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Abstract

In this thesis, I developed computational pipelines and algorithms that use high
dimensional biomarker imaging data to predict features of tumor tissues taken from
a genetically engineered mouse model (GEMM) of lung adenocarcinoma. I extracted
biomarker expression levels and morphological, textural, and spatial motifs of single
cells from the imaging data and used these features to train algorithms to predict
tumor histologic grade, a measure correlated with the malignant potential of a tumor.
The algorithm predictions were evaluated through comparison to a validated deep
learning model. The random forest algorithm achieved a 72% accuracy classifying
cells as belonging to a non-tumor, grade 1, grade 2, or grade 3 region and achieved
a 87% accuracy classifying cells as belonging to a tumor or non-tumor region. A
combination of biomarker, morphological, textural, and spatial features generated
models that performed better than any single group of markers by itself; spatial
features in particular significantly improved model performance.
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Chapter 1

Introduction

With the recent development of multiplexed technologies for tissue imaging, investi-

gators can generate multidimensional and spatially resolved biological data at single

cell resolution [12]. Managing and processing this wealth of information requires ef-

ficient data workflows and pipelines. A key analytic step is the automated detection

of cell subpopulations and the measurement of biomarker expression levels within

cells. Such information not only facilitates hypothesis generation, but it also permits

the testing of associations between biomarker expression and other morphologic and

functional features of interest.

The high dimensionality of the data (e.g. biomarker expression levels, patterns

of expression, intracellular localization, co-expression of biomarkers and morphologic

features) has generated great potential for leveraging the power of machine learning

algorithms to extract patterns that can facilitate biomedical research. In particular, it

has allowed researchers to make observations about the development and progression

of cancer [12].

Lung adenocarcinoma is the most prevalent form of lung cancer in the U.S. and is

the leading cause of cancer deaths worldwide [9]. To better understand the develop-

ment and mechanisms of the disease, Tyler Jacks’ lab at MIT has created a genetically

engineered mouse model (GEMM) of lung cancer that allows for controlled timing and

multiplicity of tumor development and also allows for recapitulation of the genetic

altertions found in the human version of the disease. This model allows researchers to
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monitor the progression of tumors and to draw comparisons with mechanisms of lung

tumorigenesis in humans. In my thesis work, I used lung tissues from this GEMM

model.

I studied lung tissues from this disease model using Haemotoxylin and Eosin

(H&E) staining and tissue-based cyclic immunofluorescence (t-CyCIF). H&E stained

tissue sections are used to identify tissue types and morphological changes which are

integral to the diagnosis of cancer [5]. For this project, a company specializing in

deep learning models for imaging data processed the H&E stained slides to detect

tumor regions and their corresponding histologic grades. t-CyCIF is a method for

fluorescence imaging developed in the Lab for Systems Pharmacology (LSP) that can

be used to detect the expression levels of up to 60 biomarkers on a single slice of

tissue while preserving the spatial arrangement of the cells within the tissue. These

methods provide information about the expression levels and locations of biomarkers

as well as histologic features associated with tumors such as their grade.

Chapter two describes the t-CyCIF imaging procedure, the pipeline to obtain

single-cell data from the images, and the pipeline to integrate tumor grading data

with t-CyCIF single cell data.

Chapter three describes the single cell analysis methods used to classify individual

cells and methods to extract morphological and textural features of cells.

Chapter four describes the algorithms used to predict tumor grade and the eval-

uation of these algorithms.

Chapter five discusses the performance of the algorithms, the biological interpre-

tation of the results, and potential extensions of this project.

1.1 Background

1.1.1 Mouse model of lung cancer

The mouse model in this project uses conditional activation of the K-ras oncogene

and loss of function of p53 in the lungs of mice (KP mouse model) [9]. K-ras is
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an oncogenic protein that regulates cell proliferation, differentiation, and survival.

Mutations that inactivate K-ras drive the development of lung adenocarcinoma in

humans. A quarter to one half of human lung adenocarcinomas and greater than

90% of mouse lung adenocarcinomas (both spontaneous and chemically induced) are

found to have activating mutations in K-ras. p53 is a tumor suppressor that induces

growth arrest or apoptosis and that negatively regulates cell division.

In the mouse model, LoxP DNA elements surround a "stop" element in front of

the oncogenic mutant K-ras G12D and flanks the second and tenth exons of the p53

tumor suppressor gene. Adenoviruses expressing Cre administered intranasally to the

mice delivers Cre recombinase to the lung cells, which eliminates the "stop" element

in front of the K-ras oncogene and deletes exons two through ten of p53. This induces

deletion of K-ras and loss of function of p53 [8].

