bitterly, and Vladenka Oliva. U.S. Spacesuit Legacy: Main-
taining it for the Future. In 43rd International Conference on Environmen-
tal Systems. American Institute of Aeronautics and Astronautics, Jul 2013.
doi:10.2514/6.2013-3498.

[5] Matthew S. Cowley, Sarah Margerum, Lauren Hharvill, and Sudhakar Rajulu.
Model for Predicting the Performance of Planetary Suit Hip Bearing Designs.
In 4th International Conference on Applied Human Factors and Ergonomics.
National Aeronautics and Space Administration, Jul 2012. Available on NASA
Technical Reports Server.

[6] Conor R. Cullinane, Richard A. Rhodes, and Leia A. Stirling. Mobility and
Agility During Locomotion in the Mark III Space Suit. Aerospace Medicine and
Human Performance, 88(6):589–596, Jun 2017. doi:10.3357/AMHP.4650.2017.

177

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170002574.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170002574.pdf

[7] Conor Ryan Cullinane. Evaluation of the Mark III Spacesuit: An Experimental
and Computational Modeling Approach. PhD thesis, Massachusetts Institute of
Technology, 2018.

[8] Conor Ryan Cullinane. Evaluation of the Mark III Spacesuit: An Experimental
and Computational Modeling Approach, June 2018. PhD Thesis Defense Slides.

[9] David Eberly. Distance to Circles in 3D. Technical report, Geometric Tools,
Geometric Tools, Redmond, Washington, Feb 2019. Available at https://www.
geometrictools.com/Documentation/DistanceToCircle3.pdf.

[10] Charles W. Flugel, Joseph J. Kosmo, and John R. Rayfield. Development of a
Zero–Prebreathe Spacesuit. In 14th Intersociety Conference on Environmental
Systems, pages 840–981, Jul 1984. doi:10.4271/840981.

[11] Claire C. Gordon, Cynthia L. Blackwell, Bruce Bradtmiller, Joseph L. Parham,
Patricia Barrientos, Stephen P. Paquette, Brian D. Corner, Jeremy M. Car-
son, Joseph C. Venezia, Belva M. Rockwell, et al. 2012 Anthropometric Sur-
vey of US Army Personnel: Methods and Summary Statistics. Technical re-
port, ARMY NATICK SOLDIER RESEARCH DEVELOPMENT AND ENGI-
NEERING CENTER MA, 2014.

[12] David Graziosi and Janet G. Ferl. Performance Evaluations of an Advanced
Space Suit Design for International Space Station and Planetary Applica-
tions. In 29th International Conference on Environmental Systems, Jul 1999.
doi:10.4271/1999-01-1967.

[13] Stephen J. Hoffman. Advanced EVA Capabilities: A Study for NASA’s Revolu-
tionary Aerospace Systems Concept Program. Technical Report 20040200983,
NASA Johnson Space Center, NASA Johnson Space Center, Houston, Texas,
April 2004. Available on NASA Technical Reports Server.

[14] Christopher David King. A Coupled Contact-Mechanics Computational Model
for Studying Deformable Human-Artifact Contact. Master’s thesis, Mas-
sachusetts Institute of Technology, Department of Mechanical Engineering, June
2018.

[15] Joseph J. Kosmo and Amy Ross. Space Suit Mobility Evaluations in Lunar/Mars
Gravity Environments. In 28th International Conference on Environmental Sys-
tems, Jul 1998. doi:10.4271/981627.

178

https://www.geometrictools.com/Documentation/DistanceToCircle3.pdf
https://www.geometrictools.com/Documentation/DistanceToCircle3.pdf

[16] Joseph J. Kosmo, William E. Spenny, Rob Gray, and Phil Spampinato. De-
velopment of the NASA ZPS Mark III 57.2-kN/m2 (8.3 psi) Space Suit. In
18th Intersociety Conference on Environmental Systems, pages 630–650. SAE
International, July 1988.

[17] Andreas Kranzl. Normative Gait Database. Available on Clinical Gait Analysis
Website http://www.clinicalgaitanalysis.com/data/kinematics.

