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Chapter 1

Introduction

Cook [Coo71], in his 1971 paper, and Levin [Lev73], in his 1973 paper, independently proved the existence
of NP-complete problems, and, in particular, Cook showed that Boolean satisfiability (SAT), the problem
of deciding if a Boolean formula is satisfiable, was one. Within a short time, SAT proved useful for reduc-
tions: in 1972, Karp [Kar72] showed that 0-1 Integer Programming, Clique, Set Cover, Directed
Hamiltonian Cycle, Undirected Hamiltonian Cycle, Exact Cover, and among other problems,
were NP-complete by reductions from SAT. Since then, extensive work in Boolean satisfiability has been
done, and SAT variants have stayed a very important tool to analyze the complexity of other problems.
Among some more recent results, k 1s Positive Not-1-in-EU3SATts (see Chapter 2 for definitions) was
used to analyze the complexity of H-free Edge Deletion [KW13]; and ∃∃! SAT to analyze Unique
List Colorability [Mar08]. Other variants were used to analyze Defining Sets in Vertex Coloring
[HM05], or even prove the complexity of multiple videogames [Alo+14]. One could say that SAT is the most
useful problem to analyze the complexity of other problems. Figure 1-1 shows a timeline overview of the
SAT problems that were studied throughout the years.

Over time, however, the terminology and notation used to define such problems has not stayed constant.
As an example, consider the term Planar. Lichtenstein [Lic82], in 1982, defined the graph of Planar
SAT instances to be the bipartite incidence graph of clauses and variables, together with a Hamiltonian
cycle through the variables, but Mansfield [Man83], in 1983, removed the variable cycle requirement when
describing Planar SAT instances. Tippenhauer [Tip16], in 2016, defined Planar SAT to be a bipartite
graph of literals and clauses, instead of variables and clauses, while in the same year Kazda et al. [KKR16]
defined it to be a graph whose faces were clauses, and where the order of variables in clauses mattered.
Other terms have had similar fates. Even classic problems, such as 1-in-3SAT, can sometimes refer to SAT
problems where all the variables are forced to be positive and clauses contain exactly 3 variables, or it can
refer to SAT problems where the variables can be either positive or negative, and the clauses contain 3 or
fewer variables. This can make it confusing to compare different results.

To solve this, in this thesis we try to summarize the results on Boolean satisfiability from the past
decades with consistent notation. Specifically, in Chapter 2, we present in Table 2.1 what we believe to be
the most comprehensive list of known results in SAT variants. We focused mainly on results related to NP-
completeness, P, and PSPACE, though the survey also covers some problems in different complexity classes.
Related work has been done by Tippenhauer [Tip16], who surveyed Planar SAT problems; by Schaefer
and Umans [SU02], who surveyed logic problems in the polynomial hierarchy; by Creignou, Khanna and
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Sudan [CKS01], who worked in developing a framework for classifying the complexity of Boolean satisfiability;
and by Schmidt [Sch10], who proposed a notation to specify constraints in formula length and in occurrences
of variables in SAT problems.

In addition to the survey, we prove new results of our own. Among our new results are:

• Characterization of S-in-EkSAT: Given a conjunction of clauses each with k variables, each of
which is satisfied if the number of True literals in the clause is in S, where S is a subset of {0, 1, . . . , k}.
We characterize the NP-hardness for all k ≥ 3.

• NAE EkSAT-k is in P. We are given a conjunction of NAE clauses where each clause contains
exactly k literals and each variable occurs at most k times. We reduce this problem to detecting
minimally non 2-colorable hypergraphs that contain the same number of hyperedges and nodes, which
is in P.

• Results on Planar Max SAT: We are given a value k, a conjunction of clauses, and a planar
bipartite incidence graph of clauses and variables and the instance is satisfiable if at least k clauses can
be simultaneously satisfied. We show that multiple variants of Planar Max SAT are NP-complete,
and that their counting versions are #P complete, by providing reductions from Planar Max 2SAT,
and then from Planar EU3SAT to Planar Max 2SAT .

We organize the thesis as follows. In Chapter 2, we present our survey results and define the notation
used both on the survey and on the rest of the thesis. In Chapter 3, we present our new results on NAE
SAT variants. In Chapter 4, we present results on S-in-kSAT variants. In Chapter 5, we present results
on Max SAT variants, most of them in Planar Max SAT. In Chapter 6, we present results on different
variants of SAT that did not fit the other categories, such as XNF SAT. At last, in Chapter 7, we talk about
open problems. Given the large number of terms defined in this thesis, we include at the end an index of
terms to facilitate reading.

This work was initiated during an open problem session of the MIT class 6.892 Algorithmic Lower Bounds:
Fun with Hardness Proofs, held in Spring 2019. This is joint work with Aviv Adler, Leo Alcock, Anastasiia
Alokhina, Joshua Ani, Jeffrey Bosboom, Erik Demaine, Yevhenii Diomidov, Jonathan Gabor, Yuzhou Gu,
Linus Hamilton, Mirai Ikebuchi, Adam Hesterberg, Jayson Lynch, Zhezheng Luo, Xiao Mao, Kevin Sun,
John Urschel, Yinzhan Xu, and Lillian Zhang.
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Chapter 2

Survey of SAT variants

In this chapter we first present our survey, followed by our definitions, and then show how it differs from
previous notation and terminology. Section 2.1 shows a summary of both past work as well as the results
presented in this thesis. Section 2.2 first explains how the name of the multiple SAT variants are specified,
followed by the meaning of the multiple terms used when specifying it. It also introduces the terms that
are used on our proofs. At last, Section 2.3 gives specific examples on how our notation and terminology
differs from some previous papers, to exemplify how our notation clears ambiguities and to make it easier
for someone knowledgeable of those problems to understand our new definitions.

2.1 Survey Table

Table 2.1: Summary of the complexity of SAT problems. A star (∗) denotes a result
obtained in this thesis. A star with a question mark (∗?) is a result that seemed to
be assumed to be known in the literature, but that we found no paper proving. We
provide proofs of the latter results here. To keep the list shorter, if the same paper
proved results on multiple new constrained versions of a SAT problem, we just include
the most constrained one, since it implies the other results.

SAT type Complexity

Classic SAT problems (pre 1980)
SAT NP-complete [Coo71; Lev73]
CNF-SAT NP-complete [Coo71]
NOT-TAUTOLOGY NP-complete [Coo71]
2SAT P [Kro67] NL-complete [Pap94]
3SAT NP-complete [Kar72]
Monotone 3SAT NP-complete [Gol78]
Quantified 3SAT PSPACE-complete [SM73]
Positive 1-in-U3 SAT NP-complete [Sch78]
Positive Not-1-in-U3 SATt P-complete [Sch78]
NAE 3SAT NP-complete [Sch78]

Continued on next page
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Continued from previous page

SAT type Complexity

Horn SAT P [Hor51] P-complete [Pap94]
Dual Horn SAT P-complete [Sch78]
Max EU2SAT NP-complete [GJS76]
S SAT (Set of all satisfiable S-formulas) Schaefer’s dichotomy [Sch78] 1

Every relation in S is satisfied when all variables are 0 P
Every relation in S is satisfied when all variables are 1. P
Every relation in S is Horn. P
Every relation in S is Dual-Horn. P
Every relation in S is affine. P
Every relation in S is bijunctive. P
If none of the above. NP-complete

S SATc (Satisfiable S-formulas with one 0, and one 1
variables)

Schaefer’s dichotomy [Sch78]

Every relation in S is satisfied when all variables are 0. P
Every relation in S is satisfied when all variables are 1. P
Every relation in S is Horn. P
Every relation in S is Dual-Horn. P
If none of the above. NP-complete

Quantified S SATc (S QSATc) Schaefer’s dichotomy [Sch78]
Every relation in S is Horn. P
Every relation in S is Dual-Horn. P
Every relation in S is affine. P
Every relation in S is bijunctive. P
If none of the above. PSPACE complete

S SAT, where S is a finite set of Boolean connectives Dichotomy [Lew79]
There is an S-formula equivalent to X ∧ ¬Y NP-complete
Otherwise P

Circuit SAT NP-complete [Lad75]
Circuit Monotone SAT NP-complete [Gol77]
Planar Circuit SAT NP-complete [Gol77]
(2k)-Quantified DNF SAT ΣPk -complete [Wra76; Sto76]
(2k + 1)-Quantified CNF SAT ΣPk -complete [Wra76; Sto76]
2k-Quantified CNF SAT, with ∀ and ∃ switched ΠP

k -complete [Wra76; Sto76]
2k + 1-Quantified DNF SAT, with ∀ and ∃ switched ΠP

k -complete [Wra76; Sto76]
Planar SAT
Planar (≥ 3p or ≥ 3n) SAT Always Satisfiable (O(n2)) [Pil17]
Planar (≥ 4)SAT Always Satisfiable (O(n1.5)) [Pil17]

Continued on next page

1“Deciding which side of the dichotomy a SAT problem falls in is itself NP-hard, when the relations are given in CNF
(Theorem 6.5.1). If the relations are given as a set of tuples specifying the satisfiable assignment of literals, then, it is in P
[Che09].
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Continued from previous page

SAT type Complexity

Planar EU3SAT NP-complete [Man83],
#P-complete [III+98]

Planar (EU2 or EU3) SAT-3 e1n ≥ 1p NP-complete [KMT10]
Planar (EU2 or ≥ 1n EU3) SAT-(E3 or E2) e1n NP-complete [Día+12]
Planar EU3 SAT-4 NP-complete [JM95]
Planar EU3 SAT-(E3 or E4) NP-complete [LMM05]
Planar Monotone E3SAT-E4 NP-complete [DDD16]
Planar Monotone (EU2 or EU3)SAT-E3 NP-complete [DDD16]
Planar Monotone ((e2n EU2) or (e3p EU3))SAT-
E4 e1n

NP-complete [DDD16]

2-Connected Planar Monotone EU3SAT-E5 NP-complete [DDD16]
3-Connected Planar EU3SAT-4 NP-complete [Kra91]
Planar 1-in-EU3SAT NP-complete [DF86]
Separable Planar 1-in-EU3SAT NP-complete [Wu15]
Planar Positive 1-in-EU3 SAT NP-complete [Lar93], #P complete [III+98]
Planar Positive 1-in-EU3SAT-E3 NP-complete [MR01]
Planar Positive 1-in-EU3SAT-E3 is ASP-hard? Open
Planar {0, 1, k − 1, k}-in-EUkSAT P. Thm:6.7.9 ∗
Planar NAE 3SAT P [Mor88]
Separable Planar NAE 3SAT P [Mor88]
Planar NAE SAT P [Alo+09]
Planar (NAE or All Equal) SAT P Thm:6.7.8∗
Planar NAE 3SATts NP [Deh15]
Planar Positive NAE EU3SATts NP-complete [Deh16]
∀∃Planar EU3SAT-3 ΠP

2 [Gut96]
Ordered Planar (S) SAT Ordered Planar Dichotomy [KKR16]
S SAT is in P P
S only contains self-complementary relations such that

dR is an even ∆-matroid
P

Otherwise NP-complete
Linked Planar SAT
Var-Linked Planar 3SAT NP-complete [Lic82]
Var-Linked Separable Planar 3SAT NP-complete [Lic82]
Var-Linked Planar EU3SAT NP-complete [Pil17]
Var-Linked Planar U3SAT-E3 e2p e1n NP-complete [MG08]
Var-Linked Planar Positive 1-in-EU3SAT NP-complete [MR08]
Quantified Var-Linked Planar 3SAT PSPACE-complete [Lic82]
Sided Var-Linked Planar Monotone 3SAT NP-complete [BK10]
Tri-legged Planar Positive 1-in-E3SAT NP-complete [MR08]

Continued on next page
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Continued from previous page

SAT type Complexity

Tri-legged Planar S 3SAT Equivalent to Var-Linked Planar S

3SAT [Tip16]
Sided Tri-legged Planar S 3SAT Equivalent to Sided Var-Linked Planar

S 3SAT. Thm:6.8.1 *
Clause-Linked Planar 3SAT NP-complete [KLN91]
Clause-Linked Planar EU3SAT NP-complete [Pil17]
Clause-Linked Planar Positive 1-in-EU3SAT NP-complete [Cha+16]
Clause-Linked Planar Monotone 3SAT NP-complete [Pil17]
Clause-Linked Planar (e3p EU3 or U2)SAT-E3
e1n

NP-complete [Fel+95]

Sided Clause-Linked Planar 3SAT NP-complete [Pil17]
Quantified Clause-Linked Planar 3SAT Open
Linked Planar 3SAT NP/ASP/#P-complete [Pil17]
Linked Planar EU3SAT NP-complete [Pil17]
Linked Planar Positive 1-in-E3SAT NP-complete [Pil17]
Linked Planar Monotone 3SAT NP-complete [Pil17]
Sided Linked Planar 3SAT NP/ASP/#P-complete [Pil17]
Quantified Linked Planar 3SAT PSPACE-complete. Thm:6.3.1 ∗
Max Planar SAT
Max Planar 2SAT NP/ASP/#P-complete. Thm:5.2.3 ∗
Min Planar EU2SAT NP-complete. Thm:5.2.5
Max Planar Xor E2SAT P. Thm:5.3.1 ∗
Max Planar Xnor E2SAT P. Corollary:5.3.2 ∗
Max Planar Xor 2SAT NP/ASP/#P-complete. Thm:5.4.1 ∗
Max Planar Xnor 2SAT NP/ASP/#P-complete. Corollary:5.4.2 ∗
Max Planar Xor EU3SAT NP/ASP/#P-complete. Thm:5.5.1 ∗
Max Planar Xnor EU3SAT NP/ASP/#P-complete. Corollary:5.5.2 ∗
Max Planar Horn 2SAT NP/ASP/#P-complete. Thm:5.6.1 ∗
Max Planar Dual Horn 2SAT NP/ASP/#P-complete. Corollary:5.6.2 ∗
Max SAT
Max S SAT, where S is finite Dichotomy [Cre95]. Either MAXSNP-

complete, or in P
Max 1-in-kSAT-2 P. Corollary:4.1.2 ∗
Max All Equal EU3SAT NP-complete. Thm:5.1.1 ∗
Max 2SAT-5 MAXSNP-complete [Pap94]
Max 3SAT-3 MAXSNP-complete [Pap94]
Max NAE SAT MAXSNP-complete [Pap94]
Quantified Max 3SAT. Approximate within ratio ε ∈
(0, 1)

PSPACE-complete [Con+97]

Min Horn EU2SAT NP-complete [KKM94]

Continued on next page
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Minmax E3SAT . Approximate within ratio 0 < ε < 1 [HRT07]
Each existential variable occurs at most 3 times, and

universal variables occurs at most 2.
ΠP

2 -complete.

Each existential variable occurs at most 2 times. coNP.
Each universal variable occurs at most 1 time each. NP.