Additionally, the Jacks lab has developed a CRISPR/Cas9-based approach to

investigate gene mutations related to tumorigenesis in the KP mouse model [20]. In

this study, I used KP mice chimeric for inactivation of heat shock factor 1 (HSF1),

a transcriptional regulator of chaperone gene expression that is thought to play a

significant role in cancer progression [24].

1.1.2 t-CyCIF

t-CyCIF is a method that builds upon techniques in immunofluorescence imaging.

Direct immunofluorescence imaging utilizes fluorophore conjugated antibodies that

are developed to bind to specific epitopes within proteins. Conventional fluorescence

microscopes are used to detect the light emitted from the fluorophore conjugated

antibodies thereby providing the location and abundance level of protein expression

within cells and tissues [12]. This information is collected on adjacent slices of tissue

of 5 to 10 micron thickness. The drawback to traditional immunofluorescence imaging

is that it allows for only one round of imaging per tissue slice and thus restricts the

number of different proteins that can be observed per tissue. t-CyCIF overcomes this

limitation by using a protocol that allows new antibodies to be applied to the the

same tissue slice and re-imaged for up to 15-20 cycles. This method gives researchers
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a high-dimensional representation of a single tissue slice in which spatial configuration

is preserved.

As an active member of the LSP, Sandro Santagata (primary co-mentor) and mem-

bers of his lab have implemented this optical imaging method which allows measure-

ments at single cell resolution and readily permits the detection of events occurring

at the sub-cellular level (e.g. stress foci in the cell nucleus). The technique has been

optimized to work with formalin-fixed, paraffin-embedded (FFPE) specimens, which

are widely used in pathology departments for cancer diagnosis and for the analysis

of tissue phenotypes in mouse models of disease. Such specimens are archived and

stored for long periods of time thus permitting retrospective analysis of precious and

sometimes rare human and mouse tissues.

1.2 Related work

1.2.1 Machine learning approaches to single cell classification

Machine learning techniques have been applied to multi-dimensional single cell data

to facilitate the detection of cellular subpopulations [5]. These subpopulations can be

used to better define condition-specific behaviors of cells that can serve as markers

of disease status and predict clinical outcome. Traditional approaches to identifying

cellular subpopulations include manual gating, which relies on domain knowledge-

driven quantification and thus is labor intensive and difficult to scale to increasingly

larger datasets. Other computational methods include nonparametric clustering and

density-based methods, but these methods have difficulty estimating the true number

of clusters [7].

Bruggner et al. have developed an algorithm, Citrus (cluster identification, char-

acterization, and regression), to automatically identify and stratify subpopulations

of cells in multidimensional mass cytometry data [7]. Mass cytometry is a tech-

nique that is similar to flow cytometry but rather than using antibodies conjugated

to fluorophores to characterize cells that are dissociated into single cell suspensions,
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mass cytometry antibodies are labeled with heavy metal ion tags and measured using

time-of-flight mass spectrometry. With mass cytometry, greater than 40 concurrent

parameter measurements can be achieved at a single cell level, but unlike t-CyCIF,

the method does not preserve the spatial information about the cells. The data input

for Citrus is samples of cells and their corresponding measurements. Each sample

is annotated with metadata about the specific patient from which the sample was

acquired, the progression of the patient’s disease course and the patient’s ultimate

outcome. The algorithm randomly selects a fraction of cells from all the samples and

performs hierarchical clustering on the cells based on marker similarity. Clusters of

sufficient size are then used to calculate the cellular features that describe that par-

ticular cluster. Features can include the proportion of a sample’s cells in each cluster

and the median measurements of each functional marker. Lastly, the algorithm uses

regularized supervised machine learning to identify features and clusters that best

predict a known endpoint, such as clinical outcome. The accuracy of the model is

assessed via cross validation using similar sets of samples.

Arvaniti and Claassen developed an algorithm, CellCnn, which combines multi-

ple instance machine learning with convolutional neural networks to identify T cell

subsets associated with an increased risk of AIDS onset in a HIV-infected patient co-

hort. CellCnn was also used to detect rare cell populations associated with minimal

residual disease (MRD) in acute lymphoblastic leukemia (ALL) and acute myeloid

leukemia (AML). The data sets were obtained via either mass cytometry or flow cy-

tometry. CellCnn implements a convolutional neural network which takes as input

to its first layer a set of cells and their corresponding measurements. Each measure-

ment is evaluated with respect to each convolutional filter in the convolutional layer,

and the pooling layer then takes either the maximum or mean of the results of each

convolutional filter. The pooling layer is then connected to the output layer, which

contains the classification of the cell. The weights of the layers were optimized using

mini-batch stochastic gradient descent with Nesterov momentum [4].
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1.2.2 Cell morphology and texture linked to functional states

