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Abstract

Effects of stress and fluid inclusions
on wave propagation in rock.

by
Amos Michael Nur

Submitted to the Department of Earth and Planetary Sciences
in partial fulfilllment of the requirement for the
degree of Doctor of Philosophy.

Experimental results indicate that the response of
rock with fluid inclusions (air, water and glycerol at
various temperatures) to low amplitude stress waves can be
described by the bulk and shear moduli Ko and Mo and
density of the solid without inclusions, the bulk modulus,
density, and viscosity of the fluid and the volume of the
inclusions, and thelr aspect ratios ol .

The effective bulk modulus and specific attenuation in
pure dilatation are largely dependent on the bulk modulus of
the fluid inclusion and are almost independent of the fluid
viscosity. The effective shear modulus and specific attenua-
tion in pure shear on the other hand are strongly influenced
by the viscosity of the fluid and are almost unaffected
by its compressibility. Replacement of air by water in the
microcracks of granites causes the velocity of compressional
waves, V,, to increase by as much as 40% while the velocity
of shear waves, Vg, remains almost unchanged. An increase
of the viscosity of the fluid phase from 10~% to 109 poise
causes Vg to increase by 25% and Vp by only 6%. A pro-
nounced damping peak for pure shear occurs at frequency

o , when uk7ﬁ%ﬂ,zl.

Velocities of elastic waves and internal friction in
solid with viscous fluid inclusions are therefore frequency
dependent. Low velocity zones and strong shear anisotropy
in the earth can be explained by the presence of a viscous
fluid phase. The change of shear velocity from that of the
solid is greater than the change of Vp. The depth to the
bottom of the LVZ is frequency dependent. The viscosity of
flu%d inclusions decreases with depth in the Egper nantle--
1016 poise at 25 km, 1013 at 60 km and 107-10*- at 80 km.

Measurement of velocities in the laboratory on many
rocks that exhibit a large dependence of elastic wave veloci-
ties on hydrostatic pressure demonstrates that they become
elastically anisotropic under conditions of non-hydrostatic
stress. When uniaxial stress is applied the increase of
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velocity is largest in the direction of the applied stress
and smallest in a direction perpendicular to it. Two

shear waves which are polarized in planes parallel and per-
pendicular to the applied stress show a velocity difference
that increases with increasing stress level. The general
anisotropy, of orthorhombic symmetry, is related to the
influence of cracks on the effective elastic properties of
rocks and can be obtalned from a small number of measurable
crack parameters., A theoretical study indicates that the
induced velocity anisotropy can be obtained from velocity
measurements under hydrostatic pressure. Cracks most
likely exist in situ due to differences in the thermal
expansivity and compressibility between various mineral
phases. Therefore, the laboratory results can be extended
to the earth and changes in the local state of stress in the
earth can be determined from several repeated, precise
measurements in situ of seismic travel times if sufficient
information about the properties of the local rock is known.
In a crustal region of increasing shear stress, as well as
in the region around a fault on which sudden stress relief
occurs, velocities of elastic waves increase in some directions
and decrease in others. Measurement of body and interface
wave velocities in existing boreholes can also be used to
obtain information about stress in situ.

Thesis Supervisor: Gene Simmons
Title: Professor of Geophysics
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List of common symbols used throughout the manuscript:

Ap, As Amplitudes of compressional and

shear waves

a crack width
x crack aspect ratio; thermal expansivity
A(N) density distribution function of the

aspect ratio o .
jB largest crack aspect ratio,
c porosity. Concentration of inclusion

in host material.

Cy yx1 stiffness tensor

éij strain tensor

Ej 50B0sE1,817 Young's modulus

q viscosity

g gravitational acceleration

i,3,k,1 v indices of Cartesian coordinates

Iij'lo'l(o) integrals over spatial crack distribu-
tion

Ky Kq bulk modulus

ly n direction cosines

m a constant

/*137"07"117"1 shear modulus

Nij* N distribution function of cracks with
aspect ratio o

ViV Poisson's ratio
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P hydrostatic stress, pressure
Q‘ internal friction

9/ ?ﬂ ) sﬂa angular distance

Q@ » elastic quality factor

}O density

813kl | compliance tensor

5, 8H, SV shear velocity modesv

T ‘temperature

T ~shear stress

(Tij stress tensor
VpsVgsV1sV17sVs 30V wave velocities (compressional, shear)
Uy elastic displacement vector
w freqﬁency |

Z depth
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Chapter 1

Introduction

The state of stress in the earth is essentially
unknown except for rough estimates of average pressure at
depth and a small number of locél stress values. Almost
everything we do know about stresses in the earth (with the
exception of direct local strain measurements in a number of
mines and quarrles) has been obtained from indirect measure-
ments and theoretical models. Early estimates of pressures
in the earth's interior, such ae by Laplace (Bullen, 1963),
were based on theoretical density distributions which agreed
with the mean density and the moment of inertia of the
earth, Adams and Williamson (1923a) later notieed that
seismic velocities can be used ﬁo obtain radial changes in
density in the earth's interior which‘in turn improve the
estimate of the pressure. Thus; basically, the pressure
distribution inside the earth is estimated from seismic wave
velocities and from the mean density and moment of inertia
of the earth.

But even this estimate is rather crude. The earth is

believed to be in a state of hydrostatic stress--an assumption

which 1s not critical at gieat depth but has great influence
on the estimated near surface (crust and upper mantle)
stress distribution. Birch (1964) has pointed out that
shear stresses in the crust will not exceed the shear

strength of crustal rock and that normal stresses will not
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be tensile. Thus, shear stress can range over almost two
thousand bars. Indeed the stress data available from direct
measurements at or near the earth's surface indicate a
rather complicated stress pattern. Hast (1958) found that
horizontal stresses exceed vertical stresses in Scandinavia,
Leeman (1964) reports that measured vertical stresses far
sxceed the horizontal ones in many mines in South Africa.
However, such measurements are very sensitive to such local
factors as mechanical inhomogeneities and while they are
most valuable for mining and tﬁnnelling problems, they
provide little information on the regional stress field.
Indirect measmrements are less localized. ﬁere rock
properties which are stress depéndent arevmeasured over &
large area and the stress field or some of its elements can
be evaluated, What ‘are these réck properties? By far the
most sensitive 1s electrical resistivity, especially at
low stress levels. Brace et al. (1965) found an order of
magnitude change in resistivity over a range 0-1 kb hydro-
static stress which suggests that résistivity measurements
can be used for stress detectlon. Much less sensitlve to
stress 1s the pagnetic bulk susceptibility of rocks which
changes by a few percent per kilobar (Kapitsa, 1955),.
Neither of these methods distinguish bétween stress and
temperature effects. An 1ndrease of temperature will
cause a decrease 1in resistivity and a decrease in apparent

magnetic susceptlibility similar to the effects of stress
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reduction. Another important stress dependent property

are the elastic wave velocities. Predicted by Adams and
Williamson (1923b) and later verified by Zisman (1933),
elastic wave velocities in some porous rocks depend
significantly on the magnitude of the applied pressure.

The change of velocity with pressure is much smaller than

that of resistivity, but has the advantage of being associated
with waves rather than with static induced or spontaneous
fields.,

With waves we have an enormous flexibility in modes
of generation, modes of propagation, polarization and
path--ecach of which can be used to extract more information,
Static fields on the other hand are limited by their in-
herent non-uniqueness--additional measurements often do not
provide additional informétion although they may improve
estimates of measured quantities.

In this theslis we attempt to answer the following
questions: How does stress influence the various wave
velocities in rocks? What is the cause of this influence?
What else influences the velocities? How can velocities
be used to study stress 1ln situ?

The types of rocks which we investigated were limited
because of the great variability--chemical, mineralogical,
and mechanical--of rocks in general, Soft sedimentary
rocks respond to stress in a completely different manner

from brittle rocks. Most importantly, brittle rocks are
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commonly elastic and return to their initial state upon
removal of stress. Their mechanical history need not be
known in order to prediect thelr response to stress. This
is true for a limited range of-nonhydrcstatic stress. With
brittle rocks, however, if the shear stress exceeds the

in situ strength they break and cease to be reversilble
under stress. Some breaking in the form of microfracture
occurs before the bulk shear strength is exceeded and thus,
the range of stress over which brittle rocks are reversible
is further reduced, This investigation is confined to a
small number of brittle rocks, mostly granites, atAlow
stress levels,

In chapter 2 some of the effects of fluid filled pores
on seismic velocities in rocks are investigated. Commonly,
compressional and shear wave velocitles are significantly
lower near atmospheric pressure than at pressuresof a few
kilobars, but when such rocks are saturated with water the
compressional velcoiiy at low pressures greatly increases.
By contrast, the shear velocity is almost unaffected by
the presence of fluid. A change in the degree of saturation
of a porous rock produces an effect similar to that of a
stress change--but only in compressional wave velocities,
The varlous effective elastic constants which are utilized
to describe the elastic response of the rock show variable
degrees of dependence on saturation. The bulk modulus is

most sensitive, the shear modulus least sensitive. The



15,
applications and implications of the study of saturation g0
beyond the questions of rock properties at or near the
earth's surface. For example, because of the law of effective
stress the presence of fluid inclusions with pore pressure
extends the range of application of low stress results to
regions of high pressure. Some of the results obtained in
chapter 2 mayfbe applicable to the upper mantle with partial
melt. Furthermore, the complexity of even a two phase
system is so much greater than that of a single phase system
that the concept of a geophysical equation of state in an
upper mantle with melt is,rperhaps, too simple.

The influence of the viscosity of a fluid phase in a
solid aggregate is examined in éhapter 3. Both compressional
and shear wave velocitles increase significantly with
Increasing viscosity. The internal friction in shear
exhibits a peak at a particular combination of frequency,
fluid viscosity and shape of the fluid inclusion. Con-
sequently the elastic wave velocities and internal friction
are also dependent on frequency. In particular, the
effective shear modulus in a solid with viscous inclusions
varies greatly with viscosity or frequency.

In the fourth and fifth chapters we investigated in
some detail, the stress induced anisotropy in a granite.
Tocher (1957) found that compressional wave velocity in the
direction of an applied uniaxial stress is higher than the
veloclity normal to the stress. We extend his observation to

determine the change of velocity with direction relative
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to the direction of stress and the dependence of this change
on the magnitude of the stress. We also investigate the
behavior of shear waves and their dependence on stress,

The velocities of both compressional and shear waves are
largest in the direction of the applied stress and smallest
perpendicular to it. The compressional and one shear velocity
vary with direction while the other shear velocity is almost
independent of direction of propagation. An analysis of the
observed velocities yields the effective elastic constants
of the solid which depend on stress,

The basic theory relating various stress conditions to
the form of the induced elastic wave velocity anisotropy
is considered in chapter 5. Although the algebra is heavy
the problem is simple conceptually: cracks close at a
particular magnitude of applied stress which 1s related
to their shape and orientation. Some cracks are so oriented
as to close first when uniaxial stress is beilng applied
while others remain open. Consequently, the effective
elastic properties and therefore wave propagation depend on
the direction and magnitude of the applied stresses and the
initial distribution of cracks in the rock,.

The presence of cracks in unstressed rock samples
brings us back to earth. Do these cracks exist in situ
or are they introduced into the sample upon removal from
the earth? 1In chapter 6 some relevant data is combined
with & simple experiment. The changes in velocity with

pressure in many igneous rocks are indlcative of their
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crack porosity--rocks which contain quartz show much higher

porosities than rocks without quartz, A simple analysis
indicates that the values of thermal expansion  and com-
pressibility of quartz, which are much larger than the
values of other common rock-forming minerals, require

the presence of cracks in granites. Veloclity measurements
on cores, drilled from stressed samples, indicate that only
a small number of cracks are introduced into the cores.

Thus cracks are probably also present in situ and the theory
of chapter 5 and the experimental results of chapter 4 can
be applied to rocks in the real earth.

Relative and absolute stress determination can be made
from velocity measurements in situ. Velocities can be
measured elther along profiles or in boreholes. The stress-
velocity relations at a given site can be determined from

gamples in the Laboratory.
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Chapter 2

The Effect of Saturation on

Velocity in Low porosity rocks

l, Introduction

A very simple experiment at room pressure and temperature
shows clearly the effects of moisture on the velocity of
elastic waves in some rocks, 1In fig. 2.2 the compressional
wave velocity in a sample of Chelmsford granite, initially
saturated with water but allowed to dry in the atmosphere
over a pcriod of four days is plotted as a function of time,
Note the rather rapid change of veloclity that occurs in the
first few hours even though the porosity of the sample is
only about 1%. In this paper, we examine systematically
the effeets of saturation on the elastic properties of low
porosity rocks.

The presence of a fluid phase in porous rocks is common
ih the earth., It constitutes one of the environmental factors
that must be considered when in situ seismic velocities are
to be investigated, Among these factors pressure, tempera-
ture and composition are known to 1lanfluence greatly both
shear and compressional wave velocities (1,2), even in
rocks with such low porosity as compact granlites. Because
of their low porosity, generally less than 1%, the velocities
in granites were not expected to be influenced by saturation
with water, Simmons and Nur (3) found, however, that the

velocities of compressional waves measured in place in two
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three-km deep boreholes, both drilled in granites, varied
less from top to bottom than expected from laboratory measure-
ments. They suggested two possible explanations. Either
rock in situ does not contain cracks, which are responsible
for the increase in velocity in dry rock under low pressure
(4), or these cracks may have been filled with water in
situ, somehow greatly affecting the seismic velocity. Such
saturation effects have been reported by a number of investi-
gators (Hughes and Jones (5), King (6), and Dortmen and Magid
(7))in various rocks.

For the measurement of velocities in saturated
specimens under applied pressure it is important to coﬁsider
the effect of pore pressure. When the pore pressure equals
the external pressure,the configuration of pores and cracks
remains unchanged from the initial, unstressed configuration.
An increase of external pressure, accompanied with an equal
increase of pore pressure, affects only slightly the velocity
in the sample., Adams and Williemson (8) first noticed this
effect in their measurements of compressibility in Jacketed
and unjacketed samples, If the fluld in the pores is
pressure free, cracks close under external stress and the
velocity increases with stress. Thus,in experiments in-
volving both pressure and pore fluid the pore fluid
pressure nust be specified in order to obtain the effective
pressure which is merely the difference between the external

and pore pressures.
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2. Experimental procedure

Both shear and compressional wave velocities were
measured on cores one inch in diameter and 2 tc 3 inches
long. We used the technique described by Birch (1) with
minor, but important, variations. The flat end faces of the
samples were fine ground and parallel to within .00l inch.
The transducer assembly was atfached at each end of the
sample and held in place by a rubber Jjacket enclosing sample
and transudcers., The transducer was assembled, as shown in
fig. 2.1, inside a cylindrical brass holder with a .010
inch copper foil closing the end. A ceramic transducer
(PZT) was cemented to the foil, A swall brass plug attached
to the upper surface of the transducer served as an electrode,.
The copper foll served both as-the second electrode and
- ag an ilmpermeable barrier between the water which saturated
the sample and the pressure medium (petroleum ether). This
fluid was free to penetrate the assembly in order to avoid
non-hydrostatic stresses in the assembly. Travel times
were meagured with a variable mefcury delay line.*

In order to saturate the specimens, we used a combina-
tion of vacuum to remove air and pressure to force water into
the pores. Brace et al, (9) described the teechnique,

The sample 1is suspended over a container of water inside
a vacuum chamber. After the pressure in the chamber is

sufficliently low for the water to boil, the sample is then

# PFor detall see Appendix A,
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dropped into the water, The sample remains in the water
container which is then placed in a gas pressure vessel and
held overnight at 10 bars., The degree of saturation of the
sample was not determined but results by Brace (1l) indicate
high saturation. As indicated in fig. 2.2 incomplete satura-
tion tends to diminish the effects on velocity and our results
should therefore be considered as conservative estimates.

All measurements on water saturated samples were made
at zero pore pressure. In order to keep the pore pressure
at zero, while the confining pressure was increased, a
plano wire was wrapped around the specimen before the rubber
jacket was slipped over it. The configuration is shown in‘
figure 2.1, The fluid expelled from the pores as they close
was allowed to flow into the free volume between the coils
of the piano wire spring and the specimen, The éonfining
pressure was raised in small steps with long pauses between
increments to allow for the reduction of transient pore
pressures by the flow of water out of the specimens, The
steel spring causes local stress concentrations in the
gsample, We used a wire with diameter about 1/10 of the
diameter of the sample so that the reglon of stress con-
centration was small, confined to the outer 10% of the
gsample. Because a wire of suffioieht diameter must be used
to provide enough space for the expelled water, this method
may not be suitable for use with high porosity rocks., The
"dry" samples were held in a vacuum of 25 inches Hg and

temperature of 500C for 24 hours; they were then gquickly
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enclosed with the transducers in a rubber jacket to avold
absorption of water from the air,

Total and crack porosities (Table 2.,1) as well as

densities were determined by Brace (10).

3, Samples

A suite of six samples was selected on the basis of a
wide range of different combinations of crack and pore porosi-
ties; a set of measurements was designed tb examine the
effects of saturation ahd confining pressure on both shear
and compressional Wave velocities of low porosity rocks. The
samples, with the exception of Troy granite, were the same
ones used by Brace (9). Some of their physical properties
are reproduced in Table 2.1. The properties of the Troy
granite sample were determined with the method described by

Brace (10).

