
A 3-Dimensional Editor for App Inventor

by

Kevin Kyung Bum Cho

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 23, 2019

Certified by. .
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Master of Engineering Thesis Committee

2

A 3-Dimensional Editor for App Inventor

by

Kevin Kyung Bum Cho

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

3-Dimensional Applications are constantly becoming ever more abundant to audiences
of all ages. However, development for such applications have allows been known to
be unpleasant. To make 3-Dimensional Application development more appealing and
available to people of all ages, this thesis looks to create a working prototype of a
3-dimensional editor for MIT App Inventor. MIT App Inventor is a powerful pro-
gramming environment that is accessible to everyone. It is easy to learn and use,
which makes it used fairly often to teach many different people about building ap-
plications. With the App Inventor’s easy to use block programming, a 3-dimensional
editor will make such applications easier to build and learn for everyone.

For this thesis, I have worked on building a prototype 3-dimensional editor that
will be usable and easy to learn. Many changes and improvements have been made so
that even a person with no prior knowledge would be able to come and start working
in the environment. These changes include, but are not limited to, the ability to
create conglomerate objects, creating a better user interface, and keeping the process
as simple and easy as possible so as not to create the complexity most platforms
today give. The editor was tested over a 3 day workshop with 7 students, of the
ages 12 to 16, to guarantee the simplicity of developing 3D applications. The results
of the workshop showed that students were able to get a better understanding of
3-Dimensional development by using the editor. However, the workshop also shed
light that the editor is still too complex and has room for improvement.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

I would like to thank Professor Hal Abelson for all the support and advice that he

has bestowed upon me during my time in his lab. I also would like to thank Evan

Patton for helping me through hard development issues of integrating my code with

the current code of MIT App Inventor and helping me understand the basic structure

of the system. Lastly, I would like to thank Kevin Zhu from the App Inventor Lab

for help answering several questions about his previous work on the 3-Dimensional

Editor for App Inventor.

5

6

Contents

1 Introduction 13

2 Related Work 15

2.1 MIT App Inventor . 15

2.2 Scratch . 16

2.3 Unity . 16

2.4 Three.js and Ammo.js . 17

3 Background Information 21

3.1 Current User Interface . 21

3.1.1 Design Interface . 21

3.1.2 Block-based programming Interface 22

3.2 Three.Js and Ammo.Js . 25

4 System Design and Implementation 27

4.1 3-Dimensional Editor . 27

4.1.1 Editor and How to Get to the Editor 27

4.1.2 Left Column of the Editor . 28

4.1.3 World of the Editor . 31

4.1.4 Right Column of the Editor 32

4.2 Block-based Programming Interface 35

5 Example Application 39

5.1 Shape Enlarge and Shrink Application 39

7

5.2 Simple Bowling Application . 41

5.3 Roll a ball . 43

6 User Study and Evaluation 47

6.1 First Day . 48

6.2 Second Day . 49

6.3 Third Day . 50

6.4 Analysis of Workshop . 51

7 Future Work 55

7.1 Object specific blocks . 55

7.2 Optimized Export Method . 56

8 Conclusion 59

8

List of Figures

2-1 Comparison of a Scratch 3D project [1], left, and a Unity project [12],

right . 17

2-2 Three.js Editor [9] . 18

2-3 Three.js Projects [8] . 19

3-1 Design Interface . 22

3-2 Block-based Programming Interface 23

3-3 QR code for Companion Application 24

4-1 Adding 3D screen . 28

4-2 3D Editor . 29

4-3 Color Palette . 30

4-4 Object Select in Editor . 31

4-5 Group Object in Editor . 33

4-6 Right Column Buttons . 34

4-7 3D Editor Blocks . 35

5-1 Red Box in Editor . 40

5-2 Block code for the Shape Application 41

5-3 Bowling Application . 42

5-4 Example Block Code for Bowling Application 43

5-5 Block code for the Roll a Ball Application 45

6-1 Results of the Surveys . 53

9

7-1 Image Sprite Blocks . 56

10

List of Tables

6.1 Pre-Workshop Survey . 48

6.2 Post-Workshop Survey . 51

11

12

Chapter 1

Introduction

During the past few years, 3-dimensional applications have been increasing in pop-

ularity for the public, virtual reality applications being the most popular. However,

developing 3-dimensional applications have never been known to be simple or easy.

Extensive knowledge of both programming and physics is usually required for any-

one to start developing 3-dimensional applications. As a result, many people see

3-dimensional application development for mobile phones as a skill that is extremely

hard to achieve, and it discourages several people from even starting to develop these

types of applications.

MIT App Inventor is a powerful tool that anyone can use to create applications

on smart devices. It allows students and professionals to come and create mobile

applications whether they are proficient in programming or not. The goal of this

thesis is to integrate a working 3-dimensional editor into the App Inventor platform

to test if such an editor is viable and meets the simplicity and goals of the App

Inventor Program.

In this thesis, I have developed a working prototype of a 3-Dimensional editor

in App Inventor that anyone, even people with little to no programming knowledge,

would be able to use to develop simple applications. I helped modify and clean up

the previous prototype that was not fully functional. The existing prototype was

implemented, but was lacking in several areas to be launched as a working prototype.

Some of the changes I have made to the prototype were but not limited to: creating

13

a multiple-select protocol for objects in the editor, creating new blocks that would

be relevant to 3-dimensional coding, and creating new objects in the editor. These

changes have helped clean up the editor to make it much simpler and easier to use.