A review paper by Prasad et al. describes several studies linking cell morphology

with functional changes in the cell [17]. Uhler et al. found that changes in cell

morphology led to changes in the position of chromosome territories and changes in

gene expression. Abnormal cell morphology is already used to aid cancer diagnoses,

and quantifiable morphological features could further aid the process. Prasad et al.

measured shape features of 8 osteosarcoma cell lines, 4 of which are highly metastatic

and 4 of which have low metastatic ability. Using Zernike moments, a rotation-

invariant measure of shape, they found 2 types of metastatic cell lines that showed

predictive shape changes. Another study found that a neural network could predict

metastatic capacity of cell line using morphological markers with 99% accuracy.

In addition to cell morphology, cell texture has also been shown to be predictive of

cell properties. Boland et al. developed a method to characterize protein localization

patterns using Zernike moments and Haralick features, which measures cell texture.

They achieved a 88% accuracy using a backpropagation neural network [6]. Pantic et

al. used Haralick features, specifically entropy, angular second moment, correlation,

and variance to differentiate thymus cortical lymphocytes and medullar lymphocytes

[15]. They found that medullar lymphocytes may have a higher nuclear textural

entropy and variance and lower angular second moment and texture correlation than

lymphocytes in the thymus cortex.
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Chapter 2

Methods

2.1 Tissue collection and imaging

In this project, I used tissues from the lungs of a KP mouse chimeric for inactivation

of HSF1. The five lobes of the lung were preserved as FFPE specimens and were

imaged using t-CyCIF for 8 cycles, resulting in a total of 18 unique biomarkers. t-

CyCIF allows for imaging of up to 3 biomarkers in addition to a blue-fluorescent

DNA stain (DAPI) per cycle. In each cycle, separate biomarkers reside in separate

frequency channels, which allows the signals to be detected without interference.

The Jacks Lab performed the tissue extraction and preservation, and a member

of the Santagata Lab performed the imaging. In addition, H&E staining was applied

to adjacent sections of each tissue, and the resulting images were sent to Aiforia to

obtain tumor grade data.

2.2 Image processing pipeline

Due to the high resolution of the t-CyCIF images, the image of the whole tissue is

typically saved section by section, and these sections are stitched together using an

existing program (ASHLAR) to form an image of the whole tissue. ASHLAR also

aligns the images from different cycles to account for slight shifts in the tissue that

occur over the cycles. Artifacts in the images are corrected using the BaSiC tool [16].
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Figure 2-1: Example of segmentation mask.

The next step is to automatically detect individual cells in the image. This is

done using an interactive segmentation program, ilastik [22], which outputs a prob-

ability mask indicating the probability that a given pixel belongs to the nucleus,

cytoplasm, or background. A Matlab script processes the probability mask to output

a binary mask separating the image into nuclear areas and background. An exam-

ple of the binary mask is shown in figure 2-1; the separate nuclear areas (in white)

define individual cells. The cytoplasm is defined as the area within 5 pixels of the

perimeter of the nuclear area. This segmentation mask is applied to each of the image

channels containing the different biomarkers obtains the mean pixel intensity in the

nucleus and cytoplasm at a single cell level. We assume that pixel intensity directly

correlates with biomarker expression level. Lastly, the segmentation mask is used

to extract morphological information about the cells such as area, perimeter, and

eccentricity. The output of the image processing pipeline is a matrix in which the

rows represent single cells, and the columns represent attributes of the cell such as

biomarker expression levels, area, perimeter, and the location of the cell within the

tissue.
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Figure 2-2: Example of Aiforia output with the graded tumor regions overlaid on the
H&E stained section.

2.3 Tumor grading

An H&E stained section of the tissue is used to determine the tumor regions and

their grades. Aiforia Technologies, a company that builds deep learning models for

medical image analysis, processed the H&E images using a trained convolutional

neural network (CNN) that categorized regions in the tissue as grade 1, 2, 3, or 4 [1].

Early lesions resembling adenomas are designated as grade 1. Grade 2 tumors are

larger adenomas that have slightly enlarged nuclei with prominent nucleoli. Grade

3 tumors are invasive adenocarcinomas with prominent cellular pleomorphism and

nuclear atypia and grade 4 tumors are invasive adenocarcinomas with high mitotic

index and a distinctive stromal reaction (desmoplasia) [8]. An example of an Aiforia

output image is shown in figure 2-2. The yellow regions are normal tissue, the red

regions are grade 1 tumors, the green regions are grade 2 tumors, the purple regions

are grade 3 tumors, and the dark orange regions are grade 4 tumors.
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Figure 2-3: Section of one lobe.