L, Data

New data on the velocity of elastic waves in dry and
completely satﬁrated rocks are gilven in Tables 2.2 to 2.3.
The accuracy of the velocity values 1ls better than 2% whereas
the precision is better than .5%. The compressidnal and
shear wave veloclties in dry and saturated conditions, shown
in fig. 2.3, depend very differently on the degree of satura-
tion of samples, at various pressures. The effect of hydro-
static pressure and that of fluld saturation on compressional
wave velocity are similar, High velocity can be obtained

either by the application of high confining pressure or by

completely saturating the rock., The effect of pore pressure of Vo
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however, is small, Once the sample is completely saturated,
the effectivehpressure has a relatively small influence on
compressional velocity because Vp at zero effective pressure
is almost as high as the velocity of the»sample would be
without ahy cracks., The influence of pore pressure on
shear velocity though is very significant. If pore pressure,
for example, equals the external pressure the observed
shear velocity will be approximately the same as the velocity
in the unstressed sample whiéh is also equal to the velocity
in the dry sample. The strong dependence of velocity on
pressure and saturation is confined to low effectlve pressures,
At pressures above 1 or 2 kb and without pore pressure all
velocities show only a small increase with increasing stress.
The velocities of the saturated Casco granite sample
were measured also as a functlon of pressure without the
steel spring arrangement, thus forcing the water in the
cracks to remain there. The fluid in the pores was there-
fore confined, subject to a pressure nearly equal to the
external pressure. The velocities change but little with
external pressure (fig. 2.3s) and the constant value dvy/dp
is the same as for the (1) saturated, and unconfined
specimen and (2) dry rocks at‘high pressure. Although Vp
of the confined sample is lower by 10%, and Vg by 35%,
from the corresponding unconfined velocities, the slopes
dV/dp are practically the same,

From the measured velocities we can obtain values of
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the effective elastlc constants of the dry as well as the

saturated samples. We assume that the effective elastic
constants are related to the velocities in the same way
that these quaﬁtities are related in a linear elastic

material, Thus the effective dynamic bulk modulus K is

K=p [sz" ‘.43’ VSZ]

and the effective shear modulus

_ 2

}= Ve
where F is the density of the sample., We also obtained
effective Young's modulus E and Poisson's ratio )/, for
both dry and saturated cases., The resulting values (Table 2.3,
“fig. 2.4) emphasize the observation that fluid saturation
greatly influences the effective bulk modulus of a rock while
the shear modulus is almost independent of fluid inclusions.
The Poisson's ratios obtained at various pressures are of
some interest. Dry rocks exhibit very small, even negative
Poisson's ratio values while saturated rocks exhibit
abnormally high values., From the expression for Poisson's

V= (3‘4’2/“) /{é;<+ 2H)

it is apparent that a negative Polsson value indicates
that K< -;:'/i . Such low Poisson values in dry rocks are

observed at very low pressures only. The effective value
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at higher pressures is near the intrinsic value. The
effective Young's modulus is not as strongly dependent on
saturation as the bulk modulus, shown clearly in fig. 2.4,
Interesting results were obtained from the first
pressure run of the Bedford limestone sample, as shown in
fig. 2.5. Like all othér samples the compressional velocity
in the dry sample increased greatly with pressure at low
pressure, then became more constant. At a pressure of
about 2 kilobars, however, the velocity increased again
with pressure. Upon reductlon of pressure the velocity
remained significantly higher than in the initial part of
the cycle, except at low stress when the decrease of Vp
with decreasing pressure became so large that the final
velocity was well below the initial velocity. Similar
behavior under pressure was observed by Brace (11), also at
about 2 kilobars for electrical resistivity. Since the
strength of the Bedford limestone is rather low and initial
pore porosity high, 1t 1is likely that pores begin to collapse
at an external hydrostatic stress of 2 kilobars or more.
A collapsed pore may in later cycles behave like a crack,
which in turn will increase the dependence of velocity on

stress at low stress levels,

5, Discussion of results

The simplest theory of wave vglocitles in two-phase
systems is the so-called "Time average” (12, 13) which is

gummarized by the relation
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1 _a _ l-a
V V Va

where V, Vl' and V2 are wave velocities of the composite and
of the phases 1 and 2, respecti?ely, and a is the concentra-
tion of phase 1, and (1-a) is that of phase 2, Equation (1)
can be interpreted physically as expressing the velocity
of waves which are short compared to ﬁhe size of the in-
homogeneity, assumed here as layered, 1n.the composite, It
is clear, however, that the wave lengths, even in the nega -
cycle range, are not generally smaller than the size of the
inhomogeneify in the sample. Furthermore, the time average
method fails when one of the phases 1s air in the cése of
compressional and shear waves or & liguid in the case of
shear waves, v

A more fundamental approach is base@ on the concept of
effective elastic constants which can be used to yleld the
various wave velocitles., The first attempts to obtain
effective elastic constants from the properties of the com-
ponents required only the specification of the relative
concentrations. The Voigt-RBeuss estimates provide lower
and upper bounds for the effective elasticity of a composite,
but these bounds are too far apart for a composite with
holes, or liquid inclusions for sheéar modulus. Hashin and
Shtrikman (14) using a variational energy method derived
narrower bounds and proved that they are indeed the narrowest

ones for a composite with specified concentration alone,
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Bven their bounds are widely separated for a medium with
holes. Mackenzie (15) derived expressions for both bulk
and shear modull assuming that all porosity is in the form
of round pores. Satd (16, 17) extended those results to
spherical holes with liquid and solid inclusions and com-
puted the velocities of seismic waves. When the pores cone
tain water Satd's results indicate that both cbmpressional
and shear velocities should differ by less than 1% from the
intrinslc velocities if the porosity is 1%. Compressibility
measurements of sintered porous silicates by Walsh et al.
(18) indicate that Mackenzie's and Sat8's expressions are
quite satisfactory if the porosity 1s in the form of round
holes;

Our results, however, are at variance with the pore
model, Saturating the granite samples, which have porosities
less than .01, caused Vp, to increase by as much as 40%. It
1s necessary then to take into account the fact that
porosity . 1s not in the form of round holes. Wu (19)
derived expressions for effective elastic constants for two
phase composites with ellipsoidal inclusions. Walsh (20)
generalized Wu's expressions for two phase systems, in which
the inclusion is empty or contains a fluid. The shape of
the inclusion or crack, assumed to be penny-like, is speci-
f_ied through a single parameter--the aspect ratio oA = a./d
where a is the width and d is the diameter of the crack.

Walsh's expressions for bulk and shear moduli when

the inclusion fluid is air, (whose viscosity is vanishingly




29.

small and compressibllity almost infinite) are:

where

m= Ko (3Ko+4/"0)/'[T/qo {3Ko+/la)
8 (3Ko +4 H0) 3Ko +4M0)
n= E"‘n[m/% = (3K:+;4o)]

The corresponding expressions for the same materilal

saturated with water (viscosity low but compressibility

finite) are:

_L_ = .l_ +C o "1‘]

Tzudcr Ko 1 < PH‘\IO )

and c
L. L [ +n-5]
/qwlw ﬂo *

for signal frequencies around 5 MHZ. Unlike the bulk
modulus, the shear modulus is unaffected by saturation.
The effective bulk modulus of saturated rock FZLchr ,
is almost independent of ® despite the importance of
in the dry case.

For rocks, Keo/Ku,o 10 and C = .005 which ylelds
:’Zm:,&,x.uko. The difference between the bulk modulus of the
saturated composite and the intrinsic modulus of the solid

is only a few percent. If the composite contains air this
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difference will depend on the aspect ratios . The range
of these Ol values can be estimated from the change, with
pressure, of the elastic properties of a composite, Walsh
(21) showed that the pressure P , required to close a crack
is related to its shape by P®Eo & where E, is Young's
modulus of the solid. Because elastic properties become
almost completely independent of mressure at 1 kb we find,

® par that o <€ 10-3.

for E = 10
The crack model leads to the prediction that the
difference between the "dry" and nsaturated" bulk modulus

or compressional wave velocitles should increase with

increasing crack porosity. Such an increase 1s clearly shown

in fig. 2.6, while no correlation with volume porosity is
noticeable (Table 2.1). From Walsh's expressions we notice
also that for composites with high pordsity the effect of
volume porosity on the elastic properties can be guite
gignificant. However, the effect of pressure on these
same propertles is largely due to cracks and cannot be
attributed to porosity of round holes.

The change of volume of holes with external pressure
is rather small, The displacement of the cavity's wall

U under pressure P is
U = a P

(o)

where & 1s the radius of the cavity and E5 1s Young's

modulus of the solid., To close the cavity the displacement
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must be of the order of radius a or PAR2 E., For most
rocks such pressure 1s far beyond their shear strength.
Cavities will, therefore, collapse before they close
elastically.

Our results are consistent with a model of rock with
small penny shaped micrd cracks. Their closure is very
sensitive to pressure, unlike round pores, and when filled
with water they greatly influence the effective compressi-

bllity of the rock.

6. Some applications to the earth

The avallable field data on velocities 1n the shallow
crust is not complete because of the difficulty in measuring
shear wave velocities. Nevertheless, we can test our labora-
tory results against a number of field observations, Dobrin
et al., (22) found that Vp increased greatly when measured
below the water table while Vg remained essentlally un-~
affected.

The observation by Simmons and Nur (3) of high, almost
constant, velocity from top to bottom in two boreholes 3
km deep in granites can now be explained by the presence of
water in the cracks. An interesting test of the saturation
mechanism in granites in situ would be the determination of
shear wave velocity as a function of depth. Unlike the
compressional waves, shear wave veloclty 1s almost unchanged
when the air in cracks is replaced by water. On the other

hand, closure of cracksby pressure does influence the shear
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veloclty and we would, therefore, expect a noticeable change
from top to bottom.

Birch (4) and others reported a large range of initial
Vp values for samples of the same rocks. These variations
were attributed to inhomogeneity or anisotropy of the
samples. It is quite possible, however, that much of the
scatter 1s simply due to various degrees of saturations,
depending perhaps‘on the humidity and temperature in the
laboratory.

A discrepancy between dynamic and static elastic
moduli of rocks was noticed first by Zisman (23). Commonly
the statlic moduli at low pressures are lower (24) than the
dynemic moduli. Our results combined with Walsh's theory
can explain in part such a discrepancy in rocks which contain
fluids like water. At short periods of loading, such as in
selsmic waves, the fluid has no time to flow out of the crack
which increases the crack's resistance to closure and
increases the effective bulk modulus of the rock. If,
however, the loading period is sufficiently long to allow
flow to occur {and space is available for the fluid) cracks
will behave as dry, air filled cracks. The relations
between period and effective elasticity must involve many
other physical parameters such aé permeabllity of the fluid
in the rock, which depends on pressure and crack shape and

viscosity of the fluid which depends significantly on tem-

perature,.
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Our resulis could shed some light on the question of
partial melt that possibly exists in the upper mantle,
Shimozuru (25) suggested that a small amount of melt in
the form of flat pockets céuld greatly influence the
effective shear modulus of mantle material. Aki (26)
showed that the presence of small melt pockets under Japan
could explain the observed phase velocitles of Love and
Rayleigh waves, These pockets need also have a preferred
orientation to cause an apparent velocity anisotropy for long
waves.,

The bulk modulus of a solid with fluid pockets will be
almost identieéal with that of the solid without pockets,
while the shear moduli will differ greatly. This difference
will depend, most importantly, on the shape of the pockets,
their orientation and the viscosity of the fluid. 1In
Chapter 3, the effects of viscosity on shear modulus are
investigated and we defer extensive discussion of the
application of our laboratory results to an interpretation
of the low velocity zone. Brasece et al, (27) performed a
series of experiments on the melting of granites, They
found that melting starts at grain boundaries and that. at
least initially the melt is in the form of a thin £ilm,
which could perhaps be described by a small X value.
Composites with small O values, such as Casco granites, need
but a very small volume of melt to greatly reduce their

effective shear modulus.
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7 Conclusions

The inclusion of fluid in micro cracks greatly in-
creases the compressional wave velocity while shear velocity
remains unchanged. Therefore, the effective bulk modulus
of a rock 1s very sensitive to the degree of saturation,
Other effective elastio cdnstants show various degrees of
dependence on saturation. The dynamic Poisson's ratio of
saturated rock with cracks is abnormally high while the
values in dry rock are very low, even negative,

The shear modulus of a rock with cracks is a better

stress indicator because it is insensitive to saturation.
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Table 2. 2a

Elastic Wave Velocities in Casco Granite

P (BAR)

20.
25.
40.
75.

100.
150.
200.
250.
300.
350.
430.
550.
700.
1000.
1500.
2000.
2500.
3000.
3500.
4000.
4500.
5000.

VP (DRY)

3.400
3.590
4.100
4.630
5.050
5.420
5.630
5.800
5.900
1 6.020
6.110
6.270
6,300
6.460
6.530
6.550
6.570
6.580
6.590
6.600
6.610
6.620

VP (SAT)

5.510
5.600
5.780
5.990
6.020
6.040
6.140
6.180
6.220
6.250
6.280
6.360
6.440
6.480
6.520
6.540
6.560
6.580
6.590
6.600
6.610
6.620

VS (DRY)

2.400
2.440
2.530
- 2.660
2.790
2.990
3.120
3.240
3.320
3.390
3.460
3.530
3.600
3.660
3.710
3.730
3.750
3.760
3.770
3.780
3.790
3.800

VS (SAT)

2.500
2.590
2.640
2.940
3.000
3.100
3.160
3.200
3.220
3.290
3.340
3.400
3.480
3.600
3.670
3.690
3.710
3.730
3.740
3.750
3.760
3.770

380



Table 2.2b

Westerly granite. Elastic Wave Velocities.

P (BAR) VP (DRY) VP (SAT) VS (DRY) VS (SAT)
0. 3.800 5.480 2.800 3.000
20. 4.080 5.530 3.000 3.050
40. 4.450 5.600 3.020 3.070
100. 4.980 5.700 3.070 3.100
150. 5.190 5.740 3.120 3.130
200. 5.310 5.770 3.170 3.150
300. 5.450 5.840 3.230 3.190
400. 5.550 5.900 3.280 3.230
500. 5.610 5.940 3.300 3.260
600. 5.670 5.970 3.330 3.290
700. 5.730 6.010 3.350 3.310
800. 5.770 6.020 3.365 3.325
900. 5.810 6.040 3.380 3.340
1000. 5.850 6.060 3.395 3.350
1100. 5.890 6.070 3.410 3.360
1500. 5.970 6.100 3.450 3.410
2000. 6.060 6.130 3.480 3.440
3000. 6.130 6.170 3.520 3.470

4000. 6.180 6.220 3.530 3.490




Troy granite.

P (BAR)
20.
35.
50.

100.
150.
200.
250.
300.
400.
500.
700.
900.
1000.

VP (DRY)

4.800
5.183
5.651
5.909
6.044
6.169
6.216
6.272
6.336
6.365
6.428
6.443
6.449

Table 2.2c

Elastic WaVe Velocities.

VP (SAT)

5.899
6.033
6.216
6.224
6.308
6.336
' 6.348
6.358
6.378
6.398
6.450
6.504
6.510

VS (DRY)

3.100
3.185
3.233
3.328
3.379
3.424
3.455
3.475
3.511
3.524
3.561
3.575
3.581

VS (SAT)

3.100
3.185
3.233
3.328
3.379
3.424
3.455
3.475
3.511
3.524
3.561
3.575
3.581

Lo,



P (BAR)

25.
40.
50.
75.
100.
150.
200.
250.
300.
400,
500.
600.
700.
900.
1200.
1500.
2000.
2500.
3000.

A S R S e s e e Ry

VP (DRY)

5.145
5.830
5.900
6.150
6.400
6.598
6.686
6.776
6.819
6.870
6.890
6.905
6.919
6.958
6.965
6.977
6.997
7.016
7.029

Table 2.2d
Webatuck dolomite.

VP (SAT)

6.434
6.575
6.600
6.680
6.730
6.769
6.807
6.833
6.856
6.890
6.920
6.940
6.958
6.977
6.995
7.026
7.045
7.050
7.090

VS (DRY)

3.550
3.720
3.750
3.810
3.840
3.920
3.966
3.990
4.024
4.056
4.062
4.080
4.095
4,115
4.130
4.145
4.161
4.180
4.193

Elastic Wave Velocities.

VS (SAT)

3.409
3.700
3.730
3.780
3.830
3.879
3.931
3.997
4.037
4.068
4.115
4,133
4.153
4.198
4,220
4.240
4.256
4,270
4,290

41,



Bedford limestone.

P (BAR)

30.
50,
75.
100.
125.
150.
200.
250.
300.
400.
500.
600.
800.
1000.
1300.
1700.
2000.

VP (DRY)

2.700
2.794
2.929
3.039
3.113
3.193
3.351
3.500
3.600
3.770
3.912
4.008
4.205
4.380
4.598
4.735
4.829

Table 2.2e

VP (SAT)

4.600
4.640
4.660
4.680
4.700
4.730
4.760
4.790
4.810
4.820
4.840
4,860
4.880
4.900
4.920

4.940

4.960

VS

Elastic Wave Velocities.

(DRY) VS (SAT)

1.547
1.640
1.690
1.752
1.795
1.841
1.917
1.983
2.040
2.138
2.223
2.283
2.382
2.466
2.548
2.633
2.681

1.560
1.680
1.720
1.760
1.810

1.880"

1.940
1.970
2.000
2.140
2.230
2.300
2,350
2.400
2.510
2.600
2.610

L2,




Solenhofen limestone.

P (BAR)

50.
100.
200.
300.
500.
700.

1500.
2000.
2500.
3000.
3500.

VP (DRY)

5.607
5.616
5.628
5.637
5.650
5.664
5.709
5.724
5.738
5.752
5.757

Table 2.2f

VP (SAT)

5.632
5.644
5.671
5.685
5.710
5.732
5.772
5.781
5.787
5.800
5.810

VS (DRY)

3.006
3.014
3.029
3.043
3.063
3.083
3.103
3.104
3.110
3.115
3.128

Elastic Wave Velocities.

VS (SAT)

2.994
3.010
3.044
3.050
3.072
3.078
3.101
3.103
3.107
3.111
3.124
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Pigure Captions

Fig.,

Fig,

Fig.

Fig,

2.1

2.2,

2.3

2.4

Transducer assembly. The sample is mounted
between two transducer assemblies. A piano
wire spring 1s wrapped around the sample to
provide space for the water which is expelled
from the saturated sample by pressure.

The velocity of compressional waves in Chelms-
ford granite, initially saturated with water,
as a functlon of time. The sample was subject
to room temperature, pressure, and humidity.
The decrease of vy is caused by the slow evapora-
tion of the water.

Velocity of elastic waves in rock samples as

a function of pressure. The compressional wave
velocity depends significantly on the degree

of saturation but shear wave velocity is almost
independent of saturation. These observations
are made for (a) Casco granite (b) Westerly
granite (c¢) Troy granite (d) Webatack dolomite
(e) Bedford limestone and (f) Solenhoffen
limestone,.