In order to test the prototype, I created tutorials of a use case scenario for a

simple 3-dimensional application. The application has a simple shape in the middle

of the screen. By tapping the shape, it would cause the shape to grow in size, and by

tapping the area outside the shape, it would cause the shape to shrink in size. With

this tutorial, I set up a 3-day workshop to briefly teach what App Inventor was and

what my 3-dimensional extension did. I conducted a survey after the workshop and

found that the students’ understanding of 3-dimensional development had increased

over the time together by using the editor.

The next few chapters go over the exact details of each step in details. Chapter 2

goes over related work that have been done and the limitations of those works that

makes it still difficult for an average person to work with. Chapter 3 discusses the

user interface and the changes that I made towards the editor. The next chapter

contains the implementations of the changes that I made to the editor along with the

blocks, and Chapter 5 includes examples of applications that can be made through the

extension. Chapter 6 contains the workshop study along with the analysis, and the

final two chapters talk over future work for the editor along with concluding remarks.

14

Chapter 2

Related Work

Currently, there are several platforms that provide an environment for creating 3-

dimensional applications. However, each of these environments are inadequate to

the majority of students due to the complexity of the platform: requiring extensive

knowledge of certain computer programming languages or extensive knowledge of

physics in terms of motion and vectors. The platforms listed below are those that

were looked into in order to improve the existing editor on MIT App Inventor.

2.1 MIT App Inventor

MIT App Inventor is a platform that uses a block based programming language that

allows everyone to create mobile applications. As of today, there are millions of

users from hundreds of countries that have come together and created over 38 million

apps [4]. Despite these impressive numbers, the App Inventor platform is limited in

developing 3-dimensional applications. The interface is limited to creating screens

with 2-dimensional objects, and does not have a working 3-dimensional editor.

This project is to integrate a working 3-dimensional editor. This way users can

switch from creating 2-dimensional objects to creating 3-dimensional objects in their

applications. This editor allows users to expand their imaginations and create a wider

variation of applications.

15

2.2 Scratch

Scratch is another platform that uses a block-based programming language. A differ-

ence with MIT App Inventor and Scratch is that Scratch is used mainly for web-based

applications and not so much for mobile applications. Similar to MIT App Inventor,

Scratch was built for children in the ages 6 to 18 to create games and animations [5].

It is widely used with about a user base of the size of 30 million people creating about

40 million projects total since Scratch’s beginnings [6]. However, even with such a big

user base, scratch has decided not to pursue a 3-dimensional editor as it may become

too confusing for a beginner level Scratcher [2].

As Scratch currently does not have a 3-dimensional editor, the prototype from

this thesis is a step forward. Although the initial 3-Dimensional editor for MIT App

Inventor can be considered a little complex, it can be worked towards a design that is

simpler and easier to learn and create basic applications with 3-dimensional objects.

2.3 Unity

Unity is a very widely known and used platform for both computer and mobile ap-

plication. Although known more widely as a game developing platform, the Unity 3-

dimensional editor is used for various different applications: simulations, animations,

and modeling [11]. Despite the wide use, Unity uses two computer programming

languages for the the code: Javascript and C#. For a student with no knowledge of

development, these languages may be difficult to learn along with learning how the

Unity 3-dimensional works.

However, despite the complexity, there is a trade-off made in that excellent quality

applications are able to be produced through the Unity Environment. In figure 2-

1, there is a comparison between a project created through scratch and one created

through Unity. It must be noted that with added complexity, the quality and precision

of applications can be refined.

The work done in this thesis uses the elements from the Unity editor in order to

16

Figure 2-1: Comparison of a Scratch 3D project [1], left, and a Unity project [12],
right

boost the quality of applications made. The goal of the editor in this thesis is to

strive to emulate the quality of work that can be done in the Unity Platform, but at

the same time, the MIT App Inventor 3-Dimensional editor should not be as complex

and hard to learn.

2.4 Three.js and Ammo.js

Three.js is an open source project that allows users to implement 3-dimensional ap-

plications through Javascript [7]. Although not as robust as Unity, Three.js definitely

has it’s advantages. Because it is an open source project, it can be used in other

projects to help implement features that need to be in a 3-dimensional editor. Be-

cause of this fact, this project uses the Three.js library to built an editor space for MIT

App Inventor. As shown in figure 2-2, there is already an open source 3-dimensional

editor that developers created from the Three.js library. However, although shapes,

sprites, and objects can be created easily, it is still fairly hard to navigate where to

create these objects and how to delete and edit them. Another downside is that the

code that is written for the applications must be written through Javascript and not

block-based programming. This is a shortcoming in that users must learn Javascript

17

Figure 2-2: Three.js Editor [9]

to proficiently use this product.

Ammo.js is used as the physics engine that allows the objects to perform the

motions that are assigned to them. It is a powerful tool when combined with Three.js

to create 3-dimensional and virtual reality applications. Ammo.js is used in this

thesis project to provide the adequate functions in order to make the objects and

shapes move as the user wishes. The next chapter will give more detail in how this is

possible. There are several interesting projects that have been created using Three.js

and Ammo.js shown in Figure 2-3.

However, the limitation still arises that Three.js is not based on block program-

ming. Thus, the user would have to learn Javascript and the libraries in order to

develop with these tools. The work implemented in this thesis allows users to use

these libraries without even knowing. The libraries are used to implement the blocks

that the users are placed in the App Inventor environment.

