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Abstract

This thesis describes a contactless sensor developed to estimate the line currents
and line-to-line voltages of a multi-phase cable in the presence of significant external
disturbances. The current estimates are derived from an array of point magnetic-
field measurements processed by a linear least-square-error estimator. The gains in
the estimator are chosen using a probabilistic model of measurement errors created
by external magnetic field sources. Test bed validation of the estimates demonstrates
estimation errors below 1% even in the presence of nearby cables carrying comparable
currents, metal plates that could support eddy currents, and large magnetizable cores.
The voltage estimates are derived using actively-guarded electrodes that capacitively
couple to the cable conductors. Knowing the coupling capacitance, test bed validation
of the estimates again demonstrates estimation errors below 1% even in the presence
of nearby cables carrying comparable voltages, and metal plates. A method involving
capacitively coupling signals onto the cables is also proposed and demonstrated to
determine the coupling capacitance without operator intervention.
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Chapter 1

Introduction

1.1 Motivations

Monitoring cable currents and voltages is a critical task in many commercial and in-

dustrial environments, since it can be used to examine the quality and use of electrical

power, and track machine health and process performance. However, installing equip-

ment to make contact measurements of current and voltage can be time-consuming

and require a lengthy shut down of equipment. For this reason, we have developed

a contactless voltage and current sensing system that can be clipped around a set of

cables to estimate the current and voltage waveforms within those cables. These es-

timates are processed by a computer, which can then perform further digital analysis

using the processed waveforms and potentially transmit the data to other computers

in a network.

One use for monitoring cable voltage and current is to automatically detect when

a machine is failing or encountering trouble. For example, a CNC milling machine

executing an automated script can encounter problems if a drill bit cracks or if the

script was incorrectly designed and the drill runs into material it cannot cut through.

In this case, the machine may start to draw more current as it applies more torque

in an effort to complete its task. This increased current draw would be detected by

the system we have developed, and since the data can be transmitted via computer

networks, an alert can be raised by a central system to inform the operators of the
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machine that a problem has occurred. It is even possible to automatically monitor a

large number of machines from a central control point.

Another use for monitoring voltage and current is for inferring the state of a

machine. For example, a research team at MIT developed a method of estimating

the rotor velocity and rotor position of a Permanent-Magnet Synchronous Motor

by measuring the current and voltage drawn by the motor by using an observer

state space model. [18] Similarly, the state of other machines can be inferred from

current and voltage waveforms by using observer state space methods and lumped

parameter models. Furthermore, this state information can be used as the feedback

component in a control system, effectively enabling sensorless control of machines,

such as controlling the position of a motor without the need to install a physical

encoder.

Voltage and current information can also be used to diagnose the power quality

in a set of a cables. Utility companies will often include terms in their contracts with

commercial and industrial customers that penalize injection of harmonics into power

lines and require power quality to stay above a certain level. [4] This is because non-

linear loads owned by a customer can cause harmonics to appear in power systems,

which then propagate back to a utility company’s power lines and create energy losses

and extra stress on infrastructure, such as electrical transformers [19]. To deal with

this issue, a customer can use the system we have developed to analyze the Fourier

components in their cabling and identify when their loads are injecting harmonics

into a power system.

1.2 System Overview

The system we developed consists of several components, the implementations of

which evolved during the research process:

∙ magnetic field sensors to form current estimates;

∙ electric field sensors to form voltage estimates;
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Figure 1-1: The system enclosing the three cables consists of a 3D printed yoke,
magnetic field sensors (shown in brown), voltage sensors (shown in orange), and PCB
boards (shown in green). The sensor signals are collected by an Analog-to-Digital
converter (ADC) and then transmitted to a laptop for digital processing. The arrows
inside the magnetic field sensors indicate their axis of sensitivity.

∙ PCB boards to house the electronics and provide electrical connections;

∙ a 3D printed yoke made of two halves that clip around the set of cables;

∙ an Analog-to-Digital Converter (ADC) to convert the analog output of the

sensors to digital readings that can be processed by a computer;

∙ a computer to digitally process the readings.

The methods we developed could be used to estimate current and voltage in any

number of cables. The system we built is designed to be used with a set of three

cables, since a set of balanced three phase cables is commonly found in industrial

environments. After digitally processing the sensor readings, the system outputs

three current waveforms and two voltage waveforms. The estimated currents are

independent of each other; they are not necessarily assumed to be balanced three

phase cables. The two estimated voltages are the line-to-line voltages between each

pair of cables. In some cases, these waveforms were collected for a one-second or

ten-second period and then saved into CSV files. In other cases, they were streamed

continuously and displayed in a live graphical user interface. Figure 1-1 shows a

sketch of the entire system.
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1.3 Thesis Goals

The goal of the thesis was to create a system that could estimate current and voltage

waveforms in a set of balanced three-phase cables to within 1% error of the true current

and voltage waveforms. These tolerances were chosen because they are comparable to

results achieved by commercially available products and the most recent state of the

art research. Furthermore, we wished to calculate instantaneous power, power quality,

and power harmonics from these measurements. We aimed to estimate current and

voltage up to a frequency of 3 kHz, since this is the maximum frequency for which

American industrial power customers are usually penalized for harmonic injection.

This required a sensing bandwidth of at least 6 kHz. However, we wanted the methods

we used to be easily portable to systems requiring much higher bandwidths in the

future.

Producing such accurate estimates is a challenging task because of the abundance

of nearby interference in industrial environments. Magnetic fields generated from

sources other than the cables inside the yoke, such as nearby cables and ferromagnetic

materials, can introduce error in a current estimate. Capacitive pickup of external

electric fields, coming from sources like nearby electronics and cables, can affect a

voltage estimate. Designing a system to reject these disturbances to a tolerance of

1% was a principal novelty of our work.

To deal with external interference in our estimates, we considered two different

approaches:

∙ using multiple sensors at different locations and using spatial filtering algorithms

to separate the external interference from the internal fields;

∙ using hardware shielding to block out the external fields from reaching our

sensors.

In this thesis, we opted to use the first option for current estimation and the latter

option for voltage estimation. One reason for this was that the magnetic field shields

would be much larger and costlier than the required voltage sensor shields. Another
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reason was that this configuration provided the best opportunity to research novel

approaches to current and voltage estimation that had not been attempted before and

provided promising room for improvement over previous results. Thus, our approach

to current estimation involved developing algorithms and software to spatially filter

external magnetic fields, while our approach to voltage estimation involved creating

the sensor hardware and the shielding mechanism to block external electric fields from

reaching the sensors.

1.4 Thesis Contributions

In this thesis we improved on the latest research into current and voltage estimation

and we also developed a method to calibrate the capacitance of the electrode used in

voltage estimation without operator intervention.

Accurate current estimation of three cable currents using an array of magnetic

field sensors in the presence of external magnetic fields has been the topic of several

research papers. [12] [17] Many papers examine the use of an Ordinary Least Squares

estimator. However, this estimator is not effective in rejecting nearby external in-

terference. A more complex estimator was published by researchers at Politecnico

di Milano. [24] The research team modelled external magnetic fields as an infinite

sum of harmonics and developed a linear estimator that performed better than the

Ordinary Least Squares estimator in the presence of a single external cable. The team

did not publish results regarding the performance of the estimator in the presence of

more challenging interference, such as external plates.

In this thesis we will present a current estimator that offers superior performance

to any estimators currently published. The estimator produces estimates with an

error of less than 1% in the presence of many different forms of nearby interference.

This performance was achieved both by placing sensors in locations that had not

previously been considered, as well as by using a probabilistic model of external

interference to generate a Best Linear Unbiased estimate. This current estimator, as

well as other estimators that we experimented with, is presented in more detail in
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Chapter 4.

Accurate voltage estimation in the presence of electric field interference has also

been the topic of several research papers. A team at MIT developed a method of using

two sensing electrodes at slightly different distances from a cable to increase sensi-

tivity to close electric fields and reduce sensitivity to far away fields. [6] A different

research team at La Plata National University developed a voltage sensor that uses a

physical shield driven to ground voltage to protect against external interference. [21]

However, this shield is only briefly mentioned in the paper and no error percentages

are published with regards to its performance.

In this thesis we present a voltage estimator protected by an active shield that is

driven to the same voltage as the sensing electrode. We present experiments in which

we introduce various forms of interference and demonstrate that the shield enables

estimates with less than 1% error in the presence of interference, whereas the error

would be significantly greater without the shield. We will present voltage estimation

in Chapter 5.

To form accurate voltages measurements without operator intervention, it is also

necessary to calculate the capacitance between the cable and the sensing electrode

through a calibration scheme. The most successful calibration scheme has been de-

veloped by the team at La Plata National University. They report voltage estimates

with less than 1% error by use of their calibration method. [20] However, the method

requires connecting the detector to the ground of the system being measured, and

assumes no significant load between the voltage being measured and the ground of

the system.

In this thesis we present a method to calibrate the sensing electrode capacitance

without requiring a connection to the ground of the system being measured. In

experiments using this method, we estimated the electrode capacitance value with

a 30-90% error. However, this is due to limitations of the hardware we used in the

detector prototype. A more carefully manufactured detector in which all necessary

hardware exists in the form of PCB board components will yield better results using

the calibration method we have developed.
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Chapter 2

Previous Work

There has been much research into contactless current detection using magnetic field

sensor arrays, voltage detection using capacitive sensors, and signal separation tech-

niques using machine learning, which can be useful for separating magnetic fields

generated by currents from those generated by external sources. We will now present

the latest results in these three fields of research.

2.1 Current Estimation

Contactless current estimation is performed by measuring the magnetic fields pro-

duced by a current. According to Ampere’s Law, an infinite current-carrying cable

will produce a circular magnetic field where the magnitude |𝐵| at a certain point in

space is

|𝐵| =
𝜇0𝐼

2𝜋𝑟
(2.1)

where 𝑟 is the distance between the point in space and the center of the cable, 𝐼 is

the current magnitude, and 𝜇0 is the permeability of free space. The magnetic field

will have a direction perpendicular to the vector formed from the center of the cable

to the point being measured.

One of the most common contactless current sensors today is the Hall Effect

current sensor. [19] A Hall effect sensor detects a magnetic field by running an
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Figure 2-1: Current sensors using the Hall effect commonly include a circular mag-
netic core, along with an air gap that contains the Hall effect sensor to detect the
focused magnetic field.

electric current through a semiconductor in such a way that opposing current carriers

will be pulled towards opposing sides of the semiconductor by the magnetic Lorentz

force. This pulling will create a voltage difference across the width of the conductor,

and this voltage difference is measured to determine the magnetic field strength.

Many Hall effect current sensors will include a circular magnetic yoke, used to focus

the current-produced magnetic field, with an air gap where the focused magnetic field

can be measured by the Hall effect sensor, as shown in Figure 2-1. The magnetic yoke

also serves to shield the Hall effect sensor from external magnetic field interference,

although this shielding is not perfect and the air gap can be susceptible to interference.

[24]

The Hall effect sensor suffers from several shortcomings. Hall effect sensors have

a strong dependence on temperature. One study found that the Hall effect voltage

changed by as much as 3 mV over a range of temperatures from −40 ∘𝐶 to 125 ∘𝐶

when the magnetic field being measured was kept constant. [26] In fact, although

the HARTING HCM open-loop current sensor offers an error of 1% at 25 ∘𝐶, the

error rises to 5% at high temperatures. However, HARTING does offer a closed-

loop Hall effect sensor that uses a feedback control loop to offer 1% error at higher

temperatures, although this sensor draws more power. [14]

Hall effect sensors also tend to be large and expensive. The magnetic core used
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Figure 2-2: A photo of three HARTING Hall effect current sensors installed around
three cables. The installation of these sensors required an almost full-day shutdown
of the electrical system pictured. A single 200 A HARTING Hall effect sensor can
cost $90. Photo courtesy of HARTING corporation.

to shield the sensor from external magnetic fields can be large and bulky, such as the

one belonging to the HARTING Hall effect sensor pictured in Figure 2-2. A single

900 A Harting Hall effect sensor costs around $90.

Another limitation of the Hall effect sensor is that the properties of the magnetic

yoke can limit the frequency of current that can be measured. This can be a limitation

if a user is seeking to examine harmonics that exist beyond that range. For example,

the open-loop HARTING HCM sensor can detect up to 25 KHz and the closed-loop

sensor can detect up to 100 KHz.

There are other types of magnetic field sensors. Magnetoresistive sensors such

as AMR and GMR contain materials whose resistance changes with magnetic field.

Fluxgate sensors measure magnetic field by using two coils, a drive coil and a sense

coil, wound around a ferromagnetic material. A current is run through the drive

coil producing an internal magnetic field and driving the material in and out of

saturation. The sense coil then detects how much additional magnetic field exists in
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the ferromagnetic material from the external surrounding magnetic field. Fluxgate

sensors have the advantage of being more accurate, less noisy, and less sensitive to

temperature than both Hall effect and magnetoresistive sensors. [16]

Considerable research has been conducted on estimating cable currents without

the use of a magnetic yoke core to shield the cable from external fields, due to the

high cost and large size of magnetic cores. Such an estimation system involves placing

several sensors around a cable to obtain an array of magnetic field point measure-

ments. As long as the sensor array is stationary in space, the relationship between

magnetic field and current will be linear. This is because the spatial terms in (2.1)

will stay constant, so the magnetic field will simply be linearly proportional to the

cable current.

One common setup is to design the sensor array such that each sensor is equally

distant from the center of the cable and to average the magnetic field values detected

by each sensor. [13] Although the accuracy of the current estimate will be affected

by errors in the placement of the sensors, the error is not very large. A study into

the effect that sensor misplacement had on current estimates found that when 4

sensors were used to estimate current in one cable, a 10 mm lateral offset was needed

to introduce a 0.5% error in the estimate and a 25 ∘ rotational offset was needed

to introduce a 1% error. The error was even lower when using a larger number of

sensors. [13]

Another setup that has been studied extensively is the use of a magnetic field

sensor array to estimate the currents in three cables simultaneously. Although the

gains between each current and each sensor will be different, they will yield a system

of equations that can be used to estimate the currents. If 𝑁 magnetic field sensors are

used to detect the magnetic fields produced by 𝑃 currents, a system of 𝑁 equations

with 𝑃 unknown variables can be solved to estimate the 𝑃 currents. This system of

equations can be represented as a matrix multiplication 𝐴𝐼 = 𝑏, where 𝐼 is a vector

of currents, 𝑏 is a vector of magnetic fields, and 𝐴 is a gain matrix. Each component

in the matrix 𝐴 is equal to the term 𝜇0𝑐𝑜𝑠(𝜃)
2𝜋𝑟

, where 𝜃 is the angle between the axis of

sensitivity of the sensor and the vector pointing from the center of the cable to the
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point being measured. As long as the number of measurements is equal to or greater

than the number of unknowns, a current estimate can be derived. Most commonly,

Ordinary Least Squares is used to generate a current estimate, given by the formula

𝐼 = (𝐴𝑇𝐴)−1𝐴𝑇 �̂�. [11]

Some research projects have focused on the problem of calibrating the gain matrix

𝐴. Although the values of the gain matrix can be theoretically computed, in practice

those values may not be known precisely due to sensor or cable misplacement. A

power meter developed by a team at MIT attempts to solve this by providing the

user with reference loads that can be connected to the cables being measured. [17]

These loads draw a predetermined amount of 3 KHz PWM current. This PWM

signal can be observed by the sensors and can be used to solve for the gains of

the gain matrix. The researchers also developed an algorithm to calibrate the gain

matrix without requiring the customer to attach reference loads by instead having the

customers power devices already connected to the cables on and off. The algorithm

presented in [7] can then calibrate the gain matrix up to a scaling factor. The scaling

factor can then be solved for using readings from contact energy meters.

A team at the University of Alberta explored a method to calibrate the gain

matrix by solving for the locations of the magnetic field sensors from the magnetic

field readings. [12] If the locations of the magnetic field sensors and cables are treated

as unknowns, then a system of equations can be formed using the relationship between

current and magnetic fields that contains two unknowns for every sensor and cable,

specifically, the 𝑥 and 𝑦 location for each element. This model assumes the cables are

parallel so that two unknowns are sufficient to describe the location of each element.

When enough magnetic field readings are collected from an AC current waveform,

there will be more equations than unknowns in the system of equations. Since the

system of equations is non-linear, the researchers used a Non-Linear Least Squares

(NLLS) solver to solve the equations. An advantage of this method was that since no

assumptions are made about the geometry of the cables, it can be used to estimate

currents when the three cables are bundled inside a single insulator. Using this

method, the team was able to estimate current with an error of 4.63%.
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Many research papers have also focused on the challenge of estimating a set of

three currents in the presence of external magnetic field interference. In many real-life

environments magnetic field sensors will detect not only the magnetic fields created by

the currents, but also magnetic fields from other sources, including Earth’s magnetic

field, fields from nearby cables, and fields from eddy currents induced in nearby

metallic plates. This presents a major challenge that several research teams have

made attempts to characterize and solve.

Researchers at Politecnico di Milano approached this problem by characterizing

all possible external magnetic fields by a set of linear equations. [24] To do so, they

observed that the cross-sectional area containing the three cables would not contain

the sources of the magnetic fields that must be filtered out. The sources, such as

other cables, are located outside of this area. They then observed that in an area

free of magnetic field sources, the magnetic scalar potential at any point will obey

Laplace’s Equation, ∇2Φ(𝑟, 𝜑, 𝑡) = 0, and that the solution to this equation can be

expressed as an infinite series known as the circular harmonics of Laplace’s equation.

Once the derivative of the magnetic scalar potential is taken, the external magnetic

fields can be represented as

𝐻(𝑟, 𝜑, 𝑡) = −
𝑀∑︁

𝑚=1

𝑚𝑟𝑚−1(𝑎𝑚(𝑡)𝑐𝑜𝑠(𝑚𝜑) + 𝑏𝑚(𝑡)𝑠𝑖𝑛(𝑚𝜑))𝑟

+
𝑀∑︁

𝑚=1

𝑚𝑟𝑚−1(𝑏𝑚(𝑡)𝑐𝑜𝑠(𝑚𝜑) − 𝑎𝑚(𝑡)𝑠𝑖𝑛(𝑚𝜑))𝜃 (2.2)

where 𝑟 and 𝜑 represent the location of each sensor in polar coordinates, and 𝑀 is

the number of harmonics chosen to represent the external fields. Thus, the external

magnetic fields are represented as a series of linear equations where the components

𝑎𝑚(𝑡) and 𝑏𝑚(𝑡) are unknown. The total magnetic field detected by each sensor can

be modeled as the sum of the three current-created magnetic fields and the harmonic

series above. This leads to a system of equations in which there are 3+2𝑀 unknowns.

As long as the number of sensors 𝑁 is equal to or greater than 3 + 2𝑀 , the system

of equations can be solved.
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The main drawback of this approach is that to fully characterize Laplace’s Equa-

tion, an infinite number of linear terms are required. Thus, using a finite number M

of components will lead to error in the estimate. However, the researchers conducted

simulations that found that this method was effective in reducing the current esti-

mation error created by external interference. For example, when an external cable

carrying the same current magnitude as the three internal cables was located about

10 cm above the sensor array, the error when using an Ordinary Least Squares esti-

mate was around 50%. When using four harmonics the error reduced to around 20%

and when using eight harmonics the error reduced to 5%. Note that the results are

presented in the form of graphical heatmaps and the values we present are estimates

based on the heatmaps presented in the paper.

Several other papers have covered the topic of estimating currents in the presence

of interference using an array of magnetic field readings, and have attempted methods

similar to the ones described in this section. These papers can be found in [25], [22],

[9], [10], [5], and [23].

2.2 Voltage Estimation

Contactless voltage detection can be performed by placing electrodes near cables so

that the electrodes capacitively couple with the cable voltages. Since voltage is a

differential measurement, in our thesis we focused on measuring line-to-line voltage

by using two electrodes to capacitively couple with two adjacent cables.

One of the first contactless voltage detectors was described in 1928. [28] It involved

vibrating a plate near a conductor until there was no current running through the

plate, which indicated that the plate was vibrating at the same frequency as the

voltage in the conductor. The author of this method claims it could measure voltage to

1/1000 volts, although it took several seconds to reach the correct vibrating frequency.

More recent voltage detection methods involve electrodes that do not vibrate. A

goal of these methods is to measure cable voltage while minimizing the pickup of

external electric fields unrelated to the cable voltage. An example of such a system is
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one developed by a team at MIT. In this system, two electrodes are placed at slightly

different distances from the cable. [15] The two electrodes capacitively couple with

the cable voltage with capacitances 𝐶𝑃1 and 𝐶𝑃2, and a known resistor and capacitor

are placed between each electrode and ground in parallel. The transfer function

between the cable voltage and each electrode is approximately 𝐻(𝑗𝜔) ≈ 𝜔𝑅𝐶𝑃1 and

𝐻(𝑗𝜔) ≈ 𝜔𝑅𝐶𝑃2. The capacitances 𝐶𝑃1 and 𝐶𝑃2 are inversely proportional to the

distance between the cable and each electrode, such as 𝐶𝑃1 ∝ 1
𝑑
. However, rather than

considering the voltage of a single plate, the system considers the differential voltage

between the two plate electrodes. The paper shows that since the distance between

the two electrodes is much smaller than the distance between the electrodes and the

cable, the effective capacitance of the detector, 𝐶𝑃1 − 𝐶𝑃2, can be approximated to

be inversely proportional to the square of the distance, 𝐶𝑃1 − 𝐶𝑃2 ∝ 1
𝑑2

. Thus, the

electrode measurement is significantly more sensitive to the cable voltage compared

to external disturbances located at far distances.

However, it was not a goal of this MIT research to accurately estimate the magni-

tude of the cable voltage. Thus, no attempt was made develop a technique that could

calibrate the electrode capacitance 𝐶𝑃 , which can vary depending on cable insulation

material. Rather, the designers of the system focused on examining the spectral com-

ponents of the voltage and were more interested in the relative magnitudes between

frequencies. The resulting system exhibited an error of up to 11.2%, but produced

digital waveform estimates that allowed for the relative analysis of the voltage Fourier

spectrum. Furthermore, the use of two plate electrodes was effective in mitigating

the effect of external electric fields. In one experiment, a fan was suddenly turned on

30 cm from the voltage detection system. Although the estimated voltage initially

spiked due to the strong inductive effect of the fan being turned on, the effects of the

fan on the voltage estimate dissipated after two line cycles.

Other voltage detection systems have been developed with the goal of accurately

estimating cable voltage magnitudes. A system developed at Prince of Songkla Uni-

versity uses a copper film wrapped around a cable to serve as an electrode to capac-

itively couple with the cable voltage. [27] The researchers manually measured the
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electrode capacitance using an LCR meter and found it to be 7.55 pF. They then

used a lumped parameter model of their system to estimate the cable voltage and

achieved a 2.5% estimation error.

However, the researchers recognized that a major drawback of their system is that

the capacitance between the electrode and cable are unknown for different types of

cable insulation. Thus, the team has proposed attaching a second electrode to the

cable and applying a known voltage to the second electrode. This known voltage will

create a capacitively coupled voltage in the cable, which will then be detected by the

sensing electrode. If the two electrodes have the same capacitance, the voltage in the

sensing electrode can be used to solve for the capacitance of both electrodes. [15]

However, this method was only briefly proposed as something that the team would

explore and as of this writing has not yet been developed.

Another contactless voltage measurement system has been developed at La Plata

National University in Argentina. In this system, a sensing electrode is also used but

is driven by a reference voltage. Since the cable voltage and the sensing electrode are

at different voltages, a current will flow out of the sensing electrode. This current is

processed by an op-amp and a small analog circuit before being digitally processed

and used to estimate the cable voltage. [21]

The reference voltage is used to calibrate the system by determining the capac-

itance 𝐶𝑋 between the cable conductor and the sensing electrode. The researchers

developed a lumped parameter model of their voltage detection circuit which not only

includes the capacitance 𝐶𝑋 , but also the capacitance between the op-amp input and

ground, 𝐶𝐼𝑁 . According to their model, the output voltage of the detection system is

related to the cable voltage 𝑉𝑋 and reference voltage 𝑉𝑅𝐸𝐹 by the transfer function

𝑉𝑂(𝑠) = −[𝑉𝑋(𝑠) − 𝑉𝑅𝐸𝐹 (𝑠)]𝑠𝐶𝑋𝑅 + 𝑉𝑅𝐸𝐹 𝑠𝐶𝐼𝑁𝑅 (2.3)

where 𝑅 is the value of a known resistor placed between the sensing electrode and

ground.

To solve for 𝑉𝑋 from 𝑉𝑂, the values of 𝐶𝑋 and 𝐶𝐼𝑁 have to be calibrated. To
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perform this calibration, the researchers developed a two step process. In the first

step, the detector was disconnected from the power cable so that the output voltage

would only be related to the reference voltage by 𝑉𝑂(𝑠) = 𝑉𝑅𝐸𝐹 𝑠𝐶𝐼𝑁𝑅. This allows

for the value of 𝐶𝐼𝑁 to be determined. In the second step, the detection system is

attached to the power cable, and the reference voltage is run at a different frequency

than the cable voltage. Thus, the cable voltage and the reference voltage contributions

to the output voltage are distinguishable, and the value of 𝐶𝑋 can be solved.

The latest validation tests run by the researchers achieved an error of 0.7%, which

is an improvement over a previous publication of this system which reported errors

greater than 2%. Also of note is that this system uses a shield around the electrode

driven by the reference voltage to protect against pickup from external electric field

sources, although no experimental data is presented to demonstrate the effectiveness

of the shield.

A potential concern with this system is that the calibration scheme requires a

connection to the ground of the system being measured. The lumped parameter

model assumes that the reference voltage is applied with respect to the system ground.

However, in some cases it may not be possible to access the ground of the system

being measured or there may be a significant and unknown impedance between the

cable voltage and the ground.

2.3 Neural Network Methods

The use of neural networks to separate interference from time signals has also been

demonstrated. A team at the University of Surrey trained a neural network to sepa-

rate vocal audio from song tracks consisting of a mixture of vocal and instrumental

audio. [2] Separating human vocal sounds from background noise is referred to as the

cocktail party problem.

The research team trained a fully connected neural network of 20500x20500x20500

units. The training samples consisted of 20 second-long segments of music recorded

at 44.1 kHz. Each training sample contained the mixed audio consisting of both
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vocals and instrumentals, as well as the corresponding recording of vocal-only audio.

Sigmoid activation functions were used. The neural network was trained over 100

epochs of training data.

The neural network was successful in separating vocal audio from song tracks.

The research team compared the performance of the neural network to Non-negative

Matrix Fatorization (NMF), a traditional linear method used for audio signal separa-

tion. The neural network performed better than NMF. To quantify their results, the

team compared the signal-to-artifact (SAR) ratio to the signal-to-interference (SIR)

ratio of the processed tracks. These are two commonly used metrics when evaluating

signal separation algorithms. When mean SAR was plotted as a function of mean

SIR, the tracks separated using neural networks achieved a score 2.5 dB better than

tracks separated using NMF. The team credits the non-linear nature of the neural

network for its superior performance compared to NMF, since it allowed the network

to identify non-linear relationships between the vocal audio and the mixed audio.

2.4 Summary

The research presented in this section constitutes the most advanced current and

voltage estimation techniques published before the research that we will present in

the following chapters. In our research, we perform current estimation by using

an array of fluxgate magnetic field sensors. We chose fluxgate sensors due to their

insensitivity to temperature change, their low cost, the accuracy of their readings,

and the low noise level of their readings. We also do not use a magnetic core or any

type of magnetic shielding in our detector so as to avoid the weight, size, and cost

of such shielding. The focus of our research in current estimation was accuracy in

the presence of external interference. The team at Politecnico di Milano has also

focused on this task, and approached the problem by orienting all the magnetic field

sensors in their array horizontally and by using a harmonic expansion of a physical

model of external interference to perform their estimates. [24] In contrast, we not

only place magnetic field sensors above and below the cables being estimated, but
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also in between and to the sides of the cables, which are locations we did not see

considered in any of the papers we reviewed. Additionally, we position the sensors

in two different perpendicular orientations, which is a technique we also did not see

in any published paper. Furthermore, although all the papers previously discussed

used deterministic physical models to estimate currents in the presence of external

interference, we use a probabilistic model of external magnetic fields to derive a novel

linear least squares current estimator which we will present in Chapter 4.

We perform voltage estimation by using a set of electrodes that capacitively cou-

ple with the voltages in the cables. While the papers we presented in this section

attempt to estimate the absolute voltage of a cable with respect to the ground of the

system being estimated, in our research we are concerned with the line-to-line differ-

ential voltage of two adjacent cables. In fact, our voltage detection system is isolated

from the ground of the system we are estimating. We also use an active shield to

protect the sensing electrodes from external interference. Although the team at La

Plata National University uses a shield driven to ground in their detector, they do not

present experimental data regarding the performance of their shield. [20] Since re-

jecting interference was an important aspect of our work, we collected data regarding

its performance and will present it in Chapter 5.

We have also designed a method of calibrating the capacitance between the cable

and sensing electrode of the voltage detection system. A calibration system is pre-

sented by the team at La Plata National University. [21] However, this calibration

scheme requires a connection to the ground of the system being estimated. Further-

more, while a system similar to the one we have designed is proposed by the team at

Prince of Songkla University, no paper has been published presenting data related to

that system. [27]. We have implemented our calibration system and will present the

challenges we faced and the estimates we obtained in Chapter 5.
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Chapter 3

Hardware and Software

The current and voltage detector consists of several modular components: magnetic

field sensors, voltage sensors, PCB boards to house the electronics, a plastic yoke that

clips around the cables, analog-to-digital converters to capture the data, anti-aliasing

hardware filters, and a laptop to process the readings. The magnetic field sensors

and voltage sensors will be described in Chapters 4 and 5. In this chapter, we will

describe the other mentioned components.

3.1 Yoke and PCB Board

Over the course of the thesis, we used three different hardware designs for the detector.

The first detector, shown in Figure 3-1, used a PCB board that was designed by a

group of undergraduate researchers that worked on this project before the start of the

thesis. This board contained 8 magnetic field sensors and did not contain any voltage

detection hardware. Initially, the detector was envisioned as a clip-on that would

attach to the HARTING Han-C connector, an industrial connector that attaches to 8

AWG cables. To prototype the system, we glued the board to the connector as shown

in Figure 3-2.

Later we decided the detector should be independent of the HARTING connector

and instead designed a 3D-printed ABS plastic yoke that could be clipped around a

set of three 8 AWG cables. We also redesigned the PCB board to hold 12 magnetic
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Figure 3-1: The first board, which contained eight magnetic field sensors and no
voltage detection hardware.

Figure 3-2: The board glued to the HARTING Han-C Connector, which attached to
three 8 AWG cables.

field sensors and to house the op-amps used with the voltage detection system. We

also included holes to join the board and yoke using nylon screws. An image of this
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Figure 3-3: The second version of the detector, which contained 12 magnetic field
sensors and voltage detection hardware.

board is seen in Figure 3-3.

Lastly, we designed a third version of the detector, shown in figure 3-4. In addition

to six horizontally-oriented magnetic field sensors, this board also contained four

vertically-oriented magnetic field sensors to achieve more accurate current estimates,

using 90-degree angle pins to electrically connect the magnetic field sensors of different

orientations. Furthermore, the voltage detection circuitry was re-arranged to reduce

parasitic capacitance.

The 3D-printed plastic yoke was designed using OnShape. CAD drawings of yoke

are shown in Figures 3-5 and 3-6. The PCB boards were designed using the Eagle
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Figure 3-4: The third version of the detector, which contains 10 magnetic field
sensors, including 4 vertically oriented sensors, and voltage hardware.

software. The electrical schematic of both main PCB boards is shown in Figure 3-

7. The board schematics of the two PCB boards were different and are shown in

Figures 3-8 and 3-9. The electrical schematic of the small PCB boards use to house

the vertical sensors is shown in Figure 3-10. The board schematic of the small PCB

boards is shown in Figure 3-11.

3.2 Analog-to-Digital Converter

To record voltages and process them into digital form, we used a pair of Analog-to-

Digital Converter (ADC) devices by Measurement Computing, the USB-205 and the

USB-231. [3] Each device was capable of reading 8 analog inputs from -10 volts to

+10 volts.

The USB-205 was a 12-bit device and could represent 212 values between -10 and

+10 volts. By applying a range of voltages to the USB-205 device, we confirmed all
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Figure 3-5: A CAD model of the top side of a yoke half. The yoke contained indents
to fit the magnetic field sensors and terminal block pins so that the PCB board would
lay flush on top of the yoke. The yoke also contained four slots for the vertical PCB
boards to fit through.

digital readings were 5.11542 mV apart, which is slightly more than 20 𝑉
212−1

since the

true range of the device was slightly wider than +/- 10 volts. Likewise, the USB-231

was a 16-bit device and we confirmed all digital readings were 0.32213 mV apart,

which is slightly larger than the theoretical value 20 𝑉
216−1

.

Due to the nature of an ADC, the digital readings were corrupted with a small

amount of Gaussian white noise. To characterize this noise, we applied a constant

voltage from a signal generator to the ADC, ensuring with a multimeter the voltage

was constant to the fifth decimal place. We then plotted a histogram of the collected

readings and fit a Gaussian curve to them, such as the one shown in Figure 3-12. We

found the standard deviation of the noise in the USB-205 ADC to be 1.50 mV, and

the standard deviation of the noise in the USB-231 ADC to be 0.29 mV.

Furthermore, we found the noise behavior was the same regardless of the magni-

tude of the applied voltage. Thus, we modeled the signal detected by the ADC as
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Figure 3-6: A CAD model of the bottom side of the yoke. The three channels that
clipped around the cables are visible, as well as smaller channels to fit the coaxial
cables that were soldered onto the voltage sensors.

𝑠[𝑛] = 𝑣[𝑛]+𝑚[𝑛], where 𝑠[𝑛] is the value recorded by the ADC, 𝑣[𝑛] is the value that

would be recorded by an ideal ADC without noise, and 𝑚[𝑛] is a random number

taken from a Gaussian distribution.

3.3 Anti-Aliasing Filter

To reduce detection of undesired high frequency signals such as WiFi and Bluetooth,

we constructed an anti-aliasing hardware filter. The electrical schematic of this filter

is found in Figure 3-13. This filter was implemented as a set of 8 low-pass Sallen-key

filters using two 5.1 𝐾Ω resistors, two 0.01 𝜇𝐹 capacitors, and a ua741 op-amp. These

values were selected to create a cutoff frequency close to 3000 Hz, since that is the

highest frequency we were interested in analyzing in our experiments. A photograph

of the filter is shown in Figure 3-14. Table 3.1 shows the gain and phase shift of a

series of voltage signals that were applied to the hardware filter as measured by an

oscilloscope.
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Figure 3-7: An electrical schematic of the main PCB boards. Two of these boards
are used in the detector.

Table 3.1: Output of anti-aliasing hardware filter.

Frequency Gain Phase Shift
10 Hz ~1.0 ~0∘
100 Hz ~1.0 3.5∘
1000 Hz 0.91 33∘
2800 Hz 0.57 81∘
3000 Hz 0.54 86∘
3200 Hz 0.50 90∘
5000 Hz 0.29 112∘
10000 Hz 0.10 139∘

To reduce the effect of the filter on frequencies below 3000 Hz, we developed a

digital filter to process the readings output by the hardware filter. The theoretical

transfer function of the Sallen-Key filter is

𝐻(𝑗𝜔) =
1

1 + 𝑗𝜔2𝑅𝐶 + (𝑗𝜔𝑅𝐶)2
(3.1)
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Figure 3-8: The board schematic of one of the main PCB boards. Two different PCB
board layouts were required to keep each group of components on the same side when
the two boards were attached to the yoke.

The digital filter we created digitally applies the inverse of the above signal by taking

the Fourier transform of the input signal, multiplying by the inverse transfer function,

and returning the inverse Fourier transform of the result. The filter was implemented

in Python. The code of the implementation can be found as the antiantialiasingfilter()

function in the file preprocessor.py found in Appendix A.

Table 3.2 shows the gain and phase shift of the signals after passing through

the hardware filter and then being processed by the digital filter. The signals were
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Figure 3-9: The board schematic of the other main PCB board., which complements
the boards shown in Figure 3-8.

sampled by the ADC at 6250 Hz. As the results in the table show, the combination

of the both filters was effective in correcting the gain and phase shift of signals under

3000 Hz while attenuating signals above this frequency.

3.4 Test Beds

To validate our detector hardware and algorithms, we built two test bed validation

environments that would allow us to control and monitor the true current and voltage
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Figure 3-10: The electrical schematic of a vertical PCB board. Four such boards
were used in the detector.

Table 3.2: Output of anti-aliasing hardware and software filter.

Frequency Gain Phase Shift
100 Hz 0.999 0.01∘
1000 Hz 1.001 0.20∘
2800 Hz 1.007 0.01∘
3000 Hz 1.007 0.03∘

values being applied to a set of cables.
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Figure 3-11: The board schematic of a vertical PCB board.

3.4.1 Parallel Cables Test Bed

The first test bed consisted of three parallel 8 AWG cables connected to two terminal

blocks, as shown in Figure 3-15. The terminals in these blocks could be connected in

different ways to create a variety of circuit configurations. To control the currents,

we used a set of TI OPA549 op-amps that were capable of outputting voltages of

+/- 30 V and currents of up to 8 A. They are shown in Figure 3-16. These op-amps

allowed us to run low-noise currents at frequencies and amplitudes of our choosing.

An electrical schematic of the board that housed each op-amp is shown in Figure

3-17.
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Figure 3-12: A histogram of USB-231 ADC readings collected while a constant
voltage was applied, with a Gaussian distribution fit over the readings.

A common configuration we tested involved a set of balanced three phase currents.

In this configuration, the cables are running three AC currents that are of equal

amplitude and frequency but with 120 ∘ phase shifts relative to each other. The

result is that at every moment in time, the three currents sum to zero. To create this

configuration, we connected the terminal blocks to create the circuit shown in Figure

3-18, making the center cable current the sum of the first and third cable currents.

We then passed the AC output of a signal generator through an all-pass filter that

we tuned to create a second AC signals phase shifted by 120 ∘. These signals were

applied to the two power op-amps, creating a set of balanced three phase currents.

The oscilloscope shot shown in Figure 3-19 shows that the two output voltages of the

power op amps were phase shifted by 120 ∘.

We also constructed several supports that allowed us to place external parallel

54



Figure 3-13: An electrical schematic of the anti-aliasing filter.

cables around the detector so we could introduce external interference at known lo-

cations and analyze the effect that this interference had on our estimates.

The parallel nature of the cables was useful not only for correctly calibrating the

detector in an environment free of external magnetic fields, but also for replicating

the conditions inside many industrial cable cabinets, where adjacent cables are often

organized in long parallel runs.

3.4.2 Lightbulb Demo

To further validate the performance of our detector, we built a hardware demo that

involved measuring cables that powered lightbulbs using 120 V RMS 60 Hz wall power.

A photo of the demo is shown in Figure 3-20. The demo consisted of a box capable of

holding two lightbulbs. By choosing which lightbulbs to connect to the box, we could

control how much current each cable would draw. The yoke was placed around three

cables protruding from the box, as shown in the photo. The cables were configured

according to the schematic in Figure 3-21. The middle cable contained the return
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Figure 3-14: A photo of the anti-aliasing hardware filter.

current and thus the negative sum of the other two currents.

We obtained contact measurements of the voltage of the demo by building a

voltage divider across the hot and neutral cables which output a voltage between +/-

5.06 V, making it safe for the ADC units to read. Since lightbulbs are non-ohmic,

we obtained contact measurement of the currents by installing 1.08 Ω power resistors

between ground and the neutral cable of each lightbulb and measuring the voltage

drop across the resistors.

3.5 Software and Data Storage

All scripts and collected data were saved in a private GitHub repository. Relevant

scripts are also included in Appendix A. Sensor readings processed by the computer

were either saved to permanent storage or displayed in real-time using a graphical
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Figure 3-15: The parallel cables test bed.

user interface.

The saved data was stored in CSV files. For example, 2 seconds of readings from

10 magnetic field sensors collected at a sampling frequency of 6,000 Hz would be saved

as a CSV file containing 12,000 rows (the number of time samples) of 10 columns each.

The graphical user interface allowed us to analyze collected data in real-time. It

was capable of displaying sensor readings and current and voltage estimates as a real-

time time display, a real-time frequency display, or a real-time text display where the

frequency and amplitude of the frequency with greatest magnitude was shown. The

interface is shown in Figure 3-22.
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Figure 3-16: The OPA549 power op-amps used to power the parallel cables test bed.

Figure 3-17: An electrical schematic of the board that housed the OPA549 op-amp.
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Figure 3-18: A schematic of the configuration used to create a balanced set of three
phase currents in the parallel cables test bed.
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Figure 3-19: An oscilloscope reading of the voltage output of the two op-amps in the
balanced three phase configuration, showing that they have been tuned to be 120 ∘

out of phase.
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Figure 3-20: A photo of the detector attached to the cables of the lightbulb demo.
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Figure 3-21: A schematic of the lightbulb demo.
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Figure 3-22: A screenshot of the live display.
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Chapter 4

Current Estimation Methods

In this chapter we describe the magnetic field sensor hardware as well as the various

current estimation algorithms we developed and tested.

4.1 Magnetic Field Sensors

To measure magnetic fields, we used the Texas Instruments DRV425. This chip uses

a fluxgate sensor and outputs a voltage linearly proportional to the component of the

magnetic field along the axis of sensitivity of the sensor. The output voltage 𝑉𝑂𝑢𝑡 is

given by

𝑉𝑂𝑢𝑡(𝑉 ) = 48.8
𝑚𝐴

𝑚𝑇
*𝑅𝑆ℎ𝑢𝑛𝑡(Ω) *𝐵(𝑚𝑇 ) + 𝑉𝑂𝑓𝑓𝑠𝑒𝑡(𝑉 ) (4.1)

where 𝑅𝑆ℎ𝑢𝑛𝑡 is the value of a shunt resistor whose value we chose to be 100 Ω

and 𝑉𝑂𝑓𝑓𝑠𝑒𝑡 is the voltage output by the sensor when no magnetic field is detected.