Elastic moduli of dry and saturated rocks. The
bulk modulus of saturated rock samples is
almost identical to the intrinsic value of rock

without cracks. The bulk modulus of the dry
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rock increases with pressure. The shear modulil
of the dry and saturated samples are almost
identical. Young's modulus depends somewhat on
saturation. Polsson's ratio 1s high in
saturated rocks and very low in dry ones.
Values are for (a) Casco granite (b) Westerly
granite (c¢) Troy granite (d) Webatack dolomite
(e) Bedford Limestone.

Fig. 2.5 Compressional wave veloclty in a dry sample of
Bedford limestone vs., hydrostatic pressure,
At P = 2 kb round pores begin to collapse, They
act like cracks when preSsure is reduced.

Pig. 2.6 Difference between Vy in dry and saturated
granites vs, crack porosity. Size of rectangles:

indicates experimental uncertaintiles,
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Chapter 3
Effects of Viscous Fluid Inclusion on the
Propagation of Waves in Rock and Applications
to the Earth

l, Introduction

An understanding of the mechanical behavior of fluid-
filled rocks of low porosity 1s important in geophysics for
the correct interpretation of the elastic properties of the
earth's crust and mantle. We previously reported data on
the effects of saturation in rocks (Chapt. 2). 1In this chapter
we discuss the effects of viscosity on the propagation of
waves in low porosity aggregates. The results have inter-
esting implications on the effects of partial melt such as
may occur 1ln the Upper Mantle.

Several authors have studied the effects of inclusions
of alr, water, and low viscosity organic oils. Aside from
the effect of fluid pore pressure, the replacement of air
by water in high porosity rocks causes an increase of
compressional velocity and a decrease of shear velocity.
King (1) investigated the effects of air, salt water and
kerosene. His results indicated that Vp was commonly
highest when the saturating fluid was salt water while the
corresponding shear velocity was lowest.v The dry rocks on

the other hand had low V. but relatively high Vg, similar

D
to those observed in rocks saturated with kerosene.

Replacement of air with liquid in a high porosity
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rock affects several important parameters such as density,
effective elastic moduli, and the viscosity of the fluid
phase. In such low porosity rocks as granites the change
of the bulk density is negligible but the changes of the
effective elastic moduli are large. Nur (2) reported that
Vp increases greatly while VS remains unchanged in a number
of granite samples upon saturation with water. Dortmann
and Magid (3) reported similar observations on various
lgneous rocks. The effective bulk modulus of the saturated
rock was almost identical to that of the rock without porosity
but the effective dynamic bulk modulus of dry‘rock was very
low and increased rapidly with external pressure (which
causes cracks to close).

Timur (4) observed a velocity increase in rock saturated
with water as the water froze. Spetzler‘and Anderson (5)
using ice aggregates noticed large decrease of both Vp and
Vg when partial melt first appeared. Born (6) found that
internal friction 96 in a speﬁimen of the Amherst sand-
stone increased with increasing water content and depended
on frequency. Gordon and Davis (7) also noticed that ;5
l1s dependent on the presence of fluid, its viscosity and
wave frequency. Garanin (8) found a nonlinear increase of
absorption coefficient and wave velocity with increasing
viscosity over a limited range of viscosity,

The introduction of a liquid phase replacing either air

or solid involves changes of both viscosity and bulk
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modulus of the inclusion. It is however, important to
investigate the influence of these two parameters indepen-

dently. Here the effects of viscosity are reported.

2. Experimental procedure

A large range of viscosity must be used to show the
influence of viscosity on velocities and attenuation, al1
other parameters should preferably remain constant, For
this experiment two core samples of Barre granite were used,
one for the measurement of Vp and the other for Vgs With
various fluids in the microcracks. The properties of this
granite'are summarized in Table 3.1.. The measurement
techniques are identical to those used previously by us
(Chapter 2) and similar to those used by Birch (9) and
Simmons (10). Barium titanate transducers (PZT 4), 0.10"
thick, attached to the specimen with an electrically conduct-
ing epoxy (Traduct BA-2902, manufactured by the Tracon Co.,
Medford, Mass.) which hardened to 70°C for 12 hours were
used for generating compressionél waves. AC-cut quartz
transducers (gold-plated, coaxial, manufactured by the
Valpey Co., Holliston, Mass.) to generate shear waves were
mounted on the second core with a non-conducting epoxy
(Trabond BA2101)., Agreement of the Vp of the two samples
measured at room conditions before the transducers were
attached was better than 1%, indicating that ﬁhe two cores
had similar elastic properties and could be assumed identical.

Variation of the viscosity of the fluid in the micro-
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cracks is obtained by the use of glycerol, C3H5(OH)3’ at

various temperatures, together with water ang air, The
viscosity of glycerol unusually sensitive to temperature,
is shown in fig., 3.1. A change of temperature from -77°C
to 100°C changes the viscosity of the glycerol by ten
orders of magnitude. The compressibility of glycerol
changes by a factor of only three over the temperature
range -77°C to +100°C despite the very large change in
viscosity (11). 1In the measurements of glycerol-satura ted
rock, each sample was immersed in & constant temperature
bath filled with methanol dry ice mixtures. Temperatures
were measured with an iron-constantan thermocduple which
was attached to the specimen and therefore indicated the
temperatures at the outer surface, Bepeated_readings in
separate runs indicated that temperature was determined
within 1°C resulting in a corresponding approximate error
in viscosity of 2%, a value sufficiently small to be
neglected, The added measurements with water and air in the
microcracks of the rocks provide a range of viscosities
from 10=4 to 109 poise, For comparison, the viscosity of
molten basalt is 105 to 107 poise (12).

The effects of temperature on the intrinsic properties
of the solid phases of the rock can be neglected. Velocities
In the two samples subject to temperatures from -77°C to

+100°C and air dried change significantly less (fig. 3.2) than in

the glycerol-saturated samples, Changes of sample length due
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to thermal strains are also small and were neglected.,

Techniques of saturating the specimen were similar to
those used previously by us (Chapter 2) ang deséribed by
Brace (13). Drying was done at about 90°C in a vacuum
furnace., For saturation with glycerol, the container was
kept at 90°C-100°C for 36 hours. Gcas pressure of 10 bars
was applied and removed a few times to facilitate the flow
of glycerol into the cracks. Aithough the degree of
saturation of the samples was not tested, the results of
Brace (14) indicate that the saturatipn with water is very
high. The viscosity of glycerol at 100°C is about 15 times
that of water. Dortmann and Magid (3) found.that saturation
of igneous rocks with machine oil took 4.5 times longer than
with water. The fact that viscosity of glycerol at 100°C is
comparable with that of oil and that glycerol also wets
silicates, suggests that the degree of saturation should be
comparable with that of water.

The velocities measured as a function of Increasing
temperature with glycerol in the cracks were compared with
the velocities obtained as a function of decreasing tem-
perature. The apparent reversib;lity suggested that the
temperature distribution in the sample was sufficiently
steady and uniform when a measurement was made.

Rough estimates of the effects of the viscosity of
the saturating fluid on the attenuation of elastic waves

were obtained by holding constant the lnput voltage to the
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trahsducers and cbmparing the output voltage throughout

the experiment. The variation of voltage between measure-

ments did not exceed 10% and was probably, on the average,

only a few percent. The dominant frequency in the'received
signals was approximately .5 MHZ for both compressional and

shear waves,

3. Wave velocities, relative attenuation, and elastic constants,

The data obtained on Vp and Vs in our experiment are
given in Table 3.2, together with the effective elastic
properties of Young's modulus, bulk modulus, shear modulus,
and Polsson's ratio calculated from Vp and Vg. In visco-
elastic materials with large internal friction, the velocities
depend not only on shear and bulk moduli but also on ’5
15). Although the absolute value of 95 is not known, in
our experiment the large relative value at the peak suggests
that internal friction should perhaps not be neglected in
computing the true effective elastic constants, The large
value of 96 also implies that a discrepancy between static
and dynamic elastic constants may exist over some viscosity
range.

The dependence of V. and Vs on the viscosity of the

P
fluid that fills the microcracks in the Barre granite is
shown in fig. 3.2. The values are those measured on the
glycerol-saturated rock except at the very low viscosity

range where values were obtained with water ( t? = 10'2
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poise) and air ( 7 = 1{3,10-4 poise). The value of Vp
obtained on a dry sample, 3.93 km/s, is much lower than
the values for rock saturated with water of glycerol.

The value of Vg in dry rock though, is about that of water-
saturated rock. Both compressional and shear wave veloci-
ties increase significantly with increasing viscosity. At
relatively high viscosities of the fluld phase the veloci-
ties vary almost linearly with the logarithm of the vis-
cosity. Hence they are more sensitive to viscosity at low
values. Both velocities possess an inflection point near
/2:: 10-1 polse, The relative change of Vg with viscosity
near the inflection point, as well as elsewhere, is much

larger than the relative change in V We attribute this

D
experimental observation to the fact that the effective
bulk modulus of saturated rock is independent of viscosity,
as seen in fig. 3.3, whereas the effective shear modulus
depends strongly on the viscosity.

The relative attenuation may be estimated from the
variation (with viscosity) of the amplitude of the received
signals, The amplitudé of the input pulse was held roughly
constant throughout each temperature run. Because too
many parameters are involved it is not possible to determine
the absolute magnitude of the input elastic pulse. From
the runs on dry samples it appears though that the loss of
power in the bond between the transducer and the rock is

approximately independent of temperature and that the
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transducers'themselves radiated approximately the same
signal in the temperature range of -77 to 100°¢, The
received amplitudes in the experiments with glycerol-
saturated samples exhibited remarkable features, The com-
pressional wave amplitudes were almost independent orf
viscosity whereas the shear wave amplitude Ag exhibited a
pronounced minimum at about the same viscosity at which the
inflection point in Vg occurred. Since both frequency and
sample length remained practically unchanged throughout the
experiment, the observed amplitudes can be converted into
relative internal friction ¢|o,s= -'aen[Ap,s]. The values
shown in fig. 3.2 have been normalized, with 96 of dry rock
taken as unity. The attenuation of seismic'shearAenergy
has a sharp peak near 7.: lO':L poise, Values of ¢ for
elther dry or water-saturafed rock or for high viscosity
glycerol are much smaller.

The calculated values of Young's modulus and Poisson's
ratio are shown in fig. 3.3, Poisson's ratio decreases
steadily with 1ncreasing.viscosity, indicating that the
effective shear modulus increéses_ faster with viscosity
than the bulk modulus. Young's modulus increases with
viscosity almost like the effective shear modulus. The
behavior resembles that of rocks saturated with water sub-
Ject to increasing effective hydrostatic stress (Chapter 2).
The phenomena are different, however: hydrostatic stress

causes cracks to close whereas increasing fluid viscosity



60,

essentially makes the fluld =~ Tbehave increasingly like a
solid.

4, Discussion of some theoretical aspects.

The increase of shear velocity by ~~22% and compression-
al velocity by ~ 7% with the viscosity of the fluid phase in
the Barre granite clearly demonstrates the lmportance of
viscosity in solid aggregates wlth fluid-filled microcracks.
The magnitude of the phenomena are especially surprising
because they occur in rocks with crack porosity Well‘below
.01, Theoretical results‘by walsh (16), previously veri-
fied by'Nur (Chapter 2) explain the large changeé observed
in Vp upon saturation with water. Several 1nvestigatoré
have considered the theofetical aspectsvbf‘ﬁiscous_1nclusions.
Biot (17) treated the problem of fluld in tubular and
spherical incluslons. Formal solutions in Which‘viscoelastic
relations were assumed but in which no specific form was
assigned to the viscous phases have been considered 1in some
detail by Knopoff and MacDonald (18),and Collins and Lee
(19). While these theories are useful mathematically they
do not provide a particular pﬁyéical mechahism of attenua-
tion. Walsh (16) used solutions for the elastic response
of aggregates to stress and'theAV1chfelastic correspondence
principle to obtain the viscoﬁsvﬁerms. As in the elastic
solution the role of the inclusion shape 1s very important.
Crack-like inclusions cause large changes in the response

of a composite to stress even 1if porosity is small,
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The bulk modulus of the fluid inclusion was shown
previously (Chapter 2) to affect the bulk modulus of the
aggregate. The present experimental results indicate that

the effective shear modulus depends on the viscosity of the

{% fluid phase., These observations are in remarkable agree-

| ment with Walsh's theoretical results which show that there
exists a frequency at which the shear modulus has an
inflection point and the internal frictlon a pronounced
peak. This characteristic frequency Wd  is rather low
and is related to the viscosity, and the intrinsic shear

modulus, /“o , by

Wdn_ .4 3.1
Cl/”o ‘

where a is approximately equal to the average crack aspect
ratio & . Furthermore Walsh's expressions indlcate that
internal friction and velocities are frequency dependent.

In the neighborhood of (Jd he found that
_ Aw/wd 3.2
ST B+ (Wwa)?

- /4-@0/QUJ21
M =M Br (W)

3.3

where A and B are constants that depend on the shape and
density of pores and cracks. Our experimental data were
obtained at a constant frequency (W while viscosity, and

therefore W4, varied greatly. Walsh's work can be used
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with our data to obtain other results. Combining equations
3.1, 3.2, and 3.3 gives

¢ o AWN /oMo | 3.4
S B+(W‘V}A(/qo)2

and

T LN ot o) 3.5
% /* /ﬂ°B+(wn/o</4°)"

Note that frequency &) and viscosity'7 appear always as

the product &)n . The dependence of velocities and in-
g ternal friction on viscosity, if Newtonian, can be used to
| evaluate their dependence on frequency at a constant
| viscosity~-a relationship that is much more difficult to
obtain experimentally.

Our results are similar to the results reported by
K& (20, 21) and McLean (22) on the effects of grain boundary
viséosity in polycrystalline aluminum and brass. Kg found
that polyerystalline aluminum and brass exhibit a tempera-
ture dependent internal friction ;5 and shear modulus /E
very much like those of viscoelastic material, A peak of
internal friction was observed at some critical frequency
Wy &t which an inflection point in the value of the
effective shear modulus was also observed. This peak occurred
| at 290°C although aluminum melts at 660°C. With the assumption
that the structural disorder at grain boundaries is associated

with a viscosity, K@ showed that the critical frequency wWd

is related to viscosity /7 y the intrinsic shear modulus /‘10
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and the ratlo of the thickness of the viscous layer to grain

diameter X by

__d—q-—w =1 3.6
X /‘10 '

which has the form as equation 3.1, The expression for

viscosity as a function of temperature for molten aluminum

is approximately

P

where v7° and K are constants and T 1s absolute temperature.
K2 found that the viscosities he computed from equation 3.6
agreed with equation 3.7 extremely well. He concluded that
grain boundaries 1in metals show a viscous behavior even
several hundred degrees below the melting temperature.
Further experiments at various frequencies by Kg (21)
demonstrated that frequency énd viscoslity are indeed inter-
changéable. Because grain boundary creep rate varies
linearily with stress it is‘relatively important at low
stresses (23). Consequently this mechanism is likely to
have significant_effects on elastic wave propagation in
polycrystalline aggregates.

In summary it is clear that shear modulus and internal
friétion in shear in a solid with incluslons of viscous
flulds are very sensitive to both viscosity and frequency.
At low concentrations of fluid with reasonably high bulk

modulus the effective bulk modulus of the aggregate is al-
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most identical to that of the solid ltself,and internal
friction associated with compressional waves is almost

independent of frequency.

5. Application to the earth.

Our results may be applied in two ways to the study of
the earth., They may be used to predict the effect of partial
melt, in rocks, on the elastic and anelastic p:operties.
Secondly, they may be used to infer the viscosity of the
fluid phase in the low velocity zone, abbreviated LVZ,
from seismic observation on the earth and with the plausible
assumption that the LVZ is caused by partial melting.

The relatively high attenuation (24), low viscosity
(25), and occurrence of zones of low velocity (28) in the
upper mantle are all compatible with the presence of small
amounts of a fluid phase, In order to apply our results
to the earth through equation 3.1, three of the four para-
meters must be known. The frequency (L) and intrinsic shear
modulus /H, are readily available from seismic investiga-
tions. The frequency is determined from the observed
waves while the shear modulus can be estimated from travel
times and phase velocities of surface waves (29). The

estimation of the viscosity of the fluid phase and the aspect

ratio X are less cert®in. The viscosity can be estimated
by thermodynamic considerations (27, 28) but the uncertainty
of both temperature and pressure effects on viscosity are

very large, Viscosity estimates from the responses of such
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large regions as Fennoécandia to surface loads (25), are
irrelevant to the determination of the viscosity of the
fluid phase., Clearly, the viscosity of grain boundary zones
is much smaller than the apparent viscosity of the whole
aggregate, |
Neither is the shape of the fluid phase in the earth
known. The available data for various metals indicate
the presence of a very narrow viscous zone, with an aspect
ratio o = 1070 to 1077 (20, 21). For Barre grenite,
saturated with glycerol, A , computed from equation 3.1
(with W= .5”0‘6P$,7=.l4 Polse,/*fo=3.$x10":(1:), equals
2 x 10™7, These two values are remarkably close and in the
present discussion, they are assumed to be representative
of the upper mantle.
If rocks with viscous pockets respond to stress like
the glycerol-saturated Barre granite, then
W ~ Y7
<x/qa ci/ha

and equations 3.2 to 3.5 are valid for parts of the earth,.

308

mantle

laboratory

Thus when frequency, viscosity of the fluid phase, and

the intrinsic shearvmodulus in the earth are known, the
velocities and internal friction can be estimated from the
Laboratory results, These results can be used to estimate
viscosities of the fluid phase from the seismic data.

Aki (29) postulated that a strong shear modulus anisotropy
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‘exists beneath Japan in order to explain the observed Love

and Rayleigh wave velocities. If thls anisotropy is caused
by the presence of intergranular viscous material mostly

in the form of horizontal flat pockets, then the ratios R
of the effective shear modulus for Rayleigh waves to that
of Love waves at,variousldepths are estimates of the ratio
of the effective shear modulus of mantle material with
melt to the intrinsic modulus. From Aki's model, R = .82

at a depth of about 25 km, and R = .75 at 60 km, These

8 5

values correspond to /7: 5 x 10° poise and i‘] = 3,5 x 10
poise respectively in the laporatoryvmeasurement. The
frequency of the surface waves was about .03 cps and the
intrinsic shear modulus of the mantle/uo= by x 1010 ag 25 km
and 72 X 1010 dynes/cm2 at 60 km., Thus from equation 3.6
the viscosity of the fluid phase 1016 poise at 25 km and
1013 poise at 60 km, a substantial decrease with depth.
This trend is compatible with the decrease of Q with depth
(30) over this depth range and the bulk viscosity computed
by McConnell (25).