Almost Planar SAT
Bounded-genus Orientable Surface NAE 3SAT P (FPT in genus). Thm:3.9.1 ∗
1-Planar Positive NAE 3SAT NP-complete. Thm:3.6.1∗
Crossing Number nε NAE 3SAT NP-complete. Thm:3.7.1 ∗
Crossing Number O(logn) NAE 3SAT P Thm:3.8.1 *
CNF SAT
k-SAT-2, for all k P [Tov84]
3SAT-3 NP-complete [Tov84]
n3p-3SAT-3 NP-complete [DFZ11]
Monotone 3SAT-3 NP-complete. Thm:6.2.1 ∗?
EU3SAT-4 NP-complete [Tov84]
Monotone E3SAT-4 NP-complete [DD16]
EUkSAT-k P [Tov84]
NAE SAT
NAE SAT-2 P. Thm:3.1.1 ∗
NAE-3SATc ASP-complete [BLS12]
Positive NAE 3SAT-3 NP. Thm:3.4.1 ∗?
NAE EkSAT-k P. Thm:3.3.1 ∗
NAE E3SAT-3 + 1 extra clause Open
NAE E3SATc-3 Open
Positive NAE E3SAT-4 NP. Thm:3.5.1 ∗
Positive NAE EUkSAT 2k−3

k Always Satisfiable. Thm:3.2.2 ∗
Positive NAE EUkSAT-Ek Always Satisfiable. Thm:3.2.1 ∗
∀∃ NAE 3SAT ΠP

2 [EG96]
S-in-k SAT
1-in-kSAT-2 P. Thm:4.1.1 ∗
Positive k-in-EUm SAT-Eq}, q ≥ 3,m ≥ 3, and 1 ≤
k ≤ m− 1

NP-complete [Kra03]

Positive k-in-EUm SAT-Eq, q ≤ 3, or m ≤ 3, or k = 0,
or k = m

P [Kra03]

{0, 1, k − 1, k}-in-EUkSAT NP-complete. Thm:4.4.1 *
S-in-Ek SAT, for k ≥ 3 Characterization. Thm:4.2.2 ∗?
{0, k}-in-Ek SAT P
{0, 1, 2, . . . , k}-in-Ek SAT P
∅-in-Ek SAT P

Continued on next page
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{even} and {odd}-in-Ek SAT P
{k − 1, k}-in-Ek SAT P
{0, 1}-in-Ek SAT P
{Other Sets}-in-Ek SAT NP-complete

S-in-4SAT-O(1) Multiple results. Thm:4.3.1 ∗
{1}-in-E4SAT-4 NP-complete
{2}-in-E4SAT-5 NP-complete
{3}-in-E4SAT-4 NP-complete
{0, 2}-in-E4SAT-3 NP-complete
{1, 2}-in-E4SAT-4 NP-complete
{2, 3}-in-E4SAT-4 NP-complete
{0, 1, 3}-in-E4SAT-4 NP-complete
{0, 1, 4}-in-E4SAT-6 NP-complete
{0, 2, 3}-in-E4SAT-3 NP-complete
{0, 3, 4}-in-E4SAT-6 NP-complete
{1, 2, 3}-in-E4SAT-5 NP-complete
{0, 1, 3, 4}-in-E4SAT-5 NP-complete
{0, 2, 3, 4}-in-E4SAT-5 NP-complete
{1, 2, 3, 4}-in-E4SAT-5 NP-complete

Positive S-in-EU(2k)-SAT-E2. Dichotomy [Kol+19]
S is empty; always not satisfiable P
There is an even number in S P
k ∈ S P
{k − 1, k + 1} ⊂ S P
∃a, b such that S = {a, a+ 2, a+ 4, . . . , b} P
Otherwise NP-complete

Positive S-in-EU(2k + 1)-SAT-E2. Dichotomy [Kol+19]
S is empty; always not satisfiable P
It is trivial, i.e. if it is always satisfiable P
∃a, b such that S = {a, a+ 2, a+ 4, . . . , b} P
Otherwise NP-complete

When is Positive S-in-EU(2k+ 1)-SAT-E2 always sat-
isfiable?

Open

{1, 4}-in-EU5-SAT-E2 Open
General SAT
S SATcs-k, for k ≥ 3 Equivalent to S SATcs [DF03, Theorem 2.3]
S-SATcs-E2. Partial Dichotomy [KKR16; Fed01]

If S-SATc is in P P
If not all relations in S are ∆-matroids NP-complete
If all relations in S are even ∆-matroids P

Continued on next page
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Otherwise Open
S SAT, for S SAT ∈ P Full characterization [All+09]

The full characterization can be seen in "Refining Schae-
fer’s Theorem" [All+09]

L, NL, AC0, ⊕L or P complete

XNF SAT
S XNF SATc Partial characterization. Thm:6.6.4 ∗

Each relation in S is the disjunction or the comple-
ment of a disjunction of a polynomial number of mutually
exclusive AND clauses.

RP

Otherwise Open
S XnorNF SATc Partial characterization. Corollary:6.6.5 ∗

Each relation in S is the disjunction or the comple-
ment of a disjunction of a polynomial number of mutually
exclusive AND clauses.

RP

Otherwise Open
S XNF U SATc Partial characterization. Thm:6.6.7 ∗

Each relation in S is multilinear. RP
If S XNF SATc is in RP RP
Otherwise Open

Other SAT
Renamable Horn SAT (Horn after complementation of
some variables)

P [Cha+90]

k 1s Positive Not-1-in-EU3SATts NP-complete [KW13]
Not-1-in-EU3SAT-3 NP-complete. Thm:6.1.2 ∗
Circuit Not Implies SAT NP-complete. Thm:6.4.1 ∗
Planar Not Implies Circuit SAT Open
Inverse S SAT, where S is finite Dichotomy [KS98]

Every relation in S is Horn. P
Every relation in S is Dual-Horn. P
Every relation in S is affine. P
Every relation in S is bijunctive. P
If neither of the above. coNP-complete

Exists Exists-Unique 3SAT (∃ ∃! 3SAT) ΣP2 -complete [Mar08]
Exists Exists-Unique NAE 3SAT (∃ ∃! NAE 3SAT) ΣP2 -complete. Thm:3.10.2 ∗
Exists Exists-Unique given Proper Partial As-
signment 3SAT (∃x ∃!ty 3SAT)

ΣP2 -complete [HM05]

Minimum Defining Set 3SAT ΣP2 -complete [HM05]
Minimum Defining Set of Solution 3SAT ΣP2 -complete [HM05]
Unique given Solution 3SAT coNP-complete [HM05]
Unique SAT US-complete [Pap94; BG82]

Continued on next page
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Critical SAT DP-complete [Pap94]
All-Complements 3SAT ΠP

2 -complete [Sze04]
All-Complements 2SAT P [Sze04]
3SAT-UNSAT DP-complete [Pap94]
#SAT Dichotomy [CLX09]
#Planar SAT Dichotomy [CLX10]
Reconfiguration S SAT Dichotomy [Gop+06]
S SAT is in P P
S is tight P
Otherwise PSPACE-complete

Connectivity S SAT Dichotomy [Gop+06; MTY07]
Every relation in S is affine. P
Every relation in S is bijunctive. P
Every relation in S is Horn. coNP-complete
Every relation in S is Dual-Horn. coNP-complete
S is tight, but not one of the previous cases coNP-complete
Otherwise PSPACE-complete

Intersecting Monotone SAT co-TRANS-HYP-complete [EG02]
Intersecting Monotone kSAT P [EG02]
Intersecting Positive NAE SAT co-TRANS-HYP-complete [EG02]

2.2 Definitions

For the name of our SAT problems, we use a notation and structure intended to minimize the ambiguity
while still being succinct and relatively easy to parse. An example of our notation can be seen in Figure 2-1,
where it shows a fictitious SAT problem.

k 1s︸︷︷︸
Satisfiability Constraint

Satisfiability Condition︷ ︸︸ ︷
Max Var-Linked︸ ︷︷ ︸

Modifiers to
Graph Constraint

Graph Constraint︷ ︸︸ ︷
Planar Monotone︸ ︷︷ ︸

Constraint on Clauses

Type of Clauses︷ ︸︸ ︷
NAE EU3︸︷︷︸

Number and Uniqueness
of Variables in Clauses

Type︷ ︸︸ ︷
SAT c

T and F
Constants

Occurrences
of Variables︷︸︸︷

-E4 n3p︸︷︷︸
Constraint
on Variables

Figure 2-1: SAT notation example.

We define our SAT problems names in the following order: Satisfiability constraint; Satisfiabil-
ity conditions; modifiers to the graph constraints; graph constraints; constraints on types of
clause/formulas; type of clause; constraint on number and uniqueness of variables in the clause;
"type" of SAT; allowed constants (in subscript); constraint on occurrences of variables; other
constraints on the variables. Type of SAT and Satisfiability conditions indicate the same type of modi-
fications; however they are kept in different locations for historical reasons. To distinguish the name of the
problem from the remainder of the text, we use Small Caps, as standard in literature. When there is no
good short description for a constraint, we define the extra constraint after the name of the SAT problem.
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The example from Figure 2-1, k 1s Max Var-Linked Planar Monotone NAE EU3SATc-E4 n3p,
reads as "k 1s Max Var-Linked Planar Monotone Not All Equal Exactly Unique 3 SATc-
Exactly 4, no 3 positive". Given a value k and a value n, a conjunction of NAE clauses, and a planar
embedding of the bipartite graph of clauses and variables together with a Hamiltonian cycle that goes through
the variables, it is the problem of deciding whether it is possible to satisfy at least n clauses by setting k
variables to True. Furthermore, we have the following restrictions on the instances: each clause has exactly
3 distinct variables; each clause has the variables all negated or all positive; 2 variables, T and F, have their
values forcibly set respectively to True and False; all variables appear exactly 4 times (this includes the T
and F variables); and no variable appears positively 3 or more times.

Here we define possible values for the multiple fields that define a SAT problem name.

• Satisfiability conditions and constraints. Conditions on how to satisfy an instance, or what a
satisfiable instance of the SAT problem is.

– Standard / not specified: the problem of deciding whether there is an assignment to the variables
that satisfies the given formula.

– Sharp(#): The problem of counting how many satisfying solutions there are. When we say
that a satisfiability problem is in #P or it is #P complete, we are implicitly converting the SAT
problem to a #SAT problem.

– Circuit (C): The problem of deciding whether there exists an assignments of inputs to Boolean
circuit constructed with gates that implement specific formulas, such that the circuit output is
True (1).

– Quantified (Q): The problem of deciding whether a fully quantified Boolean formula evaluates
to True.

– k-Quantified [Pap94, p. 428]: The problem of deciding whether a quantified Boolean formula
with k − 1 alternations evaluates to True. Formally, the variables are partitioned into k sets,
X1, X2, . . . , Xk, and it is the problem of deciding whether ∃X1∀X2∃X3 . . . QXkf is true, where
Q is ∃ if k is odd, and ∀ if k is even. If specified, the order of ∀ and ∃ is switched, and the first
quantifier is ∀ instead of ∃.

– Quantifiers: If we are given explicit quantifiers, we assume it to be the equivalent k-Quantified
SAT instance. Example: ∀∃ 3SAT is equivalent to a switched 2-Quantified 3SAT.

– Max: Given k and a conjunction of clauses, the problem of deciding whether there is an assign-
ment to the variables which satisfies k or more clauses.

– Min: Given k and a conjunction of clauses, the problem of deciding whether there is an assignment
to the variables which satisfies k or fewer clauses.

– Minmax: Given k and a conjunction of clauses φ(x1, x2, . . . , xi, y1, y2, . . . , yj), the problem of
deciding whether ∀x ∃y such that at least k clauses are satisfied. It is an optimization version of
∀∃SAT .

– Reconfiguration [Gop+06]: Given a SAT formula and 2 solutions, σ1, σ2, the problem of deciding
whether there is a sequence of solutions starting at σ1 and ending at σ2 where successive truth
assignments differ in the value of exactly one variable. If such sequence exists, we say that there
exists a path between σ1 and σ2.

19



– Connectivity [Gop+06]: Given a SAT formula, the problem of deciding whether there exists a
path between every pair of solutions – whether the space of solutions is connected.

– Exists Exists Unique (∃∃! or ∃x∃!y ) [Mar08]: Given a formula φ(x1, x2, . . . , xi, y1, y2, . . . , yj)
the problem of deciding whether there exists an assignment of x1, x2, . . . , xi such that there is a
unique assignment for y1, y2, . . . , yj that satisfies the formula. If the answer is yes, we say that
{x1, x2, . . . , xi} is a defining set: a set of variables such that for an assignment of truth values of
this subset, there exists a unique assignment of variables that satisfy the formula while agreeing
with the truth assignment.

– Exists Exists Unique given Proper Partial Assignment (∃x∃!ty) [HM05; SU02]: Given
a formula φ(x1, x2, . . . , xi, y1, y2, . . . , yj) and a proper partial assignment over y, the problem of
deciding whether x is a defining set. A proper partial assignment over y is an assignment of
the variables in y, such that the formula is satisfied independent of (that is, for all choices of) the
assignment of variables in x. For example, let

φ = (x1 ∨ y1 ∨ y2) ∧ (¬y1¬y2) ∧ (y1¬y2),

then y1 = 1, y2 = 0 is a proper partial assignment, and x is a defining set, because if x1 = 0, then
the y assignment given is the only solution.

– Minimum Defining Set [HM05]: Given a formula φ(x1, x2, . . . , xi), and a value k, the problem
of deciding whether there exists a defining set of size k.

– Minimum Defining Set of Solution [HM05]: Given a formula φ(x1, x2, . . . , xi), a solution x,
and a value k, the problem of deciding whether the solution contains a defining set of size at most
k, i.e., there are k variables such that by setting their values to the values in x, there exists a
unique assignment of the remaining variables that satisfies the clause, x.

– Unique given Solution(∃t!): Given a formula φ(x1, x2, . . . , xi), and a solution x, the problem
of deciding whether x is the only solution.

– Unique (∃!) [Pap94]: Given a formula φ, the problem of deciding whether it has exactly one
solution.

– Critical [Pap94]: Given a formula φ that is a conjunction of clauses, the problem of deciding
whether is it true that φ is not satisfiable, but deleting any clause makes it satisfiable.

– All-Complements: Given a SAT instance, the problem of deciding whether the instance is
satisfiable under arbitrary replacement of literals by their complements [Sze04]. In other words,
given a SAT instance with n variables, the problem of deciding whether all the 2n SAT instances
that can be constructed by complementing its variables are satisfiable.

– Inverse: Given a list of solutions, the problem of whether is it possible to construct a SAT
instance whose solutions match the ones given, given the allowed clauses or constrains. As an
example, Inverse 3SAT is coNP-complete. The solutions to 1-in-(a, b, c, d) is a list of solutions
for which it is not possible to construct a 3SAT instance.

– Constraints.

∗ k 1s: We are limited to setting at most k variables to 1 (True), where k is a parameter of
the SAT instance. Note that this k is always the letter k, and never substituted for a number.
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∗ k 0s: We are limited to setting at most k variables to 0 (False), where k is a parameter of
the SAT instance. Note that this k is always the letter k, and never substituted for a number.

• Graph constraints and modifiers. For every one of these constraints, we are given the "constraint"
together with the formula in the SAT instances. For example, when solving a Planar SAT instance,
we are also given its planar embedding. When solving Linked Planar SAT, we are also given the
Hamiltonian cycle that goes through all the variables and clauses and its embedding.

– Planar: The bipartite graph with a vertex for each clauses, a vertex for each variable, and an edge
for each pair of a clause and a variable in that clause is planar. If a different graph is specified,
then the specified graph is planar, as in Separable Planar SAT. When we need to distinguish
the edges that connect a clause to a variable that appears in it as a positive literal from the ones
that appear as a negative literal, we define the former to be edges directed from the clause to the
variable and the latter to be edges directed from the variable to the clause. For convenience, when
drawing such graph, we follow the convention from [Lar93] and draw the clauses as rectangles
and the variables as circles, unless stated otherwise. The graph embedding is given as one of the
inputs to the instance.

– k-Planar: In the bipartite graph defined as above, each edge crosses at most k other edges.

– Crossing Number k: In the bipartite graph defined as above, there are at most k edge crossings.

– Separable [Tip16]: The vertex set consists of all literals and all clauses. We connect the negative
and positive literals of each variable with an edge. We connected each clause to the literals that
it contains with edges. Figure 2-3 shows an example of a Separable Planar 3SAT graph.

– Separate: Similarly to Separable, the vertex set of the incident graph consists of all literals
and all clauses and we connected a clause to the literals that it contains with edges. However, we
don’t connect the positive and negative literals of each variable.

– Var-Linked Planar [Fel+95]: In addition to the constraints in Planar, if we add a Hamiltonian
cycle that goes through all the variable nodes, the graph is still planar. The cycle is given as one
of the inputs to the instance. Figure 2-2 shows an example of a Var-Linked Planar 3SAT
graph.

– Clause-Linked Planar [Fel+95]: In addition to the constraints in Planar, if we add a Hamil-
tonian cycle that goes through all the clause nodes, the graph is still planar. The cycle is given
as one of the inputs to the instance. Figure 2-3 shows an example of a Clause-Linked Planar
3SAT graph.

– Linked Planar [Pil17]: In addition to the constraints in Planar, if we add a Hamiltonian cycle
that goes through all the variable nodes, followed by going through all the clause nodes, the graph
is still planar. The cycle is given as one of the inputs to the instance. Figure 2-4 shows an example
of a Linked Planar 3SAT graph embedding.