18

Figure 2-3: Three.js Projects [8]

19

20

Chapter 3

Background Information

This chapter discusses the background information of the 3-dimensional editor system

that was built for this thesis. First, it will go into more detail of how the current

MIT App Inventor Interface works. Then it will talk about Three.js and Ammo.js in

more detail as to how they are used for this project.

3.1 Current User Interface

In the MIT App Inventor, there are currently two components to the platform: The

User Interface Designer Interface, shown in Figure 3-1, and the Block-based Program-

ming Interface, shown in Figure 3-2.

3.1.1 Design Interface

The designer interface is where the user creates all the visual components of the

mobile application. These components consists of buttons, images, labels, sprites,

and much more. Within this interface, the user can also add different aspects from

the phone such as a gyroscope, camera, clock, database, and much more. All these

aspects of the visual component can be added by dragging them from the left panel

and dropping them to the screen in the middle, which is a preview of what would

show on the phone. On the right side of the platform, each component’s properties

21

Figure 3-1: Design Interface

can be adjusted depending on which component is selected.

The visual objects that the user drags and drops into the phone screen will be

shown on the phone. However, some non-visual objects such as sensors and databases,

will not show up on the phone screen. Instead, it will show up underneath the phone

screen. If the user wants to create multiple screens in their application, they are able

to by clicking on the add screen button above the phone screen preview. This will

add a screen or a page in the application. Objects in all screens can be viewed by

the second from the right side organized by the screens. Images and other media are

also available to upload and add to the application if the user wishes.

3.1.2 Block-based programming Interface

The second interface, reached by clicking the Blocks button on the right side of Figure

3-1 and shown in Figure 3-2, contains all the block-based programming portion of the

mobile applications. These blocks are basically the coding portion of the application.

They define all the logic that happens when users use the mobile application. All the

coding blocks can be divided into two basic categories: The built-in or world blocks

and the object blocks. The built-in or world blocks deal with blocks that control or

22

Figure 3-2: Block-based Programming Interface

deal with the overall application. These blocks are divided further into the following

groups:

∙ Logic Blocks: The Boolean value blocks along with all the other logic blocks

https://www.overleaf.com/project/5c004738ebc04119dbfb286dsuch as the and,

or, and not logic functions.

∙ Math Blocks: Mathematical functions and operations along with number blocks

are found here

∙ Color Blocks: the blocks that are used to choose colors

∙ Control Blocks: these are the blocks that contain all loop statements such as

if/else, for, and while statements.

∙ Variable Blocks: all blocks related to initializing and changing variables

∙ Procedure Blocks: blocks that contain procedure related operations.

Along with these world blocks, there are specific blocks that are used for certain

objects that have been added to the application. These blocks can be used to change

23

Figure 3-3: QR code for Companion Application

different properties of the object. They may also be used to cause an action to be

triggered when something is done to the object such as when a button is clicked, text

may appear.

As shown in Figure 3-2, all these blocks can be accessed on the left column. These

blocks can be dragged and drop to the middle section, which can be seen as the code

base. The blocks can be assembled together to create logical coding statements to

make the mobile application run as the user wants. For example, in Figure 3-1 and

3-2, a simple "Hello World" application is made. The Design Interface shows a button

that says click here. In the Block Interface, a block code is made by using the button

specific block to see if the button was clicked. When the button is clicked, the label

in the app is changed to say "Hello World".

These two components create the platform that users can use in the MIT App

Inventor to create innovative and fun mobile applications. Once finished with the

application, the user can export their application via the App Inventor Companion

Application. A QR code is displayed, as shown in figure 3-3, on the development

interface by clicking on the AI Companion button and clicking Connect. After scan-

24

ning the QR code using the Companion Application, the user sees the application

that they have just built on the device and is able to interact and use the application.

3.2 Three.Js and Ammo.Js

As mentioned in Chapter 2, both Three.js and Ammo.js are open source javascript

libraries that can be used for 3-Dimensional development for web applications and

potentially mobile applications [7]. Although the Three.js has an open source editor

available, it would not align with the MIT App Inventor platform because the code

behind these projects require Javascript and not the block-based programming that

MIT App Inventor uses. Therefore, it is necessary to use the library to create a similar

editor that is simpler and easier to use for younger students.

The way that the editor works is that it will be a stand-alone editor added to the

MIT App Inventor Platform. The editor creates a Three.js Scene object [10], and

has the user add whatever objects they want into the scene. The blocks for the 3-

Dimensional editor is then converted to Javascript and added to the scene. This scene

is what is exported to another HTML file in the Github repository. When loading

the created application through the MIT App Inventor Companion Application, the

Companion Application will load this HTML file and display the mobile application

the user created on the device.

However, one short coming of Three.js is that the physics and motion of objects

are fairly limited. The Ammo.js open source project allows for more complex physics

reaction to happen such as collisions, objects breaking, objects flowing through the

wind, and much more. The Ammo.js library helps simplify the coding done when

coding new blocks for the Blocks Interface, especially those that deal with collisions.

25

26

Chapter 4

System Design and Implementation

This chapter discusses the changes that went through the User Interface of the 3-

dimensional editor along with the block coding portion. The goal of the features

listed is to keep the simplicity and ease of use of MIT App Inventor such that anyone

would be able to come and use the product.

4.1 3-Dimensional Editor

This section discusses the editor that is added to MIT App Inventor along with the

features that it contains. There are some design choices that are listed along with the

implementation of the editor through the Three.js Library.