The decrease of the calculated viscosity with depth

can be estimated from the temperature distribution in the

“earth. The theoretical considerations of Gordon and Nelson

(31) lead to an approximate expression for grain boundary

viscosity in the earth.

q=7°e><f>[(“‘ )1+ 2 P) 3.9
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where '70, K, and K,are constants. &t relatively shallow
depth where at@z is large, the temperature effect is dominant
and viscosity is expected to decrease significantly with
depth. At great depth; where 373%2 is small the increase
in pressure causes viscosity to increase. If the effect

of pressure 1s neglected in the upper mantle, the viscosi-
‘ties under Japan compafed with the measured values of vis-
coslty as a function of temperature for glésses and volcanic
rocks (32) correspond to a temperature of 450 to 600°C at 25
km and 500 to 670°C at 60 km. At the same depths, Clark

and Ringwood's (33) temperature-depth relations give approxi-
mately 350 to 4500C and 600-700°C respectively. Improve-
ments in the data on viscosity of silicate melts may lead
invthe future to improved estimates of temperature in the
earth,

If the mechanism of the LVZ is that of grain boundary
viscosity, then we may use our laboratory to infer certain
features about the LVZ; viz. the dependence of attenuation
and depth of the LVZ on frequency. _

Consider‘first for simﬁlicity a portion of an upper
mantle in which the viscosity increases with depth

according to the relation

/fn (V]/i7o)='k12+'ﬁo , 3.10

From the laboratory results, and assuming again that

equations 3.1 to 3.5 hold, a region of rapid increase of

velocities should be noticeable as shown in fig. 3.4.
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Furthermore a low Q zone exists at a depth which depends on
the frequency of the wave, for a given viscosity variation.
At higher frequency the low Q and large dV/dz zones will
seem shallower than at lower frequency.

Consider next the viscosity distribution that roughly
corresponds to equation 3.9, Viscosity first decreages
rapidly with de@th and then increases at a smaller rate,

The velocity and internal friction structure obtained fron
the laboratory data are shown in fig. 3.4 for various fre-
quencles. For compressional waves the lowest velocity and
the thickness of the LVYZ are approximately independent of
frequency. For sheér waves however the shape of the LVZ
and the lowest velocity depend significantly on frequency.
At higher frequencies the shear velocity in the zone is
higher and the LVZ thinner than at low frequencies. The
apparent internal friction in shear has a single or a double
peak depending on frequency. Velocities obtained by
Archambeau et al. and Anderson and Smith (34) (fig. 3.5)
show a larger decrease in Vé than in Vp because the effective
bulk modulus remains almost constant through the LVZ while
the effective shear modulus decreases by 15%4. 4 high

; estimate of the viscosity of the melt can be obtained fron
the decrease of the shear modulus. If we take the intrinsiec
shear modulus /4,,:775 mb F//Jg-: 80 and @ = .1 cps
the viscosity of the fluid phase in the LVZ is V)S 1013

poise at a depth of 80-100 km. An independent estimate of
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the lower bound of b\ can be obtained from equétion 3.8
with the assumption that the LVZ is a region in which a
maximum of attenuation exists. Forw = .1 cps n2;107
poise. Although the difference between the two estimated
- bounds on viscosity is significant, the difference between

the corresponding temperatures is only 100°¢C to 200°¢,

6. Conclusions.

Results from laboratory measurements of velocities and

attenuation through rock saturated with a viscous phase

» indicate that many of the observed seismic peculiarities
in the upper mantle are compatible with the presence of
partial melt‘or grain boundary viscosity. The stfucture of
the 1oW velocity zone with its pronounced decrease in shear
velocity can be predicted from the laboratory data., Vis-
cosities of the melt (1016) poise at 25 km, 1013 poise at
60 km and 107-1013 poise at 80 km) estimated from seismic
data are compatible with the temperature expected at these
depths.

The presence of partial melt causes seismic wave
velocities, depth and thickness of the LVZ and internal
friction to depend on the wave frequency. Longer period
waves will be associated with more pronounced low velocities
and shorter perlod waves will be associated with less
pronounced velocities., Peaks of attenuation and locally large

values of dV/dZ can occur in a region in which viscosity

Increases or decreases monotonically. The depth to this
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region 1s frequency dependent.

The seismic equation of state becomes considerably
more complicated with the introduction of terms to account
for the presence of a liquid phase; Both Vp and Vg depend
on frequency because the effective shear modulus is a function
of frequency. To describe this dependenoe, viscosity and
the configuration of liquid phase must be known 1in addition
to the elastic constants of the solid phases and their

densities.
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Table 3.1

Physical Properties of Barre granite

Property Remarks
Density 2,650 gm/cm3
Porosity crack .003+.0005
pore .003+.002
total .006+.001
Velocity
at room conditions
Vp(dry) 3.90 km/s
Vp(saturated) 5.45 km/s
Vg (dry) 2.58 km/s
Vg (saturated) 2.63 km/s
at 10 kilobars
Vp 6.40 km/s D%fferent sample.
Birch (1960)
Vg 3.70 km/s Simmons (1964)
Average grain size 3 mm
Modal analysis (% volume) Birch (1960)
Qz 26%
K-Felspar (orthoclase) 25%
Plagioclase(albite) 37%
Mica-Biotite 9%

-Muscovite 3%




‘elep paanseau woxj pojeroderlxd 7
*ostod ﬂuob 2I9YyMm AQN«\Q»\QON\ Ut usATb ST AITSOOSTA T

= 000°T oce- £€9°¢8 ZS°Ly G0°€¢€ Fs°¢g 00°9 - - PTIOS
9¢8° o0¢gC* IT1°89 80°C¥ 89°LT 8€C°¢ 0Ly S 0°6 ‘ 8L -
co08* Legz® Ly°99 - 9T°C¥ 98°9¢ 06T°¢€ SEV S L0°8 L -
6LL” V¥T® L6°%9 TAANA IT°9¢ SPT°¢€ Zov°g 0°L €9 -
9L 8¥%Z° 6S°€9 AANAY 8% °G¢ LOT "€ 0LE"S wo.w 56 -
8€L® §ST° 60°29 oe°ch €L ye TI90°€ ove*s 0°¢g €y -
9TL*® ¢9¢* €6°09 ov-cv 86°€C FTO0°€ 80€°G 0°v ze -
SoL® 99T’ 6L°6S 9€° ¢y €9°¢€¢ 266°C 06C°S G°¢ SZ -
§69° 89c¢° 0T " 6S 6E°Ch 0g°ee TIL6°C SLZ*S 0°¢ 8T -
989" TLC® 6€°89 v "¢y L6"¢c 0S6°¢ 09C°S S°¢C 8 -
SL9" LT €9°LS 09°2C¥% 9°¢¢ LZ6"¢ 0sZ*s 0°¢ T
€99 8LC® 9L°9¢ 09°¢¥ oc-ze 006°¢ 0€C*S S°T 1T
6¥9° ¢€8¢C° 08°SS vL Ty L TC 0L8°¢C €IC°S 0°T S¢
GE9° L8T” L°vsS 9L Ty 9C°1¢ 8€8°¢C 06T"°S S° ov
8T9° 0e6C° ov-es 9€ "¢y 69°0C 008°¢ 8¥1T° S 0°0 9§
L6S® 96C° P8 TS A'AN4% 00°0¢ €GqL°¢ LTT" S P - L
rLS®  sog* €2°0S L8°C¥ PZ°6T ooL°¢ S60°9 8° - 86
096¢°* o0T1E" 8T 6% vz ey 9L°81 999°¢ G80°S 1= 7CT
06G* GTE”" 6V °8¥ 96 ° ¢V Pv 8T €v9°¢ T80°S 9°1~- 2851 TOx90ATD
Sys*  LTE” 0T"8% 8L EY 9C°8T 0€9°¢ 080°S - 8T Ia3eM
€S »¥1° (0C°0P) (28°8T) LSTLT 08s°c (000°%) V- . 8T ITY
o:%w\ \A JMW_ JMW abm. m\MM m\mw A3TsoosTA @anjexadusy, pInTJd

‘saanjexsadual SNOTIRA 3Je mﬁmamw 93TUuRIb BIIeg pejeanies JO siojaweaed TeOTSAUd

¢°€ STqelL




76.

Figure Captions

fig. 3.1 Viscosity of glycerol (after Weast[lil). The
glycerol was used as fluid inclusion in rock.

g fig. 3.2 Effects of viscosity of a fluid phase on velocity

and attenuation of elastic waves. Both Vp and

VS increase with viscosity, particularly at

E )’}z .1 to 1 poise where internal friction is

particularly high.

fig. 3.3 Effective isotroplc elastlic constants cal-

culated from the velocities. Shear and

Young's modull increase and Polsson's ratio
decrease with increasing viscosity. Bulk

modulus 1s almost constant.

fig. 3.4 Relations between viscosity distribution and
velocities and internal friction. Viscosity
increases linearily on a log scale with depth
(upper figure) or has a minimum (lower figure).
fig. 3.5 Upper mantle velocity structure (after Andér-
son and Sammis[Bh]). The low velocity zone
is more pronounced for shear than compressional
- waves, consistant with the presence of viscous

pockets,
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Chapter 4
Stress induced velocity anisotropy in rock:

an experimental study

1. Introduction

The fact that uniaxial stress causes changes of elastic
properties in certain rdcks in the direction of the applied
stress which are larger than the changes in the perpendi-
cular direction was demonstrated by Tocher (1957) and Mat-
sushima (1960). This behavior seems clearly to be associated
with the microcracks that exist in granitic rocks, a
suggestion made long ago by Adams and Williamson (1923)
to explain the effect of hydrostatic stress on elastic
properties of rock. At effective* stress levels up to
about 1 kb, the elastic properties of some rocks are controlled
mainly by the properties of the microcracks. The effect
of non hydrostatic stress on elastic wave velocities,
which we report here, are possibly important for selsmic
crustal studies, in situ stress determinations and perhaps
also for the interpretation of veloclity anisotropy of the
low veloclity zone.

In rocks, crack shapes are approximated reasonably

# TEffective stress 1s defined as the confining pressure

minus the pore pressure.
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well by penny-shaped ellipsoids (Walsh 1965), which allows
one to describe the effects of cracks with only three para-
meters-~-the crack aspect ratio (width to length), the
porosity, and the distribution in space of the crack nor-
mals,

The effect of an épplied non~-hydrostatic stress is

to close cracks in some directions and leave cracks open

in other directions. The stress necessary to close a

penny shaped crack is proportional to its aspect ratio
(Walsh 1965)~-the narrower cracks close at lower pressure,
The effective elastic constants of a solid with cracks are
determined by the distribution of orientations of open
cracks (Walsh 1965), 1If cracks are closed in some directions
§ but open in others, rocks that are intrinsically isotropic
| show a directional dependence of the effective elastic con-
stants and are in general anisotropic. The elastic proper-
ties of a rock which initially has a random crack distri-
bution could possibly remain isotropic under hydrosﬁatic
pressure, attaln hexagonal symmetry under uniaxial stress,
and orthorhombic symmetry undef three different principal
stresses,

In order to investigate the effects of non hydrostatic
stresses on the elastic properties of rocks, we have
measured the velocities of elastic waves in several directions

on the Barre granite, This material has been used in

laboratory studies by others (Table 4.,1).
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2. Experimental procedure

A cylinder 10 cm in diameter and 10 cm long of Barre
granite, carefully machined on & cylindrical grinder to fit
closely the corresponding hemi-cylindrical holes in two
steel blocks was loaded uniaxially in a simple press,

At zero stress the velocities of compressional waves in the
Barre sample were 3.79, 3.90, and 3.93 km/s in three
mutually perpendicular directions. The axis of the cylinder
was along the 3.90 km/s direction and transducers were
mounted along the 3.79 xm/s direction for velocity measure-
ments across the cylinder. The geometry and certalin con-
ventions used later are shown in fig. 4.1. Because the
validity of our results depends on having a uniaxial stress
and because such factors as elastic mismatch between the
steel blocks and the rock cylinder, non-uniformity of the
rock, and the small holes cut in side of cylinder for
transducers could lead to non-uniaxial stress, we checked
the state of stress in the sample with strain gages mounted
on the flat ends of the cylinder, If it is truly uniaxial

the strain in direction & would be
[+Y 2 Vv
é(@)’ "E"‘G-COQ e - E o) 2.1
The results of measuring € as a function of direction,

shown in fig. 4.2, show that agreement is better than

10%.

Instrumentation was similar to that used by Birch
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(1961) and Simmons (1964) and identical to that used by us
(Appendix A) for previous work on the elastic properties of
rocks, Transducers (barium titanate for P-waves and AC-
cut gquartz for S-waves) were cemented with a conductive
epoxy to the rock surface in each of two slots cut on
opposite sides of the rock cylinder, at the center of 1its
length. A Velonex model 350 pulse generator was used to
obtain a 0.1 pulse of 50 to 500 volts. Time delays were
measured with a variable length mercury delay line, similar

to that described by Birch (1960).

3. Results of measurements

Four sets of measurements were made: (1) Compressgional
waves normal to axis, (2) shear waves propagating nofmal to
axis and polarized normal to axis, (3) shear waves propagab-
ing normal to axis and polarized parallel to axis, and (4)
shear waves propagating parallel to axis. Each set con-
gists of velocity as a function of uniaxial stress and as
a function of the angle B (fig. 4.1). All wave velocitlies
in this experiment were obtalned after the sample was
dried and allowed to come to equilibrium with room conditlons.
The data are given in Tables 4.2 through 4,5 and shown in
figures 4,3 through 4.8,

Although velocity increases lin all directions with
increasing uniaxial stress, the size of the lncrease clearly

depends on the angle between the stress and the propagation

direction of the compressional wave., Ior shear waves, 1t
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depends on the direction of polarization as well as on the
direction of propagation. The largest effect on velocity
is observed when the wave propagates in the direction of
the applied stress and the smallest in a direction perpen-
dicular to it (figs. 4.3, 4.4). 1In addition, the velocity
of the shear wave polarized parallel with the axls of the/

cylinder exhibits large dependeénce on direction (fig. 4.6)

whereas that of the wave polarized normal to the aXis appears
to be (almost) independent of direction (fig. L.8). These
are the relations that would exist for single crystal
elasticity.

The interesting phenomenon of acoustic double re-
fraction was observed for shear waves propagating along
the axis of the cylinder (figs. 4.9 and 4.,10). Although
the phenomenon has been observed previously in single
crystals (Waterman and Teutonico, 1957 and Simmons and
Birch 1963), we believe this is the first time 1t has been
observed in rocks in the laboratory. The observed arrival
wave forms for the shear wave propagating parallel to the
axis as a function of direction €, and at oo bars, are
displayed in fig., 4.9. The amplitude of the input signal
was roughly the same for all angles. At @ = 70°, the
arrival of two waves at different times 1is clearly seen,
These arrivals may be traced to both larger and smaller

values of © although the second arrival is difficult to

pick at values less than 30° and the first arrival is
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obscure at this amplification at values greater than 70°.
The velocity of the fast wave seen atO<O £ 70° in fig.
4.4 1s independent of @ whereas the velocity of the slow
wave ( B 70°) varies with direction (Table 4,5), The
apparent changes in wave forms with increasing stress,
particularly for@= 60° and 70° (fig. 4.10) are due to inter-
ference between the two sheaf waves., As indicated in
fig.4.10, the amplitudes of the two waves that travel along
the aiis are equal at about @ = 5(? to 60 degrees. This
could indicate that dissipation becomes anisotropic with
stress;-the dissipation of energy of the fast wave is

smaller than the slow wave,

L, Discussion of uniaxial results

The results show clearly that the Barre granite be-
comes anisotropic under unlaxial stress condition. BRBoth
shear and compressional velocities change with direction,
at a given stress level, in a manner expected from the
elagticity of single crystals, In general, distinct shear
waves with different velocities exist in any direction of
propagation when uniaxial stress is applied; one direction
of polarization is always in the pléne which also includes
the direction of the applled stress and the second direction
of polarization is in an orthogonal plane., It is especially
gratifying that at all stress levels the velocity of shear
waves propagating along the cylinder axis and polarized

parallel to the stress axls 1s equal within + 1% to the
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velocity of shear waves propagating parallel to the stress
axis and polarized parallel . = = to the cylinder axis;

gsimilar statements could be made for other pairs of directions,
We interpreted these results to indicate that the influence

of stress on velocity in general can be described in terms

of the anisotropy elements of an elastic crystal,

If we restrict our discuséion to materials in which the
change of velocity with stress is not too large and for
waves of sufficiently small stress amplitudes, in order to
avold the effects of non-linear stress-strain behavicr, then
we may estimate the limits of both the effect of stress on
the elastic constants and the effect of the stress amplitude
of the wave, In one dimension we have

= b1
6- E U

where € 1is strain, O 1is the corresponding stress and & is
an elasgtic parameter,

Differentiating with respect to  yields

£i0-eg)

Linear elasticity can describe the material adequately when

%ga_é X1.

Our measurements indicate that Young's modulus E can
change by as much as 10% per 100 bars. If & = 100 bars
then dE;/HGESIOB. 'Therefore, the dynamic stress level in

the rock should not exceed & few bars for satisfactory
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linear approximation. Because the maximunm stress amplitude
of the waves 1is .0l bar or less, the effect of stress waves
on the stress-induced anisotropy is negligible,.

The uniaxial stress field has a high degree of symmetry,
that of the axial system. If the initial crack distri-
bution were random, no lower symmetry in the elastic pro-
perties would be anticipated although a higher one could
be possible. If however the initial crack distribution was
not random the induced anisotropy may have a form less
symmetrical than axial, Indeed the variation of the
velocity of SV with directibn with more than one extreme
point is not compatible with hexagonal symmetry, Because
this variation is small, we assume that axial symmetry
describes the stressed rock and proceed to compute the
various effective dynamic elastic constants és a function of
the applied uniaxial stress. The transformation of velocities
to elastic constants is available in several references
(Stoneley 1948; Hearmon 1961 for example)., For convenience
of notation, we take the 3-axis parallel to the direction
of the applied stress, the 2-axis parallel to the cylinder
axis, and the l-stress orthogonal to the 1 and 2 axes. The
values of Egs, E77, /413 and /412 are given in Table 4.6 and
are shown in figure 4.11, We notice that much like the
results in chapter 2 at very low stress levels the values

of Poisson's ratio are sm&ll and increase slowly with stress.

