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Abstract

This dissertation is motivated by the possible value of integrating theory-based dis-
crete choice models (DCM) and data-driven neural networks. How to benefit from the
strengths of both is the overarching question. I propose hybrid structures and strate-
gies to flexibly represent taste heterogeneity, reduce potential biases, and improve
predictability while keeping model interpretability. Also, I utilize neural networks’
training machinery to speed up and scale up the estimation of Latent Class Choice
Models (LCCMs).

First, I embed neural networks in DCMs to enable flexible representations of
taste heterogeneity and enhance prediction accuracy. I propose two neural-embedded
choice models: TasteNet-MNL and nonlinear-LCCM. Both models provide a flexi-
ble specification of taste as a function of individual characteristics. TasteNet-MNL
extends the Multinomial Logit Model (MNL). A feed-forward neural network (Tas-
teNet) is utilized to predict taste parameters as a nonlinear function of individual
characteristics. Taste parameters generated by TasteNet are further fed into a para-
metric logit model to formulate choice probabilities. I demonstrate the effectiveness of
this integrated model in capturing nonlinearity in tastes without a priori knowledge.
Using synthetic data, TasteNet-MNL is able to recover the underlying utility spec-
ification and predict more accurately than some misspecified MNLs and continuous
mixed logit models. TasteNet-MNL also provides interpretations close to the ground
truth. In an application to a public dataset (Swissmetro), TasteNet-MNL achieves
the best out-of-sample prediction accuracy and discovers a broader spectrum of taste
variation than the benchmark MNLs with linear utility specifications.

Nonlinear-LCCM enriches the class membership model of a typical LCCM. I rep-
resent an LCCM by a neural network and add hidden layers with nonlinear transfor-
mations to its class membership model. The nonlinearity introduced by the neural
network provides a flexible approximation of the mixing distribution for both system-
atic and random taste heterogeneity. I apply this method to model Swissmetro mode
choice. The nonlinear-LCCM outperforms an LCCM with a linear class membership
model with respect to the out-of-sample prediction accuracy. Nonlinear-LCCM also
provides interpretable taste parameters for each latent class.
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Second, I embed DCMs in neural networks to (partially) maintain model
interpretability. I propose two general strategies: imposing special structure and
parameter constraints to incorporate expert knowledge and improve interpretabil-
ity.

Both TasteNet-MNL and nonlinear-LCCM can be seen as special neural networks
with DCMs embedded. In TasteNet-MNL, the downstream choice model defines the
meaning of each output unit of the TasteNet, through the utility definition. As for
nonlinear-LCCM, the class-specific choice models define meanings of the latent classes.
In addition to the special structure, I impose parameter constraints according to prior
knowledge in two ways: using a transformation layer in the neural network (TasteNet-
MNL); and adding a violation penalty to the objective function (nonlinear-LCCM).
Using these strategies, I show both TasteNet-MNL and nonlinear-LCCM can achieve
realistic behavioral/economic indicators, such as values of time, demand elasticities
and choice probabilities at the disaggregate model level and at the individual level.

Third, I demonstrate the benefits of using the neural network training machinery
to estimate LCCMs, especially for models with a large number of classes/parameters,
estimated on a large dataset, or under certain challenging scenarios such as highly
unbalanced classes and relatively small sample size(s) in the minority latent class(es).
I contrast neural network estimation by Adam, a stochastic gradient descent algo-
rithm, with the standard maximum likelihood by quasi-Newton routine, and with
Expectation-Maximization (EM). Synthetic data results show similar accuracy and
estimation time when the dataset is relatively small and the model has a small num-
ber of classes. Traditional estimation approaches scale poorly to a large dataset and a
model with a large number of classes/parameters. They tend to encounter the small
class vanishing problem. Estimation based on stochastic gradient descent is shown
to be 70 times faster on a large synthetic dataset, and can achieve more stable and
accurate estimates for latent classes with relatively small membership.

This thesis takes an initial step towards developing a framework to combine theory-
based and data-driven methods for discrete choice modeling. I highlight the strengths
and weaknesses of econometric DCMs and neural networks, and explore several ways
to take advantage of both: DCMs’ rigorous theory and domain knowledge; and neu-
ral networks’ function approximation capability and many techniques developed to
scale up estimation for big data and high-dimensional optimization. The end goal is
to empower flexible model specification, scale up estimation, and at the same time
maintain behavioral interpretability to a satisfactory degree, such that the hybrid
approaches can support scenario analysis and discover new knowledge from behavior
data with increasing granularity and complexity.

The modeling approaches and analysis in this dissertation have several limita-
tions. Future studies can enrich the modeling frameworks and test them under var-
ious empirical settings. First, the neural-embedded choice models proposed in this
dissertation focus on modeling taste heterogeneity. Future research can extend the
models to incorporate nonlinear effects in alternative attributes. Second, current hy-
brid models have limited capacity to represent random heterogeneity. Future work
can extend TasteNet-MNL to incorporate random taste variations; and enrich the
nonlinear-LCCM to account for within-class taste heterogeneity. How to embed neu-
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ral networks in continuous mixed logit models is an intriguing question. Thirdly, the
variety of synthetic data scenarios and the DCMs selected for model comparison is
limited. Future studies can test nonlinearity scenarios more thoroughly; and com-
pare TasteNet-MNL and nonlinear-LCCM with other DCM structures, such as vari-
ous forms of mixed logit and semi-/non-parametric DCMs. Lastly, neural-embedded
choice models can complement DCMs, and potentially be integrated into trip-based
model systems (e.g., a four-step model) and activity-based model systems to better
understand the implications of model uncertainty for transportation planning and
policy decisions.

Thesis Supervisor: P. Christopher Zegras
Title: Professor of Mobility and Urban Planning

Thesis Co-Supervisor: Francisco C. Pereira
Title: Professor, Technical University of Denmark

Thesis Co-Supervisor: Moshe E. Ben-Akiva
Title: Edmund K. Turner Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation & Objectives

Discrete choice models (DCM) provide a powerful econometric framework to analyze

and predict choice behavior. The majority of DCMs are Random Utility Models

(RUM), derived under the utility-maximization decision rule (McFadden, 1973). Be-

cause of DCMs’ foundation in economic and behavioral theory, they provide insights

about individual behaviors: explaining why/how decision-makers choose among a

set of alternatives. A DCM provides important economic indicators (e.g. elastic-

ity, willingness-to-pay), and can answer "what-if" questions. Since the late 1970s,

DCMs have been the predominant approach for travel demand forecasting and sce-

nario analysis, applied almost everywhere to support transportation planning and

decision-making.

Machine learning (ML) is often viewed as a data-driven approach that exploits the

rich information in large raw data. In contrast to DCMs, ML methods usually require

less a priori theories and assumptions. Its primary focus is prediction accuracy rather

than interpretability. Since the 2010s, research in Deep Neural Networks (DNN) has

achieved remarkable breakthroughs in various domains, including computer vision,

natural language understanding, speech recognition and the biomedical field (e.g.

Krizhevsky et al. (2012); Hinton et al. (2012); Sutskever et al. (2014)). Supported

by big data and increased computational capacity, DNNs have surpassed a variety of

17



traditional ML methods by a large margin in many complicated tasks, such as image

classification, object recognition, language generation and translation. However, the

potential of neural networks has not been fully exploited in the context of discrete

choice.

A theory-driven DCM requires assumptions about the model structure and spec-

ification. If the prior assumptions are close to the truth, a DCM would be the most

precise and efficient description of behaviors. When the underlying relationships are

complex with nonlinear effects, difficulties in model specification arise. We may lack

a good a priori knowledge of the true utility form. A parametric function, even with

nonlinear terms added, may still be too restricted to reflect the complex nonlinearity.

The consequences of model misspecification can be severe. Biased parameter esti-

mates can result in low prediction accuracy and misleading interpretations for policy

decisions. Uncertainty in model structure and specification has been a persistent

concern for model developers and users. Given the limitations in manual specifica-

tion, could we utilize a data-driven neural network to unravel the complexity in data

and relax a priori assumptions? Can we bring the strengths of neural networks to

DCMs, in ways that enhance model flexibility, reduce potential bias, and improve

predictability?

The strength of a neural network lies in its powerful function approximation ability.

Current neural network applications to discrete choice problems focus on prediction.

However, the lack of interpretability is a fundamental challenge for this method to

be useful for long-term demand forecasts and scenario analysis. A straightforward

adoption of a feed-forward neural network for choice prediction suffers from large es-

timation variance, and can generate unrealistic economic indicators, such as for value

of time and elasticities. It cannot provide credible answers to "what-if" questions at

the disaggregated model level or consumer level. How might we make neural networks

produce meaningful and interpretable results that can be used for transportation pol-

icy analysis and planning?

The recent success of neural networks is enabled by progress in optimization meth-

ods for deep learning. A DNN can include millions of parameters estimated on a
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gigantic dataset. Scalability of estimation is a necessity for training DNNs. For com-

plex discrete choice models, such as the latent class choice model (LCCM), estimation

is still challenging when there is a large number of latent classes and/or parameters,

and on a large dataset. The difficulty in LCCM optimization - non-concave objective

function with a lot of local optima, saddle points and flat regions in a high-dimensional

parameter space - resembles the challenges in neural network optimization. Neural

networks are almost exclusively trained with stochastic gradient descent (SGD) al-

gorithms, well known for scalability to large data. Many enhanced SGD algorithms

have been developed and shown to be highly effective for training DNNs. Could we

utilize the training machinery of a neural network to estimate an LCCM? Could we

make LCCM estimation scalable to large datasets and high-dimensional problems,

and more robust under some challenging scenarios?

The objective of this dissertation is to create synergies between theory-driven

DCMs and data-driven neural networks, in order to benefit from both approaches.

Specifically, I propose to:

1. embed neural networks in DCMs to improve model flexibility and pre-

dictability;

2. embed DCMs in neural networks to keep interpretability; and

3. utilize neural networks for DCM estimation to improve estimation speed

and scalability with large data and/or complex problem.

1.2 Thesis Contributions

1. Embed neural networks in discrete choice models for flexible specifica-

tion of taste heterogeneity

I propose two neural-embedded choice models: TasteNet-MNL that extends Multi-

nomial Logit Model (MNL); and nonlinear-LCCM that extends the Latent Class

Choice Model (LCCM). Both models provide a flexible specification of taste as a func-

tion of individual characteristics. TasteNet-MNL captures systematic taste variation

by modeling taste parameters directly as nonlinear functions of individual character-
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istics by a neural network (TasteNet). Nonlinear-LCCM represents taste by discrete

latent classes. A neural network allows for nonlinearity in modeling class membership,

which captures both systematic and random taste variation.

A key idea, as demonstrated by the two cases, is to assign the complex or less

known part of the model specification to a neural network (e.g. heterogeneous taste,

class membership assignment), and keep the well-understood part (e.g. trade-offs

between alternative attributes) parametric.

a) TasteNet-MNL

TasteNet, a feed-forward neural network is employed to capture systematic taste

heterogeneity. It models taste parameters as a flexible function of individual charac-

teristics. Taste parameters generated by TasteNet are further fed into a parametric

logit model to formulate choice probabilities. I demonstrate the effectiveness of this

integrated model in capturing nonlinear relationships between socioeconomic charac-

teristics and tastes without a priori knowledge. On synthetic data, TasteNet-MNL is

able to recover the underlying utility specification, while exemplary MNLs and contin-

uous mixed logit models with misspecified systematic utility produce large parameter

bias and result in lower prediction accuracy. Misspecified MNLs also have large errors

in estimated economic indicators (e.g. value of time, and elasticity), while TasteNet-

MNL is able to give accurate interpretations. I apply TasteNet-MNL to model mode

choice using a publicly available dataset (Swissmetro data) and compare it with sev-

eral benchmark MNLs. TasteNet-MNL achieves the best out-of-sample prediction

accuracy and discovers a broader spectrum of taste variation than the benchmark

MNLs with linear utility specifications.

b) Nonlinear-LCCM

An LCCM is represented as a neural network. Its class membership model is re-

placed by a multi-layer perceptron network. The nonlinear class membership model

allows for a more flexible mixing distribution, which captures both systematic and

random taste heterogeneity. I apply this extension to model mode choice using Swiss-

metro data. The nonlinear-LCCM significantly improves out-of-sample prediction

accuracy compared to the LCCM with linear utilities in its logit class membership

20



model.

2. Embed discrete choice models in neural networks to keep inter-

pretability

To enhance model interpretability, I propose two general strategies: imposing

special structure and parameter constraints. With these strategies, we can inject

expert knowledge about behaviors into a neural network in order to constrain its

flexibility and guide it to generate meaningful results.

Both TasteNet-MNL and nonlinear-LCCM can be seen as neural networks with

choice models embedded in them. In the case of TasteNet-MNL, the downstream

choice model defines the meaning of each output unit of the TasteNet, through the

utility definition. The TasteNet must learn to generate taste parameters that can

maximize the log-likelihood of the choice model. As for nonlinear-LCCM, the class-

specific choice models define meanings of the latent classes, which are essentially one

hidden layer in the entire LCCM network.

In addition to the special structure, I impose parameter constraints according

to prior knowledge in two ways: using a transformation layer in the neural network

(TasteNet-MNL); and adding a violation penalty to the objective function (nonlinear-

LCCM).

Using these two strategies, I improve model interpretability compared to a direct

employment of a neural network. I show both TasteNet-MNL and nonlinear-LCCM

are able to obtain realistic behavioral/economic indicators, such as values of time,

choice elasticities and probability at the disaggregate model level and at the individual

level. I compare the interpretations given by neural-embedded choice models and their

correspondent DCMs on synthetic data and Swissmetro data.

3. Estimate LCCM with neural networks to speed up estimation and

improve scalability to large data/complex problems

I demonstrate the benefits of using the training machinery of neural networks to

estimate LCCMs, especially for models with a large number of classes/parameters,

estimated on a large dataset, or under certain challenging scenarios such as highly

unbalanced classes and relatively a small sample size in the minority latent class. I
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contrast neural network estimation by Adam, a SGD algorithm, with the standard

maximum likelihood by quasi-Newton routine, and with Expectation-Maximization

(EM). Synthetic data results show similar accuracy and estimation time when the

data size is relatively small and the model has a small number of classes. Traditional

estimation approaches scale poorly to a large dataset and a model with a large number

of classes/parameters. They tend to encounter the small class vanishing problem;

estimation based on stochastic gradient descent is shown to be 70 times faster on a

large synthetic dataset, and can achieve more stable and accurate estimates for latent

classes with relatively small membership.

This thesis takes an initial step towards developing a framework to combine theory-

based and data-driven methods for discrete choice modeling. I highlight the strengths

and weaknesses of econometric DCMs and neural networks. The main idea is to

take advantage of both: DCMs’ rigorous theoretical foundations and rich domain

knowledge accumulated over decades; and neural network’s function approximation

capability and many techniques developed to scale up estimation for big data and

high-dimensional optimization. The end goal is to enable flexible model specification,

scale up estimation, and maintain interpretability so that the hybrid model can be

used to support scenario analysis and discover new knowledge about behaviors from

data.

1.3 Outline

The following chapters are organized as follows.

Chapter 2 provides a review of DCM and current neural network applications to

discrete choice problems.

Chapter 3 describes the model structure of TasteNet-MNL.

Chapter 4 presents Monte-Carlo experiments for TasteNet-MNL; and compares

TasteNet-MNL with benchmarks.

Chapter 5 shows an application of TasteNet-MNL to model mode choice using

Swissmetro data.
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Chapter 6 describes the formulation of the LCCM as a neural network

Chapter 7 compares LCCM estimation procedures on synthetic data

Chapter 8 describes the nonlinear-LCCM structure and its application to Swiss-

metro data.

Chapter 9 concludes and discusses the limitations and future work.
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Chapter 2

Literature Review

2.1 Discrete Choice Model Framework: A Theory-

driven Approach

2.1.1 Random Utility Models and Extensions

Random utility models (RUMs) have been extensively applied in the field of trans-

portation. RUMs are based on random utility maximization decision theory (McFad-

den, 1973). For detailed discussions of the micro-economic and psychological founda-

tion of RUMs, readers can refer to McFadden (1973), Manski (1977), and Ben-Akiva

and Lerman (1985).

Random utility maximization theory postulates that a decision-maker chooses an

alternative from a choice set that maximizes his/her utility. The utility of alternative

𝑖 to decision-maker 𝑛 is a random variable 𝑈𝑖𝑛 expressed as a sum of the observable

(systematic) part 𝑉𝑖𝑛 and the unobserved (random) component 𝜖𝑖𝑛.

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜖𝑖𝑛 (2.1)

RUMs are constructed according to the joint distribution of the random error

components in the utilities. Initially, most applications used the Multinomial Logit

(MNL) model, which assumes that 𝜖𝑖𝑛 are independently and identically distributed
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Gumbel across alternatives and individuals with scale 1 and location 0. MNL is

limited by its "independence of irrelevant alternatives" (IIA) assumption, which leads

to counter-intuitive substitution patterns across alternatives. Another limitation of

MNL is the absence of random taste variation.

Researchers have long focused on relaxing the assumptions of traditional RUMs,

and characterizing behaviors with flexible model structure and specification. Gener-

alized Extreme Value (GEV) models relax the IIA assumption and allow for flexible

substitution patterns. The well known examples of GEV are the nested logit (NL)

model (Ben-Akiva, 1973; Williams, 1977; McFadden, 1978) and cross-nested logit

(CNL) model. An overview of the GEV structures can be found in Ben-Akiva and

Bierlaire (2003) and Train (2009).

Flexible model structures have been developed to capture random taste hetero-

geneity. The most popular class of such models is Mixed Logit, including the Latent

Class Choice Model (LCCM) and the continuous mixed logit model. Mixed logit can

approximate any random utility model (McFadden and Train, 2000). It relaxes the

assumptions in MNL by allowing for random taste variation, unrestricted substitution

patterns, and correlations among unobserved factors (Train, 2009).

A hybrid choice model (HCM) framework integrates a variety of models and meth-

ods that extend the traditional RUM (Ben-Akiva et al., 2002). HCM integrates mod-

ular components, such as latent variable models to account for latent attitudes and

perceptions, flexible structures such as GEV and Mixed Logit, and combines revealed

preference (RP) and stated preference (SP) data. HCM is able to accommodate a

decision protocol that is not random utility maximization (Ben-Akiva et al., 2002).

As the neural-embedded choice models in my thesis focus on modeling taste het-

erogeneity, I provide a more detailed review of major developments for modeling taste

heterogeneity.

2.1.2 Taste Heterogeneity

The treatment of heterogeneity across decision makers is one of the key research topics

in choice modelling. Heterogeneity is generally defined as the difference in consumers’

26



preferences for the same set of product or service attributes (Ben-Akiva et al., 1997).

Heterogeneity exists in various aspects of modeling discrete choice behaviors: such as

decision protocols, choice sets, tastes/sensitivity to attributes of the alternatives (Ben-

Akiva et al., 1997), and information processing strategies (Hess, 2014).In RUMs, taste

heterogeneity is represented by different sets of taste parameters and/or the random

component of utility (Ben-Akiva et al., 1997).

Systematic/Random Taste Heterogeneity

There are two kinds of taste heterogeneity: systematic heterogeneity and random het-

erogeneity. Systematic heterogeneity is the taste variation that can be explained

by observed characteristics of individuals (e.g. income, age) and choice contexts

(e.g. trip purpose, weather condition). In a DCM, systematic taste heterogeneity

is represented by different sets of taste parameters for choice-makers with different

characteristics (Bhat, 2000).

Taste variation can also be random. The random effect is captured by the error

component of the utility. There are different sources that account for the random vari-

ation. First, there can be inherent uncertainty/stochasticity in consumer choice. The

same consumer’s taste can vary across repeated choice experiments (intra-person),

although his/her characteristics do not change. Second, unobserved characteristics

(individual or contextual) or latent constructs, such as perceptions and attitudes may

explain the taste variation across individuals. As these factors are not directly ob-

served, they are captured by the random error component of the utility. Thirdly,

errors from a misspecified systematic utility can be a source of random heterogeneity.

Inter-person/Intra-person Heterogeneity

Taste heterogeneity not only occurs at the inter-person level, but also at the intra-

person level (Ben-Akiva et al., 2019). There has been a growing interest in modeling

both inter-person and intra-person taste heterogeneity with more flexible structures,

such as stacking multiple layers of mixtures (Walker and Li, 2007; Hess and Rose,

2009; Hess and Train, 2011; Becker et al., 2018; Ben-Akiva et al., 2019), with some
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for inter-person and others for intra-person.

Models for Taste Heterogeneity

Systematic taste heterogeneity is usually accommodated by including interactions

between characteristics and attributes of alternatives in the utility function. Non-

parametric methods are also developed to improve the flexibility in systematic utility

specification.

For random heterogeneity, the most popular approaches are the latent class choice

model (LCCM) and the random coefficient model. Since both methods’ choice proba-

bilities are mixtures of logit probabilities, they are both called Mixed Logit: LCCM

is a discrete mixed logit model; while random coefficient model is a continuous mixed

logit model. However, in practice, mixed logit often refers to the continuous mixed

logit. For the sake of clarity, we use LCCM for discrete mixed logit, and continuous

mixed logit for the random coefficient model.

How to better represent systematic and random heterogeneity has been a thriving

research area for many years, with a variety of flexible model structures developed. In

the following sections, I provide a review of the mainstream methods for representing

taste heterogeneity.

2.1.3 Modeling Random Taste Heterogeneity

Mixed logit models are distinguished by their choice probabilities: an integral or

summation of standard logit probabilities over a probability density function of pa-

rameters (Train, 2009). In the continuous mixed logit case (Eqn. 2.2), the mixing

distribution 𝑓(𝛽) is continuous, and takes the form of a standard distribution, such as

normal or log-normal. 𝑃𝑛𝑖(𝑦|𝑥; 𝛽) is the choice probability, usually logit probability,

conditional on the coefficient 𝛽. In the LCCM formulation, the mixing distribution is

discrete (Eqn. 2.3). The probability of a consumer belonging to a discrete mixture is

modeled by the class membership model (𝑄(𝑠|𝑧, 𝛾)), which is often a logit probability.

The class-specific choice probability is 𝑃𝑛𝑖𝑠(𝑦|𝑥; 𝛽𝑠).
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𝑃𝑛𝑖(𝑦|𝑥; Ω) =

∫︁
𝑃𝑛𝑖(𝑦|𝑥; 𝛽)𝑓(𝛽|Ω)𝑑𝛽 (2.2)

𝑃𝑛𝑖(𝑦|𝑥) =
∑︁
𝑠

𝑃𝑛𝑖𝑠(𝑦|𝑥; 𝛽𝑠)𝑄(𝑠|𝑧; 𝛾) (2.3)

Mixed logit is a flexible structure that can approximate any random utility model

(McFadden and Train, 2000). It relaxes the assumptions of MNL by allowing for

random taste variation, unrestricted substitution patterns and correlation in unob-

served factors over time (Train, 2009). However, finding the mixing distribution is a

challenge.