Note that the sensor measures the component of the magnetic field along its axis

of sensitivity, so if there exists an angle Θ between the magnetic field vector �⃗� and

the sensor orientation, the sensor will detect the quantity 𝐵𝑐𝑜𝑠(Θ). We operated the

DRV425 at 5 V and selected hardware pins to set 𝑉𝑂𝑓𝑓𝑠𝑒𝑡 to 2.5 V regardless of the

power voltage level.

As seen in (4.1), the gain between voltage output and magnetic field can be

controlled by the value of the shunt resistor. We selected a value of 100 Ω for our
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in-lab experiments because we felt it would allow us to detect a reasonable amount of

current. A 100 Ω shunt resistor would set the DRV425 output to saturate at 0.51 mT,

which corresponds to a 𝑉𝑂𝑢𝑡 value of 5 V, the maximum it can output. Assuming the

fluxgate sensor was located 0.7 cm from the center of the cable, this magnetic field

would be created by a current of 17.5 A, which was much higher than the currents

we experimented with in the laboratory.

We chose the DRV425 fluxgate sensor because of its high accuracy, low noise level,

and its resistance to temperature change. According to the TI datasheet, the DRV425

has a gain of 48.76 (𝑚𝐴
𝑚𝑇

) at 125 ∘ C, which is almost the same as its gain of 48.80

(𝑚𝐴
𝑚𝑇

) at -40 ∘ C. Additionally, the datasheet claims the TI sensor has a noise floor of

2 nT per Hz squared, which is well below the noise of the Analog-to-Digital converter

we used. Thus, in our experiments we considered the noise of the DRV425 to be

negligible compared to the noise from other sources in our measurements.

4.2 Physics Simulator

We developed a physics simulator to simulate current detection experiments in soft-

ware. While assembling new sensor arrays to test different configurations is a long

process involving PCB board design, shipment, and manufacturing, the physics sim-

ulator allowed us to test different sensor layouts quickly and inexpensively.

The simulator was built using Python and Numpy. It consists of a set of classes

that work together to simulate real life electromagnetic principles. The sources files

are found in the simulator folder of the source code in Appendix A.

The simulator/sources.py file contains the definition of several classes of sources

which contain a get_magnetic_field() method that returns a vector representing the

x, y, and z magnetic field components. The most commonly used sources in our

simulations were the UniformField class and the Wire class, which are both subclasses

of the Source class. Each Source object can be assigned either a single magnetic field

reading or a time series of magnetic field readings.

The simulator/sensors.py file defines the Sensor class, which requires a 3D lo-
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Figure 4-1: The final implementation of the magnetic field sensor array placed ten
magnetic field sensors around and between the cables. The sensors are represented
as dark rectangles in the figure above. The origin of the coordinate system for the
elements in the array is on the left side of the yoke, aligned with the center of the
cables. The yoke is 6 cm in width and 1.2 cm in height. Arrows in the magnetic
field sensors show their axis of sensitivity. Also shown in this figure are uniform field
lines representing one possible orientation of Earth’s magnetic field. The vertical and
horizontal decomposition of Earth’s magnetic field, 𝑢𝑥 and 𝑢𝑦, are also shown.

cation and 3D orientation to be instantiated. To detect magnetic fields, a sensor

object is passed a list of Source objects into its detect() method, where it calls

get_magnetic_field() on every Source in the array, calculates the dot product of the

magnetic field vectors and its orientation vector, and return the sum of the results.

The simulator contains other files, such as simulator/sensor_placer.py, which con-

tains a function that returns an array of a specified number of Sensor objects. There

is also a test suite to ensure that the physics simulator is working correctly. This

suite tests the results of the simulator against an answer derived by hand for a given

set of test cases. These tests can be found in the file simulator/test.py.
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4.3 Magnetic Field Readings and Interference

Although the locations of the magnetic field sensors varied in each of our implemen-

tations, our final implementation used 10 magnetic field sensors around a set of three

cables as shown in Figure 4-1. In our simulations, we considered the origin of the x,y

coordinate system to be on the left side of yoke and aligned with the center of the

cables, as shown in the figure. The length of the yoke was 6 cm along the x axis and

1.2 cm along the y axis. The x,y locations of the three cables are (1.5,0.0), (3.0,0.0),

and (4.5,0.0) in cm. The x,y locations of the top three sensors are (1.5,0.6), (3.0,0.6),

and (4.5,0.6) in cm. The x,y locations of the bottom three sensors are (1.5,-0.6),

(3.0,-0.6), and (4.5,-0.6) in cm. The x,y locations of the four vertical sensors are

(0.7,0.0), (2.2,0.0), (3.7,0.0), and (5.2,0.0) in cm.

As described in Chapter 2, the magnetic field vector produced by a current will

have the magnitude |𝐵| = 𝑢0𝐼
2𝜋𝑟

and will have a direction perpendicular to the vector

from the center of the cable to the point at which the measurement is taken. Since the

DRV425 only detects the component of a magnetic field along its axis of sensitivity,

the magnetic field it will detect will be a scalar with the value 𝐵 =
𝑐𝑜𝑠(𝜃𝑖,𝑗)𝑢0𝐼

2𝜋𝑟𝑖,𝑗
, where

𝑟𝑖,𝑗 is the distance between current 𝑖 and sensor 𝑗, and 𝜃𝑖,𝑗 is the angle between the

axis of sensitivity of sensor 𝑗 and a vector extending from cable 𝑖 to sensor 𝑗.

The magnetic field 𝐵𝑖(𝑡) detected by each sensor can be represented as a function

of the currents of the three cables as given by

𝐵𝑖(𝑡) =
𝑐𝑜𝑠(𝜃𝑖,0)𝑢0𝐼0(𝑡)

2𝜋𝑟𝑖,0
+

𝑐𝑜𝑠(𝜃𝑖,1)𝑢0𝐼1(𝑡)

2𝜋𝑟𝑖,1
+

𝑐𝑜𝑠(𝜃𝑖,2)𝑢0𝐼2(𝑡)

2𝜋𝑟𝑖,2
(4.2)

Our current estimation algorithms assume the cables and magnetic field sensors

are stationary with respect to each other. Thus, the location terms 𝜃𝑖,𝑗 and 𝑟𝑖,𝑗, as

well as all other constants, can be represented as a single constant for each current,

and the expression simplifies to

𝐵𝑖(𝑡) = 𝛼𝑖,0𝐼0(𝑡) + 𝛼𝑖,1𝐼1(𝑡) + 𝛼𝑖,2𝐼2(𝑡) (4.3)
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where the constants are in the form 𝑎𝑖,𝑗.

Since the sensors are stationary with respect to the currents, the equation describ-

ing their relationship becomes linear. Furthermore, with N sensors, we have a set of

N equations that can be used to solve for the 3 unknown currents. These N equations

can be expressed in the matrix form 𝐴𝐼 = 𝑏, where the matrix A is an Nx3 matrix.

Since we have many more sensors than the number of currents being estimated, we

were able to use the redundant measurements to reject noise and disturbances.

Our system does not include hardware shielding around the magnetic field sensor

array, since it was our goal to perform all necessary filtering with software processing,

effectively replacing the size and cost of shielding hardware with software. Thus,

several types of external magnetic fields will also be detected by our sensor array and

affect the accuracy of our current estimate. It was a major goal of this thesis to filter

out these external sources and produce the most accurate current estimates possible.

There are several sources of external magnetic fields we considered. The most

important and common are discussed below.

Earth’s Magnetic Field We treated the magnetic field generated by the Earth

as a spatially uniform and temporally constant field. A set of magnetic field sensors

with the same axis of sensitivity would detect the same value from Earth’s magnetic

field, regardless of the field’s orientation. For example, if the axis of sensitivity of the

horizontal sensors in Figure 4-1 are pointing to the right, they will all detect the same

value, 𝑢𝑥. A set of magnetic field sensors with the opposite axis of sensitivity would

detect the value −𝑢𝑥. A perpendicular set of sensors would detect a completely

different value 𝑢𝑦, which cannot be determined from 𝑢𝑥 without knowing Earth’s

magnetic field beforehand. We took this model into account as we developed our

current estimators, as will be described in a later section.

Ambient Fields Our sensors will detect ambient magnetic fields originating from

the building power infrastructure. In the US these fields exist at 60 Hz, while in

other countries such as Japan they will exist at 50 Hz. Since the origin of these fields
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Figure 4-2: Fourier transform of a 2 second sample of magnetic field readings collected
at 5000 Hz when no current was applied to the cables.

are very far away, they are effectively spatially uniform when detected by our sensor

array. Thus, we modelled these fields as a time-varying but spatially uniform field.

Figure 4-2 shows the Fourier transform of magnetic field readings detected by a

sensor in the array when there was no current running through the cables. As the

figure shows, there is a large component at 60 Hz coming from far away cabling and

building infrastructure.

Although we are aware of the ambient fields, we cannot use frequency filtering to

separate these fields from the currents we are trying to detect because the currents

themselves will typically also be running at the same frequency. Instead, our esti-

mation algorithms will focus on the spatial properties of the internal and external

currents and it is for this reason that we use a redundant sensor array with sensors
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at different locations to collect readings and perform estimation.

We can now introduce the spatially uniform magnetic field terms into the equation

modelling the fields detected by each sensor as a pair of perpendicular uniform terms,

𝑢𝑥(𝑡) and 𝑢𝑦(𝑡),

𝐵𝑖(𝑡) = 𝛼𝑖,0𝐼0(𝑡) + 𝛼𝑖,1𝐼1(𝑡) + 𝛼𝑖,2𝐼2(𝑡) + 𝑢𝑥(𝑡) + 𝑢𝑦(𝑡) (4.4)

External Wires External wires running parallel to the internal wires are also de-

tected by our sensors. However, we do not know the location of external wires before-

hand and thus cannot reduce the location terms to a constant value. The magnetic

field detected by an environment that includes P external wires is given by

𝐵𝑖(𝑡) =
3∑︁

𝑗=0

𝛼𝑖,𝑗𝐼𝑗(𝑡) + 𝑢𝑥(𝑡) + 𝑢𝑦(𝑡) +
𝑃∑︁

𝑘=0

𝑐𝑜𝑠(𝜃𝑖,𝑘)𝑢0𝐼𝑘(𝑡)

2𝜋𝑟𝑖,𝑘
(4.5)

External Plates A magnetic field will induce an eddy current in a conductor, which

will in turn produce its own magnetic field. According to the method of images, if a

current-carrying cable induces a current in a nearby thin perfectly conducting plate,

the induced magnetic field will be equivalent to the magnetic field produced if instead

there was a conductor on the opposite side of plate. If the plate is not perfectly

conducting, the equivalent current will have a different phase and magnitude than

the cable current. Thus, the magnetic field created by an eddy current in a metallic

plate running parallel to the internal cables of our system can be modeled as a parallel

wire and the model of (4.5) is still valid for this case.

These are the principal sources of external interference that we modeled and were

concerned with. The reason we focused on parallel wires and plates is because when

visiting industrial locations in the field, we observed that these are the most common

forms of interference that the system we have designed will encounter. Other forms

of interference, such as as magnets or spatially moving wires, are not usually present.
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(a) The empirical matrix (b) The theoretical matrix

Figure 4-3: Two different gain matrices for the 10 sensor current estimation system.
The values are the gains between the cable currents and the output of the DRV425
sensors, and the units are in V/A. The empirical matrix was obtained by running
known currents through one cable at a time using real hardware. The theoretical
matrix was generated using the physics simulator.

4.4 The Gain Matrix

Our estimation algorithms depended on knowing the gains between each current and

the detected magnetic field, expressed as 𝛼𝑖,𝑗 in (4.3). These gains are the terms of

the matrix A when expressing the relationship between the current vector 𝐼 and the

magnetic field vector 𝑏 as the matrix equation 𝐴𝐼 = 𝑏.

Figure 4-3b shows the matrix calculated by our physics simulator for the configu-

ration of 10 sensors shown in Figure 4-1. Figure 4-3a shows the matrix calculated by

the calibration procedure using hardware measurements. Observe that this matrix

is similar, but not equal to, the theoretical matrix calculated by the physics simula-

tor. To calculate the matrix using our hardware, we applied a range of DC currents

through each cable, one cable at a time. Figure 4-4 shows the measured output of

sensor 3 for three ranges of currents run in each cable. As the figure shows, the

magnetic fields detected are a linear function of the current being applied. The slope

of the linear function detected by sensor 𝑗 when a range of currents was applied to

cable 𝑖 is the 𝑖, 𝑗-th term of the matrix A.
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Figure 4-4: A graph showing the measured output values of a sensor in the sensor
array when known currents were independently run through each cable.

The matrix we measured using hardware was repeatable and consistent. The

difference between the theoretical and empirical matrices could be attributed to two

factors. One factor is inaccurate placement of the magnetic field sensors. For example,

screwing a nylon screw too loosely could cause the PCB board housing the sensors

to be misaligned by a few microns relative to the yoke holding the cables. However,

this cause alone would not create deviations large enough to explain the discrepancy

between the theoretical and empirical matrices.

Instead, a more important factor was the effect of the magnetic fields generated

by the currents powering the sensors. Despite our best efforts to run power and

ground traces in the PCB board in parallel and to maintain them at an orientation

that would minimize pickup by the magnetic field sensors, these power currents will

still contribute a small amount of magnetic field. Since the DRV425 is a closed-loop
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Figure 4-5: Sensor gains measured as a function of current frequency.

sensor, the greater the magnetic field it detects, the more current it will draw, thus

contributing to the gain between cable current and detected magnetic field.

However, the gains between magnetic field sensors and cable currents are both

linear and repeatable. Thus, once we obtain the empirical matrix, we can use it for

all our estimation methods. We will discuss how we dealt with the issue of power

trace interference as we describe the methods.

We also tested the effect that the frequency of the current had on the gains between

cable and sensor. As Figure 4-5 shows, the gains did not change significantly up to

the frequencies of interest.
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4.5 Sensor Placement

We investigated the optimal placement of the magnetic field sensors to minimize

current estimation error. We were free to place the sensors along the top and bottom

planes formed by the PCB boards attached to the two halves of the yoke. In addition,

we also considered placing sensors vertically, along the sides of the yoke as well as in

slots between the cables.

Since the magnetic fields created by the internal and external cables is the su-

perposition of the fields created by the cables individually, and since the majority of

the current estimation methods we tested are linear, the estimation error can be ex-

pressed as the result of applying the magnetic fields from the external cables through

the estimator. For example, the error between the true current 𝐼 and the current

estimate 𝐼 formed by the Ordinary Least Squares Estimator is

𝐼 − 𝐼 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − (𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑡𝑜𝑡𝑎𝑙 (4.6)

where 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is the vector of magnetic fields created by the internal currents and

𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is the vector of magnetic fields created by external sources. The detected

field 𝑏𝑡𝑜𝑡𝑎𝑙 is the sum of the fields from the internal and external cables, so

𝐼 − 𝐼 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − (𝐴𝑇𝐴)−1𝐴𝑇 (𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙)

= (𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (4.7)

Thus, one approach to optimizing sensor placement is to find a placement that

will minimize (4.7). While the location of external cables are not known beforehand,

we aimed to find the position of the sensors with the smallest worst case error, or,

in other words, a sensor placement configuration that performed the best under the

most adversarial placement of a single external cable. This optimization problem can

be represented as

𝑚𝑖𝑛(𝑥0,𝑦0),...,(𝑥𝑁 ,𝑦𝑁 )𝑚𝑎𝑥(𝑥𝑒,𝑦𝑒)𝑠𝑢𝑚(|(𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙|1) (4.8)
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where the location of the external wire is given as (𝑥𝑒, 𝑦𝑒) and the locations of the

sensors are given by (𝑥0, 𝑦0), ..., (𝑥𝑁 , 𝑦𝑁).

We sum the absolute value of (𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 because this expression is a

vector of three currents. Note that the terms in the matrix A will involve the sensor

location variables (𝑥0, 𝑦0), ..., (𝑥𝑁 , 𝑦𝑁) and the terms in the magnetic field vector will

involve those variables as well as the external cable location variables (𝑥𝑒, 𝑦𝑒). In this

scenario, we will assume the external current is running 1 A.

To solve this problem and gain an intuitive understanding of the solution, we de-

cided to create a graphical user interface in which we could experiment with different

positions for each sensor. We created a program in which we could drag and drop

magnetic field sensors with a computer mouse. Upon pressing a ’simulate’ button, the

program would generate a heatmap where each point around the yoke was colored a

shade of red corresponding to the magnitude of the term 𝑠𝑢𝑚(|(𝐴𝑇𝐴)−1𝐴𝑇 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙|1)

due to a single 1 A external cable at the given point. The source code of the program

can be found in the file display_heatmap.py in Appendix A. Heatmaps for four lo-

cation configurations for a set of six sensors are shown in Figures 4-6, 4-7, 4-8, and

4-9.

What we found through the use of this program was that the optimal location of

the sensors is when they are as close as possible to the internal cables and as far away

from each other as possible. For six sensors, this condition is satisfied in Figure 4-6, in

which the maximum error is 0.177 A. Moving two sensors closer together, but further

from the cables, as shown in Figure 4-7, while still staying away from the outside

area in which there can be external cables, still causes an increase in maximum error,

bringing it up to 0.277 A. The worst of the four cases is shown in Figure 4-7, where

the sensors are close to the area where an external cable is allowed. Since the sensors

are so close to this area, they strongly detect external cables, and the worst case error

is 1.304 A.

We considered these results when designing the previously mentioned sensor place-

ment function in the physics simulator. The sensor placement function places the first

6 sensors directly above and below the three cables, as shown in Figure 4-10. When
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Figure 4-6: A heatmap showing estimation error when the sensors were placed di-
rectly over and under the sensors. The worst case error is 0.177 A.

Figure 4-7: A heatmap showing estimation error when two of the sensors were placed
closer to each other. The worst case error is 0.277 A.

more sensors are requested from the placement function, they are added vertically,

until 10 sensors are placed as shown in Figure 4-11. Note that this configuration of 10

sensors is very similar to the sensor configuration that the final version of our system
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Figure 4-8: A heatmap showing estimation error when several sensors have been
placed closer to each other. The worst case error is 0.572 A.

Figure 4-9: A heatmap showing estimation error when four of the sensors have been
placed at the edge of the area in which no external sources of interference can exist.
The worst case error is 1.304 A.

used.

As more sensors are placed by the sensor placement function, they are added in

between existing sensors to fill in remaining gaps in a way that keeps sensors are far
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Figure 4-10: A heatmap showing estimation error when six sensors are used. This
heatmap is similar to the one shown in Figure 4-6, but the color scale has been
changed to facilitate comparing this heatmaps with other heatmaps containing dif-
ferent numbers of sensors. The worst case error was 0.189 A.

Figure 4-11: A heatmap showing estimation error when 10 sensors are used. The
worst case error was 0.084 A.

apart from each other as possible. Figures 4-12 and 4-13 show the placements for 36

and 76 sensors, respectively.
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Figure 4-12: A heatmap showing estimation error when thirty-six sensors are used.
The worst case error was 0.025 A.

Figure 4-13: A heatmap showing estimation error when seventy-six sensors are used.
The worst case error was 0.027 A.

Since the internal fluxgate sensor of the DRV425 effectively measures the magnetic

field over a line integral of 1.5 mm, it is possible to approximately measure the field

around a closed loop using enough DRV425 sensors. In the scheme we use in our
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sensor placer, it takes 88 sensors to form a closed loop around each cable. Thus, the

maximum amount of sensors that the sensor placement function can place is 88.

This sensor placement function was used to evaluate the performance of different

current estimation methods. The results of different estimators as a function of the

number of sensors used will be presented in later sections. The final sensors system

has 10 sensors, and they are located in the positions stated at the beginning of Section

4.3.

4.6 Error Measurement

To evaluate different current estimation methods, it was important to have a common

error measurement and test scenario with which to compare their performance.

The error measurement we chose is

%𝐸𝑟𝑟𝑜𝑟 =
2∑︁

𝑛=0

|𝐼𝑛 − 𝐼𝑛|1
|𝐼𝑛|1

* 100 (4.9)

where 𝐼𝑛 is the true current in cable 𝑛 and 𝐼𝑛 is the estimated current in cable 𝑛.

We chose this error measurement because in many cases the currents we evaluate are

balanced three phase currents, and in such a case the value
∑︀2

𝑛=0 |𝐼𝑛|1 is never zero,

allowing us to avoid division-by-zero problems.

Selecting a common test scenario was a more nuanced challenge. The test scenario

we considered in the previous section, one where there is a single external cable with

1 A of current, is not the worst case scenario and may not be indicative of the

performance of an estimator when many external cables are present. In addition, if

there are multiple external cables present, the estimation error can in some cases go

down, since it is possible for the magnetic field of another external cable to cancel

the field from the first external cable, which is a common scenario in real industrial

environments where external cables exist in triplets of balanced three phase currents.

We briefly considered using an integral of infinitely many external cables with 1 A

of current located at all possible points outside the yoke area as a worst case scenario,
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but this integral does not converge. For example, even a contiguous section of this

integral, such as the area above the yoke bounded by the coordinates x=0.0 m to x=

0.060 m and y=0.01 m to y=infinity, produces an infinite magnetic field,

∫︁ ∞

0.01

∫︁ .060

0.0

𝑢0(𝑥𝑖 − 𝑥𝑒)𝐼

2𝜋(𝑦𝑖 − 𝑦𝑒)2 + (𝑥𝑖 − 𝑥𝑒)2
𝑑𝑥𝑑𝑦 = ∞ (4.10)

In addition, (4.10) is not physically realistic and would never be found in an actual

industrial environment.

Instead, we decided to create a set of four realistic test cases for each estimation

method that represents situations typically found in industrial environments that our

detector would have to deal with. These four cases are described below.

No Interference We tested the case when there is no external magnetic field in-

terference. The three internal wires are running currents of -0.7 A, 1.0 A, and -0.3 A,

respectively (a balanced configuration).

One External Cable We tested the case when there is a single parallel external

wire running 1 A located at the point (0.03 m, 0.01 m), above the middle cable. The

internal wires are running current as in the case with no interference.

Parallel Plate We tested the case when there is a perfectly conducting metallic

plate located at y=0.01 m. The internal wires are running current as in the case with

no interference.

Six External Cables We tested the case when there are six external wires. These

wires are made up of two sets of three balanced currents. The first set is made up

of wires located at (0.015 m, 0.015 m), (0.03 m, 0.015 m), and (0.045 m, 0.015 m)

running -0.7 A,1.0 A,and -0.3 A, respectively. The second set is made up of cables

located at (0.006 m,-0.015 m), (0.03 m,-0.015 m), and (0.04 m, -0.015 m) running

currents of -0.7 A, 1.0 A, and -0.3 A, respectively. The internal wires are running

current as in the case with no interference.
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We felt the above cases represented situations that our system would typically en-

counter in industrial environments, and used these cases to compare the performance

of our estimators.

4.7 Signal Pre-Processing

Before using the magnetic field readings to form a current estimate, we had to pre-

process the readings for three reasons. First, we needed to remove noise in our readings

introduced by the ADC. Second, we needed to correct a time shift that existed in the

readings because the ADC sampled voltages consecutively, not simultaneously. Third,

we needed to filter Fourier components in our readings that we knew did not originate

from the currents.

4.7.1 De-Noising Filter

As explained in Chapter 3, the readings from the ADC are corrupted with a small

amount of Gaussian sensor noise which introduced error in our current and voltage

estimates. To graphically illustrate this problem, we performed an Ordinary Least

Squares estimate on magnetic field readings collected using 10 sensors when 1.30 A

of DC current was run through a single cable. Figure 4-14 shows the current esti-

mate corrupted by noise superimposed on the true current measured using a contact

measurement. Figure 4-15 shows the current estimate after the magnetic field read-

ings were cleaned with our custom noise removal algorithm. We will now present the

two digital noise removal algorithms that we experimented with: a custom filter we

developed ourselves and a Wiener filter.

Custom Noise Removal Filter

The custom filter came from the observation that the magnitudes of the Fourier

component of the signals we were estimating were significantly larger than the Fourier

components of the sensor noise, which exhibited as white noise, as seen in Figure 4-

2. Our custom filter involved removing all Fourier components with a pre-selected
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Figure 4-14: The true DC current applied to cable, calculated by measuring the
voltage drop across a 5.08Ω resistor, superimposed over a current estimate for which
noise has not been removed.

threshold value. The transfer function of our filter is

𝐻(𝑗𝜔) =

⎧⎪⎨⎪⎩0 if |𝑆(𝑗𝜔)| < 𝛼

1 if |𝑆(𝑗𝜔)| >= 𝛼

where 𝑆(𝑗𝜔) is the Fourier transform of the signal and 𝛼 is the threshold value.

This filter is not linear. To show this, let us consider the sum of two signals,

𝑠1(𝑡) and 𝑠2(𝑡), where each signal has a Fourier component at some frequency 𝑓 of

magnitude 0.75𝛼. In this case, the Fourier component of 𝑆1(𝑗𝜔)𝐻(𝑗𝜔)+𝑆2(𝑗𝜔)𝐻(𝑗𝜔)

at frequency 𝑓 will be 0. However, if the filter were linear, the Fourier component at

frequency 𝑓 of (𝑆1(𝑗𝜔) + 𝑆2(𝑗𝜔))𝐻(𝑗𝜔) would be also be 0, but instead it is 1.5𝛼, so

84



Figure 4-15: The true DC current applied to a cable, superimposed over an estimate
in which noise has been removed with the Custom Noise Removal filter.

the filter is not linear.

Nevertheless, we believed the non-linear properties of the filter would have a min-

imal impact on the current and voltages estimation methods we later experimented

with. An area of future research can be to investigate how the non-linear properties

of this noise removal filter affects the performance of the linear estimation methods

that are used after it.

A requirement of our filter was choosing an appropriate threshold 𝛼. A threshold

that is too high can eliminate signals useful to our estimate while a threshold that is

too low can leave sensor noise in our readings. We thus chose the threshold appro-

priately by observing a Fourier transform of a sample reading. A typical value of 𝛼

for the output of a DRV425 sensor was 0.0005 V.

This filter was very effective in removing noise and improving the accuracy of
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our estimates. For example, in an experiment in which we estimated 1.67 A 90 Hz

currents in a balanced three phase configuration using the Parallel Cables test bed,

using the noise filter reduced current estimation error from 0.93% to 0.77%.

Wiener Filter

We also tested the noise removal performance of a Wiener filter. To do this, we used

the wiener() function from the scipy library, located in scipy.signal.wiener.

Although this filter improved the current estimate, reducing error from 0.93% to

0.88% in the balanced three-phase current experiment, it did not perform as well as

the custom filter we developed. Thus, we continued using the custom filter for all

our experiments. It is worth noting, however, that the generic SciPy implementation

of the Wiener filter can potentially be customized for our signals, and attempting

to design a Wiener filter specifically for the signals we process could be an area for

further research.

4.7.2 Time-Shifting Filter

The readings collected by each ADC were consecutive, not simultaneous. This means

that for a given time sample, the voltages collected by each of the eight channels were

not collected at the same instant in time 𝑡0. Rather, at a given sampling frequency 𝑓𝑠,

each channel 𝑖 sampled its voltage at the time 𝑡0 + 1
𝑓𝑠

𝑖
8
. Since our current estimation

algorithms assume all magnetic field readings are collected at the same moment in

time, this time delay between ADC channels introduces error into our estimates.

To correct this, we created a digital time shifting filter. The filter takes the Fourier

transform of a signal, multiplies it by a unity gain phase shift filter, and returns the

inverse Fourier transform of the resulting signal. The transfer function of this time

shift filter is below.

𝐻(𝑗𝜔) = 𝑒𝑗𝜔𝑡0 (4.11)

Figure 4-16 shows a plot of readings collected by the ADC when a 2 VPP 130 Hz
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Figure 4-16: A plot showing readings from the ADC when 2 VPP 130 Hz volt-
age was simultaneously applied to all 8 channels. Since the ADC collects readings
consecutively, the signals appear out of phase.

signal was simultaneously applied to all 8 channels of the USB-205. The plot assumes

all channels were sampled at the same time. Since they were not, the signals appear

shifted. Figure 4-17 shows a plot of the same readings after our time shift filter was

applied. The eight signals are now lined up.

One problem with our time shift filter is that the inverse Fourier transform of

the shifted signals will contain an imaginary term for even-length input signals. The

reason for this is that the Fourier transform of real signals must possess the con-

jugate symmetry property, which states that 𝑆(𝑗𝜔) = ¯𝑆(−𝑗𝜔). However, the DFT

of an even-length signal will contain only a single entry for the Nyquist frequency,

without an entry for the negative Nyquist frequency. Thus, if the Nyquist frequency
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Figure 4-17: A plot of the the readings from the ADC when 2 VPP 130 Hz voltage
was simultaneously applied to all 8 channels. The signals have been time shifted, and
now correctly appear in phase.

component is not 0, it is not possible to maintain the conjugate symmetry property

for the Nyquist frequency, and application of our filter will result in a small complex

component in the output.

One possible solution is to always use odd-length signals, perhaps by dropping a

time sample to turn an even-length signal into an odd-length signal. Another solution

is to simply drop the imaginary term, as the Nyquist frequency component is typically

small in magnitude as long as the sampling frequency has been appropriately selected.

We chose the latter solution, since the value of the imaginary term was small, typically

in the 10−9 V range compared to the values of the real term which were typically in

the 10−3 V range.

We saw significant improvement in our current estimation when applying the time-
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shift filter. In the experiment running 1.67 A 90 Hz balanced three phase currents,

the estimation error without the time-shifting filter was 2.04%, but with the filter it

was 0.77%.

An additional use of the time shift filter was to synchronize readings from multiple

ADC units. Since our system used a total of 13 sensors, 10 magnetic field sensors and 3

voltage sensors, and each ADC only offered 8 analog channels, we used two ADC units

to collect readings. However, the two USB-205 and USB-231 ADC units we used did

not have the ability to operate synchronously in a slave-master configuration. Instead,

we connected channel 0 from the first ADC, which was also collecting magnetic field

readings, to channel 0 from the second ADC. We then detected the frequency with the

largest magnitude (without considering the 0th frequency) and compared the phase

shift 𝜑 of this frequency between the two channels. Using the formula 𝑡𝑙𝑎𝑔 = 𝜑
2𝜋𝑓

, we

identified the time lag between the two ADC units. We then used the time shift filter

to shift all samples from the second unit by 𝑡𝑙𝑎𝑔.

This synchronization scheme was effective. In the balanced three-phase current ex-

periment, applying this synchronization algorithm reduced the error 60.4% to 0.77%.

Thus, we conclude that the time shift filter is correctly synchronizing the inputs of

the two ADC units.

4.7.3 Rogue Frequency Filter

Before using the anti-aliasing filter, another source of noise in our measurements man-

ifested in the form of frequencies that were not common to all magnetic field sensors.

Due to the proximity of the sensors to the currents, we expected all magnetic field

sensors to detect signals at the same frequencies, albeit at different magnitudes for

each sensor. However, as Figure 4-18 shows, signals from different sensors exhibited

a significant amount of noise at different frequencies, a problem we termed ’rogue

frequencies’.

To fix this issue, we applied a filter that would eliminate a frequency if its mag-

nitude was not above the noise threshold value 𝛼 for all sensor channels, similar to

our custom noise removal algorithm. This was very effective in eliminating rogue
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Figure 4-18: Fourier Spectrum showing that different sensors exhibited unique noisy
Fourier components.

frequencies. For the balanced three-phase experiment, applying this filter reduced

estimation error from 0.90% to 0.77%. However, when we started using the anti-

aliasing filters, we did not see the rogue frequencies in our readings, indicating they

were high-frequency signals. It is possible these were WiFi or Bluetooth signals being

picked up by the wiring connecting the PCB board to the ADC units.

4.8 Current Estimation Methods

We will now present the different current estimation methods we developed, adapted,

and evaluated. These methods include physics-based methods, in which we modeled

not only the internal currents but also sources of interference, as well as machine-
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learning based methods, in which we fit a training set of magnetic field readings to

their corresponding true current values. As previously mentioned, to determine which

method performed best, we used the physics simulator and sensor placement function

to simulate each method when using a different number of sensors for each of the four

test cases previously introduced.

4.8.1 Ordinary Least Squares Estimator

Ordinary Least Squares (OLS) is a common technique used to solve a system of

equations when the number of equations is greater than the number of unknowns.

In our setup, the number of sensors N is greater than the number of currents we are

measuring, and we can use OLS to form a current estimate. Since the relationship

between the vector of currents and the vector of magnetic field readings is given by

𝐴𝐼 = 𝑏, the Ordinary Least Squares Estimate is

𝐼 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏 (4.12)

where 𝐼 is the estimate, a vector of three currents.

The residuals of a least squares estimate indicate how well the magnetic field

readings fit the matrix A. The residual vector can be defined as the difference between

the magnetic field readings and the result of multiplying the matrix A by the estimated

current, which is effectively the estimated magnetic field reading vector implied by

the estimated current. This is written as

𝑟 = 𝑏− �̂� = 𝑏− 𝐴𝐼 (4.13)

where 𝑟 is the residual vector.

Theoretically, if the matrix A was correctly calibrated, the current-carrying cables

were ideal and infinite, and there was no sensor noise or external magnetic field inter-

ference, the detected magnetic field readings 𝑏 would be a perfect fit using Ordinary

Least Squares and the residual vector magnitude would be 0. In practice, sensor noise
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and magnetic field interference create some residual, and the sign of a good fit is when

the residual is very small.

We can enhance the matrix A by solving for another magnetic field source: the

spatially uniform magnetic fields. In a set of 10 sensors where six sensors align with

the horizontal plane of the PCB board and four sensors are perpendicular to this

plane, two different components of a spatially uniform field will be detected by each

set of sensors, which we can call 𝑢𝑥 and 𝑢𝑦. This uniform field can be modeled as a

column containing 1, -1, or 0, depending on the orientation of the sensor relative to

the uniform field component.

To illustrate this point, for the configuration found in Figure 4-1 with 10 sensors,

the matrix augmentation is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼0,0 𝛼0,1 𝛼0,2 1 0

𝛼1,0 𝛼1,1 𝛼1,2 0 −1

𝛼2,0 𝛼2,1 𝛼2,2 1 0

𝛼3,0 𝛼3,1 𝛼3,2 0 −1

𝛼4,0 𝛼4,1 𝛼4,2 1 0

𝛼5,0 𝛼5,1 𝛼5,2 1 0

𝛼6,0 𝛼6,1 𝛼6,2 0 −1

𝛼7,0 𝛼7,1 𝛼7,2 1 0

𝛼8,0 𝛼8,1 𝛼8,2 0 −1

𝛼9,0 𝛼9,1 𝛼9,2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼0

𝐼1

𝐼2

𝑢𝑥

𝑢𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7

𝑏8

𝑏9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

This augmentation to the matrix model is effective not only in separating the

Earth’s uniform field from current-created magnetic fields, but also in separating

ambient 60 Hz magnetic fields, since those fields can be considered spatially uniform.

Figure 4-19 shows the Fourier transform of an OLS current estimate formed with-

out augmenting the gain matrix with the uniform field columns. The estimated was

performed on a balanced set of 1.67 A 90 Hz currents. There is a noticeable 60

Hz component. Figure 4-20 shows an OLS estimate using the same magnetic field

readings but using a gain matrix augmented with the uniform field columns. In
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Figure 4-19: A plot showing the Fourier transform of an OLS estimate of 90 Hz
current. In this estimate, the gain matrix A was not augmented with uniform field
columns, and there is a 60 Hz component visible in the estimate caused by ambient
60 Hz magnetic fields. The readings shown are the voltage output of the DRV425
and thus the magnitude is in volts.

this second estimate, the 60 Hz component has been largely eliminated, making the

estimate more accurate.

Hypothetical Two-Sensor Scenario

To better understand how the OLS estimator works and the error that external cables

introduce, let us consider for a moment a simplified version of the problem we are

solving. We will consider a situation in which we wish to estimate the current in one

cable using two magnetic field sensors. Since we will have two equations to solve for

one unknown, we can use the OLS estimator. In this simple experiment, we will not
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Figure 4-20: A plot showing the Fourier transform of an OLS estimate of 90 Hz
current formed using a gain matrix A augmented with uniform field columns. The 60
Hz component is largely eliminated from the estimate. The readings shown are the
voltage output of the DRV425 and thus the magnitude is in volts.

include the uniform field components in the OLS estimator.

Figure 4-21 illustrates this scenario. Each sensor will be located at a distance

of 𝑑1 above and below the internal cable, and will be oriented to align with the

direction of the magnetic field from the internal cable. Furthermore, we will include

an external cable at a distance of 𝑑2 from one of the sensors to introduce an error

into our estimate. The two detected magnetic fields will be 𝑏1 and 𝑏2. The matrix

relationship 𝐴𝐼 = 𝑏 in this hypothetical scenario is given by

𝐴𝐼1 = 𝑏 ⇒

⎡⎣ 𝛼
𝑑1

𝛼
𝑑1

⎤⎦ 𝐼1 =

⎡⎣𝑏1
𝑏2

⎤⎦ (4.15)
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Figure 4-21: A diagram of the hypothetical scenario.

where 𝛼 = 𝜇0

2𝜋
.

Note that both entries in the matrix A are the same. This illustrates the function

of the matrix A: it describes the spatial distribution of the magnetic fields produced

by the internal cables. In this case, the equal matrix entries indicate that both sensors

are equally distant from the current and are both oriented along the direction of the

current-produced magnetic fields. The OLS estimate is then given by

𝐼1 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏 =
𝑑1(𝑏1 + 𝑏2)

2𝛼
(4.16)

The fractional error of the estimate is

|𝐼1 − 𝐼1
𝐼1

| =
1

2(2𝑑2
𝑑1

+ (𝑑2
𝑑1

)2)

𝐼2
𝐼1

(4.17)
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Figure 4-22: Error contours as a function of distance and current of the external
cable.

Observing (4.17), we see that the fractional error will decrease as the wire caus-

ing external interference is moved further away, since the error will tend to 0 as 𝑑2

increases to infinity. The error will also tend to 0 as the current 𝐼2 tends to 0.

Figure 4-22 shows contours of 1%, 5%, 10%, and 25% error as a function of the

ratio between internal and external current 𝐼2
𝐼1

and the ratio of the distances 𝑑2
𝑑1

.

Figure 4-23 shows a plot of percent error when the external current has the same

magnitude as the internal current and 𝑑1 is set to 5 mm, a value similar to our setup.

Under these conditions, the external cable would have to be at a distance of 30.7 mm,

more than 6 times the distance between the internal cable and the sensors, for the

current estimate to be at less than 1%. This suggested to us that the OLS estimator

alone would not be able to achieve the thesis goals, and we decided to consider other
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Figure 4-23: Estimation error of the simple experiment as a function of the distance
of the external cable.

current estimation techniques, which will be discussed in later sections.

Although an analysis similar to the one above can be performed for the case of 3

cables and 10 sensors, it will be much more complex to analyze. Instead, we now turn

to our physics simulator to gain insight into the performance of the OLS estimator

when estimating three separate currents.

Multiple Sensor Performance

We now present the performance of the OLS estimator in simulated experiments using

the physics simulator to estimate currents in the four test cases presented previously.

Since the problems of sensor noise, time shift, and spatially uniform field interference

were solved by using our pre-processing algorithms and augmenting the matrix A,
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Table 4.1: OLS Estimation error in the four test cases.

Case With Six Sensors With Ten Sensors
No Interference 0% 0%
External Wire 6.5% 2.3%
Plate 4.73% 1.46%
Six Wires 16.8% 5.71%

the experiments do not simulate these forms of interference. Rather, the simulations

only involve interference originating from external cables and plates and the OLS

estimator for these simulations is used without including the uniform field columns.

Table 4.1 shows the percent error of the OLS estimator in the four test cases when

the simulated system used six sensors and when it used ten sensors. In the case of six

sensors, the locations correspond to the six horizontal sensors of Figure 4-1. In the

case of ten sensors, the locations are the same as all sensors in Figure 4-1. Figures

4-24 and 4-25 show the percent error of the four test cases as a function of the number

of sensors in the array. The sensors are placed according to the pattern described in

Section 4.5.

We can make several observations about these simulations. First, the estimation

error when there is no external interference is 0% regardless of the number of sensors.

This is a desirable result and is a property of the OLS estimator.

Secondly, the estimation error is not 0% for all cases when there are 88 sensors,

enough to form a closed loop around all three cables. The OLS model attempts to

fit the data to the model of internal cables and does not completely reject external

fields even when there is a complete sensor loop.

Third, the estimation error is not a monotonically decreasing function of the

number of sensors. In some cases, adding sensors worsened the error. This happened

because in these cases, the sensors that were added were close to the locations of

the external cables in our tests. In general, we do not know the location of external

cables beforehand, so we cannot know whether adding a sensor in a given location

will increase or decrease estimation error.

98



Figure 4-24: Estimation error using the OLS Estimator as a function of up to 25
sensors.

4.8.2 Ampere’s Law Estimator

We also developed an estimator that approximates the measurement of closed loop

integrals of magnetic fields around each cable. The motivation behind this estimator

was Ampere’s Law, which states

𝜇0𝐼 =

∮︁
�⃗� · 𝑑𝑙 (4.18)

Ampere’s Law implies that if we were to measure the magnetic field along a closed-

loop around one cable, the magnetic fields generated by sources outside of the loop

would sum to zero, and the magnetic fields generated by the cable and measured

along the closed loop would be proportional to the cable current. Thus, measuring
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Figure 4-25: Estimation error using the OLS Estimator as a function of up to 88
sensors.

this integral would facilitate a current estimate free from external magnetic field

interference. However, as previously mentioned, 88 sensors are required to measure

a closed loop path around the three cables in our setup, which are too many to

realistically include in a viable detector. Thus, we decided to explore the performance

of approximating Ampere’s Law with a limited number of sensors.