Figure 2-4: Binary masks of tumors grades 1, 2, 3, and 4.

Compared with expert human annotations of an independent dataset, Aiforia’s

model performed with F1 scores of 89%, 97%, 99%, and 98% for grades 1, 2, 3, and 4,

respectively [1]. Given the time-consuming nature of expert human annotations and

the high accuracy of the Aiforia model, I used the Aiforia tumor grading as ground

truth in this project. Using the difference in colors between the tumor grades, I

extracted a binary mask for each tumor grade. There are very few grade 4 tumors

because of the relatively early time point at which the lung tissues were harvested,

as can be seen in the fourth mask in figure 2-4,
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2.4 Image registration

2.4.1 Object detection

Aiforia outputs a lower resolution image and uses a tissue section that is adjacent

to the one used in t-CyCIF. It also performs the tumor grading on all five lobes in

the same image as opposed to t-CyCIF which images the five lobes separately. This

introduces a need for a pipeline to match single cells obtained from t-CyCIF to their

corresponding tumor grades obtained from Aiforia.

The object detection pipeline is shown in figure 2-5. The first image is the original

output from Aiforia. It was flipped along the x-axis to match the orientation of

the tissue in t-CyCIF and converted to grayscale to obtain the second image. The

edges were detected using sobel filters (third image) and then dilated to make the

boundaries more apparent (fourth image). Finally, the space between the edges were

filled to make a binary mask showing the location of the objects (fifth image). A

Matlab object detection function was used to detect the lobes from this mask (sixth

image). Note that the spleen was not included because we are only interested in the

lung tissue for this project.

2.4.2 elastix

The detected objects were matched to their corresponding lobes in t-CyCIF through

a process called image registration, which transforms one image to match the other.

This process is shown in figure 2-6. I registered the Aiforia image output to the

DAPI channel image from t-CyCIF using a toolbox, elastix [11], which is an image

registration toolbox specifically designed for medical images. The DAPI image is the

fixed image, and the Aiforia image is the moving image, meaning that the Aiforia

image is transformed to match the DAPI image. This is because the Aiforia image

has much lower resolution. I specified the parameters of the image registration to

use only linear transformations to prevent any unnecessary image distortions. An

example of the image registration for a single slice of tissue is shown in figure 2-7.
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Figure 2-5: Object detection pipeline.
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Figure 2-6: Image registration pipeline.

The red is the DAPI image, the green is the transformed Aiforia image, and the third

image shows the two images overlaid.

For each image registration, elastix outputs a transformation parameter file. The

same transformation file was applied to each of the tumor grade masks extracted

from the original image so that the transformed tumor grade masks have the same

dimensions as the t-CyCIF image. Figure 2-8 shows the transformed masks (grades

1 to 4) overlaid on the DAPI image. From here, I matched single cells to their

corresponding tumor grade using the location of the cell centroid. The tumor grade

information was included as a separate column in the single cell data matrix.
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Figure 2-7: Image registration of t-CyCIF and Aiforia grading.

Figure 2-8: Image registration of t-CyCIF and tumor grade masks.
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Chapter 3

Single cell analysis

The single cell analysis of the data consists of gating the biomarkers to identify

distinct cell populations and extracting morphological, spatial, and textural features

of the cells. I used tissue slices from the 5 lung lobes of one mouse. The 5 tissue

slices combined and filtered contain a total of 1,622,800 cells. Of these cells, 721,533

(44.5%) belong to non-tumor regions, 81,312 (5.01%) belong to grade 1 tumor regions,

425,144 (26.2%) belong to grade 2 tumor regions, and 394,811 (24.3%) belong to grade

3 and 4 tumor regions regions combined. Grade 4 tumor regions were combined with

grade 3 regions because there are very few grade 4 regions.

3.1 Gating of biomarkers

Of the 18 unique biomarkers, 9 showed clear signaling patterns. Descriptions of the

biological targets of these markers are shown in table 3.1, and the distributions of the

log2 intensities of the biomarker expression levels are shown in figure 3-1. Crops of

the fluorescent images for Nkx2.1, Ki67, PCNA, HSF1, CD8, and CD4 overlaid on

DAPI (in blue) are shown in figure 3-2.