2.1.4.1 Continuous Mixed Logit

The continuous mixed logit model represents taste heterogeneity by a continuous

distribution of taste parameters (𝑓(𝛽)). The first mixed logit applications date back

to Boyd and Mellman (1980) and Cardell and Dunbar (1980). The first applications

to individual choice are by Train et al. (1987) and Ben-Akiva et al. (1993). For in-

depth descriptions of the model structure, readers can refer to McFadden and Train

(2000), Hensher and Greene (2003), and Train (2009).

Continuous mixed logit requires a priori assumptions about both the systematic

part of the utility and the distribution form of the random taste parameters. The

majority of applications use normal or log-normal distribution for 𝛽 (Revelt and

Train, 1998). Other distribution forms include triangular and uniform distributions

(Hensher and Greene, 2003; Train, 2001), Rayleigh distribution (Siikamaki, 2001),

and truncated normal (Revelt, 1999).

Individual characteristics enter the utility function as alternative specific variables

or interacted with alternative attributes. For example, cost divided by income allows

the value of cost to decline as income increases (Train, 2009). Individual characteris-

tics can also enter the mixing distribution 𝑓(𝛽). For example, the variance of 𝛽 can

depend on individual characteristics (Bhat, 1998, 2000; Greene et al., 2006).

An equivalent formulation of continuous logit model is the error components logit
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(Walker et al., 2007), which has a different interpretation. It captures correlations

and heteroscedasticity between utilities of alternatives.

2.1.4.2 Latent Class Choice Model

A latent class choice model represents taste heterogeneity using discrete latent con-

structs. The latent classes can represent different decision protocols; choice sets; and

population segments with varying tastes or sensitivities to attributes of the alterna-

tives (Gopinath, 1995). Unlike the continuous mixed logit, LCCM does not need a

priori assumptions about the distribution of the random coefficients. The class mem-

bership model captures the joint distribution of random coefficients (Hess, 2014).

LCCM dates back to Kamakura and Russell (1989), with important developments

by Gupta and Chintagunta (1994), Swait (1994), and Gopinath (1995). The initial

model’s class membership probability is the same across individuals (Kamakura and

Russell, 1989). Later models assign individuals probabilistically to latent classes

conditional on individual characteristics (Gupta and Chintagunta, 1994; Gopinath,

1995).

2.1.4.3 Comparisons of LCCM and Continuous Mixed Logit

Studies have analyzed the difference between continuous mixed logit and LCCM from

a theoretical perspective (Greene and Hensher, 2003; Hess et al., 2009; Hess, 2014).

Researchers have also compared the two based on synthetic and real data application

(Andrews et al., 2002; Provencher and Bishop, 2004; Shen, 2009; Keane and Wasi,

2013). Empirical comparisons show mixed results regarding model fit and general-

ization performance, e.g. Andrews et al. (2002); Provencher and Bishop (2004); Shen

(2009), and Keane and Wasi (2013).

From a theoretical point of view, LCCM has several advantages compared to the

continuous mixed logit. First, LCCM makes fewer assumptions about the distribution

form (Hensher and Greene, 2003; Hess et al., 2009); in the continuous mixed logit

model, the distributional assumptions made during model specification can have sig-

nificant impacts on model results, such as the signs of parameters (see discussions in
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Hess et al. (2005)).

Second, the majority of mixed logit models assume no correlation between ran-

domly distributed parameters, with very few exceptions, e.g. Walker (2001). In

LCCM, the correlation between taste coefficients is an inherent characteristic of the

model structure. Moreover, the correlation varies across individuals as a function

of individual characteristics used in the class membership model. In the case of

continuous mixed logit, the correlation is constant across respondents without more

sophisticated specification (Hess et al., 2009).

Also, in continuous mixed logit, it is less common in practice to explain the un-

observed heterogeneity by socio-demographic characteristics, although it is possible

(Greene et al., 2006). In contrast, LCCM models this relationship naturally in the

class membership model. In continuous mixed logit, the relationship between socio-

demographic characteristics and elasticities are not always easily determined; while

in LCCM, the elasticities depend directly on the class membership probabilities and

thus are a function of individual characteristics (Hess et al., 2009). Also, the intu-

itive interpretation of variations across classes makes LCCM convenient to analyze

the distribution of welfare associated with policy changes (Provencher et al., 2002;

Greene and Hensher, 2003).

One shortcoming of LCCM is that the assumption of within-class homogeneity

can be too restrictive (Andrews et al., 2002). The latent specification may over-

simplify taste variations in the population, especially when a small number of classes is

estimated, or if the underlying distribution is continuous within latent classes (Allenby

and Rossi, 1998; Wedel et al., 1999). For example, Allenby and Rossi (1998) find that

the extent of heterogeneity is greater than that measured by latent class.

2.1.4.4 Combining Discrete and Continuous Representation of Heterogene-

ity

To allow for more flexibility in the distribution of random parameters, models have

been developed to combine discrete and continuous mixtures. Lenk and DeSarbo

(2000) model random coefficients in a generalized linear model as a finite mixture of
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multivariate normal distribution. They develop a hierarchical Bayes procedure to es-

timate the model. Walker and Li (2007) bring continuous variation into a latent class

model through error component terms that capture the correlation across alterna-

tives and across choices by the same decision maker. Hess and Rose (2009) combine

latent class and continuous mixed logit to account for intra-person taste variation

across repeated choices. Following the work of Lenk and DeSarbo (2000), Bujosa

et al. (2010) and Greene and Hensher (2013) propose a latent class mixed logit model

structure: latent classes are decided by socioeconomic characteristics; within each la-

tent class, taste parameters are randomly distributed among individuals (within-class

heterogeneity).

Hess and Train (2011) develop a model with double layers of continuous mixed

logit to represent inter- and intra-person heterogeneity. Becker et al. (2018) im-

plement a Hierarchical Bayes estimator for logit mixtures with inter- and intra-level

heterogeneity, which improves the estimation speed and is useful for online parameter

updates.

2.1.4.5 Non-parametric Mixing Distribution

Although McFadden and Train (2000) have shown that a mixed logit model can ap-

proximate any random utility model to any degree of accuracy, finding such a mixing

distribution is a main challenge. Parametric distributions have pre-defined distribu-

tion forms with a fixed number of parameters. Each distribution has some limitations

(Hess et al., 2005; Train, 2008). They are also restricted by their functional forms in

the shape of distributions they can represent (Vij and Krueger, 2017). In practice,

researchers need to test different distributions. The most appropriate distribution is

determined by goodness-of-fit and behavioral interpretation (Vij and Krueger, 2017).

Nonparametric methods have been developed to offer the flexibility of not being

constrained by distributional assumptions (Bajari et al., 2007; Fosgerau and Hess,

2007; Train, 2008). An important property of nonparametric mixing distribution is

that the number of parameters increases with sample size and the complexity of the

approximating distribution increases with the number of parameters (Train, 2008).

32



The finite mixture version of LCCM with mass points and frequencies treated as

parameters is an example of the nonparametric approach (Train, 2008).

Fosgerau and Hess (2007) propose two nonparametric methods: a discrete mixture

of normal distributions with the number of normal distributions rising with sample

size; and adding series expansion to a continuous base distribution.

Bajari et al. (2007) use a discrete distribution with fixed mass points and estimated

frequencies at each point, where the number of points rises with sample size. A

major limitation of this method is that model performance varies depending on the

predetermined location of the mass points. Possible solutions proposed by Train

(2008, 2016) require exogenous determination of the mass point locations, although

prior information can be collected from more restrictive frameworks.

Dong and Koppelman (2014) propose an endogenous estimation of the support

point location and probability mass. Vij and Krueger (2017) implemments an EM

algorithm that allows this approach to work for high-dimensional parameter space

and a large number of mass points. The support of the distribution is a grid with

equal or unequal intervals between successive points.

The flexibility of nonparametric methods originates from utilizing an increasing

number of parameters as sample size grows. The benefit comes with computational

challenges (Train, 2008), which often prohibit estimating models with a high degree

of complexity (Vij and Krueger, 2017).

2.1.4 Modeling Systematic Taste Heterogeneity

Compared to the majority of research on random heterogeneity, less effort has focused

on improving the flexibility of systematic utility specification.

Evidence of nonlinear effect in utility

Nonlinear effects of explanatory variables on utility function have been observed in

numerous studies of consumer choice (Schindler et al., 2007). For example, in a cogni-

tive study Monroe (1973) observes a price insensitive region (latitude of acceptance)
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and threshold effects for prices: utility is affected only if price change exceeds a certain

threshold. In an experimental study, Gupta and Cooper (1992) find both this thresh-

old effect and a saturation effect that beyond a certain range, attribute change has

very little or no effect on the behavior of consumers. Kalyanaram and Little (1994)

observe the latitude of acceptance and asymmetric response toward price increase and

decrease in a brand choice study. They use a piecewise linear function to model the

nonlinear effect.

Nonlinear effect finds theoretical explanations in prospect theory (Kahnemann

and Tversky, 1979) and the assimilation-contrast theory. Prospect theory proposes

asymmetric effects: consumers are more sensitive to losses than to gains (Kahnemann

and Tversky, 1979; Winer, 1986, 1988). Assimilation-contrast theory postulates that

consumers are insensitive to price change within the range of acceptable prices cov-

ering the reference price (Winer, 1988). Some empirical studies support assimilation-

contrast theory (Kalyanaram and Little, 1994). Abe (1998, 1999) find evidence that

supports both theories.

Specifications of nonlinear systematic utility

Parametric approach

Parametric functions commonly used for nonlinear effects include higher-order

polynomial (e.g. Pedrick and Zufryden (1991)), fixed transformation (e.g., semilog in

Krishnamurthi and Raj (1988)), piece-wise linear functions (Ben-Akiva and Lerman,

1985; Kalyanaram and Little, 1994; Wedel and Leeflang, 1998).

These approaches require a priori knowledge of the function form. In the piecewise

linear case, the number of linear pieces and the boundaries between them need to

be specified a priori or searched extensively (Kneib et al., 2007). The parametric

specification of nonlinear effect are most efficient if the function form assumed is true.

If the assumed function forms differ from the truth, estimation provides inconsistent

solutions (Kneib et al., 2007). In most applications, the selection of the nonlinear

transformation is carried out by trial-and-error based on model fit and the researcher’s

judgment/interpretation. Finding the correct specification is still a time-consuming
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task (Abe, 1999).

Nonparametric approach

Hastie and Tibshirani (1986, 1987) introduce the class of generalized additive model

(GAM) that replaces a linear function with a sum of smooth functions. They use a

local scoring algorithm to estimate the smoothing function nonparametrically. They

demonstrate the model’s ability to uncover nonlinear covariate effects for linear re-

gression and logistic regression.

Abe (1998, 1999) adapts GAM to multinomial response (GAM-MNL). The linear-

in-parameter utility function is replaced by a sum of one-dimensional nonparametric

functions of the explanatory variables. The simulation results show this method

can recover underlying nonlinearity of various shapes. This data-driven approach

can reduce subjective influence on the results and serve as an exploratory tool for

conventional parametric specification (Abe, 1999). Although GAM does not require

an a priori assumption of the functional form, the smoothness of each function needs

to be decided. The optimal model needs to be selected by hyper-parameter search.

Kneib et al. (2007) provides an extension to GAM-MNL, using penalized splines to

model the smooth effects of continuous covariates.

A major limitation of GAM-MNL arises from its additive separability assumption.

The smoothing function is usually one-dimensional, and rarely goes beyond two di-

mensions. The nonlinear terms are added together, which limits its ability to model

complex interactions between covariates (Abe, 1999). In addition, the model requires

a fairly large amount of data to achieve reliable estimates. Estimation is unstable or

fails to converge when covariates are highly correlated.

Researchers have also explored using neural networks to model nonlinear effect in

utility functions. A review of this avenue of research is found in section 2.2.2.

2.1.5 Challenge I: Model Uncertainty

It is widely acknowledged that the validity of a theory-driven model depends on

making the correct assumptions about model structure and specification. Model

uncertainty remains a persistent concern. Misspecified systematic utility and random
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error distribution can lead to biases in parameter estimates, lower prediction accuracy,

and invalid interpretation.

Determining what is deterministic and what is random

As Ben-Akiva et al. (2002) point out, it is often difficult to decide where to build

up the complexity in the model: in the systematic part or the error component of the

utility. Empirical studies constantly face the challenge of deciding which coefficients

should be allowed to vary across individuals (Hess, 2014). When the systematic effect

is ignored or misspecified, it goes into the error term, and can be mistaken as random

taste variation. Compared to the vast majority of research on modeling random

heterogeneity, systematic utility receives less attention.

Most applications use relatively simple systematic utility (e.g. linear-in-parameter

functions) plus a complex error structure. To the best of my knowledge, it is rare

in practice to diagnose whether systematic utility is under-specified. As Ben-Akiva

et al. (2002) points out: "a good error is a zero error" and "it is desirable to expand

on the systematic term thereby reducing the disturbance term". We need flexible

functions that can capture the systematic effect to the maximum extent so that no

systematic effect is left to the error term.

Assumptions about the systematic utility

As mentioned in section 2.1.4, there is empirical evidence of nonlinearity in util-

ity. Various studies show the consequences of misspecifying systematic utility (Torres

et al., 2011; Bentz and Merunka, 2000; van der Pol et al., 2014). Although various

nonlinear functions (e.g. polynomial term, log transform, piecewise linear) can be

used, they require the correct assumption about the functional form. If the assump-

tion is wrong, we still end up with misspecification.

Nonparametric methods such as GAM, can automatically learn nonlinear effects.

But its flexibility is restricted by the additive separability assumption. It is useful for

learning nonlinear effect for individual covariate (e.g. attribute), but not suitable for

modeling the interactions among covariates (taste heterogeneity).

Distributional assumptions about the error components

The continuous mixed logit model requires assumptions about the error term dis-
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tribution. The choice of statistical distribution and assumptions about the correlation

structure for random parameters are key challenges for analysts (Hess, 2014). The

vast majority of applications rely on independent Normal distributions, which may

be not appropriate, as discussed by Hess et al. (2005). Train (2008) and Hess et al.

(2005) give detailed discussions about the pros and cons of different parametric dis-

tributions. Train (2009) highlights the limitations of the mixing distribution that

captures variance and correlations in unobserved factors: "there is a natural limit on

how much one can learn about things that are not seen".

The distributional assumptions made during model specification can have sig-

nificant impacts on model results and interpretation (Hess et al., 2005, 2009). For

example, when mixed logit yields a proportion of individuals with positive signs for

time coefficients, it is unclear whether it reflects the presence of such values in the

data, or an artifact of the distribution form chosen (Hess et al., 2005). Interpretation

of the results may depend on the selected distribution. Usually the parametric distri-

bution is selected by trial-and-error according to model fit and somewhat subjective

judgment.

A data-driven approach can complement theory-based models to detect misspec-

ifications and differentiate systematic and random effects. It can serve as an ex-

ploratory tool to reveal the complexity that is not well-understood and/or hard to

specify manually. For scenario analysis, a data-driven method can provide a second

opinion and be compared with theory-based models. It could help analysts evaluate

the uncertainty due to model specification.

2.1.6 Challenge II: Estimation of Complex Structures (LCCM)

Mixed Logit model estimation for large data and high-dimensional parameter space

is still challenging. The flexibility of continuous mixed logit comes with significant

computational costs as the choice probabilities are given by integrals. An increasing

number of studies use Bayesian estimation with Markov Chain Monte Carlo (MCMC)

(Train, 2009; Becker et al., 2018). Its application to large-scale problems is still

limited. Much of the work to date has been on datasets with limited sample sizes
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and small sets of random parameters (Hess, 2014).

LCCM Estimation: Methods and Challenges

LCCM estimation can be challenging because the log-likelihood function is not glob-

ally concave. Early LCCM estimation was done by direct maximum likelihood es-

timation (DML) with Newton or quasi-Newton optimization algorithms (Kamakura

and Russell, 1989; Gupta and Chintagunta, 1994). This method has been found to

be computationally unstable and often fails to converge (Bhat, 1997). This is partly

because Newton and quasi-Newton algorithms can get stuck at some point far from

the global optimal, since they rely on quadratic approximations that may be valid

only near the local optimal. Therefore, the starting values are essential for such al-

gorithms to converge. In an empirical study, Bhat (1997) shows that DML with a

quasi-Newton algorithm DFP (Davidon–Fletcher–Powell) frequently fails to converge

for an LCCM with 2 or 3 latent classes, and never converges for 4 latent classes.

An alternative to DML is the Expectation-Maximization (EM) algorithm devel-

oped by Dempster et al. (1977). EM is an iterative procedure to maximize likelihood

function. Each iteration of the algorithm consists of an expectation (E) step followed

by a maximization (M) step. EM is convenient if under the "complete data" scenario,

maximum likelihood estimation is easy to perform. In the LCCM case, incomplete

data is the latent class label and the complete data distribution belongs to the expo-

nential family, which is easy to maximize. A fundamental property of EM is that it

monotonically increases log-likelihood (Dempster et al., 1977). However, the global

optimum is not guaranteed, and even a local optimum requires further assumptions

(see Gopinath (1995) for details).

EM has been widely applied to estimate models with latent variables or missing

data. EM was first introduced to estimate latent class logit models by Gopinath

(1995)’s dissertation (page 295-299). Bhat (1997) and Train (2008) show how to im-

plement EM for a latent class logit model and for choice models with non-parametric

mixing distributions. EM has shown to be more stable than DML; it also increases

the log-likelihood function more than quadratic maximization routines when parame-
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ters are far from optimal. However, in the neighborhood of a solution, EM converges

slowly. (Bhat, 1997). Because of its good initial performance, Bhat (1997) adopts

a hybrid algorithm that starts with EM but switches to DML after a few iterations.

This hybrid procedure achieves faster, more stable convergence. Train (2008) imple-

ments EM estimation for discrete choice models with three types of non-parametric

mixing distribution. EM is computationally attractive.

In practice, most software packages for LCCM estimation uses either DML (e.g.

PandasBiogeme, R gmnl library) or EM (python lccm package, R flexmix library,

R poLCA library). The most common choice of optimization algorithms for both

methods are quasi-Newton algorithms BFGS or L-BFGS-B. For a detailed description

of open-source packages available for mixture model estimation, readers can refer to

Sarrias and Daziano (2017).

Although EM achieves more stable convergence, estimating more complex LC-

CMs with a large number of classes and parameters is still challenging in terms of

estimation accuracy and computation time. The difficulty comes from at least two

aspects. First, in a high-dimensional space, the objective function is very complex

with many local optimal and saddle points. Estimation results are sensitive to initial

parameter values and can be unstable. A review by Hess (2014) notes some common

estimation problems with a large number of classes, such as very small class probabili-

ties, parameters collapsing to the same values across classes, insignificant coefficients,

and lack of interpretability. Experience indicates that with a large number of classes,

coefficients often have abnormally large magnitudes and standard errors, especially

for classes with small probabilities. When this problem occurs with real data, it is

often uncertain whether it is a model identification issue or an estimation problem

(e.g. bad initial parameters). While we can try different sets of initial parameters,

each model run can take a significant amount of time and the results may still not be

unreasonable.

Second, estimation with quasi-Newton routines is computationally heavy. Since

quasi-Newton algorithms need to estimate and store second-order derivatives (Hes-

sian), computation time and memory consumption grows quadratically (𝑂(𝐾2)) as
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the number of parameters K increases. Also, quasi-Newton methods have to use a

large batch of data to estimate Hessian accurately. In practice, all training examples

are processed at each iteration, which leads to poor scalability to large dataset. To

the best of my knowledge, few studies compare alternative estimation approaches for

LCCM. Improving LCCM estimation for complex structures is a key research avenue,

as noted by Hess (2014).

2.2 Neural Network for Discrete Choice: A Data-

Driven Approach

I provide an overview of the strengths and weaknesses of neural network (NN) com-

pared to DCM in three aspects: model predictability, nonlinear utility specification,

and interpretability. I show how NN and DCM are both irreplaceable and, in fact,

well-complement each other. Recent studies start to benefit from both through a

hybrid of neural network and conventional choice model. I provide a detailed look

into this new avenue, the inspirations from the precedents, and the novelty of our

approach.

2.2.1 Neural Network for Choice Prediction

Many empirical studies have shown better prediction performance of NNs than DCMs

for various choice contexts, such as travel mode choice (Hensher and Ton, 2000;

Cantarella and de Luca, 2005; Nam et al., 2017; Lee et al., 2018; Zhao et al., 2018), ve-

hicle ownership choice (Mohammadian and Miller, 2002), and brand choice (Agrawal

and Schorling, 1996; Bentz and Merunka, 2000; Hruschka et al., 2002, 2004).

Various DCM structures have been compared with NNs, including logit (Agrawal

and Schorling, 1996; West et al., 1997; Omrani, 2015; Lee et al., 2018), nested logit

(Hensher and Ton, 2000; Mohammadian and Miller, 2002; Cantarella and de Luca,

2005), cross-nested logit (Cantarella and de Luca, 2005), and mixed logit (Zhao et al.,

2018).
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Feedforward Neural Network (FFN), also known as Multilayer Perceptron (MLP),

is the most popular architecture for model comparison. In the early days, a FFN with

one or two hidden layers was often chosen, as more hidden layers suffer from an over-

fitting problem. Nevertheless, a shallow FFN achieves better out-of-sample prediction

performance than DCMs in nearly all cases.

Since the 2010s, many breakthroughs in deep learning (DL) have made deep neural

network (DNN) the state-of-art for various applications in computer vision, speech

recognition, and natural language. This triggers the interest in comparing DNNs with

DCMs. A big part of DL success is attributed to new techniques for training deep

architecture, categorized as regularization methods (e.g. parameter norm penalty,

drop-out) and optimization algorithms (e.g. stochastic gradient descent, momentum,

initialization strategies, learning rate). These methods help train deep architecture

more effectively without over-fitting.

A couple of recent studies attempt DL techniques for choice modeling (Nam et al.,

2017; Wang and Zhao, 2018) apply some DL techniques (drop-out, initialization,

SGD) to train an MLP with 4 hidden layers. They call it "DNN" because it applies

DL techniques. It is compared with conventional1 MLPs with 4 and 1 hidden layer(s),

nested logit and cross-nested logit for a mode choice application with Swissmetro data.

Surprisingly, their DNN model gives almost the same performance as nested-logit and

cross-nested logit with respect to the log-likelihood of hold-out data. The conventional

MLPs seem to be the worst. But we suspect that the best hyper-parameter, such

as hidden layer size, is not reached for either the MLPs or DNN, given no hyper-

parameter search. It is inconclusive which type of model predicts better.

Another study (Wang and Zhao, 2019) compares a DNN with nested logit to

combine revealed and stated preference data for mode choice. Despite an extensive

hyper-parameter search, the final best DNN structure with weak regularization is

inferior to a nested logit model. The authors highlight the importance of hyper-

parameters for DNN to be as good as, if not worse than, DCMs.