4.1.1 Editor and How to Get to the Editor

The 3-Dimensional editor component is added to an App Inventor project by first

creating the project, clicking the Screen 1 button, and adding a VR screen as high-

lighted in Figure 4-1. This leads to the 3-Dimensional editor that users are able to

build the visual graphics. This editor, shown in figure 4-2, can be seen to be similar

to the Designer Interface from the original MIT App Inventor. However, the main

difference is that instead of a screen with drag and drop items on the left, the items

on the left are all 3-dimensional objects that are added to the editor when clicked.

27

Figure 4-1: Adding 3D screen

The right side is just the same in that it lists the properties of the object selected.

The user is able to change any properties that they would like through this menu.

One big difference that can be noted is that for this editor, a phone screen preview

is not shown as it is in the original. Instead, a three dimensional space is shown in

the middle of the screen. This way, the user can click and drag to move the view

of the editor. When doing this, the user is able to look at all aspects of the visual

components in their application, something that is not applicable in 2-dimensional

applications.

4.1.2 Left Column of the Editor

The left column of the editor contains all the objects to build the visual aspect of the

application. As shown in Figure 4-2, there are several shapes from cubes, spheres,

and other shapes that can be inserted to the scene. Below these shapes is an object

called Group. This object is an empty placeholder than can contain several shapes

in a group to move together. This is helpful if the user wanted to recreate a bunch

of objects. Instead of recreating each and every one of the objects manually, the user

28

Figure 4-2: 3D Editor

can create a group of these objects and click the clone button in the middle. By

clicking on any of these buttons, the wanted shape will appear in the middle of the

screen and be in the selected state.

Below the Group button, there are several buttons that correspond to several

different lights. Because the application is 3-Dimensional, there has to be light that

illuminates some parts of the application. By default, and ambient light is placed in

the scene, but it can be deleted and removed if wanted. Each light can be moved and

rotated just as the object shapes can. However, the biggest difference is that each

light will illuminate the objects in a certain direction or manner and cast shadows

where wanted. This feature is a nice tool to add for better 3-dimensional visual

aspects.

If the user was to scroll down farther and look below the light section, they would

find properties of the overall world. The biggest features in this section would be the

Background color, gravity, and camera portion. The color can be chosen and changed

to whatever the user desires by using the color palette pop-up as shown in Figure

4-3. The gravity has three numbers in which corresponds to the x, y, and z-axis, in

29

Figure 4-3: Color Palette

that respective order. The higher the number, the faster the objects will fall in that

specific direction. If a negative number is inputted, the gravity will be reversed and

go in the opposite direction intended. Lastly, the camera is the view that the user

will be seeing when opening the application on a mobile phone. It can be treated as

a directional light that has a position and shines on target. The camera is extremely

important because whatever direction the camera looks is what the user will see when

using the application on a mobile device.

The last two buttons on the bottom are the Labels and Shadows Disabled but-

tons. The Labels button opens another interactive editor that lets the user add or

delete labels as shown in Figure 4-4. The user may click and drag the labels to put

them wherever they want on the screen. These labels act as the text boxes in the

actual mobile application. The Shadows Disabled button is a button that will disable

shadows for the whole world, regardless of what settings each individual object has.

These features on the left side of the 3-dimensional editor is known to be the

"creation" side. Every feature deals with either creating objects or lights for the

application or setting different properties for the entire world in how the objects

30

Figure 4-4: Object Select in Editor

react as a whole or what the user sees when opening the application. When trying to

create one of the objects or lights that the developer wants, they would simply just

click on the desired button. This causes the shape to appear in the middle portion or

the world of the editor. Creating an object also allows it to be in the selected state.

4.1.3 World of the Editor

The middle portion of the screen is known to be the actual editor or the world of the

application. This is where all the shapes and lights are inserted after creating them.

Figure 4-4 shows that when selecting an object, the user has several options of things

to do. On the selected object, there are red, green, or blue lines to click and drag.

These lines determine which direction the object is set to change if the user clicks

and drags. If the user wanted to translate or move the object around, they can click

any of the lines and drag in one specific direction. If the user wanted to freely move

the object around in any direction, they can click and drag the small diamond-like

object to the desired location.

In the bottom middle portion of the editor, there are several buttons that deal

31

with the selected object. The user can click these buttons to perform what actions

he wants. If the user wants to move the object around, they would click the translate

button and click and drag the colored lines or the diamond object to the location they

want. The scale button allows the user to enlarge the object in whatever direction

they wish. The way to enlarge or shrink the object is exactly the same as translating

the object. The user is also able to rotate objects in whatever direction they wish by

clicking the rotate button and then clicking and dragging the object in the rotation

they wish. If the user would like to create multiple of the same object, they can

click duplicate and an exactly same object as the selected one will be created on the

screen. The other buttons such as delete and clear deal with removing either the

selected object or clearing the whole world.

There are two other buttons in the world that are the import and export buttons.

Because this whole editor is written in Javascript with the Three.js Library, there is

the option to save all the objects in the world as a JSON file. The Export function

allows this to happen. Once clicked, a JSON file of the objects will be saved on

the device. If the user were to already have a JSON file with objects made through

Three.js in any other editor, they can use the import button. They would simply

click the import button and load the JSON file. This would allow the objects in the

JSON file to load into the world and be displayed.