Certain markers show a bimodal or multi-modal distribution and can be used to

differentiate cell sub-populations. In this dataset, there is a clear bimodal distribution

for Nkx2.1 and HSF1, and a slight multi-modal distribution for Ki67. CD4 and CD8

also show a slight multi-modal distribution, but the population of CD4 and CD8
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Table 3.1: t-CyCIF biomarkers

Biomarker Description
DAPI Marks nuclear DNA
HSP70 Marks chaperone protein that assists in pro-

tein folding [13]
HSP90 Marks chaperone protein that helps regulate

proteostatis under stress [21]
HSF1 Marks a protein that is a transcriptional reg-

ulator of chaperone gene expression [24]
CD4 Marks helper T cells, which play an impor-

tant role in the immune system
CD8 Marks cytotoxic T cells, which play an im-

portant role in the immune system
PCNA Marks cell proliferation
Ki67 Marks cell proliferation
Nkx2.1 Marks lung cells

Figure 3-1: Distribution of log2 biomarker intensities
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Figure 3-2: Fluorescence images from t-CyCIF.

Figure 3-3: Fitting Gaussian mixture models to the biomarker distributions

positive cells is too small to reliably define on the distribution. To define cells that

positively express Nkx2.1 or HSF1, I fit a Gaussian mixture model with a cluster size

of 2 to the log2 intensity distributions of these markers. I fit a Gaussian mixture

model with a cluster size of 3 for Ki67. This is assuming that cells that do not

express a certain marker cluster in a normal distribution at a lower intensity value,

while cells that positively express that marker cluster in a normal distribution at

a higher intensity value. The cutoff is set as the intersection between two normal

distributions. The distributions and the gatings are shown in figure 3-3.
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Figure 3-4: Distribution of morphological features.

3.2 Morphological features

The area, perimeter, and eccentricity of the cells are calculated from the segmentation

mask, and their distributions are shown in figure 3-4. Eccentricity of an eclipse, a

shape that approximates a cell, is defined as

√︁
(1− 𝑏2

𝑎2
)

where 𝑎 is the length of its semi-major axis, and 𝑏 is the length of its semi-minor axis.

This measure ranges from 0 for a circle and close to 1 for a very elongated eclipse.

Zernike moments are used as quantitative descriptors of cell shape [2] and are cal-

culated using the orthogonal Zernike polynomial basis set. The orthogonality means

that there is no redundancy between different moments. The Zernike moment of order

𝑛 and repetition 𝑚 for a 𝑁𝑥𝑁 image is calculated using the following equation:

𝑍𝑛,𝑚 =
𝑛+ 1

𝜆𝑛

𝑁−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑓(𝑥, 𝑦)𝑅𝑛,𝑚(𝜌𝑥𝑦)𝑒
−𝑗𝑚

𝜆𝑛 and 𝜌𝑥𝑦 are normalization factors, and 𝑅𝑛,𝑚 is a radial polynomial.

In this project, I used the amplitude of the first 3 Zernike moments and their non-

negative repetitions; their distributions are shown in figure 3-5. The Zernike moments

were calculated using a Matlab function developed by Tahmasbi et. al. [23, 19].
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Figure 3-5: Distribution of Zernike moment amplitudes with moment N and repetition
M.

3.3 Spatial features

Cell density is directly related to distance between cells; cells in high density regions

typically have shorter distances to neighboring cells than cells in sparser areas. I

calculated the distances between each cell and its nearest, 10th nearest, and 20th

nearest neighbors. Looking at the distance to cells slightly farther away provides a

more accurate measure of density. I also calculated the distances to the nearest, 10th

nearest, and 20th nearest Nkx2.1 positive cell. Nkx2.1 positive cells are lung cells,

so this distance is a measure of lung cell density. Density can be indicative of tumor

severity as higher grade tumors tend to consist of more densely packed lung cells [9].

The distance distributions for cell neighbors and lung cell neighbors are shown in

figures 3-6 and 3-7 respectively.

3.4 Texture features

Texture is defined as the spatial relationships among gray level values of neighbor-

ing pixels. Textural features are extracted from gray level co-occurrence matrices

31



Figure 3-6: Distribution of distances to nearest cells.

Figure 3-7: Distribution of distances to nearest lung cells.
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Figure 3-8: Crop of DAPI image in grayscale.

(GLCMs), which are square matrices where the number of rows and columns is equal

to the number of gray levels of the image [14]. It represents texture by calculating how

often a pair of pixels with specific gray level value in a specified spatial relationship

occur in the image. There is one GLCM per spatial relationship. In this project, I

used four offsets, one for each neighboring pixel to the top, bottom, left, and right,

and took the average of the four values to obtain one GLCM per cell. The cropped

images of the cells were taken from the DAPI image converted to grayscale, a crop of

which is shown in figure 3-8.

Haralick features extracted from GLCMs are used to quantify textural properties.