To summarize, there is a clear win of shallow FFN vs DCM in terms of prediction

1no DL techniques
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performance. Based on the limited evidence, DNNs have not worked effectively for

discrete choice, perhaps due to small data, over-fitting, or the difficulty in finding

hyper-parameters. It seems that simply increasing hidden layers cannot take us far.

We need a better regularization strategy or model architecture. In this study,

we find that by incorporating expert knowledge to neural networks, we can

boost prediction performance by a large margin using one hidden layer.

2.2.2 Neural Network for Learning Nonlinear Utility Function

The outstanding predictability of neural network for discrete choice is often attributed

to its ability to learn nonlinear utility functions, e.g. (Shmueli et al., 1996; West

et al., 1997; Bentz and Merunka, 2000). Feed-forward neural networks are known

as universal function approximators (Cybenko, 1989; Hornik, 1991): a feed-forward

network with a single hidden layer and an activation function under mild assumptions

can approximate any continuous functions.

While most studies have focused on comparing prediction performance with a brief

explanation of why, a few dig into how and under what circumstances (West et al.,

1997; De Carvalho et al., 1998; Bentz and Merunka, 2000). Perhaps more interestingly,

these studies seek to understand from a behavioral perspective: whether a NN can

discover the true behaviors, which can be different from or more complex than we

assume; and if so, how to derive such knowledge from a NN.

A series of studies conduct Monte-Carlo experiments to show a NN can capture

nonlinearity in utility functions (West et al., 1997; De Carvalho et al., 1998; Bentz

and Merunka, 2000). Some nonlinear relationships between input and utility reflects

the saturation effect or threshold effect of attributes on utility; some capture non-

compensatory decision rules. West et al. (1997) simulate 3 choice scenarios: two

non-compensatory decision rules with attribute thresholds (Satisfying Rule and Lat-

itude of Acceptance Rule), and one compensatory decision rule (Weighted-Additive

Rule). They find that NN models consistently outperform logit and discriminative

analysis when predicting the outcome of non-compensatory choice rule for both train-

ing and test data. With synthetic data, De Carvalho et al. (1998) find that if a logit
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assumption is broken, for example, with the time coefficient following a log-normal

distribution, then NN predicts better than logit. These studies shed light on how NNs

achieve better predictability. However they do not provide a way to extract behavior

knowledge from NN models.

Bentz and Merunka (2000) show the analogy between NN and MNL, and NN with

hidden layers as a more general version of MNL. With synthetic data and an empirical

study, they show that NN can detect interaction and threshold effects in utility, and

therefore can be used as a diagnostic tool to improve MNL utility specification. This

sequential approach requires manual analysis of NN results to identify the nonlinear

effect, and thus applies only to simple problems. Yet their idea of a hybrid approach

inspired recent development of integrated models.

Hruschka et al. (2002) compare NN with MNL and a Latent Class Logit (LCL)

model in an empirical study of brand choice. They find the NN model can identify

interaction effects, threshold effects, saturation effects and other nonlinear forms (like

inverse S-shape) of attributes on brand utility. Also, NN implies elasticities different

from MNL or LCL. MNL sometimes gives wrong signs for elasticity due to its sim-

plistic linear form. The NN predicts better on hold-out data than MNL or LCL. A

follow-up study by Hruschka et al. (2004) compares NN with two other MNLs with

flexible systematic utility, which draws similar conclusions.

To summarize, these studies explain why a NN can outperform a MNL, in partic-

ular when the nonlinear effects of attributes on utility are mistaken. However, these

studies have not addressed misspecification of taste heterogeneity, nor compared NN

with more advanced DCM structures, such as Mixed Logit. They consider NN as

either an alternative to MNL, or a diagnostic tool to improve utility specification for

MNL, which works only for simple cases.

2.2.3 Challenge: Lacking Interpretability

Being able to predict better and capture nonlinear utility is not enough for policy-

scenario analysis, which is a great advantage of behavior models based on theory and

prior knowledge. A major criticism of neural networks is the lack of interpretability.
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As this popular term is not clearly defined in the literature, despite its wide usage,

I summarize the popular understandings of interpretability into the following aspects.

The first is parameter-level interpretability. Clearly, individual weights from a

neural network do not carry specific meanings (Agrawal and Schorling, 1996; Shmueli

et al., 1996). In contrast, parameters of logit models can be directly interpreted as

the marginal effect of an attribute (or "taste"). Another strict definition has to do

with how a model is specified: based on external knowledge or learned from data.

Statistical choice models clearly map the relationship between input and output with

a theory behind it. In neural networks, the relationships are learned from data by

arbitrary functions. Even if an NN mimics the true functions and achieves high pre-

diction accuracy, this itself does not provide a theory of why inputs lead to choice

outcomes. By either of the first two criteria, a NN model is not interpretable. How-

ever, these two definitions are not meaningful measures for model usability. Another

view of interpretability by (Sifringer et al., 2018) is "the ability of the model to re-

cover the true parameters’ values of the variables that enter the interpretable part of

the utility functions". This definition focuses on obtaining unbiased model estimates

for the interpretable part. However, the unknown part of the utility modeled by a

black-box can still give uninterpretable answers to "what-if" questions.

Perhaps the most popular view of interpretability is the model’s ability to derive

behavior indicators, such as elasticity, willingness-to-pay (WTP), marginal rate of

substitution (MRS) and consumer surplus (CS), regardless of the blackbox nature.

Studies that claim ML or NN model interpretability are mostly based on this criteria

(Wang and Zhao, 2018; Sifringer et al., 2018; Zhao et al., 2018). Extracting behav-

ior indicators from neural networks is simple. Bentz and Merunka (2000) show the

similarity between MNL and a feed-forward neural network with no hidden layer and

Softmax activation. Utilities in a NN model correspond to the output units before

Softmax activation. Therefore, we can plot utility versus input and obtain marginal

effect (Bentz and Merunka, 2000; Hruschka et al., 2004). Choice elasticities and other

economic indicators can be computed analytically, since choice probabilities can be

44



obtained from the NN; and the derivative of a probability (or utility) regarding each

input can be computed by applying the chain rule (Hruschka et al., 2002, 2004).

These economic indicators can also obtained numerically through simulations (Wang

and Zhao, 2018; Zhao et al., 2018) apply variable importance and partial dependence

plots, and compute arc elasticities and marginal effects to compare NN with MNL

and Mixed Logit.

We find this definition unsatisfying because a model that gives unreasonable be-

havioral indicators is not interpretable. A study by Wang and Zhao (2018) shows

that individual NN estimation can generate unreasonable economic indicators. For

example, a choice probability can be non-monotonically decreasing as cost increases

and highly sensitive to a particular model run. The derivative of choice probabilities

with respect to cost and time can be positive; and values of time can be negative,

zero, arbitrarily large, or infinite. They conclude that neural based choice models

generate reasonable economic information only at the aggregate level either through

model ensemble or population average, due to the challenge of irregular probability

fields and large estimation errors. This suggests that a particular NN model may

not give unreasonable answers to what-if questions. If individual models can be far

off, to what degree can we trust the ensembled results, or how many models do we

need to obtain credible answers? Other studies (Hruschka et al., 2002, 2004; Zhao

et al., 2018) find that NN gives different behavior interpretations compared to MNL

or Mixed Logit.

We acknowledge the definition of interpretability is to some extent subjective and

ultimately a philosophical question. We propose a definition close to the popular view

but with extra conditions:

A model is interpretable if at a disaggregate level, it is able to give credible answers

to "what will happen if" and "but for" questions.

Compared to the second definition, we emphasize the credibility of the economic

indicators and interpretability at disaggregated (both model and choice-maker)

level. By "credible", we mean the answer should conform with a set of prior knowl-

edge. Basic priors should include universally acknowledged, such as non-positive
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choice elasticity regarding cost and non-positive values of time. Priors reflect expert

knowledge about a particular application and may change over time. More specific

priors should be used with caution, since they may contradict the truth. Disaggre-

gated level requires an interpretable model to learn meaningful relationship between

input and output, not only fitting the data well.

A fundamental interpretability challenge for a neural network is that many net-

works may exist that fit the data equally well; but not all can draw reasonable behavior

insights. We show our proposed model reduces estimation errors and obtains reason-

able economic indicators at the disaggregated level. Also, we show predictability does

not necessarily come at the cost of interpretability. We show that by integrating DCM

with NN and imposing prior knowledge, a model can achieve similar or even better

prediction performance while keeping interpretability.

2.3 Creating Synergy between Theory-based and Data-

driven Models: A Hybrid Approach

Recent studies attempt to create a synergy between statistical DCM and NN through

a hybrid structure. We call it the neural embeddded choice model. As far as we know,

Learning-MNL (L-MNL) proposed by Sifringer et al. (2018) is the first of this kind.

The idea of a hybrid approach dates back to Bentz and Merunka (2000). They

propose using NN as a diagnostic tool to detect nonlinear effects. They show that

plotting utility against input variables can help identify nonlinear effect and add it to

logit model utilities. The main drawbacks of this approach are the sequential nature

and its ineffectiveness for large problems.

The L-MNL proposed by Sifringer et al. (2018) is the closest to our model. They

divide the systematic utility into an "interpretable" part manually specified; and an

"unknown" part, a nonlinear representation learned by a neural network. The NN is

used to capture the effects of features not used in the interpretable part. This model

structure is inspiring but with some limitations.
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First, it is hard to justify keeping the set of variables in the interpretable part

exclusive from the variable set in the representation part. The motive for this division

is to make the interpretable utility have stable estimates, as NN can overpower the

logit model and cause unstable estimates. The authors note that when the two sets

of variables are correlated, estimated coefficients for the interpretable utility become

unstable. Because the two parts of utility are added without overlapping variables,

this model assumes that variables in the representation part have no interaction with

those in the interpretable part. This can be unrealistic. Also the selection of variables

to enter which part is arbitrary.

Compared to MNL, the gain of L-MNL comes from a flexible representation of the

alternative specific constants (ASCs): L-MNL models the ASCs by a neural network

as a flexible function of all the unused features. This assumption is too restrictive

since the unused features can affect not only ASCs, but also other taste parameters in

the interpretable utility (e.g. coefficient for time); also, features in the interpretable

utility may have nonlinear effects that are not captured.

Inspired by their work, I propose a more general framework to model taste het-

erogeneity. The proposed TasteNet-MNL differs from L-MNL and traditional FFW

in three aspects. First, we relax the restrictions in L-MNL with a more general

framework. We allow all or a subset of taste parameters to be modeled by NN as

a flexible function, not just the ASCs. This enhances the flexibility to model taste

heterogeneity. Second, we impose constraints on taste parameters obtained by neural

networks, as a strategy to regularize the network and obtain interpretable results.

Third, we model taste parameters, instead of utility by a NN, different from previous

approaches. By doing so, we give only the complicated job to a NN, and keep control

over the part we have good knowledge about.

The nonlinear-LCCM is another hybrid of neural networks and discrete choice

models. A neural network is used to model class membership assignment; while

class-specific choice models are parametric and specified by modellers.

The TasteNet-MNL and nonlinear-LCCM address the challenge of uncertainty in

model specification (section 2.1.5). They provide flexible tools to model heterogeneous
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taste. A neural network based LCCM estimation tackles some of the difficulties in

mixture model estimation (section 2.1.6).
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Chapter 3

A Neural Embedded Choice Model:

TasteNet-MNL

3.1 Introduction

In this Chapter I propose a neural network embedded choice model structure called

TasteNet-MNL. The TasteNet module is a feed-forward neural network that learns

taste parameters as flexible functions of individual characteristics. It replaces manual

specification of systematic taste variations in a standard logit model. The choice

model part is a multinomial logit model (MNL) with transparent utility specification.

It takes taste parameters (output of TasteNet) as input, together with alternative

attributes to compute utility and choice probability for each alternative. The two

parts are integrated and estimated by back-propagation.

I create this hybrid structure to take advantage of both NN and DCM. First, by

adding NN to DCM, we utilize NN’s flexibility to capture systematic taste variation

automatically. Second, by including an econometric DCM after the NN, I express

and incorporate expert knowledge about the utility function (e.g. the trade-offs

between time and cost) to guide the neural network so that it can learn behaviorally

meaningful parameters. Third, I impose parameter constraints to ensure the re-

alistic range of taste parameters.

With the hybrid structure and parameter constraints, TasteNet-MNL is
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expected to give more interpretable results and with less variance in estimates than

a black-box neural network does. We present the model structure in this chapter.

Monte-Carlo results and a case study are shown in the following two chapters.

3.2 Model Structure

Problem Setup Suppose for a choice task, each of N individuals makes a choice

from a choice set (𝐶𝑛). Data 𝐷 = {(𝑥𝑛, 𝑧𝑛, 𝑦𝑛)}𝑛=1:𝑁 contains N individuals. Observa-

tion for person 𝑛 includes characteristics 𝑧𝑛, attributes of each alternative 𝑥𝑛𝑗∀𝑗 ∈ 𝐶𝑛,

and the chosen alternative 𝑦𝑛. The goal is to model a person’s choice probabilities

conditional on characteristics and alternative attributes: 𝑃 (𝑦𝑛 = 𝑖|𝑥𝑛, 𝑧𝑛) ∀𝑖 ∈ 𝐶𝑛.

3.2.1 Homogeneous/Heterogeneous Taste in MNL

If tastes are homogeneous across individuals, the systematic utility of alternative 𝑖 can

be specified as a linear combination of attributes (Eqn. 3.1), where 𝛽𝑖𝑘 is the taste

for attribute 𝑥𝑖𝑘 (alternative 𝑖’s 𝑘-th attribute); and 𝛽𝑖0 is the alternative-specific

constant. 𝛽s do not vary across individuals.

𝑉𝑖 = 𝛽𝑖0 +

𝐾𝑖∑︁
𝑘=1

𝛽𝑖𝑘𝑥𝑖𝑘 (3.1)

It is more realistic to assume that taste varies across individuals. Utility therefore

includes interaction terms between attributes and characteristics. Eqn. 3.2 includes

first-order interactions between alternative 𝑖’s 𝑠-th attribute and characteristic 𝑧𝑞 for

all pairs of (𝑖,𝑠,𝑞) in set 𝐼. Interaction effects are usually specified according to prior

assumptions and verified by statistical tests. This theory-driven specification can be

limited by imperfect knowledge. Also, it is often very difficult, if not impossible, to

test all alternative specifications.

𝑉𝑖 = 𝛽𝑖0 +
𝐾∑︁
𝑘=1

𝛽𝑖𝑘𝑥𝑖𝑘 +
∑︁

(𝑖,𝑠,𝑞)∈𝐼

𝛾𝑖𝑠𝑞𝑥𝑖𝑠𝑧𝑞 (3.2)
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3.2.2 TasteNet-MNL

We propose using a neural network to model heterogeneous taste. Instead of esti-

mating taste coefficients, as the case in both DCMs and black-box NN, we predict

coefficients with a neural network.

Let us first consider a simple linear utility 𝑉𝑖 as a linear combination of attributes

of alternative 𝑖. The coefficients are the taste parameters. If we know exactly how the

attribute interacts with individual characteristics, we can add the interaction terms

as in Eqn. 3.2. Homogeneous taste or known heterogeneous taste parameters are

denoted as 𝛽𝑀𝑁𝐿 in Eqn 3.3. For heterogeneous taste with potential nonlinearity

that we are uncertain of, we use a neural network to model them, which correspond

to 𝛽𝑇𝑁 in Eqn.3.3. The hybrid model therefore consists of two modules: a TasteNet

and a MNL. TasteNet is a neural network that maps individual characteristics 𝑧 to

taste coefficients 𝛽𝑇𝑁 (Eqn. 3.4). MNL module uses 𝛽𝑇𝑁 and the corresponding

attributes 𝑥𝑇𝑁 , along with the inputs of manually specified part of the utility to

compute the final utility and choice probability (Eqn. 3.3).

𝑉𝑖 = 𝛽𝑇𝑁(𝑧;𝑤)𝑥𝑇𝑁
𝑖 + 𝛽𝑀𝑁𝐿𝑓(𝑥𝑀𝑁𝐿

𝑖 , 𝑧) (3.3)

𝛽𝑇𝑁 = 𝑇𝑎𝑠𝑡𝑒𝑁𝑒𝑡(𝑧,𝑤) (3.4)

𝑃 (𝑦 = 𝑖|𝑥, 𝑧,𝑤,𝛽𝑀𝑁𝐿) =
𝑒𝛽

𝑇𝑁 (𝑧,𝑤)𝑥𝑇𝑁
𝑖 +𝛽𝑀𝑁𝐿𝑓(𝑥𝑀𝑁𝐿

𝑖 ,𝑧)∑︀
𝑗 𝑒

𝛽𝑇𝑁 (𝑧,𝑤)𝑥𝑇𝑁
𝑗 +𝛽𝑀𝑁𝐿𝑓(𝑥𝑀𝑁𝐿

𝑗 ,𝑧)
(3.5)

This general formulation has special cases. For example, if we assume all taste

parameters are heterogeneous, and heterogeneity is not known a priori, then every

taste parameter is learned by TasteNet. This is the most general case with no prior

assumptions. If we assume homogeneous taste or fully known heterogeneity, the

model becomes an MNL. A taste parameter is either modeled by a neural network or

manually specified, in other words, no intersection between 𝛽𝑇𝑁 and 𝛽𝑀𝑁𝐿.

Figure 3-1 shows the diagram of an example of TasteNet-MNL. The structure

51



Figure 3-1: Diagram of a TasteNet-MNL (TasteNet as a MLP with 1 hidden layer)

of TasteNet includes a MLP with 1 hidden layer and H hidden units. We apply

transformation function 𝑇 on the output layer. The output of the network is 𝛽𝑇𝑁

further used in MNL utilities.

This neural-embedded MNL achieves two goals. First, the utility function be-

comes more flexible to represent taste heterogeneity. Second, model interpretability

is preserved, since taste parameters as output from the neural network carry explicit

meanings (e.g. marginal effect of time), defined by the downstream logit model.

These parameters are bounded by constraints according to expert knowledge.

TasteNet

MLP A common type of feed-forward neural network - Multi-Layer Perceptron

(MLP) - can be used to model taste function. An MLP consists of an input layer,

an output layer, and one or more hidden layers. MLP performs a series of functional

transformations.

In our application, an MLP with 1 hidden layer of H hidden units is used. The

k-th output of the network 𝛽
𝑇𝑁

𝑘 can be written as the function in Eqn. 3.6, where 𝐷

is the input dimension, H is the number of hidden units, A is nonlinear activation on

hidden units, and T is output transformation function. Non-linearity of this network
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comes from the nonlinear activation 𝐴(1) and output transform 𝑇 if 𝑇 is nonlinear.

Neural network parameters 𝑤(1) and 𝑤(2) correspond to the weights from input to

hidden layer and hidden layer to output layer.

𝛽𝑇𝑁
𝑘 (𝑧,𝑤) = 𝑇 (

𝐻∑︁
ℎ=1

𝑤
(2)
𝑘ℎ𝐴

(1)(
𝐷∑︁
𝑖=1

𝑤
(1)
ℎ𝑖 𝑧𝑖 + 𝑤

(1)
ℎ0 ) + 𝑤

(2)
𝑘0 ) (3.6)

A general MLP with L hidden layers can denoted as MLP(𝐿, [𝐻1, .., 𝐻𝐿], [𝐴(1), ..., 𝐴(𝐿)], 𝑇 ),

where 𝐿 is the number of hidden layers, 𝐻𝑙 is the number of hidden units in the 𝑙-th

hidden layer. 𝐴(𝑙) is the activation function for hidden layer 𝑙.

Transformation We impose constraints on taste parameters. A typical constraint

is on the sign of the parameters. For example, the coefficient for travel time or waiting

time should be negative in most cases. The output activation function 𝑇 plays the

role of incorporating sign constraints on output units.

For 𝛽s with non-negative sign constraints, 𝑇 can be 𝑅𝑒𝐿𝑈(𝛽), softplus 𝑙𝑛(1 + 𝑒𝑥)

or exponential function exp(𝛽). For 𝛽s with non-positive signs, choices of 𝑇 can

be: rectified linear unit −𝑅𝑒𝐿𝑈(−𝛽), −𝑙𝑛(1 + 𝑒−𝑥) or − exp(−𝛽). For 𝛽s without

constraints, 𝑇 is the identity function. Such transformations redistribute the data to

the desirable range through continuous differentiable functions.

There are other methods to incorporate prior knowledge. For example, we can

add a penalty for violating constraints to the model learning objective. This approach

can impose the constraints on training data. Yet on test data, the constraints may

not be enforced. An advantage of using transformations for imposing constraints is

that the sign will always be kept.

Optimization objective and model training

The maximum likelihood principle is used for model estimation. The objective is to

minimize a loss function, which is the sum of the negative log-likelihood and a regu-

larization penalty (Eqn. 3.7). The probability of a chosen alternative is the outcome

of MNL (Eqn. 3.5). To prevent the model from over-fitting, we add a regularization
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penalty on the p-norm of the neural network weights. It is L2 penalty when p=2;

and L1 penalty when p=1. L1 penalty tends to give more sparse parameters, since

more weights are shrunk to near zero.

min
𝑤,𝛽𝑀𝑁𝐿

−
∑︁
𝑛

log𝑃 (𝑦𝑛|𝑧𝑛,𝑥𝑛,𝑤,𝛽𝑀𝑁𝐿) + 𝜆𝑝||𝑤||𝑝 (3.7)

TasteNet-MNL is trained in an integrated fashion through back-propagation. Un-

known parameters to estimate include TasteNet weights 𝑤 and 𝛽𝑀𝑁𝐿 in the logit

model. Note that 𝛽𝑇𝑁 are not parameters to estimate; but the output of TasteNet.
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Chapter 4

Monte-Carlo Experiments for

TasteNet-MNL

4.1 Introduction

In this chapter, I examine whether TasteNet-MNL is able to recover the true taste

function, improve prediction accuracy compared to misspecified MNLs/RCLs, and

generate interpretable economic indicators. I compare TasteNet-MNL with bench-

marking models (MNLs and continuous mixed logit models) on synthetic data, gen-

erated by a MNL model with nonlinear utility functions and known parameters. I

first describe the synthetic data generation process (4.2) and compare the models

(4.3). Then I present the results of model comparison with respect to: predictability,

parameter estimates, and interpretability (4.4).

4.2 Synthetic Data Generation

I create a synthetic choice dataset with higher-order interactions between character-

istics and attributes.

The true model The true model is a binary choice model. The systematic utility

of each alternative 𝑗 is a linear combination of attributes 𝑥1 and 𝑥2. The coefficient
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(taste) for attribute 𝑥2 is a function of characteristics 𝑧 with both first and second

order interactions among 𝑧s (Eqn. 4.1). We create a true model in this form to

test if (1) TasteNet-MNL can recover the true model without expert knowledge; and

(2) what the consequences would be if a domain expert misses out on some of the

interaction terms in the utility function.