4.1.4 Right Column of the Editor

The right column of the editor deals with the actual selected and created objects

and lights. As seen in Figure 4-4, the upper portion of this section shows the user

which object is selected along with which objects are currently in the world. The user

can switch choose which object to be in the selected mode by simply clicking on the

object name in this column. Another feature that the user can do is a drag and drop

in this column. By dragging one object and dropping on top of another, the user

creates a parent-child relationship between the two objects. Another way to view

this is through the group object. Because the group object is an empty placeholder,

adding actual shapes to be a children of a group object makes a powerful tool when

32

Figure 4-5: Group Object in Editor

mass producing a similar object. The group relationship also helps when the block

codes want to deal with multiple objects at once. For example, if a chair was wanted

to be made and moved on swipe, without the group object, the chair would be made

of individual boxes that would have a block code portion for each box. With the

group object, the boxes can be under a group relationship, and only one block code

can be specified to move the group, which causes all the objects in the group to move.

In Figure 4-5, it can be seen that the both the Box and Sphere object are under a

group object. The slight indentation to the right of both these objects indicate they

are under the group parent object.

Once the user selects and object, the properties of that object will appear on

the bottom of the right side as shown in Figure 4-5. Depending on the object,

the properties that appear will differ. However, for most of the objects, the most

important properties listed would be the position, scale, and rotation. Although the

user can technically alter these properties through the world editor as discussed in

the previous section, they may also alter them through exact numbers in this portion

of the editor. Another section that is important is the velocity and acceleration of

33

Figure 4-6: Right Column Buttons

the object. If the user wants an object to move when the application begins, they

may set a velocity or acceleration to the object so that it moves at the start of the

application.

On the bottom of the right column, there are four different buttons as shown

in figure 4-6. There is the flat shading, wireframe disabled, collision enabled, and

rigid object buttons. Each of these buttons can be clicked to enable or disable the

features to the selected object. Flat shading can be switched to the smooth shad-

ing object that allows the shape to appear to have a smoother surface. Wireframe

disabled and enabled just shows how the object is looking in the editor. Having the

wireframe enabled makes the object appear with only the wireframe and no shading.

The Collision enabled and rigid object buttons deal with the physics engine of the

application. Rigid objects are those that cannot be moved in the application. The

collision enabled objects will have a collision effect while disabling collisions enables

objects to pass through the collision disabled object.

Other features for objects include the material that the object is made of, the

texture of the object, mass, and etc. These features allow the user to create visually

34

Figure 4-7: 3D Editor Blocks

appealing applications. The textures can add a more realistic component through

adding pictures or textures to the objects such as ground or grass texture. The mass

can affect how the object reacts to other objects in collisions or how fast the object

will fall with gravity in effect. Other features such as the opacity are all part of visual

appealing features that help the application seem more realistic.

4.2 Block-based Programming Interface

The Block-based Programming Interface is exactly the same as the one in the original

MIT App Inventor. However, the blocks that are able to be used are slightly different.

As shown in Figure 4-7, there are several groups of the blocks, each that contain blocks

that deal with some part of the block-based coding.

A little different from the original blocks, the 3-Dimensional Editor blocks contain

object related blocks under the VR_Commands blocks. This category of blocks have

several different operations that deal with 3-dimensional objects such as:

∙ Properties: Able to get and set the objects’ or lights’ properties to whatever

35

the user wishes

∙ Adding and Removing: the user can add or remove certain objects and lights

∙ Camera: Able to set different camera properties

∙ Touch: Able to get the position of the touches that occur when the application

is running

These operations allow the user to do what they wish with the 3-Dimensional

objects up to certain extents. The user can change the size of objects, move the objects

or lights, have the light shine in a different direction, or even have the viewpoint in

the application move at any time. These blocks allow the user to play around with

the objects in whatever manner they wish.

Another category of built-in Blocks that are added are the VR_Events categories.

These blocks deal with what the application does in certain scenarios. The blocks in

this category are:

∙ On start do: When the application starts running, what does the user want it

to do?

∙ On render do: When the application renders on the device, what does it do?

∙ On touch start: When the device recognizes a touch, what does the application

do?

∙ On touch move: When the device recognizes that the touch moves, what does

the application do?

∙ On touch end: When the device recognizes there is no longer a touch, what

does the application do?

These blocks allow for the user to create scenarios of when objects are touched and

how the objects react. If the user wanted to destroy an object on touch, they have

the option to do this through the On touch start block. Whatever scenario arises,

36

these blocks can be used to help detect the scenario and carry out the actions that

the developer wishes to happen.

One big difference that can be noticed from Figure 3-2 is that there are no object

specific blocks. This is because all the object specific actions are listed under the

VR_Command block group. Another reason is that the 3-Dimensional editor is

added to the platform in a different manner than the Visual Interface of App Inventor.

The Editor is added through a separate WebViewer Javascript Box in the website.

What this means is that whatever objects that are added into the 3-Dimensional

editor cannot be read by the Blocks Interface, and this leads to the fact that these

objects will not appear in the Blocks column of Figure 4-7. Thus, even if object

specific blocks were made, they would not be able to appear in the Blocks Interface

for the 3-Dimensional Editor. This lead to the design decision of creating a generic

VR_Command block group which would include all the necessary blocks for any

object in the 3-Dimensional world.

Just as in the original editor for App Inventor, in order to export out the applica-

tion, the user could use the App Inventor Companion Application. The user would

click the connect button on the top left side of the editor and click the AI Compan-

ion button. Once the QR code pops up and the user scans it using the Companion

Application, the 3-Dimensional application that the developer made will pop up on

the device, and it will be ready to use.