Of all the Haralick features, entropy, angular second moment (ASM), variance, and

correlations are most commonly used in experimental medicine [15]. Given GLCM,

𝑃 , entropy, ASM, variance, and correlation are defined by the following formulas in

which 𝑖 and 𝑗 are indices in the matrix, 𝜇 is the mean of 𝑃 and 𝜎 is the standard

deviation of 𝑃 .
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Entropy:

−
∑︁
𝑖

∑︁
𝑗

𝑃 (𝑖, 𝑗)𝑙𝑜𝑔(𝑃 (𝑖, 𝑗))

Angular second moment: ∑︁
𝑖

∑︁
𝑗

(𝑃 (𝑖, 𝑗))2

Variance: ∑︁
𝑖

∑︁
𝑗

(𝑖− 𝜇)2𝑃 (𝑖, 𝑗)

Correlation: ∑︀
𝑖

∑︀
𝑗(𝑖𝑗)𝑃 (𝑖, 𝑗)− 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑥

Entropy is the amount of information needed for image compression. Angular

second moment is a measure of homogeneity; it is higher when the pixels are an

image are more similar. Variance is a measure of how much pixel values differ from the

average, and correlation measures the linear dependency of gray levels of neighboring

pixels [14].

The distributions of these textural measures and examples of cells with varying

values are shown in figures 3-9, 3-10, 3-11, and 3-12.

3.5 Data cleanup

A significant source of noise in the data is from cell segmentation. The segmentation

is not always able to correctly segment cells in high density areas with overlapping

cells. There are problems both with over- and under-segmentation; in some cases,

background noise is labeled as a cell, while in other cases, multiple cells are segmented

as a single cell. Although it is difficult to filter out all incorrect segmentations, there

are measures to help determine if a cell is likely the result of a bad segmentation.

To remove cells that are too small or too large and thus likely to be incorrectly

segmented, I filtered out cells with an area more than 3 standard deviations away

from the median area. Cells with ASM, variance, or correlation equal to 0 and cells

with an ASM of 1 were filtered out because these cells are simply a black background.
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Figure 3-9: Distribution of entropy and examples of different entropy values.
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Figure 3-10: Distribution of ASM and examples of different ASM values.
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Figure 3-11: Distribution of variance and examples of different variance values.

Out of the 1.6 million cells, a total of 59,014, or 3.41%, were filtered out. Table 3.2

shows the specific filters used and the percentage of cells it filters out.

Table 3.2: Filters for data cleanup

Filter % of cells filtered
Outlier areas 2.30%
ASM, Correlation, Variance, or Entropy = 0 0.82%
ASM = 1 0.39%
Any NaN value 0.54%
Nearest neighbor dist > 200 0.20%
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Figure 3-12: Distribution of correlation and examples of different correlation values.
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Chapter 4

Tumor grade classification

The single cell features described in the previous section were used to develop models

to classify tumor grade of single cells. This was done using supervised learning algo-

rithms in which the inputs are the single cell features, and the output is the tumor

grade ranging from 0 (non-tumor) to 3. I used the decision trees, random forests,

adaptive boosting, and neural networks as the models. Evaluation of the algorithms

was done using 10-fold cross validation.

4.1 Features

I performed a pairwise linear correlation of each feature with the tumor grade clas-

sification. I used the 14 features with an absolute value of correlation greater than

0.1 to train the models. These features are ASM, textural variance, textural entropy,

Zernike amplitude (N=3, M=3), distance to nearest cell measures, HSF1 expression

flag, Nkx2.1 expression flag, HSP70 log2 intensity, and HSP90 log2 intensity. The

absolute value of the correlations for all the features are shown in table 4.1.

4.2 Decision tree

A decision tree is a supervised learning algorithm that classifies data by assigning data

points to leaves in a tree [10]. Nodes in the tree are questions about the features, and
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Table 4.1: Feature correlations

Feature Type Correlation (abs. val.)
Angular second moment Texture 0.1131
Correlation Texture 0.0939
Variance Texture 0.2055
Entropy Texture 0.1437
Perimeter Morphologic 0.0337
Area Morphologic 0.0419
Eccentricity Morphologic 0.0860
Zernike (N=1,M=0) Morphologic 0.0359
Zernike (N=2,M=0) Morphologic 0.1077
Zernike (N=2,M=2) Morphologic 0.0328
Zernike (N=3,M=1) Morphologic 0.0034
Zernike (N=3,M=3) Morphologic 0.0426
Cell distance (1) Spatial 0.1781
Cell distance (10) Spatial 0.4040
Cell distance (20) Spatial 0.4538
Lung cell distance (1) Spatial 0.2708
Lung cell distance (10) Spatial 0.3789
Lung cell distance (20) Spatial 0.3806
Ki67 +/- Biomarker 0.0278
Nkx2.1 +/- Biomarker 0.3197
HSF1 +/- Biomarker 0.2696
HSP70 log2 intensity Biomarker 0.1571
HSP90 log2 intensity Biomarker 0.2652

40



given the values of the input data point, that point is assigned to a certain branch of

the tree based on the point’s values. This process continues from the root of the tree

until the data point reaches a leaf, which represents a classification. The advantage

of using decision trees is that they are usually more interpretable; however, decision

trees can become very large (too many leaves and too deep), and it can be hard to

decipher the contributions of individual features. I used the multiclass decision tree

from Matlab’s Statistics and Machine Learning Toolbox; the decision trees in this

project contain over 16,000 nodes.