The Young's moduli (fig. 4.11la) and the shear moduli
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(fig., 4.11b) also increase with increasing stress, as a
strong function of direction.  Noteworthy is the observa-
tion that the influence of stress as well as direction on

the Young's modull E's is greater than on the shear moduli.

5. Biaxial loading

In order to extend our observations to a biaxial
state of stress, we measured compressional velocities on
13 cm cubes of Westerly and Barre granite loaded in a
stress system that consisted of two uniaxial presses mounted
at 90°‘to each other. Equal velocity contours on a Cﬁ,G}
plane are shown in fig., 4,12. These lines indicate the
range of biaxial stress combinations which will procduce a
given velocity. We conclude from these results that the
velocity is not uniquely related to stress because various
bilaxial stress combinations can produce the same velocity

in a given direction.

6, Conclusions

Application of non-hydrostatic stress to a rock that
contains micro-cracks induces elastic anisotropy. The
stressed rock exhiblts many features of anisotropic crystals,

including that of acoustic double refraction.
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Table 4.1

Physical Properties of Barre Granite

Property

Density
Porosity crack
pore
total
Velocity
at room conditions
Vp(dry)
Vp(saturated)
Vg (dry)
Vg (saturated)
at 10 kilobars

Vp

Vs
Average grain size
Modal analysis (% volume)
Qz
K~-Felspar (orthoclase)
Plagioclase(albite)
Mica-Biotite

-Muscovite

Remarks

2.650 gm/cm3
.003+.0005
.003+.002
.006+.001

3.90 km/s
5.45 km/s
2.58 km/s
2.63 km/s

6.40 Different sample.

Birch (1960)
3.70 Simmons (1964)
3 mm

Birch (1960)
26%
25%
37%
9%

33



88,

Table 4.2
Compressional wave velocity (km/sec) in Barre granite as a function of magnitude

and direction of uniaxial stress
stress Angle between stress and dir. of propagation

bars 0 10 20° 3¢0° 40° 50° 60° 70° 80° 90°
0 3.79  3.82 3,79 3.79 3.78 3.79 3.79 3.79 3.79  3.79
25 3.94 3.94 3.90 3.89 3.88 3.8  3.83 3.81 -- -
50 4.04 4.03 4.03 3.99 3.95 3.92 3.86 -- -- -
75 4.13  4.15 4.10 4.07 4.06 3.98 3.90 -- - -
100 4.22 4,22  4.22 4,15 4.12 4,04 3.95 3.89 3.84  3.85
150 4.37 4.41 4.37 4.30 4.26 4.15 4.05 -- -- -
200 4.51  4.53 4.51 4.42 4.36 4.28 4.15 4.05 3.93 3.92
250 4.60 4.61 4.58 4.52 4,46 4.34 4.23  —- - -
300 4.67 4.68 4.65 4.59 4,54 4.40 4.30 4.19 4.04 4.02
350 4,73 -- -- - - - -- - - 4.05

400  4.78 - -- - - - - - — 4,08
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Stress
Bar

0.
50.
100.
150.
200.
250.
300.
350.
400.

0°:

2.63
2.69
2.74
2.83
2.88
2.92
2.96
2.99
3.03

10°

2.63
2.70
2.78
2.84
2.89
2.93
2.96
3.00
3.03

20°

2.63
2.70
2.78
2.84
2.89
2.93
2.97
2.99
3.03

Table 4.3
Shear Wave Velocity (SH) in Barre granite as
a function of magnitude and direction of uniaxial stress.
Velocity in KM/SEC.

Angle between stress and direction of propagation

30°

2.63
2.69
2.77
2.83
2.87
2.92
2.95
2.98
3.01

40°

2.63
2.69
2.76
2.81
2.86
2.90
2.93
2.96
2.99

50°

2.63
2.67
2.73
2.78
2.83
2.87
2.89
2.93
2.95

60°

2.63
2.65
2.70
2.75
2.79
2.83
2.85
2.87
2.90

70°

2.62
2.65
2.68
2.73
2.77
2.80
2.82
2.85
2.87

80°

2.62
2.64
2.67
2.71
2.74
2.77
2.79
2.82
2.84

90°

2.63
2.65
2.68
2.71
2.74
2.77
2.79
2.82
2.84
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Pressure
Bar

0.
50.
100.
150.
200.
250.
300.
350.
400.

Table 4.4
Shear Wave Velocity (SV) in Barre granite as
a function of magnitude and direction of uniaxial stress.
Velocity in KM/SEC.

Angle between applied stress and direction of propagation

Oc

2.61
2.68
2.76
2.83
2.89
2.95
2.99
3.04
3.07

10°

2.63
2.69
2.77
2.84
2.90
2.96
3.00
3.05
3.08

20°

2.64
2.70
2.77
2.84
2.89
2.95
2.99
3.04
3.08

30°

2.63
2.70
2.76
2.83
2.89
2.94
2.91
3.03
3.07

40°

2.64
2.70
2.77
2.83
2.89
2.94
2.98
3.02
3.05

50°

2.63
2.69
2.75
2.82
2.88
2.93
2.97
3.00
3.04

60°

2.64
2.68
2.74
2.81
2.86
2.91
2.95
2.99
3.02

700

2.63
2.67
2.73
2.79
2.86
2.91
2.95
3.00
3.02

80°

2.63
2.66
2.73
2.79
2.86
2.91
2.96
3.00
3.03

90°

2.63
2.66
2.73
2.80
2.87
2.92
2.96
3.00
3.04




Table 4.5
= Shear wave velocities (km/sec) in the direction perpendicular to that of the applied
o stress as a function of stress and direction of polarization of the transducers. The

measured velocity is for polarization in the plane of the stress for 0..rA®A.Eo and per-

pendicular to stress for e3> 70° (see fig. 4.10b).
stress Angle between direction of stress and plane of transducers' polarization
bars 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
0 2.65 2.65 2.65 2.64 2.64 2.64 2.63 2.63 2.63 2.63

50 2.73.  2.72 2.72 2.70 - - -— 2.65 2.65 2.66

100 2.79 2,78 2.77 2.78 2.78 2.77 - 2.67 2.67 2.69

150 2.85 2.84 2.84 2.84 2.84 2.84 - 2.70 2.70 2.72
200 2.90 2,91 2.90 2.90 2,90 2.88 - 2.72 2,73 2.75
250 2,93 2.93 2.93 2.94 2.94 2.93 - 2.74 2.75 2.78

300 2.98 2.98 2.98 2.98 2.98 2.97 2.97 2.76 2.77 2.80
350 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.78 2.79 2.82
400 3.02 3.02 3.02 3.02  3.02 3.02 3.02 2.80 2,81 2.83
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Table 4,6
Various effective elastic constants (inMb) in Barre granite

as a function of uniaxial stress (in bars),

Stress E1n E33 /Vlg /413 'Vlj Vgl )32

0 .367 .367 .183 .,183 ,036 .036 .036

50 .370 407 ,187 ,191 .,060 .067 .037
100 .378 436 .190 ,198 .073 .086 ,O4s
150 .388 475 194 ,212 ,067 .082 064
200 .396 ,502 ,198 ,219 .070 .,088 064
250 M1z 0,517,203 .225 .070 .093 ,070
300 420,536 .205 .231 .072 ,092 ,084
350 JH25 0547 ,210 .236 071 .091 ,079

Loo 436 .562 ,213 .242 ,070 ,085 086
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Figure Captions:

Fig, 4.1 Geometrical relations. The cylindrical rock sample
1s subjected to an applied uniaxial Stress,
Velocities of elastic waves are measured either
along a diameter or along the axis of the
cylinder. The sample, with the transdﬁoers
attached, is rotated with respect to the applied
stress so that the wave always travels through
exactly the same path in the rock, while only
the relative direction of stress O 1is being
changed., Directions of polarization of the
shear transducers afe indicated by 3V and SH,

Fig. 4.2 = Strain as a function of stress levels and
direction € . Strain gages were mounted on
the ends of the cylindér in order to test the
assumption of a uniaxial stress throughout
the sample., Agreement with theoretical curve,
dashed line, is better than 10%,

FPig, 4.3 Compressional wave veloclilty 2as a function of
and stress direction of propagation. At O =
300 bars the velocity in the stress direction
increased by about 20% while at the perpendici-
lar direction the increase is only about 5% .

Pig. 4.4 Dependence of the compressional velccity on

direction at a given stress level., The




Fig, 4.7

Pig. 4.8

Fig. 4.9

oL,

dependence on direction has similar form at

all stress 1evéls.

G

The velocity of the shear wave SH. 8H is

o

polarized in the plane that includes the
direction of stress when@= o and is perpen-
dicular to stress when @ = 90°. Velocity
depends both on directicn and magnitude of
applied stress.

SH velocity dependence on direction. The
dependence is similar to that of P-velocity
although the relative difference between the
velocities normal and perpendicular to stress
are smaller,

Velocity of the SV wave as a function of stress.
The velocity is almost identical in all
directions, unlike the 3H velocity. The

plane of polarization always includes the
direction of the a?plied stress.

Variation of SV wave veloccity with direction.
The direction of the uniaxial stress is in the
plane of polarization at all values of B .
Observed recelived wave form travelling along
the axis of the cylinder at 400 bar at various
angles ©  TDbetween the direction of applied

gtress and direction of polarization of the

transducers.
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At O = 700 the. fast wave is polarized. .in.the

plane that includes the direction of the
applied stress.

Pig., 4.10 The shape of the received shear wave form whic!

travelled along the cylinder's axis perpendi-
cular to the applied stress. (a) @ = 60°,
The amplitude first}decreases with increasing
stress, due toAinterféEence, then increases
again, (b) @ = 760. The amplitude of the fast
wave is greatly reduced and the SV and SH
phases can be identified.
Pig, 4,11 Effective elastic constants. The constants
describe the induced velocity anisotropy: (a)
Young's moduli‘(b)‘Shear moduli, in directions
parallel and perpendicular to the applied stress.
Pig., 4.12 Velocity in a state of biéxial stress. The same
velocity, in a given direction in Barre granite
is-observed.for many stress combinations., Com-
binations of two stresses which gilven the same
compressional wave velocity (solid line) are

presented in this equal velocity diagram.
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Chapter 5
Stress induced velocity anisotropy in rock: a

. theoretical study

1. Introduction

h Results of measufements of velocities in rock subject
kfo non-hydrostatic stress, reported in chapter L guggest
:éhat the proéagation of compressional and shear waves
ﬂthrou%g a stressed rock is very similar to wave propagation
ﬁin elastic crystals. Velocities were found to depend on
direction relative to the direction of the applied stress
and shear waves showed ultrasonic birefraction. These
effects, observed only at low effective stress are caused
by the presence of microcracks in the rocks, a suggestion
first made by Zisman (1933) to explain the pressure effects
on elastic wawve yveleclities.

The influence of stress on velocities 1is lmportant for

crustal studles and possiblyﬁ in the upper mantle., In

the crust most rock contains cracks and therefore exhibits
strong dependence of various properties on stress. In

the upper_mantle the presence of zones of melt under high

pressure of viscous inclusions causes low effective stress

at which our results in chapter 4 are valid. In this chapter

we extend the theory of rock with random crack distribution,

derived by Walsh (19652,b,c) to & non uniform distribution.
Walsh showed that an ellipsoidal crack in an elastic

nedium closes when
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Tn=EFE 1.1

where E 1s Young's modulus, X = a/c¢c is the ratio of the
crack's width a to length ¢, and On is the stress normal to
the crack at great distance from it., Eq. 1.1 indicates that
line cracks (& a2 0) close under very small stress whereas
round pores ( X = l) remaln open even under relatively high
stress., Because rocks exhibit strong stress dependence of
elastic properties only at relatively low stress levels,

the aspect ratios of most of the cracks must be small,

Walsh (1965) also derived expressions for several
elastic properties in terms of the intrinsic solid pro-
péftiés, crack shape, and the distribution of crack directions.
His expressions can be applied to the effects of an incre-

ment of hydrostatic stress which causes a number of cracks,

uniformly distributed in all directions, to close, If
however, the applied Stress increment is ﬁot hydrostatic

the resulting effect is a crack distribution which depends

on direction because cracks whose normals are parallel to

the maximum -stress will close before cracks with normals
perpendicular to it., The mathematical development is simpler
1f we begin with a model in which all cracks have identical
agpect ratio and later generalize to a model with =
distribution of o< €/

We assume that the aspect ratio is sufficient for the
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description of the shape of the cracks, and that the maximum
crack length is small compared to the size of the sample in

é atatic test or the wave length in a dynamic test., The

term crack is restricted therefore in this paper to those
discontinuities whose longest dimensions do not exceed the
wave length of the dominant frequency in the ultrascnic
experiment used to obtaln the necessary data, As a practical

limitation, the crack length must be less than about 1 cm,

2. Single & model and the effective Young's modull

Suppose a rock contains penny shaped cracks whlch
initially are randomly distributed in orientation. All
cracks have identical aspect ratios, o . A crack will be
closed if. On>Eol where O, 1is the applied stress component
normal to the crack. The angular distribution of open
cracks under some simple condition of stress permits a
generalization of Walsh's (1965b) expressions which relate
isotropic crack distribution to effective elastic constants.

For any modulus Hij in the direction i and }J,

g;j‘j' {+ MUﬁMJ (9/5)5:”/56105(54//!51(?]

where

2.1

Hyj = effective elastic modulus in plane 1J (i#j)
and/or direction i (i=])

H, = lntrinsic modulus of the solid

myy =8 constant

Nij(eqe) = density of crack direction distribution
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The angle FB is measured from direction i and & is measured
in the orthogonal plane (fig. 5.1).

We define a general term

Ly iyl epenp s

c¢learly when the function Nij is known the effective modulus
can be obtained immediately. The crux of the problem then
is to determine Nij‘ If a uniaxial stress O 1is applied

in the direction ‘/: 0 then the normal stress component in

direction ‘/ is
Q’nﬁf)= O'Coszy 2.3

cracks will be closed when G}((f) ZEx, 1r 79,15 the
direction in which C,=E« , then

g cos'[[)]

In the case of hydrostatic pressure, all cracks remain open
so long as U$E and all are closed when O Fo. It will be
shown below that discontinuous crack closure occurs only
when the spectrum of crack shapes is discrete. When two

equal stresses are applied at = 90o (Q9;,=0, )0'3=0) then

o= sis”[(%8)"]

Consider first the uniaxial stress ¢ . All cracks

whose normal directions /.7) are larger than% remain open.
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Integrating eq. 2.2 over all open cracks from (ﬂtoﬁé vields
the expression for crack effects on Young's modulus E33,

parallel to the direction of uniaxial stress

L= 4ffms{s;w/sa/s COS}D

and fronm eq.
33" I |

For the effectlive Young's modulus in a direction perpendicu-
lar to a uniform tangential stress (0,02 ,03=0 ) the inte-

gration extends over the range 0L </3 70 and yields

fo/cmp»/sd/s 4"[1—@57”]

and from eq. 2.5

13- 401~ (-2 -

which is shown in fig. 5.2, The integration to obtain Ill
for the Young's modulus perpendicular to the direction of
uniaxial stress Eq1 1s somewhat more complicated., At a
given f3 (fig. 5.3)
=,0C.059 = RCO‘J‘fa
and
p=Rsmf3

hence

Coo Yo
D= COS“[_S',’;,ZP—] 2.8
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and the integratlon of eq. 2.2 yields

Wz T2
/9694/@9“/54(5 ]/C‘BCOSﬂSIM/&d/A
43“ [1-&7-‘46%-‘ (%f—ﬁ)@s ﬂStnde] 2.9
T-fo

which can be evaluated to yield (App. I) ,
2T (Eo()"’- (gﬁ)'s/z] | 2.10
I“ 3 3 _5"— o} ‘

3, The effective shear moduli for single o model

The i‘elationship between the effective shear /7:'} and
Young's moduli Eii will be used to obtain the /T':J by
integrations which are similar to, or identical with, the
ones used to obtain Eii in the preceding sections.

Consider first a small pure shear applied to a material
under uniaxial stress in the plane of the shear, (It is
convenient in this section to rotate the coordinate system
about the Xa direction by 1 /4, as shown in fig. 5.4.) The
pure shear A“J;; 1s equivalent to a combination of two equal,
perpendicular axial stresses, AU33 and AQ;, opposite in
sign and at an angle of T /4 to the applied shear stress.

The two stresses AUy ) AC33 cause displacements 4AU,, AY;

and strains A€,,A€3z3 in directions Xq, X3, respectively.