– Rectilinear Planar: In addition to the constraints in planar, all edges can be drawn as combi-
nations of vertical and horizontal line segments.

– Tri-Legged Planar: In addition to the constraints in Var-Linked Planar and Rectilinear
Planar, all variable nodes can be drawn as straight line segments in the x axis and all clauses
can be drawn as horizontal lines, connected to the nodes by at most 3 vertical segments. This was
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a

e

d c

bb ∨ a ∨ e

e ∨ d ∨ c c ∨ b ∨ e

¬a ∨ ¬b ∨ ¬c¬d ∨ ¬e ∨ ¬a

Figure 2-2: Ordered Sided Var-Linked Planar EU3SAT example.

called "tri-legged construction" by Pilz [Pil17]. Figure 2-5 shows an example of this construction.
Tippenhauer [Tip16] has shown that Var-Linked Planar is equivalent to Tri-Legged Planar
when all clauses have at most 3 variables.

– Ordered Planar [KKR16]: In addition to the constraints in Planar, when going anticlockwise
around a clause node, the variables are in the same order as they appear in the clauses. This
distinction from planar is only relevant when not all permutations of a relation are present in our
allowed relations. For example, if (¬x ∨ y ∨ z) is a valid relation, but (x ∨ ¬y ∨ z) is not. If all
permutations are present, as is the case with NAE SAT, S-in-kSAT or CNF SAT, then Ordered
Planar is equivalent to Planar, since we can always permute the variables in the clauses and
make use of another valid relation. Figure 2-2 shows an example of a Ordered Planar 3SAT
graph.

– Sided: Var-Linked, Clause-Linked or Linked Planar: In addition to the constraints in
Var-Linked, Clause-Linked or Linked Planar, we also enforce that all edges connecting
to positive literals are inside the given Hamiltonian cycle and all edges connecting to negative
literals are outside it. Note that Sided Var-Linked Planar SAT implies that all clauses are
monotone, and that Sided Clause-Linked Planar SAT implies that all variables are monotone
– each variable appears only positively or only negatively. Figure 2-2 shows an example of a Sided
Var-Linked Planar 3SAT graph.

– k-Connected: The graph of variables and clauses is k-connected. In other words, it is a graph
with at least k + 1 vertices that remains connected whenever fewer than k vertices are removed.

• Constraints on types of clauses/formulas

– Positive: Each clause contains only positive literals.

– Monotone: Each clause contains only positive or only negative literals.

– Intersecting Monotone [EG02]: Besides being Monotone, each positive clause contains at
least one variable in common with each negative clause.

– Intersecting , but not Monotone: Each pair of clauses contains at least one variable in common.
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āa

b b̄

¬a ∨ ¬b ∨ da ∨ c ∨ d

a ∨ b ∨ ¬c ¬b ∨ ¬c ∨ ¬d

dc

c̄ d̄

Figure 2-3: Separable Clause-Linked Planar EU3SAT example.

a

b c

d

a ∨ b ∨ ¬c

b ∨ c ∨ d

c ∨ ¬d

Figure 2-4: Linked Planar 3SAT example.
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x1 x2 x3 x4 x5

c1

c2 c3

c4

Figure 2-5: Tri-legged construction example for Rectilinear Var-Linked Planar SAT.
The variables are line segments in the x axis and the clauses are points.

– nkp: No clause contains k or more positive literals. nkn enforces the same for negative literals.

– ekp: All clauses contain exactly k positive literals. ekn enforces the same for negative literals.

– nekp: No clause contains exactly k positive literals. nekn enforces the same for negative literals.

– ≥ kp: All clauses contain k or more positive literals. ≥ kn enforces the same for negative literals.

– Combining constraints: If all the constraints need to be satisfied, they are listed one after the
other. If only a subset of the constraints need to be satisfied at a time, we state the relation
between the constraints. For example Planar (≥ 3p or ≥ 3n) SAT stands for an instance of
Planar SAT where every clause contains at least 3 positive literals, or at least 3 negative literals.

• Types of Clauses

– Standard / not specified: If there is a limit on the size of the clause, the allowed formulas are in
Conjunctive Normal Form (CNF): a conjunction of clauses (clauses connected by ∧), each
of which is a disjunction of literals (literals connected by ∨). If nothing is specified about the
clause types or size, then it is assumed that all Boolean formulas are allowed.

– CNF: the formula is in CNF.

– DNF: The formula is in Disjunctive Normal Form: a disjunction of clauses, each of which is a
conjunction of literals. If combined with another type of clause it will be a disjunction of clauses
of that type. For example, NAE DNF SAT is a disjunction of NAE clauses.

– XNF: The formula is in XOR Normal Form, clauses that are disjunction of literals connected
by XORs. If combined with another type of clause it will be a series of those clauses connected
by XORs. For example, NAE XNF SAT is a series of NAE clauses connected by XORs.

– XnorNF: The formula is in XNOR Normal Form. Same as XNF, but with XNORs replacing
the XORs.

– NAE: The formula is a conjunction of Not All Equal (NAE) clauses of literals. A NAE clause
is a clause that evaluates to True iff not all of its literals are equal.
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– 1-in-: The formula is a conjunction of Exactly 1 in (1-in-) clauses of literals. A 1-in- clause is
a clause that evaluates to True iff exactly one of its literals is True.

– S-in-: An S-in-* clause is a clause that evaluates to True iff the number of True literals in the
clause is ∈ S. For example, NAE EU3SAT is the same as {1, 2}-in-EU3SAT.

– Not-1-in-: The formula is a conjunction of Not Exactly 1 in (Not-1-in-) clauses of literals.
A Not-1-in- clause is a clause that evaluates to True iff not exactly one of its literals is True.

– Horn: The formula is a CNF formula where each clause contains at most one positive literal.
An equivalent name using our notation would be: n1p CNF.

– Dual Horn: The formula is a CNF formula where each clause contains at most one negative
literal. An equivalent name using our notation would be: n1n CNF.

– Xor: The formula is a conjunction of clauses, where each clause is a Xors of literals, for example
(a⊕ b) ∧ (¬a⊕ b⊕ c) ∧ (¬b).

– S: Some other condition or formula. Unless otherwise specified, S is assumed to be a set of
relations and the formula is a conjunction of clauses. Each clause evaluates to True if the given
relation is satisfied. For example, 2-in- would imply that each clause is True iff there exist exactly
2 True literals in it.

– {connectives}: The only connectives allowed in the formula are the ones defined in the set. The
formula, in this case, is not necessarily conjunction of clauses. For example (a =⇒ b =⇒ c) =⇒
(a =⇒ b) would be a valid instance of ({ =⇒ }SAT .

– Multiple clause types: any of those clause types can be used in the SAT formula. Example:
(NAE or 1-in-)3SAT, would be a SAT problem where each clause is either a NAE clause, or
a 1-in- clause, with at most 3 variables each. An example of such a problem is: NAE(x, y, z) ∧
1-in-(y, z) ∧NAE(¬y, z)

• Constraint on number and uniqueness of literals in the clause

– k: Clauses contain k or fewer literals.

– Ek: Clauses contain exactly k literals.

– ≥ k: Clauses contain k or more literals.

– U: All the variables in each clause are unique: no variable appears more than once in the same
clause.

– Uk: All the variables in each clause are unique, and no clause contains more than k literals.

– EUk: Clauses contain exactly k literals and they are unique.

– ≥ Uk: All the variables in each clause are unique, and all clauses contain k or more literals.

– Multiple constraints: The constraints are combined by Boolean connectives, for example (≥
3p or ≥ 2n) means that each clause contains 3 or more positive literals or 2 or more negative
literals. If no connective is used, we assume there to be an AND, for example: (≥ 2p)EU4, means
that each clause contains exactly 4 unique variables, with at least 2 positive ones.

• Type of SAT - They are generally incompatible with the SAT conditions field since they perform a
similar role. They are placed here, however, for historical reasons, or when it makes the problem name
easier to read.
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– SAT: The standard Boolean Satisfiability problem. Given a Boolean formula, the problem of
deciding whether there exists an assignment of the variables that makes the formula evaluate to
True; unless we have set a different SAT condition

– QSAT: See Quantified under Satisfiability conditions.

– QSATk: See k-Quantified under Satisfiability conditions.

– Circuit SAT (CSAT): See Circuit under Satisfiability conditions.

– UNSAT: The problem of deciding whether a Boolean formula is not satisfiable, namely, deciding
whether it evaluates to False for every variable assignment.

– SAT-UNSAT [Pap94]: Given 2 Boolean formulas, φ and φ′, the problem of deciding whether it
is true that φ is satisfiable and φ′ is not.

– TAUTOLOGY: The problem of deciding whether a Boolean formula is always satisfiable,
namely. deciding whether it is True for every variable assignment.

– NOT TAUTOLOGY: The problem of deciding whether there exists an assignment of the vari-
ables that makes the formula false.

– #SAT: See Sharp under Satisfiability conditions.

• Allowed constants (in subscript) - The distinction between a single variable set to True or False,
and an unlimited number is relevant when discussing SAT problems where clauses can only contain
unique variables, or when there is a limit on how many times a variable can be used.

– c: A single variable can be forcibly set to True (1), and a single to False(0). Example, SATc.

– cs: An unlimited number of variables can be forcibly set to True or False.

– t: A single variable can be forcibly set to True. f is the equivalent for False. These are generally
only relevant when using Monotone or Positive constraints; otherwise one should use c.

– ts: An unlimited number of variables can be forcibly set to True. fs is the equivalent for False.

• Constraint on occurrences of variables.

– -k: Each variable occurs at most k times. We define the number of occurrences of a variable to
be the number of times its literals appear in the formulas. For example, in the following CNF
formula, the variable x occurs 3 times and the variable y occurs twice: (x ∨ x ∨ y) ∧ (x ∨ y). For
another example, SAT-2 is CNF SAT where each variable appears at most twice.

– -Ek: Each variable occurs exactly k times. For example, E3SAT-E3, where each variable occurs
exactly 3 times and each clause contains exactly 3 variables.

• Other constraints on the variables - It is very rare at the moment to constrain the individual
variables. One example was n3p 3SAT-3 n2n as defined by Ding [DFZ11], where they defined that
every variable occurred as a negative literal at most 1 time. Even though this is a direct consequence
of being a CNF SAT-3, it is still worth mentioning. For those and others constraints we use the same
notation as for the clauses.

– nkp, nkn, ekp, ekn, ≥ kp, ≥ kn, nekp, nekn: All enforce the same constraint as the respective
clause constraint, except that instead of referring to the literals of a clause, this constraint refers
to the occurrences of a variable.
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– Monotone: Each variable appears only positively or only negatively.

We also define some other terms that will be useful in our reductions, proofs, and Table 2.1.

• Hypergraphs. Terms related to hypergraphs.

– Hypergraph: A hypergraph is a set of hyperedges. Each hyperedge is a set of 1 or more nodes.

– 2-colorable Hypergraph: A hypergraph where it is possible to color the nodes using 2 colors
such that every hyperedge contains nodes of both colors.

– k-uniform Hypergraph: A hypergraph where every hyperedge contains k nodes.

– k-regular Hypergraph: A hypergraph where every node appears in k hyperedges.

– Condenser: A hypergraph that is minimally non-2-colorable. By removing a single hyperedge,
the hypergraph becomes 2-colorable.

– Square Hypergraph: A hypergraph with the same number of nodes and hyperedges.

– Transversal Hypergraph problem (TRANS-HYP) [EG02]. A transversal of a hypergraph
H is a subset of the vertices that intersects every hyperedge. A transversal is minimal if remov-
ing any vertex from it makes it stop being a transversal. The transversal hypergraph of H
is a hypegraph G whose hyperedges are all the minimal transversals of H. The Transversal
Hypergraph problem is the problem of given 2 hypergraphs H and G, deciding whether G is
the transversal of H. This problem is relevant because some instances of SAT are co-TRANS-
HYP complete. It has been shown that the problem is in co-NP , but no coNP -completeness
proof has been found. It is believed that TRANS-HYP is coNP -intermediate, in a complexity
class between P and coNP [EG95]. It has been shown that TRANS-HYP can be recognized in
O
(
nlogn) [FK96].

• Relations. Terms related to relations and their classifications. Useful when describing dichotomoies.

– Relation: A relation is a set of tuples specifying valid assignments of literals.
For example, the only relation in Positive NAE EU3SAT is {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0),
(1, 0, 1), (0, 1, 1)}, and the only Positive 1-in-EU3 relation is 1-in-(x, y, z) {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The Positive NAE u3SAT problem contains 2 relations, NAE(x, y, z) {(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1)} and NAE(x, y) {(1, 0), (0, 1)}, depending on the clause size. 1-in-U3
SAT contains 3 relations, {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, {(1, 0), (0, 1)} and {(1)}.
NAE 3SAT Contains 6 relations: NAE(x, y, z), NAE(¬x, y, z), NAE(x,¬y, z), NAE(x, y,¬z),
NAE(x, y), NAE(¬x, y). The other NAE clauses with other variables negated, or with variables
repeated are equivalent to one of those 6 cases.

– Bijunctive [Gop+06]: A relation is bijunctive if it is expressible as a 2-CNF. This implies that,
given 3 valid assignments of variables a, b, c, maj(a, b, c) is also a valid assignment, where maj is
the majority operation. maj(a, b, c) is the vector whose ith element is the majority of ai, bi, ci.

– Affine: A relation is affine if, given 3 valid assignments of variables a, b, c, (a ⊕ b ⊕ c) is also a
valid assignment. (a ⊕ b ⊕ c) is the vector whose ith element is ai ⊕ bi ⊕ ci, the XOR of the ith
variable assignments.

– Horn: A relation is Horn if, given 2 valid assignments of variables a and b, (a ∨ b) is also a valid
assignment. (a ∨ b) is the vector whose ith element is ai ∨ bi.
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– Dual Horn: A relation is Dual Horn if, given 2 valid assignments of variables a and b, (a ∧ b) is
also a valid assignment. (a ∧ b) is the vector whose ith element is ai ∧ bi.

– OR-Free [Gop+06]: A relation in k variables is OR-free if the relation {(0, 1), (1, 0), (1, 1)} cannot
be obtained by setting k − 2 of the coordinates to constants.

– NAND-Free [Gop+06]: A relation in k variables is NAND-free if the relation {(0, 0), (0, 1), (1, 0)}
cannot be obtained by setting k − 2 of the coordinates to constants. All relations in Positive
3SAT are NAND-free. In 3SAT; however, some of them are not NAND-free, such as (¬x ∨ ¬y).

– Connected Component [Gop+06]: Two tuples t1 and t2 of a relation are part of the same
connected component if there is a sequence of tuples starting at t1 and ending at t2 where successive
tuples differ in the value of exactly one variable.

– Tight [Gop+06]. Tight is an important property for Reconfiguration SAT and Connectiv-
ity SAT. A set S of relations is tight if one of the following is true:

1. Every connected component of every relation in S is bijunctive.
2. Every relation in S is OR-free.
3. Every relation in S is NAND-free.

– Self-Complementary relation: A relation is self-complementary iff, given an assignment of
variables that satisfies the relation, negating the assignment also satisfies the relation. The Not
All Equal relations are self-complementary. The 1-in-k relations are not, unless k = 2

– d Relation [KKR16]: Let R be a relation. dR = {dT : T ∈ R}. Let n be the length of the tuple T.
Then: dT = {ti+ti+1 mod 2 : i = 1, 2, . . . , n}, with tn+1 = t1. For example, let R be the Positive
1-in-EU3 relation. Then R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and dR = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}.
If we have R be the Positive All Equal relation in 3 variables, then R = {(1, 1, 1), (0, 0, 0)} and
dR = {(0, 0, 0)}.

• Delta Matroids. Terms related to Delta Matroids and the Planar Dichotomy [KKR16].