37

38

Chapter 5

Example Application

This section discusses the example application that I prepared for my workshop to

teach students about 3-Dimensional development through App Inventor. The appli-

cations were designed to be somewhat easy yet still interesting to play and make.

5.1 Shape Enlarge and Shrink Application

In this tutorial, students would pick a shape of their choice and color it with whatever

color they wanted. I chose to go with the a box for my application. In figure 5-1, it

shows the 3-Dimensional editor with a red color box that was added into the editor.

Because the cube should not be moving when the application runs, the students were

instructed to set the gravity of the world to 0 for each axis. This way, the cube would

remain in the middle of the device’s screen at all time.

The goal of this application is to create the shape and have it either shrink or

enlarge depending on where the user touches the screen. If the user touches the

shape, then the shape would grow, and if the user touches anywhere but the shape, it

would shrink. Because students may not have had a coding background, the tutorials

all contained pseudocode on what the application should do. For this application,

the pseudocode would have looked like this:

39

Figure 5-1: Red Box in Editor

On touch s t a r t :

i f ob j e c t (" Sphere ") i s touched :

setObjectProperty (" Sphere " , scaleX , "Sphere " . sca leX + 0 . 0 1) ;

se tObjectProperty (" Sphere " , scaleY , "Sphere " . sca leY + 0 . 0 1) ;

se tObjectProperty (" Sphere " , sca leZ , "Sphere " . s ca l eZ + 0 . 0 1) ;

e l s e :

se tObjectProperty (" Sphere " , scaleX , "Sphere " . sca leX − 0 . 0 1) ;

se tObjectProperty (" Sphere " , scaleY , "Sphere " . sca leY − 0 . 0 1) ;

se tObjectProperty (" Sphere " , sca leZ , "Sphere " . s ca l eZ − 0 . 0 1) ;

Figure 5-2, accurately represents the block coding that is needed for this simple

application. One way that this application could be expanded upon is by using the

group object. If instead of one object, the students wanted to create multiple objects,

they would be able to first create the shapes in the editor and put them all as children

under the group. In the block coding interface, Instead of specifying the name of the

shape, they would specify the name of the group and have it expand. This way, all

the objects in the group expands and contracts just as the students want it to.

40

Figure 5-2: Block code for the Shape Application

5.2 Simple Bowling Application

One of the classic 3-Dimensional mobile applications is a bowling game. The visual

component consists of a ground alleyway, a bowling ball, and either 6 or 10 pins

to knock down. In the 3-Dimensional editor, it is quite simple to create such an

application. As shown in figure 5-3, a bowling ball along with 6 pins on a alley is

created. This is done in a simple manner of clicking the correct objects and reshaping

them to the sizes that are necessary. For this application’s case, a sphere, box, and a

group object with 6 cylinders were used.

The pseudocode for this application looks something like this, and an example

block code is shown in figure 5-4:

41

Figure 5-3: Bowling Application

Global v a r i a b l e startY , sw ipeD i f f

On touch s t a r t {

whi l e ob j e c t (" BowlingBal l ") i s touched {

I f touchX i s with in the width o f a l l e y {

(Wherever you want to s t a r t the

b a l l i s where we want to r o l l the b a l l)

Set ob j e c t (" BowlingBal l ") . pos i t ionX to touchX

}

Set StartY = touchY

Set swipe = true

}

}

On touch end {

I f swipe {

Var sw ipeD i f f = abs (touchY − startY)

(Set the bowling b a l l v e l o c i t y by a

42

Figure 5-4: Example Block Code for Bowling Application

r a t i o * 10 so that i t never r eaches a f a s t speed)

Set ob j e c t (" BowlingBal l ") . VelZ to sw ipeD i f f /touchY * 10

}

}

On s t a r t {

I f ob j e c t (" BowlingBal l ") . pos i t ionY <= −3.0 {

Reset app l i c t i o n

}

}

5.3 Roll a ball

The last tutorial that was created is the classic Roll-a-Ball Game. Roll-a-Ball is a

classic Unity game that most beginner 3-dimension developers start with [3]. The

basic rule of the game is that the user will click on a direction of the phone to roll the

ball. The farther the click is away from the ball, the faster the ball will accelerate.

43

The goal of the game is to collect all the coins on the map.

This tutorial is the most challenging of the three applications, and during my

workshop with students, I was not able to reach this tutorial. However, because it

is such an iconic and classic 3D application, it is essential that the 3-Dimensional

editor is able to create the application. The block code is shown in figure 5-5, and

the pseudocode for the application is as follows:

On s t a r t {

While Object (" b a l l ") . pos i t ionY > 0 {

Get touch x , y , and z .

Set Object (" b a l l ") ve loc i tyX , Y, Z

to (abs (b a l l . Posit ionX − touchX)) , Y, Z * 0 .5

I f b a l l c o l l i d e s with ob j e c t {

I f ob j e c t i s in group (Coin) {

Remove ob j e c t

}

}

I f group (Coin) i s empty {

Go to new scene with Congrats scene

}

}

}

44

Figure 5-5: Block code for the Roll a Ball Application

45

46

Chapter 6

User Study and Evaluation

This chapter outlines the user study/workshop that held for three days with the

Middle to High School Students of Linden Akademia on Guam, USA. The workshop

was held on July 22nd, July 23rd, and July 24th from 1:00PM to 3:00PM. The

workshop was held in a standard classroom with access to a computer laboratory. This

was necessary so that each student was able to use App Inventor to make applications

that they wanted. The devices, Android tablets operating on the android 9.0, Pie,

operating system, that were used to test their applications were supplied by myself.