For any material,

A& = ‘;:” (AO‘,, - -17:3A°'33) 3.1
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and

Aé33‘= 'EL;s(Ao_g’s“ )‘73|AU.H)

where the bar indicates effective quantity.
Following the method of MacKenzie (1949) and sato

(1953), we can relate the effective strains to displacements

_ AU . AU,
A€y = 3%~ o

AUz AUs
A€En="3xz ¥ a

3.2

where a is the dimension of an elastic element, For pure
shear AQU=-48033and neglecting hysteresis, E33= E11 and
)/,32 )/3‘ we obtain
+
AUC - / )//3 A'J"

& E" 3.3
AUz _ [+ Vs
a =g A

The effective shear modulus can now be obtained from

the known displacements and stresses,

24U JAY; Aul . [AY I+ Y.
Ael3 2. DX3 "57;) ( a.ll-f/ a3}> EB:'A‘S@

Formally the shear stress-strain relations in a linear

infinitesimal elastic solid are
L AT | 3.5
Ens = Al
where /T‘-ls is the effective shear modulus and
|
ATm T (AG—N -+ Ac-g,g)

Hence 4

- |+ )}§|
27":3 Eas
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or

- . _En »

M= T3

This relationship 1s correct insofar as Poisson's ratio
is assumed to be independent of a stress distribution. The
correct value for Poisson's ratio will depend on the method
employed to obtain the effective elastic constants and
requires long and difficult analysis, Here we bypass this
problem by assuming that the effectlve Polsson ratios are
indeed independent of stress. It will be shown below that
the corresponding error in velocity is small,

We obtain /71_.3 from €33, the effective Young's modulus
associated with crack distribution due to uniaxial stress,
and now can evaluate the contribution of all open cracks
to the effective Young's modulus in the plane of the applied
stress, in the direction of pure shear, Thus the principal
normal stresses which are applied at 45° to this direction
cause non-symmetrical open crack distribution as shown in
fig. 5.4. The integration over this crack distribution,

evaluated in Appendix II, ylelds (fig. 5.2)
-4 ga\'h  (Ed)3h 3.7
Ils' _%L[?’(O') *(0')

It is important to note that the influence of a stress

applied at 45° i1s the same as the average of the effects

of the same stress at 0° and 90°, namely that

I,a’-'j_l'[lu"'l.sg] 3.8
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It will be seen below that this relationship leads to shear
modulus which is independent of direction in the X1X3 plane
Thé problem of obtaining the shear modulus term 112 in
the X1X, plane 1s simpler than that of obtaining I13. The
effective shear modulus 1s related to the effective Young's
modulus in the direction perpendicular to uniaxial stress,

namely.
—_ Eu
= —_— 3.9
/\4’1 201+ V)

with the corresponding expression

T,- 2[3(5,,()1:. Ed)yi] 3.10

We have thus obtained estimates of I 1j which yield four
elastic constants, using eq. 2.] namely -E-'ss. E. ,/;3
and.}%zby integration over the open cracks distributed
under uniaxlal stress., The E33 and Ell are the Young's
moduli in the X3 and ledirections, regpectively. The

/Zg and M, are the shear modull in the plane perpendicular

to X2 and XB regpectively.

L, A spectrum of & values

The results obtained so far for a single & model
indicate some trends which can be compared with available
data in a qualitative way., We notice that theoretically an
effective elastic property in the direction of the applied
stress 1s more influenced by stress than the same property

in a perpendicular directlon (figs. 5.1). Notilece, however,
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that our model with a single value of o{ does not describe
adequately the elastic behavior of rock under hydrostatic
pressure., In the model all cracks close at the same pressure
and the variation in effective elasticity with pressure is
discontinuous. Thils prediction does not agree with the
experimental data that are available in chap. 3.

The single o results can be generalized however, to
include a spectrum of & values ogod€1 by superposition.
We add not only contributions from cracks in various directions,
as we have done so far, but alsc contributions from cracks
with various shapes. 1In particular if the crack shape
density distribution function A(S ) is continuous, we need
only integrate with respect to ™. We denote the open crack
contribution for the single model by I(X ). Integrating
over all craif shapes we obtain.

o
Yij = JAG)-Tij @) dd + [ALAa v

o
where 0(0'-‘0./5. Q veing the current stress magnitude. The

first term is the summed contribution of cracks with 0L<(o(o
which are closed in some directlions. The second term
is the contribution of cracks with ot)d,, all of which are

still open. Under hydrostatic stress conditions
\
- 4,2
Yorss. = /A (60) do |
%o

Wwhen uniaxial stress is applied the term for Young's modulus

in the direction X3 of the stress becomes




olo !
Vo= fA(52)"da + [ "
© oo

and for the uhear modulus
| Y’B e HS(EM ’/z Eoz)3/jA(ol)do( ‘*/A(o()c/o( L4

In direction Xl perpendicular to the direction of the applied

stress oo " 3y I

Y =t [[3(%;«.) L (£ Awdd + [AG)det s
0 o/,

and for the shear moduius

Yn."' YU

It is therefore possible to determine these four
moduli in & stressed rock, given the spectrum density
function of the crack parameter and the state Qf stress,
The integrals we derived can be utilized to thain the
velocity under uniaxial conditions but we must first find a

simple way to obtain the initial crack spectrum A(X ),

5, Determination of the spectrum of crack shapes

Consider the hydrostatic loading test. From Walsh
(1965a) we Tind that under this stress condition an effective
elastic property E can be obtained from the corresponding

intrinsic property Eg and crack parameters

M(%-/)q\/ 5.1

where m is a numerical constant and N is the total number
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of cracks. The value of N 1is related to the aspect ratio

density function A(®K) thru

| (
/A(d)c!o(-‘—/\/ and fA(ol)do(-*-/\/o 5,2
o o

or in a differential form

%%: A(). 5.3

where o/ is obtained from o = P-/Eo
Thus

dN _ dN do _ Al) s.h
dP'- dd dP' Eo

or

N
A()= Eo ac'l?f 5.5

But from eqv 5.1

dv =£’_(m E_o..) 5.6
dp dp E
which can be obtained from measurements of E under hydro-
statlic pressure.
Thus J £
2]
A(o():- EoMa—F(‘E) 5.7
Similarly

| A(ot)'-'/%'“'f;l‘,s(%z) a

The aspect ratio density distribution function can
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therefore be obtained from the measurement of an elastic
property as a function of hydrostatic pressure. If a rock
with cracks is initially isotropic then A(X ) is sufficient
to determine its behavior under a general state of stress.
On the basis of the symmetry of a uniaxial stress field
we assume that the agsoclated induced anisotropy has hexa-
gonal symmetry with five independent elastic constants.
We can write the stiffness tensor (Bisplinghof et al.,1966)
Tij = CijkL Exd
and the compliance tensor
é{J' = S(,‘/dé,d
In terms of the more familiar technical constants we have
(Lekhnitski, 1963)
S = l/E, 51/22=')/’2/Ell
S3a33=1/En Snn = l//m_ 5.9
Snaz=- Vls/Eu-"’yJ/Ess Si313 = ’//44'3

We can also obtain the Cijkl without much difficulty.

For small values of )Qj the values of C 1 are, within

13k

a few percent

€3333 = £33 (+ .2%)
C1111 = Eyx (+ .2%) 5,10
C1122 = - V12 E11 (£ 1%)
C1133 = = VY13 B11 = - V3 Baj (£ 1%)
and exactly by
C1212 =/‘12

C1313 = M3
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The approximate errors in the first four terms, computed

from the values in Chapter 3, are given in parentheses. They
do not exceed 1% for the off-diagonal elements and a fraction
of a percent for the diagonal elements. From Sections 4

eand 5 we already have expressions for 1/Ej7, 1/E53, 1{,412
and léﬁ‘13' The value of Vj5/E17 can be obtained from eq.

5.9 while expressions forryﬁ3/E11 or‘ygl/EBB have not been
derived so far., walsh (1965c) derived an approximate
€Xpression for Poisson's ratio in rock with cracks but the
extension of his results to the anisotropic case is lengthy
and will not be derived. Instead we will obtain these
values from eq. 21 in app. III. It can be shown, from the
experimental values of‘)/iJ in the previous chapter, that
errors in the effective elastic of constants of ones a few

percent are introduced through the use of eq. 21, (App. III).

6. Aspect ratio distribution in Barre granite

The aspect ratio density function A(X ) can be expressed

numerically or by some analytic fit to data. MNost such
aénalytic expressions involve excessive computation which
tend to complicate our present investigation. Furthermore,
both Westerly and Barre granite samples show an initial
velocity anisotropy variation of about 10%, which implies
an initial crack distribution that is anisotropic. However,

the stress induced velocity anisotropy is not greatly affected

by the initial anisotropy if all velocities, or other per-
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tinent elastic parameters, are measured along the same path
through the sample while the varicus stresses are applied
in different directions. For Barre granite, the absolute
error in velocity does not exceed 2% which ig negligible
for the present analysis. 1Instead of an exact fit to the
data, A(O() is approximated by the simple form
/ﬁé%)=440"’4l°< - for OleAQA4l={g 6.1
=0 for o(j>/3

This function is shown in fig. 5.5 together with the
numerically derived spectrum from measurements in a single
direction in Barre and Westerly granites., Recause the
final velbcity values are obtained by integration of A(X )
the linear approximation employed here is satisfactory. The
value A} = Ao/(_; is obté.ined at &:{3, whereﬁ:cy’/E, and
where O, denotes the pressure at which all cracks are closed
under hydrostatic stress. For Westerly /3/:& .2x1077 and
for Barrej3¢.5 X 10-3. Equations 4.2 to 4.6 are integrated
in appendix III to yield the effective elast ic constants,

which are used to obtain the wave velocities in terms of

o
b

Barre granite are, for hydrostatic stress Q

Vl’: %0{7+15[%_(gﬁ)+i_(%{5)1]'11} for '0'\<E(3 6.2

the intrinsic velocities V. and Vg. The velocities in the

='V% for O > 5%3

and -1,

Ve =V, {zmz[;(%@%—(%)‘] } ror Qg Ef 6.3
- So for G—>/ Eﬁ
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The velocity of waves propagating in the direction of

an applied uniaxial stress O ,

. Y
V933=VF {l+2.s[-7‘:- %__ %5)"'%(5?3)]} zfor GSEP -

) o ‘%L
=VF {/+ .3/?(%@)3/2} for G’>/E/3

and the wave polarized in the plane including the stress

direction

'9&
\/sas"’V;{I+l.92&*%(£})*%(§;ﬂ} for Q‘égﬁ 6.5
'fo

= V¢ { | +’/.4z[?'(,fr,é)'/z+ _3_% (%é);ﬂ} for T>ER

and finally the velocity of the waves propagating in a

direction normal to the applied uniaxial stress
\/Fu“'vPo{I*Z.S %‘g{-(gz)'{-%(gﬁ)i']j‘yzfor 0« Eﬂ 6.6
v froas[E (B 2P e sz

and
Vs:z=Vs°{/"/-"Z[é'Z'L(Z-%) * % ('g(&)z”-'/z for G‘SEF 6.7
=\/S"{ 1+192] 2 ()" %( %-é)%]} oen T>Ef

For Barre granite we used V; = 5,90 km/sec and Vg = 3.65
km/seo. The computed velocitlies are compared with the
measured values in fig. 5.6. The agreement is quite good.

The small discrepancy in V. is probably due to the sim-

P
plified form of A(X ). Perhaps the clearest agreement
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between model and data is seen in the relatively small
difference between the two shear velocities and the large
differences between the two compressional wave velocities.
The velocities in various directions other than the
principal directions of stress can be found from the general
expressions for velocities in anisotropic media, Brady
(1969) suggested that the effective elastic constants in
any direction should be obtained through an integration
over the open crack distribution about that direction. The
anisotropy resulting from Brady's method will generally be
inconsistent with the anisotropy of a general linear elastic
solid and the relationship between elastic constants and
wave velocities will not be that which is found for linear

elastic solids. BRBecause we have assumed that the effective

elastic constants are related to the wave velocities in
rock much like the relations in a linear elastic solid,

g» which implies the validity of the linear wave equation, we
| can obtain the various elastlic properties from their
principal values using only one transformation,namely that
of a fourth rank tensor., Any other transformation is in-
consistant with linear elastic velocity anisotropy. For
uniaxial loading this anisotropy is axial = with the added
empirical condition based on the data in ch. 3 that VslB
does not depend on direction. The velocities of elastic
waves propagating in a given direction with respect to

the direction of the applied stress can therefore be expressed
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very simply in terms of the largest (V" ) and smallest (V__L)
velocities which are parallel and perpendicular to the

applied stress, respectively (Appendix III).

2 2 2 1 2
V=V +(Wy-Vi)cos’s 6.8
which is valid for both V, and Vgjp. The second shear
velocity equals the largest value of Vgyo, namely
6.9
Vsi3 (6) = Vsia ’9._.0
The surface representing the dependence of both Vg and Vglz

on direction is spheroidal., The highest veloclty is in
the direction of the applied stress and the smallest is
perpendicular to it. The computed values of Vi and Vilz

are compared with the measured values for Barre granite in

fig. 5.7. These results indicate satisfactory agreement

between theory and data.

7, Application to stress changes associated with faulting.

The results of this analysis can be used to estimate
the pattern of velocity changes that occur around active
strike slip faults, such as the San Andreas fault., The
stregs acqumulation around such a long fault can be
considered as pure shear (Knopoff 1958, Chinnery 1963).

The magnitude of the shear stress increases with time until
faulting occurs. This motion releases part of the stress
which is also pure shear., Pure shear of magnitude g is

statiscally equivalent to a compression J and tension -
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applied at 45° to the direction of the shear in the horizontal
plane (fig. 5.8).

The velocity anisotropy induced by pure shear has the
symmetry of the orthorhombic system with nine elastic
constants-~~-three distinct principal directions at right
angles to each other. It can be shown however that only
5 elastic constants are required to describe adequately the
wave velocities in a plane perpendicular to a principal
direction. In the case of the crust under pure shear this
‘plane is horizontal, and we can consider the dependence of
velocity on direction in this plane only.

Assuming that the compressional wave velocity is
similar in this two dimensional case to the axtal
gsystem the (Vp)2 surface will have an elliptic shape, as

indicated by eq. 6.8, namely,
2 2 .2 2
V, = Ao Sih20 + b’ cos’d

Qois the compressional wave velocity in the direction of
tension and b, in the direction of compression, both roughly
T/ from the fault plane.

Suppose shear stresgs has changed over & period of time
and a new velocity distribution exists
Vi'= alsin®@ + Licos’d 7

where

Q,':ao"’Aa and Ll':éa"fA’O
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Because the magnitude of the change in compression equals
that in tension the velocity changes will also be approximate-

ly equal in magnitude while opposite in gign or

Aa=-Ab 7.3

combining eq.71 to73 and neglecting higherorder terms of ZSE

2 ,,2 455 ' 2 74
V=V, = 2—%- (Coszé’ - SIh26)
also
V- Vo' & AV 2V, 7.5

thus the change of veloclity associated with the change of

pure shear has the form

AV= Ab(cos’g - S 7.6

where 9 is measured frowm the direction of maximum compressicn,
Values of AL)O correspond to increasing shear stress while
AL) <O corresponds to decreasing stress such as that due
to sudden motion on the fault.

The change of velocity is positive in the direction
of compression and negative in the direction of tension.
No velocity change will occur either along or normal to
the fault plane at 6= TI/4 , as shown in fig. 5.8,

Eisler (1969) obtained compressional wave velocity
changes in directions roughly parallel and perpendicular

to the San Andreas fault in the Gabilan range in Cali-
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fornia and interpreted the drop of velocity to indicate

reductlion of stress, Our results clearly indicate that an
increase or a decrease of shear stress always causes velocity
to decrease in some directions and increase in others,
Therefore 1t 1s necessary to determine stress changes from
at least three velocity profiles in different directions,

It is important to evaluate the influence of the pre~
sence of water in rocks l1ln situ. It was shown in chap., 2
that the presence of water greatly increases Vp while Vg
is almost unaffected. The bulk modulus of & water saturated
rock i8 similar to the modulus of the rock without cracks,
The compfessional velocity will vary with direction in a
saturated and stressed rock depending on the variation of
the effective shear modulus, or shear wave velocity, The
change of velocity, however, due to & change of stress will
be much smaller than in the dry rock. The measurements on
dry and saturated rock (chap. 2) indicate that in dry
granites dVp,/dP % .01 km/sec. bar while in saturated
rock de/dP¢3 .003 km/sec bar, The shear wave velocity does
not depend much on saturation, and the change of velocilty
with stress in saturated rock will be equal to the change

in dry rock.

8. Conclusions

The general stress dependence of the elastic response

in any direction of & rock with cracks can be predicted

from the measurement of thils response to hydrostatic stress,
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A1l of the main features of the measured velocities in a
rock subject to uniaxial stress appear alsc in the theoretical
expressions.

The importance of the initial crack distribution is
quite clear from our analysis. An anisotropic distribution
does not however pose a great obstacle in the analysis and
if known can be included in the crack shape density function
A(Ol) which now becomes direction dependent. A geometrical

series expression such as

A(et,n)= Aot Aicos™ + Arcos e 8.1

can probably be used and it seems most likely that retaining
Aj only up to A, will suffice for most rocks.

| It is possible to obtain this more generalized crack
shape density function from a limited number of velocity
measurements in various directions on unstressed rock
samples (Aleksandrov et al, 1968), In the case of hexagonal
symmetry the analysis in this chapter is applicable and with
some modifications can be used to yield A(ol,7 ).

The extension of the analysis from uniaxial stress
applied to isotropic rock to triaxial (three distinct
'principal stresses) stress 1s conceptually easybut the
computations become increasingly more complicated as the

expressions for the distribution of open cracks become more

complicated., Numerical methods can be used when necessary.

Of the various possible triaxial loadings the biaxial ex-
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perimental arrangement (0','—7(0_2., 0320 ) can be easily achieved
by epplying stress to the flat ends of the cylindrical
gsample which was described in chapter 3 (fig. 4.1).

We can speculate on the extenslion of the correspondence
between the symmetries of the stress fleld and the stress
induced velocity anisotropy to more general cases of initisl
crack anisotropy and triaxial stress., Various combinations
are presented in Table 5,1 indicating that various symmetry
types (Paterson and Weiss, 1961) should be anticipated.
of particular importance is the influence of the direction
of application of stress with respect to the principal directions
of initial anisotropy. The resulting induced anisotropy
probably depends significantly on this rélative directione—-
if for example the material possesses initially hexagonal
symmetry of apparent elastic properties and the applied
astress is uniaxial the resulting anisotropy can be axial,
orthorhombic, or monoclinic depending on the direction of
the principal stress.

Despite the complications that arise from generalizing
our results, a basic theory permits now the prediction of
velocities of elastic waves in rocks which have an initial
and stress-induced velocity anisotropy, and its dependence
on stress. The determination of the necessary crack para-

meters ls simple and practical,
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APPENDIX 1
Integration of crack contributions to

transverse Young's modulus

The value of Iij (eq. 2.9) is to be evaluated

LY
6 ; .
L= 1= %[ cos” 288 cosfs simp 3
T2-fo
Let J:-E-(j_—_[,,) 2
and if /L:"/z-o( ) d{5=-dd (fig. 5.3)
then Yb
J =;/Cos" %}S,h’b{&&fl’( el ot 3
Let Z=cos ! and CoS}ﬂo= '/ KK
K 2 'l
_ —| 4,
J= Jeos ()5 4z
‘ I
Integration by parts yields
3
]-4 (-0 dz 5.
3(g*~t) 2
JZ (k*-2%)
Substitute 2= K/(Xz'—H)'/"
| ket 32
= =, |(-1-X 6.
J= i LW)" ax
0
and again substitute x= (K- D) smb
- ke
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/+2Co$29+coszg do =
6K3 (l(zﬂ)/[g‘& 1) — COSZQ
(™) . i A9
k=) T K+9+2K
6K T+ ik +% (k1) - (kK=1)Cos28

Substitute P) = 4an b

o)
J_ T!(/—3K2) + K dV! _ TT(I{—[)Z[Z,(+/) 8.
IEYS 3 /+l<"‘7" J2K3

and since C,OS‘]ﬂa . l//(

I,,= /”i’(/—cosfo)z(z—chs;ﬂ,) 9.