– Delta Matroid (∆-matroid) [KKR16]: A non-empty relation is a ∆-Matroid if whenever there
are 2 assignments of variables, f and g, that satisfy that relation, the following is true: Let x be
a variable whose assignments in f and g differ. Then there exists a variable y (which could just
be x) whose assignments in f and g differs such that if we negate both x and y in the assignment
f , we obtain another valid assignment.
In other words, S is a ∆-matroid if

∀T1 ∈ S, ∀T2 ∈ S.T1 6= T2. ∀x ∈ T1∆T2.(((T1⊕x) ∈ S)OR (∃y ∈ T1∆T2, x 6= y s.t. ((T1⊕x⊕y) ∈ S))),

where T1∆T2 is the set of variables with different values in T1 and T2, and ⊕x means to negate
the variable x, i.e. replace 0s by 1s, and vice-versa in the variable location in the tuple.
An example of ∆-Matroid would be the Positive 1-in-k relation, since we can always convert a
valid assignment to another by negating the 2 literals that differ between them. Other example
would be {(1, 1, 0), (1, 0, 0)}, which evaluates to True if the first 2 variables is True, or if only the
first variable is True. An all equal relation in 3 variables, {(1, 1, 1), (0, 0, 0)} is not a ∆-matroid,
and {(1, 1, 0), (0, 0, 1)} is also not a ∆-matroid. By this definition a relation that contains only
one tuple is a ∆-matroid.
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– Even Delta Matroid (even ∆-matroid) [KKR16]: If in addition of the relation being a delta
matroid, all valid assignments for the relation contain the same parity of literals set to True.
Positive 1-in-EUk relation is an even ∆-matroid, but {(1, 1, 0), (1, 0, 0)} is not. The NAE 3SAT
relation is also not an even ∆-matroid, since the relation can be satisfied with either 1 or 2 variables
set to True. By this definition a relation that contains only one tuple is an even ∆-matroid.

• Sets. Terms related to S-in-EkSAT proofs.

– Self-dual: The set S in an S-in-EkSAT relation is self dual iff x ∈ S implies (k − x) ∈ S.

2.3 Notation incompatibility with previous papers.

The notation we propose is incompatible with the notation used in other papers, so here we display some of
those differences.

• Laroche [Lar93] calls Planar Positive 1-in-EU3 SAT by Planar 1-in-3 SAT.

• Moore et al. [MR01] call "Planar Positive 1-in-EU3SAT-E3" by "Monotone 1-in-3 Satisfia-
bility for planar cubic graphs".

• Schaefer [Sch78] calls "Positive Not-1-in-u3 SATT " by Not-1-in-3 Satisfiability.

• Dehghan [Deh16] calls "Planar Positive NAE 3SATTs" by "Restricted Planar Monotone
Not-All-Equal 3SAT".

• Eiter et al. [EG02] call Positive NAE SAT by Symmetric Monotone SAT.

• de Berg et al. [BK10] call Sided Var-Linked Rectilinear Planar Monotone 3SAT by Planar
Monotone 3-sat.

• Chaplick et al. [Cha+16] call Clause-Linked Planar Positive 1-in-EU3SAT by Positive Pla-
nar Cycle 1-in-3-Sat.

• Johnson et al. [GJS76] calls MAX 2SAT by MAX SAT2.

• Hunt et al. [III+98] calls Planar Positive 1-in-EU3SAT by Pl-1-Ex3MonoSat.

• In [Deh16], Dehghan uses a "NAE assignment to a CNF formula" to mean that each conjunct is a NAE
clause of literals.

• Lichtenstein [Lic82] calls Var-Linked Planar 3SAT by Planar 3SAT, and calls Var-Linked
Planar 3QSAT by Planar TF. Mansfield [Man83], wrongly cites the problem solved by Lichtenstein
by omitting the Var-Linked restriction in its description.

• Feder [Fed01] and Kazda et al. [KKR16] call U SAT E2 by Boolean edge CSP. Kazda et al. also
call Planar SAT by Planar Boolean CSP.

• Szeider [Sze04] calls All-Complements SAT by Graph SAT.
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Chapter 3

NAE SAT variants

In this chapter we present our results in NAE SAT variants. We first present some problems with no graph
restrictions that are in P, followed by NP-complete problems. Then we present almost planar NAE SAT
variants, and at last, a result in ΣP2 = NPNP.

3.1 NAE SAT-2
Theorem 3.1.1. NAE SAT-2 is in P.

Proof. If there exists a clause with a single variable, then it is not satisfiable. If not, then every clause
contains at least 2 variables.

First we convert it to a Positive NAE SAT-2 instance. If a variable (x) occurs as both as a positive
and a negative literal, we create a new variable and a new clause NAE(x, x′), and we replace ¬x by x′.
If it occurs only as a negative literal, we can replace the negative literal with the positive literals, without
affecting the satisfiability of the instance. If one represents the clauses as hyperedges, and the variables
as nodes in a hypergraph, then the NAE SAT instance is satisfiable if and only if the hypergraph can be
2-colored. Supposing the hypergraph is not 2-colorable, this means it contains a subset of hyperedges that
are minimally non-2-colorable, also known as a condenser.

It is known that any condenser contains at least as many edges as nodes [Sey74].
Since each node shows up in at most 2 clauses, the degree of each node is at most 2. The number of

edges in any subset E is

|E| =
∑

v∈V [E]

degree of node v
average degree of the hyperedges in E ≤

∑
v∈V [E]

2
2 ≤ |V [E]|,

with equality iff each hyperedge and each node in E has degree 2.
Therefore if a hypergraph is not 2-colorable, it contains a subset E such that each hyperedge and each

node of the subset has degree 2, and this subset is not 2-colorable.
Therefore we can remove all hyperedges with more than 2 variables, converting the hypergraph to a graph

to test the resulting graph for 2-colorability. Since 2-coloring a graph is in P, the original problem is also in
P.

30



a

b

c

(a) A 2-regular 2-uniform square condenser with 3 hy-
peredges

a

b

c

d

ef

g

(b) The Fano plane, a 3-regular 3-uniform square con-
denser, with 7 hyperedges.

Figure 3-1: Examples of square condensers.

3.2 Positive NAE EUkSAT-Ek

The NAE EUk SAT problem is equivalent to the 2-coloring a k-uniform hypergraph, by converting the
variables to nodes, and having each clause represent a hyperedge, since each clause contains exactly k different
nodes, all positive. Similarly, NAE u SAT-Ek is equivalent to the 2-coloring a k-regular hypergraph, since
each variable is part of exactly k clauses, and they are all positive. Therefore we can use known results on
hypergraph 2 coloring to prove results on Positive NAE SAT.

Theorem 3.2.1. Positive NAE EUkSAT-Ek is always satisfiable for k ≥ 4

Proof. We can represent our Positive NAE EUkSAT-Ek instance as a hypergraph 2-coloring problem, where
the clauses are the hyperedges and the variables are the nodes. Henning at al [HY13] showed that all k-
uniform-k-regular hypergraphs, for k ≥ 4 are 2 colorable. Therefore every Positive NAE EUkSAT-Ek
instance is 2-colorable for k ≥ 4.

Theorem 3.2.2. Positive NAE EUkSAT 2k−3

k is always satisfiable.

Proof. Paul Erdős [EL73] showed that a (r+1)-chromatic k-uniform hypergraph contains at least one vertex
of degree > rk−1

4k ; therefore, if a k-uniform hypergraph is not 2 colorable, i.e. it is at least 3 chromatic, it
contains at least one vertex of degree > 2k−1

4k = 2k−3

k .
Therefore all k-uniform hypergraphs with all vertices with degree ≤ 2k−3

k are 2-colorable. As a conse-
quence, all instances of Positive NAE EUkSAT 2k−3

k are satisfiable.

3.3 NAE EkSAT-k

Theorem 3.3.1. NAE EkSAT-k is in P.

It was shown by Robertson et al. [RST99] that the problem of detecting if a hypergraph is a square
condenser, i.e. has k nodes and k hyperedges and is minimally non-2-colorable, is in P . Examples of square
condensers can be seen in Figure 3-1 . We will use it to show that NAE EkSAT-k is also in P , even when a
clause can repeat the same variable, as long as the occurrences of each variable is bounded by k.

First let’s prove a positive version of Theorem 3.3.1.
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Theorem 3.3.2. Positive EkNAE SAT-k is in P.

Proof. Let H be the hypergraph representation of the Positive NAE SAT instance. All the clauses are
converted to hyperedges that contain k nodes, and all the variables are converted to nodes. We allow
hyperedges to contain multiple instances of the same node. This is equivalent to containing a single instance
of each node while lowering the degree of the hyperedge to the number of unique nodes in it.

Our original instance is satisfiable if and only if this hypergraph is 2-colorable, i.e. if it is possible to
color the nodes in such a way that no hyperedge is monochromatic.

Suppose the hypergraph is not 2-colorable, but it is not a condenser. This means that a strict subset of
the hypergraph, E ( H is a condenser. Since E is a condenser, we have that |V [E]| ≤ |E| [Sey74], where
|V [E]| are the vertices of E. Since each hyperedge contains k nodes (possibly with repetitions), and each
node appears at most k times; we know that among the |E| hyperedges there exists at least |E| nodes, so
|V [E]| ≥ |E|. Therefore, |V [E]| = |E|, so E is a square condenser. The above also implies that each node
appears exactly k times in |E|.

Now, suppose one of those node is also part of a hyperedge in H −E. Then in H the node will appear in
at least k + 1 locations, which is a contradiction. Therefore any condenser in H is a connected component
which is not connected to the rest of H. Therefore the hypergraph is not 2-colorable if and only it is a square
condenser or if one of its connected components is a square condenser.

Since we have a polynomial time algorithm to check if a hypergraph is a square condenser, and the
largest number of connected components in a hypergraph H is O(|H|), we can check if H is 2-colorable in
polynomial time. Therefore checking if a Positive EkNAE SAT-k instance is satisfiable is in P.

Corollary 3.3.3. Positive EUk NAE SAT-E-k is in P.

Proof. This follows immediately from Theorem 3.3.2.

Corollary 3.3.4. 2-coloring of k-regular-k-uniform hypergraphs is in P.

Proof. We convert readily convert an instance of a 2-coloring of k-regular-k-uniform hypergraph problem
into an instance of Positive EUk NAE SAT-E-k. Then, this follows from Theorem 3.3.2.

Now we are ready to solve the problem without the positive restriction.

Theorem 3.3.1. NAE EkSAT-k is in P.

Proof. Suppose a variable x appears in n clauses as a positive literal and in q ≤ k − n clauses as a negative
literal.

We create 2 new variables: x1, x2, and we add a new clause (x1, x1, . . . , x1︸ ︷︷ ︸
k−n-times

, x2, x2, . . . , x2︸ ︷︷ ︸
n-times

). This clause

enforces x1 6= x2. We replace every positive occurrence of x with x1 and every negative occurrence with x2.
x1 will occur in k locations and x2 will occur in n+ q ≤ k locations.

After this we will have converted all negative literals into positive literals, at the cost of increasing the
number of variables by at most 2. The original problem is satisfiable if and only if this problem is satisfiable.
Since we have proven that Positive EkNAE SAT-k with variable repetitions is in P, then EkNAE SAT-k is
in P.
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3.4 Positive NAE 3SAT-3
Theorem 3.4.1. Positive NAE 3SAT-3 is NP-complete.

Proof. We reduce from NAE 3SAT. If a variable x appears in ≤ k times positively and ≤ k times negatively,
replace it with variables x1, x

′
1, x2, . . . , xk, x

′
k, and force all xis equal and opposite from all x′is by adding a

cycle of NAE clauses:

NAE(xi, x′i) (i.e., xi 6= x′i) and (3.1)

NAE(x′i, xi+1) (i.e., x′i 6= xi+1) for i ∈ {1, 2, . . . , k} (3.2)

(indices modulo k).
Then we replace each occurrence of x with an xi, and each occurrence of ¬x with and x′i . Each xi and

x′i will occur at most 3 times.

3.5 Positive NAE E3SAT-4
Theorem 3.5.1. Positive NAE E3SAT-4 is NP-complete.

Proof. We perform a reduction from Positive NAE 3SAT-3, which we showed to be NP-complete on
Theorem 3.4.1.

Given an instance of Positive NAE 3SAT-3, suppose a clause contains only two variables NAE(x, y), we
create the following clauses: NAE(x, x1, x1), NAE(x1, x1, x2) and NAE(x2, x2, y). This forces x = x2, and
is equivalent to NAE(x2, y). Each newly created variable appears 4 or fewer times, and each of the original
variables appear at most 3 times, since they were not duplicated in the reduction.

3.6 1-Planar Positive NAE 3SAT
Theorem 3.6.1. 1-Planar Positive NAE 3SAT is NP-complete.

Proof. We reduce from Positive NAE 3SAT. If an edge coming from a variable xi crosses k other edges,
we create 2k copies of the variable x, i.e x1, x2, . . . , x2k, together with 2k clauses, 2 for each crossing. The
clauses will force all the xs with even index to be equal. NAE(x, x1), NAE(x1, x2), . . . , NAE(x2k−1, x2k). At
last we substitute x for x2k in the original clause. We show the results of this procedure for a single crossing
in Figure 3-2.

The original problem will have a solution iff this one has a solution.
Each of the newly created edges are part of at most one crossing.
If we repeat this in every edge of the graph, we will obtain a graph that is 1-planar. We can do this

in polynomial time, since there are at most |E|2 crossings. Therefore 1-Planar Positive NAE 3SAT is
NP-complete.

3.7 Crossing number nε NAE 3SAT

We define "Crossing number nε NAE 3SAT" to be an instance of NAE 3SAT, given with a graph repre-
sentation that contains at most nε edge crossings.
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x clause(x)

...

...

...

...
(a) Edge with multiple crossings

x clause(x2)x1(x 6= x1) x2(x1 6= x2)

...

...

...

...
(b) Edges with at most one crossing

Figure 3-2: Converting Positive NAE SAT to 1-Planar Positive NAE SAT

Theorem 3.7.1. Crossing number nε NAE 3SAT is NP-complete.

Proof. By Theorem 3.6.1, Crossing number n1 NAE 3SAT is NP-complete. We can convert any instance
of Crossing number n1 NAE 3SAT to a Crossing number nε NAE 3SAT by adding a trivially solvable
n

1
ε sized planar 3SAT instance to the graph.

3.8 Crossing number O(log n) NAE 3SAT
Theorem 3.8.1. Crossing number O(logn) NAE 3SAT is in P.

Proof. Let c be the crossing number. We can reduce our problem to 2c = nO(1) instances of Planar NAE
3SAT which is in P. Our problem is satisfiable iff at least one of these instances is satisfiable. The reduction
is as follows:

Suppose 2 edges cross each other, as seen in Figure 3-3 (a), for example the one connecting variable ai to
clause c1 and the one connecting bi with c2. We will duplicate the number of instances, at the intersection
point add 2 clauses and 1 new variable: NAE(ai,¬y),NAE(bi, y′), y, where y′ is ¬y in the first copy of the
instances, and y in the second copy. We replace ai and bi by y in clauses c1 and c2 in the first copy, and by
y and ¬y in the second copy, respectively. This removes the crossing from the graph, as seen in Figure 3-3
(b).

ai

bi

clause 1

clause 2

(a) Crossing of 2 edges

xiai

bi

clause 1, with xi instead of ai

clause 2, with xi or ¬xi instead of bi

ai 6= ¬xi

(bi or ¬bi) 6= ¬xi

(b) Doubling the instances

Figure 3-3: Removing a crossing of 2 variables by doubling the instances
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By doing this we will be solving 2 problems: is the original instance satisfiable if ai = bi, and is the
original instance satisfiable if ai 6= bi.

Since there are O(log(n)) crossings, and for each crossing we are duplicating the number of instances, we
will solve a polynomial nO(1) number of problems in P, and therefore our original problem is also in P.

3.9 Bounded-genus Orientable Surface NAE 3SAT
Theorem 3.9.1. Bounded-genus Orientable Surface NAE 3SAT is in P.

Proof. We define the problem as follows: given a NAE 3SAT formula, together with an embedding of the
formula onto an orientable surface of genus k, where k is a constant, is the formula satisfiable?