[18] Mathworks. evalclusters, Jul 2019. https://www.mathworks.com/help/stats/
evalclusters.html.

[19] Bill McDonald. surf2stl, Feb 2004. MATLAB Central File Exchange https:
//www.mathworks.com/matlabcentral/fileexchange/4512-surf2stl The
available code was modified in some use cases for speed and efficiency. Some
portions of this research required using this function hundreds of thousands of
times. To make that process more efficient, unused generalizations and input
checking were removed from the code. To further reduce computation time,
the code was modified in some uses to output the data as a pair of arrays
containing .STL-formatted data, rather than saving every geometry as a file.

[20] NASA, Jul 1969. NASA Photo AS11-40-5903, available at https:
//spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_
40_5902.html.

[21] NASA, Jul 1969. NASA Photo AS11-40-5902, available at https:
//spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_
40_5903.html.

[22] NASA, Oct 2004. NASA Photo JSC2004-E-43624, available at
https://spaceflight.nasa.gov/gallery/images/exploration/esas/
html/jsc2004e43624.html.

[23] Dava Newman, P. B. Schmidt, D. B. Rahn, Norman Badler, and Dimitris
Metaxas. Modeling the Extravehicular Mobility Unit (EMU) Space Suit: Phys-
iological Implications for Extravehicular Activity (EVA). In 30th International
Conference on Environmental Systems, 07 2000. doi:10.4271/2000-01-2257.

[24] Saeed B. Niku. Introduction to Robotics: Analysis, Control, Applications. Wiley,
Hoboken, New Jersey, second edition, 2011.

179

http://www.clinicalgaitanalysis.com/data/kinematics
https://www.mathworks.com/help/stats/evalclusters.html
https://www.mathworks.com/help/stats/evalclusters.html
https://www.mathworks.com/matlabcentral/fileexchange/4512-surf2stl
https://www.mathworks.com/matlabcentral/fileexchange/4512-surf2stl
https://spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_40_5902.html
https://spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_40_5902.html
https://spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_40_5902.html
https://spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_40_5903.html
https://spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_40_5903.html
https://spaceflight.nasa.gov/gallery/images/apollo/apollo11/html/as11_40_5903.html
https://spaceflight.nasa.gov/gallery/images/exploration/esas/html/jsc2004e43624.html
https://spaceflight.nasa.gov/gallery/images/exploration/esas/html/jsc2004e43624.html

[25] Jason R. Norcross, Kurt G. Clow, Leah C. Stroud, Lena Desantis, Jessica R.
Vos, and Michael L. Gernhardt. Metabolic Costs and Biomechanics of In-
clined Ambulation and Exploration Tasks in a Planetary Suit. Technical report,
National Aeronautics and Space Administration, NASA Center for AeroSpace
Information , Hanover, Maryland, June 2010. https://ston.jsc.nasa.gov/
collections/TRS/_techrep/TP-2010-216125.pdf.

[26] Asbjørn Roaas and Gunnar B. J. Andersson. Normal Range of Motion of the
Hip, Knee and Ankle Joints in Male Subjects, 30–40 Years of Age. Acta Or-
thopaedica Scandinavica, 53(2):205–208, 1982. doi:10.3109/17453678208992202.

[27] Amy Ross. Advanced Space Suits. In Society for the Advancement of Material
and Process Engineering. National Aeronautics and Space Administration, May
2016. Available on NASA Technical Reports Server.

[28] Richard A. Scheuring, Jeffrey A. Jones, Joseph D. Novak, James D.
Polk, David B. Gillis, Josef Schmid, James M. Duncan, and Jeffrey R.
Davis. The Apollo Medical Operations Project: Recommendations to im-
prove crew health and performance for future exploration missions and lu-
nar surface operations. Acta Astronautica, 63(7–10):980–987, Oct 2008.
doi:10.1016/j.actaastro.2007.12.065.

[29] Patricia B. Schmidt, Dava J. Newman, and Edward Hodgson. Modeling Space
Suit Mobility: Applications to Design and Operations. In 31st International
Conference on Environmental Systems, Jul 2001. doi:10.4271/2001-01-2162.