4.3 Random forest

Random forests are a type of bagged decision tree, which takes random subsets of the

data to build decision trees and classifies new data using a majority voting scheme

[18]. The data subsets are taken randomly from the original training data but with

replacement, so some data points will appear more than once. Additionally, only a

random subset of features are used at each node. These modifications will result in

a different tree at each run. The resulting classification is obtained by combining

the results of the trees and taking the most common output [10]. In this project, I

used the TreeBagger from Matlab’s Statistics and Machine Learning Toolbox with 10

randomly generated decision trees.

4.4 Adaptive boosting

Boosting is an algorithm that combines multiple weak decision trees into a single

classifier by continuously reweighting training samples to focus on the most prob-

lematic ones. Because the individual classifiers are weak (only slightly better than

random), it is typically less susceptible to overfitting. I used the Adaboost algorithm

from Matlab’s Statistics and Machine Learning Toolbox.
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Figure 4-1: Neural net with one hidden layer

Figure 4-2: Neural net with two hidden layers

4.5 Neural network

The complexity of multi-level neural networks can potentially better capture the

internal structure of large and complex datasets, but their downside is lack of in-

terpretability [3]. In this project, I trained two feedforward neural networks from

Matlab’s Deep Learning Toolbox. One has 20 nodes in its one hidden layer. The

other has two hidden layers, one with 8 nodes and the second with 5 nodes. The

neural network setups are shown in figures 4-1 and 4-2.

4.6 Evaluation

I used 10-fold cross validation to evaluate the results. The dataset was randomly

divided into 10 equal subsets. Over 10 iterations, each subset took turns being the

validation data while the remaining 90% was the training data. Holding out a por-

tion of the data when training the model guards against overfitting, while using the

majority of the data as the training set guards against underfitting. I took the mode

of the predictions from each iteration of the model to produce the final predictions.
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Chapter 5

Discussion

5.1 Classification results

The models were trained to classify cells as belonging to non-tumor, grade 1, grade

2, or grade 3 regions. Random forests performed the best with a 72.5% accuracy.

The performances of all the models are shown in table 5.1. In the initial run of

the random forest model using default values from the Matlab library, there was a

significant discrepancy between the performance of the algorithm on the entire dataset

versus the validation set, with the validation set having an accuracy of 70% while

the entire dataset had an accuracy of 99%. This indicates that the random forest

model with the default parameters likely overfits for the training data and therefore

will not be able to generalize well to new data. To prevent overfitting, I limited the

depth of the tree, and this resulted in models that performed close to equally well on

both the validation and training datasets.

The confusion matrices for the top 3 models are shown in figures 5-1, and 5-2,

5-3. Looking at the random forest matrix in figure 5-2, the sum of each row in the

4x4 table is the total number of cells that are actually in that class, while the sum of

each column is the total number of cells that the model predicted to be in that class.

The column summary table at the bottom of the figure shows the percentage of cells

for each prediction class that match (top row) or do not match (bottom) the actual

class for the cell. For the cells the model classified as non-tumor (class 0), 81.6%
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Table 5.1: Tumor grade classification results

Model Performance (all) Performance (validation)
Decision tree 71.3% 69.6%
Random forest 72.5% 70.3%
Adaptive boosting 68.6% 68.5%
Neural network (1 layer) 56.7 56.5%
Neural network (2 layers) 59.2% 58.7%

are actually non-tumor cells, while for cells the model classified as grade 1, none are

actually are grade 1 cells. The row summary table on the right side of the figure shows

the percentage of cells for each class that the model classified into the correct class.

For cells that are actually non-tumor, 87.5% were correctly classified as non-tumor,

while for cells that are actually grade 1, only 0.1% were correctly classified as grade

1. The greatest discrepancy between the model predictions and the empirical data is

in the grade 1 tumor region labeling. Only 5% of cells are in grade 1 tumor regions,

and these regions tend to be smaller and more scattered throughout the tissue. Since

these regions are smaller, they are also likely more susceptible to any inaccuracies in

the image registration process. It is also important to note that the Aiforia model

also performed significantly worse in grade 1 labeling (compared to expert labeling)

than it did for the other tumor grades.