𝑉𝑗 = 𝑎0𝑗+𝑎1𝑎1+𝑎2𝑥2 = 𝑎0𝑗+𝑎1𝑥1+(𝑏0+𝑏1𝑧1+𝑏2𝑧2+𝑏3𝑧3+𝑏12𝑧1𝑧2+𝑏13𝑧1𝑧3+𝑏23𝑧2𝑧3)𝑥2

(4.1)

To make this toy example intuitive, I assign real meanings to each variable. Char-

acteristics include income (𝑖𝑛𝑐), full-time employment status (𝑓𝑢𝑙𝑙) and flexible work

schedule (𝑓𝑙𝑒𝑥). Attributes are travel cost (𝑐𝑜𝑠𝑡) and travel time (𝑡𝑖𝑚𝑒) (See Table

4.1 for details). The value of time (VOT) can be directly read as the negative coeffi-

cient for variable 𝑡𝑖𝑚𝑒, since the coefficient for 𝑐𝑜𝑠𝑡 is −1. VOTs are the same across

alternatives.

Systematic utilities with true coefficients are in Eqn. 4.2 and 4.3. The true values

of the coefficients are designed to reflect real behavior. We assume that income

has positive effect on VOT, full-time workers have higher VOT and people with

flexible schedule have lower VOT. Coefficients for second-order interactions among

characteristics are also chosen according to intuition. Random errors in each utility

follow Extreme Value distribution.

𝑉0 = −𝑐𝑜𝑠𝑡0 + (−0.1 − 0.5𝑖𝑛𝑐− 0.1𝑓𝑢𝑙𝑙 + 0.05𝑓𝑙𝑒𝑥

− 0.2𝑖𝑛𝑐 * 𝑓𝑢𝑙𝑙 + 0.05𝑖𝑛𝑐 * 𝑓𝑙𝑒𝑥 + 0.1𝑓𝑢𝑙𝑙 * 𝑓𝑙𝑒𝑥) * 𝑡𝑖𝑚𝑒0 (4.2)

𝑉1 = −0.1 − 𝑐𝑜𝑠𝑡1 + (−0.1 − 0.5𝑖𝑛𝑐− 0.1𝑓𝑢𝑙𝑙 + 0.05𝑓𝑙𝑒𝑥

− 0.2𝑖𝑛𝑐 * 𝑓𝑢𝑙𝑙 + 0.05𝑖𝑛𝑐 * 𝑓𝑙𝑒𝑥 + 0.1𝑓𝑢𝑙𝑙 * 𝑓𝑙𝑒𝑥) * 𝑡𝑖𝑚𝑒1 (4.3)

Data generation procedure I first draw input characteristics 𝑧 according to as-

sumed input distribution in Table 4.1. Alternative attributes 𝑐𝑜𝑠𝑡 and 𝑡𝑖𝑚𝑒 are drawn
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Table 4.1: Description of Input Variables in Synthetic Data

Variable Description Distribution
Characteristics 𝑧1 inc Income ($ per minute) LogNormal(log(0.5),0.25)

for full-time;
LogNormal(log(0.25),0.2)
for not full-time

𝑧2 full Full-time worker (1=yes, 0=no) Bern(0.5)
𝑧3 flex Flexible schedule (1=yes, 0=no) Bern(0.5)

Attributes 𝑥1 cost cost ($) 0.2 to 40$
𝑥2 time travel time (minutes) 1 to 90 minutes

from the ranges described in Table 4.1. With the true model, I compute choice prob-

abilities for each individual. Finally, I draw a chosen alternative for each individual

according to the predicted choice probabilities by the true model. I generate 6000,

2000 and 2000 examples for training, development and test data, respectively. Train-

ing data are used for model estimation. The development set is used for selecting

hyper-parameters. The test set is not used in model training and selection. It reflects

model generalization ability.

4.3 Benchmarking Models

I compare 3 models: MNL-I, MNL-II, and TasteNet-MNL against MNL-True (model

with the true utility specification); and all models against the ground truth.

MNLs I specify three MNL models. MNL-I’s utility functions only include first-

order interactions between characteristics and time (Eqn. 4.4). Compared to MNL-I,

utilities of MNL-II have one additional interaction 𝑖𝑛𝑐*𝑓𝑢𝑙𝑙*𝑡𝑖𝑚𝑒 (Eqn.4.5). MNL-

TRUE is a logit model with the true utility specification. It is different from the

ground truth since it is estimated on a sample. In all MNLs, alternative specific

constants (ASCs) are fixed to 0 for alternative 0 (𝐴𝑆𝐶0 = 0).

Mixed Logit Two random coefficient logit (RCL) models are included to test

whether modeling unobserved heterogeneity can compensate specification errors in

the systematic utility. We assume time coefficient is randomly distributed, following
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a Normal distribution with mean equal to a linear function of characteristics, and

standard deviation 𝜎. RCL-I and RCL-II represent two different specifications of

mean function (Eqn. 4.6 and 4.7). RCL-II’s mean function is closer to the true model.

𝑉 𝑀𝑁𝐿−𝐼
𝑖 = 𝐴𝑆𝐶𝑖 − 𝑐𝑜𝑠𝑡𝑖 + (𝑏0 + 𝑏1𝑖𝑛𝑐 + 𝑏2𝑓𝑢𝑙𝑙 + 𝑏3𝑓𝑙𝑒𝑥) * 𝑡𝑖𝑚𝑒𝑖 (4.4)

𝑉 𝑀𝑁𝐿−𝐼𝐼
𝑖 = 𝐴𝑆𝐶𝑖− 𝑐𝑜𝑠𝑡𝑖 + (𝑏0 + 𝑏1𝑖𝑛𝑐+ 𝑏2𝑓𝑢𝑙𝑙+ 𝑏3𝑓𝑙𝑒𝑥+ 𝑏12𝑖𝑛𝑐*𝑓𝑢𝑙𝑙)* 𝑡𝑖𝑚𝑒𝑖 (4.5)

𝑈𝑅𝐶𝐿−𝐼
𝑛𝑖 = 𝐴𝑆𝐶𝑖 − 𝑐𝑜𝑠𝑡𝑛𝑖 + 𝛽𝑛 * 𝑡𝑖𝑚𝑒𝑛𝑖,

𝛽𝑛 ∼ 𝑁(𝑏0 + 𝑏1𝑖𝑛𝑐𝑛 + 𝑏2𝑓𝑢𝑙𝑙𝑛 + 𝑏3𝑓𝑙𝑒𝑥𝑛, 𝜎
2) (4.6)

𝑈𝑅𝐶𝐿−𝐼𝐼
𝑛𝑖 = 𝐴𝑆𝐶𝑖 − 𝑐𝑜𝑠𝑡𝑛𝑖 + 𝛽𝑛 * 𝑡𝑖𝑚𝑒𝑛𝑖,

𝛽𝑛 ∼ 𝑁(𝑏0 + 𝑏1𝑖𝑛𝑐𝑛 + 𝑏2𝑓𝑢𝑙𝑙𝑛 + 𝑏3𝑓𝑙𝑒𝑥𝑛 + 𝑏12𝑖𝑛𝑐 * 𝑓𝑢𝑙𝑙, 𝜎2) (4.7)

TasteNet-MNL The structure of the TasteNet-MNL for this toy example is shown

in Figure 4-1. Time coefficient (𝛽𝑣𝑜𝑡) is modeled by an MLP. Hyperparameters include

the number of hidden layers (L), size of hidden layer(s) ([𝐻1, ..., 𝐻𝐿]), and type of

regularizer (norm 𝑝), regularization strength 𝜆𝑝, activation function for hidden units

([𝐴1, ..., 𝐴𝐿]), and output activation transform function (T).

For this synthetic example, we choose 1 hidden layer since the problem is fairly

simple. We vary the number of hidden units from 5 to 30. We choose L2 penalty.

For each hidden layer size, we apply different strengths of L2 penalty - 𝜆2 in [0,

0.0001, 0.001, 0.01]. ReLU and Tanh functions are tried as activation on hidden

units. For output activation T, we experiment with functions −𝑅𝑒𝐿𝑈(−𝛽) and −𝑒−𝛽

to impose 𝛽𝑣𝑜𝑡 ≤ 0 constraint. We train TasteNet-MNL on training dataset with

different combinations of hyper-parameters. For each scenario, we train the model 5

times with different random initialization.

The best model scenario is selected based on the lowest average negative log-

likelihood (𝑁𝐿𝐿) on development data. It has 1 hidden layer with 7 hidden units,
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Figure 4-1: Diagram of the TasteNet-MNL for the Synthetic Data

𝑅𝑒𝐿𝑈 for hidden layer activation, −𝑅𝑒𝐿𝑈(−𝛽) for output transformation, and L2

penalty (𝜆2) 0.001.

4.4 Results of Model Comparisons

4.4.1 Predictability: Log-likelihood and Accuracy

Model prediction performance is evaluated by average negative log-likelihood (NLL)

and prediction accuracy (ACC) on training, development and test data. Prediction

accuracy is measured as the percentage of correctly predicted choices. Table 4.2

summarizes the average NLL and prediction accuracy for synthetic data by different

models.

First, MNL with the correct utility specification (MNL-TRUE) achieves the same

NLL and ACC as the data generation model. Because of missing higher-order in-

teraction terms, MNL-I and MNL-II result in a greater NLL loss (0.59 - 0.6) than

MNL-TRUE (0.47); and lower prediction accuracy (70% - 72%) compared to MNL-
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Table 4.2: Average Negative Log-likelihood (NLL) and Prediction Accuracy (ACC)
for Synthetic Data

Model NLL_train NLL_dev NLL_test ACC_train ACC_dev ACC_test

MNL-I 0.54102 0.55699 0.54572 0.719 0.703 0.722
MNL-II 0.53755 0.55479 0.54695 0.717 0.706 0.724
RCL-I 0.52591 0.54594 0.52758 0.718 0.703 0.724
RCL-II 0.52298 0.54323 0.52808 0.719 0.701 0.723
TasteNet-MNL (H=7, 𝜆2=0.001) 0.45433 0.46803 0.46562 0.785 0.775 0.786

MNL-TRUE 0.45459 0.47268 0.45979 0.786 0.773 0.785
Data generation model 0.45502 0.47186 0.45877 0.786 0.772 0.787

TRUE(77% - 79%). Compared to MNL-I, MNL-II’s utility includes one more inter-

action 𝑖𝑛𝑐 * 𝑓𝑢𝑙𝑙 * 𝑡𝑖𝑚𝑒, which has the largest effect (-0.2) among the three missing

terms in MNL-I. Surprisingly, model fit and prediction accuracy of MNL-II does not

improve significantly. This indicates that prediction accuracy can be very sensitive

to systematic utility specification. A small mistake can lead to significant prediction

errors. Low prediction accuracy can be a sign for model misspecification.

Compared to MNL-I and MNL-II, RCL-I and RCL-II both achieve better fit:

smaller NLL loss than misspecified MNLs. The better fit is because part of the

missing terms is absorbed and modeled as random taste heterogeneity. Interestingly,

however, prediction accuracy is not improved.

The best TasteNet-MNL obtains the same level of prediction accuracy (NLL and

ACC). Moreover, this is done without defining every detail of the utility function.

We give minimal instructions to the model: 1) utility is a function of time and cost;

and 2) tastes for each attribute depend on characteristics. We do not need to specify

in detail how characteristics interact with attributes. This is learned by the neural

network. But you may still wonder: does TasteNet-MNL recover the true utility

function?

4.4.2 Parameter Estimates

To answer this question, models are compared at the parameter level (Table 4.3). For

MNLs, the coefficients can be directly retrieved. For TasteNet-MNL, I regress the

predicted 𝛽𝑉 𝑂𝑇 s against the 3 input 𝑧s (𝑖𝑛𝑐, 𝑓𝑢𝑙𝑙, 𝑓𝑙𝑒𝑥) and the interactions among
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Table 4.3: Parameter Estimates by MNLs, RCLs and TasteNet-MNL

Coef MNL-I MNL-II RCL-I RCL-II TasteNet-MNLa MNL-TRUE Truth

𝐴𝑆𝐶1 -0.1484 -0.1085 -0.141 -0.141 -0.1055 -0.1003 -0.1
time -0.0998 -0.1233 -0.0914 -0.139 -0.1056 -0.0927 -0.1
inc*time -0.5983 -0.5058 -0.636 -0.447 -0.4829 -0.5277 -0.5
full*time -0.1154 -0.0651 -0.109 -0.0434 -0.1093 -0.1051 -0.1
flex*time 0.1113 0.1120 0.114 0.115 0.060 0.0458 0.05
inc*full*time -0.1470 -0.223 -0.1904 -0.1741 -0.2
inc*flex*time 0.0182 0.0695 0.05
full*flex*time 0.1046 0.0932 0.1
𝜎(time) 0.0528 0.0504

RMSE 0.093 0.051 0.098 0.058 0.014 0.016
MAE 0.072 0.042 0.076 0.053 0.012 0.012
MAPE 63% 52% 64% 61% 15% 11%
a Estimates by regression
b RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error

them to obtain the coefficients. Estimated 𝐴𝑆𝐶1 is from the MNL module. I compare

the estimated coefficients with the ground truth.

MNL-TRUE has the lowest parameter error. Its mean absolute percentage error

(MAPE) is 11%. TasteNet-MNL is close to MNL-TRUE (15%). This means that

TasteNet-MNL recovers the true form of the taste function via neural network. MNL-

I, MNL-II, RCL-I and RCL-II have large biases in parameter estimates, with 52% to

64% error.

RCL-I and RCL-II both have statistically significant standard deviation for the

random coefficient for time (𝜎(𝑡𝑖𝑚𝑒)). This indicates that the missing higher-order

interactions in the systematic utility are identified as unobserved heterogeneity. RCLs

may not reduce the bias in parameter estimates, although they can fit the data better

with higher log-likelihoods (see Table 4.2).

These results imply that if we do not have a flexible enough function to model

the systematic taste variation, we might mistake systematic heterogeneity for random

heterogeneity, and obtain biased estimates and low prediction accuracy. Neural net-

works can be utilized to exhaust the capacity of the systematic utility, and separate

systematic from random effect.
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4.4.3 Value of Time

I compute values of time estimated by different models, and compare them against

the ground truth (Table 4.4).

MNL-I and MNL-II’s error in predicted VOTs is 1.7 $ per hour on average, about

10% of the true values. TasteNet-MNL’s average error is much lower: 0.05 $ per hour,

0.3% from the true VOTs. Taste-MNL’s accuracy in VOT matches MNL-TRUE.

To test the model’s ability to generalize to input from a different distribution, I

generate a new dataset with 200 individuals with uniformly distributed characteris-

tics. There are 50 individuals in each of the four groups defined by all combinations

of full-time (yes/no) and flexible schedule(yes/no). Income of individuals from each

group is evenly distributed in the range of 0 to 60$ per hour with interval size 1.2.

With this new input, MNL-I and MNL-II produce an errors of 2.3$ per hour (14%)

and 1.6$ per hour (10%), respectively, compared to TasteNet-MNL’s error of 0.3$ per

hour (1.6%). TasetNet-MNL provides more accurate VOTs at the individual level.

I plot the predicted VOTs by different models and the ground truth (Figure 4-2).

MNL-I cannot distinguish the difference in VOTs (given income is fixed) between

the groups with and without full-time jobs and flexible schedules. Adding higher-

order interaction in MNL-II helps, but large bias persists. TasteNet-MNL gives more

accurate VOT estimates at the individual level. The root mean squared error (RMSE)

of individual VOT estimates is 0.41, close to the true model, MNL-TRUE (0.35), and

much lower than MNL-I (2.71) and MNL-II (1.71). The mean absolute percentage

error (MAPE) by TasteNet-MNL is 1%, similar to MNL-TRUE and better than

MNL-I (14%) and MNL-II (9%).

To summarize, TasteNet-MNL is able to predict disaggregate VOTs close to the

ground truth, while misspecified MNLs suffer from biased estimates.

4.4.4 Choice Elasticity & Choice Probability

Elasticities are useful economic indicators derived from a choice model. They measure

the effects of a change in one of the variables (e.g. income, cost) on the choice
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Table 4.4: Errors in Estimated Values of Time (Unit: $ / Hour)

Input data Error metrica MNL-I MNL-II MNL-TRUE TasteNet-MNL

Synthetic data RMSE 1.805 1.730 0.098 0.111
MAE 1.700 1.696 0.080 0.056
MAPE 10.1% 10.1% 0.5% 0.3%

New input RMSE 2.710 1.707 0.351 0.408
MAE 2.274 1.573 0.244 0.280
MAPE 13.9% 9.9% 1.5% 1.6%

a RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Per-
centage Error

Figure 4-2: Estimated Values of Time and the Ground Truth for New Input
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probability. I compare disaggregated point elasticities across models. "Disaggregate"

refers to the responsiveness of an individual rather than the population. "Point"

means the impact of an infinitesimal modification of the respective variable (see Ben-

Akiva and Lerman (1985) for details).

The elasticity of demand with respect to alternative attribute 𝑥𝑖𝑛𝑘 is defined in

Equation 4.8. 𝑃𝑛(𝑖) is the probability of choosing alternative 𝑖 for person 𝑛. 𝑥𝑖𝑛𝑘

is the 𝑘-th attribute of alternative 𝑖 for person 𝑛. Elasticities for a linear MNL

and TasteNet-MNL are shown in Eqn. 4.9 and 4.10. Elasticity 𝐸
𝑃𝑛(𝑖)
𝑥𝑖𝑛𝑘 measures the

percentage change in choice probability 𝑃𝑛(𝑖) with respect to one percentage change

in attribute 𝑥𝑖𝑛𝑘.

𝐸𝑃𝑛(𝑖)
𝑥𝑖𝑛𝑘

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘

𝑥𝑖𝑛𝑘

𝑃𝑛(𝑖)
(4.8)

𝐸𝑃𝑛(𝑖)
𝑥𝑖𝑛𝑘

= (1 − 𝑃𝑛(𝑖))𝑥𝑖𝑛𝑘𝛽𝑘 (4.9)

𝐸𝑃𝑛(𝑖)
𝑥𝑖𝑛𝑘

= (1 − 𝑃𝑛(𝑖))𝑥𝑖𝑛𝑘𝛽𝑘(𝑧) (4.10)

I compare choice elasticity and choice probability of alternative 1 with respect to

time of alternative 1.

In the first analysis, I estimate elasticities for each sample in the synthetic data

with different models (Eqn. 4.9 and 4.10). I measure the difference between the

estimated elasticity and the true elasticity by RMSE, MAE and MAPE. Table 4.5

shows the results. It is clear that TasteNet-MNL achieves the same level of accuracy

as the true model MNL-TRUE, while the mis-specified logit models result in 55% to

56% errors. Similar results hold for predicted choice probability.

The second analysis is performed on a selected individual with 60$ hourly wage,

full-time job and flexible schedule. Mode 0’s time and cost is fixed at 20 minutes and

2$. Cost of mode 1 is fixed to 8$. I vary 𝑡𝑖𝑚𝑒1 from 0.2 to 20$, and compute choice

elasticity and probability of this person for each value of 𝑡𝑖𝑚𝑒1. Figure 4-3 shows

the estimated elasticity v.s. 𝑡𝑖𝑚𝑒1 and choice probability v.s. 𝑡𝑖𝑚𝑒1 across models.
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Table 4.5: Errors in Estimated Elasticities and Probabilities by Different Models

Choice Elasticity Choice Probability

Error metric MNL-I MNL-II MNL-TRUE TasteNet-MNL MNL-I MNL-II MNL-TRUE TasteNet-MNL

RMSE 5.30 5.22 0.34 0.32 0.21 0.21 0.012 0.011
MAE 3.03 3.10 0.16 0.11 0.16 0.16 0.0079 0.0057
MAPE 55% 56% 3% 2% 61% 62% 3% 2%

RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error

Figure 4-3: Elasticity and Choice Probability against 𝑡𝑖𝑚𝑒1 for the Selected Person

Among the models, TasteNet-MNL gives the function closest to the ground-truth.

The third analysis compares predicted elasticities and probabilities by different

models across 4 types of individuals. The four types of people are defined by the

combinations of full-time (yes/no) and flexible schedule (yes/no) with income fixed

at 30$ per hour. Time and cost of alternative 0 is given at 20 minutes and 2 $,

and 𝑐𝑜𝑠𝑡1 is 8 $. I plot the elasticity and probability as a function of 𝑡𝑖𝑚𝑒1 for

each group predicted by different models (Figure 4-4 and Figure 4-5). MNL-I can

barely distinguish the difference between the full-flex and nofull-noflex groups; while

TasteNet-MNL can distinguish and give more accurate estimates than the misspecified

MNLs.

4.5 Understanding the Neural Network

To understand how the neural network learns the effect of input variables and their

interactions, we visualize the activation values of the hidden units with simulated
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Figure 4-4: Elasticity v.s. 𝑡𝑖𝑚𝑒1 for 4 Types of Individuals

(𝑖𝑛𝑐=30$/hr, 𝑡𝑖𝑚𝑒0=20 min, 𝑐𝑜𝑠𝑡0=2$, 𝑐𝑜𝑠𝑡1=8$)

Figure 4-5: Choice Probability v.s. 𝑡𝑖𝑚𝑒1 for 4 Types of Individuals

(𝑖𝑛𝑐=30$/hr, 𝑡𝑖𝑚𝑒0=20 min, 𝑐𝑜𝑠𝑡0=2$ , 𝑐𝑜𝑠𝑡1=8$)
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individual characteristics. We also show the estimated weights of TasteNet, including

weights of the linear layer from input to hidden layer, and weights of the linear layer

from hidden layer to output layer (Table 4.6). Interestingly, hidden unit 6 is not used

since its associated weights are all zeros.

We generate four types of individuals with income varying from 0 to 60 $ per

hour. We pass individual characteristics to the trained TasteNet and obtain activa-

tion values for each hidden unit. Figure 4-6 displays the activation values. Darker

color indicates stronger activation. All activation values are non-negative since the

activation function used is ReLU. By observing how a neuron gets activated as input

varies, we can understand the "role" of each neuron in approximating the true taste

function.

Hidden units 4 and 5 apparently capture income effect, since they become more

activated as income increases in all 4 groups. Hidden units 4 and 5 also capture the

non-flexible effect. Note that individuals with non-flexible schedules tend to have

higher activation values for hidden units 4 and 5, all else equal (left vs right in Figure

4-6). Note that in this case, higher activation of units 4 and 5 leads to higher values of

time (or more negative 𝛽𝑉 𝑂𝑇 ). Their corresponding coefficients in the linear hidden-

to-output layer are negative (-0.3595 and -0.1944, see Table 4.6). In other words,

bigger activation leads to a more negative 𝛽𝑉 𝑂𝑇 . Hidden unit 3 captures the full-time

effect. Full-time individuals tend to have a higher activation value for unit 3, which

leads to a lower value of time since the hidden-to-output layer’s coefficient for unit 3

is negative (-0.3641). Hidden units 1, 2 and 7 represent the three interaction effects:

income * full-time, income * not flexible, and not full-time * not flexible, respectively.