Each day of the workshop had an attendance of 7 students, whose ages were between

12 and 16.

The workshop each day was taught in a different manner. The first day and second

day, I proceeded to give a lecture for about an hour and the last hour was given to

the students to use App Inventor and explore the features available. The last day

was dedicated to using App Inventor to create the applications listed in the tutorials

in Chapter 5, which uses the 3-Dimensional editor that was created for this Thesis.

Before the workshop began, I administered a short survey at the beginning of

the first day and at the end of the last day of the workshop. These surveys are

available in Table 6-1 and Table 6-2. The survey was given to gain knowledge of

if the students began to have a better understanding of 3-Dimensional Application

development through using the editor extension on App Inventor.

47

Table 6.1: Pre-Workshop Survey

6.1 First Day

The first day of the workshop was held on July 22nd, 2019 at 1:00PM. The lecture

for the first hour talked about what MIT App Inventor is, and how to use it. The

students were able to listen to how block-based programming worked and how to

create mobile applications through App Inventor. At the last hour of the workshop,

the students were asked to create a simple Hello World application as outlined in

Chapter 3. Once the students were finished with that task, they were free to explore

and create applications that they wanted.

The workshop outline that I created looked was as follows:

∙ Survey

∙ Introduce MIT App Inventor

– What is App Inventor?

– Why was App Inventor created?

48

– What is Block-based Programming?

∙ How to use App Inventor

– Visual Interface

* Available objects to use

* Different non-visual objects and what they mean

– Block-based Interface

* Built-in blocks and what they all mean

* Object specific blocks and what they do

∙ Hello World Application

∙ Free Building Time

6.2 Second Day

The second day of the workshop was held the next day, July 23rd, 2019 at the same

time. Because the students were somewhat familiar with App Inventor, I believed

it was adequate to start diving into the 3-Dimensional Editor and developing with

it. The first hour and about fifteen minutes, I gave a quick overview of what the

3-Dimensional Editor was and how to use it. I outlined the different features that

it had and how to control the objects and change the properties. I also taught the

students how the blocks for the 3-Dimensional editor differed from the original App

Inventor and how to use each block. At the end of the lecture, the students began

working on the shape enlargement and shrinking application.

The outline of the second day was as follows:

∙ 3-Dimensional Developing

– What is 3D Development

– What makes it so difficult and complex

49

∙ 3D editor for app Inventor

– Design Interface

* Objects and lights and world properties

* World and how to maneuver objects and scale them with the buttons

* Selected Object properties and what happens when they are changed.

– Block Interface

* VR Command Block group

* VR Event Block Group

– Shape Enlarge and Shrink Application

6.3 Third Day

On the third and last day of the workshop held on July 24th, 2019, the students were

given all two hours to develop the bowling application, and if finished, were given

free development time with the 3-Dimensional editor. I helped students through

the block coding portion and gave aesthetic tips on using textures and colors when

possible. Three students were able to finish the bowling application and were given

free development time while the other students tried to finish creating the application.

Two of the three students began working on the roll-a-ball tutorial while the other

student decided to tinker around with the editor.

The outline of day three was as follows:

∙ Recap on 3-Dimensional Editor

∙ Bowling Application

∙ Free Development time along with Exit Survey

50

Table 6.2: Post-Workshop Survey

6.4 Analysis of Workshop

The first day of the workshop began with a survey asking how comfortable the stu-

dents were with App Inventor on a scale of 1 to 5. Six of the students answered with

1 and comments about how they had never heard of App Inventor while one answered

with a 3. When asked if they were familiar with Scratch or any other block-based

programming language, 3 answered with a 3 while the other 4 students answered

with a 1. When asked if the student knew any programming language or had any

background in coding, all seven answered with a 1.

On the second part of the survey, the students were asked if they had a strong

background in mathematics and sciences (especially physics). 5 of the students an-

swered with a 4, 1 student answered a 2, and the last student answered with a 5.

When asked if any had worked with a three dimensional editor or were familiar with

a three dimensional editor, only one answered with a 3 and the other 6 answered with

a 1.

These answers seemed reasonable as computer science is not a very popular or well

taught subject in the schools on Guam. Rather, subjects such as Math, English, and

other standard subjects are widely taught. Thus, having a workshop with students

51

unfamiliar with App Inventor and 3-Dimensional development seemed standard, and

much more helpful in testing the product.

On the survey of the last day of the workshop, the students were ask to rate on

how comfortable they feel with MIT App Inventor and how likely they would use it

again. 3 students answered with 3, 3 students answered with a 4, and the last student

answered with a 5. This demonstrated that, without a strong background in computer

science, the workshop had helped the students to understand how App Inventor works.

When asked on how comfortable they felt with 3-Dimensional development, 4 students

answered with a 2, 2 students gave a 3, and the last student gave a 4 for the survey.

When asked how challenging they thought 3-Dimensional development was, 5 students

answered with a 5, while 1 student gave a 3 and the last gave a 2.