The estimator we tested was based on the idea that the sum of the external

magnetic fields detected by an array of sensors around a single cable should be zero.

Say there are M sensors around a cable being used to form the Ampere’s Law estimate.

Each sensor 𝑚 will detect a total magnetic field 𝑏𝑡𝑜𝑡𝑎𝑙,𝑚 that is the sum of two magnetic

fields: the field produced by the internal cable 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑚 and the field produced by

external sources 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑚. In a set of sensors that form a closed loop around a

cable, 𝜇0𝐼 =
∑︀𝑀

𝑚=1 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑚 and 0 =
∑︀𝑀

𝑚=1 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑚. Furthermore, we consider the
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magnetic field created by the current estimate 𝐼 to be 𝑎𝑖,𝑗𝐼, where 𝑎𝑖,𝑗 is the gain

between cable 𝑖 and sensor 𝑗 from the gain matrix discussed in the previous section.

We can express the magnetic fields coming from external sources as

𝑏𝑡𝑜𝑡𝑎𝑙,𝑚 = 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑚 + 𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑚 (4.19)

𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑚 = 𝑏𝑡𝑜𝑡𝑎𝑙,𝑚 − 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑚 (4.20)

We can then impose the condition that the external fields detected by all sensors

sum to zero,

𝑀∑︁
𝑚=1

(𝑏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑚) = 0 (4.21)

𝑀∑︁
𝑚=1

(𝑏𝑡𝑜𝑡𝑎𝑙,𝑚 − 𝑏𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,𝑚) = 0 (4.22)

𝑀∑︁
𝑚=1

(𝑏𝑚 − 𝑎𝑗𝐼0) = 0 (4.23)

𝑀∑︁
𝑚=1

𝑏𝑚 −
𝑀∑︁

𝑚=1

𝑎𝑚𝐼0 = 0 (4.24)

where 𝑏𝑚 is a more concise way of representing the total magnetic field detected by

each sensor. We can rearrange the last expression to produce an estimate for the

current 𝐼0,

𝐼0 =

∑︀𝑀
𝑚=1 𝑏𝑗∑︀𝑀
𝑚=1 𝑎𝑗

(4.25)

Note that this estimator does not use all magnetic field sensors in the array to

estimate each current. Rather, it uses a subset of the sensors that form a closed loop

around each current. Thus, each current estimate 𝐼0, 𝐼1, and 𝐼2 will be formed using

three different subsets of sensors, although some sensors will appear in more than one

subset. The estimation results for the four standard test cases when using six and ten

sensors are found in Table 4.2. Figure 4-26 shows the estimation error as a function

of the number of sensors.

A major flaw of this estimator is the non zero estimate error when there is no
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Table 4.2: Ampere’s Law Estimation error in the four special cases.

Case With Six Sensors With Ten Sensors
No Interference 19.3% 12.8%
External Wire 23.6% 11.8%
Plate 15.8% 13.3%
Six Wires 38.5% 10.5%

Figure 4-26: Estimation error using the Ampere’s Law Estimator.

external interference. This error occurs because the estimator attempts to estimate

each current individually, without considering the other two cable currents within the

yoke, which are thus treated as external currents.

As the graph shows, the error estimate tends to 0% for all cases as the number

of sensors forms a complete loop around all three cables. However, the error does

not begin to monotonically decrease below 4% error until there are more than 76
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sensors. A system with this many sensors would be too expensive and would not be

preferable to other existing sensors such as Hall Effect sensors. Thus, the Ampere’s

Law Estimator did not prove satisfactory to achieve thesis goals.

4.8.3 Non-linear Model Estimator

Another estimator we developed involved modeling external sources of magnetic fields,

and using these models to determine what components of the detected magnetic fields

originated from external sources and what components came from the internal cables.

As previously stated, the external sources of interference we are most concerned with

are parallel external cables and parallel external plates, whose effects can also be

modeled as external cables. The magnetic field detected by a sensor 𝑖 as a result of

the internal cables, an external uniform field, and 𝑃 external cables is given by

𝑏𝑖(𝑡) =
3∑︁

𝑗=1

𝛼𝑖,𝑗𝐼𝑗(𝑡) + 𝑢(𝑡) +
𝑃∑︁

𝑘=1

𝑢0

2𝜋

(𝑥𝑖 − 𝑥𝑘)𝐼𝑘(𝑡)

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑘)2
(4.26)

where 𝑥𝑘 and 𝑦𝑘 are the coordinates of each external cable, and 𝐼𝑘(𝑡) is the current

of each external cable.

In a system using N sensors, we will have a system of N equations of the above

form. The parameters 𝛼𝑖,𝑗,𝑥𝑖, and 𝑦𝑖 are known. The unknown variables are the three

𝐼𝑗(𝑡) terms, the uniform field 𝑢(𝑡), the locations of each external cable 𝑥𝑘 and 𝑦𝑘,

and each external current 𝐼𝑘(𝑡). Thus, in a setup with P cables, there will be 4+3P

unknown variables. This suggests a disadvantage of this estimator: we are limited

in how many external cables we can model by the number of sensors in our system.

A system with 10 sensors can model no more than 2 external cables, and a system

with 25 sensors can model no more than 7 external cables. In our visits to industrial

areas we found that an electrical closet can easily contain bundles of 6 or more cables

running together, and therefore this estimator can easily encounter a situation in

which there are more external cables than it can model.

Another problem with the Non-Linear Model Estimator is that it is non-linear,

as (4.26) shows, and we cannot solve it using linear least squares estimator. Despite
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Figure 4-27: An external cable experiment using 3D printed supports.

these challenges, we decided to explore the effectiveness of using this model to estimate

currents.

We began by considering the case in which there was a single external parallel

cable. As shown in Figure 4-27, we used a 3D printed external support to hold the

external cable while knowing its x and y location. Since there were more sensors

than parameters, we solved the system of equations by minimizing the squared er-

ror between the readings and estimated readings. That is to say, we were finding

parameters that minimized the expression

𝑚𝑖𝑛(𝐼0,...,𝐼𝑁 ,𝑥0,...,𝐼𝑃 )

𝑁∑︁
𝑖=0

(𝑏(𝑡) − 𝑏𝑖(𝑡))
2 (4.27)

where 𝑏𝑖(𝑡) is the magnetic field vector implied by a set of variable estimates (𝐼0, ..., 𝐼𝑁 ,

𝑥0, ..., 𝐼𝑃 ). To perform this optimization we used a minimization function in the

SciPy library, scipy.optimize.minimize. The code we used, including the function
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fun() where we defined the squared error, is found in the file minimize_fun.py in

Appendix A.

After experimenting with non-linear optimization, we found that although it was

possible to generate accurate estimates, the results were very sensitive to the initial

values we entered into the minimize() function. This was especially a problem when

choosing what initial values to select for 𝑥𝑘 and 𝑦𝑘, since there were several regions

around the yoke where an external cable could be located, and initializing these values

to 0 returned poor results.

For example, the Table 4.3 shows the true values and estimated values of one

particular experiment in which we ran 0.735 A of current through one cable, no

current through the other two cables, and -0.735 A through an external cable. The

estimate error is calculated using only the estimates of the three internal cables. Our

first estimate had an 8.8% error. However, after adjusting the initial values of the

external cable to be closer to the true values, we produced a second, more accurate

estimate.

Table 4.4 shows the results of a similar experiment in which the external cable

was placed in a different location. As in the previous case, the first experiment return

a large 14.4% error, but after adjusting the initial location parameters to values we

knew were closer to the true values, the estimate greatly improved.

Unfortunately, we cannot know beforehand where the external cable will be lo-

cated, and cannot know at runtime how to set the initial values for the location of the

external cable. Experiments in which we tried running the optimizer with different

initial values were too computationally expensive.

Because of the dependence of the estimator on initial values and the computa-

Table 4.3: Estimation results for an experiment in which two different sets of initial
values were used with the Non-Linear Model Estimator.

Type 𝐼0 (A) 𝐼1 (A) 𝐼2 (A) x (m) y (m) 𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (A) Percent Error
True Value 0.735 0 0 0.04 0.03 -0.735 N/A
First Estimate 0.748 -0.045 -0.139 0.006 0.02 0.919 8.8%
Second Estimate 0.725 -.004 0.001 3.0 4.0 -.736 0.6%
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Table 4.4: Estimation results for a second experiment in which two different sets of
initial values were used with the Non-Linear Model Estimator.

Type 𝐼0 (A) 𝐼1 (A) 𝐼2 (A) x (m) y (m) 𝐼𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (A) Percent Error
True Value 0.926 0 0 0.02 -.0025 -0.926 N/A
First Estimate 0.912 0.196 0.182 0.9 0.0 0.029 14.1%
Second Estimate 0.936 -0.023 0.007 0.005 -.022 -.752 1.4%

tional expense of running non-linear optimization, we decided to try other estimation

methods. Although it would be possible to develop a closed-form solution to the least

squares minimization of a system of equations of the form of (4.26), we decided to

explore linear estimation methods instead due to their faster computation speed and

the previously mentioned issues with this estimator.

4.8.4 Linear Model Estimator

Because of the problems we encountered when trying to minimize a set of non-linear

equations, we decided instead to create linear models of external interference to use

for current estimation. For example, the magnetic field created by one external cable

would be approximated as

𝑏 = 𝑎1𝑥𝑒 + 𝑎2𝑦𝑒 + 𝑎3𝐼𝑒 (4.28)

where 𝑥𝑒 and 𝑦𝑒 are the coordinates of the external cable and 𝐼𝑒 is the current.

We also explored creating polynomial models of external interference. In a second

order polynomial model of a single external cable, the magnetic field would not only

be modeled as a linear function of the location and current variables, but also the

pairwise products of these variables. This model would take the form

𝑏 = 𝑎1𝑥𝑒 + 𝑎2𝑦𝑒 + 𝑎3𝐼𝑒 + 𝑎4𝑥
2
𝑒 + 𝑎5𝑦

2
𝑒 + 𝑎6𝐼

2
𝑒 + 𝑎7𝑥𝑒𝑦𝑒 + 𝑎8𝑥𝑒𝐼𝑒 + 𝑎9𝑦𝑒𝐼𝑒 (4.29)

In a third order polynomial model, the three-way products would be used, and so

forth.
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Figure 4-28: Estimation error of the Linear Model Estimator as a function of the
number of sensors used.

To generate a linear model, our goal was to calculate coefficients such as 𝑎0,𝑎1,

and 𝑎2 in (4.31), so that the resulting sum 𝑏 is as close to the magnetic field predicted

by the non-linear model as possible. To calculate these coefficients, we generated a

training set of 100,000 samples. Each sample contained randomly chosen values for

𝑥𝑒, 𝑦𝑒 and 𝐼𝑒, with one of the constraints being that the location of the cable had

to be outside the yoke. Each sample also contained the magnetic field 𝑏 predicted

by the non-linear model of an external cable, produced by the physics simulator.

We then used the LinearRegression.fit() function of scikit-learn to create a linear fit.

Effectively, we were generating a matrix 𝐷 to fit 𝐷𝑥 = 𝑏 for the training samples,

where 𝑥 is a vector of cable parameters and 𝑏 is a vector of magnetic fields. The

value being minimized when using the LinearRegression function is the RMSE, so
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Figure 4-29: Estimation errors as a function of the number of sensors used for the
Second Order Polynomial Estimator.

essentially we were minimizing the function

(𝑎1𝑥𝑒 + 𝑎2𝑦𝑒 + 𝑎3𝐼𝑒 −
𝜇0(𝑦𝑒 − 𝑦𝑠)𝐼𝑒

(𝑥𝑒 − 𝑥𝑠)2 + (𝑦𝑒 − 𝑦𝑠)2
)2 (4.30)

Once the linear model consisting of the matrix 𝐷 was found, the full model for

magnetic field readings could be formed by concatenating the gain matrix 𝐴 that

characterized the internal currents 𝐼 with the matrix 𝐷, in the form

[︁
𝐴 𝐷

]︁⎡⎣𝐼
𝑥

⎤⎦ = 𝑏 (4.31)

Although this matrix formulation can be augmented with columns to model external
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Table 4.5: Linear Model Estimator error in the four special cases.

Case With Six Sensors With Ten Sensors
No Interference 0.6% 0.9%
External Wire 19.3% 7.1%
Plate 11.7% 3.2%
Six Wires 34.4% 14.9%

uniform fields, we did not include those columns since the simulations we ran did

not include uniform fields. To form the current estimate, we used the magnetic field

vector 𝑏 to solve for the parameters in 𝐼 and 𝑥 using the Ordinary Least Squares fit

corresponding to the matrix relationship in (4.31).

However, the model of a single external cable did not yield good results. A graph

of the estimate error for the four test cases as a function of the number of sensors

used in shown in Figure 4-28 and the estimation errors for 6 and 10 sensors is shown

in Table 4.5. We then analyzed the estimation error for a second order polynomial

model of an external cable. This model also performed poorly. The graph of the

estimate error is shown in Figure 4-29 and the Table 4.6 shows estimation errors for

the four test cases.

We believe the reason these models performed so poorly is because it was linearized

around the values 𝑥𝑒 = 3.0 cm, 𝑦𝑒 = 0.0 cm, and 𝐼𝑒 = 0.0 A. However, since the cables

are location outside the yoke, they will often be located far away from this point in

space, which increases the linearization error. To overcome this, we could include

linearization of cables in different regions around the yoke. However, each additional

cable introduced into the linear model adds three new variables, and even more in a

polynomial model. Due to the limited number of variables we could solve for using

Table 4.6: Second Order Polynomial Estimator error in the four special cases.

Case With Six Sensors With Ten Sensors
No Interference 0.4% 2.2%
External Wire 43.7% 9.2%
Plate 15.4% 7.1%
Six Wires 24.9% 17.2%
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a sensor array with 10 sensors, we concluded the Linear Model Estimator would not

achieve our thesis goals, and instead focused our attention on other current estimators.

4.8.5 Spatial Harmonics Estimator

We implemented the estimator derived by the research team at Politecnico di Milano

described in Chapter 2. [24] This estimator uses the harmonic expansion of the solu-

tion to Laplace’s Equation to create a general linear representation of external sources

of magnetic fields. These linear components appear in pairs and will be referred to

as 𝑎𝑚(𝑡) and 𝑏𝑚(𝑡). The linear representation of the magnetic field vector using the

first M harmonics measured by a particular sensor 𝑖 is repeated for convenience,

𝐻𝑖(𝑟, 𝜑, 𝑡) = −
𝑀∑︁

𝑚=1

𝑚𝑟𝑚−1
𝑖 (𝑎𝑚(𝑡)𝑐𝑜𝑠(𝑚𝜑𝑖) + 𝑏𝑚(𝑡)𝑠𝑖𝑛(𝑚𝜑𝑖))𝑟

+
𝑀∑︁

𝑚=1

𝑚𝑟𝑚−1
𝑖 (𝑏𝑚(𝑡)𝑐𝑜𝑠(𝑚𝜑𝑖) − 𝑎𝑚(𝑡)𝑠𝑖𝑛(𝑚𝜑𝑖))𝜃 (4.32)

where 𝑟𝑖 is the distance of the sensor from the origin of the coordinate system, 𝜃𝑖 is

the angle of the sensor location with respect to the coordinate system, and 𝜑𝑖 is the

orientation of the axis of sensitivity of the sensor.

In a system with N sensors, there will be N equations of the form given in (4.32).

The number of unknowns will depend on the number of components of the linear

representation that we include in the estimator. If we refer to the vector of 𝑎𝑚(𝑡) and

𝑏𝑚(𝑡) components as 𝐶, and the coefficients of these components as detected by the

sensors as the matrix 𝑄, then the full representation of the problem we are solving,

including both internal currents and external components, is given by

[︁
𝐴 𝑄

]︁⎡⎣ 𝐼

𝐶

⎤⎦ = 𝑏 (4.33)

In the case of this estimator, augmenting the gain matrix A with columns to repre-

sent uniform magnetic fields is unnecessary, because the first harmonic of the linear

representation of external magnetic fields corresponds to the uniform field columns.
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Figure 4-30: A heat map showing the percent error introduced by an external cable
when the Spatial Harmonics Estimator is used with M=0.

The code we used to implement this estimator can be found in the code file

current_estimator.py in Appendix A. To validate that our implementation of the

estimator was correct, we conducted an experiment similar to the one described in

the paper that introduced the estimator. In that paper, the research team used a

simulator to test the percent estimation error that an external cable running 1 A

created in a system that was estimating currents in three bus bar current conductors

running 1 A. What they found was that the percent error decreased as the number

of harmonic components that the estimator included increased.

In our experiment, we simulated three circular conductors running 1 A and gener-

ated heat maps in which darker red corresponded to a greater amount of estimation

error induced by a single external cable running 1 A when placed at the corresponding

location in the heat map. We show the results when M=0 in Figure 4-30, when M=1

in Figure 4-31, when M=2 in Figure 4-32, and when M=3 in Figure 4-33. As the heat

maps show, as the number of harmonic components included in the estimator are

increased, the percent error of the estimator decreases. With 10 sensors, at most 3

harmonic components can be included, since this introduces 6 unknowns that must be
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Figure 4-31: A heat map showing the percent error introduced by an external cable
when the Spatial Harmonics Estimator is used with M=1.

Figure 4-32: A heat map showing the percent error introduced by an external cable
when the Spatial Harmonics Estimator is used with M=2.

solved in addition to the 3 unknown internal currents. The results of this experiment

gave us confidence that our code correctly implements the estimator described in the

paper.
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Figure 4-33: A heat map showing the percent error introduced by an external cable
when the Spatial Harmonics Estimator is used with M=3.

Table 4.7: Spatial Harmonics Estimator error in the four special cases.

Case With Six Sensors With Ten Sensors
No Interference 0% 0%
External Wire 6.5% 1.7%
Plate 4.7% 1.0%
Six Wires 16.8% 5.4%

Note that the case M=0 is equivalent to the OLS estimator without augmenting

the matrix A with uniform field columns. In fact, the first harmonic component of the

Spatial Harmonics Estimator corresponds to the columns representing uniform fields,

so the case in which M=1 is equivalent to the OLS estimator in which the matrix A

has been augmented with uniform field columns.

We tested the estimator on the four standard test cases. The estimation error when

using 6 sensors and when using 10 sensors is shown in Table 4.7. The performance

of the Harmonics Estimator does offer an improvement over the OLS estimator when

using 10 sensors, although it struggles in the test case of six cables. Figure 4-34 shows

the estimation error for the four test cases as a function of the number of sensors used.
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Figure 4-34: Estimation error using the Spatial Harmonics Estimator as a function
of the number of sensors.

4.8.6 BLU Estimator

A shortcoming of the OLS estimator is that it is optimized for the case in which ex-

ternal interference is uncorrelated across all sensors, which is not the case for external

sources of magnetic fields. As Figure 4-35 suggests, magnetic fields from an external

cable will be detected by each sensor according to a particular pattern. Thus, it is

reasonable to believe that the external magnetic fields detected by the sensors will

exhibit some correlation.

More precisely, if we define a probabilistic distribution representing the possible

locations and current values of external cables, then the probabilistic magnetic fields

detected by sensor 𝑖 can be represented as a random variable 𝐵𝑖. This random

variable is a scalar, the flux density that will be measured by each sensor. In the
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Figure 4-35: Magnetic fields from an external cable will be detected by the sensor
array in a particular pattern described by the laws of electromagnetism.

probabilistic model we will describe, the current value of an external cable will be

characterized by a probabilistic distribution whose mean is 0, which means each

random variable will have a mean of zero, or 𝐸[𝐵𝑖] = 0. This means that each

pair 𝐵𝑖 and 𝐵𝑗 will have a correlation 𝐸[𝐵𝑖𝐵𝑗] and covariance 𝑐𝑜𝑣(𝐵𝑖, 𝐵𝑗) that are

equal. Furthermore, the correlations between every pair of sensors can be concisely

represented by a covariance matrix, a matrix where the 𝑖, 𝑗-th term corresponds to

the correlation 𝐸[𝐵𝑖𝐵𝑗]. The value of the correlations will depend on the probabilistic

model of external disturbances we are using.

This covariance matrix can be used to form a current estimate using the Best

Linear Unbiased (BLU) Estimator. Let us assume our system contains N sensors. In

our problem for which we have characterized the relationship between current and
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detected magnetic fields as 𝐴𝐼 = 𝑏, the BLU Estimate is given by

𝐼 = (𝐴𝑇Σ−1𝐴)−1𝐴𝑇Σ−1𝑏 (4.34)

where A is the gain matrix and Σ is an N by N matrix where the 𝑖, 𝑗 term is the

correlation 𝐸[𝐵𝑖𝐵𝑗]. If the sensor readings of the external fields were uncorrelated,

the matrix Σ would be a diagonal matrix and the above expression would simplify to

the form of the OLS estimator.

The performance of our estimator depends on the covariance matrix and thus the

probabilistic model we use to derive the matrix. The first probabilistic model we

created involved three random variables: 𝑋𝑒, 𝑌𝑒, the locations of an external cable,

and 𝐼𝑒, the external current. 𝑋𝑒 and 𝑌𝑒 were taken from a uniform distribution

of locations around the yoke, excluding the yoke area. In other words they were

taken from the interval {−.01 𝑚 < 𝑋𝑒 < 0.055 𝑚}, {−0.03 𝑚 < 𝑌𝑒 < 0.03 𝑚} while

excluding the center yoke area {0.0 𝑚 < 𝑋𝑒 < 0.045 𝑚}, {−0.012 𝑚 < 𝑌𝑒 < 0.012 𝑚}.

The current 𝐼𝑒 was taken from a uniform distribution {−10.0 𝐴 < 𝐼𝑒 < 10 𝐴}.

Each random variable 𝐵𝑖 is a function of the location and current random variables

according to the same physical law that governs the detected magnetic field. The

random variable 𝐵𝑖 for a sensor whose axis of sensitivity lies in the direction of the x

axis can be expressed as

𝐵𝑖 =
𝑢0

2𝜋

(𝑋𝑒 − 𝑥𝑠)𝐼𝑒
(𝑋𝑒 − 𝑥𝑠)2 + (𝑌𝑒 − 𝑦𝑠)2

(4.35)

where 𝑥𝑠 and 𝑦𝑠 are the coordinates of the sensor. The random variable 𝐵𝑖 for a

sensor whose axis of sensitivity lies in the direction of the y axis can be expressed as

𝐵𝑖 =
𝑢0

2𝜋

(𝑌𝑒 − 𝑦𝑠)𝐼𝑒
(𝑋𝑒 − 𝑥𝑠)2 + (𝑌𝑒 − 𝑦𝑠)2

(4.36)

The random variable 𝐼𝑒 is independent of the random variables 𝑋𝑒 and 𝑌𝑒. Fur-

thermore, the expectation 𝐸[𝐼𝑒] is 0, since it is a distribution symmetrically centered
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Figure 4-36: The numbering of the first 10 sensors used in the physics simulations
involving the BLU estimator. Note the numbering of these sensors is not the same as
the numbering of the sensors of the hardware prototype given in Figure 4-1.

around 0 A. Therefore, the expectation of 𝐵𝑖 is

𝐸[𝐵𝑖] =

∫︁ 𝑥𝑓

𝑥0

∫︁ 𝑦𝑓

𝑦0

∫︁ 10

−10

𝑢0

2𝜋

(𝑋𝑒 − 𝑥𝑠)𝐼𝑒
(𝑋𝑒 − 𝑥𝑠)2 + (𝑌𝑒 − 𝑦𝑠)2

𝑝(𝑋𝑒, 𝑌𝑒)𝑝(𝐼𝐸)𝑑𝐼𝑒𝑑𝑋𝑒𝑑𝑌𝑒

=

∫︁ 𝑥𝑓

𝑥0

∫︁ 𝑦𝑓

𝑦0

0 · 𝑝(𝑋𝑒, 𝑌𝑒)𝑑𝑋𝑒𝑑𝑌𝑒

= 0 (4.37)

We approximated the covariance matrix using the physics simulator. We ran the

simulator over a mesh of the previously stated ranges for the three random variables.

During each run of the simulator, the program computed the detected magnetic field

of each sensor as well as the pairwise products of the detected magnetic fields to

compute both the expectation 𝐸[𝐵𝑖] and the correlation 𝐸[𝐵𝑖𝐵𝑗]. The numbering of

the sensors used in these simulations is shown in Figure 4-36. Note that the numbering

presented here is not necessarily the same as the numbering of the sensors used in

the hardware prototype, which is given in Figure 4-1.

To check that our program was working correctly, we inspected the calculated

expectations. The values for the first four sensors were −1.17 * 10−22 𝑇 2, 5.90 *

10−24 𝑇 2, −9.97 * 10−23 𝑇 2 and 3.39 * 10−23 𝑇 2. These values are close to 0, and are

only non-zero because of limitations of computer hardware in representing decimal
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numbers.

The first four rows and columns of the covariance matrix our program calculated

are

Σ(0 : 3, 0 : 3) =

⎡⎢⎢⎢⎢⎢⎢⎣
2.845 −1.758 1.192 −1.261

−1.758 2.845 −1.261 1.192

1.192 −1.261 2.739 −1.801

−1.261 1.192 −1.801 2.739

⎤⎥⎥⎥⎥⎥⎥⎦ * 10−9 𝑇 2 (4.38)

The complete covariance matrix was calculated for 25 sensors, since up to 25 sensors

were used in the physics simulations of the BLU estimator presented later in this

section.

To appreciate the covariance matrix, we should consider the locations of the sen-

sors in Figure 4-36. Sensor 0 is located on the opposite side of sensor 1, while sensor

2 is located next to sensor 0, and sensors on opposite sides are oriented in opposite

directions. Thus, an external cable over the yoke will cause sensor 0 and sensor 2 to

have readings with the same sign, while sensor 1 and 3 will have the opposite sign.

The covariance matrix is in agreement with these observations. The (0, 1) term is

negative, indicating that sensor 0 and sensor 1 will tend to have opposite readings

due to external magnetic fields. The (0, 2) term is positive, indicating that sensor 0

and sensor 2 will have similar readings. Furthermore, all the diagonal terms are large

and positive, because each sensor will have the most similar reading with itself.

We then used this covariance matrix to estimate simulated currents. In these

simulations, the gain matrix A did not contain columns to model the uniform field.

Table 4.8 shows the estimation error for the four test cases when using 6 and 10

sensors. When using 10 sensors, which include horizontal sensors, the performance of

this estimator indicates that it is superior to any of the estimators we have previously

considered.

The performance of the estimator as a function of the number of sensors used

is shown in Figure 4-37. Note that unlike the OLS estimator, there are no cases

when the error dramatically increases when adding a new sensor. This is because the
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Figure 4-37: Estimation error using the BLU Estimator with the first probabilistic
model.

BLU estimator takes into account the covariance between sensors when forming an

estimate.

The probabilistic model we previously presented only models one external cable for

each realization of the random variables. We thus created a new probabilistic model

that would involve multiple external cables. Of course, it is unknown beforehand

Table 4.8: BLU Estimator error in the four special cases using the first probabilistic
model.

Case With Six Sensors With Ten Sensors
No Interference 0% 0%
External Wire 6.5% 1.8%
Plate 4.7% 0.7%
Six Wires 16.9% 3.1%
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how many external cables the system will encounter. Thus, our next model involved

22 evenly spaced external cables located around the yoke. We were attempting to

approximate a model with an infinite number of external cables holding random

currents, but had to work with the limitations of the computer hardware we used to

run the physics simulator. The logic used to generate the 22 locations can be found

in the file multicorrelation.py, found in Appendix A.

In the model of 22 evenly spaced external cables, each external current 𝐼𝑘 is

random, so for each realization of an experiment there are 22 random variables. That

is to say, the random variable 𝐵𝑖 is a sum of functions of 22 random variables and the

locations 𝑥𝑘 and 𝑦𝑘 are constants. In this model, for a sensor whose axis of sensitivity

is along the x-axis, 𝐵𝑖 is given by

𝐵𝑖 =
22∑︁
𝑘=0

𝑢0

2𝜋

(𝑥𝑖 − 𝑥𝑘)𝐼𝑘
(𝑦𝑖 − 𝑦𝑘)2 + (𝑥𝑖 − 𝑥𝑘)2

(4.39)

The generated covariance matrix is

Σ(0 : 3, 0 : 3) =

⎡⎢⎢⎢⎢⎢⎢⎣
5.172,−4.733, 4.118,−4.160

−4.733, 5.184,−4.139, 4.148

4.118,−4.139, 6.627,−5.605

−4.160, 4.148,−5.60, 6.628

⎤⎥⎥⎥⎥⎥⎥⎦ * 10−9 𝑇 2 (4.40)

Interestingly, it appears the magnitude of the values in this covariance matrix are

greater than those found in the previous matrix. The performance of the BLU esti-

mator improved when using this covariance matrix. Table 4.9 shows the error in the

four test cases when using 6 and 10 sensors.

The performance of the estimator as a function of the number of sensors is shown

in Figure 4-38. It appears that the performance of the estimator with this matrix

degrades when 20 or more sensors are used. The reasons for why this occurred can

be an area for future research. However, since our hardware prototype contains 10

sensors, and the BLU estimator produces the most accurate estimates of any estimator

previously discussed, we considered the BLU estimator to be very promising current
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Figure 4-38: Estimation Error using the BLU Estimator with the second probabilistic
model.

estimator to use in the detector. When used with the hardware prototype, the gain

matrix A of the BLU Estimator was augmented to contain columns modeling uniform

magnetic fields.

As previously mentioned, there is a discrepancy in the gains between the cable

currents and sensor outputs calculated in the simulation and measured empirically.

Table 4.9: BLU Estimator error in the four special cases using the second probabilistic
model.

Case With Six Sensors With Ten Sensors
No Interference 0% 0%
External Wire 6.6% 0.1%
Plate 4.7% 0.3%
Six Wires 17.0% 1.8%

121



Figure 4-39: A plot of the voltage output of a particular DRV425 sensor when DC
currents of different magnitudes were run through an external cable.

This is due to the interference from PCB traces powering the sensors. The measured

gain matrix A produced OLS estimates containing less error than the estimates formed

using the simulated matrix. Similarly, to use the BLU estimator with real hardware,

it is best to generate the covariance matrix using values measured with hardware.

It is possible to generate the covariance matrix using measurements because the

magnetic field is detected by a sensor from an external cable is a linear function of the

external cable current. We confirmed this was the case by measuring the magnetic

fields generated by an external current. The results are shown for a particular sensor

in Figure 4-39.

To obtain the sensor gains used to generate the covariance matrix we placed an

external cable around a detector with no internal cables and measured the magnetic
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Figure 4-40: A photo of an external cable placed outside the yoke with 3D printed
supports.

fields with two different DC currents. We collected readings for 14 locations of an

external cable. Two of these locations are shown in Figures 4-40 and Figure 4-41.

Although we only measured the sensor gains for one external cable at a time, in the

presence of multiple external cables, the sensor will detect the sum of the fields gen-

erated by these external cables. Because of this, using the gains we obtained from

two measurements of DC magnetic fields for each location of an external current, we

were able to generate a covariance matrix similar to the second probabilistic model

previously mentioned, but this time with 14 cables located around the yoke simulta-

neously. The script that generated the covariance matrix from these gains is named

multi_covariance_hardware.py and is found in Appendix A. The measured covari-

ance matrix generated using this procedure was used to form the BLU estimates in
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Figure 4-41: A photo of an external cable placed underneath the detector.

the test bed validation procedures presented in Section 4.10.

The performance of the BLU Estimator with the second probabilistic model was

superior to the performance of the other estimators we tested. The estimation errors

in the four test cases were consistently lower than the estimation errors of other

estimators, and the BLU Estimator can theoretically produce estimates with no error

in the absence of sensor noise and external interference, which is not true of all

estimators. Therefore, we use the BLU Estimator in test bed validation experiments

and it is the estimator we have chosen to use in our final current detector system.
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4.9 Machine Learning Methods

We also tested supervised machine learning methods to explore whether these meth-

ods could produce an estimator superior to any of the ones described in the previous

section. The two principal machine learning techniques we experimented with were

regression and neural net training.

4.9.1 Regression Estimator

The regression estimator involved fitting a training set of magnetic field readings,

both with and without external field interference, to the correct current readings for

each training sample. The learning algorithm was effectively finding a matrix 𝐷 and

bias term 𝑓 that would best fit the relationship 𝐷𝑏 + 𝑓 = 𝐼 for all training samples.

It did this by minimizing the total squared error between the true and estimated

current. In other words, it minimized the expression given by

𝑚𝑖𝑛
1

𝑁

𝑁∑︁
𝑛=0

(𝐼𝑛 − (𝐷𝑏𝑛 + 𝑓))2 (4.41)

We used the physics simulator to generate a training set made of 1,000,000 sam-

ples. In each sample, a randomly chosen number of external cables was placed in the

simulation. With 50% probability, this number was 0, so half of the training sam-

ples did not include external interference. In the other cases, 1-7 external cables were

placed randomly around the yoke among the same range of locations used in the BLU

Estimator simulations, presented in Section 4.8.6. Each sample thus consisted of the

magnetic field readings detected by the sensor and the three true current values.

We used linear regression to fit the magnetic field readings to the current values.

To do this, we used the sklearn.linear_model.LinearRegression class from the sklearn

toolkit. Given the low number of parameters in this problem, we used the closed form

linear regression procedure rather than an iterative approach such as Gradient De-

scent. The code used for this procedure can be found in the sim_estimator_per_sensors

function of the run_simulation.py file, found in Appendix A.
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Figure 4-42: Estimation error using the Regression Estimator as a function of the
number of sensors used.

Table 4.10 shows the estimation errors achieved for the four test cases when using

6 and 10 sensors. Figure 4-42 shows the percent errors as a function of the number of

sensors used. Although the estimator exhibits good performance when 10 sensors are

used, a flaw of the estimator is that it suffers non-zero estimation error when there

are no sources of magnetic field interference.

Table 4.10: First order Regression Estimator error in the four special cases.

Case With Six Sensors With Ten Sensors
No Interference 8.3% 1.3%
External Wire 13.8% 0.5%
Plate 4.2% 1.3%
Six Wires 23.3% 3.2%
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We then experimented with higher-level polynomial regression. This involved

transforming the input vector of magnetic fields into a vector containing higher level

products of the vector elements. In a 2nd degree transformation, this would mean

transforming the input vector 𝑏0, 𝑏1, ..., 𝑏𝑁 into a vector that also includes all possible

pairwise products, 𝑏20, 𝑏0𝑏1, 𝑏0𝑏2, ..., 𝑏2𝑁 . In a third degree transformation, the vector is

expanded to include all possible three-term product combinations, and so on.

Once the vector 𝑏 is transformed into a higher-level polynomial version of itself,

we proceed with regression using the same library function as before. This method

allows us to fit a function based not only on magnetic field readings, but also on

products of those readings, thus creating a function that better fits the relationships

between readings.

The results for 3rd degree regression for the four test cases are shown in Table

4.11 in the case of 6 and 10 sensors, and Figure 4-43 shows the results as a function

of the number of sensors used. This estimator also exhibited non-zero error in the

case of no external interference.

The results of the two estimators discussed in this section were mixed. Although

the first order Regression Estimator outperformed the OLS estimator when there

was external interference, it does not achieve 0% error when there is no interference.

The third order Regression Estimator formed very good estimates in the case when

there was a single external wire or plate, but performed poorly in the case of six

wires. Since the BLU estimator is more consistent in its ability to produce low

error estimates, we decided to focus on it instead of the Regression estimators when

performing experiments with hardware.

Table 4.11: Third order Regression Estimator error in the four special cases.

Case With Six Sensors With Ten Sensors
No Interference 7.9% 1.8%
External Wire 7.4% 3.2%
Plate 13.1% 2.0%
Six Wires 19.2% 1.7%
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Figure 4-43: Estimation error using the Regression Estimator with a third degree
polynomial transformation as a function of the nubmer of sensors used.

4.9.2 Neural Net Training

We trained neural nets to explore how well these could estimate currents in the

presence of interference. To train the nets, we used the same training set that we

used for the Regression Estimator discussed in the previous section, which simulated

magnetic field readings collected from a set of currents in the presence of 0-7 external

cables located at random locations around the yoke.

We trained the neural nets using the tensorflow framework. [1] The optimizer was

the Adam Optimizer [8] and the learning rate was set to 0.1. The function being

minimized was the RMSE,
∑︀2

𝑖=0(𝑦𝑖−𝑦𝑖)
2, where 𝑦 is the vector of true current values

in a training sample and 𝑦 is the current vector estimate produced by the neural

net. The input to the neural net was a 10x100 tensor, representing 10 magnetic field
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Figure 4-44: The training and validation errors of a neural network as a function of
the number of epochs trained. The training set used did not include magnetic field
interference.

readings in units of mT collected over 100 time samples. The training sample output

was a 3x100 tensor, representing the 3 correct current values over 100 time samples.

To confirm our code was working correctly, we first trained neural nets in the case

of no external interference. The resulting neural nets were able to produce extremely

accurate results. After 450 epochs of training, the RMSE training and validation error

were under 0.00005 𝐴2. The average current estimation error 0.25%. The training and

validation errors as a function of the number of epochs trained are shown at different

scales in Figures 4-44 and 4-45. The neural nets were able to achieve performance

comparable to the OLS and BLU estimator in the case when there was no external

interference, validating that the training data and the neural net itself were correctly
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Figure 4-45: A closer view of the training and validation errors after training for more
than 250 epochs for a training set that did not include external field interference.

coded.

We then trained the neural nets on the full training set, which included magnetic

field readings in cases with external interference. As previously mentioned, half the

training samples were free from interference and half the training samples had 1-7

external cables as interference. However, the neural nets were not able to achieve a

low error estimate. After 2000 epochs, the training error was still at 0.05 𝐴2. This

corresponded to an average current estimation error of around 5%. The error as a

function of training is shown at different scales in Figures 4-46 and 4-47. Since the

Neural Network Estimator did not produce estimates with less error than the BLU

Estimator, we decided to focus on the BLU Estimator when performing test bed

validation experiments.
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Figure 4-46: The training and validation errors of a neural net as a function of the
number of epochs trained. The training set used included readings with external
magnetic field interference.

4.9.3 Summary of Current Estimation Methods

We decided to use the BLU Estimator to estimate currents in the presence of chal-

lenging interference. Although the Regression estimator also produced estimates with

very little error, we chose the BLU estimator because of its better performance and

because its error is zero when there is no interference. Although other estimators

we considered, such as the Non-Linear Estimator, attempt to more accurately model

external interference, a fundamental weakness of these estimators is that the number

of parameters they can model is limited by the number of sensors in the system. This

is a weakness the BLU estimator does not have to overcome.

The neural networks we trained did not perform as well as other methods. We
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Figure 4-47: A closer view of the training and validation errors after 1400 epochs of
training on a training set that included external magnetic field interference..

believe this was because the training set contained both samples with and without

interference. The neural net tries to fit a function around all these samples, without

any knowledge of which samples are free of interference. An area for future research

may be the use of neural networks especially designed to distinguish between correct

and incorrect training samples, such as Siamese networks.

In the test bed validation experiments that follow, either the OLS Estimator or the

BLU Estimator using the second probabilistic model are used. Each experiment will

mention which estimator was used. The estimators are used with gain and covariance

matrices that were calculated using real hardware, not simulated values. Lastly,

although the OLS and BLU Estimators did not include the uniform field columns in

the simulated experiments that plotted estimate error as a function of the number of
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sensors, they do use gain matrices augmented with the uniform field columns in the

hardware experiments presented in the next section.

4.10 Test Bed Validation

4.10.1 Parallel Cable Test Bed

We used the parallel cable test bed to run 90 Hz current in a balanced three phase con-

figuration while placing different forms of external interference around the detector.

We ran these experiments at 90 Hz to be able to distinguish between the interference

created by the sources we introduced and ambient 60 Hz magnetic fields.

No external interference

In the first validation experiment, we applied 8.3 V 90 Hz voltages to the parallel cable

setup, producing a set of 1.67 A 90 Hz currents. We confirmed that the contact voltage

and current measurements we collected were correct by also measuring the voltages

with an oscilloscope. Figure 4-48 shows the readings output by the oscilloscope, which

were saved into a floppy disk as a CSV file.

Figure 4-49 shows the three OLS current estimates superimposed over the three

cable currents measured using contact measurements in the case when there is no

nearby interference. The contact measurements were performed by measuring the

voltage drops across the two resistors in the parallel cables test bed, shown in Figure

3-18, and assuming the return current was the sum of the first and third currents.

The constraint that the second current is the sum of the first and third currents is

unknown to the OLS estimator. The percent error between the estimate and the

measured current is 0.43%.

To confirm the gains of the estimator were scaling correctly, we applied 10 V 90

Hz voltages to the parallel cables setup, which produced a set of 2 A 90 Hz currents.

The oscilloscope readings of these voltages are shown in Figure 4-50.

The OLS estimate of these currents is shown in Figure 4-51. The error is 0.46%.
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Figure 4-48: A plot of the voltage data exported by the oscilloscope when 8.3 V 90
Hz voltage was output by the op-amps.

As the Figure shows, the detector is able to accurately estimate currents of different

magnitudes.

External Cables Interference

We placed a pair of external cables 1 cm above the detector as shown in Figure

4-52. The cables were running currents of the same magnitude and frequency as

the internal cables and had opposing signs with respect with each other. The OLS

estimate is shown in Figure 4-53. The error was 0.52%. As this experiment shows,

the OLS estimator was able to produce an accurate estimate even in the presence

of interference. This was due to the placement of the sensors, especially the vertical

sensors, since experiments with earlier versions of the detector that did not contain
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Figure 4-49: The OLS estimate of a set of 1.67 A 90 Hz currents.

vertical sensors performed much worse in similar experiments.

External Plate Interference

We placed an external plate 1 cm above the detector as shown in Figure 4-54. The

estimate is shown in Figure 4-55. The error was 0.54%.