Again, we see hidden node 6 is never activated.

4.6 Summary

Through Monte-Carlo experiments, I demonstrate TasteNet-MNL’s ability to capture

nonlinear taste functions and uncover the true utility form. Misspecified systematic

utility in MNLs or RCLs can lead to large bias in parameter estimates. TasteNet-MNL

67



Table 4.6: Estimated Weights of TasteNet-MNL

Input-Hidden Hidden-Output

Hidden units 𝑧1 income 𝑧2 fulltime 𝑧3 flexible 𝑧0 intercept

1 -0.4257 0.3917 0.0479 -0.0315 0.462
2 0.3907 -0.0925 -0.114 -0.0543 -0.1536
3 -0.0001 0.4637 -0.0764 0.484 -0.3641
4 0.8034 -0.2261 -0.2055 0.4987 -0.3595
5 0.812 -0.317 -0.2252 0.5003 -0.1944
6 0 0 0 0 0
7 0.0396 -0.5551 -0.1817 0.5089 0.4905

intercept 0.0921

Figure 4-6: Activation of the Hidden Layer in TasteNet
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can be used to identify specification errors in utility, and reduce potential biases.

TasteNet-MNL’s prediction accuracy matches the true model (77% to 79%), higher

than the misspecified MNLs and RCLs (70% to 72%). TasteNet-MNL also provides

interpretable economic indicators, like value of time and demand elasticities, close

to the ground truth; while MNLs and RCLs with misspecified utility can produce

unreliable interpretations.
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Chapter 5

TasteNet-MNL Application:

Swissmetro Mode Choice

5.1 Introduction

In this chapter, I apply TasteNet-MNL to a publicly available dataset – Swissmetro

to model mode choice for inter-city travel. The purpose of this application is to 1)

examine whether TasteNet-MNL is able to predict more accurately compared to a

manually specified, relatively sophisticated MNL; and 2) whether TasteNet-MNL can

draw reasonable behavioral interpretations and, if so, how its interpretations differ

from those of the MNLs?

To answer these questions, I set up three benchmarking MNL models with in-

creasing complexity in the utility function. I compare TasteNet-MNL with these

benchmarks in terms of model fit and prediction accuracy on hold-out datasets. I

also examine individual tastes estimated by each model and the interpretations de-

rived from TasteNet-MNL in comparison to the MNL benchmarks.

5.2 Data

The Swissmetro is a proposed revolutionary mag-lev underground system. To assess

potential demand, the Swissmetro Stated Preference (SP) survey collected data from
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Table 5.1: Description of Variables in the Swissmetro Dataset

Alternative Alternative attributes Availability

TRAIN time, headway, cost (train_tt, train_hw,
train_co)

train_av

SM (Swissmetro) time, headway, seatsa, cost (sm_tt, sm_hw,
sm_seats, sm_co)

sm_av

CAR time, cost (car_tt, car_co) car_av
Person/Trip variable Variable levels

AGE 0: age ≤ 24, 1: 24 < age≤30, 2: 39 < age ≤
54, 3: 54 < age ≤ 65, 4: 65<age

MALE 0: female, 1: male
INCOME (thousand CHF per year) 0: under 50, 1: between 50 and 100, 2: over

100, 3: unknown
FIRST (First class traveler) 0: no, 1: yes
GA (Swiss annual season ticket) 0: no GA, 1: owns a GA
PURPOSE 0: Commuter, 1: Shopping, 2: Business, 3:

Leisure
WHO (Who pays) 0: self, 1: employer, 2: half-half
LUGGAGE 0: none, 1: one piece, 2: several pieces

a. Seats configuration in Swissmetro: seats=1 if airline seats, 0 otherwise.

1,192 respondents (441 rail-based travellers and 751 car users), with 9 choices from

each respondent. Each respondent is asked to choose one mode out of a set of alterna-

tives for inter-city travel given the attributes of each mode (e.g. travel time, headway

and cost). The universal choice set includes train (TRAIN), Swissmetro (SM), and

car (CAR). For individuals without a car, the choice set includes only TRAIN and

SM. Table 5.1 provides a description of the variables. For more information, readers

can refer to Bierlaire (2018).

The original data has 10,728 observations, downloaded1 in Jan 2019. After re-

moving observations with unknown age, "other" trip purpose and unknown choice,

we retain 10,692 observations. We randomly split the data into training ("train"),

development("dev") and test("test") set with 7,484, 1,604 and 1,604 observations,

respectively.

1Data link: https://biogeme.epfl.ch/data.html
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Table 5.2: Estimated Coefficients of MNL-A

Variable Description Train Swissmetro Car

Constant 0.1227 0.5726
Travel time (minutes) -1.3376 -1.4011 -1.0177
Headway (minutes) -0.4509 -0.8171
Seats (airline seating = 1) 0.1720
Cost (CHF) -1 (fixed) -1 (fixed) -1 (fixed)
GA (annual ticket = 1) 2.0656 0.5319
Age

1: 24 < age ≤ 30 -0.7548
2: 39 < age ≤ 54 -0.9457
3: 54 < age ≤ 65 -0.4859

4: 65 ≤ age 0.6995
Luggage

1:one piece -0.1538
2:several pieces -0.9230

5.3 Benchmarks

The three benchmarks are logit models. MNL-A is similar to Bierlaire et al.(2001)’s

MNL specification but with some enhancements: 1) the value of travel time and

value of headway are made mode-specific; 2) all levels of age and luggage categories

are included; and 3) cost coefficients are fixed to -1.0 for directly reading VOT from

time coefficients (Table 5.2). In the benchmark MNL-B, I add the interaction terms:

time*age, time*income and time*purpose (Table 5.3). The third benchmark MNL-

C is a MNL with all pairs of first-order interactions between characteristics and

attributes (Table 5.4). This model is equivalent to a TasteNet-MNL with all taste

coefficients modeled by a neural network without hidden layers.

5.4 TasteNet-MNL Structure for Swissmetro

The TasteNet-MNL structure for Swissmetro data is shown in Figure 5-1. I specify

the utility functions for each alternative in the MNL module. Coefficients for cost

are fixed to -1 so that the coefficients for time is the negative value of time. There

are 7 coefficients in the MNL utilities, including for the alternative specific constants
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Table 5.3: Estimated Coefficients of MNL-B

Variable Description Train Swissmetro Car

Constant 0.0056 0.4674
Travel time (minutes) -0.5006 -0.4010 -0.5600
Travel time * Age

0: age ≤ 24
1: 24 < age ≤ 39 -0.6354 -0.3307 -0.5696
2: 39 < age ≤ 54 -0.8475 -0.6101 -0.6105
3: 54 < age ≤ 65 -0.1566 0.1419 -0.0915

4: 65 < age 0.3265 -0.243 -0.0234
Travel time * Income

0: under 50
1: 50 to 100 -0.2688 0.1739 0.1623
2: over 100 -1.0181 -0.436 -0.4093
3: unknown 0.0852 0.2828 -0.0923

Travel time * Purpose
0: Commute
1: Shopping -0.2081 -0.6192 -0.6062
2: Business -0.1574 -0.8688 -0.1833
3: Leisure -0.59 -0.9706 -0.0162

Headway (minutes) -0.6158 -0.7011
Seats (airline seating = 1) 0.189
Cost (CHF) -1 (fixed) -1 (fixed) -1 (fixed)
GA (annual ticket = 1) 1.6162 0.2988
Luggage

1:one piece -0.1714
2:several pieces -0.6718
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Table 5.4: Estimated Coefficients of MNL-C

Coefficients for alternative attributes

z (characteristics) TRAIN_TT SM_TT CAR_TT TRAIN_HE SM_HE SM_SEATS TRAIN_ASC SM_ASC

Intercept -0.0671 0.1455 0.0059 0.1713 0.0646 0.3064 0.2953 0.2067
Male -0.1526 -0.0477 0.0742 -0.2384 0.0706 -0.1016 0.0671 0.149
Age
1: (24,39] -0.0965 -0.2422 -0.1093 0.0044 0.5682 0.0517 -0.1634 0.4285
2: (39,54] -0.1467 -0.2022 -0.195 -0.2397 -0.0105 -0.2135 -0.2692 0.0959
3: (54,65] 0.0256 0.1201 0.0251 -0.2379 -0.0807 0.1619 -0.0861 -0.0344
4: (65,) -0.1712 0.1435 0.1105 0.6032 -0.1488 -0.1529 0.618 -0.351
Income
1: 50-100 0.0494 -0.039 0.0098 -0.1884 -0.2972 0.2349 -0.1776 0.1944
2: over 100 -0.2825 -0.1697 -0.2662 0.1393 0.0372 0.5288 -0.0406 -0.0789
3: unknown 0.0289 0.1467 -0.2037 0.1484 -0.0721 -0.4196 0.1621 -0.0459
First class -0.1927 -0.0807 -0.3297 -0.4768 0.1183 0.1302 0.2228 -0.2085
Who pay
1: employer -0.2154 -0.1668 0.1231 0.028 -0.0045 0.0882 0.1191 0.3986
2: half-half 0.1537 0.4771 0.4391 -0.0311 0.3917 0.3114 -0.2414 -0.0332
Purpose
1:Shopping 0.2339 -0.219 0.19 0.1509 0.0493 0.1994 0.4238 0.6996
2:Business -0.0872 -0.3524 -0.181 -0.0544 -0.0195 -0.0647 0.0605 -0.2941
3:Leisure -0.2678 -0.2778 -0.0043 0.3245 -0.4552 -0.0289 -0.302 -0.4739
Luggage
1:one piece -0.0375 0.0861 0.2525 0.58 -0.1993 0.0413 0.3364 0.3239
2:several pieces 0.022 -0.1785 -0.2731 -0.2946 0.0814 -0.1225 -0.0041 0.2158
Annual ticket 0.5912 -0.0075 -0.3181 0.2652 -0.2032 -0.5815 0.3576 0.1351

(Figure 5-1). I assume all MNL coefficients (taste parameters) are functions of in-

dividual characteristics, and model them as the output of the TasteNet. This is a

special case of the general structure in Section 3.2.2: the set of 𝛽𝑀𝑁𝐿 is empty and

all taste parameters are modeled by TasteNet as 𝛽𝑇𝑁 (Eqn. 3.3 and 3.5).

The TasteNet module consists of a linear layer from input 𝑧 to hidden layer ℎ(1),

a nonlinear activation 𝐴(1) for the hidden layer, followed by a linear layer from hidden

layer to output layer and an activation 𝐴(2) for the output. I choose only 1 hidden

layer, since the predicted log-likelihoods on hold-out datasets do not improve with

more hidden layers2. Input 𝑧 includes all characteristics: age, gender, income, first

class, who pays for travel cost, trip purpose and luggage. We experiment with various

sets of hyper-parameters and activation functions (Table 5.5).

2The results are not report here
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Figure 5-1: Diagram of TasteNet-MNL for Swissmetro Dataset

Table 5.5: Options of Hyper-parameters & Activation Functions

Options Values

Hidden activation 𝑟𝑒𝑙𝑢, 𝑡𝑎𝑛ℎ
Output activation (for non-positive parameters) −𝑟𝑒𝑙𝑢(−𝛽), −𝑒𝑥𝑝(−𝛽)
Hidden layer size [10, 20, ..., 100]
𝑙1 or 𝑙2 regularization a [0, 0.0001, 0.001, 0.01]
a Either 𝑙1 or 𝑙2 regularization is used.
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5.5 Results

The estimated model coefficients for MNL-A, MNL-B and MNL-C are shown in Ta-

ble 5.2, 5.3 and 5.4. Among all TasteNet-MNL scenarios, the one with 80 hidden

units, 𝑅𝑒𝐿𝑈 for hidden layer activation, negative exponential for non-positive out-

put activation, and no regularization achieves the best prediction performance on the

development dataset.

5.5.1 Prediction Performance

TasteNet-MNL significantly out-performs MNL benchmarks in terms of prediction

accuracy. I use average negative log-likelihood (NLL) and prediction accuracy (ACC)

as metrics for model predictability (Table 5.6). From MNL-A to MNL-C, more inter-

actions between attributes and individual characteristics are added. MNL-C has a full

set of interactions between attributes and characteristics. Surprisingly, the predicted

log-likelihood shows only marginal improvements: average NLL decreases from 0.728

(MNL-A) to 0.708 (MNL-B) and 0.691 (MNL-C). With TasteNet-MNL, we see a

substantial improvement in prediction performance: NLL on development data drops

from 0.691 to 0.646. This is attributed to the flexibility enabled by the hidden layer

with nonlinear transformation in the TasteNet. The improved log-likelihood implies

the existence of nonlinear effects in utility specification. The neural network is able

to automatically learn taste as a nonlinear function of individual characteristics. Be-

cause it captures a more accurate relationship between characteristics and taste, it

outperforms MNLs with linear utilities.

5.5.2 Individual Taste Estimates

We want to understand how estimated tastes, such as willingness-to-pay, differ across

models. We apply each model to obtain taste parameters for each individual in the

Swissmetro dataset. The averages tastes of the population are shown in Table 5.7.

We find that from MNL-A to MNL-C, the average value of time (VOT) increases

as more interaction terms are added to the utility function. For example, train VOT
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Table 5.6: Average Negative Log-likelihood (NLL), Prediction Accuracy (ACC) and
F1 Score by Model

NLL ACC F1

Model train dev test train dev test train dev test

MNL-A 0.762 0.728 0.755 0.662 0.691 0.66 0.535 0.557 0.534
MNL-B 0.73 0.708 0.72 0.678 0.69 0.678 0.578 0.585 0.573
MNL-C 0.704 0.691 0.698 0.685 0.706 0.678 0.588 0.611 0.574
TasteNet 0.607 0.646 0.645 0.737 0.718 0.703 0.668 0.634 0.620

increases from 1.34 to 1.85$ per minute. Swissmetro VOT increases from 1.4 to 1.51$

per minute, and Car VOT rises from 1 to 1.35$ per minute. Both MNL-B and MNL-C

suggest that the VOT of train is higher than swissmetro and car. In terms of the value

of headway time (VOHE), MNL-C also gives higher average VOHE than MNL-B or

MNL-A.

TasteNet-MNL gives the largest mean of VOT and VOHE among all models (Table

5.7). Its average VOT estimates for train, swissmetro and car are 26%, 17% and 24%

higher, respectively, than those predicted by MNL-C. Its average VOHE estimates

for train and swissmetro are 25% and 67% higher than the MNL-C estimates.

To understand where the higher average VOTs come from, I plot population taste

distributions (Figure 5-2). As interactions are added incrementally from MNL-A to

MNL-C, the models capture a wider range of taste variations. Compared to the MNLs,

however, TasteNet-MNL suggests more heterogeneous taste in the population, which

is not captured by MNLs with linear utilities. In particular, the VOTs and VOHEs for

all modes have longer tails on the high end of WTP. It seems that TasteNet-MNL’s

better prediction performance is a result of its more accurate estimates of individual

tastes.

5.5.3 Taste Function

Each model provides a function that maps individual characteristics to a type of taste

value (e.g. VOT, VOHE). We compare taste functions provided by different models.

Since function input 𝑧 is multi-dimensional, we cannot directly visualize the functions.
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Table 5.7: Population Mean of Taste Parameters Estimated by Models

Mode Taste MNL-A MNL-B MNL-C TasetNet-MNL (vs MNL-C)

TRAIN TT -1.338 -1.710 -1.846 -2.327 26%
HE -0.451 -0.616 -0.880 -1.102 25%
ASC -0.198 0.234 0.368 0.801 117%

SM TT -1.401 -1.514 -1.505 -1.764 17%
HE -0.817 -0.701 -1.039 -1.733 67%

SEATS 0.172 0.189 0.420 0.266 -37%
ASC 0.648 0.510 0.512 0.669 31%

CAR TT -1.018 -1.251 -1.354 -1.685 24%

Instead, we pick an individual with characteristics 𝑧. We vary one dimension of 𝑧:

𝑧𝑖, while keeping other dimensions fixed 𝑧𝑗 ̸=𝑖. We ask different models for the value of

a particular taste parameter 𝛽 = 𝑓𝑚𝑜𝑑𝑒𝑙(𝑧𝑖; 𝑧𝑗 ̸=𝑖). We plot the estimated taste versus

input 𝑧𝑖 for each model.

For example, we pick a person with characteristics shown in Table 5.8. We vary

this person’s income and ask each model a question, for example: what are the VOTs

for such a person as his income varies? We compare the answers given by different

models. Figure 5-3 shows the VOTs and VOHEs estimated by different models versus

income.

Compared with the benchmark MNLs, the values of VOT and VOHE estimates by

TasteNet-MNL all fall within credible ranges. TasteNet-MNL gives more or less dif-

ferent estimates. Swissmetro VOT estimates are not very different between TasteNet-

MNL and MNL-C. Regarding VOT for train, TasteNet-MNL gives smaller estimates

for all three income groups than MNL-C. Car VOTs estimated by TasteNet-MNL

are larger for higher income groups and lower for the lowest income group. With

respect to VOHEs, TasteNet-MNL gives higher estimates for train and lower esti-

mates for swissmetro for all income levels. MNL-C shows a monotonic relationship

between VOT and income only for train VOT, while TasteNet-MNL identifies the

monotonicity for swissemtro VOT and car VOT.
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Table 5.8: Example Person Selected for Comparing Taste Function by Models

Characteristics Value

𝑧𝑓𝑖𝑥𝑒𝑑 MALE Male
AGE (39,54]
PURPOSE Commute
WHO Self
LUGGAGE One piece
GA Yes
FIRST No

𝑧𝑣𝑎𝑟𝑦 INCOME 0: under 50, 1: 50 to 100, 2: over 100

5.5.4 Elasticity & Choice Probability

First we apply the models to calculate dissaggregate point elasticities for each obser-

vation in Swissmetro dataset (Eqn.4.9 and 4.10). We measure the differences between

the models by mean absolute difference.

With individual elasticities, we compute aggregate elasticity, which measures a

group of decision-makers’ response to an incremental change in a variable. This

is defined in Eqn 5.1 as the percentage change in the expected share of the group

choosing alternative 𝑖 (𝑊𝑖) with respect to one percentage change in variable 𝑥𝑖𝑘.

It is equivalent to a weighted average of the individual elasticities using the choice

probabilities as weights. TasteNet-MNL’s individual elasticities estimates differ from

MNL-C by 0.2287 on average.

The aggregate elasticities of Swissmetro mode share with respect to Swissmetro

travel time are similar: -0.43, -0.45, and -0.41 for MNLs and -0.437 for TasteNet-

MNL. We also compare aggregate elasticity by group, such as income (Table 5.9).

TasteNet-MNL predicts higher elasticities for low income and high income groups

than MNL-C. But overall, TasteNet-MNL gives choice elasticities close to MNLs and

within reasonable range.

𝐸𝑊 (𝑖)
𝑥𝑖𝑘

=
𝜕𝑊 (𝑖)

𝜕𝑥𝑖𝑘

𝑥𝑖𝑘

𝑊 (𝑖)
=

∑︀
𝑛 𝑃𝑛(𝑖)𝐸

𝑃𝑛(𝑖)
𝑥𝑖𝑛𝑘∑︀

𝑛 𝑃𝑛(𝑖)
(5.1)
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Table 5.9: Aggregate Choice Elasticity of Swissmetro w.r.t Time by Income

INCOME0 INCOME1 INCOME2

MNL-A -0.3765 -0.4297 -0.4706
MNL-B -0.3975 -0.3923 -0.5329
MNL-C -0.3759 -0.3706 -0.4653
TasteNet-MNL -0.4200 -0.3982 -0.4810

5.6 Summary

On the Swissmetro dataset, TasteNet-MNL discovers a wider spectrum of taste vari-

ations in the population than the benchmarking MNLs. TasteNet-MNL also predicts

more accurately on hold-out datasets (dev and test). Its superior predictability is

a result of its flexibility in capturing nonlinear taste functions. Values of time and

elasticities derived from TasteNet-MNL are reasonable compared to the results from

the MNLs. However, the average VOTs estimated by TasteNet-MNL are higher than

the MNLs, due to the longer tails on the high end of willingness-to-pay. Through this

exercise, I show that TasteNet-MNL can not only predict more accurately, but also

provide interpretable indicators for policy analysis.
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Figure 5-2: Population Taste Distributions by Models (Swissmetro Dataset
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Figure 5-3: Tastes as Functions of Income for a Selected Person by Different Models
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Chapter 6

A Neural Network Representation of

the Latent Class Choice Model

6.1 Introduction

As discussed, relatively recent studies have started to recognize the connections be-

tween neural networks (NNs) and DCMs, and attempt to take advantage of the

strengths of both (Wong et al., 2018; Sifringer et al., 2018; van Cranenburgh and

Alwosheel, 2019). Along these lines, we propose a NN approach to estimate a La-

tent Class Choice Model (LCCM). We also enrich the class membership model by

including nonlinearity in the corresponding part of the neural network.

This approach addresses two common challenges in LCCM. First is the com-

putational challenges with complex models and/or large-scale datasets. Current

LCCM estimation methods - direct maximum likelihood with quasi-Newton routine

or Expectation-Maximization algorithm - are computationally expensive with a large

number of classes, parameters, and/or observations. In particular, estimating a model

with a large number of classes is still challenging. For example, some classes obtain

very small probabilities; and parameters tend to collapse to the same values across

classes (Hess, 2014).

DNNs are well known for allowing a large number of parameters (even millions)

and having a deep structure with many layers of nonlinear transformation and compli-
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cated objective functions with a proliferation of local optimal, saddle points and flat

regions (Goodfellow et al., 2016). DNNs are almost exclusively trained with stochas-

tic gradient descent (SGD) algorithms, because of their computational efficiency and

scalability for large datasets and high-dimensional optimization. We formulate LCCM

as a neural network to examine whether we can improve LCCM estimation speed and

accuracy by an SGD algorithm developed for DNN training.

The second challenge relates to the uncertainty in class membership model spec-

ification. LCCM represents random taste heterogeneity through a discrete mixture

of choice models, representing different preference groups characterized by different

model structures, utility forms and/or taste parameters. In contrast to choice mod-

els, where we more clearly know about the trade-offs between attributes, the class

membership model specification is less clear to define. In practice, class definition

is carried out by trial-and-error, with the best model selected according to fitted

log-likelihood and interpretability. The relationship between class membership and

individual characteristics can be nonlinear. It is almost impossible to test all nonlin-

ear scenarios. A misspecified class membership model can lead to biased parameter

estimates and mixing distribution; and it also results in poor predictability.