Given this feedback, shown in figure 6-1, it seems that the students did in fact

learn that 3-Dimensional development is hard. However, the surveys also shows that

the 3-Dimensional editor in App Inventor made it a little less daunting than it was

before. During the free development time, I observed how some students were playing

around with the editor, and I received adequate feedback as to why there were not

certain features that might have been useful. I also saw how by the last day of the

workshop, most of the students were understanding and creating the blocks of code

for the applications faster than the days before despite the applications being more

complex.

52

Figure 6-1: Results of the Surveys

53

54

Chapter 7

Future Work

As with all systems, the 3-Dimensional editor created for this thesis still has room

for improvements. Although it is a system that the students in the workshop enjoyed

using, there are still optimizations that can be made to the system. This chapter

discusses these changes for future work.

7.1 Object specific blocks

Currently, as discussed in chapter 4, the block interface for the 3-Dimensional editor

does not contain object specific blocks. However, it definitely would be better to

have object specific blocks present like the ones in the original MIT App Inventor.

For instance, in the original 2-Dimensional editor for App Inventor, the object specific

blocks for an image sprite are detailed in many instances, shown in figure 7-1. There

is a block to detect if the sprite was touched, a block to change the sprite’s properties,

and much more. Despite having these blocks as being generic in the 3-Dimensional

editor, it would be better to split the blocks to be specific for objects, lights, and the

world.

These object-specific blocks would help with organization and breaking apart the

VR_Command group which has a myriad of blocks. It was also help with the unifor-

mity for users using the 2-Dimensional editor to move over and use the 3-Dimensional

editor due to the similarities.

55

Figure 7-1: Image Sprite Blocks

In order to start this issue, there must be a way for the Blocks Interface to find

out which objects and lights have been added to the Designer Interface in the 3-

Dimensional Editor. Currently, the editor is a separate file in itself, and has no

interaction with the Blocks Interface.

7.2 Optimized Export Method

Currently as discussed in Chapter 3, the method of exporting an application via the

MIT App Inventor Companion Application is not the preferred method. Currently,

the code for the application calls to an HTML file to load the scene and objects. If

the user is not connected to a network, they would not be able to load and use the

application. This could be a big inconvenience if the network connectivity was slow

or unavailable.

A solution to this case would be to find a way for the application to generate

an offline HTML file or Javascript application such that the Companion Application

would not have to call onto an HTML on the Github Repository. One method could be

that a standard HTML file is generated and loaded when the Companion Application

56

is loaded with the QR code. However, the downside to this solution is that the HTML

file along with all the Javascript would have to be hardcoded into the system, which

is not an ideal situation.

57

58

Chapter 8

Conclusion

Throughout this thesis, I gave an overview of the 3-Dimensional Editor that was cre-

ated for the MIT App Inventor, which is a web-based application that lets students

and professionals create mobile applications without any prior programming knowl-

edge. The goal was to try and create and editor that was simple and easy to use,

along with fun and having all the features necessary to create basic 3-Dimensional

applications.

For this project, I worked upon an existing prototype of a 3-Dimensional editor on

App Inventor. Gathering inspiration from different 3-Dimensional editor platforms

such as Unity and the Three.js editor, I created a working prototype that was able

to be tested over a course of three days.

The editor, itself, is very self-explanatory on how it is used. The user would go

and navigate the MIT App Inventor page and create a new project. From there, they

would add a VR screen, which moves the user to the 3-Dimensional Editor. When

using the editor, the user would just be clicking and dragging shapes and objects to

rearrange and scale them to the user’s liking. Next, they would add the block code,

as they would in any MIT App Inventor project.

After testing the editor with students in both middle school and high school, I

found that students, whose ages were 12 to 16, enjoy creating and playing around with

the editor. Even if they could not fully understand what the physics were behind the

scenes of the applications, they did enjoy creating visually appealing environments

59

in the editor. Throughout the three day workshop, they also expressed interest in

continuing to use App Inventor and look into different 3-Dimensional development

platforms such as Unity or Blendr.

Moving forward, additional features may still be added to the editor such as

more detailed blocks for the block programming or more objects to add to the scenes.

Through this editor and future changes, we wish that the younger generation does not

feel discouraged by the complex nature of 3-Dimensional development, but hope that

they have the correct tools to help support and let them learn how the development

works.

60

Bibliography

[1] 3D Scratch Project. https://en.scratch-wiki.info/wiki/File:
3D_Scratch_Project.png, 2019.

[2] Discuss Scratch: Rejected Suggesstions . https://scratch.mit.edu/discuss/
topic/4789/, 2019.

[3] Introduction to Roll-a-ball Unity. https://learn.unity.com/tutorial/
introduction-to-roll-a-ball?projectId=5c51479fedbc2a001fd5bb9f,
2019.

[4] MIT App Inventor: About Us. http://appinventor.mit.edu/explore/
about-us.html, 2019.

[5] Scratch: About. https://scratch.mit.edu/about, 2019.

[6] Scratch: Statistics. https://scratch.mit.edu/statistics, 2019.

[7] ThreeJS : Discover . https://discoverthreejs.com/, 2019.

[8] Three.js Featured Projects: animated cloth. https://threejs.org/examples/
#webgl_animation_cloth, 2019.

[9] Three.js Open Source Editor. https://threejs.org/editor/, 2019.

[10] Three.js Scene Documentions. https://threejs.org/docs/#api/en/scenes/
Scene, 2019.

[11] Unity : Solutions . https://unity.com/solutions, 2019.

[12] Unity True FPS Demo. https://forum.unity.com/threads/true-fps-demo.
513573/, 2019.

61