Cable Bundle Interference

We placed a bundle of six external cables 1 cm above the detector as shown in Figure

4-56. The OLS estimate is shown in Figure 4-57. The error was 0.59%.
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Figure 4-50: A plot of the voltage data exported by the oscilloscope when 10 V 90
Hz voltage was output by the oscilloscopes.

Iron Core Interference

In the previous experiments, the OLS estimator was sufficient to estimate the currents

to less than 1% accuracy. However, we wanted to test a case in which a significant

estimation error was created by interference, to test whether the BLU estimator could

overcome this interference.

We placed an iron core 1.5 cm above the detector as shown in Figure 4-58. The

OLS estimate is shown in Figure 4-59 and had an error of 2.79%. We then applied

the BLU estimator to these readings and achieved the estimate shown in Figure 4-60,

which had an error of 0.90%. This demonstrated the covariance matrix generated

using hardware readings was effective in rejecting external interference.
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Figure 4-51: The OLS estimate of a set of 2 A 90 Hz currents.

No Current

We removed the cables from the detector to analyze the output of the estimator when

there were no internal currents. Figure 4-61 shows the estimator output. The current

estimates have a very low frequency and an amplitude in the range of 1 mA.

4.10.2 Lightbulb Demo

We connected the detector to the lightbulb demo. We placed two 15 W lightbulbs on

the demo. As previously mentioned, we used 1.08 Ω resistors to measure the current

in the demo box by measuring the voltage drop across the resistors. Figures 4-62 and

4-63 shows the currents across both resistors, as calculated by measuring the voltage

drop across both resistors and dividing the voltage by 1.08 Ω.
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Figure 4-52: A pair of external cables were placed 1 cm above the detector.

No Interference

Figure 4-64 shows the estimates produced by the detector superimposed over the

currents as measured with contact measurements. The two light bulb currents are

equal and in phase since the hot ends of the bulbs are both connected to 120 V RMS

power. The third current, however, is the sum of the first two and is 180 ∘ out of

phase. The estimate error was 0.77%.

External Cables Interference

A pair of external cable were placed 1.5 cm above the detector. The cables ran 0.2 A

90 Hz current. The estimate is shown in Figure 4-65. The error was 0.80%.
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Figure 4-53: The OLS current estimates.

External Plate Interference

An aluminum plate was placed 1.5 cm above the detector. The estimate is shown in

Figure 4-66. The error was 0.83%.

Cable Bundle Interference

A bundle of six cables was placed 1.5 cm above the detector. The cables ran 0.2 A

90 Hz current. The estimate is shown in Figure 4-67. The error was 0.88%.

4.11 Summary

The results presented in this chapter demonstrate that the current detector is able

to achieve current estimates with less than 1% error in the presence of challenging
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Figure 4-54: A plate was placed 1 cm above the detector.

interference. It is able to produce such accurate estimates due to both the placement

of the sensors and the algorithm used to form the estimate. We presented several

different current algorithms and tested them with the same set of computer simula-

tions. The simulations showed that the BLU estimator was the best algorithm due

to its high accuracy and its ability to produce zero error estimates in simulated cases

where there is no sensor noise or interference. Furthermore, we showed that the BLU

estimator was able to improve on an estimate that had been corrupted by a nearby

large iron core. Using the DRV425 sensor, the maximum current frequency that can

be detected is 47 kHz. Furthermore, the sensor placement and algorithms presented

in this chapter are valid for a sensor array using any magnetic field sensor that takes

point measurements. An area for further research is the use of different magnetic field

sensors that can detect a larger range or wider bandwidth of magnetic fields.
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Figure 4-55: An experiment in which currents were estimated in the presence of an
external plate.
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Figure 4-56: The bundle of six cables.
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Figure 4-57: An experiment in which current was estimated in the presence of six
external cables.
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Figure 4-58: An iron core was placed 1.5 cm above the detector.
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Figure 4-59: The OLS estimate with 2.79% error.
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Figure 4-60: The OLS and the BLU estimators are used to estimate current in the
presence of a large iron core.
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Figure 4-61: Current estimates when there are no internal currents.
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Figure 4-62: The current running through the left light bulb.
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Figure 4-63: The current running through the right light bulb.
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Figure 4-64: The current estimate of currents in the light bulb box.
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Figure 4-65: Current estimates of the light bulb box in the presence of a pair of
external cables.
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Figure 4-66: Current estimates of the light bulb box in the presence of a plate.

152



Figure 4-67: Current estimates of the light bulb box in the presence of six external
cables.
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Chapter 5

Voltage Estimation Methods

To achieve our goal of making contactless estimates of AC cable voltages we built

electrodes that capacitively coupled with the cable conductor and digitally processed

the electrode voltage. Our goal was to measure line-to-line voltage between adjacent

cables, rather than the voltage between each cable and some ground. We had to keep

two issues in mind while designing the voltage sensors: 1) ensuring the voltage picked

up by the electrodes was large enough to detect and 2) rejecting electrical interference

from nearby cables and machines. To achieve the former goal, we had to ensure the

effective capacitance between our electrode and the cable was as large as possible. To

achieve the latter goal, we used active shields around our sensing electrodes driven

by a buffering op-amp.

We experimented with two different implementations of the voltage sensors. Both

designs involved the use of electrodes to detect the electric fields between two adjacent

cables. The first sensor design used a coaxial cable conductor as the sensing electrode.

The second sensor design used a copper tape as the sensing electrode. We will now

discuss the first sensor design, followed by a description of the reasons we pursued a

different sensor design.
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Figure 5-1: A photograph of the first implementation of our voltage detector. The
exposed inner conductor of the coaxial cables can be seen. The red cables are the
power cables that carried the voltage being estimated.

5.1 Coaxial Cable Electrode Sensor

In the first implementation of the voltage sensor, two coaxial cables were placed in

between each pair of power cables in the yoke. The inner conductor of the coaxial

cable was exposed for a length of 1 cm. This exposed conductor was meant to serve

as the electrode that would pick up the electric field lines produced between the

power cables, thereby capacitively coupling with the AC voltage in the cables. The

dielectric between the cable conductor and the electrode consisted of both the power

cable insulation and the ABS material of the yoke. Figure 5-1 shows a photograph of

this implementation.

To protect the electrode voltage from external electric field interference, we used

156



Figure 5-2: A photograph of the first implementation of our voltage detector. The
exposed inner conductor of the coaxial cables can be seen. The red cables are the
power cables that carried the voltage being estimated.

an op amp to drive the coaxial shield to the same voltage as the electrode. A schematic

of this design in shown in Figure 5-2. Thus, with the exception of the exposed 1 cm

segment, the shield formed an active guard around the inner conductor protecting it

from external interference.

We tested the voltage sensors on the light bulb box described in Chapter 3. The

box connected to a wall outlet, providing an opportunity to estimate 120 V RMS 60

Hz voltage and to compare it to the true voltage measured using the resistor divider.

We modelled each electrode and cable as two nodes connected by a capacitor.

This meant that the electrode voltage would be the derivative of the cable voltage.

Thus, to form our estimate, we formed a running sum of the electrode voltage signal.
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The voltage estimate 𝑉𝑒𝑠𝑡 was formed by

𝑉𝑠𝑢𝑚[𝑖] =
𝑖∑︁

𝑛=0

(𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒[𝑛] − 𝑎𝑣𝑔(𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒)) (5.1)

𝑉𝑒𝑠𝑡[𝑖] = 𝛼(𝑉𝑠𝑢𝑚[𝑖] − 𝑎𝑣𝑔(𝑉𝑠𝑢𝑚)) (5.2)

The value 𝛼 was determined by the dielectric properties of the ABS material between

the electrodes and cable. Since we had not yet created a calibration mechanism to

determine this capacitance, we manually selected 𝛼 to make the amplitude of the true

voltage match the amplitude of the estimated voltage.

Initially, this procedure generated an estimate with low-frequency components

that did not exist in the true voltage waveform. The estimate exhibited an enveloping

effect when plotted as a function of time. However, after filtering components in the

estimate below 30 Hz, the estimate resembled the true voltage reading. Figure 5-3

shows the estimated waveform superimposed over the true voltage.

Nevertheless, the voltage sensor had a major problem: the amplitude of the elec-

trode voltage decreased with time, even though the amplitude of the true voltage was

constant. Figure 5-4 shows a plot of the amplitude of the electrode voltage as a func-

tion of time. We ensured the cables fit snugly inside the yoke to rule out mechanical

drift as a potential cause. We believe this problem occurred because the humidity

and temperature of the ABS yoke material changed with time, causing a change in

the properties of the dielectric between the electrode and cable conductor, and thus

changing the capacitance of the sensor. Since the issue was due to the design of our

electric field sensor, we decided to create a different sensing method.

5.2 Copper Tape Electrode Sensor

The second voltage sensor we designed used a rectangular piece of copper tape as the

sensing electrode. This copper tape was taped onto the cable channels in the yoke

so that when the yoke was clipped around a set of cables, each copper tape would

be in direct contact with the cable insulation. An illustration is shown in Figure 5-5.
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Figure 5-3: A plot of estimated and actual voltage in the light bulb box as detected
by the coaxial cable electrodes. The estimated waveform shape lines up well with the
actual waveform shape.

Thus, we eliminated the use of ABS plastic as a dielectric material between the cable

and electrode in order to overcome the temperature and humidity issue that affected

our previous design.

To shield the electrode from external electric fields, we also included a shielding

piece of copper tape that is driven to the same potential as the sensing electrode by

an op-amp. A piece of kapton tape separates the sensing electrode and the shielding

electrode. We used a TLV2371 op-amp because of its high input impedance, which

was desirable since the impedance of the capacitance between the cable and electrode

was also very high. To provide a reference to the ground of our sensing circuit, we in-

cluded a bypass resistor between the sensing electrode and ground. We experimented

with different resistor values, including 470 𝐾Ω, 1 𝑀Ω, and 10 𝑀Ω. This setup is
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Figure 5-4: A graph showing the change in the line-to-line differential electrode
voltage magnitude as a function of time.

illustrated in Figure 5-6.

Since the ground of our sensing system is not necessarily the same as the ground of

the three phase system being measured, we did not estimate absolute voltage values

for each cable. Rather, we estimated the voltage differences between adjacent pairs

of cables. If we refer to the voltages in the three cables as 𝑉𝑐𝑎𝑏𝑙𝑒,0, 𝑉𝑐𝑎𝑏𝑙𝑒1, and 𝑉𝑐𝑎𝑏𝑙𝑒,2,

then the two voltages we are estimating are 𝑉𝑐𝑎𝑏𝑙𝑒,0 − 𝑉𝑐𝑎𝑏𝑙𝑒,1 and 𝑉𝑐𝑎𝑏𝑙𝑒,1 − 𝑉𝑐𝑎𝑏𝑙𝑒,2.

Lumped Parameter Model

To estimate cable voltage it is necessary to understand the physical relationship be-

tween the cable and electrode. For this purpose, we developed a lumped parameter

model from which we could derive a transfer function to form the voltage difference

estimate.
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Figure 5-5: The electrode consisted of copper tapes taped along each cable channel
of the yoke. Beneath each copper tape is a piece of kapton tape, followed by a second
copper tape that served as the active shield.

Since the cable insulation serves as a dielectric separating the cable conductor

and the copper tape electrode, it can be modeled as a capacitor. The capacitor value

depends on the dielectric properties of the cable being used by the operator, which we

do not know beforehand. Therefore, it is necessary for our system to be calibrated.

This can be done by the operator by manually entering the correct voltage value for a

certain point in time. The capacitance can be solved using this value and the system

will then be able to estimate any voltage difference carried by the cable. However, we

also developed a method of automatically determining the capacitance by contactless
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Figure 5-6: A schematic showing how an op-amp was used to drive the shield to
the same potential as the sensing electrode. Signals 𝑉𝑂𝑢𝑡,1 and 𝑉𝑂𝑢𝑡,2 are read by the
ADC. The op-amps are powered by a battery to keep the detector ground separate
from the ground of the system being measured. This prevented the calibration signal,
discussed in the section on Automatic Calibration, from being shunted. The detector,
battery, and ADC all had the same ground.

injection of our own signal into the power cable. This method will be described in

Section 5.3.

The capacitance between the cable conductor and electrode also depends on the

dimension of the electrode. The larger the electrode is, the greater the capacitance

and the larger the signal we will receive from the cable. The width of the electrode

is limited by the cable diameter and the length of the electrode is limited by the

size of our detector. Although the detector is 6 cm in length, we also included an

electrode on the opposite end of the yoke meant for calibration, as we will describe in

the Section 5.3. The detecting and calibrating electrodes had to be kept as far apart

from each other as possible to avoid cross-capacitance. Thus, the electrodes in our

prototype were 1.5 cm long, and the calibrating and detecting electrodes were at a

distance of 3.0 cm from each other.

If the electric field lines between the cable conductor and electrode were straight,

we could calculate the electrode capacitance using the capacitance formula. For

example, with the 8 AWG cable used in our experiments, we can approximate the

cable diameter to be 6 mm, the insulation thickness to be 1 mm, and the insulation
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Table 5.1: Capacitance between different components of the voltage detector as mea-
sured by an impedance analyzer at 1000 Hz.

Components Capacitance
Cable to Electrode 5.4 pF
Electrode to Electrode 0.4 pF
Cable to Cable 0.2 pF

dielectric constant to be 3.2 (since it is made of silicone). The theoretical capacitance

is then

𝐶 =
𝜖𝑟𝜖0𝐴

𝑑
=

(3.2)(8.854 𝑝𝐹
𝑚

)(3 𝑐𝑚)𝜋(1.5 𝑐𝑚)

1 𝑚𝑚
≈ 4.0 𝑝𝐹 (5.3)

However, even if we were to measure the dimensions of the copper tape electrode,

the true capacitance would differ slightly from the value given by (5.3), not only

because the dimensions are just estimates, but also because of fringing electric field

lines at the edge of the electrode and curved field lines between the electrode and the

semicircular area of the cable not enclosed by the electrode.

To further understand the capacitance values between the components of our

voltage estimation system, we measured the capacitance between the electrode and

cable, between adjacent electrodes, and between adjacent cables using an impedance

analyzer. Ideally, we wanted the capacitance between the cable and electrode to

be much larger than the other capacitances, to obtain a meaningful signal from our

system. The capacitances are shown in the Table 5.1. The capacitance between

the electrode and cable was 13.5 larger than the capacitance between neighboring

electrodes and about 25 times larger than the capacitance between adjacent cables.

The true capacitance between the cable and electrode when the system is running

is different than the one measured by the impedance analyzer, since we did not have

the op-amps powered during the above analysis, and the introduction of live voltages

into the PCB board would somewhat change the configuration of the electric field

lines.

We now turned to the task of modelling the voltage detection system consisting
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Figure 5-7: A model of the voltage detection system if the op-amp were ideal. The
resistor represents the bypass resistor whose value we chose, and the capacitor models
the dielectric effect between the cable voltage and the electrode voltage.

of the electrode, the bypass capacitor, and the op-amp driving the active shield.

Assuming the op-amp is ideal, the system could be modeled as a high-pass RC filter

in which there is a capacitor between the cable voltage and electrode voltage and a

resistor between electrode voltage and ground, illustrated in Figure 5-7. The transfer

function of this model is

𝑉𝑜𝑢𝑡

𝑉𝑐𝑎𝑏𝑙𝑒

= 𝐻𝑒(𝑗𝜔) =
𝑗𝜔𝑅𝐶

1 + 𝑗𝜔𝑅𝐶
(5.4)

where 𝑉𝑐𝑎𝑏𝑙𝑒 is the cable voltage, 𝑉𝑜𝑢𝑡 is the electrode voltage that is read by the ADC,

and 𝐻𝑒 is the ratio between these two values.

(5.4) indicates that at low frequencies, the electrode voltage increases linearly with

frequency with a slope of RC, while at high frequencies, the electrode voltage would

be equal to the cable voltage. However, we found that the latter behavior did not

match the results of our experiments. When we applied high-frequency voltages to

the power cables, the electrode voltage did not match the amplitude of the cable

voltage, but instead settled to an amplitude slightly over half of the cable voltage.
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Figure 5-8: A lumped parameter model including the properties of the op amp.
Specifically, the input resistance, gain, and cutoff frequency of the op-amp were mod-
elled.

The measurements we collected are graphed in Figure 5-9.

Thus, we decided the op-amp was not behaving ideally. This was a reasonable

assumption, since the impedance of the electrode, in the range of 4 pF, and the

impedance of the bypass resistor, ranging from 470 𝐾Ω to 1 𝑀Ω for certain exper-

iments, were very high. These large impedances meant that the input impedance,

gain, and cutoff frequency of the op-amp could no longer be neglected, but rather

had to be included in our model.

We created a lumped parameter model for our voltage detection system using

the basic op-amp model, illustrated in Figure 5-8. This model involves an input

resistance 𝑅𝐼𝑁 , a low-pass filter modeled by a resistor 𝑅𝜏 and capacitor 𝐶𝜏 , and a

gain 𝐴. Solving for 𝑉𝑂𝑢𝑡 as a function of 𝑉𝐶𝑎𝑏𝑙𝑒, we derived the transfer function given
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by

𝐻𝑒(𝑗𝜔) =
𝑗𝜔𝐴𝑅1𝑅𝐼𝑁𝐶1

𝑅𝐼𝑁 + 𝑅1 + 𝑅𝐼𝑁𝐴𝜏 + 𝑗𝜔(𝜏(𝑅1 + 𝑅𝐼𝑁) + 𝑅1𝑅𝐼𝑁𝐶1(𝐴 + 1)) + (𝑗𝜔)2𝑅1𝑅𝐼𝑁𝐶1

(5.5)

where 𝜏 is equal to 𝐶𝜏𝑅𝜏 . Note that in an ideal op-amp, 𝐴 = ∞, 𝑅𝐼𝑁 = ∞, and

𝜏 = 0. Under these conditions, the transfer function above simplifies to the transfer

function found in (5.4).

To prepare this function for curve fitting experiments, we isolated independent

variables by dividing the denominator by the constants in the numerator, and making

the approximation (𝐴 + 1) ≈ 𝐴, since 𝐴 is typically around 100,000. The transfer

function is given by

𝐻𝑒(𝑗𝜔) =
𝑗𝜔

1
𝑅1𝐶1

+ 𝑗𝜔( (𝑅𝐼𝑁+𝑅1)𝜏
𝐴𝑅1𝑅𝐼𝑁𝐶1

+ 1) + (𝑗𝜔)2 𝜏
𝐴

(5.6)

=
𝑗𝜔

𝑎 + 𝑗𝜔𝑏 + (𝑗𝜔)2𝑐
(5.7)

The transfer function in (5.4) and (5.5) is in a form that can be curve-fit to solve for

three parameters. In practice, however, we could not reliably excite the (𝑗𝜔)2 term.

Although applying voltages beyond 80,000 Hz caused the output voltage amplitudes

to begin decreasing, the output voltage became triangular at these frequencies, in-

dicating we were exceeding the slew rate of the op-amp. Thus, we did not consider

the amplitude of these readings worthy of using for curve-fitting purposes. However,

since the value of the resistor was known, for the purpose of solving the capacitance of

the electrode 𝐶1 it was sufficient to identify the parameter 𝑎. Solving the parameter

𝑏 provided insight into the value of (𝑅𝐼𝑁+𝑅1)𝜏
𝐴𝑅1𝑅𝐼𝑁𝐶1

, which would become more useful for

the calibration procedure described in the next section.

To curve-fit the parameters of the transfer function, we applied a range of voltage

frequencies to the power cables with voltage detector attached. The voltages ranged

from 150 Hz to 40,000 Hz. We then curve-fit the magnitude of the gain between

electrode and cable voltages |𝑉𝑜𝑢𝑡|
|𝑉𝑐𝑎𝑏𝑙𝑒|

to the magnitude of the transfer function using
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Figure 5-9: The results of curve fitting the readings to a model that includes op-amp
properties. The measurements were collected using the USB-231 ADC.

the scipy.optimize.curve_fit function. The full script that performs this optimization

is named voltage_freq_response_fit.py and is found in Appendix A.

This transfer function was a good fit for the data we collected. The estimated

function is plotted against the data points in Figure 5-9. Parameter 𝑎 was found to

be 38101 𝑠−1, which implied a 𝐶1 value of 2.6 pF, which is a reasonable value for our

system setup. Parameter 𝑏 was found to be 1.72.

The shape of the frequency curve can be adjusted by choosing the value of the

bypass resistor. A larger bypass resistor will lead to larger signals at low frequencies,

since the slope 𝜔𝑅𝐶 will be larger, but will also cause the corner frequency of the

curve to move to a lower frequency. This will make the low-frequency portion of the

curve less linear.

167



Figure 5-10: A graph showing the sensing electrode amplitude as a function of the
cable voltage amplitude.

After experimenting with different resistor values, we selected a resistor of 10 𝑀Ω

for our system. One reason for this choice was to create a large electrode signal at 60

Hz. For example, a 400 V cable signal at 60 Hz would create an electrode signal of

(60 Hz)(2𝜋)(107 Ω)(3 pF) = 4.52 V, comfortably under the 6 V limit of the buffering

op-amps. In addition, moving the corner frequency of the frequency response curve

to a frequency that could be more easily measured by our hardware was important

for our automatic calibration mechanism, which will be discussed in Section 5.3.

The electrode voltage magnitude was a linear function of the cable voltage magni-

tude for both configurations of the voltage detector. Figure 5-10 shows a plot of this

relationship for a range of voltage magnitudes applied at two different frequencies.
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Figure 5-11: The noisy voltage estimate.

The data was collected using the detector with a 1 𝑀Ω bypass resistor.

Voltage Estimation and Noise Explosion

To estimate cable voltage from electrode voltage, we apply the inverse transfer func-

tion to the electrode voltage, given by

𝑉𝑐𝑎𝑏𝑙𝑒 = 𝑉𝑜𝑢𝑡

1
𝑅1𝐶1

+ 𝑗𝜔( (𝑅𝐼𝑁+𝑅1)𝜏
𝐴𝑅1𝑅𝐼𝑁𝐶1

+ 1)

𝑗𝜔
(5.8)

When estimating cable voltage, it was important to first filter sensor noise, since

the inverse transfer function above can magnify low-frequency noise. For example,

Figure 5-11 shows a voltage estimate in an experiment where a clean 20 VPP 70 Hz

was applied to a cable. Despite the true signal being clean, the estimate is wavy.
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Figure 5-12: Fourier Transform showing large low-frequency voltage estimate com-
ponents.

Figure 5-12 shows the Fourier Transform of the estimate, which reveals the problem:

the inverse transfer function caused the low-frequency components of the white noise

to take on large values in the estimate. Applying the custom noise filter described

in the Section 4.7.1, however, eliminates this problem and produced an estimate that

looked like a clean sinusoidal signal. A graph of two such signals can be seen in Figure

5-17.

Active Shielding

To test the effectiveness of the active shielding, we applied a 20 VPP 70 Hz signal to

the cables while introducing different forms of interference. The forms of interference

we experimented with were an aluminum plate 1 cm above the sensor, a human hand
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Table 5.2: Comparison of electrode voltage change in the presence of interference
with and without active shielding.

Case No Shielding (% Error) With Shielding (% Error)
No Interference 0.1087 V 0.0463 V
Aluminum Plate 0.1113 V (2.4%) 0.0461 V (0.4%)
Iron Plate 0.1111 V (2.2%) 0.0461 V (0.4%)
Hand 0.1121 V (3.1%) 0.0462 V (0.2%)

Figure 5-13: To calibrate the system, we apply a known signal to the calibrating
electrode, represented on the left side of the figure, which capacitively injects a voltage
into the cable that then creates a voltage in the sensing electrode.

1 cm above the sensor, and a round iron plate 1 cm above the sensor. Table 5.2 shows

the values of the change in electrode voltage magnitude when sources of interference

were introduced when the active shield was driven by the op-amp and in the case

when it was not. The results show that the active shielding reduces the effect of

external interference by more than a factor of 5.

5.3 Automatic Calibration

As previously mentioned, the capacitance between the sensing electrode and the ca-

ble is unknown beforehand because it depends on the dielectric properties and the

exact dimensions of the cable insulation. We have designed a method to determine

the electrode capacitance automatically, without requiring the operator to input the

correct voltage value at any point in time.

To do this, we include a second electrode, which we will call the calibration elec-

trode, in each yoke cable channel on the opposite end of the sensing electrode. The

calibration electrode and the sensing electrode are equal in width and length, but are

3 cm apart from each other, and thus have minimal cross-capacitance. The calibra-
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tion electrode is protected by a shielding electrode driven to ground. The calibration

electrodes can be seen on a yoke in Figure 5-5.

A known voltage is applied to the calibration electrode through a buffering op-

amp. The calibration voltage induces a voltage in the power cable through the cali-

brating electrode capacitance. The voltage in the power cable then induces a voltage

in the sensing electrode through the sensing electrode capacitance. If these two ca-

pacitance values are equal, the system can be modeled as a circuit in which there

are two capacitors in series between the calibration voltage and the sensing electrode

voltage with the same capacitance 𝐶1. Once the transfer function between the cal-

ibration voltage and the electrode voltage is known, we can solve for the electrode

capacitance. Figure 5-13 shows a schematic of the automatic calibration system.

We invented this method in May 2018. We have recently found a method very

similar to this described in [15]. However, the paper simply mentions that this is a

potential technique they would like to develop, and no results have been presented

as to its development. We believe we are the first team to present results with this

method.

The illustration in Figure 5-13 is oversimplified to only show one power cable.

In actuality, there are three power cables connected through unknown impedances

with possible capacitances between them. Figure 5-14 shows a more complete model

with the unknown impedances between two power cables. To avoid having to solve

for these impedances during calibration, we apply the same calibration voltage to

all three power cables. Since the cables are at the same potential at the calibration

frequency, the impedances between them will not factor into the transfer function

between the calibration voltage and the sensing electrode voltage.

To perform calibration, we used a pair of 6 V batteries to supply power to the

detector system, rather than using a power supply connected to the wall. This is

because when the detector is plugged into wall power, the unknown impedance be-

tween the cable and the ground of the detector is too low and provides a shunting

path for the calibration voltage that will redirect the calibration signal away from the

sensing electrode. This shunting path is shown in orange dashed lines in Figure 5-14.
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Figure 5-14: A model showing the full system model of a pair of power cables,
the sensing electrodes, the op-amps driving the active shield, and the calibrating
electrodes. If the impedance between the ground of the power cables and the ground
of the sensing system is low enough, a shunting path will exist, shown in orange
dashed lines, that will greatly reduce the output voltage created by the calibration
signal.

Using a pair of batteries to power the detector system, and therefore keeping the

detector system ground and the power cable grounds electrically isolated, prevents

this shunting path from existing.

However, even when using batteries to power the detector system, we observed that

the calibration at the sensing electrode was different depending on whether the power

cables were physically disconnected or connected to the power supply. Additionally,

we noticed that the calibration signal detected by the sensing electrodes changed

depending on the position of the cables and the physical size of the load that was

attached to the cables. This led us to conclude that there was another significant

component to the model of the calibration system: a parasitic capacitance between

the power cables and the ground of the detector system. This capacitance exists due

to the electric field lines emanating through the air and connecting the power system

and the detector system. Although this capacitance would normally be negligible in
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Figure 5-15: The lumped parameter model involving the shunt capacitance as well
as the op-amp characteristics.

most electrical projects, the high impedances involved in the calibration system cause

this parasitic capacitance to affect the outcome of our results.

Due to the parasitic capacitance, a more correct model of the calibration circuit

for a single power cable involves a capacitance between the power cable and ground,

as shown in Figure 5-15. We refer to this as the shunt capacitance. The transfer

function of this lumped parameter model is

𝑉𝑜𝑢𝑡

𝑉𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

= 𝐻𝑐(𝑗𝜔) =
𝑗𝜔𝐴𝑅1𝑅𝐼𝑁𝐶

2
1

𝑑(𝑗𝜔)
(5.9)

𝑑(𝑗𝜔) =(2𝐶1 + 𝐶𝑆)(𝑅𝐼𝑁 + 𝑅1 + 𝑅𝐼𝑁𝐴)

+ 𝑗𝜔((2𝐶1 + 𝐶𝑆)𝜏(𝑅1 + 𝑅𝐼𝑁) + (𝐶2
1 + 𝐶𝑆𝐶1)𝑅1𝑅𝐼𝑁𝐶1(𝐴 + 1))

+ (𝑗𝜔)2𝜏𝑅1𝑅𝐼𝑁(𝐶2
1 + 𝐶𝑆𝐶1) (5.10)

To prepare this function for curve fitting, we divided the numerator term into

the denominator, and made the approximation that 𝐴 + 1 ≈ 𝐴, since A is typically
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around 100,000. The transfer function then simplifies to

𝑉𝑜𝑢𝑡

𝑉𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

= 𝐻𝑐(𝑗𝜔) =
𝑗𝜔

(2𝐶1+𝐶𝑆

𝐶1
) 1
𝑅1𝐶1

+ 𝑗𝜔((2𝐶1+𝐶𝑆

𝐶1
) (𝑅𝐼𝑁+𝑅1)𝜏
𝐴𝑅1𝑅𝐼𝑁𝐶1

+ 𝐶1+𝐶𝑆

𝐶1
) + (𝑗𝜔)2 𝜏

𝐴
(𝐶1+𝐶𝑆

𝐶1
)

(5.11)

=
𝑗𝜔

𝑎𝑐 + 𝑗𝜔𝑏𝑐 + (𝑗𝜔)2𝑐𝑐
(5.12)

When the shunt capacitance 𝐶𝑠 is set to 0, (5.11) simplifies to the function in

(5.6) with the electrode capacitance set to 𝐶1

2
, since the input signal must now travel

through two capacitors of equal capacitance in series.

5.3.1 Capacitance Estimation Procedure

We estimate the capacitance 𝐶1 by taking voltage measurements to solve for the

parameters of 𝐻𝑒(𝑗𝜔), the transfer function between the cable and the output voltage,

and 𝐻𝑐(𝑗𝜔), the transfer function between the calibration voltage and the output

voltage. Since our hardware did not allow us to produce frequencies high enough to

observe the (𝑗𝜔)2 terms, we could only solve for two parameters in either transfer

function. However, the term (𝑅𝐼𝑁+𝑅1)𝜏
𝐴𝑅1𝑅𝐼𝑁

, which we can refer to as the hardware term

ℎ, appears in both transfer functions. It was thus possible to use the four transfer

function parameters to solve for the three unknown values, 𝐶1, 𝐶𝑠, and ℎ.

To estimate the capacitance, we first apply voltages directly to the power cable

to determine the parameters 𝑎 and 𝑏 of transfer function 𝐻𝑒(𝑗𝜔). The parameter 𝑏

allows us to solve for the hardware term ℎ, since 𝑏 = 1 + ℎ
𝐶1

. This hardware term

should stay the same when the detector is removed from one cable and attached to

another, since it does not involve the value of the electrode capacitance. Therefore,

this term can be determined when the detector is manufactured.

We can then estimate the capacitance by applying voltages to the calibration

electrode to determine the values of the parameters 𝑎𝑐 and 𝑏𝑐 of transfer function
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Table 5.3: Electrode voltage when different voltage frequencies were applied directly
to the cable.

Frequency (Hz) 𝑉𝑐𝑎𝑏𝑙𝑒 (V) 𝑉𝑜𝑢𝑡 (V)
70 3.8453 0.0217
140 0.0403 3.6017
51,179 Hz 0.7035 0.4246

Table 5.4: Electrode voltage when different voltage frequencies were applied to the
calibrating electrode while the power cables were disconnected from any load.

Frequency (Hz) 𝑉𝑐𝑎𝑏𝑙𝑒 (V) 𝑉𝑜𝑢𝑡 (V)
70 0.0043 3.8474
140 0.0080 3.6047
51,103 1.009 0.1149

𝐻𝑐(𝑗𝜔). Then, we can estimate 𝐶1 using the formula

𝐶1 =
1 + 𝑏𝑐 −𝑅1𝑎𝑐ℎ

𝑅1𝑎𝑐
(5.13)

where 𝐶1 is the estimate of the capacitance. This formula can be derived from (5.11).

However, our experiments did not yield accurate capacitance estimates, which we

believe was due to limitations of the hardware we used. Below we will present the

results we obtained, followed by an explanation of the next steps necessary to achieve

better results.

To determine the hardware term ℎ and the true capacitance 𝐶1, we first applied

voltages at low and high frequencies directly to the cable and measured the output

at the sensing electrode. The values for low and high frequency terms are found in

Table 5.3. These measurements yielded values of 𝑎 = 77980 𝑠−1 and 𝑏 = 0.6035. This

implied a capacitance of 𝐶1 = 1.26 pF and a hardware term of ℎ = 0.803 pF.

We then applied voltages at low and high frequencies to the calibration electrode

while the power cables were disconnected from any loads. Relevant values are shown

in Table 5.4. For these readings, 𝑎𝑐 = 395367 𝑠−1 and 𝑏𝑐 = 0.1138. These values,

together with the hardware term ℎ, yielded a capacitance estimate of 𝐶1 = 1.63 pF.

This is an estimation error of 29%.
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We also tested other cases, such as the case when the cables are connected to

the power op-amps in the parallel cable test bed. We applied a range of voltage fre-

quencies to the calibration electrode. Table 5.5 shows relevant voltage values. These

measurements yielded values of 𝑎𝑐 = 648079 𝑠−1 and 𝑏𝑐 = 20.03. The capacitance

estimate is 2.39 pF, an 89% error.

These results indicate that the hardware we used was not a good fit for the model

we developed. The most likely reason for this problem is that the capacitance between

the calibrating electrode and the power cable is not equal to the capacitance between

the power cable and the sensing electrode. This is likely due to the fact that we were

using wires to provide a common mode calibration signal from circuits outside the

PCB board. Although we pushed the calibration wires as far away from the cables

as possible, as shown in Figure 5-16, they may still have created parasitic coupling

with the power cables. In addition, our low-frequency voltage source and the high

frequency voltage source were on opposite ends of the detector, and we had to move

a wire to switch between these two sources, which could have affected the readings

we received. A better approach would be to generate the signal from within the

PCB board and use PCB board traces to supply the calibration signal, to ensure

the calibration electrode capacitance is as close as possible to the sensing electrode

capacitance. Additionally, it would be helpful to use an op-amp with a slew rate fast

enough to process signals beyond 80,000 Hz. Producing such high frequencies will

allow us to excite the 𝜔2 term of the transfer functions and even allow for estimating

𝐶1 without first having to determine the hardware term with a separate frequency

sweep.

Table 5.5: Comparison of electrode voltage change in the presence of interference
with and without active shielding.

Frequency (Hz) 𝑉𝑐𝑎𝑏𝑙𝑒 (V) 𝑉𝑜𝑢𝑡 (V)
70 3.8311 0.0026
140 3.5968 0.0052
54732 0.6031 0.0301
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Figure 5-16: Although the wires used to supply calibration signal were pushed as
far away from the red power cables as possible, they may still have coupled with the
cables.

5.4 Test Bed Validation

5.4.1 Parallel Cable Test Bed

Just as we did for current estimation, we used the parallel cable test bed to validate our

voltage estimation techniques. Since the calibration system is still under development,

the electrode capacitance was calibrated manually by selecting the correct capacitance

value that would make the peaks of the waveform match.
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No external interference

We applied a pair of 8.3 V 90 Hz voltages phase shifted by 120 ∘ across the parallel

cable test bed. This was done to be able to compare the amplitude of the voltage

estimate to the amplitude of the 60 Hz pickup from ambient electric fields. Figure

5-17 shows the two voltage estimates superimposed over the contact measurements

of the voltages. Since the voltage detection system must remain isolated from the

system it is measuring, these waveforms were not obtained simultaneously. However,

once superimposed, the estimate fits over the contact measurement very well. The

capacitance between the cable and electrodes was found to be 3.03 pF in this experi-

ment. The estimate error for this experiment was 0.43%. Since we manually adjusted

the capacitance value to make the amplitudes of the estimates and measurements

match, the source of this error was noise in the readings of the ADC.

To confirm the estimates scaled correctly, we applied a pair of 10.0 V 90 Hz

voltages and used the same electrode capacitance value. The estimate is shown in

Figure 5-18. The error was 0.62%.

External Cables Interference

We then placed a pair of external cables 1.5 cm above the detector as shown in

Figure 5-19. The cables contained voltages at the same frequency and magnitude as

the internal cables, 8.3 V and 90 Hz. The estimates and contact measurements are

shown in Figure 5-20. The error was 0.67%.

External Plate Interference

We placed an aluminum plate 1.5 cm above the detector as shown in Figure 5-21.

The estimate is shown in Figure 5-22. The estimation error was 0.68%.

Cable Bundle Interference

We placed a bundle of six cables 1.5 cm above the detector as shown in Figure 5-

23. The cables contained the same magnitude and frequency voltage as the internal
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Figure 5-17: Voltage estimates superimposed over a contact measurements. There
was no external interference. The error was 0.43%

cables, 8.3 V and 90 Hz. The estimates are shown in Figure 5-24. The error was

0.62%.

Empty Detector

We removed the cables from the detectors and ran a voltage estimate. The estimate

is shown in Figure 5-25. Note that the y axis is scaled by 10−15. This figure shows

that in the absence of cable voltage differences the estimator output is practically

zero.
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Figure 5-18: Voltage estimates of higher magnitude voltage. There was no external
interference. The error was 0.62%.

5.4.2 Lightbulb Demo

We estimated voltages using the lightbulb demo to examine wall power and the har-

monics within contained in it. As previously mentioned, the lightbulb demo contained

a voltage divider that we used to safely perform contact measurements of voltage. The

measured voltage waveform is shown in Figure 5-26. The Fourier transform of this

measurement is shown in Figure 5-27. As the Fourier transform shows, the signal is

not a clean sinusoidal signal, but rather contains many harmonics that our estimator

must correctly match.
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Figure 5-19: A pair of cables were placed 1.5 cm above the detector.

No Interference

Figure 5-28 shows the voltage estimate superimposed over the contact measurement.

The estimate lined up very well with the measured voltage, recreating the character-

istic flat slope after each peak. The error was 0.82%.

External Cables Interference

We placed a pair of cables 1.5 cm above the detector. The cables contained 8 V 90 Hz

voltage. As Figure 5-30, the change in the output voltage was minimal. The error was

0.83%. Figure 5-31 shows a Fourier Transform of the voltage estimate, where the 90

Hz interference created by the external cables is visible, but two order of magnitudes

lower than the 60 Hz signal. Note that the vertical axis of the graph in this Figure is

logarithmic.
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Figure 5-20: The estimated voltages superimposed over the measured voltages when
two cables were placed above the detector. The voltage estimation error was 0.67%.

External Plate Interference

We placed a plate 1.5 cm above the detector. The voltage estimate is shown in Figure

5-34. The error was 0.83%.

Six Cables Interference

We placed six cables 1.5 cm above the detector. The cables contained 8 V 90 Hz

voltage. The voltage estimate is shown in Figure 5-35. The error was 0.95%. The

Fourier transform of this estimate is shown in Figure 5-36. The 90 Hz interference

caused the electrodes to pick up a small, signal but it is two orders of magnitude less

than the 60 Hz signal.
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Figure 5-21: A plate was placed 1.5 cm above the detector.

5.5 Summary

The results presented in this chapter demonstrate that the voltage detector we have

built produces accurate estimates and is very immune to noise. The test bed vali-

dation experiments showed that when external interference is introduced, the active

shield of the voltage detector prevents the estimation error from exceeding 1%. The

voltage detector is capable of detecting signals as high as 80 kHz, since that is close to

the highest frequencies the TLV2371 op-amp used to drive the active shield can han-

dle. We developed a lumped parameter model of the physical relationship between the

cable voltage and electrode voltage and verified the model with experimental results.

Although we also developed a model for the physical relationship between the cali-

bration electrode and the cable, the experimental results did not fit into the model.

However, we believe this occurred due to limitations with the hardware we used and

that a different prototype can yield results that will fit the model. Specifically, a single

signal generator source capable of producing both low-frequency and high-frequency

outputs should be used. Since we used two separate sources, we had to disconnect,

184



Figure 5-22: The estimated voltages superimposed over the measured voltages when
a plate was placed above the detector. The voltage estimation error was 0.68%.

move, and reconnect the wires carrying the calibration signal during our frequency

sweep, which could have affected our results. It would also help to use a signal gener-

ator mounted on the PCB to minimize stray capacitance between detector wires and

power cables. Additionally, using an op-amp capable of outputting sinusoidal signals

greater than 80,000 Hz would be useful to observe the 𝜔2 components of the voltage

detection transfer functions.

One weakness of the voltage detector is that, although the capacitance value was

consistent and stable for a single sensing electrode, the capacitance values varied

greatly among different electrodes. For example, one electrode may have typically

had a capacitance around 3 pF when placed around a cable, while another electrode

could have a capacitance of 1.2 pF when placed around the same cable. In one
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Figure 5-23: A bundle of six cables was placed 1.5 cm above the detector.

instance, reinforcing the soldering on one of the op-amps changed the capacitance

of the electrode. An area of future research can be to investigate why this happens

and what design decisions are necessary to manufacture electrodes that will have

consistent capacitances.
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Figure 5-24: The estimated voltages superimposed over the measured voltages when
a a bundle of six cables was placed above the detector. The estimation error was
0.62%.
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Figure 5-25: Voltage estimates were practically zero when the cables in the detector
were removed.
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Figure 5-26: The lightbulb demo voltage.

189



Figure 5-27: The Fourier transform of the light bulb voltage. The vertical scale is
logarithmic to allow the higher level harmonics to be seen. The custom noise filter
described in Section 4.7.1 with a threshold of 0.0008 was applied to the measurements
before the logarithmic scale was applied.
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Figure 5-28: The lightbulb demo voltage in the case without interference.
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Figure 5-29: A pair of cables was placed 1.5 cm above the detector.
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Figure 5-30: The light bulb demo voltage estimate in the presence of interference
from two cables.
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Figure 5-31: The Fourier transform of the estimated voltage when a pair of cables was
placed over the detector. The vertical axis is logarithmic to allow for observation of
small signals. The 90 Hz interference created by the external cables can be observed,
but it is two orders of magnitude smaller than the main 60 Hz signal.
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Figure 5-32: A plate was placed 1.5 cm above the detector.
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Figure 5-33: The voltage estimate when a plate was placed above the detector.