=5 (3coS7ﬂ,,— cOsgy,) 10,

expression 3 was also evaluated by a numerical integration
and the results are identical to eq. 10. Introducing eq.
2.4 in 10, we find

Iu = 23TT' [ Ed) (Ed> % 11,
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APPENDIX II
Integratioﬁ of open crack contributions to the
- effectlve shear modulus in the plane of an applied'

‘uniaxial stress

First we'seek an expression for the angle e (fig.

5.4) at a given /3
We notice that as long as /3<Tf/4

L:E-Z 1.
ag@

b:ﬁ.RCOSWO 2.
also

Rcosﬁ 3.

and

L :{36056 = )QSl‘V\ﬁ COSQ

hence _
sin3cosh = fTCoS(Zﬂo - COs[S

or

9= cos ‘|z cosy, —CoSﬁ] b,
S|V73

The required integral is now, from eq. 2.2, over all
open cracku “h* o
L,° 411 C052/3$|hf5d(5+4 [fda]Cosﬂ.sM[sd{; 5.
it
FI
e Vottto

+4|TfCoS sw.(&A/B 4—’[ 4 cogr["f“’“f’f"’%{}c,g/;g.;,{up:‘15’-':-4-]

"/"+7 uh';_r' SluP




122.

where 3 is the integral to be evaluated.

Int egrating by parts

f (1- V'YCOS)DoCeoﬁ) Cos /34/5 é.
Sin [Sm (V”'Co;}l’ 'C—Uf'ﬂ)'ﬂ e

nll’— ' v
St Yo
Let X= Cos/}» ——v:ﬂL S=
2

] (zcx" x3) d x 7.
(- 4ct+4Cx -2x) (x> Wy} ,
c—s
Letting S O= ZC:_‘E
e
] [ZC Y 4c%.5m +2¢S i@ -c - s smb+2¢ 8.
’n/z
C’f"';'_' c-'h ]c‘
T C41158In0 * s

which yields after lengthy computations
=7 (Cos +3Cosf 4) 7

This result was checked for a few values of % by
pumerical integration. The results are identical.

Substituting back in (5) we obtain
-4 | 10.

When ﬂ»)ﬂ/4 the analysis follows the same steps
with identical final expression for 113. Substituting eq.
2.4 in 10, ylelds

.- 405" (8]
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APPENDIX III
Elastic wave velocities in rock with a spectrum of

crack shapes

Equation 5.1 relates the integral over a crack dis-

tribution to an effective elastic constant
y.___(____,) -
ij=C\E;
where C 1s a constant.
The 1j°s indicate the directions at which this quantity
is determined. The second index j relates to the plane of
polarization of shear,

Introducing now a spectrum of crack shapes with a

density distribution (Fig. 5.5)

A(o()':Ao“AtO‘ 0(4/5 2,
=0 o<2>/3
combined with egs. 4.2 to 4.6 we obtain

Ehy '/+C[b l//')’J | 3.

Eé;" /+C[a:+b/f‘/§(4z.+l°z)] - ;,
—E.—‘-—=/+ c[—’-(3a3—q,)+é - (3a,-a ) - b./, ] 5.
E, 2 / 213 4 2 /3

and 6.

%\y: /-l-c'[b,- Lz//s]
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oo 1+e [ (area)e b, - g5 (Basas) - 52 ] 2

He= 4 c'[-',_-(?mral)*lo:;#(304‘6"-)* %] S

ha

where the expressions for ay and bi are

for O< EP : for T> EP

wr flue-28) e EpE)
P .

b]':o(‘ Jd :(_},—-% bl"o

e S 5 (8 - 3pHE”

oo |
a3= [ (B ot - ¥ al= 23:-{3,3"(.65- h
oo ,/
we f(8)odu- 2(2)" o= 2p(E)"

Introducing these terms into eqs. 3 to 8 we find the
velocities at various states of stress.

For the case of a hydrostatic stress

Eo

Ekydm'.: [+ CF[.:;_-_E%-‘. %(%)1] for G'SEP 9.

=/ for G)Eﬂ
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and
/Ul\ydr -1+ CP[ )2] for USEF 10
='{ o for 0->/E/$

In case of uniaxial stress the elastic parameters
in the direction of the applied stress are related to

‘stress as follows
%&= /+Cﬁ[§:‘“(ff$>+/4 )J for O<EP
- 1eeplE (58] r T3

/’A:';-’-I—i-clp[ ( ) v EP)] for Ggfp ‘12
“l+c[3[ (Eé) __[é)uzJ for G>E/5

and the elastic parameters perpendicular to the uniaxial

11

I+C/3["” 6(5) ( P)J ror OSEP 13
I+CP[ (BE)" (28)"] for G2

and the shear

‘/E‘i‘: /+5,/5[%-?(5f5>+70(|%5>] for O—SE/L s
‘-I+C/5 )’/)_ 2 E_O'gﬂﬂ for 0‘;5{5
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For Barre granite (fig. 5.5) all cracks are closed at

460 bar. If E = 1 Megabar then /5::.5x/o"3 . The

shear velocities are related to the shear moduli

(V; ) _7['_1_»_ 15. -
(Vgu U

Assuming that Poisson's ratio is independent of stress; thus

(V) E° | 16.
(VPH)Z "

Knowning the initial and final velocities the two

constants C and Cj can be obtained from egs. 9 and 10

combined with 15. At Q=0 we have then

_Q¥§%:=I42%C”G 17.

r
and
)
Qvg)l =]+ /3 18,
For v: = 5.9, Vp = 3.9, Vg = 3.65 and Vg = 2.6 km/sec we

obtain C/3= 2.5 and CP = 1.92. These values and egs.
15 and 16 yield the expressions 6.2 to 6.7 for velocities
in Rarre granite in varibus directions relative to the
applied stress direction.
At a given uniaxial stress level O , the elastic constant
in the principal direction can be utilized to obtain the

velocities in all directions. In an hexagonal system the
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three wave velocities are given (Stoneley, 1949)
= A-‘-B]"Z 4
Vf ["'——“‘Llo | 19.a
\/ [A-B1
sV ~ 2

19.D
where A=C:l||$iV\29 -‘-C,ggg +C3333 Coszg

. » 1 I
and [3°= {[("m -Ciaiz) s %9 - (Ca333- C313) COS*GJ + 4[C"33+C'3'3TS"“‘29(‘°‘25} "

and also

2 .
f\/SH = Cun..S'MQG + Ci3)3 C0526 20.

In chapter 4 it was shown that Vsy is almost independent
of angle © while Vp clearly is dependent on direction.
Thus all @ dependent terms must cancel in 19(b) which is

satisfied by letting

2 21.
(Cll33+cl313) = (Cun‘Cj3;3)(C'$333" C|5|3>
which substituting in eq. 19(b) yields
V., = (Cms 2 22
sV _F— |
and
v _[ CuuS‘l.V\ze + C3333C0s%0 ' 23.
p P '
; z
Denoting (JVP; = C3333 and (JVP'-: Cin
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eq. 23 becomes

2 . 2
and similarly
2 2
= 2 25.
Vs = Voug S1h?0 + Veus Cos™d
The V; and V:h surfaces are therefore spheroids,
and the Vey surface is a sphere.

We can test the validity of equation 21. Substituting

.in 21 from 5.10 yields

26,
~ 2
Oy () (£
expanding and neglecting higher power in }ﬁj
27,
LMi3 Vi Bu= EuEs = Mis (Ey+Ess)
and because )213 is small (table 4.2, chap. 4)
28,
Eu E33 = (’+.\/;3)/443(E,,+E33)
or, letting Vlj = VlZ =)/
A= L, L 29.
Jirs (HV)[E"* EBJ
Substituting from egs. 2.1 and 3.9 yields
2(1+y) 4 30.
£ (/+ "%’(IﬁIs)) = 1’5{(2“’”(17*13))

which is an identity. Thus the observation that Vgy is

almost independent of direction is in good agreement with




129,

the theoretical relationships between the shear and Young's

moduli in rock containing cracks, given small values of

Poisson's ratios.
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Figure Captions:

- Pig. 5.1 The dependence of crack distribution in aﬁ
aggregate in which all cracks have the sanme
aspect ratio on the magnitude and direction of
the applied stresses. When O53= P ana G,=0,,=0
then &% is the angle of the cone of normals to
closed cracks. WhenQy;=0 and =0, =P then

ﬂé—y% is the angle of the corresponding cone.

Fig. 5.2 The change of various compliance elements with
uniaxial stress G} in & rock in which all cracks
have‘the.same aspect ratio. Properties in the
direction of the applied stress (193, 113) change

more with stress than properties perpendicular

to it (Iyy, Iy2). For comparison I;B is shown
for biaxial loading normal to direction in
which property is determined. Under hydro-
static stress the change is discontinuous be-
cause the crack shape spectrum is discreet.
Fig. 5.3 Distribution of closed cracks in stressed
rock. Unilaxial stress is applied along X3
while elastic constants are to be determined
along the X3 direction. The cone, of angle
<fk'contains the normals to cracks which were

closed because of the applied stress.
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Fig. 5.4_ Distribution of closed qracks in stressed rock.
Uniaxial stress is applied at 450 from the
direction of a principal value of the shear>
modulus. All normals to cracks which closed

by stress are within the cone 7’ .

Fig. 5.5 Normalized crack shape density function for
Barre and Westerly granites., Data shows a
relative high concentration of very narrow
eracks ( K < 10-3). The solid line is
the form of A(Ol) that was used in computa-
tions.

Fig. 5.6 Computed and observed velocitlies in the
principal directions of the stress induced
anisotropy. (I) hydrostatic stress (II)
uniaxiél stress parallel to and (III) per-
pendicular to the direction of wave propagation.
Agreement 1s particularly good regarding the
differences between I and II for both Vp and

SH*®

Fig. 5.7 Variation of the computed and measured Vg

and ng with direction at a glven stress

level. Both Vg and V%H depend on direction

SEE

i in the same manner, .

Fig. 5.8 Change of velocity associated with changes of

é stress around faults, Veloclity variation

is largest at ©=T/4 from fault plane.

_
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No velocity change occurs parallel or normal

to the fault plane ( 6=0 ,T/2 ),
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Chapter 6

The origin of small cracks in igneous rocks

1l, Introduction

The properties of many igneous rocks at pressures to
1 or 2 kb, as measured in the laboratory, are dependent on
the behavior of small cracks.  If we wish to apply the
laboratory results to the interpretation of rocks in place
then it is hecessary to investigate the possible sources of
the cracks., In particular, we wish to determine whether
cracks exist in the rocks in situ and whether they can be
introduced into a rock sample upon removal from the earth,
The microcracks are probably associated with boundaries
between grains, and as such must be distinguished from
faults and joints, whose length is measured in meters or
kilometers, Milcrocracks are therefore equal to or shorter
than the diameter of the grains in rock.

In this note we look at some available data for brittle
rocks in order to evaluate the relative importance of the
pressure and thermal history and mineralogical composition
on crack density. We also examine the mechanical effects of
drilling cores from rocks under stress.

2, 1Influence of the thermal and stress history

Igneous rocks are probably in a state of hydrostatic
stress just bvefore solidification from a melt and no
significant non hydrocstatic stresses build up as grains grow

from the melt. However, by the time the solid rock is
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exposed at the surface of the earth, two major changes have
occurred; the temperature is reduced several hundred degreés
and the pressure several kilobars. Because rocks consist
of mineral phases which have different mechanical properties,
such changes produce intergranular stresses. Even in
rocks made of aasingle mineral ,the random orientation of
anisotropic grain will also cause intergranular stresses.
Cracks will occur when these internal stresses exceed the
strength of the material, |

A simple model will permit a rough estimation of crack
density from the propertieslof the constitutive minerals.
In a solid with a spherical solid inclusion we find
(appendix I) that the local stress concentration is approximate-
ly proportional to the difference between the bulk moduli
of the two solids. If the inclusion is more compressible
than the matrix and the initial external stress is suffi-
ciently large, removal of this stress will cause fracture
in the matrix. At a grain boundary the maximum shear stress

is of the order of

CJ"M,X/X,—;-_-P(:(‘ k’/Ka) 2.1

where P is an initial préssure of about 10 kb and k, and
ko are bulk modull of inclusion and matrix, respectively.
The values of k,/k, for common mineral pairs and the
associated shear stress for P=10 kb are shown in Table

6.1, The shear stress at grain boundaries, of a few kb, is
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comparable to the shear strength of several single crystal
gsilicates and the strength of igneous rocks.,

If the inclusion is less compressible than the matrix,
a separation of the inclusion boundary from the matrix wall

will occur and the volume of the new porosity (for small c¢)

will be ‘
N ) C o e— ka, -
V'- Ko \ K I) 2.2

where ¢ 1s the concentration of phase 1 and P is the initial
pressure., I1f, for example, c = .1 and Ko = 2.6 (Quartz-
Augite,Table 1), the resultlng crack po%ésity»is . 0015
which is comparable with the porosity of granites, Removal
of the initial pressure can cause significant cracking of
grains or induce grains to partially separate from one
another along grain boundaries.

Consider now differential thermal contraction. Let
denote the difference between the thermal expansions of the
matrix and the inclusion. The porosity generated by grain

separation when the inclusion contracts more than the matrix

is

Ve &T- - C 2.3
If o = .10,A0k = 2:1075/°C andAT = 6:10° °C we find Vx10~2,
which is also comparable to the porosities of granites.
The thermal stress which 1s set up in an aggregate when the

thermal contraction of the inclusion 1is smaller than that
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of the matrix is given by

TFT=AT-AK-E 2.4

If B, = 10% var, T = 6:102 °C andAd= 1075 °¢ (Table 6,2)
then‘Tﬁz 5 Kb‘a value comparable to the strength of wvarious
minerals in granites and many other rocks,

Consequently, both the differential thermal expansivity
and the differential compressibility of minerals appear to
be a possible source of cracks in igneous rocks. The
presence of cracks in igneous rocks is correlated with
the presence of quartz.

The difference between the compressional wave velocities
in dry and saturated samples was shown to be indicative of
the crack porosity of a rock sample (Chapter 2, fig. 2.64).

The difference between V., at high pressure and at room

p
pressure 1s related to crack porosity in a similar fashion
(see fig. 6.1 and Table 6,1). In fig. 6.2 we have plotted
the values of R = (Vyg 'VO/VIO) where

Vip = Vy at 10 kilobars

Vo = Vp at 10 bars
for various rocks, as tabulated by Press (1966). 1t is
quite obvious that the large values of R, and hence the
larger values of crack porbsity are found in rocks which
contain quartz. Rocks without quartz, such as dunites and

eclogites, have significantly lower crack porosities.

Compared with other common rock-forming minerals, quartz has
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unusual properties, It undergoes a large volume change
upon cooling from 600°C, about 4.5§L compared to a value
of 1-2% for most other silicate minerals, It is also one
of the most compressible silicates.. These properties of
quartz seem to cause the relatively large crack density

observed in quartz bearing rocks.

3. Influence of drilling in stressed rocks

Drilling a hole in a stressed solid is accompanied
by transient, high stress concentrations around the bottom
of the hole. When the initial stress is large, discing
of cores bcours (Pretorius 1958, Hast 1958) and the fre-
quency of discing is proportional to the initial stress
(Jaeger and(Cook, 1963, Obert and Duvall, 1967).

It is conceivable that small cracks can be produced
in the core by drilling at stresses well below that at
which discing occurs. In order to test this possibility,
compressional wave velocities were measured in eight cubes
of Westerly granite aftér a cycle of vacuum drying and
exposure to foom conditions., The cubes, 5 cm in size, were
stressed uniaxiélly, each at a different stress level ,
while a core 2 cm in diameter was drilled. Compressional
wave velocity was measured on the cores after vacuum drying
and reexposure to room conditions; the results are shown in
fig. 6.3. The last core, at a stress of about 800 bars,
broke into a number of thick discs and velocity could not be

measured. The wvelocity in all other cores, drilled under
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lesser load, is only slightly below the initial velocities
in the cubes. A small increase in the difference between
the two velocitlies with increasing stress (ayéoz % per

100 bars) indicates that a few small cracks are produced
before discing occurs but that at stressesjust below the
discing stress, such cracking is not significant. These
results are in agreement with other work on microfracturing
in rock. Scholz (1968), for example, foundkthat most of

the microfracturing in rock subject to increasing non-hydro-
static stress occurs just before the shear strength of the

rock 1s exceeded.

L4, Conclusions

Small cracks in igneous rocks appeér to be assoclated
with both‘the history and mechanical behavior of the rocks.
Existence of these cracks 1s due mainly to the differential
thermal expansivity and compressibility of minerals and in
pérticular quartz in these rocks.

Unless the stress in situ is very high only a few
small cracks will beé introduced into the sample while it
is being cored. When the in situ stress is high discing
occurs. |

The mechanical properties of igneous rocks measured
in the laboratory on small samples are indeed repfesentative
of the in situ properties provided the environmental condi-
tioné of préssure, temperature, and saturation are properly

modelled,




Appendix
Effects of solid spherical inclusions on the internal

stresses in a composite solid

Suppose a material with bulk modulus X, and shear
moduluS/M,contains a spherical inclusion (fig. 6.4) with
bulk modulus Kj. An external hydrostatic pressure P is
applied at R= b, If superscript O denotes the material
around the inclusion (matrix) and superscript 1 the inclusion
itself, the stress and displacement components can be

written (Timoshenko and Goodier, p. 358, 1951) as follows

o 2 :
Tae= A- /R3 G‘én=.D :
oo = A + Bt Jpp = D 2

0 ';EL..A.Q 3

where A, B, & D are constants to be determined.
At B = a the normal stress thand displacementLlR

must be continuous, hence

A-Bla3 =D | L,
B o+ _D
%\204'-4?0 ad” 3k,

andatR:b,O’Rn=Por

‘A-B/b3=l;>
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solving for A, B & D egs. 4.5.6 yields

A= P—22 7.