I also trained the models to predict only whether a cell belongs to a tumor or a non-

tumor region. The results in table 5.2 show that all five models performed similarly

well, with performances ranging from 85.2% to 87.2%. The confusion matrix of

the random forest model for binary classification in figure 5-4 shows that the model

correctly labeled 82.8% of the non-tumor cells and 90.0% of the tumor cells. The

binary tumor versus non-tumor classification performed significantly better than the

4 category classification, possibly because the a large source of error in the 4 category

classification was due to misclassifications between grades 1, 2, and 3 cells.

Out of all the features used to train the models, the spatial measures of distance

between cells made the greatest impact on the model performance. Increased tumor

grades correlates high cell density, which correlates with shorter distances between
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Figure 5-1: Confusion matrix for decision tree model

Table 5.2: Tumor vs non-tumor classification results

Model Performance (all) Performance (validation)
Decision tree 86.1% 85.1%
Random forest 87.2% 85.5%
Adaptive boosting 85.2% 85.1%
Neural network (1 layer) 85.4% 85.3%
Neural network (2 layers) 85.5% 85.4%
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Figure 5-2: Confusion matrix for random forest model
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Figure 5-3: Confusion matrix for adaptive boosting model

cells. This correlation is seen in figures 5-5 and 5-6, which show boxplots of the

distances between cells and their 20th nearest neighbors and 20th nearest lung cell

neighbors. The top and bottom edges of the box show the 75th and 25th percentiles

respectively, and the red line inside the box shows the median. The ends of the

whiskers represent the non-outlier minimum and maximum in the data, and the red

plus signs represent the outliers, which are data points that are more than three

standard deviations away from the median.

Although previous research on histological analysis points to nuclear shape and

size as factors indicative of tumor grade [8], my analysis did not find that morphologi-

cal features made a significant difference in the model performance. This could be due

the fact that the cell segmentation is not accurate enough to quantify small changes

in nuclear size and shape. Further work needs to be done to find more informative

morphological features.
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Figure 5-4: Confusion matrix for random forest model classifying tumor vs. non-
tumor regions
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Figure 5-5: Boxplot of distance to the 20th nearest cell grouped by tumor grade.
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Figure 5-6: Boxplot of distance to the 20th nearest lung cell grouped by tumor grade.

5.2 Future work

This project can be expanded in the areas of data collection, data analysis, and model

development. The dataset used in this project contained only 9 working biomarkers.

If the number of working biomarkers can be increased, we can potentially subset cells

in more biologically interesting ways. For example, certain biomarkers indicate that

a cell is an immune cell, and immune infiltration of tumors is a phenomenon that

could provide insight into the development of tumors.

Grade 1 tumors are the earliest legions and are typically only identified by experts

through careful histological analysis. In this project, it was by far the most difficult

tumor grade to correctly classify. The models classified most of the actual grade

1 tumor region cells into non-tumor or grade 2 regions. It would be interesting to

investigate whether experts in the field also have difficulties classifying grade 1 tumor

regions with certainty, and whether specific biomarkers or morphological features

could aid in identification of these cells.

The textural features did not add significantly to the classification performance.
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This could be due to the fact that the texture of the DAPI signal is not a critical

determinant of tumor grade, and looking at the textures of other biomarkers could

be more fruitful. For example, there is evidence that the imaging pattern of Ki67

changes as cells move into different stages of the cell cycle. Additionally, it is likely

more informative to extract textural features at a larger than single cell level (e.g.

crops of the image). This could address the problem of skewed textural features that

arise due to badly segmented cells and could also better capture attributes of the

texture that can only be detected on a more global level. For example, grade 1 and

2 tumors tend to have more uniform nuclei, while grade 3 and 4 tumors tend to have

nuclei of more variable size and shape [9]. These differences may be more quantifiable

when examining a larger area of cells.

Another direction of expansion is to train convolutional neural networks using

cropped images as inputs. Although convolutional neural networks have the tendency

to be less interpretable, they could be valuable in extracting textural and spatial

information from images. Unsupervised clustering algorithms could be used cluster

cells to potentially identify interesting cell sub-groups. The current models could

also be further improved upon through better feature selection and hyper-parameter

selection.

5.3 Conclusion

This project shows that high dimensional biomarker imaging data in addition to

morphological, textural, and spatial motifs of cells can be used to predict tumor

grade. Spatial features and lung cells markers in particular contribute to the model

performance, which underscores the importance of using single cell imaging methods

that maintain the spatial integrity of the tissue. Expanding the set of biomarkers

in addition to better techniques to extract textural and morphological features could

potentially improve results and lead to biologically relevant insights. The results of

this project show that integrating high dimensional biomarker imaging data can be

used as a tool for automated phenotyping of cells as a single cell level.
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