Figure 5-34: A bundle of six cables was placed 1.5 cm above the detector.
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Figure 5-35: The estimate in the presence of six external cables.
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Figure 5-36: The Fourier transform of the estimated voltage when a bundle of six
cables was placed over the detector. The vertical axis is logarithmic to allow for
observation of small signals. The 90 Hz interference created by the external cables
can be observed, but it is two orders of magnitude smaller than the main 60 Hz signal.
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Chapter 6

Power Estimation

We used the voltage and current estimates to form a power estimate, which is simply

the product of those two estimates. The power at a time sample n is given by

𝑃𝑜𝑤𝑒𝑟[𝑛] = 𝑉 𝑜𝑙𝑡𝑎𝑔𝑒[𝑛] * 𝐶𝑢𝑟𝑟𝑒𝑛𝑡[𝑛] (6.1)

6.1 Power Estimates

6.1.1 Parallel Cables Test Bed

Figure 6-1 shows the estimated and measured power waveforms of the parallel ca-

bles test bed when 8.3 V 90 Hz voltages were applied to create a balanced three

phase set of 1.67 A 90 Hz currents. The estimated power waveforms were obtained

by multiplying the estimated currents across both resistors by the two line-to-line

voltages estimated by the detector. However, in our setup, the measured current is

calculated by measuring the voltage drop across the resistors and dividing by the

resistance. Therefore, there was no phase lag between measured voltage and current.

However, the two estimated currents and voltages were slightly out of phase and the

error between the measured and estimated power waveforms was 2.57%. We have not

yet closely investigated whether the phase lag really existed or was due to hardware

limitations of the ADC. An area of future research could be to research the cause of
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Figure 6-1: The estimated power waveforms in the parallel cables test bed superim-
posed over the measured power waveforms of the test bed.

this phase lag and to use different measurement methods to confirm these results.

6.1.2 Lightbulb Demo

We also measured and estimated the power in the lightbulb demo in which we con-

nected a pair of 15 W lightbulbs. The measured and estimated power waveforms are

shown in Figure 6-2. Since the light bulbs were both powered by the same 120 V

RMS 60 Hz power line, their power waveforms are in phase. The estimated RMS

values of the two power waveforms were 15.97 W and 16.17 W. The measured RMS

values were 15.83 W and 16.38 W. The estimation error between the measured and

estimated waveforms was 0.98%.
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Figure 6-2: The estimated and measured power waveforms of the lightbulb demo
superimposed.

6.2 Summary

This chapter provided a brief survey of power estimation using the detector, which is

one of its main potential commercial applications. Measuring the power consumed by

a machine is useful both for monitoring its health and for understanding the financial

cost of its operation. To make the power estimates as accurate as possible, more

research can be done into understanding whether the Measurement Computing ADC

units were introducing phase lag into the estimated current and voltage waveforms.
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Chapter 7

Summary, Conclusions, and

Suggestions for Future Work

We were successful in creating a detector that could estimate current and voltage in

a set of three cables with less than 1% error in the presence of external interference.

The current estimate was formed using ten DRV425 fluxgate magnetic field sensors.

These sensors are low-cost, highly accurate, resistant to changes in temperature,

and capable of detecting a bandwidth of up to 47 KHz. The voltage sensors were

built using copper tape and TLV2371 op-amps, which were capable of processing

frequencies higher than 47 KHz. In bulk, the detection hardware can cost around

$60. Since the detector estimates voltage and current in three cables at once, this

represents a significant cost savings over, for example, currently available 200 A Hall

effect sensors, which can cost $90 to estimate current in one cable. Furthermore,

this detector is contactless and convenient to clip around a set of three cables. The

power system being estimated does not need to be shut down for the detector to be

installed. Lastly, since the estimated waveforms are digital, many different types of

analysis can be performed on them, including Fourier transforms of the estimates and

analyzing spectral components.

The technology we developed has the potential to be a novel and disruptive prod-

uct in the field of industrial power monitoring. By using software algorithms to replace

the role that heavy and costly hardware performs in other products, the current and
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voltage detector can offer cost and accuracy advantages over competing products.

The detector we developed met our thesis goals, and we believe it should continue to

be developed into a more refined commercial product.

Several hardware and software design decisions made it possible for the detector to

achieve a high level of performance. We chose the DRV425 sensor to form our current

estimates due to its highly accurate readings of magnetic fields, which allowed us to

produce estimates with lower error than if we used a different, less-accurate sensor.

We arranged the ten magnetic field sensors in a configuration that placed the sensors

as close as possible to the cables and also used the vertical spacing between and to

the sides of the cables. This sensor layout, especially the use of vertically oriented

sensors, reduced the error of our current estimates. We also tested a variety of different

current estimators, namely: the Ordinary Least Squares Estimator, the Ampere’s

Law Estimator, the Non-Linear Estimator, the Spatial Harmonics Estimator, the

Polynomial Estimator, the BLU Estimator, the Regression Estimator, and the Neural

Net Estimator. The physics simulator we built was essential in comparing these

estimators, as we were able to run simulations that allowed us to analyze how different

estimators as well as different sensor placements and different numbers of sensors

performed in the presence of many types of external interference. In the end we

chose the BLU Estimator for current estimation, due to its consistently low error in

the presence of external interference, its ability to produce estimates with zero error

when there is no noise or interference, and its ability to perform estimates without

requiring a specific number of sensors for a given number of external magnetic field

sources.

Although we applied a series of currents through each cable to measure the values

of the gain matrix used in the OLS and BLU current estimators, it is likely these

values would not have to be measured for every detector manufactured. With good

manufacturing tolerances, the matrix could be measured once for the array of sensors

designed and then be used for all detectors, since the amount of estimation error

introduced by minor sensor misplacement tends to be small.

We were able to perform accurate voltage estimates in the presence of interference
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by shielding the signals in the voltage detection system. We placed an active shield

around the electrode used to sense the cable voltage and used an op-amp to drive it

to the same voltage as the sensing electrode. We placed a ground plane in the PCB

board to shield the sensing electrode signal from the signals in the traces of the PCB

board. We also placed the traces of each pair of sensing electrode outputs as far apart

as possible from each other on the PCB board to avoid cross capacitance between

them. These designs all contributed to the minimal level of parasitic capacitance and

high level of accuracy in our voltage estimates.

We also developed a system to automatically calibrate the capacitance of the

electrode used in the voltage detection system. We identified two key aspects critical

to design of such a calibration system; namely, that the ground of the detection system

has to remain isolated from the ground of the power system being measured to prevent

the calibration signal from being shunted, and that the capacitance between the power

system and the detector ground must also be included in a calibration model. In the

prototype we used, we were able to estimate electrode capacitance with an error of

30% to 90%, but this error can be improved with better prototype manufacturing.

We conducted several test bed experiments to validate the performance of the

current and voltage detector. We estimated currents and voltages without introducing

interference, and we performed a second estimate with currents and voltages of a

different amplitude to ensure the parameters of our estimators scaled linearly. We

then introduced a pair of cables as a form of interference, followed by a large aluminum

plate, and lastly, a bundle of six cables. These items are representative of sources

of magnetic and electric field interference that are found in real electrical closets.

Furthermore, we conducted these experiments in two different test beds. The parallel

cable test beds allowed us to drive the currents at amplitudes and frequencies of our

choosing. We presented experiments in which we drove the currents at 90 Hz, to be

able to distinguish the error introduced by nearby cables and plates from the error

introduced by ambient 60 Hz fields. The light bulb demo test bed allowed us to

use the detector to estimate power coming from the wall, which contained harmonics

that the detector estimates matched well. The test bed experiments provided an
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opportunity to demonstrate the capabilities and versatility of the detector when used

on real electrical systems.

There are several areas of the thesis work in which further research can be bene-

ficial. One such area is the mathematical analysis of the OLS estimator. Specifically,

it would be useful to analyze why the introduction of vertical sensors created a sig-

nificant drop in the OLS estimate of currents. It would also be useful to analytically

minimize (4.8) to determine the optimal placements of sensors using more mathemat-

ically rigorous techniques.

Of all the current estimation methods we tested, the BLU estimator yielded the

best results. Another area of future research could be the development of additional

probabilistic models of external cables that can produce a covariance matrix which

can yield even better results. More irregular forms of interference can also be modeled,

such as screwdrivers and small iron plates. These objects do not necessarily have to

be modelled in a simulation and can instead be measured using hardware to develop

an empirical covariance matrix.

Another possible area of future research is the modelling of the PCB traces that

powered the magnetic field sensors and interfered with their readings. Although this

problem was overcome by using hardware to measure the gain between cable currents

and sensors, it would be useful to create a physics simulator sophisticated enough to

generate gain and covariance matrices that can produce estimates with less than 1%

error in hardware. Such a simulator would preclude the need to calibrate detectors

before they can be used to detect current.

An important task for the detector to become a viable commercial product is

to create a mechanism to place cables of different sizes in the center of the yoke

channels. In our experiments, the yokes were 3D printed to fit snugly around the

cables. However, in practice, it will not be possible to manufacture yokes for every

possible cable size, since cables of the same gauge can vary in diameter by millimeters

depending on the manufacturer. Therefore, some mechanism such as foam or screws

are needed to hold the cable in place. It should be noted that spacing between the

cable insulation and the walls of the yoke channels along which the electrodes are
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taped will decrease the capacitance between the cable and the electrode.

The results of the automatic calibration can be improved by using better hardware.

We recommend using a signal generator chip integrated into a PCB board, to reduce

the amount of wires used to supply the calibration signal. Including a ground plane

to shield the calibration signals on the PCB board from the cable would be ideal.

The signal generator must provide signals as high as 50,000 Hz, but providing signals

higher than 80,000 Hz, as well as using an op-amp that can output sinusoidal signals

at frequencies above 80,000 Hz, should be sufficient to excite the 𝜔2 terms of the

transfer functions presented in Chapter 5 and would allow for an estimate of 𝐶1 to

be performed using only one frequency sweep.

Lastly, more research can be done into individual machine monitoring using the

voltage and current waveform estimates produced by our detector. For example, we

could easily tell when the light bulb demo box was disconnected from a wall or when

a light bulb was removed because the voltage and current readings would change

dramatically. Similarly, a machine’s states can be identified by analyzing the amount

of current they are drawing and the voltage on the power lines. Online machine

learning techniques can be used to learn a machine’s behavior and normal operating

characteristics. The accurate estimates produced by the detector will allow future

research teams to perform many kinds of analysis on the collected digital waveforms

without being concerned about the hardware and algorithms used to generate these

estimates.
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Appendix A

Source Code

This section lists the relevant Python scripts. To run these scripts, the following

Python dependencies need to be installed:

∙ SciPy and Numpy.

∙ Matplotlib.

∙ Scikit-learn.

∙ Tensorflow.

∙ Mcculw.

The files are listed in the following order:

∙ simulator folder files, in alphabetical order.

∙ utilities folder files, in alphabetical order

∙ neuralnetworks folder files, in alphabetical order.

∙ All other files in alphabetical order.

simulator/sensor_placer.py
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1 import numpy as np

2

3 #height and width of space between cable and sensors , in meters

4 h = 0.00525

5 w= 0.015

6 xof = .0075

7

8 def addtopbottom(loc_array ,i,n):

9 loc_array[i,:] = [xof +.0015*n,h,xof +.0015*(n+1),h]

10 loc_array[i+1,:] = [xof +.0015*(n+1) ,-h,xof +.0015*n,-h]

11 return loc_array

12

13 def addsideways(loc_array ,i,n):

14 loc_array[i,:] = [xof ,.0015*n-h,xof ,.0015*(n+1)-h]

15 loc_array[i+1,:] = [xof +.015 ,.0015*n-h,xof +.015 ,.0015*(n+1)-h]

16 loc_array[i+2,:] = [xof +.030 ,.0015*n-h,xof +.030 ,.0015*(n+1)-h]

17 loc_array[i+3,:] = [xof +.045 ,.0015*n-h,xof +.045 ,.0015*(n+1)-h]

18 return loc_array

19

20 def create_location_array ():

21

22 sorder = [3,1,5,0,6,2,4]

23 torder = [4,2,7,1,8,0,9,3,6,5]

24

25 cnt = 0

26 tcnt = 0

27 scnt = 0

28 i = 0

29 loc_array = np.zeros ((88 ,4))

30

31 firstgroup = []

32 secondgroup = []

33 thirdgroup = []

34

35

36 while cnt < 88:
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37 addtopbottom(loc_array ,cnt ,torder[tcnt])

38 firstgroup.append ((cnt ,-1))

39 firstgroup.append ((cnt+1,-1))

40 cnt += 2

41 addtopbottom(loc_array ,cnt ,10+ torder[tcnt])

42 secondgroup.append ((cnt ,-1))

43 secondgroup.append ((cnt+1,-1))

44 cnt += 2

45 addtopbottom(loc_array ,cnt ,20+ torder[tcnt])

46 thirdgroup.append ((cnt ,-1))

47 thirdgroup.append ((cnt+1,-1))

48 cnt += 2

49

50 tcnt += 1

51

52 if i < 7:

53 addsideways(loc_array ,cnt ,sorder[scnt])

54 firstgroup.append ((cnt ,-1))

55 firstgroup.append ((cnt+1,1))

56 secondgroup.append ((cnt+1,-1))

57 secondgroup.append ((cnt+2,1))

58 thirdgroup.append ((cnt+2,-1))

59 thirdgroup.append ((cnt+3,1))

60 cnt += 4

61 scnt +=1

62 i += 1

63

64 return loc_array ,firstgroup ,secondgroup ,thirdgroup

65

66 def get_hardware_sensor_array ():

67 x1 = .007

68 x2 = .022

69 x3 = .037

70 x5 = .052

71 sl = .0015

72
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73 yplane = .006

74

75 inner_loc = .001

76 outer_loc = 0

77

78 loc_array = np.zeros ((10 ,4))

79

80 loc_array [0,:] = [.015,-yplane ,.015+sl,-yplane]

81 loc_array [1,:] = [x1 ,0,x1 ,-sl]

82 loc_array [2,:] = [.030,-yplane ,.030+sl,-yplane]

83 loc_array [3,:] = [x2 ,inner_loc ,x2,inner_loc -sl]

84 loc_array [4,:] = [.045,-yplane ,.045+sl,-yplane]

85 loc_array [5,:] = [.045 ,yplane ,.045+sl,yplane]

86 loc_array [6,:] = [x5 ,0,x5 ,sl]

87 loc_array [7,:] = [.030 ,yplane ,.030+sl,yplane]

88 loc_array [8,:] = [x3 ,-inner_loc ,x3,-inner_loc+sl]

89 loc_array [9,:] = [.015 ,yplane ,.015+sl,yplane]

90

91

92

93 return loc_array

simulator/sensors.py

1 import numpy as np

2

3 class Sensor:

4 def __init__(self):

5 self.location = None

6 self.orientation = None

7

8 def setLocation(self ,location):

9 self.location = np.array(location) #np 3-vector

10 return self

11

12 def setOrientation(self ,orientation):

13 self.orientation = np.array(orientation)
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14 self.orientation = self.orientation/np.linalg.norm(self.

orientation) #orientation vector always unity

15 return self

16

17 def detect(self ,sources_array ,n):

18 if self.location is None or self.orientation is None:

19 raise ValueError("Sensor not fully defined.")

20

21 total_field = 0.0

22 for each_source in sources_array:

23 total_field += np.dot(self.orientation ,each_source.

get_magnetic_field(self.location ,n))

24 return total_field

25

26 class LISensor:

27 def __init__(self):

28 self.start = None

29 self.end = None

30

31 def setStart(self ,start):

32 self.start = np.array(start) #np 3-vector

33 self._internalSetOrientation ()

34 return self

35

36 def setEnd(self ,end):

37 self.end = np.array(end)

38 self._internalSetOrientation ()

39 return self

40

41 def _internalSetOrientation(self):

42 if self.start is None or self.end is None:

43 return

44 self.orientation = (self.end -self.start)

45 self.orientation = self.orientation/np.linalg.norm(self.

orientation)

46
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47 def detect(self ,sources_array ,n):

48 if self.start is None or self.end is None:

49 raise ValueError("Sensor not fully defined.")

50 loc = self.start +(( self.end -self.start)/2.0)

51 total_field = 0.0

52 for each_source in sources_array:

53 total_field += np.dot(self.orientation ,each_source.

get_magnetic_field(loc ,n))

54 return total_field

55

56

57 #fix this later , but for now we’ll approximate

58 ’’’total_field = 0.0

59 for i in range (3):

60 loc = self.start +((i/2.0)*(self.end -self.start))

61 for each_source in sources_array:

62 total_field += np.dot(self.orientation ,each_source.

get_magnetic_field(loc ,n))

63

64 return ((1/3)*total_field) ’’’

simulator/sources.py

1 import numpy as np

2

3 class Source:

4 def __init__(self):

5 self.location = None

6

7 class ConstantField(Source):

8

9 def __init__(self):

10 self.field = None

11

12 def setField(self ,field):

13 self.field = np.array(field)

14 return self
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15

16 def get_magnetic_field(self ,sensor_location ,n):

17 if self.field is None:

18 raise ValueError("Field not set.")

19

20 if n >= self.field.shape [0]:

21 raise ValueError

22 return self.field[n,:]

23

24

25 class FiniteWire(Source):

26 def __init__(self):

27 self.start = None

28 self.current = None

29 self.finish = None

30 self.u_0 = 4*np.pi*10** -7

31

32 def setCurrent(self ,current):

33 self.current = np.array(current)

34 return self

35

36 def get_line_projection(self ,P,O,S):

37 a = (np.dot(S,O)-np.dot(O,P))/(np.dot(O,O))

38 return P+O*a

39

40 ’’’function not used anymore for this source ’’’

41 def isbetween(self ,start ,end ,point):

42 return ((point[0]- start [0])*(point[0]-end [0]) <= 0) and ((

point[1]- start [1])*(point[1]-end [1]) <= 0) and ((point[2]- start

[2])*(point [2]-end [2]) <= 0)

43

44 def k_fwire_integral(self ,a,b,I,xs,xf):

45 return ((self.u_0*I*a)/(4*np.pi*(a**2+b**2)))*((xf/np.sqrt(a

**2+b**2+xf**2))-(xs/np.sqrt(a**2+b**2+xs**2)))

46

47 def j_fwire_integral(self ,a,b,I,xs,xf):
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48 return -1*(( self.u_0*I*b)/(4*np.pi*(a**2+b**2)))*((xf/np.

sqrt(a**2+b**2+xf**2))-(xs/np.sqrt(a**2+b**2+xs**2)))

49

50 def to_wire_coor(self ,angle ,vec):

51 return np.matmul(np.array ([[np.cos(angle),np.sin(angle)],[-

np.sin(angle),np.cos(angle)]]),vec)

52

53 def to_universal_coor(self ,angle ,vec):

54 return np.matmul(np.array ([[np.cos(angle),-np.sin(angle)],[

np.sin(angle),np.cos(angle)]]),vec)

55

56 def get_magnetic_field(self ,sensor_location ,n):

57 raise ValueError("This is an abstract class")

58

59

60

61 #meant for the loop wires

62 class FiniteWireXY(FiniteWire):

63

64 def setStart(self ,startp):

65 self.start = np.array(startp)

66 if self.finish is not None:

67 if self.finish [2] != self.start [2]:

68 raise ValueError("Cannot have different Z direction.

")

69 return self

70

71 def setFinish(self ,finishp):

72 self.finish = np.array(finishp)

73 if self.start is not None:

74 if self.finish [2] != self.start [2]:

75 raise ValueError("Cannot have different Z direction.

")

76 return self

77

78 def get_magnetic_field(self ,sensor_location ,n):
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79 if self.start is None or self.finish is None or self.current

is None:

80 raise ValueError

81

82 if n >= self.current.shape [0]:

83 raise ValueError

84

85 I = np.linalg.norm(self.current[n,:])

86

87 #get positions in universal coordinates

88 perpendicular_point = self.get_line_projection(self.start ,(

self.finish -self.start)/np.linalg.norm(self.finish -self.start),

sensor_location)

89 r = sensor_location -perpendicular_point

90 cangle = np.arctan2(r[1],r[0])-np.pi/2 #angle between

universal and wire coordinate system

91 ustart = self.start - perpendicular_point

92 ufinish = self.finish - perpendicular_point

93

94 a = self.to_wire_coor(cangle ,np.array ([r[0],r[1]]))[1] #it

is the y’ component , the x’ component should be 0

95 b = sensor_location [2]-self.start [2] #difference in z

location

96

97 starti = self.to_wire_coor(cangle ,np.array ([ ustart [0], ustart

[1]]))[0] #it’s the x’ component , the y’ component should be 0

98 finishi = self.to_wire_coor(cangle ,np.array([ ufinish [0],

ufinish [1]]))[0] #it’s the x’ component

99

100 #perform biot -savart

101 kcomp = self.k_fwire_integral(a,b,I,starti ,finishi)

102 jcomp = self.j_fwire_integral(a,b,I,starti ,finishi)

103

104 #cconvert back to universal coordinate and return

105 originalxy = self.to_universal_coor(cangle ,np.array ([[0] ,[

jcomp ]]))
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106 return [originalxy [0], originalxy [1], kcomp]

107

108

109 class FiniteWireXZ(FiniteWire):

110

111 def setStart(self ,startp):

112 self.start = np.array(startp)

113 if self.finish is not None:

114 if self.finish [1] != self.start [1]:

115 raise ValueError("Cannot have different Y direction.

")

116 return self

117

118 def setFinish(self ,finishp):

119 self.finish = np.array(finishp)

120 if self.finish is not None:

121 if self.finish [1] != self.start [1]:

122 raise ValueError("Cannot have different Y direction.

")

123 return self

124

125 def get_magnetic_field(self ,sensor_location ,n):

126 if self.start is None or self.finish is None or self.current

is None:

127 raise ValueError

128

129 if n >= self.current.shape [0]:

130 raise ValueError

131

132 I = np.linalg.norm(self.current[n,:])

133

134 perpendicular_point = self.get_line_projection(self.start ,(

self.finish -self.start)/np.linalg.norm(self.finish -self.start),

sensor_location)

135 r = sensor_location -perpendicular_point

136 cangle = np.arctan2(r[2],r[0])-np.pi/2 #this vector
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represents the y’ direction.

137 ustart = self.start - perpendicular_point

138 ufinish = self.finish - perpendicular_point

139

140 a = self.to_wire_coor(cangle ,np.array ([r[0],r[2]]))[1] #it

is the y’ component , the x’ component should be 0

141 b = sensor_location [1]-self.start [1] #difference in y

location

142

143 starti = self.to_wire_coor(cangle ,np.array ([ ustart [0], ustart

[2]]))[0] #it’s the x’ component , the y’ component should be 0

144 finishi = self.to_wire_coor(cangle ,np.array([ ufinish [0],

ufinish [2]]))[0] #it’s the x’ component

145

146 kcomp = self.k_fwire_integral(a,b,I,starti ,finishi)

147 jcomp = self.j_fwire_integral(a,b,I,starti ,finishi)

148

149 originalxy = self.to_universal_coor(cangle ,np.array ([[0] ,[

jcomp ]]))

150 return [originalxy [0],kcomp ,originalxy [1]]

151

152

153 class Wire(Source):

154

155 def __init__(self):

156 self.orientation = None

157 self.current = None

158 self.location = None

159 self.u_0 = 4*np.pi*10** -7

160

161 def setLocation(self ,location):

162 self.location = np.array(location)

163 return self

164

165 def setOrientation(self ,orientation):

166 self.orientation = np.array(orientation)

219



167 return self

168

169 def setCurrent(self ,current):

170 self.current = np.array(current)

171 return self

172

173

174 def get_line_projection(self ,P,O,S):

175 a = (np.dot(S,O)-np.dot(O,P))/(np.dot(O,O))

176 return P+O*a

177

178 def get_magnetic_field(self ,sensor_location ,n):

179 if self.location is None or self.orientation is None or self

.current is None:

180 raise ValueError

181

182 if n >= self.current.shape [0]:

183 raise ValueError

184

185 mag = self.current[n]

186

187 perpendicular_point = self.get_line_projection(self.location

,self.orientation ,sensor_location)

188

189 r_hat = sensor_location -perpendicular_point

190

191 u_hat = np.cross(self.orientation ,r_hat)

192 u_hat = u_hat/np.linalg.norm(u_hat)

193

194

195

196 return u_hat *(( self.u_0*mag)/(2*np.pi*np.linalg.norm(r_hat))

)

simulator/test.py

1 from sensors import Sensor

220



2 from sources import ConstantField ,Wire , FiniteWireXZ , FiniteWireXY

3 import numpy as np

4

5 u_0 = 4*np.pi*10** -7

6 EPSILON = .00000000001

7

8 def is_close(test_value ,target_value):

9 return np.abs(test_value -target_value) < EPSILON

10

11 def perpendicular_sensor_tests ():

12 print(’Testing perpendicular_sensor_tests ...’)

13 sensor = Sensor ().setLocation ([0,0,0]).setOrientation ([1,0,0])

14

15 sources1 = [ConstantField ().setField ([[1 ,0 ,0]])]

16 detected_field = sensor.detect(sources1 ,0)

17 if not is_close(detected_field ,1.0):

18 print(’[1,0,0] magnetic field detected incorrectly.’)

19 return False

20

21 sources2 = [ConstantField ().setField ([[0 ,1 ,0]])]

22 detected_field = sensor.detect(sources2 ,0)

23 if not is_close(detected_field ,0.0):

24 print(’[0,1,0] magnetic field detected incorrectly.’)

25 return False

26

27 return True

28

29

30 def test_wire ():

31 print(’Testing wire ...’)

32 wire = Wire().setLocation ([0,0,0]).setOrientation ([0,0,1]).

setCurrent ([[1.0]])

33 sensor = Sensor ().setLocation ([.1 ,.1 ,0]).setOrientation ([1,0,0])

34 detected_field = sensor.detect ([wire],0)

35

36 #calculate value manually
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37 global u_0

38 b_field = u_0 *1.0*np.cos (3*np.pi/4) /(2*np.pi*np.sqrt

(.1**2+.1**2))

39 if not is_close(detected_field ,b_field):

40 print(’test_wire failed , Expected: ’ + str(b_field) + ’

Actual: ’ + str(detected_field))

41 return False

42

43 sensor = Sensor ().setLocation ([.5 ,.1 ,0]).setOrientation ([1,0,0])

44 detected_field = sensor.detect ([wire],0)

45 b_field = u_0 *1.0*np.cos(np.arctan (.1/.5)+np.pi/2) /(2*np.pi*np.

sqrt (.5**2+.1**2))

46

47 if not is_close(detected_field ,b_field):

48 print(’test_wire failed , Expected: ’ + str(b_field) + ’

Actual: ’ + str(detected_field))

49 return False

50

51 return True

52

53 def test_perpendicular_wire ():

54 sensor = Sensor ().setLocation ([0,0,0]).setOrientation ([1,0,0])

55 wire = Wire().setLocation ([1,1,0]).setOrientation ([1,1,0]).

setCurrent ([[100.0]])

56 detected_field = sensor.detect ([wire],0)

57 print("Perp test , detected field: " + str(detected_field))

58 return True

59

60 def xz_finite_wire_test ():

61 sensor = Sensor ().setLocation ([0,0,0]).setOrientation ([1,0,0])

62 wire = FiniteWire ().setStart ([-1,2,0]).setFinish ([1,2,4]).

setCurrent ([[10]])

63 detected_field = sensor.detect ([wire],0)

64

65 b_field = 7.00

66
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67 if not is_close(detected_field ,b_field):

68 print(’test_wire failed , Expected: ’ + str(b_field) + ’

Actual: ’ + str(detected_field))

69 return False

70

71 return True

72

73 def xy_finite_wire_test ():

74 sensor = Sensor ().setLocation ([0,0,0]).setOrientation ([1,0,0])

75 wire = FiniteWire ().setStart ([5,5,1]).setFinish ([0,2,1]).

setCurrent ([[10]])

76 detected_field = sensor.detect ([wire],0)

77

78 b_field = 7.00

79

80 if not is_close(detected_field ,b_field):

81 print(’test_wire failed , Expected: ’ + str(b_field) + ’

Actual: ’ + str(detected_field))

82 return False

83

84 return True

85

86 def run_test(test_to_run):

87 if test_to_run ():

88 print(’PASS’)

89 else:

90 print(’FAIL’)

91

92 if __name__ == ’__main__ ’:

93 run_test(perpendicular_sensor_tests)

94 run_test(test_wire)

95 run_test(test_perpendicular_wire)

96 run_test(finite_wire_test)

utilities/data_loader.py

1 import numpy as np

223



2

3 class DataLoader:

4

5 def read_ch_data(self ,filename):

6 with open(filename) as the_file:

7 content = the_file.readlines ()

8 numch = len(content [0]. strip().split(’,’))

9 samples = np.zeros((numch ,len(content)))

10 for x in range(len(content)):

11 valuestr = content[x]. strip().split(’,’)

12 for y in range(numch):

13 samples[y][x] = float(valuestr[y])

14 return samples

15

16 #WARNING: this will overwrite what is in the file with no

further warning.

17 def overwrite_ch_data(self ,filename ,samples):

18 with open(filename , ’w’) as the_file:

19 for x in range(samples.shape [1]):

20 for y in range(samples.shape [0]):

21 the_file.write(str(samples[y][x]))

22 if y == samples.shape [0]-1:

23 the_file.write("\n")

24 else:

25 the_file.write(",")

26

27 def read_vec_data(self ,filename):

28 with open(filename) as the_file:

29 content = the_file.readlines ()

30 valuestr = content [0]. strip().split(’,’)

31 samples = np.zeros(len(valuestr))

32 for x in range(len(valuestr)):

33 samples[x] = float(valuestr[x])

34 return samples

35

36 def overwrite_vec_data(self ,filename ,samples):
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37 with open(filename , ’w’) as the_file:

38 for y in range(samples.shape [0]):

39 the_file.write(str(samples[y]))

40 if y == samples.shape [0]-1:

41 the_file.write("\n")

42 else:

43 the_file.write(",")

44

45 def load_matrix(self ,filename):

46 return self.read_ch_data(filename).T

47

48 def overwrite_matrix(self ,filename ,samples):

49 self.overwrite_ch_data(filename ,samples.T)

utilities/ft_util.py

1 import numpy as np

2

3 class FTUtils:

4 def __init__(self):

5 pass

6

7 def index2Hz(nyq_freq ,i,n):

8 if i >= n or i < 0:

9 raise ValueError("Index out of array bounds")

10

11 if i > n/2:

12 #return negative frequency

13 return (i-n)*(( nyq_freq *2)/n)

14 else:

15 #return positive frequency

16 return i*(( nyq_freq *2)/n)

17

18 #returns whether an index corresponds to the nyquist frequency

19 def isNyq(nyq_freq ,i,n):

20 #odd N arrays don’t have the nyquist frequency

21 if n%2==1:
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22 return False

23 return (i == n//2)

24

25 #returns closest index for a corresponding hertz

26 def hz2index(nyq_freq ,freq ,n):

27 if freq > nyq_freq or freq < -nyq_freq:

28 raise ValueError("Requested frequency out of bounds.")

29

30 cindex = freq /(( nyq_freq *2)/n)

31 index = int(np.rint(cindex))

32

33 if index < 0:

34 index = n+index

35

36 if index >n:

37 index = n

38

39 return index

neuralnetworks/model.py

1 import tensorflow as tf

2 from tensorflow.contrib.layers import flatten

3

4 ’’’These are different neural network architectures that were tested

over the course of the thesis.

5 They were designed both my Alan and collaborators at HARTING.’’’

6

7 num_samples = 100

8

9 n_hidden1 = 10

10

11 n_hidden2 = 7

12 n_hidden3 = 7

13 n_hidden4 = 7

14

15 n_hidden5 = 5
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16 n_hidden6 = 5

17 n_hidden7 = 5

18

19 n_hidden8 = 4

20 n_hidden9 = 4

21 n_hidden10 = 4

22

23 n_outputs = 3

24

25 def leaky_relu(z, name=None):

26 return tf.maximum (0.01 * z, z, name=name)

27

28 def init_weight(shape):

29 w = tf.truncated_normal(shape=shape , mean = 0, stddev = 0.1)

30 return tf.Variable(w)

31

32 def init_bias(shape):

33 b = tf.zeros(shape)

34 return tf.Variable(b)

35

36 def SignalSplitter(x):

37 logits= tf.layers.dense(x,10)

38

39 return logits

40

41 def AlanNet(x):

42 logits= tf.layers.dense(x,3)

43

44 return logits

45

46 def TestRegNet_2(x):

47 mu = 0

48 sigma = 0.1

49

50 x = flatten(x)

51 x = tf.reshape(x, [8, num_samples ])
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52

53 W_1 = tf.Variable(tf.truncated_normal(shape=( num_samples ,

num_samples), mean=mu, stddev=sigma))

54 b_1 = tf.Variable(tf.zeros ([ num_samples ]))

55 layer_1 = tf.add(tf.matmul(x, W_1), b_1)

56

57 W_2 = tf.Variable(tf.truncated_normal(shape =(3 ,8), mean=mu ,

stddev=sigma))

58 b_2 = tf.Variable(tf.zeros ([ num_samples ]))

59 layer_2 = tf.add(tf.matmul(W_2 , layer_1), b_2)

60

61 W_3 = tf.Variable(tf.truncated_normal(shape=(3, 3), mean=mu ,

stddev=sigma))

62 b_3 = tf.Variable(tf.zeros ([ num_samples ]))

63 layer_3 = tf.add(tf.matmul(W_3 , layer_2), b_3)

64

65 return layer_3

66

67 def TestRegNet_4(x):

68 mu = 0

69 sigma = 0.1

70

71 x = flatten(x)

72 x = tf.reshape(x, [8, num_samples ])

73

74 W_1 = tf.Variable(tf.truncated_normal(shape=( num_samples ,

num_samples), mean=mu, stddev=sigma))

75 b_1 = tf.Variable(tf.zeros ([ num_samples ]))

76 layer_1 = tf.add(tf.matmul(x, W_1), b_1)

77

78 W_2 = tf.Variable(tf.truncated_normal(shape =(3 ,8), mean=mu ,

stddev=sigma))

79 b_2 = tf.Variable(tf.zeros ([ num_samples ]))

80 layer_2 = tf.add(tf.matmul(W_2 , layer_1), b_2)

81

82 W_3 = tf.Variable(tf.truncated_normal(shape=(3, 3), mean=mu ,
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stddev=sigma))

83 b_3 = tf.Variable(tf.zeros ([ num_samples ]))

84 layer_3 = tf.add(tf.matmul(W_3 , layer_2), b_3)

85

86 W_4 = tf.Variable(tf.truncated_normal(shape=(3, 3), mean=mu ,

stddev=sigma))

87 b_4 = tf.Variable(tf.zeros ([ num_samples ]))

88 layer_4 = tf.add(tf.matmul(W_4 , layer_3), b_4)

89

90 W_5 = tf.Variable(tf.truncated_normal(shape=(3, 3), mean=mu ,

stddev=sigma))

91 b_5 = tf.Variable(tf.zeros ([ num_samples ]))

92 layer_5 = tf.add(tf.matmul(W_5 , layer_4), b_5)

93

94 return layer_5

95

96 def TestRegNet(x):

97 mu = 0

98 sigma = 0.1

99

100 x = flatten(x)

101 x = tf.reshape(x, [8, num_samples ])

102

103 W_1 = tf.Variable(tf.truncated_normal(shape=( num_samples ,

num_samples), mean=mu, stddev=sigma))

104 b_1 = tf.Variable(tf.zeros ([ num_samples ]))

105 layer_1 = tf.add(tf.matmul(x, W_1), b_1)

106

107 W_2 = tf.Variable(tf.truncated_normal(shape =(3 ,8), mean=mu ,

stddev=sigma))

108 b_2 = tf.Variable(tf.zeros ([ num_samples ]))

109 layer_2 = tf.add(tf.matmul(W_2 , layer_1), b_2)

110

111 return layer_2

112

113 def TestRegNet_3(x):
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114 mu = 0

115 sigma = 0.1

116

117 x = flatten(x)

118 x = tf.reshape(x, [8, num_samples ])

119

120 W_2 = tf.Variable(tf.truncated_normal(shape =(3 ,8), mean=mu ,

stddev=sigma))

121 b_2 = tf.Variable(tf.zeros ([ num_samples ]))

122 layer_2 = tf.add(tf.matmul(W_2 ,x), b_2)

123

124 return layer_2

125

126 def diabolo_net(x):

127 x = flatten(x)

128 x = tf.reshape(x, [8, num_samples ])

129

130 # DIABOLO NETWORK

131 number_of_neurons_first_layer = num_samples

132 number_of_neurons_second_layer = 3

133 mu = 0

134 sigma = 0.1

135

136 We1 = tf.Variable(tf.random_normal ([ num_samples ,

number_of_neurons_first_layer], dtype=tf.float32))

137 be1 = tf.Variable(tf.zeros ([ number_of_neurons_first_layer ]))

138

139 We2 = tf.Variable(tf.random_normal ([

number_of_neurons_first_layer , number_of_neurons_second_layer],

dtype=tf.float32))

140 be2 = tf.Variable(tf.zeros ([ number_of_neurons_second_layer ]))

141

142 Wd1 = tf.Variable(tf.random_normal ([

number_of_neurons_second_layer , number_of_neurons_first_layer],

dtype=tf.float32))

143 bd1 = tf.Variable(tf.zeros ([ number_of_neurons_first_layer ]))
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144

145 Wd2 = tf.Variable(tf.random_normal ([

number_of_neurons_first_layer , num_samples], dtype=tf.float32))

146 bd2 = tf.Variable(tf.zeros ([ num_samples ]))

147

148 encoding = tf.nn.tanh(tf.matmul(x, We1) + be1)

149 encoding = tf.matmul(encoding , We2) + be2

150 decoding = tf.nn.tanh(tf.matmul(encoding , Wd1) + bd1)

151 decoded = tf.matmul(decoding , Wd2) + bd2

152

153 # ADDED BY ME

154 W_added = tf.Variable(tf.truncated_normal(shape =(3, 8), mean=mu,

stddev=sigma))

155 b_added = tf.Variable(tf.zeros ([ num_samples ]))

156 logits = tf.add(tf.matmul(W_added , decoded), b_added)

157

158 return logits

159

160

161 def RNN_1(x, n_outputs , n_neurons):

162 basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

163 outputs , states = tf.nn.dynamic_rnn(basic_cell , x, dtype=tf.

float32)

164 logits = tf.layers.dense(states , n_outputs)

165

166 return logits

167

168 def RNN_predict(x, n_outputs , n_neurons):

169 cell = tf.contrib.rnn.OutputProjectionWrapper(tf.contrib.rnn.

BasicRNNCell(num_units=n_neurons),output_size=n_outputs)

170 outputs , states = tf.nn.dynamic_rnn(cell , x, dtype=tf.float32)

171 #logits = tf.layers.dense(states , n_outputs)

172

173

174 return outputs

175
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176 def LSTM(x, n_outputs , n_neurons):

177 n_layers = 2

178 #lstm_cells = [tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons)

179 # for layer in range(n_layers)]

180 #multi_cell = tf.contrib.rnn.MultiRNNCell(lstm_cells)

181 #outputs , states = tf.nn.dynamic_rnn(multi_cell , x, dtype=tf.

float32)

182

183 basic_cell = tf.contrib.rnn.OutputProjectionWrapper(tf.contrib.

rnn.BasicLSTMCell(n_neurons , forget_bias =1.0),output_size=

n_outputs)

184 outputs , states = tf.nn.dynamic_rnn(basic_cell , x, dtype=tf.

float32)

185 #logits = tf.layers.dense(n_outputs)

186

187 return outputs

neuralnetworks/my_pre_data.py

1 from tensorflow.examples.tutorials.mnist import input_data

2 import numpy as np

3

4 num_samples_total = 10000

5 num_samples = 1

6

7 num_train = 18#135

8 num_val = 5#34

9 num_test = 5

10

11 path = "../ data_gen/no_interference/"

12 #path = "../ readings/training_sets/t_set_with_and_without_pext /"

13

14 def pre_data ():

15 X_train_batches = []

16 y_train_batches = []

17 X_validation_batches = []

18 y_validation_batches = []
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19 X_test_batches = []

20 y_test_batches = []

21

22 """

23 Load Trainings Data

24 """

25 print(’Load trainings data: ...’)

26

27 for num in range(num_train):

28 X_train = np.loadtxt(path + "x/" + str(num + 1) + ".txt",

delimiter=",")

29 y_train = np.loadtxt(path + "y/" + str(num + 1) + ".txt",

delimiter=",")

30 for i in range(int(num_samples_total / num_samples)):

31 X_train_batches.append(X_train[i * num_samples :(i + 1) *

num_samples ].T)

32 y_train_batches.append(y_train[i * num_samples :(i + 1) *

num_samples ].T)

33

34 X_train_batches = np.array(X_train_batches)

35 y_train_batches = np.array(y_train_batches)

36

37 """

38 Load Validation Data

39 """

40 print(’Load validation data: ...’)

41

42 for v_num in range(num_val):

43 X_validation = np.loadtxt(path + "x/" + str(v_num +

num_train) + ".txt", delimiter=",")

44 y_validation = np.loadtxt(path + "y/" + str(v_num +

num_train) + ".txt", delimiter=",")

45 for i in range(int(num_samples_total / num_samples)):

46 X_validation_batches.append(X_validation[i * num_samples

:(i + 1) * num_samples ].T)

47 y_validation_batches.append(y_validation[i * num_samples
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:(i + 1) * num_samples ].T)

48 X_validation_batches = np.array(X_validation_batches)

49 y_validation_batches = np.array(y_validation_batches)

50

51 """

52 Load Test Data

53 """

54 print(’Load test data: ...’)