Given limited prior knowledge about class membership, a data-driven approach

can be beneficial to learn the mixing distribution. We propose using a neural network,

which is a universal function approximator (Cybenko, 1989; Hornik, 1991), to learn

the class membership model. By adding a hidden layer with nonlinear transformation

to the class membership network, we can learn more flexible mixing distribution. We

call this extended model nonlinear-LCCM. With an application to Swissmetro mode

choice, we show that the nonlinear-LCCM outperforms LCCM in log-likelihood and

prediction accuracy on a hold out dataset. We confirm that the prediction gain comes

from more a accurate latent class assignment.
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6.2 Advantages of Stochastic Gradient Descent

Optimization algorithms that use the entire training data are called batch gradient

methods (BGD), as they use all training examples as a single batch to estimate

gradient and update parameters. Conventional quasi-Newton algorithms are batch

gradient methods. Stochastic gradient methods are widely used in machine learning,

especially in deep learning. They are a class of optimization algorithms that process

one example or a small set of examples (mini-batch) in each iteration. They obtain an

unbiased gradient estimate by computing the average gradient on a random sample

from the data generation distribution (Goodfellow et al., 2016).

The most popular class of stochastic optimization algorithms is stochastic gra-

dient descent (SGD). Training a deep neural network almost exclusively uses SGD

due to its superior performance for complex optimization and its scalability to large

datasets. Compared to Newton or quasi-Newton algorithms, it saves computation

cost significantly for two reasons. First, it does not need to compute the Hessian.

The computation cost is 𝑂(𝐾) instead of 𝑂(𝐾2). Second, it uses mini-batch instead

of the entire data to estimate the gradient. Therefore its computation time per update

does not grow with the number of training examples. Most algorithms converge much

faster in terms of total computation if they rapidly approximate gradients rather than

slowly computing the gradient exactly (Goodfellow et al., 2016). This is because the

returns of using more examples to estimate the gradient are less than linear and a

large training dataset can be redundant. (Goodfellow et al., 2016).

Given these advantages of SGD, we want to examine whether it can help improve

LCCM estimation, especially under challenging scenarios. We formulate LCCM as a

neural network and estimate it with SGD. We compare SGD with traditional batch

methods, DML and EM. We expect that SGD estimates faster, and scales better to

large datasets and the many-class problem.

It should be noted that a neural network is not a necessary condition to apply SGD.

I choose a neural network representation for several reasons. First, it is convenient

to access many advanced SGD algorithms developed for DNNs. Training this neural
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network is similar to performing maximum likelihood estimation. Second, a neural

network provides a generic platform for model development, extension and integra-

tion, thanks to the auto-differentiation (AD) functionality. AD is a technique that

numerically evaluates the derivative of a function specified by a computer program

by applying chain rule to a sequence of arithmetic operations. It is more accurate

and scales better than numerical gradient approximation (Baydin et al., 2018). Since

it is automatic and generic, we do not need to derive a gradient for a new model

structure, which can be time-consuming and prone to error. We can extend LCCM in

various ways with only small changes in the objective function and network structure,

such as adding nonlinearity to the class membership model, and extending LCCM

for multi-dimensional choices, or multi-output with mixed types (continuous and dis-

crete). Thirdly, with a neural network, we can explore flexible model specifications,

such as a nonlinear class membership model.

6.3 Neural Network Structures in Parallel to Dis-

crete Mixture Models

In neural network literature, Mixture-of-Experts (MoEs) networks (Jacobs et al.,

1991; Jordan and Jacobs, 1994) and Mixture Density Networks (MDNs) (Bishop,

1994) have very similar structure as discrete mixture models except that they are

non-parametric. Jacobs et al. (1991) develop a neural network composed of several

"expert" networks and a "gating" network that decides which of the experts should

be assigned for each training case. The gating network is a feed-forward neural net-

work, where the information flows only in the forward direction. The outputs of the

gating network are normalized to logit probabilities. The gating network serves as

a stochastic switch with probabilities of selecting the expert networks. Expert net-

works specialize in different sub-tasks and have different weights. The total likelihood

function is a sum of expert selection probabilities times expert likelihood over all ex-

perts. The gating network corresponds to the class membership model in LCCM. The
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expert networks resemble class-specific choice models. In parallel to MoE assigning

tasks to different experts given their features, LCCM assigns each choice-maker to

latent preference groups according to their characteristics.

Jordan and Jacobs (1994) extends MoE to Hierarchical Mixtures of Experts(HME).

Instead of one gating network, HME is a tree structure with gating networks sitting

at the non-terminals of the tree, and expert networks sitting at the leaves of the

tree. Gating networks, each as a multinomial logit, produce partition probabilities

at different levels of the tree given input x. The expert networks at the bottom are

also logit models produce output vector y or probability of y for each input x. These

output vectors travel up the tree blended by the gating network probabilities.

Bishop (1994) proposes a general framework called Mixture Density Network

(MDN) to model an arbitrary conditional density function 𝑝(𝑦|𝑥). MDN is simi-

lar to MoE: it combines a feed-forward neural network and a mixture model. The

neural network models the mixing coefficients (prior probabilities) as a general func-

tion of input x. Each component in the mixture models has a kernel function to

compute probability density. By choosing a mixture model with a sufficient number

of kernels and a neural network with a sufficient number of hidden units, MDN can

approximate as closely as desired any conditional density function 𝑝(𝑦|𝑥).

We represent LCCM by a neural network in a similar fashion as the MoE or

MDN. Instead of entirely using black-box neural networks, we keep the choice models

parametric. Class membership models can be confirmatory or exploratory. Since

the relationship between individual characteristics and latent class can be nonlinear,

without good prior knowledge it would be hard to specify it correctly. A black-

box neural network can learn these relationships from data. So we extend the class

membership model by adding a hidden layer with nonlinear transformation to the

corresponding sub-network. Our hypothesis is that if a nonlinear effect does exist, the

class membership network can learn a better discrete mixing distribution for modeling

taste heterogeneity, and will predict more accurately than a logit class membership

model with linear utility functions can.
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6.4 A Neural Network Representation of LCCM

A latent class choice model consists of a class membership model and class-specific

choice models. The class membership model probabilistically assigns a decision-maker

to latent classes. It outputs the probability of individual 𝑛 belonging to class 𝑠 (𝑄𝑛𝑠)

based on individual characteristics 𝑧𝑛. A logit form of class membership probability

is commonly used (Eqn.6.1).

Each latent class is associated with a class-specific choice model. The choice

model of a latent class predicts the conditional probability of a person choosing an

alternative given that the person is a member of the latent class. The conditional

choice probability (𝑃𝑛𝑖𝑠) and conditional choice likelihood (𝑃𝑛𝑠) is shown in Eqn. 6.2

and Eqn. 6.3, respectively. The objective of model estimation is to maximize the

total log-likelihood function (Eqn. 6.4) by solving class membership parameters 𝛾

and choice model parameters (𝛽𝑠∀𝑠).

𝑄𝑛𝑠 = 𝑄(𝑠𝑛 = 𝑠|𝑧𝑛;𝛾) =
𝑒𝑓(𝑧𝑛;𝛾𝑠)∑︀
𝑙 𝑒

𝑓(𝑧𝑛;𝛾𝑙)
(6.1)

𝑃𝑛𝑖𝑠 = 𝑃 (𝑦𝑛 = 𝑖|𝑥𝑛, 𝑧𝑛;𝛽𝑠) =
𝑒𝑉𝑛𝑖𝑠∑︀
𝑗 𝑒

𝑉𝑛𝑗𝑠
=

𝑒𝑉 (𝑥𝑛𝑖,𝑧𝑛;𝛽𝑠)∑︀
𝑗 𝑒

𝑉 (𝑥𝑛𝑗 ,𝑧𝑛;𝛽𝑠)
(6.2)

𝑃𝑛𝑠 =
∏︁
𝑖

𝑃
[𝑦𝑛=𝑖]
𝑛𝑖𝑠 (6.3)

𝐿(𝛾, 𝛽) =
∑︁
𝑛

log
∑︁
𝑠

𝑄𝑛𝑠𝑃𝑛𝑠 (6.4)

A neural network represents the same structure by a set of feed-forward networks

(choice models) with a gating network (class membership model) on top (Figure 6-1).

The class membership model is represented as a feed-forward neural network with one

linear layer and softmax activation on the output (class-net). The linear layer takes

explanatory variables 𝑧 as inputs, and outputs a linear combination of the inputs for

each output unit, which corresponds to the utility of each latent class (Eqn. 6.5). The
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Figure 6-1: A Neural Network Representation of the Latent Class Logit Model

softmax function then transforms utilities into probability space (Eqn. 6.6) with the

same logit probability formula. Parameters of the class membership model 𝛾 are the

coefficients in the class utilities, which correspond to the weights of the linear layer.

𝑉𝑠 = 𝛾 ′
𝑠𝑧 + 𝛾𝑠0,∀𝑠 = 1, .., 𝑆 (6.5)

𝑄𝑠 =
𝑒𝑉𝑠∑︀
𝑞 𝑒

𝑉𝑞
, ∀𝑠 = 1, ..., 𝑆 (6.6)

Class-specific choice models are represented by S separate neural networks (choice-

nets). A choice-net consists of a number of linear layers in parallel. Each linear layer

91



outputs the utility of alternative 𝑖 as a function of the input variables 𝑥𝑖 (Eqn. 6.7).

Softmax activation transforms utilities to choice probabilities (Eqn. 6.8)

𝑉𝑖𝑠 = 𝛽′
𝑖𝑠𝑥𝑖 + 𝛽0𝑠,∀𝑖 = 1, ..., 𝐽 (6.7)

𝑃𝑖𝑠 =
𝑒𝑉𝑖𝑠∑︀
𝑗 𝑒

𝑉𝑗𝑠
,∀𝑖 = 1, ..., 𝐽 (6.8)

The goal of training of a neural network is to find the optimal parameters that

minimize a loss function. We choose negative log-likelihood (NLL) defined in Eqn.

6.4 as the loss function. Minimizing NLL loss is similar to maximizing log-likelihood.

6.5 Network Training

Neural networks are trained through back-propagation (Rumelhart et al., 1988). Dur-

ing one training epoch (a full pass through the training data), training data are ran-

domly split into mini-batches. At each iteration, one mini-batch is passed through the

network to compute loss (forward-pass). Then gradients of loss with respect to net-

work weights are estimated using the mini-batch of examples by auto-differentiation.

Weights are updated based on the gradient to reduce loss by SGD (back-propagation).

This process of forward-pass and back-propagation is repeated on mini-batches, and

run through the entire data for multiple times (epochs) until a stopping criteria is

met. We usually stop when the change of loss function on training data is small, or

change of loss on development data is small (to prevent over-fitting).

A disadvantage of SGD is that batch size and learning rate need to be decided.

Goodfellow et al. (2016) provides general guidance to such decisions. Larger batch

sizes can give more accurate gradient estimates, but the return is less than linear.

Also, memory requirement scales with batch size, since all examples in the batch

are to be processed in parallel. Small batches can have a regularization effect due

to the noise they add to the learning process (Wilson and Martinez, 2003). Overall

the algorithm is faster since it requires fewer examples to estimate the gradient. In

92



practice, we can try several batch sizes (e.g. 64, 128, 256) and decide based on

computation time and loss value.

Another critical decision relates to the learning rate (or step size). The basic SGD

algorithm updates the weights by taking a small step along the negative gradient

direction. If the learning rate is too big, loss function will oscillate a lot and even

increase. If the learning rate is too low, loss function decreases very slowly and may get

stuck in a flat region with high values. The learning rate is decided by observing the

loss function in the first few iterations (for more details, see chapter 8 in Goodfellow

et al. (2016)). The learning rate should also be decreased over time as it gets closer

to a local optimal because the gradient noise from the mini-batch does not vanish

even when we arrive at a minimum.

More advanced SGD algorithms incorporate adaptive learning rate and momen-

tum. Momentum (Polyak, 1964) is developed to accelerate learning, especially to solve

the problem of poor conditioning of the Hessian matrix and variance in the stochastic

gradient. It accumulates a moving average of past gradients with exponential decay

to continue to move in their direction. Readers can find details about a variety of

SGD algorithms in Goodfellow et al. (2016). For our application, I choose Adam

(Kingma and Ba, 2014), an algorithm with adaptive learning rates and momentum.

Adam is robust to the choice of hyper-parameters, and well-suited for problems that

are large in terms of data and/or parameters. It is one of the most popular algorithms

for training deep neural networks.

6.6 Summary

In this chapter, I have discussed why it is beneficial to formulate and estimate an

LCCM as a neural network. The main reasons are to use SGD algorithms for scal-

ability and the auto-differentiation ability to ease model extension/integration. The

resemblance between discrete mixture models and MDN/MoE neural networks are

drawn. I describe how to estimate an LCCM by training its corresponding network.
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Chapter 7

Experiments for Comparing LCCM

Estimation Methods

7.1 Synthetic Data Generation

To compare the performance of LCCM estimation methods, we design three groups

of experiments. Table 7.1 provides the parameter notations and dimensions used in

the data generation models (DGM). All the DGMs have a logit structure for the class

membership model and class-specific choice models. The total number of latent classes

is S. The utility functions of latent classes share the same set of explanatory variables

of size D. Class membership model coefficients are class-specific with one latent class

coefficient fixed to zero as the reference. The dimension of class membership model

parameters (𝛾) is (D+1)(S-1).

Each class-specific choice model has J alternatives. The utility of each alternative

is a linear function of K input variables plus an intercept. Choice model coefficients are

alternative-specific. They are also class-specific. Thus we have a total of S*(KJ+J-

1) parameters (𝛽) in choice models. Group I tests the effects of sample size on

different estimation approaches. The DGM of group I has 3 latent classes, 7 individual

characteristics, 10 attributes and 3 alternatives. We use the same DGM to generate

three datasets of different sizes: 10k, 50k and 100k.

Group II is created to compare different estimation approaches under the scenario
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Table 7.1: Summary of the Synthetic Data for LCCM Estimation

Size Description Group I Group II Group III

N Number of persons [10k, 50k, 100k] [50k, 100k] [10k, 50k]
D Size of input (z) in class membership model 7 20 7
K Size of input (x) in choice model 10 10 10
S Number of latent classes 3 10 3
J Number of alternatives 3 3 3
|𝛾| Parameters in class membership model: (𝐷 + 1) × (𝑆 − 1) 16 189 16
|𝛽| Parameters in choice models: (𝐾 × 𝐽 + 𝐽 − 1) × 𝑆 96 320 96

Total parameters 112 509 112
Class shares balanced balanced unbalanced

when the number of latent classes is fairly large. We increase the DGM’s number of

latent classes from 3 to 10 and input dimension from 7 to 20. With the same DGM,

we generate two datasets with 50,000 and 100,000 samples.

Both Group I and II have relatively balanced class membership shares, and the

smallest class has a fairly large amount of data points.

Group III is designed to test a more extreme scenario: the class membership

distribution is highly unbalanced. The underlying DGM has 3 classes and the same

input dimensions as Group I. Shares of the 3 latent classes are 89.3%, 3.7% and 7.0%.

We generate two datasets with 10k and 50k examples. The smallest class in the 10k

dataset has 370 observations, while the 50k dataset has 740 observations.

Model parameters of underlying DGMs are drawn from Normal distribution with

zero mean and standard deviation 2. Model inputs are randomly generated from

standard Normal distribution.

7.2 Estimation Methods

We compare three alternative estimation procedures: direct maximum likelihood with

quasi-Newton routine (BFGS), EM and Adam. We use PandasBiogeme to realize

BFGS estimation. For EM, we choose python lccm package1 developed by El Zarwi

(2017). Both packages utilize scipy.optimize.minimize for maximizing log-likelihood.

We program the neural network version of LCCM in PyTorch2, an open-source deep

1https://github.com/ferasz/LCCM
2https://pytorch.org/
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learning platform. We compare model estimation time and parameter estimation ac-

curacy among the three methods. Parameter accuracy is measured by Mean Absolute

Error (MAE).

Stopping criteria is critical to obtain accurate estimates. There are 3 commonly

used criteria to decide whether estimation has converged: gradient norm, function

value change, and parameter change. The criteria adopted by PandasBiogeme are

gradient norm smaller than 1e-7 and function change smaller than the smallest float

representable by machine3. The lccm python package uses a log-likelihood value

change smaller than 1e-4 to stop EM iterations. Based on gradient norm or function

value change, parameters can still move around when the algorithm stops if the model

is not identifiable. Parameter change is a stricter convergence criteria. In Monte-

Carlo experiments, we choose average absolute percentage change in parameters being

smaller than a threshold (0.1%) as the stopping criteria. However, this threshold may

be varied depending on real data application.

Because of the noise from mini-batch, Adam’s parameter and objective value can

still oscillate near convergence. To be comparable with batch methods, we enlarge

the batch size towards the end to half the size of the data, to steadily reach the

convergence. We increase batch size when parameter percentage change between two

epochs is below 5%.

7.3 Results

Table 7.2 summarizes the estimation time and parameter estimation accuracy by

BFGS, EM and Adam.

Group I

With 3 latent classes and 10k data (S3N10k), three methods take about the same

amount of time (0.3 minutes) to converge. Adam’s 𝛾 estimate is more accurate than

BFGS and EM. But the advantage is small (MAE = 0.06 vs. 0.09). Adam’s and

3opts = {’gtol’ : 1e-7,’ftol’ : np.finfo(float).eps}
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Table 7.2: Convergence Timea and Mean Absolute Error (MAE) of Param-
eter Estimatesb (Balanced Classes)

Group Data Adam BFGS EM

3 classes, S3N10k Time 0.32 0.35 0.35
balanced (0.025) (0.077) (0.035)

MAE(𝛾) 0.0682 0.0941 0.0932
(3e-3) (1e-3) (4e-5)

MAE(𝛽) 0.1062 0.1308 0.1095
(7e-3) (1e-2) (7e-6)

S3N50k Time 0.9 1.5 3.7
(0.045) (0.17) (0.033)

MAE(𝛾) 0.052 0.03 0.03
(2e-3) (2e-3) (2e-5)

MAE(𝛽) 0.0688 0.0957 0.0441
(2e-3) (1e-2) (6e-6)

S3N100k Time 1.6 3.3 10.3
(0.30) (0.35) (0.41)

MAE(𝛾) 0.0236 0.0221 0.0224
(2e-3) (8e-4) (1e-5)

MAE(𝛽) 0.0367 0.0873 0.0364
(2e-3) (0.018) (2e-6)

10 classes, S10N50k Time 1.6 NAd 69
balanced (0.22) NA (28.5)

MAE(𝛾) 0.0905 NA 0.063c

(0.0103) NA (9e-6)
MAE(𝛽) 0.1192 NA 0.08c

(7e-3) NA (1e-6)
Success rate 5/5 0/5 3/5

S10N100k Time 2.5 NA 140
(0.18) NA (74.5)

MAE(𝛾) 0.0485 NA 0.0526
(7e-3) NA (9e-6)

MAE(𝛽) 0.0912 NA 0.061
(6e-3) NA (8e-7)

Success rate 5/5 0/5 5/5
a Time in minutes
b Values are means and standard deviations (in parenthesis) of all 5 model runs without

a special note.
c Values are only for the 3 successful runs (global optimal found).
d NA: Not available.
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Table 7.3: Convergence Timea and Mean Absolute Error (MAE) of
Parameter Estimatesb (Unbalanced Classes)

Group Data Adam EM

3 classes, S3N10k_ub Time 1.37 8.62
unbalanced (0.12) (0.92)

MAE(𝛾) 0.1778 1.2
(8e-3) (8e-5)

MAE(𝛽) 0.2095 10.1
(0.011) (1e-3)

Success rate 5/5 0/5

S3N50k_ub Time 1.19 27.6
(0.20) (5)

MAE(𝛾) 0.0894 0.0537
(3e-3) (2e-6)

MAE(𝛽) 0.1308 0.0817
(3e-2) (2e-5)

Success rate 5/5 5/5
a Time in minutes
b Values are means and standard deviations (in parenthesis) of all 5 model

runs.

EM’s 𝛽 accuracy are similar and slightly better than BFGS.

As sample size becomes 5 times as large (S3N50k), the estimation time of BFGS

is multiplied by 5, with EM by 10 and Adam by 3. EM takes almost 4 minutes to

converge while Adam needs less than 1 minute. Accuracy-wise, EM obtains the most

accurate estimates for 𝛾 (MAE=0.03) and 𝛽 (MAE=0.044). Adam is slightly less

accurate (MAE(𝛾)=0.052, MAE(𝛽)=0.069). Again, BFGS gives the highest 𝛽 error

among the three (MAE=0.096), but its 𝛾 error is similar to EM. Note that the error

differences among the three methods are not significant, about 2 to 4% of the average

magnitude of the true 𝛾 and 𝛽 in the DGM.

When sample size increases to 100k (S3N100k), the gap of computation time

between the methods widens. BFGS takes 10 times as long as it does on 10k data.

EM takes 30 times as long. The estimation time of Adam is only multiplied by 5. As

a result, EM takes 10.3 minutes to converge, while BFGS and Adam need 3.3 and 1.6

minutes, respectively. Adam and EM reach the same accuracy for 𝛾 and 𝛽. BFGS,

however, persistently has the biggest error in 𝛽 among the three.

99



In summary, the results of group I shows that SGD is more time-efficient on a large

dataset. The time for Adam increases at a much slower pace than sample size, while

the time needed by BFGS grows in proportion to sample size. EM’s estimation time

increases more than proportional to sample size, due to the posterior computation

in the E-step, and its slow convergence rate. Regarding accuracy, differences among

them are not substantial. Adam gives slightly more accurate estimates than BFGS or

EM when sample size is relatively small (10k). As sample size increases, EM is more

accurate than Adam and BFGS. When sample size is very large (100k), parameter

errors by EM and Adam match. BFGS constantly obtains higher 𝛽 error than EM

and Adam under the different sample size scenarios.

Group II

The DGM in group II is more complex with 10 latent classes and a total of 509 pa-

rameters. On both 50k and 100k data, BFGS suffers severely. None of the 5 runs

converge after two days. We are not able to obtain any results as PandasBiogeme

does not terminate. Various reasons may explain this result. First, the second-order

gradient method is computationally expensive with cost 𝑂(𝐾2) quadratic to the num-

ber of parameters K. Also, as discussed in Train (2008), with an increasing number

of parameters, standard maximum likelihood becomes numerically difficult because

the inversion of the Hessian becomes difficult, with the possibility of singularity at

some iteration. The optimization algorithm can get stuck in areas where the objective

function are not well approximated by quadratic form.

EM is more stable compared to BFGS. On the 50k data, all 5 runs converge, but 2

of them end up in a local optimum with much lower log-likelihoods. EM convergence

time varies from 35 to 120 minutes, with an average of 69 minutes. Adam performs

more consistently than EM. All 5 runs converge successfully and find solutions close

to the truth. Adam takes an average of 1.6 minutes with a standard error of 0.2

minutes, only 1/70th the amount of time for EM.

If we only compare the 3 successful EM runs with Adam, EM outperforms Adam

in parameter accuracy by a small margin: MAE of 𝛾 by EM is 0.06 compared to 0.09
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by Adam; and MAE of 𝛽 is 0.08 compared to 0.12 by Adam. Regarding the mean

absolute values of 𝛾 and 𝛽 (2.2 and 1.6, respectively, EM is more precise than Adam

by 2 to 3 percent of the true parameter values.