Moret [Mor88] showed a reduction from NAE 3SAT to Max Cut which preserves planarity. Galluccio et
al. [GLV01] showed that Max Cut is in P for any fixed orientable surface of genus bounded by a constant.
Therefore, if given an instance of NAE 3SAT and an embedding of its variable clause graph onto an orientable
surface of bounded genus, we can use the planarity preserving reduction to reduce it to Max Cut in an
orientable surface of bounded genus. Therefore Bounded-genus Orientable Surface NAE 3SAT is in
P.

3.10 Exists Exists-Unique NAE 3SAT
Definition (Exists Exists-Unique NAE 3SAT). Given a 3CNF formula φ(x1, x2, . . . , xi, y1, y2, . . . , yj), Ex-
ists Exists-Unique NAE 3SAT (∃∃! NAE 3SAT) is the problem of deciding whether there exists an
assignment of x1, x2, . . . , xi such that there is a unique assignment for y1, y2, . . . , yj such that every clause
in φ have both True and False literals. Exists Exists-Unique NAE 3SATc (∃∃! NAE 3SATc) is the
problem of deciding whether there exists such assignment, if the formula may also contain 1 variables whose
value is set to T and one whose value is set to F .

Theorem 3.10.1. Exists Exists-Unique NAE 3SATc is ΣP2 -hard.

Proof. We reduce from Exists Exists-Unique 3SAT, by using a similar reduction as used on [BLS12].
We convert a 3CNF formula to one to be used by the NAE-3SATc. We create k new variables, one

for each clause, z1, z2, . . . , zk. We replace (ak ∨ bk ∨ ck) with the following 4 clauses: NAE(ak, bk, zk) ∧
NAE(¬zk, ck, F ) ∧ NAE(ak, zk, T ) ∧ NAE(bk, zk, T ).

There is exactly one possible value for zk i.e. ak ∨ bk, and the above 4 formulas enforce (ak ∨ bk ∨ ck).
Therefore this is a reduction from 3SAT to NAE 3SATC that preserves the number of solutions.

Therefore we can convert an instance of Exists Exists-Unique 3SAT, if we convert its 3CNF for-
mula φ(x1, x2, . . . , xi, y1, y2, . . . , yj), as stated above, and we insert all the newly created variables in the
second set of variables, i.e. on the list of yis, since there is exactly one valid value that the new vari-
ables can take. This can clearly be done in polynomial time, and at the end we have an instance of
φ(x1, x2, . . . , xi, y1, y2, . . . , yj , z1, z2, . . . , zk) Exists Exists-Unique NAE 3SAT. This instance will be sat-
isfiable iff the original problem was satisfiable.

Theorem 3.10.2. Exists Exists-Unique NAE 3SAT is ΣP2 -hard.
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Proof. We reduce from Exists Exists-Unique NAE 3SATc. Given an instance of
φ(x1, x2, . . . , xi, y1, y2, . . . , yj) Exists Exists-Unique NAEc 3SAT}, we create a new clause (T, T, F ),
which forces T and F to be different. We then add T and F to the set of xi variables.

Suppose the original problem was satisfiable. Then, setting the variables xi to the solution to the original
instance and T to True, will generate enforce that there exists a unique solution to the remaining of the
NAE 3SAT formula.

Suppose that this problem is satisfiable. If in the solution we set T to True, then the exact same
assignment is a solution to the original instance. Suppose we set T to False. Then since the NAE relation
is dual, if we negate all variables, we have another valid solution with T set to True, and therefore the
original problem is also satisfiable.
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Chapter 4

S-in-kSAT variants

In this chapter we present results on 1-in-kSAT and S-in-kSAT variants. We start with a problem that
is in P, followed by the characterization of S-in-EkSAT and results on S-in-E4SAT-O(1). At last we show
that {0, 1, k− 1, k}-in-EUkSAT is NP-complete, which is an interesting result since the same problem with
a planarity restriction is in P, as seen in Theorem 6.7.9.

4.1 1-in-kSAT-2
Theorem 4.1.1. 1-in-kSAT-2 is in P.

Proof. We will reduce the problem to Maximum Weight Matching, which was shown by Edmonds [Edm65]
to be in P.

1. The monotone variables that appear twice can be regarded as edges of weight 2 connecting 2 clauses.
If the variable appeared as positive literals, the edge being in the matching means that the variable
was set to True. If negative, then to False.

2. The variables that appear as both positive and negative literals can be regarded as 2 edges of weight
1 that share one dummy node, and connect 2 clauses. Which edge is matched indicates if the variable
was set to True or False.

3. The variables that appear only once can be regarded as an edge of weight 1 connecting a clause to a
dummy node. It indicates being set to True or False similarly to the monotone variables in item 1.

4. The clauses can be regarded as nodes of degree k, whose edges are the nodes in it connecting it. We
will call those nodes clause-nodes.

The edges connecting 2 clause-nodes have weight 2. The edges that are part of a single clause-node have
weight one. There are no other types of edges.

If there is a solution E of weight n, this means that n clause-nodes are connected to at least one edge in
E. Since it is a match, this means that n clause-node are connected to exactly one edge in E, and therefore
each of those clause contain exactly 1 True literal. If n is the number of clause nodes, it is not possible to
have a total weight greater than n.

If there was a solution to the 1-in-kSAT-2 that contained n clauses, then the edges associated with the
variable choices form a matching E with weight n.
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Corollary 4.1.2. Max 1-in-kSAT-2 is in P.

Proof. The maximum weight matching from the proof above has weight equal to the maximum number of
clauses that can be simultaneously satisfiable.

4.2 S-in-EkSAT characterization

For each subset S of {0, 1, 2, . . . k}, define S-in-EkSAT to be the problem of deciding whether n Boolean
variables x1, . . . , xn can be set to satisfy all given clauses, where each clause involves k literals (each of the
form xi of ¬xi) and requires that, among these k literals, the number that evaluate to True is contained in
S. For example, {1, 2, 3}-E3SAT is the standard E3SAT problem: each clause is satisfied if 1, 2, or 3 literals
are True.

We give a characterization of which S-in-EkSAT, for k ≥ 3, are NP-complete and which are in P We
show that (assuming P 6= NP) S-in-EkSAT, is in P if and only if S is one of the following:

(a) {0}

(b) {k}

(c) {0, k}

(d) {0, 1, 2, . . . , k}

(e) ∅

(f) {even} and {odd}

(g) {k − 1, k}

(h) {0, 1}

Lemma 4.2.1. If S is one of the above, then S-in-EkSAT is in P.

Proof. The clauses of the {0} case can be written as a CNF formula where every conjunct contains at most
one literal, since every single literal has to be set to False. By Schaefer’s dichotomy, this is in P . By
symmetry, so is {k}.

The clauses of the {0, k} case are satisfied iff all literals are equal. Therefore, each clause, {0, k}(x1, x2, . . . , xk),
can be rewritten as a cycle of clauses with 2 variables, (x1 ∨¬x2)∧ (x2 ∨¬x3) . . . (xk−1 ∨¬xk)∧ (xk ∨¬x1).
Since 2SAT is in P so is {0, k}-in-EkSAT

For {0, 1, 2, . . . , k}, any assignment will satisfy. For ∅, no assignment will satisfy. Therefore both are in
P.
{even} and {odd} can be represented by linear equations modulo 2, which is in P.
{k − 1, k} reduce to 2SAT with xi ∨ xj for all pairs i, j in the clause {0, 1} is easy by symmetry

Now we can prove our main theorem by induction.

Theorem 4.2.2. Assuming P 6= NP , iff

S ∈
{
∅, {0}, {k}, {0, k}, {k − 1, k}, {0, 1}, {even}, {odd}, {0, 1, 2, . . . , k}

}
and k ≥ 3, then S-in-EkSAT is in P . Otherwise, it is NP-complete.
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We start by proving the base case for k = 3.

Lemma 4.2.3. For k = 3, iff S is not one of the sets from the list above, then S-in-E3SAT is NP-complete.

Proof. We have already proved above that the following 9 cases {0, 1, 2, 3}, {}, {0}, {3}, {2, 3}, {0, 1}, {0, 2},
{1, 3} and {0, 3} are in P .

The other 7 cases are problems known to be NP-complete.

• {1} and {2} are 1-in-E3SAT. Exactly 1 literal is True, or alternatively exactly 1 is False.

• {1, 2, 3} and {0, 1, 2} are E3SAT. At least 1 literal is True/False.

• {1, 2} is NAE-E3SAT, as we forbid all literals from being True or all from being False.

• {0, 2, 3} and {0, 1, 3} are Not exactly-1-in-E3SAT (Theorem 6.1.2), not exactly one literal is True/False.

For the induction step, lets first prove the following Lemmas:

Lemma 4.2.4. If S is not self-dual, we can force a variable to be True.

Proof. If S is not self-dual, then there is an i ∈ Y such that k − i /∈ S. Then the clause

T + · · ·+ T︸ ︷︷ ︸
i

+¬T + · · ·+ ¬T︸ ︷︷ ︸
k−i

∈ S

constructs a True value T .

Lemma 4.2.5. If S is self-dual, an instance of S-in-EkSAT is satisfiable iff it is satisfiable even when a
single arbitrary chosen variable is set to True.

Proof. Suppose an instance of S-in-EkSAT is satisfiable. Consider one possible assignment of the variables
that satisfies that instance. Choose one of the variables and call it T . If this variable is not set to True,
then, since S is dual, negating all the variables will result in another solution to the problem where T is
True. The reverse direction is trivial.

With Lemmas 4.2.4 and 4.2.5, we show that in S-in-EkSAT instance we can always construct or define a
variable T such that the instance will be satisfiable iff it is satisfiable when T is True, and by consequence,
when ¬T is False. We will call ¬T as F .

Now we will prove the rest of the induction to prove Theorem 4.2.2.

Theorem 4.2.2. Assuming P 6= NP , iff

S ∈
{
∅, {0}, {k}, {0, k}, {k − 1, k}, {0, 1}, {even}, {odd}, {0, 1, 2, . . . , k}

}
and k ≥ 3, then S-in-EkSAT is in P . Otherwise, it is NP-complete.

Proof. If S-in-EkSAT is hard, then so are

1. S-in-E(k + 1)SAT: add F to each one of the clauses.
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2. (S ∪ {k + 1})-in-E(k + 1)SAT: same reduction as above. Because F = false, obtaining k + 1 True
variables in a clause is impossible, since at least one variable will be False.

3. {s+ 1 | s ∈ S}-in-E(k + 1)SAT: add T to each of the clauses, where T is constructed as above.

4. {0}∪{s+ 1 | s ∈ S}-in-E(k+ 1)SAT: same reduction as above. Because T =True, obtaining 0 True
variables in a clause is impossible.

Now we prove the other cases to be NP-hard:
Case 1: k /∈ S. Then because of 1, we we only need to consider S’s that are easy for k − 1 but not for

k. These are:

• {k − 1}: Hard by applying 3 to {k − 2}-in-E(k − 1).

• {0, k − 1}: Hard by applying 4 to {k − 2}-in-E(k − 1) and adding 0.

• {k − 2, k − 1}: Hard by applying 3 to {k − 3, k − 2}-in-E(k − 1)

Case 2: k ∈ S. Then because of 2, we only need to consider cases where S −{k} is easy for k− 1 but S
is not easy for k. These are:

• {k − 2, k − 1, k}: Hard by applying 3 to {k − 3, k − 2, k − 1}-in-E(k − 1)SAT

• {0, 1, k}: Hard by reduction from {0, 1, k−1})-in-E(k−1)SAT by converting each clause a1+· · ·+ak−1 ∈
{0, 1, k − 1} into:

– Variable X local to this clause

– a1 + · · ·+ ak−1 +X ∈ {0, 1, k}

– ai +X + · · ·+X ∈ {0, 1, k} for each i

– Iff X is True, then all ais must be True (by second set of constraints).

– Iff X is False, then at most one ai must be True (by first constraint).

This finishes the proof for the cases where S-in-EkSAT is NP-complete, and we showed in Lemma 4.2.1
the cases where S-in-EkSAT are in P .

4.3 S-in-E4SAT-O(1)
The following are known:

• {1, 2, 3}-in-E3SAT-4 is NP-complete, because of E3SAT-4 [Tov84].

• 1, 2-in-E3SAT-4 is NP-complete, because NAE E3SAT-4 is NP-hard, Theorem 3.5.1.

• 1-in-E3SAT-3 is NP-complete [Lar93].

• 2-in-E3SAT-3 is NP-complete, by symmetry from 1-in-E3SAT-3.

• 0, 2, 3-in-E3SAT-3 is NP-complete, because Not 1-in-EU3SAT-3 is NP-hard, Theorem 6.1.2.

• 0, 1, 3-in-E3SAT-3 is NP-complete, by replacing 1s and 0s, we are back to the previous case.
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Theorem 4.3.1 ({S}-in-E4SAT-O(1) hardness.). The following are NP-complete

• {1}-in-E4SAT-4

• {2}-in-E4SAT-5

• {3}-in-E4SAT-4

• {0, 2}-in-E4SAT-3

• {1, 2}-in-E4SAT-4

• {2, 3}-in-E4SAT-4

• {0, 1, 3}-in-E4SAT-4

• {0, 1, 4}-in-E4SAT-6

• {0, 2, 3}-in-E4SAT-3

• {0, 3, 4}-in-E4SAT-6

• {1, 2, 3}-in-E4SAT-5

• {0, 1, 3, 4}-in-E4SAT-5

• {0, 2, 3, 4}-in-E4SAT-5

• {1, 2, 3, 4}-in-E4SAT-5

Proof. We will consider 3 cases, when S is not dual and {0, 4}∩S = ∅, when S is not dual and {0, 4}∩S 6= ∅,
and at last when S is dual.

Case 1 (S is not dual and {0, 4}∩S= ∅). We can modify Lemma 4.2.4 slightly to create a True and a False
variable.

Lemma 4.3.2. If S is not self-dual, and 0 /∈ S and k /∈ S, we can force a variable to be True and a variable
to be False in S-in-kSAT.

Proof. If S is not self-dual, then there is an i ∈ Y, i 6= 0, i 6= k such that k − i /∈ S. Then the clause

T + · · ·+ T︸ ︷︷ ︸
i

+F + · · ·+ F︸ ︷︷ ︸
k−i

∈ S

constructs a True value T and a False value F, because since k /∈ S, both variables cannot be True, and
since 0 /∈ S, both variables cannot be False.

By Lemma 4.3.2, we can construct a True variable and a False variable. the clause that forces them
to be True and False will use exactly 4 of their occurrences, and, without loss of generality, at most 2
instances of the variable that appears fewer times. If this variable was the one set to F, we can simply negate
it in the clause in order to construct another True variable.

Therefore, we can construct a True variable while using at most 2 occurrences of the variable, and, by
symmetry, construct F while using at most 2 occurrences of the variable. For each time we want to use a
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True or False variable we can just repeat this construction, and this guarantees that none of our variables
forcibly set to True or False will occur more than 3 times.

Therefore, by using the constructions from the proof of Theorem 4.2.2:

• {1}-in-E4SAT-4 is NP-complete (from adding F to {1}-in-E3SAT-4)

• {3}-in-E4SAT-4, is NP-complete (from adding T to {2}-in-E3SAT-4)

• {1, 2}-in-E4SAT-4 is NP-complete (from adding F to {1, 2}-in-E3SAT-4)

• {2, 3}-in-E4SAT-4 is NP-complete (from adding T to {1, 2}-in-E3SAT-4)

Case 2. In this case we can force a variable to be True (or False) by using a specific clause for each case.
For each clause we will construct a different True (or false) value. We list the clause we use to construct the
True (or False) variable next to the particular cases. We use ’_’ to denote a (repeated) dummy variable
unique to that clause.