55

56 X_test = np.loadtxt(path + "x/test.txt", delimiter=",")

57 y_test = np.loadtxt(path + "y/test.txt", delimiter=",")

58 X_test_batches.append(X_test.T)

59 y_test_batches.append(y_test.T)

60 X_test_batches = np.array(X_test_batches , dtype=np.float32)

61 y_test_batches = np.array(y_test_batches , dtype=np.float32)

62

63 """

64 Do shapes of data fit?

65 """

66

67 assert (len(X_train_batches) == len(y_train_batches))

68 assert (len(X_validation_batches) == len(y_validation_batches))

69 assert (len(X_test_batches) == len(y_test_batches))

70

71 print("Input Shape: {}".format(X_train_batches [0]. shape))

72 print("Output Shape: {}".format(y_train_batches [0]. shape))

73 print("Training Set: {} samples".format(len(X_train_batches)))

74 print("Validation Set: {} samples".format(len(

X_validation_batches)))

75 print("Test Set: {} samples".format(len(X_test_batches)))

76

77 return X_train_batches , y_train_batches , X_validation_batches ,

y_validation_batches , X_test_batches , y_test_batches

neuralnetworks/train_and_evaluate.py

1 from __future__ import absolute_import
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2 from __future__ import division

3 from __future__ import print_function

4

5 from sklearn.utils import shuffle

6 import my_pre_data

7 import tensorflow as tf

8 from tensorflow.contrib.layers import flatten

9

10 import numpy as np

11

12 import model

13 from model import TestRegNet , TestRegNet_2 , TestRegNet_3 ,

TestRegNet_4 ,RNN_predict , RNN_1 , LSTM , diabolo_net , AlanNet

14

15 import matplotlib.pyplot as plt

16

17 from datetime import datetime

18 import data_loader

19

20 ####################################################

21 #Used for Tensorboard #

22 #now = datetime.utcnow ().strftime ("%Y%m%d%H%M%S") #

23 #root_logdir = "tf_logs" #

24 #logdir = "{}/run -{}/". format(root_logdir , now) #

25 ####################################################

26

27 # LOAD DATA FOR FULL -CONNECTED -NN-TRAINING:

28 num_samples = 1

29 n_inputs = 10

30 n_output =20

31 #n_outputs = 3

32 n_neurons = 100

33

34 X_train ,y_train ,X_validation ,y_validation ,X_test ,y_test =

my_pre_data.pre_data ()

35
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36 print(X_train.shape)

37 print(y_train.shape)

38 print(X_validation.shape)

39 print(y_validation.shape)

40 print(’\n’)

41

42 X_train = X_train.reshape(-1, num_samples*n_inputs)

43 y_train = y_train.reshape(-1, num_samples*n_outputs)

44 X_validation = X_validation.reshape(-1, num_samples*n_inputs)

45 y_validation = y_validation.reshape(-1, num_samples*n_outputs)

46 X_test = X_test.reshape(-1,num_samples*n_inputs)

47 y_test = y_test.reshape(-1,num_samples*n_outputs)

48

49 print(X_train.shape)

50 print(y_train.shape)

51 print(X_validation.shape)

52 print(y_validation.shape)

53 print(X_test.shape)

54 #X_test = X_test.reshape(-1, num_samples*n_inputs)

55 #y_test = y_test.reshape(-1, num_samples*n_outputs)

56 # LOAD DATA FOR RNN -TRAINING:

57 #X_train ,y_train ,X_validation ,y_validation ,X_test ,y_test = pre_data.

pre_data_RNN ()

58 print("Data loaded")

59

60

61 X_train , y_train = shuffle(X_train , y_train)

62 EPOCHS = 500

63 BATCH_SIZE = 1000

64

65 # PLACEHOLDERS FOR FULL -CONNECTED -NN:

66 x = tf.placeholder(tf.float32 , (None , n_inputs*num_samples))

67 y = tf.placeholder(tf.float32 , (None , n_outputs*num_samples))

68 # PLACEHOLDERS FOR RNN:

69 #x = tf.placeholder(tf.float32 , (None , num_samples , n_inputs))

70 #y = tf.placeholder(tf.float32 , (None , num_samples ,n_outputs))
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71

72 #floor = tf.ones([ num_samples ,n_outputs], tf.float32)*.001

73

74 #the 3 below is the number of different metrics I’m saving , not the

number of cables

75 dnnresults = np.zeros ((3 ,500))

76

77

78 rate = 0.1

79

80 # REMEMBER TO ADAPT LOGITS , IF USING ANOTHER MODEL

81 #logits= TestRegNet_4(x)

82 logits= AlanNet(x)

83 #logits = LSTM(x, n_outputs , n_neurons)

84

85 #accuracy_operation = tf.reduce_mean(tf.square(logits -y), name="mse

")

86 #training_operation = tf.train.GradientDescentOptimizer(rate).

minimize(accuracy_operation)

87 #training_operation = tf.train.AdamOptimizer(rate).minimize(

accuracy_operation)

88

89 #

######################################################################################################################################################

90 # TESTING DIFFERENT ERROR FUNCTIONS:

91 #y_abs = flatten(y)

92 #y_abs = tf.reshape(y_abs , [3, num_samples ])

93 accuracy_operation = tf.reduce_mean(tf.square(logits -y), name="mse")

94 amp_error = tf.reduce_mean(tf.abs(tf.div((logits -y),tf.maximum(tf.

abs(y),tf.ones([ n_outputs],tf.float32)*.0001))))

95 #accuracy_operation = tf.reduce_sum(tf.square(tf.div((logits -y),tf.

maximum(tf.abs(y_abs),tf.ones([n_outputs , num_samples], tf.

float32)*.001))), name="mse")#

96 training_operation = tf.train.AdamOptimizer(rate).minimize(

accuracy_operation)
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#

97 #

######################################################################################################################################################

98

99 #

####################################################################

100 #Used for Tensorboard

#

101 #mse_summary = tf.summary.scalar(’MSE ’, accuracy_operation)

#

102 #file_writer = tf.summary.FileWriter(logdir , tf.get_default_graph ())

#

103 #

####################################################################

104

105 saver = tf.train.Saver()

106

107 def evaluate(X_data , y_data):

108 num_examples = len(X_data)

109 total_accuracy = 0

110 sess = tf.get_default_session ()

111 for offset in range(0, num_examples , BATCH_SIZE):

112 batch_x , batch_y = X_data[offset:offset+BATCH_SIZE], y_data[

offset:offset+BATCH_SIZE]

113 accuracy = sess.run(accuracy_operation , feed_dict ={x:

batch_x , y: batch_y })

114 total_accuracy += (accuracy * len(batch_x))

115 return total_accuracy / num_examples

116

117 def evaluate_amp(X_data , y_data):

118 num_examples = len(X_data)

119 total_accuracy = 0

120 sess = tf.get_default_session ()
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121 for offset in range(0, num_examples , BATCH_SIZE):

122 batch_x , batch_y = X_data[offset:offset+BATCH_SIZE], y_data[

offset:offset+BATCH_SIZE]

123 accuracy = sess.run(amp_error , feed_dict ={x: batch_x , y:

batch_y })

124 total_accuracy += (accuracy * len(batch_x))

125 return total_accuracy / num_examples

126

127 with tf.Session () as sess:

128 sess.run(tf.global_variables_initializer ())

129 num_examples = len(X_train)

130 print("Training ...")

131 #print()

132 for i in range(EPOCHS):

133

134 acc_cnt = 0

135 acc_total = 0

136

137 X_train , y_train = shuffle(X_train , y_train)

138 for offset in range(0, num_examples , BATCH_SIZE):

139 end = offset + BATCH_SIZE

140 batch_x , batch_y = X_train[offset:end], y_train[offset:

end]

141 #print(" Batch x shape: " + str(batch_x.shape))

142 sess.run(training_operation , feed_dict ={x: batch_x , y:

batch_y })

143

144

145 if offset %100000==0:

146 #justmax = sess.run(amp_error ,feed_dict ={x: batch_x ,

y: batch_y })

147 #print(" justmax: {0}". format(justmax))

148 accuracy = sess.run(accuracy_operation , feed_dict ={x

: batch_x , y: batch_y })

149 #print(" EPOCH {0}, offset {1}, accuracy: {2}". format

(i,offset ,accuracy))
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150 acc_total += accuracy

151 acc_cnt += 1

152

153

154 #

###################################################################

155 #Used for Tensorboard

#

156 #summary_str = mse_summary.eval(feed_dict ={x: batch_x , y

: batch_y })#

157 #step = i * BATCH_SIZE + offset

#

158 #file_writer.add_summary(summary_str , step)

#

159 #

###################################################################

160 validation_accuracy = evaluate(X_validation , y_validation)

161 validation_amp_error = evaluate_amp(X_validation ,

y_validation)

162 print("EPOCH {} ...".format(i+1))

163 print("Training Square Error (Amps ^2) = {:.7f}".format(

acc_total/acc_cnt))

164 print("Validation Square Error (Amps ^2) = {:.7f}".format(

validation_accuracy))

165 print("Validation Average Error (Amps) = {:.7f}".format(

validation_amp_error))

166

167 dnnresults [0,i] = acc_total/acc_cnt

168 dnnresults [1,i] = validation_accuracy

169 dnnresults [2,i] = validation_amp_error

170

171 if i%50==0:

172 saver.save(sess , ’./ alans_test.ckpt’)

173 print("Model saved")
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174

175 print("test yields: " + str(sess.run(logits , feed_dict ={x:

X_test , y: y_test })))

176

177 data_loader.overwrite_ch_data("theresults.txt",dnnresults)

178 #pred = sess.run(logits , feed_dict ={x: X_test })

179

180 ###############################################

181 # FOR PLOTTING RNN -RESULTS: #

182 #y_test_plt = np.transpose(y_test , (0,2,1)) #

183 #pred = np.transpose(pred , (0, 2, 1)) #

184 ###############################################

185

186 ##############################################

187 # PLOT FULL -CONNECTED -NN -RESULTS: #

188 ’’’plt.subplot (1,2,1) #

189 plt.plot(y_test [0][0] , label =" Current 0") #

190 plt.plot(y_test [0][1] , label =" Current 1") #

191 plt.plot(y_test [0][2] , label =" Current 2") #

192 plt.legend () #

193 plt.title(’"Original Data"’) #

194 plt.subplot (1,2,2) #

195 plt.plot(pred[0], label=" Current 0") #

196 plt.plot(pred[1], label=" Current 1") #

197 plt.plot(pred[2], label=" Current 2") #

198 plt.title (" Predicted Data") #

199 plt.legend () #

200 plt.show() #’’’

201 ##############################################

202

203 ################################################

204 # PLOT RNN -RESULTS: #

205 # plt.subplot (1,2,1) #

206 # plt.plot(y_test_plt [0][0] , label =" Current 0")#

207 # plt.plot(y_test_plt [0][1] , label =" Current 1")#

208 # plt.plot(y_test_plt [0][2] , label =" Current 2")#
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209 # plt.legend () #

210 # plt.title(’"Original Data"’) #

211 # plt.subplot (1,2,2) #

212 # plt.plot(pred [0][0] , label=" Current 0") #

213 # plt.plot(pred [0][1] , label=" Current 1") #

214 # plt.plot(pred [0][2] , label=" Current 2") #

215 # plt.title (" Predicted Data") #

216 # plt.legend () #

217 # plt.show() #

218 ################################################

219

220 #######################

221 #Used for Tensorboard #

222 #file_writer.close () #

223 #######################

224

225 ’’’with tf.Session () as sess:

226 saver.restore(sess , ’./ alans_test.ckpt ’)

227 test_accuracy = evaluate(X_test , y_test)

228 print("Test Accuracy = {:.3f}". format(test_accuracy))’’’

averages_plot.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 from scipy.stats import linregress

4 import matplotlib.pyplot as plt

5 from sys import argv

6 import os

7 from utilities.data_loader import DataLoader

8

9 ’’’

10 Searchers for folders named ’channel1 ’, ’channel2 ’, and ’channel3 ’.

Calculates the gain matrix and offset vector using those readings

.

11 ’’’

12
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13 def get_channel_slopes(chdir):

14 matrix = np.zeros ((10 ,3))

15 offset = np.zeros ((10 ,1))

16

17 data_loader = DataLoader ()

18

19 for i in range (3):

20 cnt = 0

21 channeldir = chdir+"/channel"+str(i+1)

22 testfiles = os.listdir(channeldir) #get all files

23

24 x_array = np.zeros((1,len(testfiles)))

25 y_array = np.zeros ((16,len(testfiles)))

26 print("x_array shape is: {}".format(x_array.shape))

27

28 for x in range(len(testfiles)):

29 currentnumber = float(testfiles[x].split(’.’)[0]) /1000

30 x_array[0,x] = currentnumber

31 print("Current number: " + str(currentnumber))

32 samples = data_loader.read_ch_data(channeldir+"/"+

testfiles[x])

33 y_array[:,x] = np.average(samples ,axis =1)

34

35 for n in [3,4,5,9,10,11,12,13,14,15]:

36

37 plt.figure(n)

38 plt.scatter(x_array ,y_array[n,:])

39 slope , intercept , r_value , p_value , std_err = linregress

(x_array ,y_array[n,:])

40 smoothx = np.linspace(np.min(x_array),np.max(x_array)

,50)

41 smoothy = slope*smoothx+intercept

42 plt.plot(smoothx ,smoothy ,’r-’,label="Cable " + str(i))

43 plt.title(’DRV425 Readings - Channel ’ + str(n))

44 plt.xlabel(’Current (A)’)

45 plt.ylabel(’Voltage (V)’)
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46 plt.show()

47

48 matrix[cnt ,i] = slope

49 offset[cnt ,0] = (offset[cnt ,0]*i+intercept)/(i+1)

50 cnt +=1

51 return matrix ,offset

52

53 if __name__ == ’__main__ ’:

54 matrix ,offset = get_channel_slopes(argv [1])

55 print(matrix)

56 print(offset)

correlation.py

1 import numpy as np

2 from sklearn.linear_model import LinearRegression

3 from sklearn.preprocessing import PolynomialFeatures

4 import data_loader

5 from sys import argv

6 import sensor_placer

7 from sensors import Sensor , LISensor

8 from sources import ConstantField ,Wire ,FiniteWireXZ

9 import matplotlib.pyplot as plt

10

11 ’’’Calculates the covariance matrix used with the BLU Estimator.

Uses probabilistic model that only

12 models one external cable per realization ’’’

13

14 h = 0.00525

15

16 xyi = np.zeros ((100000 ,3))

17

18 startx = -.02

19 endx =.065

20 starty= -.03

21 endy =.03

22 starti =-10
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23 endi =10

24

25 numx =29

26 numy =29

27 numi=9

28

29 cntr = 0

30

31 def isInBox(x,y):

32 if gety(y) > .006 or gety(y) < -.006:

33 return True

34 elif getx(x) < 0 or getx(x) > .045:

35 return True

36 else:

37 return False

38

39

40 def geti(i):

41 return (i/(numi -1))*(endi -starti)+starti

42 def getx(x):

43 return (x/(numx -1))*(endx -startx)+startx

44 def gety(y):

45 return (y/(numy -1))*(endy -starty)+starty

46

47 for i in range(numi):

48 print(geti(i))

49

50 for x in range(numx):

51 for y in range(numy):

52 if isInBox(x,y):

53 for i in range(numi):

54 xyi[cntr ][0] = getx(x)

55 xyi[cntr ][1] = gety(y)

56 xyi[cntr ][2] = geti(i)

57 cntr+= 1

58 if cntr %1000==0:
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59 print(’filling {0}’.format(cntr))

60

61 print("cntr is: {0}".format(cntr))

62

63 #CREATE SENSORS

64 loc_array ,firstgroup ,secondgroup ,thirdgroup = sensor_placer.

create_location_array ()

65 sensor_array = []

66 for i in range(loc_array.shape [0]):

67 sensor_array.append(LISensor ().setStart ([ loc_array[i,0],

loc_array[i,1] ,0]).setEnd ([ loc_array[i,2], loc_array[i,3] ,0]))

68

69 Eb0 = 0

70 Eb1 = 0

71 Eb0b0 = 0

72 Eb1b1 = 0

73 Eb0b1 = 0

74 currents = 0

75

76 num_sensors = 10

77

78 covariance_matrix = np.zeros(( num_sensors ,num_sensors))

79

80 b_temp = np.zeros(num_sensors)

81 b_avg = np.zeros(num_sensors)

82

83 for i in range(cntr):

84 wire = Wire().setLocation ([xyi[i][0],xyi[i][1] ,0.0]).

setOrientation ([0,0,1]).setCurrent ([xyi[i][2]])

85 for k in range(num_sensors):

86 b_temp[k] = sensor_array[k]. detect ([wire],0)

87 for k in range(num_sensors):

88 b_avg[k] += b_temp[k]

89 for k in range(num_sensors):

90 for j in range(num_sensors):

91 covariance_matrix[k][j] += b_temp[k]* b_temp[j]
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92 if i %1000==0:

93 print(’simulating {0}’.format(i))

94

95 print(b_avg/cntr)

96 print(covariance_matrix/cntr)

97

98 covariance_matrix = covariance_matrix/cntr

99

100 data_loader.overwrite_ch_data(’data_gen/covariancematrix2.txt’,

covariance_matrix)

data_cruncher.py

1 from __future__ import absolute_import , division , print_function

2

3 from builtins import * # @UnusedWildImport

4 from mcculw import ul

5 from mcculw.ul import ULError

6

7 import time

8

9 from examples.props.ai import AnalogInputProps

10 from mcculw.enums import ScanOptions , FunctionType , Status ,

AnalogInputMode

11

12 from signalp import Signalp

13 from scipy.fftpack import fft , ifft

14 import numpy as np

15 import math

16 import data_loader

17

18

19 from examples.console import util

20 from examples.props.ao import AnalogOutputProps

21

22 from daq_readers_instant import ReaderPoolInstant ,

USB205ReaderInstant ,USB231ReaderInstant
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23

24 import ft_display

25

26 from mcculw.enums import InterfaceType

27

28 import socket

29 import sys

30 import threading

31

32 from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg ,

NavigationToolbar2Tk)

33 # Implement the default Matplotlib key bindings.

34 from matplotlib.backend_bases import key_press_handler

35 from matplotlib.figure import Figure

36

37 ’’’Backend program to read data from ADC and process it

38 This code may need to be updated to use the VoltageEstimator and

CurrentEstimator object , rather than the old signalp file.

39 ’’’

40

41 class StringHolder(object):

42 def __init__(self):

43 self.data = ""

44

45 class ThreadingExample(object):

46

47 def __init__(self , stringholder , interval =.1):

48

49 self.interval = interval

50 self.stringholder = stringholder

51

52 thread = threading.Thread(target=self.run , args =())

53 thread.daemon = True # Daemonize

thread

54 thread.start ()

55
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56 self.calibration_requested = False

57 self.vcalibration_requested = False

58 self.sync_requested = False

59 self.sync_code = "111111111111"

60

61 def run(self):

62

63 # Create a UDP socket

64 sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

65

66 # Bind the socket to the port

67 server_address = (’localhost ’, 10000)

68 print(’starting up on {} port {}’.format (* server_address))

69 sock.bind(server_address)

70 """ Method that runs forever """

71 while True:

72

73 data , address = sock.recvfrom (4096)

74

75 if str(data) == "b’cal’":

76 self.calibration_requested = True

77 sent = sock.sendto(bytes("",’utf -8’), address)

78 elif str(data) == "b’vcal’":

79 self.vcalibration_requested = True

80 sent = sock.sendto(bytes("",’utf -8’), address)

81 elif str(data)[:6] == "b’sync":

82 self.sync_code = str(data)[6:18]

83 self.sync_requested = True

84 sent = sock.sendto(bytes("",’utf -8’), address)

85 else:

86 sent = sock.sendto(bytes(self.stringholder.data ,’utf

-8’), address)

87

88 def config_one_device(board_num):

89 devices = ul.get_daq_device_inventory(InterfaceType.ANY)

90 if len(devices) > 0:
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91 device = devices [0]

92 # Print a messsage describing the device found

93 print("Found device: " + device.product_name + " (" + device

.unique_id + ")\n")

94 # Add the device to the UL.

95 ul.create_daq_device(board_num , device)

96 return [device]

97 else:

98 return None

99

100 def config_two_devices(board_num ,board_num1):

101 devices = ul.get_daq_device_inventory(InterfaceType.ANY)

102 # Check if any devices were found

103

104 if len(devices) > 0:

105 device = devices [0]

106 # Print a messsage describing the device found

107 print("Found device: " + device.product_name + " (" + device

.unique_id + ")\n")

108 # Add the device to the UL.

109 ul.create_daq_device(board_num , device)

110 device1 = devices [1]

111 # Print a messsage describing the device found

112 print("Found device: " + device1.product_name +" (" +

device1.unique_id + ")\n")

113 # Add the device to the UL.

114 ul.create_daq_device(board_num1 , device1)

115 return devices

116

117 return None

118

119 def process_voltage(volsamples ,sf,N):

120

121 #Estimate Voltage

122 avg1 = np.average(volsamples)

123 volsamples = volsamples - avg1
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124

125 volest= np.zeros(len(volsamples))

126 volest [0] = volsamples [0]

127 for i in range(1,len(volsamples)):

128 volest[i] = volsamples[i] + volest[i-1]

129

130 avg2 = np.average(volest)

131 volest = volest - avg2

132

133 fvol = fft(volest)

134 for i in range(ft_display.hz2index(sf/2,40,N)):

135 fvol[i] = 0

136 for i in reversed(range(len(volsamples)-ft_display.hz2index(sf

/2,40,N),len(volsamples))):

137 fvol[i] = 0

138

139 #get FT magnitude

140 fvol_abs = (1/N)*np.abs(fvol)

141 v_maxind = np.argmax(fvol_abs)

142 v_maxhz = ft_display.index2Hz(sf/2,v_maxind ,N)

143

144 return v_maxhz ,fvol_abs[v_maxind],ifft(fvol).real

145

146 def get_frequency_axis(nyq_freq ,N):

147 frequencies = np.zeros(N)

148

149 if N%2 == 0:

150 ssp = nyq_freq/float(N/2)

151 frequencies [0: int(N/2)] = np.linspace (0.0, nyq_freq -ssp ,N/2)

152 frequencies[int(N/2):N] = np.linspace(-nyq_freq ,-ssp ,N/2)

153 else:

154 ssp = nyq_freq/float((N-1) /2)

155 frequencies [0: int(N/2+1)] = np.linspace (0.0, nyq_freq ,N/2+1)

156 frequencies[int(N/2+1):N] = np.linspace(-nyq_freq ,-ssp ,N/2)

157

158 return frequencies
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159

160 if __name__ == ’__main__ ’:

161

162 #setup boards and everything

163 board_nums = [0,1]

164 board_nums = board_nums

165

166 stringholder = StringHolder ()

167

168 background_thread = ThreadingExample(stringholder)

169

170 ul.ignore_instacal ()

171 devices = config_two_devices(board_nums [0], board_nums [1])

172 if devices is None:

173 print("Could not find both devices.")

174 exit()

175

176 pool = ReaderPoolInstant ()

177 for x in range(len(devices)):

178 if devices[x]. product_name [0:7] == "USB -205":

179 pool.add_reader(USB205ReaderInstant(board_nums[x]))

180 elif devices[x]. product_name [0:7] == "USB -231":

181 pool.add_reader(USB231ReaderInstant(board_nums[x]))

182

183 sf = 1000

184 N= 2000

185

186 frequencies = get_frequency_axis(sf/2,N)

187

188 processor = Signalp (3,12)

189 temp_matrix = data_loader.read_ch_data(’matrices/matrix21/matrix

.txt’).T

190 print(temp_matrix)

191 mymatrix = np.concatenate (( temp_matrix ,np.array

([[1,1,1,1,1,1,-1,-1,-1,-1,-1,-1]]).T),axis =1)

192 processor.set_matrix(mymatrix)
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193

194 offsets0 = np.zeros ((8,N))

195 offsets1 = np.zeros ((8,N))

196

197 running = False

198 calibrating = False

199 calibrate_index = 0

200 calibrate_size = 100

201 calibratemat = np.zeros ((7, calibrate_size))

202 calibrated_yet = False

203

204 vol_gain = 447

205 vol_min = 0.0

206

207 pool.setup_buffers (2,sf)

208 pool.start_background ()

209

210 sensors_to_use = [1,1,1,1,1,1,1,1,1,1,1,1]

211

212 #prepare variables needed for time shift

213 usb231map = [0,2,4,6,1,3,5,7]

214 cT = (1.0/sf)/8

215 daq_delay = 0.0

216 linear_shift0 = np.zeros((8,N),dtype=np.complex_)

217 linear_shift1 = np.zeros((8,N),dtype=np.complex_)

218 for x in range (8):

219 linear_shift0[x] = np.exp(frequencies *2*np.pi*-cT*x*1j)

220 for x in range (8):

221 linear_shift1[x] = np.exp(frequencies *2*np.pi*(-cT+daq_delay

)*x*1j)

222

223 process_cntr = 0

224

225 while True:

226

227 if background_thread.calibration_requested:
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228 print(’calibrating ’)

229 background_thread.calibration_requested = False

230 saverages = np.average(pool.readers [0]. samples ,axis =1)

231 offsets = np.ones ((4 ,2000))

232 for i in range (4):

233 print(’saverge ’ + str(i) + ’ ’ + str(saverages[i]))

234 offsets[i,:] = offsets[i,:]* saverages[i]

235 calibrated_yet = True

236 elif background_thread.vcalibration_requested:

237 background_thread.vcalibration_requested = False

238 fvol = integrate_voltage(pool.readers [0]. samples [0,:])

239 sigvol_abs =(1/N)*np.abs(fft(pool.readers [0]. samples

[0,:]))

240 fvol_abs = (1/N)*np.abs(fvol)

241 vol_gain = 170/(2* fvol_abs[v_maxind ])

242 vol_min = fvol_abs[v_maxind]

243 elif background_thread.sync_requested:

244

245 background_thread.sync_requested = False

246 for i in range(len(background_thread.sync_code)):

247 if background_thread.sync_code[i] == "1":

248 sensors_to_use[i] = 1

249 else:

250 sensors_to_use[i] = 0

251

252 if sum(sensors_to_use) < 4:

253 print("Cannot calculate estimate with so few sensors

!")

254 else:

255 #strip down matrix:

256 for i in range (12):

257 if sensors_to_use[i] == 1:

258 thematrix = mymatrix[None ,i,:]

259 break

260 for j in range(i+1,12):

261 if sensors_to_use[j] == 1:
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262 thematrix = np.concatenate ((thematrix ,

mymatrix[None ,j,:]),axis =0)

263 print(thematrix)

264

265 ’’’anglediff = np.angle(fft1)[max1]-np.angle(fft2)[max1]

266 if anglediff < -np.pi:

267 anglediff += 2*np.pi

268 elif anglediff > np.pi:

269 anglediff -= 2*np.pi

270 return (anglediff)/(2*np.pi*index2Hz (500,max1 ,10000))’’’

271 else:

272

273 pool.scan_all ()

274 process_cntr += 1

275

276 if process_cntr >= 5:

277 process_cntr = 0

278 print(’processing data’)

279

280 ’’’Take FT ’’’

281 #TODO: subtract bias?

282 ftc0 = fft(pool.readers [0]. samples -offsets0 ,axis =1)

283 ftc1 = fft(pool.readers [1]. samples -offsets1 ,axis =1)

284

285 ’’’Time shift signals ’’’

286 for i in range (8):

287 ftc0[x] = ftc0[x]* linear_shift0[x]

288 for i in range (8):

289 ftc1[x] = ftc1[x]* linear_shift1[usb231map[x]]

290

291 ’’’Estimate Voltage 1’’’

292 electrode_diff1 = pool.readers [1]. samples [0,:]-pool.

readers [1]. samples [1,:]

293

294 estVolFreq1 , estVolMag1 , estVol1 = process_voltage(

electrode_diff1 ,sf,N)
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295

296 abs_electrodeft1 =(1/N)*np.abs(fft(electrode_diff1))

297 electrodeFreqInd1 = np.argmax(abs_electrodeft1)

298 electrodeFreq1 = ft_display.index2Hz(sf/2,

electrodeFreqInd1 ,N)

299

300 ’’’Estimate Voltage 2’’’

301 electrode_diff2 = pool.readers [0]. samples [0,:]-pool.

readers [1]. samples [1,:]

302

303 estVolFreq2 , estVolMag2 , estVol2 = process_voltage(

electrode_diff2 ,sf,N)

304

305 abs_electrodeft2 =(1/N)*np.abs(fft(electrode_diff2))

306 electrodeFreqInd2 = np.argmax(abs_electrodeft2)

307 electrodeFreq2 = ft_display.index2Hz(sf/2,

electrodeFreqInd2 ,N)

308

309 #Prepare sensor readings

310 magftc = np.concatenate ((ftc0[2:,:],ftc1 [2: ,:]),axis

=0)

311 abs_magftc = (1/N)*np.abs(magftc)

312

313 #NOTE: using freq of channel 4 to get max (wait why

?)

314 ftc_maxind = np.argmax(abs_magftc [4 ,:])

315 ftc_maxhz = ft_display.index2Hz(sf/2,ftc_maxind ,N)

316

317 currents_ls = np.zeros ((4,N))

318 curr_est ,_,_ = processor.ls_estimate(abs_magftc)

319 currents_ls [0] = ifft(curr_est [0])

320 currents_ls [1] = ifft(curr_est [1])

321 currents_ls [2] = ifft(curr_est [2])

322

323 stringholder.data = ""

324
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325 #Add Electrode Difference 1

326 stringholder.data += ’{:.3f}’.format (2*

abs_electrodeft1[electrodeFreqInd1 ]) +’V @ ’ + str(electrodeFreq1

) + ’Hz_’

327 #Add Electrode Difference 2

328 stringholder.data += ’{:.3f}’.format (2*

abs_electrodeft2[electrodeFreqInd2 ]) +’V @ ’ + str(electrodeFreq2

) + ’Hz_’

329

330 #Add Magnetic Field Values

331 for i in range (12):

332 stringholder.data += ’{:.3f}’.format (1000*2*

abs_magftc[i][ ftc_maxind ]/4.88) + ’uT @ ’ + str(ftc_maxhz) + ’Hz_

’

333

334 #Add 3 Currents

335 curr0mag = 2*(1/N)*np.abs(curr_est [0][ ftc_maxind ])

336 curr1mag = 2*(1/N)*np.abs(curr_est [1][ ftc_maxind ])

337 curr2mag = 2*(1/N)*np.abs(curr_est [1][ ftc_maxind ])

338 stringholder.data += ’{:.3f}’.format(curr0mag) + ’A

@ ’ + str(ftc_maxhz) + ’Hz_’

339 stringholder.data += ’{:.3f}’.format(curr1mag) + ’A

@’ + str(ftc_maxhz) + ’Hz_’

340 stringholder.data += ’{:.3f}’.format(curr2mag) + ’A

@’ + str(ftc_maxhz) + ’Hz_’

341

342 #Earth’s magnetic field

343 stringholder.data += ’{:.3f}’.format(curr_est [3][0].

real /4.88) + ’ mT_’

344

345 #Add first voltage difference

346 if 2* estVolMag1 > vol_min:

347 estVol1 = estVol1 *(169.7/(2* estVolMag1))

348 stringholder.data += ’{:.1f}’.format(vol_gain *2*

estVolMag1) + ’V @’ + str(estVolFreq1) + ’Hz_’

349 else:
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350 estVol1 = np.zeros(N)

351 stringholder.data += ’{:.3f}’.format (0) + ’ V_’

352

353 #Add second voltage difference

354 if 2* estVolMag2 > vol_min:

355 estVol2 = estVol2 *(169.7/(2* estVolMag2))

356 stringholder.data += ’{:.1f}’.format(vol_gain *2*

estVolMag2) + ’V @’ + str(estVolFreq2) + ’Hz_’

357 else:

358 estVol2 = np.zeros(N)

359 stringholder.data += ’{:.3f}’.format (0) + ’ V_’

360

361 for i in range (3):

362 stringholder.data += np.array2string(currents_ls

[0,:], formatter ={’float_kind ’:lambda x: "%.2f" % x}) + "_"

363

364 time.sleep (.1)

data_displayer.py

1 from __future__ import absolute_import , division , print_function

2

3

4 from tkinter.ttk import Combobox # @UnresolvedImport

5

6 import tkinter as tk

7 from scipy.fftpack import fft , ifft

8 import numpy as np

9 import math

10 import utilities.data_loader

11

12 import datetime

13

14 ’’’’To improve performance , read the following stack over flow

question (has not yet been implemented):

15 https :// stackoverflow.com/questions /11874767/ how -do -i-plot -in-real -

time -in-a-while -loop -using -matplotlib
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16 ’’’

17

18 ’’’

19 Main GUI application to display estimated currents and voltages in

real time.

20 ’’’

21 import threading

22 import time

23

24 import socket

25 import sys

26

27 import custom_gui.tksimpledialog

28

29 from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg ,

NavigationToolbar2Tk)

30 # Implement the default Matplotlib key bindings.

31 from matplotlib.backend_bases import key_press_handler

32 from matplotlib.figure import Figure

33

34

35 class ThreadingExample(object):

36

37 def __init__(self , interval =.1):

38

39 self.interval = interval

40 thread = threading.Thread(target=self.run , args =())

41 thread.daemon = True

42 thread.start ()

43 self.received_data = ""

44 self.cmd = "get"

45

46 def run(self):

47 # Create a UDP socket

48 sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

49
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50 server_address = (’localhost ’, 10000)

51

52 while True:

53 if self.cmd == ’cal’:

54 sent = sock.sendto(bytes(’cal’,’utf -8’),

server_address)

55 self.cmd = ’get’

56 elif self.cmd == ’vcal’:

57 sent = sock.sendto(bytes(’vcal’,’utf -8’),

server_address)

58 self.cmd = ’get’

59 elif self.cmd [0:4] == ’sync’:

60 sent = sock.sendto(bytes(self.cmd ,’utf -8’),

server_address)

61 self.cmd = ’get’

62 else:

63 #print(’sending get...’)

64 sent = sock.sendto(bytes(’get’,’utf -8’),

server_address)

65

66 data , server = sock.recvfrom (4096)

67 self.received_data = str(data)

68 time.sleep (.1)

69

70 class MyDialog(custom_gui.tksimpledialog.Dialog):

71

72 def body(self , master):

73 self.sensor_readings = tk.StringVar ()

74 self.sensor_readings.set(’hide’)

75

76 self.estimates = tk.StringVar ()

77 self.estimates.set(’hide’)

78

79 tk.Label(master , text="Sensor Displays:").grid(row=0)

80 tk.Radiobutton(master ,text="Hide",padx = 20,variable=self.

sensor_readings ,value=’hide’).grid(row=1)
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81 tk.Radiobutton(master ,text="Average",padx = 20,variable=self

.sensor_readings ,value=’avg’).grid(row =2)

82 tk.Radiobutton(master ,text="Time Function",padx = 20,

variable=self.sensor_readings ,value=’time’).grid(row=3)

83 tk.Radiobutton(master ,text="FT Display",padx = 20,variable=

self.sensor_readings ,value=’ft’).grid(row =4)

84

85 tk.Label(master , text="Estimate Displays:").grid(row=5)

86 tk.Radiobutton(master ,text="Hide",padx = 20,variable=self.

estimates ,value=’hide’).grid(row=6)

87 tk.Radiobutton(master ,text="Average",padx = 20,variable=self

.estimates ,value=’avg’).grid(row =7)

88 tk.Radiobutton(master ,text="Time Function",padx = 20,

variable=self.estimates ,value=’time’).grid(row=8)

89 tk.Radiobutton(master ,text="FT Display",padx = 20,variable=

self.estimates ,value=’ft’).grid(row=9)

90

91 return None

92

93 def apply(self):

94 pass

95

96 class VIn01(object):

97 def __init__(self , master):

98 self.master = master

99

100 self.background_thread = ThreadingExample ()

101

102 self.create_widgets ()

103

104 def update_value(self):

105 ocntr = 0

106 outputs = self.background_thread.received_data [2:]. split(’_’

)

107

108 for i in range (2):
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109 if ocntr < len(outputs):

110 self.volSensorReadings[i]["text"] = outputs[ocntr]

111 ocntr +=1

112

113 for i in range (12):

114 if ocntr < len(outputs):

115 self.magSensorReadings[i]["text"] = outputs[ocntr]

116 ocntr +=1

117

118 for i in range (3):

119 if ocntr < len(outputs):

120 self.currentLabels[i]["text"] = outputs[ocntr]

121 ocntr +=1

122

123 if ocntr < len(outputs):

124 self.resLabel["text"] = "Ambient Magnetic Field: " +

outputs[ocntr]

125 ocntr +=1

126

127 for i in range (2):

128 if ocntr < len(outputs):

129 self.voltage_est_labels[i]["text"] = outputs[ocntr]

130 ocntr +=1

131

132 for i in range (3):

133 if self.estimate_display == ’ft’:

134 self.currentLines[i]. set_ydata(np.fromstring(outputs

[ocntr ][1:-1], dtype=float ,sep=’ ’,count =2000))

135 self.currentFigures[i]. canvas.draw()

136 self.currentFigures[i]. canvas.flush_events ()

137 ocntr +=1

138

139 if self.running:

140 self.master.after (500, self.update_value)

141

142
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143 def stop(self):

144 self.running = False

145 self.start_button["command"] = self.start

146 self.start_button["text"] = "Start"

147

148 def start(self):

149 self.running = True

150

151

152 self.start_button["command"] = self.stop

153 self.start_button["text"] = "Stop"

154 self.update_value ()

155

156 def get_channel_num(self):

157 return 0

158

159 def validate_channel_entry(self , p):

160 if p == ’’:

161 return True

162 try:

163 value = int(p)

164 if(value < 0 or value > self.ai_props.num_ai_chans - 1):

165 return False

166 except ValueError:

167 return False

168 return True

169

170 def set_bias(self):

171 self.background_thread.cmd = ’cal’

172

173 def set_vbias(self):

174 self.background_thread.cmd = ’vcal’

175

176 def set_sync(self):

177 state_string = ""

178 for i in range (12):
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179 state_string += str(self.intvars[i].get())

180 self.background_thread.cmd = ’sync’ + state_string

181

182 def open_display_settings(self):

183 d = MyDialog(self.master)

184 self.sensor_reading_display = str(d.sensor_readings.get())

185 self.estimate_display = str(d.estimates.get())

186 self.update_displays ()

187

188 def update_displays(self):

189 for i in range (2):

190 self.volSensorReadings[i]. grid_remove ()

191 self.volCanvases[i]. get_tk_widget ().grid_remove ()

192 for i in range (12):

193 self.magSensorReadings[i]. grid_remove ()

194 self.magCanvases[i]. get_tk_widget ().grid_remove ()

195

196 for i in range (3):

197 self.currentLabels[i]. grid_remove ()

198 self.currentCanvases[i]. get_tk_widget ().grid_remove ()

199

200 for i in range (2):

201 self.voltage_est_labels[i]. grid_remove ()

202 self.voltage_est_canvases[i]. get_tk_widget ().grid_remove

()

203

204 if self.sensor_reading_display == ’ft’ or self.

sensor_reading_display == ’time’:

205 for i in range (2):

206 self.volCanvases[i]. get_tk_widget ().grid()

207 for i in range (12):

208 self.magCanvases[i]. get_tk_widget ().grid()

209 elif self.sensor_reading_display == ’avg’:

210 for i in range (2):

211 self.volSensorReadings[i].grid()

212 for i in range (12):

264



213 self.magSensorReadings[i].grid()

214

215 if self.estimate_display == ’ft’ or self.estimate_display ==

’time’:

216 for i in range (3):

217 self.currentCanvases[i]. get_tk_widget ().grid()

218 for i in range (2):

219 self.voltage_est_canvases[i]. get_tk_widget ().grid()

220 elif self.estimate_display == ’avg’:

221 for i in range (3):

222 self.currentLabels[i].grid()

223 for i in range (2):

224 self.voltage_est_labels[i].grid()

225

226 def test_function(self):

227 pass

228

229 def create_widgets(self):

230 self.sensor_reading_display = ’avg’

231 self.estimate_display = ’avg’

232

233 button_frame = tk.Frame(self.master)

234 button_frame.pack(fill=tk.X)

235

236 self.start_button = tk.Button(button_frame)

237 self.start_button["text"] = "Start"

238 self.start_button["command"] = self.start

239 self.start_button.grid(row=0, column=0, padx=3, pady =3)

240

241 self.calibrate_button = tk.Button(button_frame)

242 self.calibrate_button["text"] = "Calibrate"

243 self.calibrate_button["command"] = self.set_bias

244 self.calibrate_button.grid(row=0, column=1, padx=3, pady =3)

245

246 self.vcalibrate_button = tk.Button(button_frame)

247 self.vcalibrate_button["text"] = "Vol Cal"
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248 self.vcalibrate_button["command"] = self.set_vbias

249 self.vcalibrate_button.grid(row=0, column=2, padx=3, pady =3)

250

251 self.sync_button = tk.Button(button_frame)

252 self.sync_button["text"] = "Sync"

253 self.sync_button["command"] = self.set_sync

254 self.sync_button.grid(row=0, column=3, padx=3, pady =3)

255

256 quit_button = tk.Button(button_frame)

257 quit_button["text"] = "Quit"

258 quit_button["command"] = self.master.destroy

259 quit_button.grid(row=0, column=4, padx=3, pady =3)

260

261 self.doptions_button = tk.Button(button_frame)

262 self.doptions_button["text"] = "Display Options"

263 self.doptions_button["command"] = self.open_display_settings

264 self.doptions_button.grid(row=0, column=5, padx=3, pady =3)

265

266 self.test_button = tk.Button(button_frame)

267 self.test_button["text"] = "Test"

268 self.test_button["command"] = self.test_function

269 self.test_button.grid(row=0, column=6, padx=3, pady =3)

270

271 checkbox_frame = tk.Frame(self.master)

272 checkbox_frame.pack(fill=tk.X)

273

274 self.intvars = []

275 for i in range (12):

276 self.intvars.append(tk.IntVar ())

277 self.intvars[i].set (1)

278 tk.Checkbutton(checkbox_frame , text="Sensor " + str(i),

variable=self.intvars[i]).grid(row=0, column=i)

279

280 sensor_readings1 = tk.Frame(self.master)

281 sensor_readings1.pack(anchor=tk.CENTER ,pady =20)

282
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283 sensor_readings2 = tk.Frame(self.master)

284 sensor_readings2.pack(anchor=tk.CENTER ,pady =20)

285

286 sensor_readings3 = tk.Frame(self.master)

287 sensor_readings3.pack(anchor=tk.CENTER ,pady =20)

288

289 title_size = 24

290 readings_size = 28

291 cur_width = 400

292

293 self.magSensorReadings = []

294 self.magCanvases = []

295 self.magFigures = []

296 self.magLines = []

297

298

299 self.volSensorReadings = []

300 self.volCanvases = []

301 self.volFigures = []

302 self.volLines =[]

303

304 for i in range (2):

305 tk.Label(sensor_readings1 ,text=("Vol. Probe "+ str(i)),

font=("Helvetica", 14,"bold"),width =10).grid(row=0,column=i,padx

=30)

306

307 vol = tk.Label(sensor_readings1 ,text="---",font=("

Helvetica", 16))

308 vol.grid(row=1,column=i,padx =30)

309 self.volSensorReadings.append(vol)

310

311 fig = Figure(figsize =(2, 1.5), dpi =100)

312 self.volFigures.append(fig)

313 self.t = np.arange(0, 3, .01)

314 y = 2*(np.sin(2*np.pi*self.t))

315 line1 , = fig.add_subplot (111).plot(self.t, y)
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316 self.volLines.append(line1)

317

318 canvas = FigureCanvasTkAgg(fig , master=sensor_readings1)

# A tk.DrawingArea.

319 canvas.draw()

320 canvas.get_tk_widget ().grid(row=2,column=i)

321 self.volCanvases.append(canvas)

322

323

324 for i in range (6):

325 tk.Label(sensor_readings2 ,text=("Mag. Field "+ str(i)),

font=("Helvetica", 14,"bold"),width =10).grid(row=0,column=i+1,

padx =30)

326

327 vol = tk.Label(sensor_readings2 ,text="---",font=("

Helvetica", 16))

328 vol.grid(row=1,column=i+1,padx =30)

329 self.magSensorReadings.append(vol)

330

331 fig = Figure(figsize =(2, 1.5), dpi =100)

332 self.magFigures.append(fig)

333 self.t = np.arange(0, 3, .01)

334 y = 2*(np.sin(2*np.pi*self.t))

335 line1 , = fig.add_subplot (111).plot(self.t, y)

336 self.magLines.append(line1)

337

338 canvas = FigureCanvasTkAgg(fig , master=sensor_readings2)

# A tk.DrawingArea.

339 canvas.draw()

340 canvas.get_tk_widget ().grid(row=2,column=i+1)

341 self.magCanvases.append(canvas)

342

343 for i in range (6):

344 tk.Label(sensor_readings3 ,text=("Mag. Field "+ str(i)),

font=("Helvetica", 14,"bold"),width =10).grid(row=0,column=i+1,

padx =30)
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345

346 vol = tk.Label(sensor_readings3 ,text="---",font=("

Helvetica", 16))

347 vol.grid(row=1,column=i+1,padx =30)

348 self.magSensorReadings.append(vol)

349

350 fig = Figure(figsize =(2, 1.5), dpi =100)

351 self.magFigures.append(fig)

352 self.t = np.arange(0, 3, .01)

353 y = 2*(np.sin(2*np.pi*self.t))

354 line1 , = fig.add_subplot (111).plot(self.t, y)

355 self.magLines.append(line1)

356

357 canvas = FigureCanvasTkAgg(fig , master=sensor_readings3)

# A tk.DrawingArea.

358 canvas.draw()

359 canvas.get_tk_widget ().grid(row=2,column=i+1)

360 self.magCanvases.append(canvas)

361

362 currents = tk.Frame(self.master ,pady =20)

363 currents.pack(anchor=tk.CENTER ,expand=True)

364 currents.grid_columnconfigure (0, minsize=cur_width)

365 currents.grid_columnconfigure (1, minsize=cur_width)

366 currents.grid_columnconfigure (2, minsize=cur_width)

367

368 self.currentLabels = []

369 self.currentCanvases = []

370 self.currentFigures = []

371 self.currentLines = []

372

373 for i in range (3):

374 tk.Label(currents ,text=("Current "+ str(i)),font=("

Helvetica", title_size ,"bold")).grid(row=0,column=i)

375

376 label = tk.Label(currents ,text="---",font=("Helvetica",

readings_size))
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377 label.grid(row=1,column=i)

378 self.currentLabels.append(label)

379

380 fig = Figure(figsize =(5, 4), dpi =100)

381 self.currentFigures.append(fig)

382 self.t = np.linspace (.001 ,2.0 , num =2000)

383 y = self.t*10

384 line1 , = fig.add_subplot (111).plot(self.t, y)

385 self.currentLines.append(line1)

386

387 canvas = FigureCanvasTkAgg(fig , master=currents) # A tk

.DrawingArea.