/+n—=c(l-m)

‘@_.:m = g

a3 | 1th-c(i-wm) '

D= Pomrzs

T Hn-c(/-m) 9.

where = K//k, s N = 3’(1/4/4, and C= (4/4)3
which is the concentration of the inclusion material.

The magnitude of the shear stress at the contact
between the inclusion and matrix is given by

jhw‘zlgﬂﬂ GQB/"'Z;’P(/-M-C(/—M))

or for small ¢ and n 2 1
| _K 11.
ajznaq'ﬁfjf;D (y 72%)

When Kq <fKO removing the pressure P will cause internal
shear stress max in the neighborhood of the inclusion.
If, however, Klj>KO the removal of pressure will simply
cause the separation of the inclusion from the matrix.
The volume of the porosity can be estimated from the

difference in expansion between the inclusion material and

an equivalent amount of matrix, or

\/:‘:A\/‘:‘___Avl 12,
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and for the whole composite

N 4
Avoz C'-'—S-:’ AVI—CTZ' 13.

where C is the concentration of 1in O
P Ko
~C ' — _—
\/ c Ko (, K

Because the matrix now contains primarily holes, there

14,

are also stress concentrations induced around these holes.

From (10) we find for n = m = O and small concentrations
3 15.
CYWM%‘Z}'D

Tension could develop around grains for a limited range of
elastic constants values. Since the tensile strength of
rocks is almost zero, cracks will appear instantaneously.
To evalute the stresses associated with the differ-
ential thermal contraction, expressions derived by Uykle-

stad (1942) for a hot inclusion yield

cj‘___, EO(T : 16,

where E is Young's modulus, and T is the volumetric strain
due to cooling. 1In the case of uniform cooling o is
replaced by AKX , the difference between the thermal
expansion X, of the matrix and that o, of the inclusion,
thus |

TN Ad. AT E 17,
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When o, > ofl,s» the inclusion will separate from the matrix
upon cooling. The volume of the porosity will agaln be
obtained from the difference in volume change between the
inclusion and an equal amount of matrix. Thus
18.
Vz c Al AT
where AT is the temperature difference between melting

and room temperature.
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Table 6.1
Shear stress and porosity due to differential

. bulk modulus (data from Birch, 1966)

Mineral pair .Ratio of Max. shear Estimated
bulk moduli* stress total crack
porosity at
room condi-
tions
Olivine-Augite .77 1 . 0004
Augite-Oligoclase .75 1 . 0003
Oligoclase-Quartz .38 3 .0012
Augite-Quartz . 54 2 .0015

*#* K and K are the bulk modull of inclusion and matrix,

respectively.
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Table 6.2
Shear stress and porosity due to

differential thermal expansion (data from Skinner, 1966)

Mineral palr Difference in  Max. shear Estimated
thermal expan- stress total crack
sivity porosity at

room condition

Olivine-Augite 1 3 . 0003
Augite-Plagioclase 0.7 2 .0002
Plagioclase-Quartz 3 9 . 0009

Quartz-Augite L 12 .0012
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Table 6.3

Difference in compressional velocity at 10 kb and room

pressure for air dried samples

Rock Symbol  (+.0004)  V/V,(+.03) References
Oak hall limestone OL 0 .0ks5 1
Fredrick dilabase FD 0 .051 1
Troy granite TG .001 . 148 2
Rutland quartzite BQ .001 132 1
Westerly granite WG . 002 « 333 1
Stone mnt. granite SG . .0035 1428 1
Casco granite CG . 0045 . 500 2
Webatuck dolomite WD .0022 .270 2

1. Velocity data from Simmons and Brace 1965, Crack

porosity from Brace 1965.

2. New velocilty data from Nur and crack porosity from Brace,
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Figure Captions

Figure 6.1 The relative difference of compressional velocity
(Vlo-vo)/Vlo in igneous rocks between 10 kilo-

; ~ bars to room pressure. The difference increases

Withbinoreasing crack porosity. Vi, is velocity

at 10 kb and Vo is the velocity at atmospheric
pressure.

Figure 6.2 The relative difference of velocities R =
VlO'Vb)/VlO computed for many igneous rocks
as a function of thelr densityﬂ Large values
of B indicate large crack porosity and small
values correspond to small crack porosity.
Typical values of R for solids without cracks
are .03-.05, Quartz bearing rocks have the
largest crack density. (Data from Press, 1966).

Figure 6.3 CompresSional wave velocities in cores drilled
from stressed blocks at various stresses. The
difference of velocity between the core and
the block it came from increases slightly
with increasing stress, indicating the presence
of new cracks. At 800 bars core broke into
thick discs.

Figure 6.4  Geometry of two phase model. A spherical
solid inclusion with bulk modulus Ky embedded
in a solid with bulk and shear modull Kg
and/HO respectively, subject to & hydrostatic

stress P.
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Chapter 7
In situ stress determinations fron

velocity measurements

1. Introduction

Many physical properties of rocks are stress dependent.
Thesevinclude the velocitles of elastic waves, electrical
resistivity, magnetic susceptibility, fluld permeability

© and thermal conductivity. All of these properties become
dependent on direction in a rockrwith cracks under non-
hydrostatic stress and may be useful for determination of
stress in situ. Perhaps the most promising approach to in-
direct stress measurements is the simultaneous measurement
in situ of several such properties. In this chapter though we

examine only the use of field measurements of the velocities

of elastic waves to determine in situ stress.

Measurements of velocities under the controlled condi-
tions of the laboratory are the basis for the interpretation
of field data, Perhaps the most important aspect of the
laboratory work is the simulation of environmen?al’COndi—
tions of rocks in the earth. Requirements for the simulation
of pressure and temperature have been known at least since
1923 (Adams and Williamson 1923). The need for simulation
of saturation, pore pressure, and viscosity of pore fluids
has been established only recently for such low porosity

tocks as granlites.
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Such measurements made in the laboratory studies have
been limited to small specimens, high seismic frequencies
and coherent solid rock samples which are possibly unre-
presentative of the average large scale features of rocks
in situ. The influence of a truly triaxial stress (three
distinct principal stresses) or saturation on the induced
velocity anisotropy have not even been Investigated yet.
Furthermore the presence of initial elastic anisotropy in
most rocks requires a more extenslive analysis than that of

Chapter 4,

2. Sources of local stress in the earth’

The next step in extending the laboratory results to
field use is the investigation of wvarious aspects of the
velocity-stress relationships in controlled field tests.
There are a number of requirements for meaningful tests., We
need to measure selsmic wave velocities in situ, measure

elastic properties of a representative sample and compute

. the local stfess. It is essential to make these tests

where eilther stresses or stress changes are already known
from independent estimates. This last requirement is quite
demanding, especially when we consider the scale of an in
situ experiment. Although it is not difficult to stress

a small part of the earth, it is very difficult to obtain
high stress over a large region and we are limited to natural
phenomena,

The difficulty of obtaining stress over a large region
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can be seen easily. A 10 ton truck, acting as a stress
source, will cause an average compressive stress of only
20 to 30 bars 1 meter away. The use of heavier loads will
not improve the situation greatly.

The application of several large flat jacks could pro-
duce stress of a few tens of bars over a somewhat larger
region. Because flat jacks can tolerate only a limited
displacement they can be effectively used over a region of
a few meters at most,

Another, somewhat similar, loading method is the use
of pressﬁrized boreholes., The main advantages of holes
over slots are the relative ease with which the holes can
be drilled and the great depth which can be reached. The
stresses, induced by pressurizing holes are also gquite local,
The radial stress decreases as az/r2 from the hole, of
radius a, and i1f a pressure of 200 bars is applied in a 15
cm hole the radial stress reduces to 50 bars 30 cm away from
the hole and to 1 bar 2 m away. An increase of the extent
of the induced stress perhaps by a factor of two 1s possible
by pressurizing a second borehole, a few feet away fronm
the first hole,.

Stresses near the surface of the earth associated with
such topographic features as canyons and cliffs may be ag
large as 200 bars, The vertical stress at a bottom of
straight rocky cliff of height h is d;¢ Pgh where P is
the density of the rock. For most rocks G;;: 200-300 bar/km
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and thus most cliffs are much too small to cause stresses
in excess of 50 or 70 bars (corresponding to 150-250 meters).
Obviously the stresses due to self weilght are small in most
natural sites with the exception of a few localities such as
Yosemite Valley with a granite cliff of 1 km and where the
associated stress is roughly 150-200 bars.

There are various known sources which céuse changes
of stress over extensive regions. Atmospheric pressure
centers, Earth tides, ocean tldes and floods are such long
period natural stress sources. Of these, ocean tides and
Vberiodic'floods cause the larger stress changes. Ocean
tide is about 3 meters, which corresponds to a stress change
of approximately .3 bars in'regions ad jacent to the ocean.
Earth tides and atmospheric pressure centers cause stresses
which do not exceed a hundredth of a bar., None of these
sources appear to be useful for our purposes.

The construction of a new dam could perhaps provide
for a controlled stress test in that the rising water level
causes & 8low increase of the stresses around the dam site.
The stress would not exceed 1 or 2 bars but the areal extent

could be several 100 kmz.

3. Stress changes and strain accumulation associated with

earthquakes

The change of stress with time, possibly easier to measure
than the absolute stress, assoclated with such phenomena as

earthquakes is of considerable value in the study of the
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dynémic phenomena of the earth. We may be able to use the
stress change associated with earthquakes to callbrate the
velocity-stress relationship in tectonically active areas
and th@n to use the relationship to study stress accumulation
prior to other earthquakes. Chinnery (1967) listed several
earthquakes and thelir assoclated Stress drops which were
calculated from the known sizes of the faults and the measured
dislocations. The largest estimated stress release (Knopoff
1958) is 188 bars and the smallest (Aki 1967) .5 bar, MNost
values are in the range of 20-100 bars. DMeasurements of
velocity to deteét such stress changes require an accuracy
of 10~% and appear to be possibie. The unpredictability
of earthéﬁakes requires however many velocity measurements,
repeated several times in a reglon that 1is tectonically
active. Possibly such measurements should be incorporated
eventually in a program of geodetic measurements.,

The increase of stress precéding an earthquake is slow.
Kasahara et al. (1966) reported a strain increase of 4x10-H
per year in the Matsushiro area, a very active region, in
1965-66, with a shear stress increase rate of a few bars
per year in this region. Most tectonic regions will exhibit
smaller rates, Repeated measurement of velocity by Eisler
(1969) near the San Andreas fault indlcate a slight decrease
of stress over a period of 6 months. On the basis of these
rates and the presently available seismic methods velocity

tests should be repeated at intervals of two or three years.
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The difficulty of using earthquakes for testing our
laboratory results, which arises chiefly from their unpre-
dictability, may be circumvented by triggering small or
miorofearthquakes by explosions as suggested by Aki (per-
sonal communication) or by the use of earthquake swarms and
aftershocks, The smaller stress changes assoclated with
the smaller events is compensated by the predictability

of the occurrence of the event within a shorter time inter-
val. Due to the smallness of aftershocks both in magnitude
“and aerial extent, the detection of the Qhanges of velocity
assoclated with a single shock may be undetectable. But

if the released stress during a long sequence of small shocks
has a constant direction a statistical study might reveal

a gystematic variation with direction.of travel time

residuals,

4, velocity measurements in situ

From the values of dVVdp listed for various rocks in
Table 7.2, we see that shear velocities are generally less
sensitive to stress than compressional velocities in dry rocks
but they are almost independent of saturation. Changes in
Vp in rocks in situ could always be’partly due to changes:in
saturation and not necessarily indiéate a change of stress.
Furthermore we bellieve that in the larger part of the earth's
crust, rocks are completely saturated with water and there-~
fore the value of de/dP is much less than 4V /dp .

Shear velocities are therefore more useful as stress indicators

provided adequate shear sources are available or can be
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built. (éompressional velocities may also indicate stress
changes eveﬁ when the rocks are saturated with fluids. The
sensitivity is small but the generation and detection of
thesé waves is easy).

| Seismic velocities may be measured on the surface of
the earth with seismic profiles, or in vertical profiles in
bvoreholes. In order to measure both magnitudes and direction
of the principal streéses,many profiles are necessary, Even
at very shallow depths, two horizontal principal stress
components and one direction are involved and, therefore,
_at least three profiles are necessary., Several additional
profiles may be needed in practice to remove such "noise"
as local inhomogeneity of the rock, natﬁral anisotropy of
the rock in place, and changes in thevdegree of saturation
along the wave path. The problems of inhomogeneity and
anisotropy must be balanced against the need to extend the
path length to increase the precision of velocity determina-
tion. |

An alternative to the use of long paths is the use of

high frequency seismic sources either in the form of sharp
precisely timed impulses or continuous signals, The im-
pulsive source 1s well éuited fo;_determination of absolute
veloecities, with limited resolution. It may be a plezo-
electric transducer which can be excited at high frequencies
and therefore be used only for short wave paths of a few feet,

A fast explosive can be used for longer profiles but such

e et b P R N P RIS TR S e G bl b B i v
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explosives do not generate very high frequencies and the
resolution therefore diminishes. There is no serious
limitation on the length of the spread, Eisler's (1969)
results indicate that the arriving wave forms from similar
explosions are almost 1dentical--perhaps a careful analysis
of a section of the wave form rather than first arrival alone
could improve the resolution. The continuous source is also
applicéble to determination of relative velocity or velocity
changes in a given path over a period of time. Repeated
precise measurements of travel times can be achieved easily
and if enough samples are collected a rather detailed pattern
-of stress change should be detectable.

Some consideration should be givén to the kind of waves
to be used for the determination of stress, or of stress
changes, by seismic profiles. Although in a dry rock the
compressional wave velocity 1s very sensitive to stress,
saturation decreases the sensitivity greatly. In addition,
because the degree of saturation is commonly unknown, especially
in low porosity rocks, the use of compressional wave velocity |
can lead to ambiguous results. On the other hand the genera-
tion and reception of compressional waves is much easier than
shear waves., The velocity of the shear wave which i1s polarized
in the plane of the applied stress is almost independent of
direction of propagation, while the velocity of the wave
polarized in & perpendicular plane depends significantly
on direction. In the shallow crust then the SV wvelocity is

dependent on direction. Therefore, for stress determination
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from sheaf velocities we require a source of SV waves.,

The second alternative, that of using vertical pro-
files, is best done in boreholes, Such measurements, at
least for compressional waves, have been routine in the oil
industry for a decade or more, Some attempts have been made
to measure both Vp and Vg but the resolution of Vg with pre-
sently used commercial logging tools is not sufficient for
our use. Increased resolution of present instruments is
therefore required.

Waves other than body waves may be used to determine

\ Several interface waves have been identified in bore-

s
holes (White 1965, Chap. 4). Perhaps the most useful one
for us is travels in the fluild column of the borehole with
a velocity | | 3727

vi=[p (e * )]

where P is the density of the fluid, Mis the bulk modulus
of the liquid and /us is the shear modulus of the rock.
Because it is easy to determine Klfrom compressional wave
velocities in the borehole fluid,/%scan be obtained. Changes
of /As with time can be obtained with even highef accuracy
because changes in K; are negligible. Since Vt<VS<;Vp

the interface wave can travel without excessive loss of
amplitude. Such waves have been observed to travel up and
down boreholes several times (Riggs 1955). Hydrophones,
suspended in the fluid, can be used to determine accurately

phase velocities and core samples from the boreholes can be
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used to obtain the relationship between shear modulus and
‘stress. Such tube waves appear to have considerable
?btential for precise veloclty measurements in connection

with stress determinations.

5. Conclusions

Extension of laboratory measurements of velocity for
in situ determination of stress requires testing in regions
of known stress, or at least stress changes. Stresgses
induced locally by topography and stress changes associated
with earthquakes are most promising for field tests.

Velécities can be measured in éhallow penetration
selsmic profiles or in existing boreholes; rock samples are
needed for either technique. Simple tests are sufficient
to determine in the laboratory the géneral stress-velocity
relationship. Borehole logging can be used to measure the
neoessary‘velocities. The velocity of tube interface waves
which depends on the shear modulus of‘the solid rock, can
provide an independent estimate of the effective shear

modulus which is dependent on stress but not on saturation.
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Table 7.1
Magnitude and areal extent of various

stress fields

Source or location Typical Stress (bars)
areal extent

Laboratory 10 em , 10000
Laboratory 1m 1000
In situ induced stress 5m 300
Topographic stress 1 km 200
Earthquakes - 100 km 100

Ocean tides 500 km .3
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APPENDIX A

Bxperimental set-up for travel time measurements

A schematic diagram of the electronic equipment for
travel time measurements is shown in fig., A.,1. A L404B
Fairchild-Dumont pulse generator is used to trigger a 5453
Tektrqnix Oscilloscope with a 1Al Dual trace plug-in unit.
A second, high voltage Velonex model 350 pulse generator is
triggered after a constant delay through an Ad-Yu Type
602H2 step variable delay line. A pulse is generated by
ﬁhe Fairchild-Dumont generator, delayed relative to the
trigger by the built-in continuously variable delay line.
The pulse travels through a continuously variable mercury
délay line and is displayed on the oscilloscope's screen.
The Velonex generates a strong pulse which travels through
the sample and is then also displayed on the screen, The
Dumont continuously variable delay is now adjusted to obtain
Zero reading of the Hg delay line for zero sample length.
The early triggering of the scope allows the display of the
complete event from pulse triggering to the arriving signal

and no calibration is necessary to find the length of mercury

‘which corresponds to zero sample length.

The signals travelling through the sample and the

mercury delay line respectively are displayed on the

oscilloscope and their first arrivals are made to coincide
by adjusting the length of the mercury column. The length

of the column, read in mm, together with Vp in mercury
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(obtained from calibration with fused silica))l.#é km/sec’
yields the velocity in sample. Accuracy is about 2%,

whereas precision is better than .5%.
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