• {1, 2, 3, 4}-in-4SAT-5 is NP-complete (from adding F to {1, 2, 3}-in-E3SAT-4,(¬F,¬F,¬F,¬F ))

• {0, 2, 3, 4}-in-4SAT-5 is NP-complete (from adding T to {1, 2, 3}-in-E3SAT-4 (T, T, T¬T ))

• {0, 3}-in-E4SAT-3 is NP-complete (from adding T to {2}-in-E3SAT-3, (¬T,¬T,_,_))

• {0, 2}-in-E4SAT-3 is NP-complete (from adding T to {1}-in-E3SAT-3, (¬T, F, F, F ))

• {0, 1, 3}-in-E4SAT-4 is NP-complete (from adding F to {0, 1, 3}-in-EU3SAT-3, (¬T,¬T, F, F ))

• {0, 2, 3}-in-E4SAT-3 is NP-complete (from adding F to {0, 2, 3}-in-EU3SAT-3, (F,_,_,_))

The {0, 1, 4} case is harder. First notice that we can copy a variable by adding the following clause:
(x, x, x′, x′). This forces x and x′ to be the same. Therefore, we can reduce from {1}-in-E3SAT-3, by con-
verting a (a, b, c) clause into the following ones: (a′, a′,¬b′,¬c′), (b′, b′,¬a′,¬c′), (c′, c′,¬a′,¬b′), (a, a, a′, a′),
(b, b, b′, b′), (c, c, c′, c′). For each clause, we create 3 new variables, each of which occurs 6 times, and we
duplicate the number of occurrences of the original variable, so each variable appears at most 6 times.
Therefore:

• {0, 1, 4}-in-E4SAT-6 is NP-complete.

• {0, 3, 4}-in-E4SAT-6 is NP-complete, by symmetry.

Case 3 (S is dual). If S is self-dual, then it is one of {1, 2, 3}, {2}, {0, 1, 3, 4}. In the first 2 cases, we can
force 2 variables to be the same by adding a clause (x, x,¬y,¬y). Therefore, if we create a series of clauses
(x0, x0,¬x1,¬x1), (x1, x1,¬x2,¬x2) . . ., we can create n variables, all with the same value, that appear exact
4 times each.

If we define them to be T (or F ), as done in the proof of Theorem 4.2.2, and add one of them to each
clause, we then show that

• {1, 2, 3}-in-E4SAT-5 is NP-complete (from adding F to {1, 2, 3}-in-E3SAT-4)

• {2}-in-E4SAT-5 is NP-complete (from adding F to {2}-in-E3SAT-3)

For the last case, {0, 1, 3, 4}, we do exactly the same, but we instead use a series of clauses of the form
(x0, x0, x1, x1), (x1, x1, x2, x2), . . ., instead of alternating positive and negative literals. Therefore
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• {0, 1, 3, 4}-in-E4SAT-5 is NP-complete (from adding T to {0, 2, 3}-in-E3SAT-4)

4.4 {0, 1, k − 1, k}-in-EUkSAT

Theorem 4.4.1. {0, 1, k − 1, k}-in-EUkSAT is NP-complete.

Proof. We reduce from {0, 1, k − 1, k}-in-EkSAT, which is NP-complete (Theorem 4.2.2).
Each variable can appear at most k times in an instance of {0, 1, k−1, k}-in-EUkSAT. If all k appearances

are in a single clause and 0, 1, k − 1 or k of them are positive literals, we can delete that clause because
it is always satisfiable and delete that variable because it does not appear in any other clause. If all k
appearances are in a single clause with some other number of positive literals, our instance is unsatisfiable
so our reduction produces an arbitrary unsatisfiable instance of {0, 1, k − 1, k}-in-EkSAT.

For each remaining variable x (appearing in a single clause at most k− 1 times), we create the following
2 {0, 1, k − 1, k}-in-EUk clauses:

(x, x1, x2, x3, . . . , xk−1)

(¬x, x1, x2, x3, . . . , xk−1)

These clauses force variables x1 through xk−1 to have the same value, regardless of the value of x. Then,
we replace every occurrence of x from the {0, 1, k − 1, k}-in-EkSAT clauses by one of the xis, such that no
clause contains 2 or more of the same xi. This concludes the reduction from {0, 1, k − 1, k}-in-EkSAT to
{0, 1, k − 1, k}-in-EUkSAT.
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Chapter 5

Max SAT variants

In this chapter we present results on Max SAT variants. Most of the results are in Planar Max SAT
variants, and so this Chapter makes extensive use of figures to show that the reductions preserve planarity.

5.1 Max All Equal EU3SAT
Theorem 5.1.1. Max All Equal EU3SAT is NP-complete.

Proof. We reduce from Min EU2SAT [KKM94].
Given an instance φ, k of Min EU2SAT, we add a variable z to every clause and we set k′ = m − k

to obtain an instance φ′, k′ of Max All Equal EU3SAT. So every clause in φ′ will be of the form
ALL EQUAL(xi, xj , z).

Suppose that there is a solution that satisfies k′ of the clauses; this happens iff it is possible to set the
variables of k′ of the original instance clauses to all be equal to z. If we define z to be 0 (which we can do
since negating all variables doesn’t change the number of satisfied clauses in Max All Equal SAT), k′ or
more clauses will be satisfied in the Max All Equal EU 2SAT instance iff there exists an assignment that
satisfies k or fewer clauses in the original instance.

5.2 Max Planar 2SAT
Garey, Johnson and Stockmeyer [GJS76] gave a reduction from EU3SAT to Max 2SAT. Here we propose
a small change to the reduction to make it parsimonious, and we show that this new reduction preserves
planarity.

Theorem 5.2.1. Max 2SAT is NP/ASP/#P-complete.

Proof. Garey, Johnson and Stockmeyer [GJS76] reduction from EU3SAT to Max 2SAT creates a new variable
for each clause, (ai, bi, ci), and replaces it with 10 new clauses: (ai), (bi), (ci), (di), (¬ai,¬bi), (¬ai,¬ci),
(¬bi,¬ci), (ai,¬di), (bi,¬di), (ci,¬di). And the result is an instance of Max 2SAT, where 7m clauses can
simultaneously satisfied, iff the original m clauses could be satisfied.

This reduction was not parsimonious, because if in a certain clause ai = bi = ci = 1, 7 of the new clauses
would be satisfied independent of the value of di.
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ai ∨ bi ∨ ci

aibi

ci

Figure 5-1: A 3SAT clause.

y

ai ∨ ¬yiai ∨ ¬yi
ai

¬ai ∨ ¬bi ¬ai ∨ ¬ci

bi

bi ∨ ¬yi
bi ∨ ¬yi

¬bi ∨ ¬ci

ci

ci ∨ ¬yi
ci ∨ ¬yi

yi

cibi

ai

Figure 5-2: Converting the simple clause from Planar 3SAT to clauses of the MAX
2SAT instance

If we add 3 extra clauses, for a total of 13 clauses, (ai,¬di), (bi,¬di), (ci,¬di), i.e. we repeat 3 of the
above clause, then we have a parsimonious reduction. For each clause, we get that 10 of the newly created
clauses can be satisfied, iff the original clause was satisfied. Furthermore, there is only one assignment of
the variables that results in 10 being satisfied, and it is not possible to satisfy more than 10 clauses. This
can be easily verified, and is left as an exercise for the reader.

Therefore 10m clauses can simultaneously satisfied, iff the original m clauses could be satisfied; and the
reduction is parsimonious. Therefore Max 2SAT is NP/ASP/#P-complete.

Lemma 5.2.2. The above reduction preserves planarity.

Proof. This can be seen on Figures 5-1 and 5-2. Each clause is substituted by a cluster, and the cluster does
not affect other clauses.

Theorem 5.2.3. Max Planar 2SAT is NP/ASP/#P-complete.

Proof. Since Planar EU3SAT [III+98] is NP/ASP/#P-complete, and the above reduction preserves pla-
narity, Planar Max 2SAT is NP/ASP/#P-complete.
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Theorem 5.2.4. Max Planar EU2SAT is NP-complete.

Proof. We use the same reduction from Max Planar 2SAT to Max Planar EU2SAT used in the original
paper [GJS76]. Given an instance Φ(X), k of Max Planar 2SAT, suppose that there exists q clauses with
exactly 1 variable (either a clause with the same literal twice, or a clause with a single literal, since clauses
with a positive and negative literal can simply be removed since they are always satisfiable, as long as we
decrease the value of k).

We replace each clause (ai, ai) or (ai) with:

(ai, yi), (ai,¬yi)

, where yi is a variable unique to that clause.
At last we increase the value k to k + q. This reduction clearly preserves planarity; however, it is not

parsimonious.

Theorem 5.2.5. Min Planar EU2SAT is NP-complete.

Proof. Kohli et al. [KKM94] reduction of Max EU2SAT to Min EU2SAT preserved planarity. It consisted
of splitting each clause (ai, bi) into 2 clauses (¬ai, yi), (¬bi,¬yi), where yi is a variable unique to that clause.
Therefore, since Max Planar EU2SAT is NP-complete, so is Min Planar EU2SAT.

5.3 Max Planar Xor EU2SAT
Theorem 5.3.1. Max Planar Xor EU2SAT is in P.

We reduce the problem to Planar Weighted Max-Cut, which is known to be in P [SWK90].

Definition (Planar Weighted Max-Cut).
Instance: An undirected connected planar graph G = (V,E),and a weight w(e) for each edge e ∈ E.
Question: What is the value of the weighted maximum cut? The value of a cut is, given a partition of a
graph into 2 sets, the sum of the weights of the edges connecting the two sets. The value of the weighted
max-cut is the max weight of a cut over all partitions into 2 non-empty subsets.

Proof. Let xi be variables. Construct the following graph, whose nodes are the variables:

• For each clause (xi ⊕ xj) or (¬xi ⊕ ¬xj), add an edge (xi, xj) with weight −1;

• For each clause (¬xi ⊕ xj) or (xi ⊕ ¬xj), add an edge (xi, xj) with weight 1.

Then, this instance of Weighted Max Cut is equivalent to our instance of Max Planar Xor
EU2SAT: if there are k edges with weight −1 and the weighted max cut has value C, then the maxi-
mum number of clauses satisfiable is k + C. Since this problem is in P [SWK90], so is Max Planar Xor
EU2SAT.

Corollary 5.3.2. Max Planar Xnor EU2SAT is in P.

Proof. By negating one literal in each clause, we reduce an instance of Xor SAT to Xnor SAT.
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ai ⊕ bi

ai

bi

ai bi

Figure 5-3: Converting a 2CNF clause to 2 Xor clauses.

5.4 Max Planar Xor 2SAT
Theorem 5.4.1. Max Planar Xor 2SAT is NP/ASP/#P-complete.

Proof. We can reduce from Max Planar 2SAT, Theorem 5.2.3.
For each clause with a single variable, we duplicate them. For each clause (ai ∨ bi) with 2 variables,

replace it with (ai), (bi), (ai ⊕ bi). This reduction preserves planarity, as seen in Figure 5.4.2.
Exactly 2 of those clauses will be satisfied iff at least one of the variables are True, otherwise only one

clause will be satisfied. Therefore, at least m clauses will be satisfied in the original instance, if at least 2m
clauses are satisfied in the Max Planar Xor 2SAT instance. In particular, if m is the maximum number
of clauses that can be satisfied in the original problem, 2m will be the maximum in the new instance, and
there will be a 1 to 1 correspondence between variable assignments in both problems. This shows that this
problem is ASP-hard. Furthermore, if we combine this reduction with the reduction from Planar 3SAT to
to Max Planar 2SAT, it shows that this problem is #P-hard, since the number of solutions will be the
same as in the original Planar 3SAT instance.

Corollary 5.4.2. Max Planar Xnor 2SAT is NP/ASP/#P-complete.

Proof. We replace each clause with a single variable with a clause with a single variable, but negated. Then
for each clause (xi ∨ xj), we replace it with (¬xi), (¬xj), (xi 6⊕ xj). The remaining of the proof is the
same.

5.5 Max Planar Xor EU3SAT
Theorem 5.5.1. Max Planar Xor EU3SAT is NP/ASP/#P-complete.

Proof. We will reduce from Max Planar Xor 2SAT. First notice that Xor EU3SAT is the same as
{\odd\-in-EU}3SAT. We will convert each 2 clause to a series of 3 clauses, such that the only way to
maximize the number of satisfied clauses is if the 2 clause summed to 1.

Given an instance of Max Xor 2SAT with m clauses, and its k, we replace each of its clauses (ai ⊕ bi),
with 5 clauses : (ai⊕bi⊕wi), (¬wi⊕xi⊕yi), (¬wi⊕yi⊕zi), (¬wi⊕xi⊕zi), (¬xi⊕yi⊕zi) where xi.yi, zi, wi
are local to those clauses. The only way to satisfy the last clause, is if (xi + yi,+zi) = even, and, unless
xi = yi = zi, at least one of the other clauses will not be satisfied. This forces xi = yi = zi = wi = 0, and
that ai 6= bi. This can be seen in Figure 5-4.

Similarly, we replace each clause (ai) with (ai ⊕ xi ⊕ yi), (ai ⊕ xi ⊕ zi), (ai ⊕ yi ⊕ zi), (ai ⊕ yi ⊕ zi)
(¬xi ⊕ yi ⊕ zi). The only way to satisfy the last clause, is if (xi + yi,+zi) = even. And, unless xi = yi = zi,
at least one of the first 3 clauses will not be satisfied. This forces xi = yi = zi = wi = 0, and that ai = 1.
We also add a clause that can always be trivially satisfied (ai ⊕ wi ⊕ zi) This can be seen in Figure 5-5.
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wi

yixi zi

¬wi ∨ xi ∨ yi

¬xi ∨ yi ∨ zi

¬wi ∨ yi ∨ zi

¬wi ∨ xi ∨ zi

wi ∨ ai ∨ bi

ai bi

Figure 5-4: Converting a 2 variable Xor clause to 3 variable clauses while preserving
planarity.

ai

yixi zi

ai ∨ xi ∨ yi

¬xi ∨ yi ∨ zi

ai ∨ yi ∨ zi

ai ∨ xi ∨ zi

ai ∨ wi ∨ zi

wi

Figure 5-5: Converting a 1 variable Xor clause to 3 variable clauses while preserving
planarity.
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Therefore, we can satisfy k clauses in the original instance iff we can satisfy 5k clauses in the Max
Planar Xor EU3SAT. If k is the maximum number of clauses that can be satisfied, this reduction will
preserve the number of solutions. Therefore, similar to the Max Planar Xor 2SAT proof (Theorem 5.4.1),
this shows that this problem is #P and ASP-hard.

Corollary 5.5.2. Max Planar Xnor EU3SAT is NP/ASP/#P-complete.

Proof. In each of the above clauses in the above reduction for Max Planar Xor EU3SAT, we choose out
of the positive xi, yi or zi literals an negate it. The rest of the reduction follows.

5.6 Max Planar Horn 2SAT
Theorem 5.6.1. Max Planar Horn 2SAT is NP/ASP/#P-complete.

Proof. We reduce from Max Planar Xor 2SAT.
Given an instance of Max Planar Xor 2SAT, Φ(X), k we replace each (ai ⊕¬bi) or (¬ai ⊕ bi) clause

with the 3 clauses (ai ∨¬bi), (ai,¬bi), (¬ai ∨ bi). Therefore, iff a∨ b, the original clause will be satisfied and
3 of the new clauses will be satisfied. Otherwise, the original clause will not be satisfied, and only 1 or 2 of
the new clauses will be satisfied. This reduction preserves planarity, as seen in Figure 5-6.

ai ∨ ¬bi

ai ∨ ¬bi¬ai ∨ bi

ai

bi

Figure 5-6: Conversion of (ai ⊕ ¬bi) clause from Max Planar Xor 2SAT to Max
Planar Horn 2SAT.

We replace each (ai ⊕ bi) or (¬ai ⊕ ¬bi) clause with the 4 clauses (¬ai ∨ ¬bi), (¬ai ∨ ¬bi), (ai), (bi).
Therefore, iff a 6= b, the original clause will be satisfied and 3 of the new clauses will be satisfied. Otherwise,
the original clause will not be satisfied and only 2 of the new clauses will be satisfied. This reduction preserves
planarity, as seen in Figure 5-7.

At last, we triplicate each clause that contains only one variable. We obtain a Φ(X′), 3k instance of
Max Planar Horn 2SAT.