388 canvas.draw()

389 canvas.get_tk_widget ().grid(row=2,column=i)

390 self.currentCanvases.append(canvas)

391

392 earth_frame = tk.Frame(self.master ,pady =10)

393 earth_frame.pack(fill=tk.X,anchor=tk.CENTER)

394

395 self.resLabel = tk.Label(earth_frame ,text=("Ambient Magnetic

Field:"),font=("Helvetica", 20))

396 self.resLabel.grid(row=1,column =1)

397 self.resLabel.grid_remove ()

398

399 voltage_est_frame = tk.Frame(self.master ,pady =20)

400 voltage_est_frame.pack(anchor=tk.CENTER , expand=True)

401

402 self.voltage_est_labels = []

403 self.voltage_est_canvases = []

404 self.voltage_est_lines = []

405 self.voltage_est_figures = []

406

407 for i in range (2):

408 tk.Label(voltage_est_frame ,text=("Voltage" + str(i)),

font=("Helvetica", title_size ,"bold")).grid(row=0,column=i)

409 label = tk.Label(voltage_est_frame ,text="---",font=("
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Helvetica", readings_size))

410 label.grid(row=1,column=i)

411 self.voltage_est_labels.append(label)

412

413 fig = Figure(figsize =(2, 1.5), dpi =100)

414 self.voltage_est_figures.append(fig)

415 self.t = np.arange(0, 3, .01)

416 y = 2*(np.sin(2*np.pi*self.t))

417 line1 , = fig.add_subplot (111).plot(self.t, y)

418 self.voltage_est_lines.append(line1)

419

420 canvas = FigureCanvasTkAgg(fig , master=voltage_est_frame

) # A tk.DrawingArea.

421 canvas.draw()

422 canvas.get_tk_widget ().grid(row=2,column=i)

423 self.voltage_est_canvases.append(canvas)

424

425 power_est_frame = tk.Frame(self.master ,pady =20)

426 power_est_frame.pack(anchor=tk.CENTER ,expand=True)

427

428 power_est_frame.grid_columnconfigure (0, minsize =400)

429 power_est_frame.grid_columnconfigure (1, minsize =400)

430

431 tk.Label(power_est_frame ,text=("Left Bulb Power"),font=("

Helvetica", title_size ,"bold")).grid(row=0,column =0)

432

433 tk.Label(power_est_frame ,text=("Right Bulb Power"),font=("

Helvetica", title_size ,"bold")).grid(row=0,column =1)

434

435 self.lbpLabel = tk.Label(power_est_frame ,text=("---"),font=(

"Helvetica", readings_size))

436 self.lbpLabel.grid(row=1,column =0)

437

438 self.rbpLabel = tk.Label(power_est_frame ,text=("---"),font=(

"Helvetica", readings_size))

439 self.rbpLabel.grid(row=1,column =1)
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440

441 padFrame = tk.Frame(self.master , width = 25, height = 25,

padx = 15, pady = 15)

442 padFrame.pack(fill = tk.X, expand = True , side = tk.BOTTOM)

443

444 self.update_displays ()

445

446 if __name__ == "__main__":

447 VIn01(master=tk.Tk()).master.mainloop ()

display_ft.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 import matplotlib.pyplot as plt

4 from sys import argv

5 from utilities.data_loader import DataLoader

6 import utilities.filter_util

7 from utilities.ft_util import FTUtils

8 from preprocessor import PreProcessor

9

10 ’’’Displays Fourier Transform of selected channel , or multiple hard -

coded channels ’’’

11

12 def display_ft(x,sf ,start_freq ,end_freq ,show=True ,title="Fourier

Transform",channel = 0,mylabel = ""):

13 nyquist_rate = sf/2.0

14 N = len(x)

15 start = FTUtils.hz2index(nyquist_rate ,start_freq ,len(x))

16 end = FTUtils.hz2index(nyquist_rate ,end_freq ,len(x))

17

18 y = fft(x)

19 magnitude_array = (1.0/ len(x))*np.abs(y[start:end])

20 xf = np.linspace(FTUtils.index2Hz(nyquist_rate ,start ,N), FTUtils

.index2Hz(nyquist_rate ,end -1,N), end -start)

21 plt.title(title+’ - Sampled at ’ + str(int(sf)) + ’ Hz Channel ’

+ str(channel) )
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22 plt.xlabel(’Freq (Hz)’)

23 plt.ylabel(’Magnitude ’)

24

25 plt.plot(xf, magnitude_array ,label=’Channel ’ + str(channel))

26 plt.grid()

27 if show:

28 plt.show()

29

30 angle_array = np.angle(y[start:end])

31 for x in range(angle_array.shape [0]):

32 if magnitude_array[x] < .1:

33 angle_array[x] = 0

34

35 def display_8ch_ft(samples ,sf,start_freq ,end_freq):

36 for i in range (8):

37 plt.figure(i)

38 display_ft(samples[i,:],sf ,start_freq ,end_freq ,show=False ,

channel=i)

39 plt.show()

40

41 if __name__ == ’__main__ ’:

42 data_loader = DataLoader ()

43 processor = PreProcessor ()

44

45 samples = data_loader.read_ch_data(argv [1])

46

47 sf = float(argv [2])

48

49 samples [:8,:] = processor.shift_signals_USB205(samples [:8,:],sf)

50

51 ch = int(argv [3])

52

53 if len(argv) == 3:

54 display_8ch_ft(samples ,sf ,10.0 ,sf/2 -10.0)

55 else:

56 display_ft(samples[ch ,:], float(argv [2]) ,0.0,sf/2-10.0, show=
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True ,title="Fourier Transform",channel=ch)

display_heatmap.py

1 import tkinter as tk

2 import simulator.sensor_placer

3 from simulator.sources import Wire

4 from simulator.sensors import LISensor

5 import numpy as np

6 import random

7 from estimate_current import CurrentEstimator

8

9 class Example(tk.Frame):

10 ’’’Illustrate how to drag items on a Tkinter canvas ’’’

11

12 def __init__(self , parent ,location_array ,group1 ,group2 ,group3):

13 tk.Frame.__init__(self , parent)

14

15 self.location_array = location_array

16

17 self.estimator = CurrentEstimator ()

18 self.group1 = group1

19 self.group2 = group2

20 self.group3 = group3

21

22

23 self.canvas_left = 100

24 self.canvas_zero = 200

25 self.cwidth = 800

26 self.cheight = self.canvas_zero *2

27 # create a canvas

28 self.canvas = tk.Canvas(width=self.cwidth , height=self.

cheight)

29 self.canvas.pack(fill="both", expand=True)

30

31 # this data is used to keep track of an

32 # item being dragged
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33 self._drag_data = {"x": 0, "item": None}

34 self._ydrag_data = {"y": 0, "item": None}

35

36 #create wires

37 color="black"

38 w1 = .015

39 w2 = w1+.015

40 w3 = w2+.015

41 self.canvas.create_oval(self.toCanvasX(w1) -25, self.

toCanvasY (0) -25, self.toCanvasX(w1)+25, self.toCanvasY (0)+25,

outline=color)

42 self.canvas.create_oval(self.toCanvasX(w2) -25, self.

toCanvasY (0) -25, self.toCanvasX(w2)+25, self.toCanvasY (0)+25,

outline=color)

43 self.canvas.create_oval(self.toCanvasX(w3) -25, self.

toCanvasY (0) -25, self.toCanvasX(w3)+25, self.toCanvasY (0)+25,

outline=color)

44 self.wires_ref = []

45 self.wires_ref.append(Wire().setLocation ([w1 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([1]))

46 self.wires_ref.append(Wire().setLocation ([w2 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([1]))

47 self.wires_ref.append(Wire().setLocation ([w3 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([1]))

48

49 # create a couple of movable objects

50 for i in range (6):

51 self._create_token(self.location_array[i,:], "black",i)

52 for i in range (6,10):

53 self._create_ytoken(self.location_array[i,:],"black",i)

54

55 # add bindings for clicking , dragging and releasing over

56 # any object with the "token" tag

57 self.canvas.tag_bind("token", "<ButtonPress -1>", self.

on_token_press)

58 self.canvas.tag_bind("token", "<ButtonRelease -1>", self.
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on_token_release)

59 self.canvas.tag_bind("token", "<B1 -Motion >", self.

on_token_motion)

60

61 self.canvas.tag_bind("ytoken", "<ButtonPress -1>", self.

on_ytoken_press)

62 self.canvas.tag_bind("ytoken", "<ButtonRelease -1>", self.

on_ytoken_release)

63 self.canvas.tag_bind("ytoken", "<B1 -Motion >", self.

on_ytoken_motion)

64

65 def _create_ytoken(self ,coord ,color ,sensor_index):

66 self.canvas.create_rectangle(self.toCanvasX(coord [0]) -5,

self.toCanvasY(coord [1]), self.toCanvasX(coord [2])+5, self.

toCanvasY(coord [3]), fill="white", outline=color , tags=("ytoken",

str(sensor_index)))

67

68 def _create_token(self , coord , color ,sensor_index):

69 ’’’Create a token at the given coordinate in the given color

’’’

70 self.canvas.create_rectangle(self.toCanvasX(coord [0]), self.

toCanvasY(coord [1]) -5, self.toCanvasX(coord [2]), self.toCanvasY(

coord [3])+5, fill="white", outline=color , tags=("token",str(

sensor_index)))

71

72 def on_token_press(self , event):

73 self._drag_data["item"] = self.canvas.find_closest(event.x,

event.y)[0]

74 self._drag_data["x"] = event.x

75 self._drag_data["startx"] = event.x

76

77 def on_token_release(self , event):

78 self._drag_data["x"] = 0

79 delta_x = event.x - self._drag_data["startx"]

80 i = int(self.canvas.itemcget(self._drag_data["item"],"tags")

.split(" ")[1])
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81 self.location_array[i,0] = self.location_array[i,0] +

delta_x /10000

82 self.location_array[i,2] = self.location_array[i,2] +

delta_x /10000

83 self._drag_data["item"] = None

84

85 def on_token_motion(self , event):

86 delta_x = event.x - self._drag_data["x"]

87 self.canvas.move(self._drag_data["item"], delta_x , 0)

88 self._drag_data["x"] = event.x

89

90 def on_ytoken_press(self , event):

91 self._ydrag_data["item"] = self.canvas.find_closest(event.x,

event.y)[0]

92 self._ydrag_data["y"] = event.y

93 self._ydrag_data["starty"] = event.y

94

95 def on_ytoken_release(self , event):

96 self._ydrag_data["y"] = 0

97 delta_y = event.y - self._ydrag_data["starty"]

98 i = int(self.canvas.itemcget(self._ydrag_data["item"],"tags"

).split(" ")[1])

99 self.location_array[i,1] = self.location_array[i,1] +

delta_y /10000

100 self.location_array[i,3] = self.location_array[i,3] +

delta_y /10000

101 self._ydrag_data["item"] = None

102

103 def on_ytoken_motion(self , event):

104 delta_y = event.y - self._ydrag_data["y"]

105 self.canvas.move(self._ydrag_data["item"], 0, delta_y)

106 self._ydrag_data["y"] = event.y

107

108 def _from_rgb(self ,rgb):

109 """ translates an rgb tuple of int to a tkinter friendly

color code
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110 """

111 return "#%02x%02x%02x" % rgb

112

113 def toCanvasX(self ,x):

114 return x*10000 + self.canvas_left

115

116 def toSimX(self ,x):

117 return (x - self.canvas_left)/10000.0

118

119 def toCanvasY(self ,y):

120 cny = y*10000 + self.canvas_zero

121 return self.cheight - cny

122

123 def toSimY(self ,y):

124 return (y - self.cheight + self.canvas_zero)/10000.0

125

126 def run_sim(self):

127 sensor_array = []

128 num_sensors = 10

129 for i in range(num_sensors):

130 sensor_array.append(LISensor ().setStart ([self.

location_array[i,0],self.location_array[i,1] ,0]).setEnd ([self.

location_array[i,2],self.location_array[i,3] ,0]))

131

132 self.matrix = np.zeros (( num_sensors ,3))

133 for i in range (3):

134 for j in range(num_sensors):

135 self.matrix[j][i] = sensor_array[j]. detect ([self.

wires_ref[i]],0)

136

137 print(self.matrix)

138

139 self.estimator.setMatrix(self.matrix)

140 self.estimator.setSensorLocations(self.location_array ,self.

group1 ,self.group2 ,self.group3)

141 self.estimator.setEstimatorType(’lap’)
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142 self.estimator.setM (3)

143

144 maxscore = 0

145 maxloc = 0

146

147 numx = 100.0

148 numy = 50.0

149

150 print("Boundaries: cx < {} or cy < {} or cy > {} or cx > {}"

.format(self.toSimX ( -.01),self.toSimY (.015) ,self.toSimY ( -.015),

self.toSimX (.0575)))

151

152 w=self.cwidth/numx

153 h =self.cheight/numy

154 for i in range(int(numx)):

155 for j in range(int(numy)):

156 cx = i*self.cwidth/numx + w/2

157 cy = j*self.cheight/numy + h/2

158

159 if (cx < self.toCanvasX (0.0025)) or (cy < self.

toCanvasY (.01)) or (cy >self.toCanvasY ( -.01)) or (cx>self.

toCanvasX (.0575)):

160 self.wires = []

161

162 self.wires.append(Wire().setLocation ([self.

toSimX(cx),self.toSimY(cy) ,0.0]).setOrientation ([0,0 ,1]).

setCurrent ([1]))

163 bfields = np.zeros(( num_sensors ,1))

164 for k in range(num_sensors):

165 bfields[k][0] = sensor_array[k]. detect(self.

wires ,0)

166 #del self.wires_ref [-1]

167 est = self.estimator.getEstimate(bfields)

168 score = np.mean(np.abs(est [:3 ,:]))

169 g = int(score *1000)

170 if score > maxscore:
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171 maxscore = score

172 maxloc = (self.toSimX(cx),self.toSimY(cy))

173

174 if g > 255:

175 g=255

176 g=255-g

177 self.canvas.create_rectangle(cx-w/2, cy -h/2, cx+

w/2, cy+h/2,width =0.0, fill=self._from_rgb ((255,g,g)))

178

179 #for i in range (255):

180 # self.canvas.create_rectangle(self.cwidth -30, i*1,

self.cwidth , i*1+1, fill=self._from_rgb ((255,i,i)), width =0.0)

181 print("Max score was {} at {}".format(maxscore ,maxloc))

182

183 def run_sim ():

184 customcanvas.run_sim ()

185

186 if __name__ == "__main__":

187 root = tk.Tk()

188

189

190 button_frame = tk.Frame(root)

191 button_frame.pack(fill=tk.X)

192

193 start_button = tk.Button(button_frame)

194 start_button["text"] = "Start"

195 start_button["command"] = run_sim

196 start_button.grid(row=0, column=0, padx=3, pady =3)

197 location_array ,g1 ,g2 ,g3 = simulator.sensor_placer.

create_location_array ()

198

199 customcanvas = Example(root ,location_array ,g1,g2,g3)

200 customcanvas.pack(fill="both", expand=True)

201 root.mainloop ()

estimate_current.py
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1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 import matplotlib.pyplot as plt

4 from sys import argv

5 import utilities.data_loader

6 import time_shift

7 import os

8 from simulator.sensors import Sensor , LISensor

9 from simulator.sources import ConstantField ,Wire ,FiniteWireXZ

10 import simulator.sensor_placer

11 from sklearn.preprocessing import PolynomialFeatures

12

13 class CurrentEstimator:

14 def __init__(self):

15 self._estimate = self.olsEstimate

16 self.PDEG = 1

17

18 def setMatrix(self ,matrix):

19 self.A = matrix

20

21 def setCovarianceMatrix(self ,matrix):

22 self.S = matrix

23

24 def setRegressionModel(self ,intercept ,model ,degree):

25 self.reg_intercept = intercept

26 self.reg_model = model

27 self.PDEG = degree

28

29 #Sensor Location array information is needed for both

LaplaceEstimate and Ampere Estimate

30 def setSensorLocations(self ,location_array ,group1 ,group2 ,group3)

:

31 maxM = location_array.shape [0]//2

32

33 self.harmonics_matrix = np.zeros(( location_array.shape[0],

maxM *2))
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34 for s in range(location_array.shape [0]):

35 x = (location_array[s,0]+ location_array[s,2])/2

36 y = (location_array[s,1]+ location_array[s,3])/2

37

38 phi = np.arctan2(y,x)

39 r = np.sqrt(x**2+y**2)

40

41 theta = np.arctan2(location_array[s,3]- location_array[s

,1], location_array[s,2]- location_array[s,0])

42 srn = np.cos(theta)*np.cos(phi)+np.sin(theta)*np.sin(phi

)

43 spn = -np.cos(theta)*np.sin(phi)+np.sin(theta)*np.cos(

phi)

44

45 for m in range(1,maxM +1):

46 self.harmonics_matrix[s,m-1] = m*(r**(m-1))*(srn*np.

cos(m*phi)-spn*np.sin(m*phi))

47 self.harmonics_matrix[s,maxM+m-1] = m*(r**(m-1))*(

srn*np.sin(m*phi)+spn*np.cos(m*phi))

48 self.groups = [group1 ,group2 ,group3]

49

50

51 def setM(self ,M):

52 if M*2+3 > self.harmonics_matrix.shape [0]:

53 raise ValueError("M too high")

54

55 if self.harmonics_matrix is None:

56 raise ValueError("Harmonics Matrix not set yet.")

57

58 num_sensors = self.A.shape [0]

59

60 maxM = self.harmonics_matrix.shape [1]//2

61 self.supermatrix = np.concatenate ((self.A,self.

harmonics_matrix [: num_sensors ,0,None]),axis =1)

62 self.supermatrix = np.concatenate ((self.supermatrix ,self.

harmonics_matrix [: num_sensors ,maxM ,None]),axis =1)
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63

64 for i in range(1,M):

65 self.supermatrix = np.concatenate ((self.supermatrix ,self

.harmonics_matrix [: num_sensors ,i,None]),axis =1)

66 self.supermatrix = np.concatenate ((self.supermatrix ,self

.harmonics_matrix [: num_sensors ,maxM+i,None]),axis =1)

67

68

69 def olsEstimate(self ,b):

70 x,r,rank ,s = np.linalg.lstsq(self.A,b)

71 return x

72

73 def bluEstimate(self ,b):

74 invS = np.linalg.inv(self.S)

75 firstterm = np.linalg.inv(np.matmul(np.matmul(self.A.T,invS)

,self.A))

76 return np.matmul(np.matmul(np.matmul(firstterm ,self.A.T),

invS),b)

77

78 def ampereEstimate(self ,b):

79 x = np.zeros ((3,1))

80 for i in range (3):

81 atotal = 0

82 btotal = 0

83 group = self.groups[i]

84 for j in range(len(group)):

85 sensor_index = group[j][0]

86 sensor_direction = group[j][1]

87 if sensor_index < self.A.shape [0]:

88 btotal += b[sensor_index ,0]* sensor_direction

89 atotal += self.A[sensor_index ,i]*

sensor_direction

90 x[i,0] = btotal/atotal

91 return x

92

93 def regressionEstimate(self ,b):
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94 poly_features = PolynomialFeatures(degree=self.PDEG ,

include_bias=False)

95 readings_POLY = poly_features.fit_transform(b.T)

96

97 intercept_matrix = np.ones((3,b.shape [1]))

98 for i in range(len(self.reg_intercept)):

99 intercept_matrix[i,:] = intercept_matrix[i,:]* self.

reg_intercept[i]

100

101 x = np.matmul(self.reg_model ,readings_POLY.T) +

intercept_matrix

102

103 return x

104

105 def polynomialEstimate(self ,b):

106 pass

107

108 def laplaceEstimate(self ,b):

109 x,r,rank ,s = np.linalg.lstsq(self.supermatrix ,b,rcond

=10** -20)

110 return x

111

112 def getEstimate(self ,readings):

113 return self._estimate(readings)

114

115 def setEstimatorType(self ,est_type):

116 if est_type == "blu":

117 self._estimate = self.bluEstimate

118 elif est_type == "ols":

119 self._estimate = self.olsEstimate

120 elif est_type == "amp":

121 self._estimate = self.ampereEstimate

122 elif est_type == "reg":

123 self._estimate = self.regressionEstimate

124 elif est_type == "pol":

125 self._estimate = self.polynomialEstimate
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126 elif est_type == "lap":

127 self._estimate = self.laplaceEstimate

128 else:

129 raise ValueError("Unknown estimator type {}".format(

est_type))

130

131 def get_theoretical_matrix(sensors ,wires):

132 th_matrix = np.zeros((len(sensors) ,3))

133 for x in range(len(sensors)):

134 for y in range (3):

135 th_matrix[x][y] = sensors[x]. detect ([wires[y]],0)

136 return th_matrix

137

138 if __name__ == ’__main__ ’:

139

140 loc_array ,firstgroup ,secondgroup ,thirdgroup = simulator.

sensor_placer.create_location_array ()

141

142 sensor_array = []

143 for i in range (10):

144 sensor_array.append(LISensor ().setStart ([ loc_array[i,0],

loc_array[i,1] ,0]).setEnd ([ loc_array[i,2], loc_array[i,3] ,0]))

145

146 curs = [-.7,1,-.3]

147

148 wires_ref = []

149 wires_ref.append(Wire().setLocation ([.0075 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([1]))

150 wires_ref.append(Wire().setLocation ([.0225 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([1]))

151 wires_ref.append(Wire().setLocation ([.0375 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([1]))

152

153 matrix = get_theoretical_matrix(sensor_array ,wires_ref)

154

155 estimator = CurrentEstimator ()
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156 estimator.setMatrix(matrix)

157 estimator.setSensorLocations(loc_array ,firstgroup ,secondgroup ,

thirdgroup)

estimate_voltage.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 import matplotlib.pyplot as plt

4 from sys import argv

5

6 from utilities.ft_util import FTUtils

7 import display_ft

8 import utilities.data_loader

9

10 ’’’full voltage estimation procedure:

11 -observe ft of detecting electrode

12 -choose frequency that is not present in output , and put that

13 into input

14 -observe output at that frequency and calculate C

15 -use C calculation to estimate voltage

16

17 ’’’

18 class VoltageEstimator:

19 def __init__(self):

20 pass

21

22 def setRCValues(self ,R_1 ,C_1):

23 self.R_1 = R_1

24 self.C_1 = C_1

25

26 def calibrate(self ,signal ,cal_freq ,nyquist_rate ,cal_input):

27 cal_mag = (1/len(signal))*np.abs(y[FTUtils.hz2index(

nyquist_rate ,cal_freq ,len(signal))])

28 self.C_1 = (( cal_mag *2)/cal_input)/(R_1 *2*np.pi*500) *16.0

29

30 def estimate_voltage(self ,signal ,nyq):
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31 hz_array = np.zeros(signal.shape [0])

32 for i in range(signal.shape [0]):

33 hz_i = FTUtils.index2Hz(nyq ,i,signal.shape [0])

34 hz_array[i] = hz_i

35

36 print("frequency array:")

37 print(hz_array)

38

39 transfer_function = 1j*2*np.pi*hz_array*self.R_1*self.C_1

40 filter_function = 1/ transfer_function

41

42 for i in range(FTUtils.hz2index(nyq ,20, signal.shape [0])):

43 filter_function[i] = 0

44 #print(i)

45 for i in range(FTUtils.hz2index(nyq ,-20,signal.shape [0])+1,

signal.shape [0]):

46 filter_function[i] = 0

47

48

49

50 to_return = ifft(fft(signal)*filter_function).real

51 return to_return

52

53 def integrate(self ,data):

54 avg1 = np.average(data)

55 data = data - avg1

56 mysum = 0

57 for i in range(len(data)):

58 mysum += data[i]

59 data[i] = mysum

60

61 avg2 = np.average(data)

62 data = data - avg2

63

64 return data *(1/( self.R_1*self.C_1))

65
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66

67 if __name__ == ’__main__ ’:

68

69 cal_freq = 500

70 cal_input = 3.2

71 cal_channel = 0

72 print("Calibration File: {}".format(argv [1]))

73 samples = data_loader.read_ch_data(argv [1])[cal_channel ,:]

74 sf = float(argv [3])

75

76 y = fft(samples)

77 numsamples = len(samples)

78 nyquist_rate = sf/2.0

79 cal_mag = (1/ numsamples)*np.abs(y[FTUtils.hz2index(nyquist_rate ,

cal_freq ,numsamples)])

80

81 R_1 = 470000

82 C_1 = 1e-12

83 C_1 = (( cal_mag *2)/cal_input)/(R_1*2*np.pi *500) *16.0

84

85 print("Calculating effective capacitance to be: {}".format(C_1))

86

87 estimator = VoltageEstimator ()

88 estimator.setRCValues(R_1 ,C_1)

89 myestimate = estimator.estimate_voltage(samples1 ,sf/2.0)

90 plt.plot(time ,myestimate ,label="Voltage Estimate")

91 plt.title("Voltage Estimate")

92 plt.ylabel("Voltage (V)")

93 plt.xlabel("Time (s)")

94 plt.show()

fit_gaussians.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 from scipy.stats import linregress

4 from scipy.optimize import curve_fit
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5 import matplotlib.pyplot as plt

6 from sys import argv

7 import os

8 from utilities.data_loader import DataLoader

9

10 def gauss(x, *p):

11 A, mu, sigma = p

12 return A*np.exp(-(x-mu)**2/(2.* sigma **2))

13

14 samples = DataLoader ().read_ch_data(argv [1])

15 for x in range (8,16):

16 unique_values , counts = np.unique(samples[x,:], return_counts=

True)

17 unique_values = unique_values - np.mean(samples[x,:])

18 print(unique_values)

19 print(counts)

20

21 if len(unique_values) > 2:

22

23 coeff , var_matrix = curve_fit(gauss ,unique_values ,counts

,[4000 ,0 ,.0028])

24 print("Height: " + str(coeff [0]) + " Mean: " + str(coeff

[1]) + " Std "+str(coeff [2]) + "\n")

25 plt.figure(x)

26 xaxis = np.linspace(unique_values [0], unique_values [-1],100)

27 plt.plot(xaxis ,gauss(xaxis ,* coeff),’r-’)

28 plt.bar(unique_values , counts ,.0002)

29 plt.title(’Channel ’ + str(x))

30 plt.xlabel(’Deviation from Mean (V)’)

31 plt.ylabel(’Num. Readings ’)

32 plt.show()

33 else:

34 print(’Not more than 2 unique values ’)

linear_fitting.py

1 import numpy as np
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2 from sklearn.linear_model import LinearRegression

3 from sklearn.preprocessing import PolynomialFeatures

4 import data_loader

5 from sys import argv

6 import sensor_placer

7 from sensors import Sensor , LISensor

8 from sources import ConstantField ,Wire ,FiniteWireXZ

9 import matplotlib.pyplot as plt

10

11 PDEG = 1

12 tot_sensors =26

13

14 length = int ((26 -4) /2)

15 axisnsensors = np.linspace (6,26, length)

16 print(axisnsensors)

17 errort0 = np.zeros(length)

18 errort1 = np.zeros(length)

19 errort2 = np.zeros(length)

20 errort3 = np.zeros(length)

21 cntr = 0

22

23 def get_random_range(m,width ,offset =0):

24 return width*np.random.rand(m, 1) - (width /2) + offset

25

26 #GENERATE TRAINING PARAMETERS

27 num_train = 1000

28 X_1 = get_random_range(num_train ,10)#x1.reshape ((dimen ,1))

29 X_2 = get_random_range(num_train ,10)#x2.reshape ((dimen ,1))

30 X_3 = get_random_range(num_train ,10)#x3.reshape ((dimen ,1))

31 X_4 = get_random_range(num_train ,10)#x3.reshape ((dimen ,1))

32 X_5 = get_random_range(num_train ,.065 , offset =.065/2 -.01)#x3.reshape

((dimen ,1))

33 X_6 = get_random_range(num_train ,.04)#x3.reshape ((dimen ,1))

34

35 X_internal = np.concatenate ((X_1 ,X_2 ,X_3),axis =1)

36 X_external = np.concatenate ((X_4 ,X_5 ,X_6),axis =1)
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37

38 poly_features = PolynomialFeatures(degree=PDEG , include_bias=False)

39 x_external_POLY = poly_features.fit_transform(X_external)

40 X = np.concatenate (( X_internal ,x_external_POLY),axis =1)

41

42 lin_reg = LinearRegression ()

43

44 #CREATE SENSORS

45 loc_array ,firstgroup ,secondgroup ,thirdgroup = sensor_placer.

create_location_array ()

46 sensor_array = []

47 for i in range(loc_array.shape [0]):

48 sensor_array.append(LISensor ().setStart ([ loc_array[i,0],

loc_array[i,1] ,0]).setEnd ([ loc_array[i,2], loc_array[i,3] ,0]))

49

50 #PLACE WIRES

51 wires = []

52 wires.append(Wire().setLocation ([.0075 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent(X_1))

53 wires.append(Wire().setLocation ([.0225 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent(X_2))

54 wires.append(Wire().setLocation ([.0375 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent(X_3))

55

56 curs = [-.7,1,-.3]

57

58 h = sensor_placer.h

59

60 wires_ref = []

61 wires_ref.append(Wire().setLocation ([.0075 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([1]))

62 wires_ref.append(Wire().setLocation ([.0225 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([1]))

63 wires_ref.append(Wire().setLocation ([.0375 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([1]))

64
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65 wires_zero = []

66 wires_zero.append(Wire().setLocation ([.0075 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [0]]))

67 wires_zero.append(Wire().setLocation ([.0225 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [1]]))

68 wires_zero.append(Wire().setLocation ([.0375 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [2]]))

69

70 wires_one = []

71 wires_one.append(Wire().setLocation ([.0075 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [0]]))

72 wires_one.append(Wire().setLocation ([.0225 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [1]]))

73 wires_one.append(Wire().setLocation ([.0375 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [2]]))

74 wires_one.append(Wire().setLocation ([.0225 ,3*h ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([[1]]))

75

76 wires_ttwo = []

77 wires_ttwo.append(Wire().setLocation ([.0075 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [0]]))

78 wires_ttwo.append(Wire().setLocation ([.0225 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [1]]))

79 wires_ttwo.append(Wire().setLocation ([.0375 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [2]]))

80 wires_ttwo.append(Wire().setLocation ([.0075 ,4*h ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([-1* curs [0]]))

81 wires_ttwo.append(Wire().setLocation ([.0225 ,4*h ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([-1* curs [1]]))

82 wires_ttwo.append(Wire().setLocation ([.0375 ,4*h ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([-1* curs [2]]))

83

84 wires_tthree = []

85 wires_tthree.append(Wire().setLocation ([.0075 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [0]]))

86 wires_tthree.append(Wire().setLocation ([.0225 ,0 ,0.0]).setOrientation
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([0 ,0,1]).setCurrent ([curs [1]]))

87 wires_tthree.append(Wire().setLocation ([.0375 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [2]]))

88 wires_tthree.append(Wire().setLocation ([.0075 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [0]]))

89 wires_tthree.append(Wire().setLocation ([.0225 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [1]]))

90 wires_tthree.append(Wire().setLocation ([.0375 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [2]]))

91 wires_tthree.append(Wire().setLocation ([.006 , -3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [0]]))

92 wires_tthree.append(Wire().setLocation ([.030 , -3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [1]]))

93 wires_tthree.append(Wire().setLocation ([.04, -3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [2]]))

94

95

96 for s in range(6, tot_sensors +1):

97 if s%2==0:

98 print("now doing number of sensors: {0}".format(s))

99 #Define 1000 x10 matrix

100 readings = np.zeros ((s,num_train))

101 for i in range(s):

102 print("now doing sensor {0}".format(i))

103 for j in range(num_train):

104 wires.append(Wire().setLocation ([X_5[j][0],X_6[j

][0] ,0.0]).setOrientation ([0,0,1]).setCurrent(X_4))

105 readings[i][j] = sensor_array[i]. detect(wires ,j)

106 wires.pop()

107

108 lin_reg = LinearRegression ()

109 lin_reg.fit(X, readings.T)

110

111 max_axis = lin_reg.coef_.max(axis =0)

112

113 argsortcoef = np.argsort(np.abs(max_axis [3:]))
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114 sparse_coef = argsortcoef [-(s-4):]

115 sparse_coef = np.concatenate ((np.array ([0,1 ,2]),sparse_coef

+3))

116

117 matrix = lin_reg.coef_[:, sparse_coef]

118

119 #Test Case 1

120 readings = np.zeros ((s,1))

121 for i in range(s):

122 readings[i][0] = sensor_array[i]. detect(wires_zero ,0)

123 x,_,_,_ = np.linalg.lstsq(matrix ,readings)

124 x=x.T

125 errort0[cntr] = np.mean(np.abs(np.array ([[(x[0][0] - curs [0])/

curs [0],(x[0][1] - curs [1])/curs [1],(x[0][2] - curs [2])/curs [2]]]).T)

)

126

127 #test 2

128 for i in range(s):

129 readings[i][0] = sensor_array[i]. detect(wires_one ,0)

130 x,_,_,_ = np.linalg.lstsq(matrix ,readings)

131 x=x.T

132 errort1[cntr] = np.mean(np.abs(np.array ([[(x[0][0] - curs [0])/

curs [0],(x[0][1] - curs [1])/curs [1],(x[0][2] - curs [2])/curs [2]]]).T)

)

133

134 #test 3

135 for i in range(s):

136 readings[i][0] = sensor_array[i]. detect(wires_ttwo ,0)

137 x,_,_,_ = np.linalg.lstsq(matrix ,readings)

138 x=x.T

139 errort2[cntr] = np.mean(np.abs(np.array ([[(x[0][0] - curs [0])/

curs [0],(x[0][1] - curs [1])/curs [1],(x[0][2] - curs [2])/curs [2]]]).T)

)

140

141 #test 4

142 for i in range(s):
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143 readings[i][0] = sensor_array[i]. detect(wires_tthree ,0)

144 x,_,_,_ = np.linalg.lstsq(matrix ,readings)

145 x=x.T

146 errort3[cntr] = np.mean(np.abs(np.array ([[(x[0][0] - curs [0])/

curs [0],(x[0][1] - curs [1])/curs [1],(x[0][2] - curs [2])/curs [2]]]).T)

)

147

148 cntr += 1

149

150 plt.title("LS Error")

151 plt.ylabel("Error")

152 plt.xlabel("Number of Sensors")

153 plt.plot(axisnsensors ,errort0 ,label="No Interference")

154 plt.plot(axisnsensors ,errort2 ,label="Plate")

155 plt.plot(axisnsensors ,errort1 ,label="Ext Wire")

156 plt.plot(axisnsensors ,errort3 ,label="Six Ext. Wires")

157 plt.legend ()

158 plt.grid()

159 plt.show()

minimze_fun.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 from scipy import signal

4 from scipy import signal

5 from scipy.signal import blackman

6 from scipy.signal import get_window

7 from scipy.signal import filter_design as fd

8 from scipy.optimize import minimize

9 import matplotlib.pyplot as plt

10 import data_loader

11 import time_shift

12 import math

13 from signalp import Signalp

14

15 ’’’Script used with non -linear estimator used to curve fit non -
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linear model to readings ’’’

16

17 #creates an 8-vector represnting magnetic fields from synthetic data

18 def create_synthetic_data(mymatrix ,coeffs ,location):

19 i1 = 1.2

20 i2 = 0

21 i3 = 0

22 u = .001

23 xw = .030

24 yw = .050

25 iw = -1.2

26

27 breadings = np.zeros (8)

28

29 for i in range (8):

30 breadings[i] = mymatrix[i][0]*i1+mymatrix[i][1]*i2+mymatrix[

i][2]*i3+mymatrix[i][3]*u+coeffs[i]*iw*(yw-location[i][1]) /((xw-

location[i][0]) **2+(yw-location[i][1]) **2)

31

32 return breadings

33

34 def get_real_data(processor):

35 offset_samples = data_loader.read_8ch_data(’readings \\ July18data

\\ ret_ext_wire \\0 mag.txt’)

36 averages = np.average(offset_samples ,axis =1)

37 offsets = np.zeros ((8 ,1))

38 for i in range (8):

39 offsets[i][0] = averages[i]

40

41 samples = data_loader.read_8ch_data(’readings \\ July18data \\

ret_ext_wire \\ magyn25x220c859_zigzag.txt’)

42 samples = processor.shift_signals_USB231(samples ,5000)

43 samples = processor.noise_filter(samples ,0.00004)

44

45 samples = np.average(samples ,axis =1)

46 for i in range (8):
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47 samples[i] = samples[i]-offsets[i][0]