When the sample size is enlarged from 50k to 100k, EM takes 140 minutes on

average to converge, with large standard deviation, while Adam needs 2.5 minutes.

On average, EM takes 56 times as much time as Adam. Accuracy-wise, the two

methods are close.

Comparing group II with group I, EM and Adam perform differently as model

complexity increases. Let us fix sample size to 50k and compare the 3-class model

with 112 parameters in group I (S3N50k) and the 10-class model with 509 parameters

in group II (S10N50k). Adam’s time increases from 0.9 to 1.6 minutes, less than

double; while EM’s time increases from 3.7 minutes to 69 minutes (multiplied by 19

times).

In summary, this group of experiments shows that BFGS and EM require signif-

icantly longer time than Adam on problems with a large number of classes and a

big set of parameters. BFGS fails to converge for a 10-class estimation after a long

period of time. EM takes around 60 to 70 times as long as Adam on 10-class synthetic

datasets, with large fluctuations across runs. When sample size is not large enough

(e.g. 50k), EM is more prone to local optimal solutions (2 out of 5) than Adam. When

EM does converge to global optimum, it obtains similar or slightly more precise pa-

rameter estimates than Adam. Adam scales better in terms of estimation time and

stability than EM or BFGS for estimating more complex LCCMs, while maintaining

a similar level of parameter accuracy.

Group III

The two datasets in group III (S3N10k_ub, S3N50k_ub) share the same DGM that

produces highly unbalanced class shares. However, the total sample size difference

(10k vs 50k) results in a different absolute number of observations in the small classes.

Here we only compare EM with Adam, since BFGS is less stable than EM.

a) S3N10k_ub
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Table 7.4: Class Membership Model Coefficients

(Data: S3N10k_ub)

Ground Truth Adam EM

Class 2 Class 3 Class 2 Class 3 Class 2 Class 3

9.000 0.500 8.625 -0.389 5.757 4.216
-0.398 -2.671 -0.302 -2.693 1.144 1.212
3.239 1.383 3.116 1.121 1.878 2.017
1.999 -0.243 1.901 -0.51 1.805 1.65
0.128 -2.361 0.296 -2.353 1.501 1.312

-1.861 -0.632 -1.845 -0.434 -1.287 -1.494
-2.249 1.103 -2.244 1.282 -2.475 -2.478
2.223 1.620 2.17 1.578 0.946 0.837

We first examine the unbalanced class scenario with 10k data. Compared to the

more balanced class scenario in group I, both EM and Adam take a longer time to

converge (S3N10k_ub vs S3N10k). But EM takes 5 times longer than Adam (8.6 vs

1.4 minutes), while their estimation is similar in the balanced class scenario.

A more severe problem with EM is that it fails to recover the true parameters.

All EM runs get stuck in local maxima with large parameter errors. Adam is more

robust and obtains more accurate parameter estimates. EM’s final log-likelihood is

-4059 compared to Adam’s -3704 and DGM’s -3753. EM’s 𝛾 error is 1.2 and 𝛽 error

is 10.1, compared to Adam’s 0.18 and 0.21. Where do EM’s large parameter error

come from? Table 7.4 and Table 7.5 show the coefficients estimated by Adam and

EM compared to the ground-truth. Because the class ID can be arbitrarily swapped,

for all model runs, we reorder the class to match the original class ID in the ground-

truth model. The matching is primarily based on class membership shares. If two

class shares are close, we match the classes by matching class-specific choice model

parameters.

According to the ground truth, class 2 is the largest class with a share of 89%.

EM does relatively well on this large class’ choice model estimates. But for the two

small classes 1 and 3, EM’s estimates of choice model coefficients are far off for the

majority of the parameters. In particular, it produces very large coefficients for the
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Table 7.5: Class-specific Choice Model Coefficients: EM, Adam and the Ground Truth

Ground Truth Adam EM

j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3

Class 1 0.0 0.861 3.187 0.0 0.406 2.539 0.0 0.032 0.513
-1.672 -2.622 1.374 -1.2 -2.19 0.893 -0.118 0.402 -0.403
-1.729 -0.384 -0.264 -1.861 -0.631 -0.092 -0.511 -0.494 -0.425
-4.023 0.122 -0.128 -3.13 0.502 0.25 -0.487 0.143 -0.404
-0.609 2.186 5.399 -0.152 1.773 4.08 0.433 -0.583 0.498
-2.051 -2.102 1.127 -1.285 -1.705 0.662 -0.764 0.143 0.34
1.255 2.751 3.102 1.106 1.891 2.669 -0.171 -0.362 0.908

-0.695 -0.556 1.246 -0.363 -0.375 0.867 -1.402 0.079 0.827
-0.624 -2.232 5.328 -0.588 -1.376 4.431 -0.25 -0.335 0.424
4.074 -1.191 0.923 3.563 -1.196 0.375 0.553 -0.099 -0.621
-1.55 -2.947 0.42 -1.713 -2.407 -0.176 0.467 -0.977 -0.322

Class 2 0.0 0.877 0.146 0.0 0.874 0.097 0.0 1.034 0.106
2.984 -0.195 -1.512 3.001 -0.178 -1.456 3.054 -0.099 -1.653
2.539 0.387 -0.171 2.462 0.512 -0.14 2.47 0.543 -0.148
1.652 -0.337 -0.17 1.699 -0.342 -0.147 1.673 -0.326 -0.147
1.536 0.287 -1.763 1.528 0.386 -1.783 1.477 0.509 -1.791
0.851 0.193 -0.649 0.753 0.181 -0.666 0.741 0.291 -0.7
3.462 -1.095 -0.316 3.494 -1.017 -0.399 3.463 -1.065 -0.324
2.735 2.228 -0.52 2.733 2.287 -0.454 2.653 2.224 -0.411

-0.674 -0.671 0.486 -0.738 -0.675 0.504 -0.678 -0.675 0.659
2.713 -0.529 1.202 2.701 -0.583 1.233 2.797 -0.475 1.545

-1.931 2.258 0.95 -1.894 2.266 0.984 -1.865 2.411 0.992

Class 3 0.0 0.379 1.053 0.0 0.243 1.283 0.0 5.064 -4.527
0.367 1.681 -1.983 0.504 1.97 -2.188 68.245 -14.707 -17.442

-1.032 -1.824 -1.498 -0.968 -1.852 -1.69 59.954 11.443 -4.429
-0.613 -0.336 -1.791 -0.233 -0.083 -1.985 43.608 -10.707 -4.159
1.007 -2.771 -0.408 1.045 -2.497 -0.517 41.927 -3.701 -45.819

-2.006 1.41 0.866 -1.931 1.675 0.918 20.88 -10.241 -17.207
-0.917 -2.064 2.213 -0.661 -2.105 2.461 95.964 -20.253 -15.941
-4.406 0.707 2.929 -4.796 0.514 2.848 79.442 63.673 -14.433
-0.449 -0.592 -0.107 -0.541 -0.641 -0.258 -24.985 -18.592 -0.971
0.462 0.094 -1.855 0.57 -0.104 -1.794 61.721 -29.41 0.61
2.577 -2.452 -1.406 2.242 -2.555 -1.662 -52.852 43.812 24.048
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Table 7.6: Class Membership and Choice Prediction Accuracy (Adam v.s. EM)

Train data Hold-out data

Adam EM Truth Adam EM Truth

Class prediction
Accuracy 0.945 0.892 0.945 0.958 0.901 0.96
Precision 0.821 0.395 0.821 0.876 0.411 0.873

Recall 0.748 0.521 0.746 0.788 0.53 0.784
F1 sore 0.781 0.431 0.78 0.819 0.449 0.817

Choice prediction
Accuracy 0.842 0.83 0.84 0.837 0.815 0.838
Precision 0.84 0.827 0.838 0.835 0.813 0.837

Recall 0.839 0.826 0.837 0.835 0.812 0.837
F1 sore 0.839 0.827 0.837 0.835 0.812 0.837

Table 7.7: Confusion Matrix for Class Membership Prediction (Adam v.s. EM)

Adam (Predicted) EM (Predicted)

class 1 class 2 class 3 class 1 class 2 class 3

class 1 210 120 30 class 1 211 149 0
True class 2 50 8756 121 class 2 214 8712 1

class 3 25 203 485 class 3 513 200 0
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choice model of class 3. Compared to EM, Adam’s choice model coefficients are more

accurate for all three classes. Regarding the class membership model coefficients, EM

gives large errors for the majority of the parameters, while Adam’s estimates are well

aligned with the true parameters.

The prediction performance for Adam is startlingly better than EM, especially

in class membership assignment. Table 5 shows accuracy metrics for latent class

prediction and choice prediction for both training data and hold-out data. Prediction

is based on maximum predicted probability. Adam is able to estimate the small classes

accurately. All accuracy measures for both class membership and choice prediction

are similar to the true model. EM’s prediction is less accurate. For class membership

prediction, EM is only 89% accurate compared to Adam (95%). EM’s precision,

recall and F1 score is much lower than Adam. This is because EM misclassifies the

examples that are most likely in class 3 to class 1 and 2. From the confusion matrix

in Table 7.7, it is clear that EM predicts almost no membership in class 3. Basically

class 3 has almost zero membership. This explains why the choice model of class 3

has abnormally large parameter estimates. Interestingly, EM is also less accurate in

choice prediction than Adam, but by a far lower magnitude than its mistake on class

membership prediction.

b) S3N50k_ub

To test whether the unbalanced shares of latent classes cause the difficulty for

EM or the sample size of the smaller classes, we increase the total sample size to

50k, with 1911, 44648, 3441 observations for each latent class, compared to 382,

8929, 688 observations in the 10k data. The underlying model is the same. We find

with increased sample size, EM is able to identify the three classes and obtain more

accurate parameter estimates than Adam. Yet EM takes 28 minutes compared to

Adam’s 1.2 minutes. When sample size increases from 10k to 50k, Adam’s time does

not change, while EM’s time triples from 9 minutes to 28 minutes. This again shows

that Adam estimation time does not scale with sample size as much as EM. It is

majorly affected by the complexity of the model.

The real difficulty for EM to estimate LCCM with unbalanced classes is in not
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having a large enough number of observations in the small classes. This situation

can be common in practice for two reasons. First, heterogeneous preference may not

be evenly distributed in the population. There can be a majority preference group

along with small classes with uncommon or extreme preferences. Secondly, with

an increasing number of classes (here even with only 3), it is more likely to obtain

unbalanced class shares. When total sample size is not sufficiently big, the smallest

class would have a relatively small number of observations.

Based on the synthetic data experiments, I find EM is more prone to the small

class vanishing problem. In the 10k dataset case, each choice model has 32 parameters

to estimate, and the smallest class has 382 examples. The smallest class’ sample–to–

parameter ratio is about 11. Small class 1 and 3 collapse in EM estimation results.

Why does SGD estimate small class more accurately than EM?

The main reason, we suspect, for SGD’s performance advantage lies in the dif-

ference between mini-batch and batch training. EM uses the entire dataset. With

unbalanced classes and random initialization, most observations will have large prior

probability in the big class after a few iterations. For small class examples to have

large posterior probability in their own class, they either have to have a large prior

probability in the small class or large choice likelihood conditional on their true class

in the beginning. Without good initial parameters – either good class membership

model parameters that assign small class examples correctly or good class-specific

choice model parameters that yield distinctive conditional likelihood for the small

class examples – it will be difficult to generate correct posterior probability for small-

class examples. In the M-step, since posterior probabilities are used to weight log-

likelihood conditioning on different classes, small classes may not have enough poste-

rior membership and not be counted as a significant mode in the total log-likelihood

function. The less accurate parameter updates in the M-step for small class is fur-

ther fed back to the E-step, and make it even more difficult for small class examples

to have the correct posterior in the next iteration. Therefore, small classes usually

degenerate in EM without good initialization.

The SGD algorithm handles this problem better, perhaps because it uses small
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random samples (e.g., 128 data points) to estimate the gradient and update param-

eters. The noise from small samples allows for more exploration, and prevents the

majority class from quickly dominating. SGD is known to be less prone to over-fitting.

Each mini-batch to the algorithm is like new data; the algorithm learns gradually and

tries to incorporate new information. This may explain why SGD is able to estimate

small classes well.

7.4 Summary

I find the stochastic gradient descent algorithm Adam has significant advantages for

LCCM estimation. First, Adam scales to large data better than BFGS or EM. On

synthetic datasets, estimation time by BFGS grows in proportion to sample size; EM’s

estimation time increases more than proportionally to sample size; while Adam’s

estimation time scales less than proportionally. This results in large differences in

estimation time on large datasets. For example, EM takes 70 times as long as Adam

(69 vs 2 minutes) on a 50k data with 10 classes; and 56 times as long as Adam on a

100k data with 10 classes (140 vs 2.5 minutes).

Second, Adam is more time-efficient and stable under complex model scenarios,

such as with a large number of classes and parameters and unbalanced class mem-

bership. When the number of latent classes increases from 3 to 10, with the total

number of parameters increasing from 112 to 509, BFGS fails to converge after two

days. EM takes about 60 to 70 times as long as Adam, with large variations across

runs. Adam’s estimation time is shorter with low variability.

Thirdly, Adam obtains more accurate parameter estimates under certain difficult

scenarios. When the model is complex (e.g.10-class) and the sample size is not big

enough (e.g. 50k), Adam is less prone to local optima than EM. However, if EM

converges to global optimum, it obtains similar or more precise parameter estimates

than Adam. When class membership is highly unbalanced, and the smaller classes do

not have sufficient observations, EM frequently fails to identify small classes, generates

large parameter bias, and predicts class membership poorly. Adam is more robust.
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It is able to estimate small classes and predict class membership more accurately.

The superior performance of the SGD algorithm is attributed to its avoidance of

second-order derivatives (better scalability to high-dimensional problems) and mini-

batch training (scalability to large data and less prone to over-fitting).
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Chapter 8

LCCM with Flexible Class

Membership Model: A Case Study of

Swissmetro Mode Choice

I apply LCCM-net to model mode choice using Swissmetro dataset. I first estimate

a basic LCCM with a logit class membership model and linear class utilities. Then I

extend LCCM by adding nonlinearity to the class membership model. This nonlinear-

LCCM outperforms the basic LCCM in out-of-sample prediction accuracy. It also

provides interpretable results for class-specific choice models. According to its better

predictability and interpretable results, the nonlinear-LCCM learns a more flexible

discrete mixing distribution than the basic LCCM with linear class membership utility

functions.

8.1 Data

The data used come from the same Swissmetro dataset, processed in the same way

as described in section 5.2.
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Table 8.1: Description of Variables in the Swissmetro Dataset

Alternative Alternative attributes Availability

TRAIN time, headway, cost (train_tt, train_hw,
train_co)

train_av

SM (Swissmetro) time, headway, seatsa, cost (sm_tt, sm_hw,
sm_seats, sm_co)

sm_av

CAR time, cost (car_tt, car_co) car_av
Person/Trip variable Variable levels

AGE 0: age ≤ 24, 1: 24 < age≤30, 2: 39 < age ≤
54, 3: 54 < age ≤ 65, 4: 65<age

MALE 0: female, 1: male
INCOME (thousand CHF per year) 0: under 50, 1: between 50 and 100, 2: over

100, 3: unknown
FIRST (First class traveler) 0: no, 1: yes
GA (Swiss annual season ticket) 0: no GA, 1: owns a GA
PURPOSE 0: Commuter, 1: Shopping, 2: Business, 3:

Leisure
WHO (Who pays) 0: self, 1: employer, 2: half-half
LUGGAGE 0: none, 1: one piece, 2: several pieces

a. Seats configuration in Swissmetro: seats=1 if airline seats, 0 otherwise.

8.2 Baseline LCCM

In the baseline LCCM, choice models are class-specific. Choice model inputs include

all the attributes of each alternative (see Table 8.1). The choice model is specified as

a logit model with linear utility functions (Eqn. 8.1). The coefficients of attributes

are alternative-specific. Cost coefficients are fixed to -1, so that all coefficients in

the utility functions are interpreted as willingness-to-pay measured by monetary unit

(CHF: Swiss Franc). Alternative specific constants (ASCs) are included for TRAIN

and SM.

The class membership model is a logit model with linear utilities. Explanatory

variables include all available characteristics (AGE, MALE, INCOME, FIRST, WHO,

LUGGAGE, PURPOSE and GA). These variables are categorical. We use 0-1 en-

coding and choose level 0 as the reference level. This leads to 17 dummy variables

as inputs to the class membership model. All classes share the same set of inputs.

One class is the reference, with coefficients fixed to 0. Intercepts are included for all

classes except for the reference class.
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𝑉 𝑠
𝑇𝑅𝐴𝐼𝑁 = 𝐴𝑆𝐶𝑠

𝑇𝑅𝐴𝐼𝑁 + 𝛽𝑠
𝑇𝑅𝐴𝐼𝑁_𝑇𝑇𝑇𝑅𝐴𝐼𝑁_𝑇𝑇 + 𝛽𝑠

𝑇𝑅𝐴𝐼𝑁_𝐻𝐸𝑇𝑅𝐴𝐼𝑁_𝐻𝐸

− 𝑇𝑅𝐴𝐼𝑁_𝐶𝑂

𝑉 𝑠
𝑆𝑀 = 𝐴𝑆𝐶𝑠

𝑆𝑀 +𝛽𝑠
𝑆𝑀_𝑇𝑇𝑆𝑀_𝑇𝑇 +𝛽𝑠

𝑆𝑀_𝐻𝐸𝑆𝑀_𝐻𝐸+𝛽𝑠
𝑆𝑀_𝑆𝐸𝐴𝑇𝑆𝑆𝑀_𝑆𝐸𝐴𝑇𝑆

− 𝑆𝑀_𝐶𝑂

𝑉 𝑠
𝐶𝐴𝑅 = 𝛽𝑠

𝐶𝐴𝑅_𝑇𝑇𝐶𝐴𝑅_𝑇𝑇 − 𝐶𝐴𝑅_𝐶𝑂 (8.1)

Parameter constraints

We find that adding parameter constraints is necessary to obtain interpretable model

results in the Swissmetro case. Coefficients for time and headway should be non-

positive in common situations. Without parameter constraints, we obtain coefficients

with counter-intuitive signs (e.g. positive values of time) with both traditional esti-

mation and neural network estimation. Train (2008) encounters the same issue in an

empirical study and suggests constraining parameters in future studies.

To include parameter constraints to LCCM-net, we add a penalty to the average

negative log-likelihood loss, which incurs a positive cost when constraints are violated

(Eqn.8.3). We choose a linear penalty with a Rectified Linear Unit (ReLU) (Eqn.8.2),

a nonlinear transformation function.

Suppose parameter b has the constraint: 𝑏𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥. If b is less than 𝑏𝑚𝑖𝑛,

the penalty will 𝑏𝑚𝑖𝑛 − 𝑏 according to the value of ReLU function; otherwise, the

penalty is zero. Similarly, the penalty for exceeding the maximum value is linear

with respect to the size of the violation.

The constraint violation penalty 𝜆 is a tune-able hyper-parameter that controls

the trade-off between the NLL loss and constraint violation loss. If it is too small,

the constraint may not be strictly enforced. We impose non-positive constraints on

time and headway coefficients. In our case, a penalty of 0.1 is enough to keep the
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constraints satisfied.

Estimation

LCCM-net is implemented in PyTorch. We train it in two steps. Table 8.2 shows a

list of hyper-parameters related to optimization. In the first SGD step, we use Adam

algorithm to get close to convergence. We set the batch size to 128 and the learning

rate at 0.01. The algorithm stops until the change in NLL loss on development data

between two consecutive epochs is smaller than 0.001 (nll_tol_near), or a maximum

500 number of epochs is reached. We choose development NLL change instead of

training NLL to prevent over-fitting on training data.

In the batch gradient descent (BGD) step, we increase batch size to the entire

training dataset size. Training stops if the NLL change is less than 1e-5, or a maximum

number of 500 epochs is reached. Each model scenario is estimated 5 times with a

different random initialization. Out of the 5 runs, we choose the one with the lowest

NLL on development data for analysis.

𝑅𝑒𝐿𝑈(𝑥) =

⎧⎪⎨⎪⎩𝑥 𝑥 > 0

0 𝑥 ≤ 0

(8.2)

𝐿𝑜𝑠𝑠 = 𝑁𝐿𝐿 + 𝜆[
∑︁
𝑏∈𝑅

𝑅𝑒𝐿𝑈(𝑏𝑚𝑖𝑛 − 𝑏) +
∑︁
𝑏∈𝑅

𝑅𝑒𝐿𝑈(𝑏− 𝑏𝑚𝑎𝑥)] (8.3)

We also estimate the baseline LCCM using PandasBiogeme and the Python lccm

package. We include parameter sign constraints in both methods. PandasBiogeme

uses L-BFGS-B to allows for parameter bounds. For the Python lccm package, the

optimizer in M-step by default is BFGS. We switch it to L-BFGS-B to allow for

parameter sign constraints. The L-BFGS-B algorithms employed in both packages

are from the Scipy library scipy.optimize.minimize.
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Table 8.2: Hyper-parameters for LCCM-net Optimization

Method Hyper-parameter Description Value

Adam (PyTorch)

SGD step batch_size size of each mini-batch 128
lr learning rate of SGD 0.01
ftol_near stop if loss function change below this threshold 0.001
max_epochs maximum SGD epochs 500

BGD step batch_size_BGD size of training data 7484
lr_BGD learning rate of BGD 0.01
ftol stop if loss function change below this threshold 1e-5
max_epochs_BGD maximum BGD epochs 500

8.3 Baseline LCCM Estimation Results

We vary the number of latent classes from 1 to 10, and estimate the LCCM 5 times

with different random initialization. Both EM and direct maximum likelihood give

some abnormally large parameter estimates when the number of latent classes is more

than 3. Although we tried many different specifications and added more constraints,

this problem persists as long as the number of classes gets large. Based on our syn-

thetic data experience, this is likely due to a relatively small number of observations

in some of the classes. With Adam, we are able to estimate up to 10 classes, with

coefficient estimates within reasonable range and no small class vanishing. Both DML

and EM take longer time than Adam to converge. For example, to estimate an 8-class

model, PandasBiogeme needs 3 to 4 hours. EM takes about 40 to 60 minutes, while

Adam takes less than 1 minute. The following results are based on the neural network

estimation of LCCM.

Table 8.3 shows AIC, BIC and log-likelihood on development data against the

number of latent classes. We find AIC is lowest with 8 latent classes; and BIC is lowest

with 3 classes. BIC is known to have a stronger penalty on model complexity. We

further examine log-likelihood on development data, which evaluates the modelâĂŹs

generalization performance. It is also the lowest with 8 latent classes. So we choose 8

as the optimal number of classes. As expected, the predicted class membership shares
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Table 8.3: AIC, BIC and Log-likelihood (LL) of LCCM

Number of Classes AIC BIC Training LL Development LL

1 12072 12127 -6028 -1244
2 10978 11206 -5456 -1140
3 10606 11007 -5245 -1111
4 10406 10981 -5120 -1098
5 10317 11065 -5051 -1094
6 10279 11199 -5026 -1085
7 10321 11415 -5004 -1085
8 10246 11512 -4940 -1068
9 10339 11779 -4962 -1072
10 10319 11931 -4926 -1076

Table 8.4: Predicted Class Membership (LCCM with 8 latent classes)

Number of Classes Counts Share

1 4973 46.5%
2 254 2.4%
3 920 8.6%
4 1910 17.9%
5 998 9.3%
6 382 3.6%
7 1039 9.7%
8 217 2.0%

are unevenly distributed (Table 8.4). The largest class (class 1) and second largest

class (class 4) have 47% and 18% of the population, respectively. The rest of latent

classes have small shares ranging from 2% to 10%.