3k clauses are simultaneously satisfiable in the new instance iff at least k of the original instance clauses
are simultaneously satisfiable. If k is the maximum number of clauses that can be satisfied in the original
problem, this reduction will preserve the number of solutions. Therefore, similar to the Max Xor 2SAT
proof (Theorem 5.4.1), this shows that this problem is #P and ASP-hard.
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ai

¬ai ∨ ¬bi¬ai ∨ ¬bi

bi

ai

bi

Figure 5-7: Conversion of (ai ⊕ bi) clause from Max Planar Xor 2SAT to Max
Planar Horn 2SAT.

Corollary 5.6.2. Max Planar Dual Horn 2SAT is NP/ASP/#P-complete.

Proof. In all the new clauses from the Max Planar Horn 2 SAT above, we negate all the literals (negative
literals become positive, and vice versa). The same results follow.
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Chapter 6

Other SAT variants

In this chapter we present results on SAT variants or problems related to SAT that did not fit the other
chapters. We show results NP-complete results for bounded 3SAT variants; extend the NP-completeness
result of Linked Planar 3SAT; to show that Quantified Linked Planar 3SAT is PSPACE-complete,
analyze a problem about deciding Schaefer’s Dichotomy, and a variant of Circuit SAT; we do a partial
characterization of XNF-SAT problems; we apply the ordered planar SAT dichotomy to show that 2 planar
SAT problems results are in P; and at last show that the equivalence of Tri-legged Planar 3SAT
and Var-Linked Planar 3SAT imply the equivalence of Sided Tri-legged Planar 3SAT and Sided
Var-Linked Planar 3SAT.

6.1 Not 1-in-E3SAT-3
Lemma 6.1.1. Not-1-in-E3SAT-6 is NP-complete

Proof. We reduce from 3SAT-3.
For each clause, replace the clause,(a ∨ b ∨ c), with 2 clauses (a+ b+ x 6= 1) and (¬x+ c+ c 6= 1). The

latter clause is equivalent to (¬x ⇒ c), which is always satisfied when x is True. The only case when the
former clause forces x to be False is when both a and b are False. Thus (¬a ∧ ¬b) ⇒ ¬x ⇒ c, which
enforces 3SAT, and those are the only constraints on a, b, c. (This reduction is not parsimonious when a, b, c
are all True; then x is free.).

We also replace clauses (a∨ b) with (a+ b+x 6= 1) and (¬x+x+x 6= 1). This forces x = 1 and a+ b 6= 0.
The number of instances where a variable appears will be, in the worst case, doubled.

Theorem 6.1.2. Not-1-in-EU3SAT-3 is NP-complete.

Proof. We reduce from Not-1-in-E3SAT-6, from Lemma 6.1.1.
First, notice that the following 2 clauses (a+ b+ c 6= 1), (a+¬b+ c 6= 1) forces a and c to both be True,

also notice that (a + F + c 6= 1), where F = 0 is equivalent to (a = c). Therefore we can create copies of
variables.

For each variable xi, we create 5 new F variables by using the above construction and 5 new clauses:
(xi + F + x′i1 6= 1), (xi1 + F + x′i2 6= 1), (xi2 + F + x′i3 6= 1), (xi3 + F + x′i4 6= 1), (xi4 + F + x′i5 6= 1). This
forces variable xi to be equal to variables x′i1, x′i2, x′i3, x′i4, x′i5.
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Then, we can replace x in its original clauses by at most 1 instances of each of x′i1, x′i2, x′i3, x′i4, x′i5. This
way, xi will occur at most twice (once in an original clause, once in the new clauses), each x′i, will occur at
most three times (twice in the new clauses, once in one of the original clauses where F appeared). Each F
variable appears exactly 3 times. None of the variables appears twice in the same clause.

Therefore Not-1-in-EU3SAT-3 is NP-complete.

6.2 Monotone 3SAT-3
Theorem 6.2.1. Monotone 3SAT-3 is NP-complete

Proof. This is a consequence of Planar Monotone (EU2 or EU3)SAT-3E [DDD16] being NP-complete,
but we provide a simpler proof here.

We reduce from Monotone 3SAT. If a variable x appears k times, replace it with variables x1, x
′
1, x2, . . . , xk, x

′
k,

and force all xis equal and opposite from all x′is by adding a cycle of implications that are Monotone 2SAT
clauses:

xi ∨ x′i (i.e., ¬xi ⇒ x′i) and

¬x′i ∨ ¬xi+1 (i.e., x′i ⇒ ¬xi+1) for i ∈ {1, 2, . . . , k}

(indices modulo k).
Then replace each occurrence of x by an occurrence of an xi. Each xi will appear in 3 clauses and each

x′i will appear in 2 clauses.

6.3 Quantified Linked Planar 3SAT
Definition. Quantified Linked planar 3SAT is a fully quantified Linked Planar 3SAT instance, where
the cycle that goes through the variables and clauses go through all the variables in the same order that they
are quantified in the Quantified Boolean Formula. The motivation is that this can possibly help simulate
games where where 2 players take turns controlling a shared agent.

Theorem 6.3.1. Quantified Linked Planar 3SAT is PSPACE-complete.

Proof. Quantified Linked Planar 3SAT is in PSPACE by trivial reduction to Quantified3SAT. Now,
we will show that it is in PSPACE-complete by a reduction from Quantified 3SAT. We will combine
the reduction from Quantified3SAT to Quantified Planar 3SAT from Lichtenstein [Lic82] with the
reduction from Planar 3SAT to Linked Planar 3SAT by Pilz [Pil17]. We will omit some details from
the reductions, which can be found in the original papers, so consult them for more information.

Lichtenstein [Lic82] showed a reduction from Quantified 3SAT to Planar Quantified 3SAT that
allows us to choose the location of each of the original clauses and variables of the Quantified 3SAT
instance to coincide with the positive x and positive y axis (if variables are in the y axis, then clauses are
in the x axis, and vice-versa), in any order, and keep the new variables introduced variables strictly in the
positive quadrant. This can be seen in Figures 6-1 and 6-2, where we show the location of the original
variable and clauses and the location of the added crossover gadgets, which adds new clauses and variables
to the instance.
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x1

x2

x3

...

xn

clause1 clause2 . . . clausem

Figure 6-1: Start of Lichtenstein’s reduction, by setting variables on the y axis and
clauses on the x axis.

x1

x2

x3

...

xn

clause1 clause2 . . . clausem

Figure 6-2: Putting crossover gadgets on the intersections, to make the graph planar.
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Figure 6-3: Pilz’s variable and clause cycle. The shaded area is where the orig-
inal clauses and variable nodes are located. The dotted line contains the clauses
and the solid line contains the variables. Every time an edge crosses the cycle, a
crossover gadgets is added, which are the only newly added variables and clauses.
Figure from: [mar19], based on figure from [Pil17].

Pilz [Pil17] showed a reduction from Planar 3SAT to Linked Planar 3SAT, as long as no clause has
the same x coordinate as a variable in the original instance planar embedding. This reduction first visits
all the variables, followed by all the clauses, first visiting the ones with smaller x coordinates. In the case
multiple variables have the same x coordinate, we break the ties based on the y coordinate, sometimes in
ascending order, others in descending order, but always consistent in the same x coordinate. Furthermore,
all the new variables created by this reduction are necessarily to the right of the leftmost variable of clause
of the original problem. The construction of the Variable-Clause cycle can be seen on Figure 6-3.

Therefore if we make all the newly created variables to use the Existential Quantifier, and to be the
last ones in the quantifier list, we can use Lichtenstein [Lic82] reduction to convert Quantified 3SAT to a
Quantified Planar 3SAT instance with all the original variables in the y axis in the correct order. Then,
we can move the clause nodes slightly to make sure that none of them have the same x coordinate as a clause
node. And, at last, we can use Pilz [Pil17] reduction to convert this to a Quantified Linked Planar
3SAT, which will first visit all the original variables in the correct order before visiting the new variables. At
the end, we are not guaranteed to visit the newly created variables in the correct order; however, since the
existential quantifiers commute with each other, we can just change the order of those variables obtaining
an equivalent Quantified 3SAT instance.

6.4 Not Implies Circuit SAT

Not Implies Circuit SAT is the problem of deciding whether the inputs of a particular circuit with
Boolean inputs, where every gate is a "not implies" gate, can be set such that the output of the circuit is 1.
A not implies gate is a gate that takes 2 inputs, x, y, and outputs (x ∧ ¬y).

Theorem 6.4.1. Circuit Not Implies SAT is NP-complete.
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I 6=⇒ A

I A B

X 6=⇒ B

output

X

Figure 6-4: Circuit whose output is 0 if I is 0, or NOR(A,B) if I is 1.

Proof. Using not implies gates we can construct a 3 input gate whose output is 0 if the first input is 0, or
Nor(A,B) if it is 1, where A and B are respectively the second and third inputs, as seen in Figure 6-4. We
will call this circuit a Conditional Nor.

If we construct a circuit using only copies of the Conditional Nor and we make the first input of all the
copies be shared, the only way for the final output to be different from 0, is if this first input is 1. Therefore
the only way for the output to not be zero is if I 6= 0, and so all the Conditional Nors behave like standard
Nor gates.

Since Nor can simulate any circuit, the above construction can simulate any circuit (as long I 6= 0, which
will happen if there exists an input assignment which makes the output be 1), and therefore the problem is
NP-complete.

6.5 Deciding CNF Schaefer’s Dichotomy

Definition. Deciding CNF Schaefer’s Dichotomy is the problem of, given r CNF Boolean formulas
φ1(x1, . . . , xk1), φ2(x1, . . . , xk2), . . . , φr(x1, . . . , xkr ) each defining a relation on an arbitrary subset of vari-
ables, decide whether satisfiability of m clauses defined by these formulas (each applied to an arbitrary set of
variables, and then all clauses get anded together) is polynomial or NP-complete. This differs from how
the formulas are given in the original paper by Schaefer [Sch78]. In the original paper the Boolean formulas
were given in DNF.

Theorem 6.5.1. Deciding CNF Schaefer’s Dichotomy is NP-complete.

Proof. We reduce from CNF SAT. Given a CNF formula ϕ(x1, . . . , xn), construct the Boolean formula:

ϕ′ = Exactly-1-in-(xn+1, xn+2, xn+3) ∧ ϕ(x1, . . . , xn),

where Exactly-1-in- is a 1-in-3 clause:

Exactly-1-in-(a, b, c) = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b) ∧ (¬b ∨ ¬c) ∧ (¬c ∨ ¬a).

If ϕ is unsatisfiable, then so is ϕ′. Therefore deciding satisfiability of ϕ′ clauses is polynomial, since the
answer is always no.
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If ϕ is satisfiable, then deciding satisfiability of ϕ′ clauses is NP-complete, because we can represent an
instance of Positive 1-in-3SAT as follows: we create n new dummy variables, x1, x2, . . . and we replace
each clause (ai + bi + ci) = 1 with Exactly-1-in(ai, bi, ci) ∧ ϕ(x1, . . . , xn). Because ϕ has a satisfying
assignment, we can set x1, . . . , xn accordingly. The remaining variables will have a satisfying assignment if
and only if the 1-in-3SAT instance did. Therefore the problem is NP-hard.

6.6 XNF-SAT

We will prove that multiple XNF-SAT problems are in RP (defined below) by reducing it to the complement
of a restricted version of the Evaluates Zero Everywhere problem which we will show to be equivalent to the
Polynomial Identity Testing problem.

First we define some terms:

• F2: The finite field of order 2. F2 = Z/2Z = Z2. 1 + 1 = 0 in F2.

• RP: A problem is in RP if a probabilistic algorithm that runs in polynomial time

– always returns False if the correct answer is False

– returns True with probability > 1
2 if the correct answer is True (otherwise returns False).

• coRP: Similar to RP, but with True replace with False and False replaced with True. A problem
is in RP if a probabilistic algorithm that runs in polynomial time

– always returns True if the correct answer is True

– returns False with probability > 1
2 if the correct answer is False (otherwise returns True).

• Evaluates Zero Everywhere (EZE): The problem of deciding whether a polynomial evaluates to 0
everywhere. The polynomial x2 +x in F2 evaluates to 0 for every possible value of x (1 or 0). Therefore
for the input x2 + x in F2, EZE returns True. EZE in F2 is coNP-hard [Har11].

• co-EZE: The complement of EZE. The problem of deciding whether a polynomial does not evaluate
to 0 everywhere. This problem is NP-hard, since EZE is coNP-hard.

• Polynomial Identity Testing (PIT): The problem of deciding whether a polynomial is identical to
0. The polynomial x2 + x in F2 is not identical to 0, so PIT would return False for this input. The
polynomial (x + 1)2 + x2 + 1 in F2 is identical to 0, since after expanding and combining the terms,
all of them cancel one another, so PIT would return True for this input. PIT is in coRP [KI04] if the
polynomial can be evaluated in polynomial time.

• co-PIT: The complement of PIT. The problem of deciding whether a polynomial is not identical to 0.
It is in RP since PIT is in coRP.

Now we are ready to prove our Lemma showing the equivalence of a restricted EZE problem to the PIT
problem.

Lemma 6.6.1. If every variable has degree at most 1, the EZE problem is equivalent to the PIT problem.
And therefore it is in coRP.
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Proof. Let Q be a polynomial where every variable has degree at most 1. Fully expand the polynomial.
Suppose the polynomial is not identical to zero. Consider a term T with lowest degree, that is, a term with
the smallest number of variables. Any other term has at least one variable not in this term. If we set the
variables in T to 1, and all the other variables to 0, then the polynomial will evaluate to 1.

Therefore the polynomial will only evaluate to 0 everywhere if it is identically to zero. Therefore, for
polynomials with every variable with degree at most 1, EZE is equivalent to PIT. And PIT has been proved
to be in coRP [KI04].

Now we can prove our main theorem.

Theorem 6.6.2. AND XNF SATc is in RP.

The main idea of the proof of Theorem 6.6.2 is to convert the problem to a co-EZE problem with a
polynomial in F2 as its input. In this polynomial, if it was expanded, every variable would have degree at
most 1. Therefore we don’t need to expand in order to solve the co-EZE problem, since EZE is equivalent
to PIT when every variable has degree at most 1.

Proof. We reduce the problem to the complement of Polynomial Identity Testing in F2, which is in RP.
For each clause, if a literal appears more than once, we can delete all but one occurrences, for example

(x ∧ x ∧ x ∧ y) = (x ∧ y). We can also remove every clause that has a variable that appears both positively
and negatively, because it always evaluates to zero.

Then we can rewrite the problem as a polynomial in F2. We replace the XORs by ⊕, ANDs by products,
and negative literals by "1⊕literal". For example (¬x ∧ y)⊕ (z ∧ y)→ ((1 + x)y)⊕ (zy). Our problem then
becomes equivalent to co-EZE.

If we were to expand the polynomial, every single variable would appear with degree at most 1 in each
of the terms. By Lemma 6.6.1, this means that our problem is equivalent to co-PIT, which is in RP. Note
that at no moment we expand the polynomial, since doing so could take an exponential amount of time; the
only condition for co-PIT to be in RP is that the polynomial can be evaluated in polynomial time, which
we can do without expanding it.

Corollary 6.6.3. AND XnorNF SATc is in RP.

Proof. Replace each XOR operation with an XNOR operation, and adjust the equations accordingly, on the
proof of Theorem 6.6.2, and the proof is still valid.

Theorem 6.6.4. S XNF SATc is in RP if each relation in S can be written as "the (possibly complemented)
disjunction of mutually exclusive AND clauses. A set of clauses is mutually exclusive if no 2 clauses can
evaluate to True simultaneously.

Proof. If a relation can be written as a disjunction of a polynomial number of mutually exclusive AND
clauses, we can replace each instance of the relation by the XOR of those AND clauses. Since the clauses
are mutually exclusive, at most one will evaluate to True. Therefore the XOR of these clauses evaluates to
true if and only if the original relation evaluated to True.

If a relation can be written as the disjunction of the complement of a polynomial number of mutually
exclusive AND clauses, we can replace each instance of the relation by the XOR of those AND clauses, and
XOR it with (1). Since the clauses are mutually exclusive, at most one will evaluate to True at a time.
Therefore, iff the original relation evaluated to True, all these AND clauses will evaluate to False, and
therefore the XOR of these clauses XORed with (1) will evaluate to True.
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Therefore, we can reduce our (S) XNF SAT instance into an instance of XNF SAT, with a polynomial
increase in the number of clauses, which concludes our proof.