48 return samples

49

50 location = np.zeros ((8,3))

51 location [0,:] = [.009 ,0 ,1]

52 location [1,:] = [.018 ,0 ,1]

53 location [2,:] = [.019 ,0 ,1]

54 location [3,:] = [.029 ,0 ,1]

55 location [4,:] = [.028 ,0.02 , -1]

56 location [5,:] = [.019 ,0.02 , -1]

57 location [6,:] = [.018 ,0.02 , -1]

58 location [7,:] = [.008 ,0.02 , -1]

59

60 matrix = data_loader.load_matrix(’matrices/matrix9/matrix.txt’)

61 processor = Signalp (3,8)

62 matrix = processor.augment_8x3_matrix(matrix)

63 processor.set_matrix(matrix)

64

65 coeffs =

[0.00097 ,0.00097 ,0.00097 ,0.00097 , -0.00097 , -0.00097 , -0.00097 , -0.00097]

66

67 samples = create_synthetic_data(matrix ,coeffs ,location)

68

69 def fun(x,*args):

70 #use matrix multiplication to model internal currents and

uniform field

71 mag = np.matmul(matrix ,np.transpose(np.array([x[0:4]])))

72

73 #model external cable

74 for i in range (8):

75 mag[i][0] += coeffs[i]*x[6]*(x[5]- location[i][1]) /((x[4]-

location[i][0]) **2+(x[5]- location[i][1]) **2)

76

77 #return squared error score

78 tot = 0
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79 for i in range (8):

80 tot += (samples[i]-mag[i][0]) **2

81 return tot

82

83 def fun_grad(x,*args):

84 gradient = [0,0,0,0,0,0,0]

85 for i in range (4):

86 comp = 0

87 for j in range (8):

88 comp += 2* matrix[j][i]*( matrix[j][0]*x[0]+ matrix[j][1]*x

[1]+ matrix[j][2]*x[2]+ matrix[j][3]*x[3]+ coeffs[i]*x[6]*(x[5]-

location[i][1]) /((x[4]- location[i][0]) **2+(x[5]- location[i][1])

**2)-samples[j])

89 gradient[i] = comp

90

91 #do x (x[4])

92 comp4 = 0

93 for j in range (8):

94 comp4 += 2*( matrix[j][0]*x[0]+ matrix[j][1]*x[1]+ matrix[j

][2]*x[2]+ matrix[j][3]*x[3]+ coeffs[i]*x[6]*(x[5]- location[i][1])

/((x[4]- location[i][0]) **2+(x[5]- location[i][1]) **2)-samples[j])

*(-1* coeffs[i]*x[6]*(x[4]- location[i][0])*(x[5]- location[i][1])

/((x[4]- location[i][0]) **2+(x[5]- location[i][1]) **2) **2)

95 gradient [4] = comp4

96

97 #do y (x[5])

98 comp5 = 0

99 for j in range (8):

100 comp5 += 2*( matrix[j][0]*x[0]+ matrix[j][1]*x[1]+ matrix[j

][2]*x[2]+ matrix[j][3]*x[3]+ coeffs[i]*x[6]*(x[5]- location[i][1])

/((x[4]- location[i][0]) **2+(x[5]- location[i][1]) **2)-samples[j])

*( coeffs[i]*x[6]/((x[4]- location[i][0]) **2+(x[5]- location[i][1])

**2) -2*coeffs[i]*((x[5]- location[i][1]) **2)*x[6]/((x[4]- location[

i][0]) **2+(x[5]- location[i][1]) **2) **2)

101 gradient [5] = comp5

102
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103 #do current (x[6])

104 comp6 = 0

105 for j in range (8):

106 comp6 += 2*( matrix[j][0]*x[0]+ matrix[j][1]*x[1]+ matrix[j

][2]*x[2]+ matrix[j][3]*x[3]+ coeffs[i]*x[6]*(x[5]- location[i][1])

/((x[4]- location[i][0]) **2+(x[5]- location[i][1]) **2)-samples[j])

*( coeffs[i]*(x[5]- location[i][1]) /((x[4]- location[i][0]) **2+(x

[5]- location[i][1]) **2))

107 gradient [6] = comp6

108 print("GRADIENT" + str(gradient))

109 return np.array(gradient)

110

111

112 res = minimize(fun ,[1.0 ,0 ,0 ,0.001 ,.05 ,.05 ,1.0] , method = ’BFGS’,jac=

fun_grad)

113 print(’MINIZER ANSWER:’)

114 print(res)

multi_correlation.py

1 import numpy as np

2 from sklearn.linear_model import LinearRegression

3 from sklearn.preprocessing import PolynomialFeatures

4 from utilities.data_loader import DataLoader

5 from sys import argv

6 import simulator.sensor_placer

7 from simulator.sensors import Sensor , LISensor

8 from simulator.sources import ConstantField ,Wire ,FiniteWireXZ

9 import matplotlib.pyplot as plt

10

11 ’’’Script used to generate covariance matrix with second

probabilistic model , where all

12 currents in current grid are active in each random realization ’’’

13

14 h = 0.00525

15

16 xy = np.zeros ((1000 ,3))
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17 numsamples = 20000

18

19 startx = -.02

20 endx =.065

21 starty= -.03

22 endy =.03

23 starti =-10

24 endi =10

25

26 numx=7

27 numy=5

28 numi=9

29

30 cntr = 0

31

32 def get_random_range(m,width ,offset =0):

33 return width*np.random.rand(m, 1) - (width /2) + offset

34

35 def isInBox(x,y):

36 if gety(y) > .006 or gety(y) < -.006:

37 return True

38 elif getx(x) < 0 or getx(x) > .045:

39 return True

40 else:

41 return False

42

43

44 def geti(i):

45 return (i/(numi -1))*(endi -starti)+starti

46 def getx(x):

47 return (x/(numx -1))*(endx -startx)+startx

48 def gety(y):

49 return (y/(numy -1))*(endy -starty)+starty

50

51 for i in range(numi):

52 print(geti(i))
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53

54 for x in range(numx):

55 for y in range(numy):

56 if isInBox(x,y):

57 xy[cntr ][0] = getx(x)

58 xy[cntr ][1] = gety(y)

59 cntr+= 1

60 if cntr %1000==0:

61 print(’filling {0}’.format(cntr))

62

63 print("cntr is: {0}".format(cntr))

64

65 #CREATE SENSORS

66 #loc_array ,firstgroup ,secondgroup ,thirdgroup = sensor_placer.

create_location_array ()

67 loc_array = simulator.sensor_placer.get_hardware_sensor_array ()

68 sensor_array = []

69 for i in range(loc_array.shape [0]):

70 sensor_array.append(LISensor ().setStart ([ loc_array[i,0],

loc_array[i,1] ,0]).setEnd ([ loc_array[i,2], loc_array[i,3] ,0]))

71

72 Eb0 = 0

73 Eb1 = 0

74 Eb0b0 = 0

75 Eb1b1 = 0

76 Eb0b1 = 0

77 currents = 0

78

79 num_sensors = 10

80

81 covariance_matrix = np.zeros(( num_sensors ,num_sensors))

82

83 b_temp = np.zeros(num_sensors)

84 b_avg = np.zeros(num_sensors)

85

86 wires = []
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87 for n in range(cntr):

88 wires.append(Wire().setLocation ([xy[n][0],xy[n][1] ,0.0]).

setOrientation ([0,0,1]).setCurrent(get_random_range(numsamples

,10)))

89

90 for i in range(numsamples):

91

92 for k in range(num_sensors):

93 b_temp[k] = sensor_array[k]. detect(wires ,i)

94 for k in range(num_sensors):

95 b_avg[k] += b_temp[k]

96 for k in range(num_sensors):

97 for j in range(num_sensors):

98 covariance_matrix[k][j] += b_temp[k]* b_temp[j]

99 if i %100==0:

100 print(’simulating {0}’.format(i))

101

102 print(b_avg/numsamples)

103 print(covariance_matrix/numsamples)

104

105 covariance_matrix = covariance_matrix/numsamples

106

107 DataLoader ().overwrite_ch_data(’data_gen/hardware_multi_covariance3.

txt’,covariance_matrix)

preprocesor.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 import matplotlib.pyplot as plt

4 from sys import argv

5 import utilities.data_loader

6 import time_shift

7 import os

8 import utilities.ft_util

9

10 class PreProcessor:
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11 def __init__(self):

12 pass

13

14 def antiantialiasingfilter(self ,signal ,sf):

15 R = 4925#4973

16 C = .01e-6

17 freq = np.zeros(signal.shape [0])

18 myfilter = np.zeros(signal.shape [0])

19

20 for i in range(myfilter.shape [0]):

21 freq[i] = utilities.ft_util.FTUtils.index2Hz(sf/2,i,

myfilter.shape [0])

22

23 myfilter = (1+1j*2*np.pi*freq *2*R*C-(2*np.pi*freq*R*C)**2)

24

25 return ifft(fft(signal)*myfilter)

26

27 ’’’sets self.frequencies , used for things involving frequency ,

such as white noise removal ’’’

28 def set_frequency_axis(self ,nyq_freq ,N):

29 self.frequencies = np.zeros(N)

30

31 if N%2 == 0:

32 ssp = nyq_freq/float(N/2)

33 self.frequencies [0: int(N/2)] = np.linspace (0.0, nyq_freq -

ssp ,N/2)

34 self.frequencies[int(N/2):N] = np.linspace(-nyq_freq ,-

ssp ,N/2)

35 else:

36 ssp = nyq_freq/float((N-1) /2)

37 self.frequencies [0: int(N/2+1)] = np.linspace (0.0,

nyq_freq ,N/2+1)

38 self.frequencies[int(N/2+1):N] = np.linspace(-nyq_freq ,-

ssp ,N/2)

39

40 def shift_signals_USB205(self ,samples ,sf ,extra =0):
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41 num_ch = samples.shape [0]

42 cT = (1.0/sf)/num_ch

43 N = samples.shape [1]

44 for x in range(num_ch):

45 #print(’doing channel ...’)

46 samples[x,:] = time_shift.shift_signal(samples[x,:],sf

/2,N,-cT*x+extra)

47 return samples

48

49 def shift_signals_USB231(self ,samples ,sf ,extra =0):

50 num_ch = samples.shape [0]

51 cT = (1.0/sf)/num_ch

52 N = samples.shape [1]

53 mymap = [0,2,4,6,1,3,5,7]

54 for x in range(num_ch):

55 samples[mymap[x],:] = time_shift.shift_signal(samples[

mymap[x],:],sf/2,N,(-cT*x)+extra)

56 return samples

57

58 #returns time in seconds that signal2 should be shifted by to

get in line with signal 1

59 def sync(self ,signal1 ,signal2 ,sf,N):

60 fft1 = fft(signal1)

61 fft2 = fft(signal2)

62 max1 = np.argmax(np.abs(fft(signal1)[10:]))+10

63 print("Frequency used for sync is {}: ".format(utilities.

ft_util.FTUtils.index2Hz(sf/2,max1 ,N)))

64 anglediff = np.angle(fft1)[max1]-np.angle(fft2)[max1]

65 if anglediff < -np.pi:

66 anglediff += 2*np.pi

67 elif anglediff > np.pi:

68 anglediff -= 2*np.pi

69 return (anglediff)/(2*np.pi*utilities.ft_util.FTUtils.

index2Hz(sf/2,max1 ,N))

70

71 def correlate(self ,signal1 ,signal2):
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72 spots = 500

73 scores = np.zeros(spots)

74

75 for i in range(spots):

76 if i % 100 == 0:

77 print(’at iteration ’ + str(i))

78 scores[i] = (1/( signal2.shape [0]-i))*np.sum(( signal1[i

:]* signal2 [:( signal2.shape[0]-i)]))

79

80 return scores

81

82 def shift_signals_USB231_diff(self ,samples ,sf):

83 num_ch = samples.shape [0]

84 cT = (1.0/sf)/4

85 N = samples.shape [1]

86 for x in [1,2,3]:

87 samples[x,:] = time_shift.shift_signal(samples[x,:],sf

/2,N,-cT*x)

88 return samples

89

90 ’’’eliminate fourier components not common to all channels ’’’

91 def common_comp_filter(self ,samples ,threshold):

92 numch = samples.shape [0]

93 numsamples = samples.shape [1]

94 ft_samples = np.zeros((numch ,numsamples))

95 ftransform = np.zeros((numch ,numsamples),dtype=np.complex_)

96 ft_agree = np.ones(numsamples)

97 for x in range(numch):

98 ftransform[x,:] = fft(samples[x,:])

99 ft_samples[x,:] = (1/ numsamples)*np.abs(ftransform[x,:])

100 for n in range(1, numsamples):

101 frequency_has_component = (ft_samples [0][n] > threshold)

102 for x in range(1,numch):

103 if frequency_has_component:

104 if ft_samples[x][n] <= threshold:

105 ft_agree[n] = 0
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106 break

107 else:

108 if ft_samples[x][n] > threshold:

109 ft_agree[n] = 0

110 break

111

112 for x in range(numch):

113 ft_samples[x,:] = ftransform[x,:]* ft_agree

114 samples[x,:] = ifft(ft_samples[x,:])

115

116 return samples

117

118 def noise_filter(self ,samples ,threshold):

119 #eliminate unique fourier components

120 numch = samples.shape [0]

121 numsamples = samples.shape [1]

122

123 ft_samples = np.zeros((numch ,numsamples))

124 ftransform = np.zeros((numch ,numsamples),dtype=np.complex_)

125

126 ft_agree = np.ones(numsamples)

127 for x in range(numch):

128 ftransform[x,:] = fft(samples[x,:])

129 ft_samples[x,:] = (1/ numsamples)*np.abs(ftransform[x,:])

130

131

132 for n in range(3, numsamples):

133 for x in range(numch):

134 if ft_samples[x,n] <= threshold:

135 if n==60:

136 print("Found less than threshold in channel

{}".format(x))

137 ft_agree[n] = 0

138 #ftransform[x,n] = ftransform[x,n]*0

139

140 for x in range(numch):
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141 ftransform[x,:] = ftransform[x,:]* ft_agree

142 samples[x,:] = ifft(ftransform[x,:])

143

144 return samples

145

146 def weiner_noise_filter(self ,samples ,noisepower):

147 for i in range (8):

148 samples[i,:] = wiener(samples[i,:], mysize=3,noise=

noisepower)

149 return samples

150

151 ’’’Performs time shift and noise removal ’’’

152 def shift_and_clean(self ,samples ,threshold ,sf):

153 num_ch = samples.shape [0]

154 cT = (1.0/sf)/4

155 N = samples.shape [1]

156 for x in [1,2,3]:

157 linear_shift = np.exp(frequencies *2*np.pi*-cT*x*1j)

158 ftc[x-1] = ftc[x-1]* linear_shift

159 ftc[x-1] = ifft(ftc[x-1])

160

161 numch = samples.shape [0]

162 numsamples = samples.shape [1]

163

164 ft_mag = np.zeros((numch ,numsamples))

165 ftransform = np.zeros((numch ,numsamples),dtype=np.complex_)

166

167 max_freq = np.zeros ((numch ,2))

168

169 for x in range(numch):

170 ftransform[x,:] = fft(samples[x,:])

171 ft_mag[x,:] = (1/ numsamples)*np.abs(ftransform[x,:])

172

173 cT = (1.0/sf)/4

174

175 for n in range(numsamples):
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176 for x in range(numch):

177 if ft_mag[x,n] > max_freq[x][0]:

178 max_freq[x][0] = ft_mag[x,n]

179 max_freq[x][1] = n

180 ftransform[x,n] = ftransform[x,n]*np.exp(self.

frequencies[n]*2*np.pi*-cT*x*1j)

181

182 return ifft(ftransform),ftransform ,max_freq

run_estimators.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 import matplotlib.pyplot as plt

4 from sys import argv

5 import os

6

7 import time_shift

8 import display_ft

9

10 from utilities.data_loader import DataLoader

11 from estimate_current import CurrentEstimator

12 from estimate_voltage import VoltageEstimator

13 from preprocessor import PreProcessor

14

15 def getRMS(samples ,sf ,start_time ,end_time):

16 start = int(start_time*sf)

17 end = int(end_time*sf)

18 return np.sqrt ((1/(end -start))*np.sum(samples[start:end]* samples

[start:end]))*.99

19

20 dataLoader = DataLoader ()

21 currentEstimator = CurrentEstimator ()

22 voltageEstimator = VoltageEstimator ()

23 preProcessor = PreProcessor ()

24

25 sf = float(argv [3])
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26

27 samples = dataLoader.read_ch_data(argv [1])

28 realsamples = dataLoader.read_ch_data(argv [2])

29 matrix = dataLoader.load_matrix(’matrices/matrix28/matrix.txt’)

30 col1 = np.array ([[1,0,1,0,1,1,0,1,1]]).T #missing 0

31 col2 = np.array ([[0,-1,0,-1,0,0,1,0,0]]).T #missing 1

32 matrix = np.concatenate ((matrix ,col1 ,col2),axis =1)

33 offset = dataLoader.load_matrix(’matrices/matrix28/offset.txt’)

34 currentEstimator.setCovarianceMatrix(DataLoader ().read_ch_data(’

data_gen/realhardware_multi_covariance3.txt’))

35 currentEstimator.setEstimatorType(’blu’)

36

37 currentEstimator.setMatrix(matrix)

38

39 t=preProcessor.sync(samples [0,:], samples [8,:],sf ,samples.shape [1])

40 print("timeshift is {}".format(t))

41 samples [:8,:] = preProcessor.shift_signals_USB205(samples [:8,:],sf)

42 realsamples [:8 ,:] = preProcessor.shift_signals_USB205(realsamples

[:8,:],sf)

43 samples [8:16 ,:]= preProcessor.shift_signals_USB231(samples [8:16 ,:],sf

,t)

44

45 voltage_ch = [0,1,2]

46 real_vol_ch = [0,1,2]

47 real_cur_ch = [2,4]

48 res1 = 1.08

49 res2 = 1.08

50 current_ch = [3,4,5,9,10,11,12,13,15]

51

52 volsamples = samples[voltage_ch ,:]

53 volsamples [0,:] = volsamples [0,:]- volsamples [1,:]

54 volsamples [2,:] = volsamples [2,:]- volsamples [1,:]

55 #display_ft.display_ft(volsamples [2,:],sf ,0.0,sf/2-10.0, show=True)

56 volsamples = preProcessor.noise_filter(volsamples ,.005)

57

58 #real_voltage = realsamples[real_vol_ch ,:]
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59 #real_voltage = preProcessor.noise_filter(real_voltage ,0)

60

61 time_axis = np.linspace (1/sf ,(1/sf)*samples.shape[1], samples.shape

[1])

62

63 real_currents = realsamples[real_cur_ch ,:]

64 real_currents = preProcessor.noise_filter(real_currents ,.0015)

65

66 cursamples = samples[current_ch ,:]

67 cursamples = cursamples -offset

68

69 for i in range (9):

70 cursamples[i,:] = cursamples[i,:] - np.mean(cursamples ,axis =1)[i]

71

72 cursamples = preProcessor.noise_filter(cursamples ,.00008)

73

74 #optionally set locations in current estimator

75 currentEstimate = currentEstimator.getEstimate(cursamples)

76

77 plt.title(’Current Estimates ’)

78 plt.xlabel(’Time (sec)’)

79 plt.ylabel(’Current (A)’)

80 ccurrent1= (real_currents [0,:])/res1

81

82 ccurrent3 = (real_currents [1,:])/res2

83 ccurrent2 = -(ccurrent1+ccurrent3)

84

85 toterr = 0

86 for i in range(len(ccurrent1)):

87 err = np.abs(currentEstimate [0,i]-ccurrent1[i])+np.abs(

currentEstimate [1,i]-ccurrent2[i])+np.abs(currentEstimate [2,i]-

ccurrent3[i])

88 toterr += err/(np.abs(ccurrent1[i])+np.abs(ccurrent2[i])+np.abs(

ccurrent3[i]))

89

90 print("Percent error is: {}".format(toterr/len(ccurrent1)))
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91

92 #plt.plot(time_axis , ccurrent1 , label = ’Contact Current 0’)

93 #plt.plot(time_axis , ccurrent3 , label = ’Contact Current 1’)

94 #plt.plot(time_axis , ccurrent2 , label = ’Contact Current 2’)

95 plt.plot(time_axis , currentEstimate [0], label = ’Current ’+str (0))

96 plt.plot(time_axis , currentEstimate [1], label = ’Estimate ’+str (1))

97 plt.plot(time_axis , currentEstimate [2], label = ’Current ’+str (2))

98

99 #plt.show()

100

101 #use voltage estimator

102 voltageEstimator.setRCValues (10000000 ,3.6e-12)

103 vol1 = voltageEstimator.estimate_voltage(volsamples [0,:],sf/2)

104 voltageEstimator.setRCValues (1000000 ,4.12e-12)

105 vol2 = voltageEstimator.estimate_voltage(volsamples [2,:],sf/2)

106

107 #rvoltage0 = real_voltage [0,:]- real_voltage [1,:]

108 #rvoltage1 = real_voltage [2,:]- real_voltage [1,:]

109

110 #plt.figure ()

111 plt.title(’Power Estimate ’)

112 plt.xlabel(’Time (sec)’)

113 plt.ylabel(’Power (W)’)

114

115 #plt.plot(time_axis ,rvoltage0 ,label = ’Contact Voltage 0’)

116 #plt.plot(time_axis ,rvoltage1 ,label = ’Contact Voltage 1’)

117 plt.plot(time_axis , vol1 , label = ’Voltage 1’)

118 plt.plot(time_axis , vol2 , label = ’Voltage 2’)

119

120 #err = 0

121 #mycntr = 0

122 #for i in range(real_voltage.shape [1]):

123 # ierr = np.abs(rvoltage0[i]-vol1[i])+np.abs(rvoltage1[i]-vol2[i])

124 # err += ierr/(np.abs(vol1[i])+np.abs(vol2[i]))

125

126 #print(" Error is {}". format(err/real_voltage.shape [1]))
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127

128 power1 = np.zeros(vol1.shape [0])

129 for i in range(vol1.shape [0]):

130 power1[i]=vol1[i]* currentEstimate [0][i]

131

132 power2 = np.zeros(vol1.shape [0])

133 for i in range(vol1.shape [0]):

134 power2[i]=vol2[i]* currentEstimate [2][i]

135

136 print(getRMS(power1 ,6250 ,0 ,1.0))

137 print(getRMS(power2 ,6250 ,0 ,1.0))

138

139 #plt.plot(time_axis , power1 , label = ’Resistor 1 Power ’)

140 #plt.plot(time_axis , power2 , label = ’Resistor 2 Power ’)

141 plt.legend ()

142 plt.grid()

143 plt.show()

run_simulation.py

1 from simulator.sensors import Sensor , LISensor

2 from simulator.sources import ConstantField ,Wire ,FiniteWireXZ

3 import simulator.sensor_placer

4 import numpy as np

5 from scipy.spatial import distance

6 import itertools

7 import math

8 import matplotlib.pyplot as plt

9 from utilities.data_loader import DataLoader

10 from estimate_current import CurrentEstimator

11 from sklearn.linear_model import LinearRegression

12 from sklearn.preprocessing import PolynomialFeatures

13

14

15 i_c = 0

16 h = 0.00525 #half the height of the HARTING Han -C connector , in

meters
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17 w= 0.015

18

19 def get_theoretical_matrix(sensors ,wires):

20 th_matrix = np.zeros((len(sensors) ,3))

21 for x in range(len(sensors)):

22 for y in range (3):

23 th_matrix[x][y] = sensors[x]. detect ([wires[y]],0)

24 return th_matrix

25

26 def getReferenceWires ():

27 wires_ref = []

28 wires_ref.append(Wire().setLocation ([.015 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([1]))

29 wires_ref.append(Wire().setLocation ([.03 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([1]))

30 wires_ref.append(Wire().setLocation ([.045 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([1]))

31 return wires_ref

32

33 curs = [-.7,1,-.3]

34 def getFourTestCases ():

35 wires = []

36 wires.append(Wire().setLocation ([.015 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [0]]))

37 wires.append(Wire().setLocation ([.03 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [1]]))

38 wires.append(Wire().setLocation ([.045 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [2]]))

39

40 wires_one = []

41 wires_one.append(Wire().setLocation ([.015 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [0]]))

42 wires_one.append(Wire().setLocation ([.03 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [1]]))

43 wires_one.append(Wire().setLocation ([.045 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [2]]))
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44 wires_one.append(Wire().setLocation ([.03 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([[1]]))

45

46 wires_ttwo = []

47 wires_ttwo.append(Wire().setLocation ([.015 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [0]]))

48 wires_ttwo.append(Wire().setLocation ([.03 ,0 ,0.0]).setOrientation

([0 ,0,1]).setCurrent ([curs [1]]))

49 wires_ttwo.append(Wire().setLocation ([.045 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [2]]))

50 wires_ttwo.append(Wire().setLocation ([.015 ,4*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([-1* curs [0]]))

51 wires_ttwo.append(Wire().setLocation ([.03 ,4*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([-1* curs [1]]))

52 wires_ttwo.append(Wire().setLocation ([.045 ,4*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([-1* curs [2]]))

53

54 wires_tthree = []

55 wires_tthree.append(Wire().setLocation ([.015 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [0]]))

56 wires_tthree.append(Wire().setLocation ([.03 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [1]]))

57 wires_tthree.append(Wire().setLocation ([.045 ,0 ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [2]]))

58 wires_tthree.append(Wire().setLocation ([.015 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [0]]))

59 wires_tthree.append(Wire().setLocation ([.03 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [1]]))

60 wires_tthree.append(Wire().setLocation ([.045 ,3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [2]]))

61 wires_tthree.append(Wire().setLocation ([.006 , -3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [0]]))

62 wires_tthree.append(Wire().setLocation ([.030 , -3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [1]]))

63 wires_tthree.append(Wire().setLocation ([.04, -3*h ,0.0]).

setOrientation ([0,0,1]).setCurrent ([curs [2]]))
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64

65 return wires ,wires_one ,wires_ttwo ,wires_tthree

66

67 def getGeneralTestCases ():

68 num_samples = 500*21

69

70 readings = np.zeros ((10, num_samples))

71 X = np.zeros (( num_samples ,3))

72

73 dataLoader = DataLoader ()

74

75 for j in range (21):

76 readings[:,j*500:(j+1) *500] = dataLoader.read_ch_data("

data_gen/varied_ext_with_vertical/x/"+str(j)+".txt")[:10 ,:500]

77 X[j*500:(j+1) *500 ,:] = dataLoader.read_ch_data("data_gen/

varied_ext_with_vertical/y/"+str(j)+".txt")[:3 ,:500].T

78

79 return readings ,X

80

81 PDEG = 1

82 def sim_estimator_per_sensors(estimator ,sensor_array ,estimator_type=

"blu"):

83 estimator.setEstimatorType(estimator_type)

84

85 tot_sensors =20

86 axisnsensors = []

87 errort0 = []

88 errort1 = []

89 errort2 = []

90 errort3 = []

91

92 wires ,wires_one ,wires_ttwo ,wires_tthree=getFourTestCases ()

93

94 A = estimator.A

95 S = estimator.S

96
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97 genreadings ,X = getGeneralTestCases ()

98

99 for s in range(6, tot_sensors +1):

100 if s%2==0:

101

102 poly_features = PolynomialFeatures(degree=PDEG ,

include_bias=False)

103 regreadings = genreadings [:s,:]

104 readings_POLY = poly_features.fit_transform(regreadings.

T)

105 lin_reg = LinearRegression ()

106 lin_reg.fit(readings_POLY , X)

107

108 estimator.setMatrix(A[:s,:])

109 estimator.setM((s-4) //2)

110 estimator.setCovarianceMatrix(S[:s,:s])

111 estimator.setRegressionModel(lin_reg.intercept_ ,lin_reg.

coef_ ,PDEG)

112

113 readings = np.zeros ((s,1))

114 for j in range(s):

115 readings[j][0] = sensor_array[j]. detect(wires ,0)

116 x = estimator.getEstimate(readings)

117 errort0.append(np.mean(np.abs(np.array ([[(x[0][0] - curs

[0])/curs [0],(x[1][0] - curs [1])/curs [1],(x[2][0] - curs [2])/curs

[2]]]).T)))

118

119 for j in range(s):

120 readings[j][0] = sensor_array[j]. detect(wires_one ,0)

121 x = estimator.getEstimate(readings)

122 errort1.append(np.mean(np.abs(np.array ([[(x[0][0] - curs

[0])/curs [0],(x[1][0] - curs [1])/curs [1],(x[2][0] - curs [2])/curs

[2]]]).T)))

123

124 for j in range(s):

125 readings[j][0] = sensor_array[j]. detect(wires_ttwo
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,0)

126 x = estimator.getEstimate(readings)

127 errort2.append(np.mean(np.abs(np.array ([[(x[0][0] - curs

[0])/curs [0],(x[1][0] - curs [1])/curs [1],(x[2][0] - curs [2])/curs

[2]]]).T)))

128

129 for j in range(s):

130 readings[j][0] = sensor_array[j]. detect(wires_tthree

,0)

131 x = estimator.getEstimate(readings)

132 errort3.append(np.mean(np.abs(np.array ([[(x[0][0] - curs

[0])/curs [0],(x[1][0] - curs [1])/curs [1],(x[2][0] - curs [2])/curs

[2]]]).T)))

133

134 axisnsensors.append(s)

135

136

137

138 print("No external wire: {}".format(errort0))

139 print("External Wire: {}".format(errort1))

140 print("Plate: {}".format(errort2))

141 print("Six Ext. Wires: {}".format(errort3))

142

143 plt.title("Harmonics Estimator")

144 plt.ylabel("Error")

145 plt.xlabel("Number of Sensors")

146 plt.plot(axisnsensors ,errort0 ,label="No Interference")

147 plt.plot(axisnsensors ,errort2 ,label="Plate")

148 plt.plot(axisnsensors ,errort1 ,label="Ext Wire")

149 plt.plot(axisnsensors ,errort3 ,label="Six Ext. Wires")

150 plt.legend ()

151 plt.grid()

152 plt.show()

153

154 def show_histogram_analysis(estimator ,sensor_array ,estimator_type="

blu"):
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155 readings ,X = getGeneralTestCases ()

156 est = np.zeros(X.shape)

157

158 for i in range(X.shape [0]):

159 est[i,:] = estimator.bluEstimate(readings[:,i])

160

161 all_percents = []

162 for i in range(X.shape [0]):

163 for j in range(X.shape [1]):

164 if X[i,j] > .5:

165 all_percents.append (100*np.abs((X[i,j]-est[i,j])/X[i

,j]))

166 print("Mean percent error is: {}".format(sum(all_percents)/len(

all_percents)))

167 plt.hist(np.array(all_percents),bins =100)

168 plt.show()

169

170

171 if __name__ == ’__main__ ’:

172

173 wires_ref = getReferenceWires ()

174

175 field = ConstantField ().setField ([[1 ,0 ,0]])

176

177 loc_array = simulator.sensor_placer.get_hardware_sensor_array ()

178 sensor_array = []

179 for i in range (10):

180 sensor_array.append(LISensor ().setStart ([ loc_array[i,0],

loc_array[i,1] ,0]).setEnd ([ loc_array[i,2], loc_array[i,3] ,0]))

181 matrix = get_theoretical_matrix(sensor_array ,wires_ref)

182 readings = np.zeros ((10 ,1))

183 for i in range (10):

184 readings[i,0] = sensor_array[i]. detect ([field],0)

185

186

187 print(matrix *1000*4.88)
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188 exit()

189

190

191

192 loc_array ,firstgroup ,secondgroup ,thirdgroup = simulator.

sensor_placer.create_location_array ()

193

194 sensor_array = []

195 for i in range (88):

196 sensor_array.append(LISensor ().setStart ([ loc_array[i,0],

loc_array[i,1] ,0]).setEnd ([ loc_array[i,2], loc_array[i,3] ,0]))

197

198 wires_ref = getReferenceWires ()

199 matrix = get_theoretical_matrix(sensor_array ,wires_ref)

200

201 estimator = CurrentEstimator ()

202 estimator.setMatrix(matrix)

203 estimator.setCovarianceMatrix(DataLoader ().read_ch_data(’

data_gen/multicovariancematrix.txt’))

204 estimator.setSensorLocations(loc_array ,firstgroup ,secondgroup ,

thirdgroup)

205

206 #show_histogram_analysis(estimator ,sensor_array ,estimator_type ="

blu")

207 sim_estimator_per_sensors(estimator ,sensor_array ,estimator_type=

"lap")

time_shift.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 from scipy import signal

4 from scipy.signal import blackman

5 from scipy.signal import get_window

6 from scipy.signal import filter_design as fd

7 import matplotlib.pyplot as plt

8
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9 ’’’

10 API for shifting signals in the time domain by applying a linear

phase filter.

11 This is used by several other scripts.

12 ’’’

13

14 def shift_signal(x,nyq_freq ,N,t):

15 frequencies = np.zeros(N)

16

17 if N%2 == 0:

18 ssp = nyq_freq/float(N/2)

19 frequencies [0: int(N/2)] = np.linspace (0.0, nyq_freq -ssp ,N/2)

20 frequencies[int(N/2):N] = np.linspace(-nyq_freq ,-ssp ,N/2)

21 else:

22 ssp = nyq_freq/float((N-1) /2)

23 frequencies [0: int(N/2+1)] = np.linspace (0.0, nyq_freq ,N/2+1)

24 frequencies[int(N/2+1):N] = np.linspace(-nyq_freq ,-ssp ,N/2)

25

26 linear_shift = np.exp(frequencies *2*np.pi*t*1j)

27 ft = fft(x)

28 interpolated_shift = ifft(ft*linear_shift)

29

30 #print(" right before np.imag()...")

31 icomponents = np.imag(interpolated_shift)

32 rcomponents = np.real(interpolated_shift)

33 #print("Note , largest real component is: " + str(np.abs(np.max(

rcomponents))))

34 #print("Note , largest imaginary component is: " + str(np.abs(np.

max(icomponents))))

35 return np.real(interpolated_shift)

36

37 def cross_correlate(x,y,nyq_freq ,times):

38 results = np.zeros(len(times))

39 for i in range(len(times)):

40 y_shifted = shift_signal(y,nyq_freq ,len(y),times[i])

41 product = x*y_shifted
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42 results[i] = np.sum(product)

43 return results

use_readers2.py

1 from __future__ import absolute_import , division , print_function

2

3 import math

4 import time

5

6 from builtins import * # @UnusedWildImport

7

8 from mcculw import ul

9 from mcculw.enums import ScanOptions , FunctionType , Status ,

AnalogInputMode

10 from examples.console import util

11 from examples.props.ao import AnalogOutputProps

12 from mcculw.ul import ULError

13

14 import numpy as np

15 import datetime

16

17 from sys import argv

18

19 from utilities.data_loader import DataLoader

20

21 use_device_detection = True

22

23 from mcculw.enums import InterfaceType

24

25 from daqlib.daq_readers import ReaderPool ,USB205Reader ,USB231Reader

26 from daqlib.daq_writers import USB231Writer

27 import current_display

28

29 ’’’

30 Script to concurrently read data from two DAQs and write data as

well.
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31

32 parameters:

33 -file to write first DAQ data to.

34 -file to write second DAQ data to.

35 ’’’

36

37 def config_two_devices(board_num):

38 devices = ul.get_daq_device_inventory(InterfaceType.ANY)

39 # Check if any devices were found

40 cntr = 0

41

42 for eachdevice in devices:

43 print("Found device: " + eachdevice.product_name + " (" +

eachdevice.unique_id + ")\n")

44 ul.create_daq_device(board_num[cntr],eachdevice)

45 cntr += 1

46

47 if len(devices) > 0:

48 return devices

49 else:

50 return None

51

52 cntr = 0

53 def channel0_write(x,chan):

54 return 0

55 #return 10.0* np.cos (2*2080* np.pi*x)

56

57 def channel1_write(x,chan):

58 return 0.0

59

60 def run_example(filenames):

61 board_nums = [0,1]

62

63 ul.ignore_instacal ()

64 devices = config_two_devices(board_nums)

65 if devices is None:
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66 print("Could not find two devices.")

67 return

68

69 writer = None

70

71 pool = ReaderPool ()

72 for x in range(len(devices)):

73 if devices[x]. product_name [0:7] == "USB -205":

74 pool.add_reader(USB205Reader(board_nums[x],

isDifferential=False))

75 elif devices[x]. product_name [0:7] == "USB -231":

76 pool.add_reader(USB231Reader(board_nums[x],

isDifferential=False))

77 writer = USB231Writer(board_nums[x])

78

79 #writer.prepare_write ([ channel0_write ,channel1_write ],2,5000)

80

81 pool.setup_buffers (1 ,6250)

82

83 #writer.start_write ()

84 #time.sleep (.2)

85 samples_array = pool.scan_all () #this call blocks

86 #writer.wait_until_done_writing ()

87

88 ul.release_daq_device(board_nums [0])

89 if len(devices) > 1:

90 ul.release_daq_device(board_nums [1])

91

92 print("samples array 0 : {}".format(samples_array [0]. shape))

93 print("samples array 1 : {}".format(samples_array [1]. shape))

94

95 #Code below used when auto -generating files with their current

values

96 #current = (np.mean(samples_array [0][0 ,:])-np.mean(samples_array

[0][1 ,:]))/5.1

97 #print(np.mean(samples_array [0][0 ,:]))
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98 #print(np.mean(samples_array [0][1 ,:]))

99 #print(" current is {}". format(current))

100 #DataLoader ().overwrite_ch_data(filenames [0]+"/"+ str(int(current

*1000))+".txt",np.concatenate (( samples_array [0], samples_array [1])

,axis =0))

101 #exit()

102

103 if len(devices) > 1:

104 DataLoader ().overwrite_ch_data(filenames [0],np.concatenate ((

samples_array [0], samples_array [1]),axis =0))

105 else:

106 DataLoader ().overwrite_ch_data(filenames [0], samples_array

[0])

107

108 if __name__ == ’__main__ ’:

109 run_example ([argv [1]])

voltage_display.py

1 import numpy as np

2 from scipy.fftpack import fft , ifft

3 import matplotlib.pyplot as plt

4 from sys import argv

5 import utilities.data_loader

6 import time_shift

7 import os

8 from preprocessor import PreProcessor

9

10 ’’’

11 Displays data from 8-channel voltages readings graphically.

12

13 Parameters:

14 -filename

15 -sampling frequency

16 -Optional: start time

17 -Optional: end time

18 ’’’
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19

20 def display_ch_data(start ,end ,sf,samples):

21 length = end -start

22 T = 1.0/sf

23 times = np.linspace(start*T,(end -1)*T, length)

24

25 plt.title(’ADC Voltage ’)

26 plt.xlabel(’Time (sec)’)

27 plt.ylabel(’Current (A)’)

28 plt.plot(times , samples[start:end])

29 plt.grid()

30

31 plt.show()

32

33 def display_all_data(start ,end ,sf,samples):

34 length = end -start

35 T = 1.0/sf

36 times = np.linspace(start*T,(end -1)*T, length)

37

38 for i in [12]:

39 plt.title(’Voltage Readings channel ’ + str(i))

40 plt.xlabel(’Time (sec)’)

41 plt.ylabel(’Volts (V)’)

42 plt.plot(times , samples[i,start:end])

43 plt.grid()

44

45 plt.show()

46

47

48 if __name__ == ’__main__ ’:

49 filename = argv [1]

50 sf = float(argv [2])

51

52 samples = utilities.data_loader.DataLoader ().read_ch_data(argv

[1])

53
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54 start = 0

55 end = samples.shape [1]

56

57 print("Averages: " + str(np.mean(samples ,axis =1)))

58

59 preProcessor = PreProcessor ()

60

61 #samples [1:3 ,:] = preProcessor.noise_filter(samples

[4:5 ,:] ,.0001)

62 #samples=samples /1.08

63

64 if len(argv) > 3:

65 ch = int(argv [3])

66 display_ch_data(start ,end ,sf ,samples[ch ,:])

67 else:

68 display_all_data(start ,end ,sf,samples)

voltage_freq_response_fit.py

1 from scipy.optimize import curve_fit

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 ’’’Program used to curve fit readings of electrode voltage to

transfer functions modelling

6 voltage detection system ’’’

7

8 #Transfer function including omega squared term

9 def simplefunc(x,a,b,c):

10 return x/np.sqrt((a-c*(x**2))**2+(b*x)**2)

11

12 #Transfer function without omega squared term

13 def simplefunc2(x,a,b):

14 return x/np.sqrt((a)**2+(b*x)**2)

15

16

17 f=np.array ([150 ,330 ,550 ,880 ,1230 ,1791 ,3367 ,9928 ,20648 ,26518 ,33595])
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18 w=f*2*np.pi

19 gain=np.array

([.034552 ,.071968 ,.114061 ,.16934 ,.2211 ,.2935 ,.42098 ,.54857 ,.5771 ,.5812 ,.5826])

20

21 plt.plot(w/(2*np.pi),gain ,label="Measurements")

22

23 popt ,pcov = curve_fit(simplefunc2 ,w,gain ,p0=[300000 ,1.7] , bounds

=(0 ,1000000000))# ,0],bounds =(0 ,[1000000 ,100000000 ,1000000000000])

)

24

25 testvoutsimple =simplefunc2(w,popt[0],popt [1])

26 plt.plot(w/(2*np.pi),testvoutsimple ,label="Curve Fit")

27 plt.xlabel("Frequency (Hz)")

28 plt.ylabel("Gain")

29 plt.title("Electrode Frequency Response")

30 plt.legend ()

31 plt.grid()

32 plt.show()

33

34 for i in range(len(testvoutsimple)):

35 print("Freq" + str(f[i])+ " vol: " + str(testvoutsimple[i]))

36

37 print("b/a: {}".format(popt [1]/ popt [0]))

38

39 print(popt)

40 print(popt [0])

41

42

43 print("Error is: {0}".format ((1/ len(vout)*np.sum(( testvoutsimple -

vout)**2))))
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