Table 8.5 and Table 8.6 show the estimated coefficients and standard errors for

the choice models and the class membership model. Standard errors are computed

using asymptotic formula (square root of the diagonals of inverse Hessian). Figure

8-2 visualizes the estimated value of time, value of headway, and other choice model

coefficients for each of the 8 classes.

Class 1 is the largest class with a share of 47%. For this class, the marginal

disutility of SM and CAR travel time is similar, about -2 CHF/min. The marginal
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Figure 8-1: Average Negative Log-likelihood v.s. Number of Latent Classes (Baseline
LCCM)

disutility of train travel time is higher (-2.76 CHF/min). Class 1 is more sensitive

to SM headway time than TRAIN headway time. Class 5’s travel time has similar

marginal effect compared to class 1. Different from class 1, class 5 is more sensitive

to TRAIN headway than SM headway.

Classes 3 and 4 stand out as the groups that strongly dislike car travel time, and

are insensitive to SM time. The difference between the two is that class 4 favors SM

travel time more than TRAIN; while class 3 is indifferent between SM and TRAIN

travel time.

Class 3 and 4 also have opposite preferences towards headway time. Although

class 3 is indifferent to in-vehicle time by TRAIN or SM, it is the most sensitive class

to SM headway time. Class 4 is more sensitive to both travel time and headway for

TRAIN than those for SM. The ASCs also show that class 4 prefers SM to TRAIN,

while class 3 is the opposite. Besides class 3 and 4, class 8 is another class insensitive

to SM travel time.

Classes 2 and 6 are the most indifferent to CAR travel time and most sensitive to

SM travel time. Class 6 is more sensitive to TRAIN travel time than class 2. Class 7

generally has smaller VOT. People in this class dislike TRAIN travel time more than
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SM and CAR. Class 7 is the most supportive for airline seating in SM.

To understand what type of individuals are more likely to belong to which class,

we plot the predicted class membership shares conditioning on person characteristics

in Figure 8-3 (a). Each row represents the predicted shares of latent classes given

one population segment in the Swissmetro dataset. The darker the color, the higher

the class share. According to the predicted class membership shares conditioning on

population segment, people with an annual seasonal ticket (GA=1) are more likely

to be in class 3 and 4 than those without. They are not sensitive to TRAIN and SM

travel time, and strongly disfavor car travel time. Young people (AGE_0: age≤ 24)

are more likely to be in class 3, insensitive to SM or TRAIN travel time, in contrast

with other age groups. The oldest group has a more diverse class distribution. The

majority of Business trips (PURPOSE_2) concentrate in the largest class 1, but other

trip purposes have class shares distributed in other classes.

8.4 LCCM Extension: Flexible Class Membership

Model

The extended LCCM has one hidden layer in the class membership network and

nonlinear transformation on the hidden units. We call this model nonlinear-LCCM.

We want to test whether the class membership part of the neural network can learn

a better mixing distribution and predict choice more accurately.

A summary of the hyper-parameters tried is listed in Table 8.7. In addition to the

number of latent classes, choices must be made about the number of hidden layers,

the hidden layer size, the activation function, and the 𝑙2 regularization penalty (on

class membership model parameters).

We try 1 and 2 hidden layers for the class membership model. Since a model with

2 hidden layers does not show improvement in prediction performance, we focus on

model scenarios with only 1 hidden layer. We experiment with both the 𝑟𝑒𝑙𝑢 and

𝑡𝑎𝑛ℎ activation functions. The prediction performance is about the same. However,
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(a) Values of Travel Time (b) Values of Headway

(c) SM Airline Seating Coefficients (d) Alternative Specific Constants

Figure 8-2: Values of Travel Time, Values of Headway and Other Choice Model
Coefficients by Latent Class (LCCM with 8 classes)
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(a) LCCM (b) nonlinear-LCCM

Figure 8-3: Predicted Class Shares by Individual Characteristics
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Table 8.5: Class-Specific Choice Model Coefficients (LCCM with 8 Latent Classes)

class1 class2 class3 class4 class5 class6 class7 class8

TRAIN_TT -2.761 -0.431 -0.134 -0.741 -2.022 -1.287 -1.737 -0.749
(0.147) (0.043) (0.043) (0.091) (0.064) (0.048) (0.119) (0.101)

TRAIN_HE -0.956 -0.679 -0.305 -1.021 -1.066 -0.392 -1.155 -0.446
(0.209) (0.081) (0.094) (0.171) (0.105) (0.077) (0.182) (0.172)

TRAIN_ASC -0.663 -0.285 2.394 1.859 0.453 1.117 -0.432 -1.336
(0.225) (0.092) (0.106) (0.173) (0.115) (0.093) (0.194) (0.186)

SM_TT -2.002 -2.973 -0.047 -0.081 -1.776 -2.258 -0.494 -0.086
(0.065) (0.169) (0.061) (0.148) (0.061) (0.127) (0.059) (0.079)

SM_HE -1.352 -0.828 -1.534 -0.16 -0.156 -0.339 -0.972 -0.142
(0.35) (0.537) (0.44) (0.686) (0.316) (0.468) (0.333) (0.45)

SM_SEATS 1.301 -1.114 -1.405 0.412 0.248 0.792 3.207 -1.345
(0.118) (0.143) (0.186) (0.181) (0.085) (0.091) (0.157) (0.095)

SM_ASC -0.189 -0.103 0.57 3.397 -0.344 -0.332 -0.672 0.868
(0.095) (0.152) (0.107) (0.187) (0.086) (0.134) (0.089) (0.118)

CAR_TT -2.039 -0.053 -4.783 -4.43 -1.602 -0.076 -0.636 -1.363
(0.021) (0.018) (0.383) (0.518) (0.019) (0.019) (0.017) (0.035)
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Table 8.6: Class Membership Model Coefficients (LCCM with 8 Latent Classes)

Class2 Class3 Class4 Class5 Class6 Class7 Class8

ASC 0.131 -0.601 1.368 -0.589 -0.316 -0.7 -0.59
(0.517) (0.381) (0.275) (0.364) (0.402) (0.385) (0.522)

MALE
1: male -1.215 -1.213 -0.723 0.844 -1.106 0.717 -2.418

(0.21) (0.142) (0.121) (0.164) (0.177) (0.159) (0.256)
AGE
1: 24 < age≤30 0.09 -1.883 -0.234 -1.119 -3.574 -2.018 -3.51

(0.382) (0.25) (0.244) (0.317) (0.446) (0.357) (0.474)
2: 39 < age ≤ 54 -0.625 -1.371 -0.317 0.065 -1.11 -1.886 0.438

(0.427) (0.27) (0.253) (0.325) (0.367) (0.368) (0.346)
3: 54 < age ≤ 65 0.458 0.034 0.407 0.896 -0.696 -1.376 -0.475

(0.441) (0.276) (0.268) (0.332) (0.38) (0.378) (0.404)
4: 65 < age 0.734 1.533 0.274 -2.838 2.171 1.417 -5.213

(0.518) (0.319) (0.351) (0.54) (0.376) (0.39) (2.768)
INCOME
1: between 50 and 100 -0.318 0.344 0.587 -0.48 0.454 2.919 -2.202

(0.237) (0.187) (0.156) (0.193) (0.234) (0.22) (0.512)
2: over 100 -3.198 -1.4 -0.949 -1.098 -0.961 0.232 -2.047

(0.563) (0.231) (0.179) (0.204) (0.259) (0.244) (0.407)
3: unknown -1.758 1.62 -0.059 1.858 -3.863 0.261 2.847

(0.492) (0.216) (0.226) (0.246) (1.049) (0.357) (0.296)
FIRST
1: first-class -1.158 -0.949 -0.987 0.405 -1.749 -2.02 0.127

(0.253) (0.159) (0.118) (0.136) (0.184) (0.168) (0.264)
WHO PAY
1: employer -4.141 -1.352 -0.645 -1.682 1.089 -4.506 -0.707

(0.626) (0.176) (0.132) (0.19) (0.221) (0.534) (0.275)
2: half-half 0.116 -1.551 -0.896 -0.978 0.854 -2.69 -3.659

(0.331) (0.253) (0.197) (0.231) (0.267) (0.356) (1.813)
PURPOSE
1: shopping -0.667 2.692 2.299 4.263 -1.986 2.393 -0.639

(1.566) (0.345) (0.321) (0.346) (1.186) (0.369) (1.325)
2: business 0.001 -1.986 -3.113 -4.354 -1.527 -4.186 -0.528

(0.328) (0.19) (0.143) (0.307) (0.226) (0.269) (0.377)
3: leisure -2.434 -5.667 -6.365 0.169 -0.297 -0.72 -4.134

(0.489) (0.624) (0.508) (0.195) (0.265) (0.206) (0.807)
LUGGAGE
1: one piece -2.388 2.907 1.421 -0.734 1.437 1.834 0.505

(0.295) (0.267) (0.127) (0.139) (0.186) (0.145) (0.28)
2: several pieces -0.402 1.501 1.08 -2.17 -1.917 -1.038 0.84

(0.393) (0.479) (0.329) (0.863) (2.654) (2.615) (0.45)
GA
1: owns a GA 5.099 4.575 3.384 3.491 1.356 -2.02 3.388

(0.371) (0.259) (0.252) (0.288) (0.39) (1.09) (0.349)
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Table 8.7: Model Structure Related Hyper-parameters

Structure-related Hyper-parameter Description Range

LCCM S number of latent classes [1,2,..,10]
𝜆 constraint violation penalty 0, 0.1

nonlinear-LCCM S number of latent classes [5,6..,10]
H hidden layer size [10,20,...,100]
A nonlinear activation function 𝑡𝑎𝑛ℎ, 𝑟𝑒𝑙𝑢
𝑙2 𝑙2 regularization penalty 0, 1e-5, 1e-4

(class membership model parameters only)
𝜆 constraint violation penalty 0, 0.1

𝑟𝑒𝑙𝑢 tends to have collapsed classes (some classes are empty), perhaps due to the

sparse activation of the 𝑟𝑒𝑙𝑢 function, while 𝑡𝑎𝑛ℎ activation gives more stable and

regular class membership probability distributions. So we choose 𝑡𝑎𝑛ℎ for the rest of

the analysis.

For nonlinear-LCCM, we vary the number of latent classes from 5 to 10; and for

each number of latent classes, we vary the hidden layer size from 10 to 100 hidden units

with a step size of 10. To prevent potential over-fitting, we also try 𝑙2 regularization

on class membership model parameters with strength 0.0001 and 0.00001.

Among all the hyper-parameter scenarios in Table 8.7, the best model, based on

the lowest NLL loss on the development dataset, has 6 classes, one hidden layer of 50

hidden units, and no regularization. This nonlinear-LCCM achieves better prediction

performance on hold-out datasets (Table 8.8). Compared to the basic LCCM, the

average NLL for the development data decreases from 0.666 to 0.638; and the average

NLL on the test data decreases from 0.663 to 0.628. The F1 score improves from

0.60∼0.61 to 0.66∼0.67 on hold-out data. This result shows that a more flexible class

membership estimated via neural network significantly improves choice prediction

accuracy.

Table 8.9 shows the predicted shares of the latent classes. Class 3 and 5 are the

largest classes. Shares of other classes range from 3.5% to 6.5%. Table 8.10 and Figure

8-4 show the value of time, value of headway and other choice model coefficients for

the 6 latent classes.

Compared to the 8-class LCCM, the majority class 3 of the nonlinear-LCCM
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Table 8.8: Prediction Performance of the Best LCCMs

NLL ACC F1

S Hidden size train dev test train dev test train dev test

8 0.66004 0.66567 0.66328 0.703 0.708 0.694 0.620 0.613 0.602
6 50 0.59149 0.63842 0.62804 0.741 0.732 0.724 0.690 0.671 0.664

Table 8.9: Predicted Class Membership Shares

Number of Classes Counts Share

1 413 3.9%
2 437 4.1%
3 6535 61.1%
4 690 6.5%
5 2245 21.0%
6 373 3.5%

Table 8.10: Class-specific Choice Model Coefficients (nonlinear-LCCM)

class1 class2 class3 class4 class5 class6

TRAIN_TT -0.06 -1.34 -2.41 -1.09 -0.52 -0.89
TRAIN_HW -1.01 -0.14 -1.19 -0.14 -1.62 -1.12
TRAIN_ASC 1.14 3.08 -0.65 2.26 1.48 -2.32
SM_TT -3.80 -0.32 -1.81 -1.23 -0.10 -0.67
SM_HW -0.14 -1.44 -1.42 -0.59 -0.86 -0.76
SM_SEATS 0.04 -0.70 1.12 -1.96 -0.44 -2.23
SM_ASC 2.33 1.13 -0.18 -1.65 2.94 -1.51
CAR_TT -0.79 -0.03 -1.76 -0.48 -6.86 -0.62
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(a) Values of Travel Time (b) Values of Headway

(c) SM Airline Seating Coefficients (d) Alternative Specific Constants

Figure 8-4: Values of Travel Time, Values of Headway and Other Choice Model
Coefficients by Latent Class (nonlinear-LCCM with 6 classes)
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corresponds to the majority class 1 in the LCCM. The marginal disutility of travel

time is similar between SM and CAR, and lower than TRAIN.

Class 5 has the largest disutility of CAR travel time, which corresponds to a

combination of class 3 and 4 in the 8-class model. Individuals in class 5 are insensitive

to SM time. They prefer travel time and headway by SM more than by TRAIN.

Class 1 is insensitive to TRAIN travel time and most sensitive to SM travel time

among all classes. However, the marginal disutility of TRAIN headway is much higher

than SM.

Class 2 is insensitive to car travel time, and more sensitive to TRAIN time and

SM time. Classes 4 and 6 have relatively small values of time for all modes. They

differ in their values of headway and alternative specific constants.

Figure 8-3 (b) shows the predicted class shares for each population segment. Most

segments have the highest share in class 3, the major class except for a few groups.

For example, females have large shares in both class 3 and class 5, a class that

strongly dislikes car travel time and is least sensitive to SM time. The youngest

group (AGE_0) is more evenly distributed among the 6 classes, with the largest

share in class 5. Commute trips and shopping trips also tend to appear in class 5.

People with annual seasonal ticket also have the highest share in class 5.

How does nonlinear-LCCM predict better?

The confusion matrix in Table 8.12 displays where the nonlinear-LCCM’s predic-

tion gain comes from. The 8-class LCCM mispredicts many choices of TRAIN as SM

or CAR. Nonlinear-LCCM reduces such mistakes and improves the recall for TRAIN.

Nonlinear-LCCM also improves the recall for CAR, as LCCM tends to mispredict

CAR as SM.

We further examine two individual cases: Persons A and B, with characteristics

listed in Table 8.11.

Person A’s true choice is TRAIN. LCCM mispredicts A’s choice as SM while

nonlinear-LCCM gives the correct prediction. We check person A’s class membership

prediction by the two models. It turns out that LCCM assigns person A to class

8 (Figure 8-2), a class insensitive to SM time. Nonlinear-LCCM assigns A to class
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Table 8.11: Characteristics of Two Example Persons

Person A Person B

MALE No Yes
AGE 24 to 30 54 to 65
FIRST No No
GA Yes No
INCOME below 50 over 100
LUGGAGE 1 piece 1 piece
PURPOSE commute commute
WHO self self

Table 8.12: Confusion Matrix of Choice Prediction

LCCM (Predicted) nonlinear-LCCM (Predicted)

TRAIN SM CAR TRAIN SM CAR

TRAIN 470 850 93 TRAIN 723 618 72
True SM 230 5219 750 SM 246 5204 749

CAR 13 1248 1819 CAR 88 1038 1954

1 (Figure 8-4), which is very sensitive to SM travel time and insensitive to TRAIN

time. Because nonlinear-LCCM makes a better class assignment, it leads to the

correct choice prediction (TRAIN).

Person B’s true choice is CAR. LCCM predicts SM while nonlinear-LCCM makes

the correct prediction. LCCM assigns person B to class 8 (Figure 8-2), which has

a very low marginal disutility of SM travel time. This leads to a higher chance of

predicting SM. Nonlinear-LCCM predicts person B in class 3, which has a similar

marginal disutility of travel time for SM and CAR. Due to the inaccurate class as-

signment, LCCM makes the wrong choice prediction.

8.5 Summary

I propose using a neural network to learn a flexible class membership model. In the

Swissmetro case study, the neural network learns a better mixing distribution than the

manually specified class membership model with linear utilities, and improves choice
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prediction accuracy. I show that a hybrid neural network and discrete choice model

is promising, since it takes advantage of neural network’s function approximation

ability, while keeping the economic theory and interpretability of the discrete choice

framework.

Compared to traditional estimation methods, SGD algorithms require impor-

tant decisions on optimization-related hyper-parameters, such as learning rate, batch

size etc. To use nonlinear-LCCM, there are more model structure-related hyper-

parameters to select, such as the number of hidden layers, hidden layer size, activation

function, and regularization penalty. Modellers need to conduct many experiments

and search for the best set of hyper-parameters. This requires basic knowledge of neu-

ral networks and familiarity with coding. Also, the model becomes less transparent.

Nonlinear-LCCM partly loses interpretability due to the black-box class membership

model.
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Chapter 9

Conclusions & Future Work

9.1 Conclusions

This dissertation takes an initial step towards integrating theory-based and data-

driven approaches for discrete choice problems. Based on the strengths and weak-

nesses of DCMs and neural networks, I propose two hybrid models that can benefit

from neural networks’ flexibility and training procedures, and DCMs’ behavioral the-

ory and interpretability. Through Monte-Carlo experiments and applications to real

data, I show that these neural-embedded discrete choice models (NEDCMs) can re-

cover nonlinear utility forms, particularly complex taste variations, and achieve better

predictability than misspecified models. Also, by designing special hybrid structures

and imposing parameter constraints, I demonstrate the general concept of incorpo-

rating expert knowledge into neural networks, to make them more interpretable and,

potentially, useful for transportation policy analysis.

9.2 Practical Implications

Through Monte-Carlo experiments and real data applications, I demonstrate that

a misspecified DCM can cause large biases in estimated parameters and economic

indicators, and low prediction accuracy.

Using a synthetic data (see section 4.4), I show that even a small amount of mis-
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specification in MNLs (missing a couple of second-order interactions between socio-

economic characteristics), result in prediction accuracy 7 percent points lower than

the true model, and 50% to 60% errors in estimated parameters. Values of time es-

timates can be mistaken by 10%. Demand elasticities and choice probabilities can

be off by 55% and 62%, respectively. However, a TasteNet-MNL without a priori

knowledge can recover the true utility function, achieve similar prediction accuracy

as the true model, and generate values of time and demand elasticities close to the

truth. TasteNet-MNL also discovers a wider spectrum of taste variations among re-

spondents in the Swissmetro dataset, and suggests on average, higher values of time

than MNLs with linear utilities. Nonlinear-LCCM outperforms a typical LCCM in

choice predication accuracy using the Swissmetro dataset.

These findings suggest that neural-embedded discrete choice models (NEDCMs)

can be beneficial to transport modeling and planning, by reducing potential biases

and improving model forecast accuracy.

At the model development stage, NEDCMs can complement manually specified

DCMs to detect misspecification. For example, modellers can compare a NEDCM

and a manually specified DCM’s log-likelihood and prediction accuracy on hold-out

datasets. If an NEDCM predicts better, the DCM specification can be potentially

improved. In practice, I suggest trying both approaches and comparing the economic

indicators derived from each, to see where disagreements occur, as a clue to detect

data outliers or discover systematic patterns or signals that are ignored.

For model estimation, SGD algorithms can be implemented in software packages

to speed up LCCM estimation; and improve estimation accuracy and stability for

many-class problems. The improved speed can allow modelers to try many alternative

specifications quickly.

For model application, e.g., aggregate demand forecast and policy scenario anal-

ysis, NEDCMs can be integrated into trip-based (e.g. a four-step model) or activity-

based model systems. For example, certain choice modules, such as the vehicle own-

ership model or the mode choice model, can have a NEDCM as a second option. The

NEDCMs in this dissertation are written in Python using the deep learning platform
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PyTorch. To integrate them into a four-step model or a micro-simulation model, we

need to build an interface between the two.

9.3 Limitations & Future Work

This research has several limitations that require future work.

First, the current TasteNet-MNL model only accommodates systematic taste vari-

ations. Random taste heterogeneity as an important source of heterogeneity can be

incorporated in future research. This leads to the intriguing question of how to model

distributions of taste parameters with neural networks.

Second, the neural embedded choice models proposed in this dissertation focus on

modeling taste heterogeneity. Non-linearity in attributes is another important aspect

in systematic utility specification. Studies have shown that utility can be a nonlinear

function of attributes, such as price. Nonlinear effects, such as the saturation effect

and threshold effect have been observed empirically and explained by prospect theory

and assimilation-contrast theory. Future work may extend TasteNet-MNL to model

nonlinearity in attributes.

Third, the scope of model comparisons in this dissertation is limited. For Taste-

Net-MNL, other forms of nonlinearity can be examined to see if TasteNet-MNL can

capture them. Also, the types of benchmarks for model comparison are limited.

Mixed logit structures, such as LCCM, random coefficient logit with other distri-

butional assumptions and/or systematic utilities, and models with non-parametric

mixing distributions have not been thoroughly examined. It is inconclusive whether

DCMs that incorporate random heterogeneity can predict better or worse than Taste-

Net-MNL, which only models systematic taste variation. Most likely, it varies across

cases, depending on the magnitude of systematic vs random taste variation in the

datasets. Future work can conduct a more systematic comparison of TasteNet-MNL

and DCMs.

For nonlinear-LCCM, the comparison is limited to an LCCM with a logit class

membership model with linear utilities. Although we find this discrete mixing dis-

129



tribution learned by a neural network improves prediction performance, it is unclear

whether this gain comes from a systematic or random effect. More comparisons can

be conducted with a variety of mixture models, such as continuous mixed logit, mixed-

mixed models, and models with non-parametric mixing distributions (e.g. fixed mass

points or endogenous support points), in terms of explanatory power, out-of-sample

predictability, and behavioral interpretation.

Lastly, I recommend integrating neural-embedded choice models into transporta-

tion model systems. We can compare the more data-driven NEDCMs with manually

specified DCMs under different empirical settings, and evaluate the uncertainty in

aggregate forecasts (e.g. mode shares) to better inform transportation planning and

policy decisions.
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