Corollary 6.6.5. S XnorNF SATc is in RP if each relation in S can be written as the disjunction of
a polynomial number of mutually exclusive AND clauses, or as the complement of the disjunction of a
polynomial number of mutually exclusive AND clauses.

Proof. We follow the steps of the reduction of Theorem 6.6.4; however we substitute each XOR with XNOR
(1) XNOR. The result follows.

Corollary 6.6.6. NAE XNF SATc, OR XNF SATc, NOR XNF SATc, c-in-k XNF SATc are in RP.

Proof. These all follow from Theorem 6.6.4 by analyzing or rewriting the formula.

• A NAE relation is the complement of the disjunction of the conjunction of the literals in the clause
and the conjunction of the negated literals in the clause (the complement of the OR of [the ANDs of
the literals and the AND of the negated literals]).

• AOR relation is the complement of the conjunction of the negated literals in the clause (the complement
of the AND of the negated literals).

• A NOR relation is the conjunction of the negated literals in the clause (the AND of the negated
literals).

• A c-in-k XNF SAT relation can be written as the disjunction of at most
(
c
k

)
mutually exclusive AND

clauses, one for each combination that evaluates to True. If any variable repeats more than once, we
remove the repetitions of the equivalent AND clauses, so we are left with the exclusive ones.

Theorem 6.6.7. S XNF U SATc is in RP if each relation in S is multilinear. A relation is multilinear
if it can be rewritten as a multilinear polynomial in F2.

Proof. If each relation in S is multilinear, and every variable appears at most once in each clause, then the
instance can be converted into a polynomial in F2 in which the maximum degree of each variable is 1. By
Theorem 6.6.1, co-EZE for this problem is in RP. Therefore the problem is in RP.

6.7 Planar Dichotomy

We will be showing that Planar (NAE or All Equal) SAT, i.e, a Planar SAT problem whose formula
contains NAE clauses well as All Equal clauses, is in P. We will also be showing that Planar {0, 1, k −
1, k}-in-EUkSAT is in P.

In order to show this, first we will prove 2 interesting Lemmas related to the Ordered Planar Dichotomy.
Lemma 6.7.4 describes some situations where we can compose clause types of Planar SAT problems in P,
resulting in a new problem in P. Lemma 6.7.6 shows a way to generalize Planar Positive SAT hardness
results to Planar SAT hardness results.

Here is the Ordered Planar Dichotomy [KKR16] we will be referring to during the rest of this section, as
defined on Table 2.1.
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Ordered Planar (S) SAT is in P if S SAT is in P, or if S only contains self-complementary relations
such that dR is an even ∆-matroid. Otherwise it is NP-complete

Lemma 6.7.1. Let R be a relation. Then all tuples in dR have even parity.

Proof. Let T be a tuple in R. Then dT = {ti + ti+1 mod 2 : i = 1, 2, . . . , n}. The parity of dT is(
n∑
i=1

dti

)
mod 2 =

(
n∑
i=1

(ti + ti+1)
)

mod 2

=
(

n∑
i=1

2ti

)
mod 2

= 0

Therefore all the tuples in dR have even parity.

Now we define the entry-wise XOR of two tuples. Let T1 = (t11 , t12 , . . . , t1i), and let T2 = (t21 , t22 , . . . , t2i).
Then

T1 ⊕ T2 = (t11 ⊕ t21 , t12 ⊕ t22 , . . . t1i ⊕ t2i)

And now we define the pairwise entry-wise XOR of a relation. Let R be a relation, R = {T0, T1, ..., Ti},
where each Ti is a tuple. The pairwise entry-wise XOR, is the set of sets of the the entry-wise XORs of each
tuple with all other tuples,

pairwise entry-wise XOR of R = {{Ti ⊕ Tj | ∀Tj 6= Ti ∈ R},∀Ti ∈ R}.

And we define the ∆ operator on 2 tuples:

T1∆T2 = the set of variables that differ between tuples T1 and T2

Lemma 6.7.2. If R and S are relations that have the same pairwise entry-wise XOR and R is a ∆-matroid
then S is a ∆-matroid.

Proof. First, notice that if 2 pairs of tuples T1, T2 and T ′1, T ′2 have the same entry-wise XOR, then T1∆T2 =
T ′1∆T ′2, i.e. the set of variables that differ between tuples T1, T2 is the same as the set of variables that
differ between T ′1, T ′2.

Now suppose R is a ∆-matroid, but S is not. Then there exists tuples Si, Sj such that for one of the
variables that differs between them, negating that variable and any other variable that differ among them
from Si will not result in a new tuple in S. Formally:

∃x ∈ Si∆Sj ∀y ∈ Si∆Sj , x 6= y ((Si ⊕ x) 6∈ S) ∧ ((Si ⊕ x⊕ y) 6∈ S). (6.1)

However, since R and S have the same pairwise entry-wise XOR, then there exists a tuple Ri ∈ R that
has the same entry-wise XOR with all the other tuples in R, as Si has with the tuples in S.

{Ri ⊕Rk | ∀Rk 6= Ri ∈ R} = {Si ⊕ Sk | ∀Sk 6= Si ∈ S}.
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In particular, there also exists a Rj ∈ R such that

Ri ⊕Rj = Si ⊕ Sj .

Which means that x ∈ Ri∆Rj .
Since R is a ∆-matroid, either negating x in Ri will result in another tuple in R, or there is a y that

differs between Ri and Rj such that negating both x and y in Ri will result in another tuple in R. Formally:

((Ri ⊕ x) ∈ R)OR (∃y ∈ Ri∆Rj , x 6= y s.t. ((Ri ⊕ x⊕ y) ∈ R)),

where x is the same x from Equation 6.1.
Now we have 2 cases:

Case 1 ((Ri ⊕ x) ∈ R). Negating x in Ri results in another tuple in R.
We show that negating x in Si results in another tuple in S.
Let Rl = (Ri ⊕ x).
Since

{Ri ⊕Rk | ∀Rk 6= Ri ∈ R} = {Si ⊕ Sk | ∀Sk 6= Si ∈ S},

then

(Ri ⊕Rl) ∈ {Si ⊕ Sk | ∀Sk 6= Si ∈ S}

=⇒ x ∈ {Si ⊕ Sk | ∀Sk 6= Si ∈ S}

=⇒ ∃Sl.Si ⊕ Sl = x

=⇒ (Si ⊕ x) ∈ S

Which contradicts Equation 6.1.

Case 2 ( ∃y ∈ Ri∆Rj , x 6= y s.t. ((Ri ⊕ x⊕ y) ∈ R). Negating x and y in Ri results in another tuple in R.
We show that negating x and y in Si results in another tuple in S.

Let Rl = (Ri ⊕ x⊕ y). The, by repeating the proof from the previous case:
Since

{Ri ⊕Rk | ∀Rk 6= Ri ∈ R} = {Si ⊕ Sk | ∀Sk 6= Si ∈ S},

then

(Ri ⊕Rl) ∈ {Si ⊕ Sk | ∀Tk 6= Ti ∈ R}

=⇒ ∃Sl.Si∆Sl = {x, y}

=⇒ (Si ⊕ x⊕ y) ∈ S

Which contradicts Equation 6.1.

Therefore, by contradiction, S is a ∆-matroid.

Corollary 6.7.3. If R and S have the same pairwise entry-wise XOR and dR is a ∆-matroid, then dS is
a ∆-matroid.
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Proof. Since, Ri ⊕Rj = Si ⊕ Sj implies dRi ⊕ dRj = dSi ⊕ dSj , the proof is almost identical to the proof of
Lemma 6.7.2.

Lemma 6.7.4 (Planar P Composition). If S and Q only contain self-complementary relations, Si and Qi,
such that dSi and dQi are even ∆-matroid, then Planar (S OR Q) SAT is in P.

Proof. We have defined (S OR Q) SAT to mean a SAT problem that contains both S clauses or Q clauses.
Therefore all the relations in (S OR Q) SAT are even ∆-matroid, and by the Ordered Planar Dichotomy,
Planar (S OR Q) SAT is in P.

Corollary 6.7.5. If S SAT and Q SAT are NP-complete, where S and Q are a set of relations or of allowed
clause types, and Planar S SAT and Planar Q SAT are in P, then Planar (S OR Q) SAT is in P.

Proof. By the Ordered Planar Dichotomy, this implies that S and Q only contain self-complementary rela-
tions, Si and Qi, such that dSi and dQi are even ∆-matroid. Therefore, by Lemma 6.7.4, Planar (S OR
Q) SAT is in P.

Lemma 6.7.6 (Planar Positive P Generalization). Let S be a type of clause and if for every relation R′

from Positive S, dR′ is an even ∆-matroid, then for every relation R from S, dR is an even ∆-matroid.

First we give some example from what the above means. Let S be NAE EU3SAT. The valid relations
are NAE(x, y, z), NAE(¬x, y, z), NAE(x,¬y, z), NAE(x, y,¬z). Other relations are equivalent to those. Let
R =

NAE(x, y, z) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

If we show that dR is an even ∆-matroid, then dQ for Q in

{
NAE(¬x, y, z) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1), (1, 1, 1)},

NAE(x,¬y, z) = {(1, 1, 0), (0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1), (0, 0, 1)},

NAE(x, y,¬z) = {(1, 0, 1), (0, 1, 1), (0, 0, 0), (1, 1, 1), (1, 0, 0), (0, 1, 0)}
}

are all even ∆-matroids.

Proof. Let R be a relation from Positive S, and R′ be an equivalent relation from S with some of the
variables negated, say the set of variablesX. For example, R could be NAE(x, y, z) and R′ be, NAE(x,¬y, z).
Let Ti be a tuple from R, and T ′i be the equivalent tuple from R′. The only difference between between Ti
and T ′i are the variables in X. Therefore, Ti ⊕ Tj = T ′i ⊕ T ′j . Therefore, those 2 relations have the same
pairwise entry-wise XOR.

By Corollary 6.7.3, for every relation R from S, dR is a ∆-matroid, since for every relation R′ from
Positive S, dR′ is a ∆-matroid.

By Lemma 6.7.1, if dR or dR′ are ∆-matroids, they are even ∆-matroids.
Therefore, for every relation R from S, dR is an even ∆-matroid

Corollary 6.7.7. If Positive S SAT is NP-complete, where S is a set of relations or of allowed clause
types, and Planar Positive S SAT is in P, then Planar S SAT is in P.
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Proof. By the Ordered Planar Dichotomy, this implies that Positive S only contain self-complementary
relations, Si, such that dSi is an even ∆-matroid. By Lemma 6.7.6, we can drop the positive restriction. S
only contain self-complementary relations, Si, such that dSi is an even ∆-matroid. By the Ordered Planar
Dichotomy, Planar S SAT is in P.

Theorem 6.7.8. Planar (NAE or All Equal) SAT is in P

Proof. First notice that Planar (NAE or All Equal) SAT and Planar (NAE or All Equal) U
SAT are equivalent problems, since repeating a variable in a clause is equivalent to decreasing the size of
the clause. Therefore we will be considering the relations in Planar (NAE or All Equal) U SAT.

Let Ri be the Positive NAE relation for i variables, and let Qi be the Positive All Equal relation for
i variables. By the Ordered Planar Dichotomy since every Ri and Qi are self complementary, it is sufficient
to show that all dRi and dQi are even ∆-matroids to show that Planar Positive (NAE or All Equal)
SAT is in P.

Since Planar NAE SAT is in P [Alo+09], we know that all dRi are even ∆-matroid. All Qis contain
exactly 2 tupples that are self dual, Qi = {(1, 1, . . . , 1), (0, 0, . . . , 0)}. We know, therefore, that every dQi
contain exactly one tuple, dQi = {(0, 0, . . . , 0)}. Therefore, every dQi is an even ∆-matroids. By Lemma
6.7.4, this shows that Planar Positive (NAE or All Equal) SAT is in P.

By Lemma 6.7.6, Planar (NAE or All Equal) SAT is also in P.

Theorem 6.7.9. Planar {0, 1, k − 1, k}-in-EUkSAT is in P.

Even though {0, 1, k− 1, k}-in-EUkSAT is NP-complete (Theorem 4.4.1), the planar version is not. We
will use the ordered planar dichotomy to show this.

Lemma 6.7.10. Let R be the Positive {0, 1, k− 1, k}-in-EUk relation. Then dR is an even ∆-matroid.

Proof. R is the set of k-tuples that contain exactly one 0, exactly one 1, no 0s, or no 1s. Therefore:

R ={(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1),

(1, 1, 1, . . . , 1), (0, 1, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, 1, . . . , 1, 0)}

dR ={(0, 0, . . . 0, 0), (1, 1, 0, 0, 0 . . . , 0), (0, 1, 1, 0, 0, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1, 1), (1, 0, 0, 0, . . . , 0, 1)}

And we can see that dR is a ∆-matroid. If 2 tuples differ by exactly 2 variables, one can convert one into
the other by negating those 2 variables. If they differ by 4 variables, we can convert one of them into the 0
tuple by negating 2 variables that differ.

By Lemma 6.7.1, we have shown that all the tuples in dR have the same parity. Therefore, dR is an even
∆-matroid.

Now we are ready to prove Theorem 6.7.9.

Proof. We know that all relations in Planar {0, 1, k− 1, k}-in-EUkSAT are self complementary. By Lem-
mas 6.7.10 and 6.7.6, we know that for every relation R in Planar {0, 1, k − 1, k}-in-EUkSAT, dR is an
even ∆-matroid. Therefore, by the Planar Dichotomy, it is in P .
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6.8 Sided Var-Linked

We note that a Theorem proved by Tippenhauer [Tip16] showing the equivalence of Var-Linked and
Tri-Legged 3SAT instances also implies the equivalence of their respective Sided instances.

Theorem 6.8.1. Let Φ be a 3SAT formula with Var-Linked planar embedding. Then Φ has a Tri-Legged
embedding [Tip16]

Theorem 6.8.2. Let Φ be a 3SAT formula with Sided Var-Linked planar embedding. Then Φ has a
Sided Tri-Legged embedding.

Proof. In the proof of Theorem 6.8.1 by Tippenhauer, all the edges that were inside the variable loop stayed
inside the loop, and all the edges that were outside the loop stayed outside the loop. Therefore the proof
preserves the Sided property of the graph.
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Chapter 7

Open Problems

There are still many open problems in Boolean Satisfiability. Here we report some problems that have been
proposed, and propose some new ones.

• If s ≤ 2r−1 − 1, is every instance of EUrSAT-s always satisfiable [Tov84]?

• Is the complexity of Var-Linked Planar S 3SAT always the same as the complexity of Planar S

SAT [Tip16] ?

• Are the complexities of Clause-Linked Planar S 3SAT, Var-Linked Planar S 3SAT, Linked
Planar S 3SAT and Planar S 3SAT always the same?

• For what values of S is Positive S-in-EU(2k+1)-SAT-E2 always satisfiable? [Kol+19] . In particular,
is Positive {1, 4}-in-EU5(2k + 1)-SAT-E2 always satisfiable?

• What is the complexity of Max S SAT-E2 if every relation is a even ∆-matroid [KKR16]?

• Ordered Planar S U SAT being NP-complete implies that Planar S u SAT is also NP-complete.
Is the reverse true? It is probably not true, and maybe it can be shown with a non-symmetric relation.

• Is there a Quantified Planar Dichotomy? We have an Ordered Planar Dichotomy for SAT, but not for
Quantified Sat.

• Is Quantified Clause-Linked Planar SAT PSPACE-complete? It should be since Quantified
Var-Linked Planar SAT is PSPACE-complete, but the proof is missing.

• Is k 1s Planar NAE SAT NP-complete? More generally, most k 1s and k 0s SAT instances have not
been investigated. Maybe many of the polynomial problems might become NP-complete.

• Is there a characterization of Planar Reconfiguration SAT and Planar Connectivity SAT?

• Can we extend results of SAT with a bounded number of variables to k-Quantified SAT? This seems
to be hard. For example ∀∃ EU3SAT-3 is ΠP

2 hard, even though EU3SAT-3 is in P.
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