[30] Jeong Chang Seong, Karen A. Mulcahy, and E. Lynn Usery. The Sinusoidal Pro-
jection: A New Importance in Relation to Global Image Data. The Professional
Geographer, 54(2):218–225, 2002. doi:10.1111/0033-0124.00327.

[31] K. Alex Shorter, Amy Wu, and Arthur D. Kuo. The High Cost of Swing Leg
Circumduction during Human Walking. Gait & Posture, 54:265–270, May 2017.

[32] John Parr Snyder. Map Projections–A Working Manual, volume 1395. US
Government Printing Office, 1987.

[33] Leia Stirling, Pedro Arezes, and Allison Anderson. Implications of
Space Suit Injury Risk for Developing Computational Performance Mod-
els. Aerospace Medicine and Human Performance, 90(6):553–565, Jun 2019.
doi:10.3357/AMHP.5221.2019.

180

https://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2010-216125.pdf
https://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2010-216125.pdf

[34] Márta Szilvśi-Nagy and Gyula Mátyási. Analysis of STL files. Mathemati-
cal and Computer Modelling, 38(7–9):945–960, Oct 2003. doi:10.1016/S0895-
7177(03)90079-3.

[35] Jaroslaw Tuszynski. Triangle/Ray Intersection, Mar 2019. MATLAB Central
File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/
33073-triangle-ray-intersection. The available code was modified for
speed and efficiency, removing the generality of the original code to make it
faster for the specific usage.

[36] Jessica R. Vos, Michael L. Gernhardt, and Lesley Lee. The Walkback Test:
A Study to Evaluate Suit and Life Support System Performance Requirements
for a 10 Kilometer Lunar Traverse in a Planetary Suit. In 37th International
Conference on Environmental Systems, Jul 2007. doi:10.4271/2007-01-3133.

[37] Richard D. Watson. Use MACES IVA Suit for EVA Mobility Evaluations. In
44th International Conference On Environmental Systems. National Aeronautics
and Space Administration, Jan 2014. Available on NASA Technical Reports
Server.

[38] Leslie A. Wickman and Bernadette Luna. Locomotion while load-carrying in
reduced gravities. Aviation, space, and environmental medicine, 67:940–6, Nov
1996.

[39] Ge Wu, Sorin Siegler, Paul Allard, Chris Kirtley, Alberto Leardini, Dieter Rosen-
baum, Mike Whittle, Darryl D. D’Lima, Luca Cristofolini, Hartmut Witte,
et al. ISB Recommendation on Definitions of Joint Coordinate System of Vari-
ous Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and
Spine. Journal of Biomechanics, 35(4):543–548, Apr 2002. doi:10.1016/S0021-
9290(01)00222-6.

181

https://www.mathworks.com/matlabcentral/fileexchange/33073-triangle-ray-intersection
https://www.mathworks.com/matlabcentral/fileexchange/33073-triangle-ray-intersection

	Introduction
	Background
	Thesis Aims and Outline

	Hard-Component Joint Assembly Model
	Model Simplifications
	Parameterization
	Physical Structure
	Surface Generation
	Standard Components
	Non-standard Components

	Bearings

	Multi-Degree-of-Freedom Range of Motion Testing
	Unsuited Range of Motion
	Suited Range of Motion
	Simulated Limb
	Suited Range of Motion Estimation

	Comparison of Unsuited and Suited Ranges of Motion

	Hip Bearing Assembly Design Constraints
	Geometric Constraints
	Geometric Constraints for Briefs
	Geometric Constraints for Proximal and Distal Sections

	Parameter Bounds

	Hip Bearing Assembly Tradespace Analysis
	Tradespace Exploration Method
	Preliminary Tradespace Exploration
	Refined Tradespace Exploration
	Suggested Geometries
	Discussion
	Number of Joints
	Geometric Trends
	Effect on Kneeling

	Conclusion
	Thesis Summary
	Contributions
	Limitations
	Future Work

	Definition of Anatomical Terms
	Sinusoidal Projection Proof
	Homogeneous Transformations
	Briefs Bottom Edge Orientation Proof
	Constraint Simplification
	Briefs Constraints
	Proximal and Distal Sections Constraints

	fd@output-1:

