
Fine-tuning Generative Models

by

Arjun Khandelwal

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 23, 2019

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David Sontag

Associate Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Fine-tuning Generative Models

by

Arjun Khandelwal

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2019, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Deep generative models have emerged as a powerful modeling paradigm for making
sense of large amounts of unlabeled real-world data. In particular, the representa-
tions produced by these models have proven to be useful both in improving human
understanding of the factors of variation in the original dataset and in downstream
tasks such as classification. Most current algorithms, however, require training a be-
spoke model from scratch, which can be both expensive and time-consuming. Instead,
we propose various methods of fine-tuning pre-trained generative models to achieve
these goals, and evaluate these methods quantitatively on few-shot classification and
interpretability tasks.
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Chapter 1

Introduction

In recent years, the field of machine learning has seen a rapid rise in popularity

due to a combination of algorithmic and computational advances. In particular,

traditional fully-supervised algorithms have generated significant attention for their

ability to match, and in some cases even exceed human performance on difficult

image recognition and natural language processing tasks [9]. Unfortunately, this

performance comes at a cost. Human-intensive and costly data-labeling efforts are

necessary to produce labeled datasets of the requisite size to train state-of-the-art

deep learning algorithms [18]. As the sheer amount of raw data grows exponentially

due to the presence of smart appliances, industrial sensors, and countless other sources

in a connected world, algorithms capable of utilizing unlabeled data are necessary.

The extent to which this plentiful unlabeled data is useful is not immediately clear,

especially for problems that are of a discriminative nature, such as image classification.

When sufficiently many labels are available, the incremental value of unlabeled data

is negligible. Yet, as illustrated in the previous paragraph, labels can be scarce

and generating them is expensive, especially when dealing with high-dimensional

data. Recent work has shown that performance on tasks as wide-ranging as digit

classification [15], recommendation systems [39], and object recognition [36] can be

greatly improved with access to unlabeled examples (see Figure 1-1).
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Figure 1-1: Motivating Semi-supervised Learning: Examples in which the un-
labeled data illustrates which points are similar, and therefore influences the optimal
decision boundary. In both plots, the colored circles represent labeled datapoints
belonging to different classes, and the grey squares are unlabeled.

A common means of leveraging unlabeled data is via representation learning, which

seeks lower-dimensional embeddings of the data in which some notion of distance

corresponds to similarity in the original space. Once found, these may be used in

a variety of ways across many downstream tasks. For example, a predictor may be

trained on the embeddings of the labeled subset, resulting in a classifier less likely

to overfit. Alternatively, the embeddings themselves may be used to visualize and

identify factors of variation within high-dimensional datasets for the purposes of hu-

man interpretability. A variety of algorithms to learn these embeddings have been

proposed, including linear techniques such as PCA and factor rotation [27] and their

non-linear variants such as t-SNE [23].

In this thesis, we consider the deep generative model, a Bayesian, probabilistic ap-

proach to representation learning. Deep generative models attempt to approximate

the data distribution via a pre-specified prior over a low-dimensional latent variable 𝑧

along with a neural network-parameterized conditional density 𝑝(𝑥|𝑧). Although com-

putation of the exact posterior 𝑝(𝑧|𝑥) is intractable, tools from variational inference

and stochastic gradient estimation may be used to learn an approximation 𝑞(𝑧|𝑥).

The individual dimensions of 𝑧 may then be interpreted as nonlinear factors, with the

approximate posterior 𝑞(𝑧|𝑥) usable as a low-dimensional embedding of 𝑥. Deep gen-

erative models have multiple uses which include density estimation, dimensionality

reduction, and semi-supervised learning, and have displayed remarkable results even
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when applied to complex, high-dimensional datasets.

Treated solely as a maximum-likelihood estimation problem, the generating distribu-

tion 𝑝(𝑥|𝑧) is unidentifiable; that is, there are infinitely many choices of 𝑝(𝑥|𝑧) which

result in the same marginal density 𝑝(𝑥), and therefore infinitely many possible rep-

resentations. The use of various inductive biases based on varying combinations of

both labeled and unlabeled data to guide the learned representations towards cap-

turing relationships useful for classification or human-interpretability is therefore of

interest. When beginning with a trained deep generative model, rather than train-

ing the parameters of a bespoke generative model jointly, we refer to this process as

fine-tuning.

An appealing property of fine-tuning-based approaches in the context of real-world

problems is that a generative model trained only once may be copied and adapted

to a variety of tasks. As as a result, the computationally intensive training process

and large set of unlabeled examples necessary for training good generative models

for complex datasets need only be present in one place, with the parameters of the

resulting model shared at will. This is especially relevant when sufficient quantities of

unlabeled data are expensive or even impossible to obtain, as in the case of personal

health data.

In this thesis, we study the problem of fine-tuning deep generative models for use

on various downstream tasks. In Chapters 3 and 4, we present new approaches to

the semi-supervised few-shot learning problem which leverage a generative model.

In Chapter 5, we address the fully unsupervised setting, and propose a method for

increasing the disentanglement of the learned latent space of a given trained generative

model.
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1.1 Contributions

Improving Latent Reasoning Networks: The Latent Reasoning Network, pro-

posed in [17], introduces a neural architecture and learning algorithm capable of com-

puting the similarity between a query set and an object. Drawing inspiration from

few-shot learning, we propose modifications to the loss function and computation of

the Bayes factor that result in significant performance improvements on a benchmark

few-shot learning task.

Generative Comparison Networks: A New Method for Few-Shot Learning:

Extending purely discriminative techniques for fully-supervised few-shot learning, we

introduce the Generative Comparison Network, which evaluates the similarity be-

tween datapoints via comparison of their posterior distributions in latent space under

a fine-tuned generative model. We propose a variety of suitable measures of simi-

larity, and evaluate them individually against a challenging semi-supervised few-shot

learning task, displaying competitive performance.

Disentangled Representations via Decorrelation: We introduce a new method

for disentanglement involving an ex post modification of a learned generative model.

In contrast to existing methods such as the DIP-VAE [19] and TC-VAE [2], ours is

computationally efficient, requires no hyper-parameter tuning, and provably improves

the unmodified generative model. We evaluate on a variety of different supervised and

supervised disentanglement metrics, showing competitive performance while avoiding

some of the tradeoffs present in existing methods.
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Chapter 2

Background

2.1 Variational Autoencoders

An important building block in our model is the Variational Autoencoder (VAE), a

commonly used deep generative model. Given observed data 𝑥 ∈ R𝑑 generated from

an unknown distribution 𝑝(𝑥), and latent variable vector 𝑧 ∈ R𝑙 with prespecified

prior 𝑝(𝑧), the VAE consists of an inference network 𝑞𝜑(𝑧|𝑥) and recognition network

𝑝𝜓(𝑥|𝑧), parameterized by neural networks. Here, 𝑞𝜑(𝑧|𝑥) is a variational approxima-

tion to the true posterior 𝑝(𝑧|𝑥). In most cases, we will use a Gaussian VAE, where

𝑞𝜑(𝑧|𝑥) = 𝑁(𝜇𝜑(𝑥),Σ𝜑(𝑥)) and 𝑝(𝑧) = 𝑁(0, 𝐼𝑙).

Suppose we have access to 𝑘 unlabeled samples 𝑥1, 𝑥2, ..., 𝑥𝑘 ∼ 𝑝(𝑥). Training the

VAE proceeds by stochastic gradient ascent on the evidence lower bound (ELBO); a

tractable lower bound for the data log-likelihood
∑︀𝑘

𝑖=1 log 𝑝(𝑥𝑖), defined as follows:

ℒ𝐸𝐿𝐵𝑂 =
𝑘∑︁
𝑖=1

(︀
E𝑧∼𝑞𝜑(𝑧|𝑥𝑖)[log 𝑝𝜓(𝑥𝑖|𝑧)] −𝐾𝐿(𝑞𝜑(𝑧|𝑥𝑖)||𝑝(𝑧))

)︀
(2.1)

For our purposes, it will be helpful to decompose ℒ𝐸𝐿𝐵𝑂 as the sum of the recon-

17



struction loss ℒ𝑅 and the KL loss ℒ𝐾𝐿, defined as follows:

ℒ𝑅 =
𝑘∑︁
𝑖=1

(︀
E𝑧∼𝑞𝜑(𝑧|𝑥𝑖)[log 𝑝𝜓(𝑥𝑖|𝑧)]

)︀
ℒ𝐾𝐿 = −

𝑘∑︁
𝑖=1

(𝐾𝐿(𝑞𝜑(𝑧|𝑥𝑖)||𝑝(𝑧)))

To compute noisy gradients of ℒ𝐸𝐿𝐵𝑂 with respect to the parameters of the recogni-

tion network and inference network, the reparameterization trick is employed ([14],

[31]).

Since their introduction, VAEs have been the subject of many papers seeking to under-

stand their properties or proposing extensions. While we primarily use the "vanilla"

VAE described above for the sake of simplicity of implementation and fair comparison

to existing benchmarks, our methods may be applied without much difficulty to many

of the more complex models that have since been developed.

2.2 Few-Shot Learning

To motivate the problem of few-shot learning, consider the following observation: a

toddler presented with their very first image of a giraffe is able to identify giraffes

in other images (regardless of size, position, or surrounding content) without much

difficulty. This ability stands in stark contrast to standard machine learning methods

in image classification, which require hundreds of labeled images in order to reliably

identify a given class. In other words, given an understanding of other, similar classes

of objects (in this case, other animals), a human is able to obtain an accurate under-

standing of a new class from very few labeled examples. The process by which this

occurs is commonly referred to as few-shot learning.
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Figure 2-1: Omniglot Visualization: Image samples from the Omniglot dataset
are shown, with each column representing a distinct class.

In this thesis, we consider the question of how to develop algorithms to replicate this

ability. To do so, we must first introduce a task which serves as an evaluation of

few-shot learning capability.

We define the 𝑛-way, 𝑘-shot classification task as follows: during training, we are

given a labeled dataset

𝒟𝐿 := {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑚, 𝑦𝑚)}

with the labels 𝑦𝑖 ∈ {1, 2, . . . , 𝑐} and an unlabeled dataset

𝒟𝑈 := {𝑥𝑚+1, 𝑥𝑚+2, ..., 𝑥𝑚+𝑚
′}

For each test time instance a labeled support set

𝒮 := {𝑥(1)1 , 𝑥
(1)
2 , . . . , 𝑥

(1)
𝑘 , 𝑥

(2)
1 , . . . 𝑥

(𝑛)
𝑘 }
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with 𝑛 classes and 𝑘 datapoints per class is given, and we are tasked with classifying

a query point 𝑥 as one of the 𝑛 classes. Our performance is the accuracy averaged

across many such instances. Unlike the traditional classification setting, the 𝑛 classes

present in 𝒮 do not overlap with the classes observed during training time. To simplify

our presentation with this in mind, we refer to these support set classes as 1 . . . 𝑛.

Fully-supervised few-shot learning and its semi-supervised variant are distinguished

by whether 𝒟𝑈 is empty.

As is standard in the literature, we evaluate our proposed algorithms on the Omniglot

dataset (see Figure 2-1), introduced in [20]; a collection of handwritten characters cre-

ated specifically for the few-shot learning setting. This dataset consists of 20 grayscale

iamges for each of 1623 characters drawn from a total of 50 different alphabets, re-

sized from 105x105 to 28x28. Following [38], we split the dataset into 1200 training

classes and 423 evaluation classes. Support sets for the test-time instances are sam-

pled randomly from the latter. In the semi-supervised setting, 90% of samples from

each training class chosen at random are moved to 𝒟𝑈 .

A variety of approaches to few-shot learning have been proposed. These may be

broadly classified as follows:

Metric Learning: Few-shot learning is closely related to the problem of metric

learning, which seeks a means of measuring similarity between objects. [38], [34]

and [35] all accomplish this by learning a map from the data to a lower-dimensional

embedding space, parameterized by a deep neural network. The similarity used in

each is different, with the authors using the cosine similarity, Euclidean distance, and

a jointly learned function respectively.

Meta-learning: Building on the metric-learning literature, meta-learning approaches

seek to improve generalization to unseen data by learning ways to modify their pre-

diction method during prediction, using the data provided during testing. [28] and

[26] use an auxiliary neural network to update model weights at test-time, where [6]

use test-time gradient updates to fine-tune their model for prediction.
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Utilizing Generative Models: [10] and [5] use learned generative models for few-

shot learning. In both works, the authors use an explicitly parameterized context

variable as part of the generative process. For few-shot prediction, posterior distri-

butions over the context variables are compared for the query and the classes in the

support set.

Semi-supervised Few-shot Learning: Recent work has considered the extension

of few-shot learning to settings where portions of the training or test data are un-

labeled. Of these, [29] augments the standard prototypical networks algorithm with

an embedding refining procedure making use of unlabeled data during test-time. [41]

use samples from a GAN trained partly on the unsupervised data to fine-tune their

discriminative decision boundaries.

In particular, our algorithms will draw inspiration from previous work from metric

learning and utilizing generative models to allow few-shot learning in both the fully-

supervised and semi-supervised setting.
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Chapter 3

Improving the Latent Reasoning

Network

In this chapter, we refine the approach taken by [17] to few-shot learning, which fine-

tunes a pre-existing generative model using label information. We suggest a number

of improvements to both the evaluation and learning stages of the previous framework.

For evaluation, we derive a closed form of the approximation to the Bayes factor in the

case where the the prior and variational posteriors lie in the same exponential family.

This removes the need for Monte Carlo sampling during evaluation. For learning, we

identify multiple shortcomings of the original max-margin loss function in the context

of classification and suggest means around them.

The effects of these changes are demonstrated via an ablation study, showing signif-

icant performance improvements on a benchmark few-shot learning task. With the

improved algorithm we demonstrate competitive results on a difficult semi-supervised

learning task.
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𝑧1 𝑧2 𝑧3

𝑥1 𝑥2 𝑥3

𝑤𝑄

𝑧𝑡

𝑥𝑡

Figure 3-1: Latent Variable Model for the Latent Reasoning Network: A
latent variable 𝑤𝑄 determines the shared commonality between objects in a set. Based
on the value of 𝑤𝑄, the per-datapoint latent variable 𝑧 is generated. The dashed arrow
represents the hypothesis that the query 𝑥𝑡 was generated from the same realization
of 𝑤𝑄.

3.1 The Latent Reasoning Network

In this section, we describe the Latent Reasoning Network (LRN), a method for rea-

soning about the similarity between a query 𝑥𝑡 and a set of objects𝑄 := {𝑥1, 𝑥2, . . . , 𝑥𝑄}

introduced in [17]. To answer such queries, the LRN assumes the latent variable model

depicted in Figure 3-1. In this model, 𝑤 represents a shared trait of objects in the

set. For example, this might be class identity in few-shot learning or a particular user

in recommender systems. Based on this individual property, a per-datapoint latent

variable 𝑧 ∈ R𝑙 is generated, which then gives rise to the observed features.

To evaluate the similarity between an object 𝑥 and a set 𝑄 given such a generative

model, the model makes use of the Bayes Factor, a normalized score defined as

score(𝑥,𝑄) = log
𝑝(𝑥|𝑄)

𝑝(𝑥)

The Bayes factor has a rich history as a scoring function, first introduced in the
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context of document retrieval by [7]. One means of motivating the Bayes factor is via

hypothesis testing. In particular, the Bayes factor is the likelihood ratio arising from

the hypothesis that 𝑥 the observations in 𝑄 were generated with the same value of 𝑤,

implying high similarity, as compared to the null hypothesis that 𝑥 was independently

generated.

Exact computation of both the posterior density 𝑝(𝑥|𝑄) and marginal density 𝑝(𝑥) is

intractable. Accordingly, the authors of [17] rewrite the Bayes factor as follows using

Bayes rule along with conditional independence relationships:

log score(𝑥,𝑄) = log

∫︁
𝑝(𝑧|𝑄)𝑝(𝑧|𝑥)

𝑝(𝑧)
𝑑𝑧 (3.1)

The authors then propose to approximate each of the terms appearing in Equation

3.1 separately, with the integral approximated via importance sampling. 𝑝(𝑧|𝑥) is

replaced with 𝑞𝜑(𝑧|𝑥), the inference network of a Gaussian variational autoencoder

with parameters 𝜑 and recognition network 𝑝𝜓(𝑥|𝑧), referred to as the data model.

𝑝(𝑧) is a standard normal Gaussian. Lastly, 𝑝𝜃(𝑧|𝑄) is amortized by means of a

reasoning model, which is a learned map parameterized by 𝜃. The reasoning model

takes as input the individual Gaussian posteriors {𝑞𝜑(𝑧|𝑥𝑖)}1≤𝑖≤𝑄, computed using

the inference network of the data model, and outputs a single Gaussian distribution

over the latent space. To accomodate both the permutation-invariant set structure

and variable size of the input, the reasoning model uses the DeepSets architecture

specifically designed with these properties from [40].

Put together, these approximations yield

log score(𝑥,𝑄) ≈ logE𝑞𝜑(𝑧|𝑥)
[︂
𝑝𝜃(𝑧|𝑄)

𝑝(𝑧)

]︂
(3.2)

In the following sections, we refer to the right-hand side as log score(𝑥,𝑄).
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3.2 Learning Algorithm for the Latent Reasoning

Network, from [17]

Before discussing our modifications, we review the loss function and the learning al-

gorithm presented in [17]. In broad terms, the goals of training are two-fold: first, to

fine-tune the latent space of the data model towards the task at hand; and second, to

learn the parameters of the reasoning model. We assume that we are in the few-shot

classification setting as defined in Section 2.2. As a result, we are presented with

labeled data at training time. To accomplish the objectives in the context of a clas-

sification task, the authors propose a max-margin discriminative loss function based

on the intuition that given a query set with a single shared label among elements,

objects with the same label should have a higher score than those that do not.

To begin, we make use of the following definitions: for arbitrary (𝑥, 𝑦) ∈ 𝒟𝐿,

𝑋𝑠 := {𝑥′|(𝑥′, 𝑦′) ∈ 𝒟𝐿, 𝑦 = 𝑦′} (3.3)

𝑋𝑛𝑠 := {𝑥′|(𝑥′, 𝑦′) ∈ 𝒟𝐿, 𝑦 ̸= 𝑦′} (3.4)

Then, for a datapoint 𝑥, the max-margin loss ℒ𝑚𝑚(𝑥, 𝜑, 𝜓) is defined as follows:

ℒ𝑚𝑚(𝑥, 𝜑, 𝜃) = E𝑄𝑠⊂𝑋𝑠E𝑄𝑛𝑠⊂𝑋𝑛𝑠[︃
1

𝑑

∑︁
𝑥𝑛𝑠∈𝑄𝑛𝑠

max (log score(𝑥𝑛𝑠, 𝑄𝑠) − log score(𝑥,𝑄𝑠) + ∆, 0)

]︃
(3.5)

where the size of 𝑄𝑠 and 𝑄𝑛𝑠 is the hyperparameter 𝑏, and ∆ is the margin, taken to be

the squared distance between the posterior means of 𝑥 and 𝑥𝑛𝑠. As a natural form of

regularization, ensuring that the outputs of the data model still overlap with the prior
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and capture variation in the data, we include ℒ𝐸𝐿𝐵𝑂(𝑥, 𝜑, 𝜓) as an unsupervised term

in the full objective. ℒ𝑚𝑚 and ℒ𝐸𝐿𝐵𝑂 are weighted according to a hyperparameter

𝐶, giving the combined loss:

ℒ𝐶(𝜑, 𝜓, 𝜃) = E𝑥
[︂

𝐶

𝐶 + 1
ℒ𝑚𝑚(𝑥, 𝜑, 𝜃) +

1

𝐶 + 1
ℒ𝐸𝐿𝐵𝑂(𝑥, 𝜑, 𝜓)

]︂
(3.6)

To begin training, the data model is initialized as a variational autoencoder pre-

trained on all available datapoints, unlabeled or labeled. Following this step, gradi-

ent descent is performed on ℒ𝐶 for the parameters 𝜑, 𝜓, and 𝜃, jointly learning the

reasoning model and fine-tuning the latent space via backpropagation through the

inference/recognition networks.

To apply the Latent Reasoning Network to an individual few shot classification in-

stance, as defined in Section 2.2, for 1 ≤ 𝑖 ≤ 𝑛 we define 𝑄(𝑖) := {𝑥(𝑖)1 , 𝑥
(𝑖)
2 , . . . 𝑥

(𝑖)
𝑘 }. As

𝑄(𝑖) is the subset of the support set corresponding to the single class 𝑖, we label the

query 𝑥 as arg max𝑖 score(𝑥,𝑄(𝑖)). Crucially, the reasoning model permits a variable

number of inputs by construction, permitting usage of a single model for all 𝑘.

3.3 Evaluating the Latent Variable Bayes Factor

In this section, we show that the Latent Variable Bayes factor may be computed

analytically, avoiding the variance associated with the Monte Carlo-based sampling

approach used in [17]. Our result is stated generally as follows:

Proposition 1. Suppose 𝑞(𝑧|𝑥), 𝑞(𝑧|𝑄), 𝑝(𝑧) have density functions of the form

ℎ(𝑧) exp(⟨𝜃, 𝑇 (𝑧)⟩ − 𝐴(𝜃))
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with parameters 𝜃𝑥, 𝜃𝑄, 𝜃𝑝 respectively. Then,

∫︁
𝑧

𝑞(𝑧|𝑥)

𝑝(𝑧)
𝑞(𝑧|𝑄)𝑑𝑧 = 𝐴(𝜃𝑥 + 𝜃𝑄 − 𝜃𝑝) − (𝐴(𝜃𝑥) + 𝐴(𝜃𝑄) − 𝐴(𝜃𝑝))

Proof.

∫︁
𝑧

𝑞(𝑧|𝑥)

𝑝(𝑧)
𝑞(𝑧|𝑄)𝑑𝑧

=

∫︁
𝑧

ℎ(𝑧) exp(⟨𝜃𝑥, 𝑇 (𝑧)⟩ − 𝐴(𝜃𝑥))

ℎ(𝑧) exp(⟨𝜃𝑝, 𝑇 (𝑧)⟩ − 𝐴(𝜃𝑝))
ℎ(𝑧) exp(⟨𝜃𝑄, 𝑇 (𝑧)⟩ − 𝐴(𝜃𝑄))𝑑𝑧

=

∫︁
𝑧

exp(⟨𝜃𝑥, 𝑇 (𝑧)⟩ − 𝐴(𝜃𝑥) + ⟨𝜃𝑄, 𝑇 (𝑧)⟩ − 𝐴(𝜃𝑄))

exp(⟨𝜃𝑝, 𝑇 (𝑧)⟩ − 𝐴(𝜃𝑝))
ℎ(𝑧)𝑑𝑧

=

∫︁
𝑧

ℎ(𝑧)
exp(⟨𝜃𝑥, 𝑇 (𝑧)⟩ + ⟨𝜃𝑄, 𝑇 (𝑧)⟩ − ⟨𝜃𝑝, 𝑇 (𝑧)⟩

exp(𝐴(𝜃𝑥) + 𝐴(𝜃𝑄) − 𝐴(𝜃𝑝))
𝑑𝑧

=
1

exp(𝐴(𝜃𝑥) + 𝐴(𝜃𝑄) − 𝐴(𝜃𝑝))

∫︁
𝑧

ℎ(𝑧) exp(⟨𝜃𝑥 + 𝜃𝑄 − 𝜃𝑝, 𝑇 (𝑧)⟩)𝑑𝑧

=
exp(𝐴(𝜃𝑥 + 𝜃𝑄 − 𝜃𝑝))

exp(𝐴(𝜃𝑥) + 𝐴(𝜃𝑄) − 𝐴(𝜃𝑝))

The analytic form given by Proposition 1 holds for all cases in which the variational

approximations 𝑞(𝑧|𝑄), 𝑞(𝑧|𝑥), and the prior 𝑝(𝑧) are members of the same exponential

family. When these are Gaussians with diagonal covariance matrices, as is the case

for the Latent Reasoning Network, the following corollary holds:

Corollary 1. Suppose 𝑞(𝑧|𝑥), 𝑞(𝑧|𝑄), and 𝑝(𝑧) are 𝑁(𝜇𝑥,Σ𝑥), 𝑁(𝜇𝑄,Σ𝑄), and 𝑁(0, 𝐼𝑘),

respectively.

Then, for 1 ≤ 𝑖 ≤ 𝑘, letting 𝐴𝑖 = (Σ𝑥)𝑖𝑖 + (Σ𝑞)𝑖𝑖 − (Σ𝑥)𝑖𝑖(Σ𝑞)𝑖𝑖,

log

∫︁
𝑧

𝑞(𝑧|𝑥)

𝑝(𝑧)
𝑞(𝑧|𝑄)𝑑𝑧

=
𝑘∑︁
𝑖=1

(︂
−((𝜇𝑥)𝑖 − (𝜇𝑄)𝑖)

2 + (𝜇𝑥)
2
𝑖 (Σ𝑄)𝑖𝑖 + (𝜇𝑄)2𝑖 (Σ𝑥)𝑖𝑖

2𝐴𝑖
− log

√︀
𝐴𝑖

)︂
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To derive this statement, each of 𝑞(𝑧|𝑥), 𝑞(𝑧|𝑄), and 𝑝(𝑥) is written in the exponential

family form, then Proposition 1 is applied. The closed-form expression for score(𝑥,𝑄)

given by Corollary 1 may be used when computing the original loss defined in Equation

3.6, the new losses introduced in Section 3.4, and the few-shot classification procedure

described in Section 3.2. Accordingly, both training and evaluation of the Latent

Reasoning Network are affected.

The Latent Variable Bayes Factor and its closed form for exponential families may

be of interest in the broader context of determining similarity between probability

distributions. In particular, the LVBF is a kernel; a property that is apparent from

its integral form. Therefore the LVBF may be used an alternative to standard choices

for kernel-based learning algorithms such as SVMs classifying distributions, rather

than points [12].

3.4 Improving the Latent Reasoning Network

In this section, we describe the proposed modifications to the Latent Reasoning Net-

work. While we leave the structure of the model constant, as described in Section 3.1,

we will introduce a variety of changes to the loss function with the shared motivation

of aligning the training-time loss with the test-time few-shot classification task.

3.4.1 Adding a Classification-Based Objective

Within a single few-shot classification instance the query point is shared among the

score evaluations, while the set of objects is varied among those consisting of a single

class. This stands in contrast to ℒ𝑚𝑚 as defined in Equation 3.5, where the set

𝑄 is held constant while the query point varies. This observation motivates the

introduciton of a new loss function, defined as follows:
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ℒ𝑚𝑚2 (𝑥, 𝜑, 𝜃) = E𝑄𝑠⊂𝑋𝑠E𝑄𝑛𝑠⊂𝑋𝑛𝑠 [max (log score(𝑥,𝑄𝑠) − log score(𝑥,𝑄𝑛𝑠), 0)] (3.7)

While it is possible to fully replace ℒ𝑚𝑚 with ℒ𝑚𝑚2 in the combined loss ℒ𝐶 , we find

from experiments on the Omniglot dataset that incorporating both terms with equal

weights performs best. In particular, our new combined loss function is

ℒ𝐶1 (𝜑, 𝜓, 𝜃) = E𝑥
[︂

𝐶

𝐶 + 1

ℒ𝑚𝑚(𝑥, 𝜑, 𝜃) + ℒ𝑚𝑚2 (𝑥, 𝜑, 𝜃)

2
+

1

𝐶 + 1
ℒ𝐸𝐿𝐵𝑂(𝑥, 𝜑, 𝜓)

]︂
(3.8)

Note that ℒ𝑚𝑚2 may be computed solely using the sets of datapoints sampled for

ℒ𝑚𝑚, bringing the total additional computation requirement during training to a

single forward/backwards pass for log score(𝑥,𝑄𝑛𝑠) for each element of a batch.

3.4.2 Improving Separation using a Log-Loss

Next, we observe that once log score(𝑥,𝑄𝑠) − log score(𝑥,𝑄𝑛𝑠) > ∆, the gradient

of ℒ𝑚𝑚 is 0. As a result, for small values of ∆ in particular, the Latent Reasoning

Network may lack the ability to "push apart" datapoints from different classes enough

to guarantee generalizable class separation. To remedy this, we suggest replacing ℒ𝑚𝑚

and ℒ𝑚𝑚2 with ℒ𝑙𝑜𝑔 and ℒ𝑙𝑜𝑔2 , defined as follows:

ℒ𝑙𝑜𝑔(𝑥, 𝜑, 𝜃) = E𝑄𝑠⊂𝑋𝑠E𝑄𝑛𝑠⊂𝑋𝑛𝑠[︃
1

𝑏

∑︁
𝑥𝑛𝑠∈𝑄𝑛𝑠

− log
score(𝑥,𝑄𝑠)

score(𝑥,𝑄𝑠) + score(𝑥𝑛𝑠, 𝑄𝑠)

]︃
(3.9)
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ℒ𝑙𝑜𝑔2 (𝑥, 𝜑, 𝜃) = E𝑄𝑠⊂𝑋𝑠E𝑄𝑛𝑠⊂𝑋𝑛𝑠[︂
− log

score(𝑥,𝑄𝑠)

score(𝑥,𝑄𝑠) + score(𝑥,𝑄𝑛𝑠)

]︂ (3.10)

In doing so, the "weight" of datapoint 𝑥 within the batch gradient computation for

ℒ𝑙𝑜𝑔2 is inversely related with the size of score(𝑥,𝑄𝑠) relative to score(𝑥,𝑄𝑛𝑠) while

still being non-negative (and the analogous statement holds for ℒ𝑙𝑜𝑔). This is desired

behavior, as during training, parameter updates which distinguish hard-to-separate

classes should be prioritized. In contrast, the weight of datapoint 𝑥 when taking

gradients of ℒ𝑚𝑚 and ℒ𝑚𝑚2 does not depend on the relative values of score(𝑥,𝑄𝑠) and

score(𝑥,𝑄𝑛𝑠), until the point at which log score(𝑥,𝑄𝑠) − log score(𝑥,𝑄𝑛𝑠) > ∆, when

it falls abruptly to 0.

For further intuition regarding the new loss terms, suppose that in all cases the set

𝑄 consists solely of from a single class 𝑐. If score(𝑥,𝑄) ∝ 𝑝(𝑥 ∈ class 𝑐), then ℒ𝑙𝑜𝑔2 is

none other than the log-loss for a binary classification task (identifying all images with

a different label than 𝑥 as the same class), with a similar statement holding for ℒ𝑙𝑜𝑔.

In using the loss from this binary classification task during training to approach the

few-shot classification task, we recover the approach of Siamese networks for few-shot

learning, introduced in [16].

The intuition behind our new objectives relies on our observed similarities during

training being a class partition of the dataset, rather than e.g. real-valued similarity

judgements between objects and sets. This illustrates another way in which our

modifications leverage the particular structure of the classification problem.

The updated loss function is:
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ℒ𝐶2 (𝜑, 𝜓, 𝜃) = E𝑥

[︃
𝐶

𝐶 + 1

ℒ𝑙𝑜𝑔(𝑥, 𝜑, 𝜃) + ℒ𝑙𝑜𝑔2 (𝑥, 𝜑, 𝜃)

2
+

1

𝐶 + 1
ℒ𝐸𝐿𝐵𝑂(𝑥, 𝜑, 𝜓)

]︃
(3.11)

3.5 Number of Training Ways

As defined, ℒ𝑙𝑜𝑔2 (𝑥, 𝜑, 𝜃) corresponds to a binary classification question, as described

in the previous section. Few-shot classification, however, is a multi-way classification

task when the number of ways is larger than two, and so the final modification we

propose will refine ℒ𝑙𝑜𝑔(𝑥, 𝜑, 𝜃) and ℒ𝑙𝑜𝑔2 (𝑥, 𝜑, 𝜃) to enable comparison against multiple

classes.

Recall from Section 2.2 that our training-time labels are {1 . . . 𝑐}. We specify 𝑡 as a

hyperparameter controlling the number of "training ways". For a given (𝑥, 𝑦) ∈ 𝒟𝐿

and specified 𝑡, we let 𝑆 ⊂ {1 . . . 𝑙} ∖ {𝑦(𝑥)}, |𝑆|= 𝑡 be a subset of 𝑡 distinct class

labels chosen at random. For 1 ≤ 𝑖 ≤ 𝑡, we sample 𝑄(𝑖)
𝑛𝑠 ⊂ {𝑥′|(𝑥′, 𝑦′) ∈ 𝒟𝐿, 𝑦′ =

𝑆𝑖}, |𝑄(𝑖)
𝑛𝑠|= 𝑏. The final loss functions are defined as follows:

ℒ𝑙𝑜𝑔3 (𝑥, 𝜑, 𝜃) = E𝑄𝑠⊂𝑋𝑠E𝑆E𝑄(𝑖)
𝑛𝑠[︃

1

𝑏

𝑏∑︁
𝑗=1

− log
score(𝑥,𝑄𝑠)

score(𝑥,𝑄𝑠) +
∑︀𝑡

𝑖=1 score((𝑄
(𝑖)
𝑛𝑠)𝑗, 𝑄𝑠)

]︃
(3.12)

ℒ𝑙𝑜𝑔4 (𝑥, 𝜑, 𝜃) = E𝑄𝑠⊂𝑋𝑠E𝑆E𝑄(𝑖)
𝑛𝑠[︃

− log
score(𝑥,𝑄𝑠)

score(𝑥,𝑄𝑠) +
∑︀𝑡

𝑖=1 score(𝑥, (𝑄
(𝑖)
𝑛𝑠)𝑗)

]︃
(3.13)

In order to replicate the test-time 𝑛-way classification setting, we would set 𝑡 = 𝑛−1.

As observed by [34], models trained with slightly larger 𝑡 typically perform better.
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For informal intuition, we suppose 𝑡 is small. In this case, the gradient update for

both ℒ𝑙𝑜𝑔3 and ℒ𝑙𝑜𝑔4 might unwittingly push the representation of 𝑥 in the latent space

towards those of a class not seen in any of the 𝑄(𝑖)
𝑛𝑠, compromising separation and

therefore classification accuracy. As 𝑡 increases however, the latent representation of

𝑥 is pushed away from many classes at once, resulting in a more "robust" separation.

This improvement comes at a cost; the computational requirement of a single gradient

computation increases linearly in 𝑡. We take 𝑡 = 29 in our experiments, as we find

that increasing 𝑡 beyond this point results in negligible performance gains.

The final loss function is:

ℒ𝐶3 (𝜑, 𝜓, 𝜃) = E𝑥

[︃
𝐶

𝐶 + 1

ℒ𝑙𝑜𝑔(𝑥, 𝜑, 𝜃) + ℒ𝑙𝑜𝑔2 (𝑥, 𝜑, 𝜃)

2
+

1

𝐶 + 1
ℒ𝐸𝐿𝐵𝑂(𝑥, 𝜑, 𝜓)

]︃
(3.14)

3.6 Experiments and Results

We evaluate our algorithm in a variety of few-shot classification setups using the

standard Omniglot dataset. We follow standard data augmentation procedures at

training time. These include augmenting the original classes by applying random

small rotations, shifts, and scalings, and generating new training classes by rotating

images in the original classes through multiples of 90∘. For all experiments, we take

𝑡 = 29. Increasing 𝑡 beyond this point substantially increases training time while

providing no clear increase in out-of-sample accuracy. During both pretraining of the

data model VAE and training of the LRN, we use the Adam optimizer with a learning

rate of 0.0003. For pretraining, we use a batch size of 256 images for 500 epochs, and

for training of the LRN we use a batch size of 32 instances for 8 epochs. For the semi-

supervised setting, we find that taking 𝐶 = 250 strikes the right balance between the

discriminative loss regularization of the generative loss, while for the fully-supervised

setting using solely the discriminative term (i.e. letting 𝐶 = ∞) performs best.
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For Omniglot, the data model is a VAE with convolutional encoder and deconvolu-

tional decoder architectures identical to those used in [5]. Compared to [5], however,

we use a simpler generative model with no skip-connections and only one set of latent

variables. The reasoning model consists of one permutation-equivariant layer. We

use the training algorithm described above.

3.6.1 Ablation Study

To further understand the individual significance of the modifications to the learning

procedure, we examine performance in the fully supervised setting with each removed.

The results, displayed in Table 3.1, show that each individual modification plays a

non-negligible role in the final performance evaluation. In particular, for each instance

increasing the number of classes the datapoint is compared against (as suggested in

Section 3.5) plays an important role. We were unable to test the incremental value

of removing the max-margin, as there is no clear analogue of the max-margin loss for

𝑡 > 1.

Table 3.1: Accuracy on the 5-way Fully-supervised Omniglot task

Model 1-shot 5-shot

Ours, Equation 3.14 98.0 99.3
(Final)
[17], Equation 3.6 93.6 98.2
(Original Max-Margin Loss)
Ours, Equation 3.11 96.7 99.0
(Binary Comparisons)
Ours, Equation 3.14* 97.5 99.1
(ℒ𝑙𝑜𝑔2 Removed)

3.6.2 Fully-supervised Few-shot Learning

At evaluation time in the fully-supervised 𝑛-way 𝑘-shot setting, for an individual task

𝑇𝑖 we randomly choose 𝑛 classes from the evaluation set and sample 𝑘 images from
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each of the classes, which together constitute the support set. One of the 𝑛 classes is

selected at random, and an additional exemplar image is drawn from this class. The

reported performance is the model’s accuracy in identifying the class from which the

exemplar image is drawn, averaged across many individual tasks 𝑇𝑖.

Table 3.2: Accuracy on the 5-way Omniglot task

Model 1-shot 5-shot

Ours 98.0 99.3

LRN (UAI 2018) 93.6 98.2
[17]
Matching Networks 98.1 98.9
[38]
Neural Statisician 98.1 99.5
[5]
Prototypical Nets 98.8 99.7
[34]
Relation Nets 99.6 99.8
MetaGAN 99.7 99.9
[41]

In the fully-supervised setting we observe that with the changes of Section 3.3 and

Section 3.4, our method is competitive with similar algorithms making use of deep

generative models (e.g. [5]). Of note is the remarkable performance of the Relation

Network and its MetaGAN variant. Instead of pre-specifying a similarity function,

such as the Euclidean distance, the Relation Net algorithm learns a similarity func-

tion parameterized by a neural network jointly with the embeddings. When sufficient

labeled data is available to learn the increased parameter set, the added flexibility

afforded by the learned similarity results in better generalization. We discuss anal-

ogous potential methods to increase the flexibility of the learned latent space of the

LRN in Section 3.7.

3.6.3 Semi-supervised Few-shot Learning

The semi-supervised 𝑛-way 𝑘-shot setting we consider mirrors that of [29] and [41]

at training time. In this context, for each training class 10% of images are randomly
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chosen to keep their labels, while the remainder constitute the unlabeled set. At

evaluation time, the individual tasks 𝑇𝐼 are constructed in an identical manner to the

fully-supervised task. This differs from the setup used in [29], which, in addition to the

labeled data in the support set uses previously unseen unlabeled data at evaluation

time, and thus uses strictly more information. This setup is referred to as Task-Level

Semi-Supervised Few-Shot Learning in [41].

Table 3.3: Accuracy on the 5-way Semi-supervised Omniglot task

Model 1-shot

Ours 96.8

LRN 92.4
[17]
MetaGAN 97.1
[41]
Relation Net 93.8
[35]
Prototypical Nets 93.7
[34]

We show the results of the semi-supervised evaluation in Table 3.3. Our method is

competitive with the state-of-the-art MetaGAN, and considerably outperforms base-

lines solely making use of labeled data. The results support fine-tuning generative

models as a means to accomplish few-shot learning in a label- and data-efficient man-

ner.

3.7 Discussion

Building on the work of [17], we introduced multiple improvements to the learn-

ing procedure for the Latent Reasoning Network and quantified their contribution

through an ablation study on the Omniglot few-shot learning task. Replacing the

max-margin loss with the log-loss and increasing the number of classes in a train-

ing instance qualitatively results in a latent space fine-tuned towards pushing apart

points in different classes while pulling together points in the same class. We also add
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an additional training-time loss term inducing the score between a fixed target point

and a query set to be highest when the query set consists of objects from the same

class as the target point. Doing so closes the gap between training and evaluation

objectives yielding quantifiable improvements in test-time accuracy.

When all the terms in the approximation to the Bayes Factor lie in the exponential

family, we derive an analytic expression for the Latent Variable Bayes Factor. Doing

so yields a lower variance replacement to the Monte Carlo estimator previously used

in both the evaluation procedure and training-time gradient estimates.

The benefits of our changes are evident in both fully-supervised and semi-supervised

few-shot learning tasks. For the latter we show competitive results with state-of-

the-art models, making a case for the use of unsupervised pretraining followed by

discriminative fine-tuning.

A limitation of the current model is the use of the entire latent space in evaluating

similarity. This enforces an implicit tradeoff between discriminative and generative

performance, which we suspect is the driver behind the decrease in quality of gener-

ated images after discriminative training. Adding auxiliary latent variables to model

per-datapoint variability in attributes beyond class identity is a possible workaround.

Another possible extension is exploring the use of alternatives to the standard Gaus-

sian VAE for the data model. Either an increased ability to model variability among

individual datapoints or a means of learning latent spaces in which inter-class and

intra-class variation are more easily distinguished could translate to more refined

similary judgements, resulting in better performance on downstream tasks (such as

few-shot learning). The former may be achieved by using more flexible prior ([37])

or posterior ([30]) parameterizations. For the latter, we might for example learn a

latent space consisting jointly of both discrete and continuous representations, as in

[3]. For particular choices of discrete random variables (e.g. Bernoulli, Poisson) the

closed-form score presented in Section 3.3 will still be usable.
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Chapter 4

Generative Comparison Networks

In this chapter, we introduce the Generative Comparative Network, a classification

algorithm designed for a semi-supervised setting in which a generative model is the

natural means of utilizing the information from unlabeled data. Along the way, we in-

troduce efficiently computable similarity measures between datapoints based on their

corresponding posteriors in latent space. We present a semi-supervised learning al-

gorithm which leverages these similarity measures and class information to fine-tune

the latent space of an existing generative model using a loss function and training

algorithm inspired by few-shot learning. We relate our method to previous algo-

rithms, such as Matching Networks, Prototypical Networks, and the Latent Rea-

soning Network introduced in Chapter 3, and display its potential on a challenging

semi-supervised few-shot learning task, on which the GCN performs nearly as well as

state-of-the-art methods despite a significant decrease in complexity.

4.1 Motivating the Generative Comparison Network

In this section, we motivate the Generative Comparison Network (GCN) by compar-

ison to other few-shot learning algorithms.
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To motivate the GCN, we consider the 𝑛-way, 𝑘-shot classification problem posed in

Section 2.2, where given a labeled support set

𝒮 := {𝑥(1)1 , 𝑥
(1)
2 , . . . , 𝑥

(1)
𝑘 , 𝑥

(2)
1 , . . . 𝑥

(𝑛)
𝑘 } ⊂ R𝑑

with 𝑛 classes and 𝑘 datapoints per class, we must identify which of the 𝑛 classes a

query point 𝑥𝑡 belongs to.

For 𝑥 ∈ R𝑑 and 𝑄 ⊂ R𝑑, we let 𝐾(𝑥,𝑄) : R × 𝒫(R) → R be a specified similarity

function between an object and a set. Given such a similarity function, and letting

𝑄(𝑖) := {𝑥(𝑖)1 , 𝑥
(𝑖)
2 , . . . , 𝑥

(𝑖)
𝑘 } be the subset of the support set with label 𝑖, a metric-

learning style approach to the few-shot classification problem might produce the

following distribution over the 𝑛 possible labels for 𝑥𝑡:

𝑝(𝑥 ∈ class 𝑖) =
exp(𝐾(𝑥,𝑄(𝑖)))∑︀𝑛
𝑗=1 exp(𝐾(𝑥,𝑄(𝑗)))

(4.1)

One possible choice of 𝒦(𝑥,𝑄) is the average Euclidean distance between the elements

of 𝑄 and 𝑥. In practice, however, the Euclidean metric is not a good measure of

true semantic difference between datapoints due to the complex, non-linear structure

of many real-world datasets. Instead, in the fully-supervised setting, the Matching

Networks algorithm ([38]) proposes first embedding 𝑥 and the elements of 𝑄 into a

lower-dimensional space using a shared neural network, and then computing 𝐾(𝑥,𝑄)

as the average cosine similarity between the embedding of 𝑥 and those corresponding

to 𝑄. The parameters of the neural network are learned via gradient descent on the

log-loss of the prediction procedure on instances constructed from the training set.

Since its introduction, the original Matching Networks algorithm has been extended

in a variety of ways, resulting in significant performance improvements on the original

fully-supervised few-shot learning task. One of these ways is the Prototypical Net-

works algorithm [34], which makes two changes; firstly, the cosine similarity used to

compare embeddings in Matching Networks is replaced with the Euclidean distance,
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which the authors argue is more geometrically sound. Second, when 𝑄 contains mul-

tiple elements, the authors propose using the similarity between the mean of the

embeddings of elements in the set and the query embedding as 𝐾(𝑥,𝑄), as the mean

better represents the characteristics shared within the set. In our development of the

GCN, we will make use of both of these techniques.

Both Matching Networks and Prototypical Networks are unable to make use of un-

labeled data during training. As previously observed, this limitation is particularly

salient in many modern datasets. When operating in the semi-supervised setting, our

proposed Generative Comparison Networks algorithm is a means of addressing this

shortcoming by using the inference network of a variational autoencoder to generate

embedding distributions of the query and elements of the support set, which are then

used to compute 𝐾𝐺𝐶𝑁(𝑥,𝑄).

4.2 Model Description

In this section, we define the GCN and give the associated learning algorithm and

loss function. Many of the design choices are motivated by the changes to the Latent

Reasoning Network introduced in Chapter 3; we provide comparisons where relevant.

As described in Section 4.1, defining the GCN is solely a matter of specifying 𝐾(𝑥,𝑄).

To do so, we begin with a Gaussian VAE with latent variable 𝑧 ∈ R𝑙, inference

network 𝑞𝜑(𝑧|𝑥), and recognition network 𝑝𝜓(𝑥|𝑧). If 𝑄 = {𝑥1, 𝑥2, . . . , 𝑥𝑄}, we define

𝑞𝑖 := 𝑞𝜑(𝑧|𝑥𝑖) for 1 ≤ 𝑖 ≤ 𝑄, and 𝑞𝑥 = 𝑞𝜑(𝑧|𝑥). The collection of distributions {𝑞𝑖}

and 𝑞𝑥 will serve as embeddings of the support set and query, respectively.

To compare the embeddings, we will make use of a real-valued similarity function

between distributions 𝐷 : P(R𝑘) × P(R𝑘) → R. The choice of similarity function

can affect performance on the test-time task significantly in the point embedding set-

ting, as illustrated by the discrepancy between Matching Networks and Prototypical

Networks.
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In our setting, embeddings also serve as posterior distributions for variational infer-

ence which is an added constraint complicating the choice of similarity function. For

a simple example, note that algorithms dealing with point embeddings are free to

scale all embeddings by a constant, whereas the scale for the GCN is fixed by the KL

loss to the standard Gaussian prior. As a result, a change as simiple as scaling the

GCN similarity function 𝐷 by a constant could change the results non-trivially.

In the absence of a canonical means of comparing variational posterior distributions,

in our experiments we evaluate each of a variety of choices for 𝐷 listed below:

1. The Bhattacharya Coefficient (BC): 𝐷(𝑝1, 𝑝2) =

∫︁
𝑧

√︀
𝑝1(𝑧)𝑝2(𝑧)𝑑𝑧

2. The log-Bhattacharya Coefficient (logBC):𝐷(𝑝1, 𝑝2) = log

∫︁
𝑧

√︀
𝑝1(𝑧)𝑝2(𝑧)𝑑𝑧

3. The mean-Euclidean Distance (mED): 𝐷(𝑝1, 𝑝2) = ||E𝑝1 [𝑧] − E𝑝2 [𝑧]| |22

4. The mean-Cosine Similarity (mCS): 𝐷(𝑝1, 𝑝2) =
E𝑝1 [𝑧] · E𝑝2 [𝑧]

||E𝑝2 [𝑧]||2||E𝑝2 [𝑧]||2

5. The log-Latent Variable Bayes Factor (LVBF):𝐷(𝑝1, 𝑝2) = log

∫︁
𝑧

𝑝1(𝑧)𝑝2(𝑧)

𝑝(𝑧)
𝑑𝑧,

where 𝑝(𝑧) is the PDF for 𝑁(0, 𝐼𝑓 ).

When 𝑝1, 𝑝2 are distributed as 𝑁(𝜇1,Σ1) and 𝑁(𝜇2,Σ2) respectively, each of the

choices of 𝐷 described above has an analytic expression in terms of the 𝜇𝑖 and Σ𝑖,

which are presented in Appendix A.

With 𝐷 defined, we may now define 𝐾𝐺𝐶𝑁(𝑥,𝑄), which performs a single comparison

between 𝑞𝑥 and a prototype distribution constructed from the 𝑞𝑖 (cf. Prototypical

Networks), done as follows:

𝐾𝐺𝐶𝑁(𝑥,𝑄) = 𝐷(𝑓({𝑞𝑖}1≤𝑖≤𝑄), 𝑞𝑥) (4.2)

For the GCN, a means of combining a set of distributions into single "prototype"

distribution is necessary, represented by 𝑓 . To motivate our choice of doing so, we

42



introduce the 𝒲2 distance, a natural extension to distributions of the Euclidean

distance for points.

For distributions 𝑝1, 𝑝2 ∈ P(R𝑏), and 𝜋 ∈ P(R𝑏 × R𝑏) with marginals 𝑝1, 𝑝2,

𝒲2
2 (𝑝1, 𝑝2) = inf

𝜋

∫︁
||𝑥− 𝑦||22𝑑𝜋(𝑥, 𝑦) (4.3)

Mimicking the choice of the mean for Prototypical Networks, we choose the Wasser-

stein barycenter of the set as the prototype, which is the unique distribution mini-

mizing the average Wasserstein distance to the elements. The Wasserstein barycenter

has the following closed form when 𝑞𝑖 = 𝒩 (𝜇𝑖,Σ𝑖) for diagonal Σ𝑖 (as is the case in

our setting), shown in [1]:

𝑓({𝑞𝑖}1≤𝑖≤𝑄) = 𝒩 (𝜇,Σ) (4.4)

where

𝜇 =
1

𝑄

𝑄∑︁
𝑖=1

𝜇𝑖 (4.5)

Σ =

(︃
1

𝑄

𝑄∑︁
𝑖=1

√︀
Σ𝑖

)︃2

(4.6)

We now give the loss function and the learning algorithm. The former will consist of a

discriminative term ℒ𝑑𝑖𝑠𝑐, designed to mimic the test-time few-shot classification task

using the labeled training data, and an unsupervised term ℒ𝐸𝐿𝐵𝑂 (Equation 2.1),

making use of both the labeled and unlabeled datapoints to help reduce over-fitting,

combined using a tuneable hyperparameter 𝐶.

For the discriminative term, we sample training instances 𝒯 of the few-shot classifi-
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cation task from the labeled dataset 𝒟𝐿 randomly using the following parameters: 𝑛′

classes, with 𝑘′ examples per class. Sampling proceeds by picking 𝑛′ labels at random,

which we call 1, 2, . . . 𝑛′. For each of the selected labels 𝑖, we then select 𝑘′ datapoints

𝑄(𝑖) := {𝑥(𝑖)1 , 𝑥
(𝑖)
2 , . . . 𝑥

(𝑖)

𝑘
′ } among those labeled 𝑖. Finally, an exemplar 𝑥𝑒 is chosen

among the as-of-yet unselected datapoints from a random class 𝑐 among {1, 2, . . . 𝑛′}.

ℒ𝑑𝑖𝑠𝑐 is then defined as follows:

ℒ𝑑𝑖𝑠𝑐(𝜑) = E𝒯 ∼𝒟𝐿

[︃
log

(︃
𝑛∑︁
𝑗=1

exp(𝐾(𝑥𝑒, 𝑄
(𝑗)))

)︃
−𝐾(𝑥𝑒, 𝑄

𝑐)

]︃
(4.7)

On its own, ℒ𝑑𝑖𝑠𝑐 was first introduced as a means of training Matching Networks [38],

and is widely used among other metric-learning approaches to few-shot learning such

Prototypical Networks and Relation Nets. For the GCN, we add an unsupervised

term:

ℒ𝑢𝑛𝑠𝑢𝑝(𝜑, 𝜓) = E𝑥∼𝒟𝐿∪𝒟𝑈 [ℒ𝐸𝐿𝐵𝑂(𝑥, 𝜑, 𝜓)] (4.8)

Our final loss function is then:

ℒ𝐺𝐶𝑁(𝜑, 𝜓) =
1

𝐶 + 1
ℒ𝑢𝑛𝑠𝑢𝑝(𝜑, 𝜓) +

𝐶

𝐶 + 1
ℒ𝑑𝑖𝑠𝑐(𝜑) (4.9)

We update parameters during training with noisy gradients estimated using stochastic

gradient descent on ℒ𝐺𝐶𝑁 .

We note that as 𝐶 → ∞, using the mean Euclidean Distance or mean Cosine Similar-

ity as the similarity function recovers Prototypical Networks and Matching Networks

respectively, as the generative loss disappears and the resulting loss pushes embed-

dings from the same class together and those from different classes apart. Accord-

ingly, choosing increasing values of 𝐶 starting at 0 allows us to interpolate between

the results of using the VAE learned embeddings and the results for using the fully
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discriminative learning algorithms. As the amount of labeled data increases, we seek

an algorithm closer and closer to the latter, providing intuitive justification for in-

creasing 𝐶.

4.3 Experiments and Results

We evaluate the Generative Comparison Network algorithm along with the various

proposed similarity scores on the semi-supervised few-shot learning task described in

Section 3.6.3. As is standard, we give results in the 5-way setting for both 𝑘 = 1 and

𝑘 = 5.

To facilitate comparison, we use an identical convolutional VAE architecture and pre-

training procedure to that used for the Omniglot experiments in Chapter 3. We set

the number of training ways to 𝑛′ = 29 and, due to the limited number of available

images per class, set 𝑘′ to 2. For each batch we sample 256 images for ℒ𝑢𝑛𝑠𝑢𝑝 and

32 training instances for ℒ𝑑𝑖𝑠𝑐. We use the Adam optimizer with a learning rate of

0.0003, training for 8 epochs. The hyperparameter 𝐶 is chosen via cross-validation

separately for each similarity function. We find that setting 𝐶 significantly higher or

lower results in considerably worse classification performance.

4.3.1 Few-shot Learning Experiments

We show the results of the semi-supervised evaluation in Table 3.3. The GCN

with the appropriate choice of similarity function considerably outperforms the fully-

supervised baselines which don’t make use of the unlabeled data, and is a slim margin

below the improved LRN and the MetaGAN. We attribute the margin relative to the

improved LRN to the permutation-equivariant layer of the reasoning network, which

effectively allows the model to apply a transformation to the latent space prior to

similarity calculation, increasing flexibility in the case of overly simplistic generative
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Table 4.1: Accuracy on the 5-way Semi-supervised Omniglot task

Model 1-shot 5-shot

GCN (BC) 96.3 98.8
GCN (logBC) 96.3 98.7
GCN (mED) 93.8 96.5
GCN (mCS) 80.5 89.5
GCN (LVBF) 95.9 98.5
LRN (Chap. 3) 96.7 99.0
LRN 92.4 97.2
[17]
MetaGAN 97.1 -
[41]
Relation Net 93.8 -
[35]
Prototypical Nets 93.7 -
[34]

models. In contrast, the GCN does not use use any additional parameters to those

already present in the pre-trained VAE, forcing comparisons to occur in the same

space used for reconstruction. One possible means of closing this gap is through the

use of more expressive latent variable models, which we discuss in 4.4.

In parallel to the discriminative setting, the choice of similarity function has a non-

trivial impact on the performance of the GCN. In particular, the functions which

depend solely on the distribution means (mED and mCS) perform relatively poorly,

highlighting the importance of comparing the entire posterior distributions. A pos-

sible explanation for this discrepancy is that similarity functions solely based on the

distribution means must weight distances between latent dimensions equally. When

comparing general distributions, however, the ability to weight difference between

the means of different dimensions based on the varibility of the distributions in those

dimensions leads to better similarity judgements.
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Original Starting VAE mCS mED LVBF LogBC BC

Figure 4-1: Reconstructions using the Fine-tuned Generative Model : Rec-
constructed characters for each choice of similarity function in addition to the pre-
trained VAE. As discriminative fine-tuning progresses, reconstruction quality suffers
to a surprising extent, especially for similarity functions with low performance on the
few-shot classification task. The top two characters are from the training set, while
the bottom two are from the test set. To facilitate comparison, the parameter 𝐶
controlling the weight of the discriminative loss relative to the generative loss is set
to 50.0 for training of each of the models.

4.3.2 Qualitative Experiments

Here, we analyze the reconstructions produced by the fine-tuned VAE in more detail.

While the primary goal of the fine-tuning procedure is to improve performance on

the few-shot classification task, examining the generated characters provides a quali-

tative means of understanding modeling choices and tradeoffs. In particular, it seems

reasonable that the fine-tuned model optimal for classification should also produce

reasonable reconstructed characters. To understand why, note that the generative

loss pushes latent posteriors of characters which are close visually together, while the

discriminative loss pushes the embeddings of characters which are of the same class

together. So long as characters within a class are visually similar, which is the case

by construction, the tradeoff between these objectives should not be too large.

As observed in Figure 4-1, for all considered choices of the similarity function the

quality of the reconstructed images is severely lacking when compared to those pro-

47



duced by the VAE parameters at the start of training. As explained previously, the

likely culprit is the tension between the discriminative loss and generative loss caused

by misspecification of the similarity function. If the similarity function is not suited

to the geometry of the latent space, the latent posteriors may need to be warped

more in order to decrease the discriminative loss, resulting in a steeper tradeoff. Ad-

ditionally, the similarity functions that have the highest accuracy on the few-shot

classification task (LogBC, BC) seem to have sharper reconstructions relative to the

other. We hypothesize that this relationship is due to both the tradeoff and accuracy

being driven by suitability of the similarity function, underscoring the importance of

choosing a good similarity function.

4.4 Discussion

In the preceding sections, we introduced the Generative Comparison Network, an ap-

proach to classification problems which generalizes traditional fully-supervised metric-

learning algorithms by means of a generative model. We showed the efficacy of the

method on a semi-supervised and fully-supervised few-shot learning task. In the pro-

cess, we displayed the trade-off between the quality of the generative model and the

discriminative-ness of the embeddings.

Many design choices made for the Generative Comparison Network, such as the model

structure and loss function, are in part motivated by their analogues in the Latent

Reasoning Network described in Chapter 3. If we start with the Latent Reason-

ing Network, recovering the Generative Comparison Network algorithm is simply a

matter of eschewing the hierarchical latent variable model and replacing the learned

reasoning network with the parameter-less prototype computation heuristic described

in 4.4. These changes permit us more flexibility in our choice of 𝐾 for the GCN while

also reducing the number of parameters necessary. As discussed for the Latent Rea-

soning Network, alternative parameterizations of the prior and posterior densities

which produce a better or more disentangled generative model would likely result
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in improved performance on the few-shot classification task and are certainly worth

exploring.

A variety of other interesting avenues of exploration exist. The metric-learning

paradigm used for the GCN and other few-shot learning algorithms, in which classi-

fication is performed via distance between learned embeddings, may also be used for

standard classification problems in which the labels in the training set are also present

in the test set. While such approaches are unlikely to outperform label prediction-

based methodologies in settings where each label is represented by large quantities

of data, this might not be the case in extreme classification, in which an extremely

large number of labels with few datapoints each are available during training.

Additionally, the choices of similarity function and prototype for our method are

largely based on heuristics drawn from the fully-supervised setting. Testing alter-

natives, especially if justified theoretically, could be beneficial. Another option is

moving towards a learned similarity function, which results in significant gains in the

fully-supervised setting ([35]).
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Chapter 5

Disentanglement via Decorrelation

In this chapter, we present a simple, computationally efficient algorithm for disentan-

gling a Gaussian VAE generative model after training. If we permit full, rather than

diagonal, covariance matrices for individual posteriors 𝑞𝜑(𝑧|𝑥), we prove that a variant

of our algorithm results in a strictly improved ELBO. The lack of a tradeoff between

generative model quality, as measured by the ELBO, and a form of disentanglement

(albeit weak) stands in contrast to previous work.

We evaluate the proposed algorithm on a variety of benchmarks, and compare to a

collection of existing VAE variants designed to produce disentangled representations.

To begin, we formalize disentanglement and discuss prior approaches.

5.1 Motivating Decorrelation

We consider the problem of learning low-dimensional representations which are human-

interpretable and useful for downstream tasks via variational autoencoders. Repre-

sentations in which certain dimensions of the representations recover known factors

of variation within the dataset are a step towards achieving these properties. For ex-

ample, a handwriting dataset might count digit class, rotation, and stroke thickness
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among its factors of variation. A natural question to ask is how such interpretable

(or "disentangled") representations may be learned in an unsupervised manner.

Based on the intuition that moving along an axis corresponding to one factor of

variation should not influence another, one condition thought to be necessary for

disentanglement is statistical independence of the latent dimensions. To formalize

this notion, we define the aggregate posterior 𝑞𝑎𝑔𝑔(𝑧):

𝑞𝑎𝑔𝑔(𝑧) =
𝑁∑︁
𝑖=1

1

𝑁
𝑞𝜑(𝑧|𝑥𝑖) (5.1)

The aggregate posterior is the marginal distribution of the latent variables 𝑧 given the

datapoints and fixed encoder, and so statistical independence of the latent dimensions

is synonymous with independence of the individual dimensions within the aggregate

posterior. To emphasize this property in trained VAEs, recent approaches add a

additional regularization term with an associated weighting hyperparameter to the

standard VAE loss function (as defined in Equation 2.1).

Among these, the Beta-VAE [11] increases the weight of the KL term within the

normal VAE objective, under the reasoning that forcing individual posteriors to be

closer to the standard Gaussian prior will result in independence. As a refinement to

this approach, the FactorVAE [13] and TC-VAE [2] penalize the total correlation,

𝑇𝐶(𝑞𝑎𝑔𝑔) = 𝐾𝐿

(︃
𝑞𝑎𝑔𝑔(𝑧)||

∏︁
𝑖

𝑞𝑎𝑔𝑔(𝑧𝑖)

)︃

a generalization of mutual information to more than two variables of the aggregate

posterior. The total correlation is reduced as the dimensions of the aggregate posterior

become more independent. As the aggregate posterior is a mixture of Gaussians with

number of components equal to the number of datapoints, this is computationally

intractable to compute repeatedly. To address this issue, the FactorVAE and TC-

VAE use noisy estimators of the total correlation, based on an auxiliary classifier and
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a biased minibatch estimation procedure, respectively.

Instead of taking a mutual-information approach, Kumar et. al [19] suggest relaxing

the independence condition on the aggregate posterior to simply matching the first

two moments of the prior. To do so, the DIP-VAE-I and DIP-VAE-II penalize the

squared Frobenius norm of the difference between the empirical covariance matrix of

the sampled minibatch and that of the prior.

Our model will achieve the DIP-VAE goal of matching the first and second moments

of the aggregate posterior to those of the prior via a slightly different approach. To

begin, we show that these moments may be easily computed.

5.2 Computing the Aggregate Covariance

When the outputs of the encoder are Gaussian distributions, many important statis-

tics of the resulting aggregate posterior

may be expressed in a simple closed form. In particular, taking 𝜇 = 1
𝑁

∑︀𝑁
𝑖=1 𝜇𝑥𝑖 the

following holds:

Σ𝑎𝑔𝑔 := Cov(𝑞𝑎𝑔𝑔) =
1

𝑁

𝑁∑︁
𝑖=1

[︀
(𝜇𝑥𝑖 − 𝜇)(𝜇𝑥𝑖 − 𝜇)𝑇 + Σ𝑥𝑖

]︀
(5.2)

When training Gaussian VAEs, we observe aggregrate covariances which are close to,

but nonetheless depart nontrivially from the identity matrix.

5.3 Decorrelating the Latent Space

In this section, we will describe our method, which consists of two steps: 1) computing

the second-order moments of the aggregate posterior, and 2) producing a modified
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model with an identity covariance matrix. We prove that the resulting model, while

achieving an identity covariance, also results in an improved ELBO.

We start with a dataset 𝒟 := {𝑥1, 𝑥2, ..., 𝑥𝑁} ⊂ R𝑑 and latent space R𝑙. Our analy-

sis will be concerned with the commonly-used Gaussian variational autoencoder, as

described in Section 2.1, with inference network 𝑞𝜑(𝑧|𝑥) = 𝑁(𝜇𝑥,Σ𝑥) and recognition

network 𝑝𝜓(𝑥|𝑧) = 𝑓(𝑧). For simplicity, we omit the subscripts.

In practice, both networks are commonly parameterized by deep neural networks,

which affords flexibility in modeling complex, real-world datasets with nonlinear struc-

ture. Additionally, the Σ𝑥 are typically taken to be diagonal matrices. Our algorithm

will operate independent of these assumptions.

To begin, we calculate Σ𝑎𝑔𝑔 for the original model, which requires a single forward pass

through the encoder for each datapoint. For the second step, taking 𝐴 =
√︀

Σ𝑎𝑔𝑔
−1,

we define the modified VAE, which we label the CorrVAE, as follows:

𝑞′(𝑧|𝑥) = 𝑁(𝐴𝜇𝑥 − 𝐴𝜇,𝐴Σ𝑥𝐴
𝑇 )

𝑝′(𝑥|𝑧) = 𝑓(𝐴−1(𝑧 + 𝜇))
(5.3)

We formalize our claims above in this proposition:

Proposition 2. Under the CorrVAE as defined above, the following hold:

1. (Identity Aggregate Covariance)

The aggregate covariance matrix of the modified VAE is 𝐼𝑙

2. (Identical Reconstruction Loss)

For all 𝑥, E
𝑧∼𝑞′(𝑧|𝑥)[log 𝑝′(𝑥|𝑧)] = E𝑧∼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)]

3. (Improved Training KL Loss)
1
𝑁

∑︀𝑁
𝑖=1𝐾𝐿(𝑞′(𝑧|𝑥𝑖)||𝑝(𝑧)) ≤ 1

𝑁

∑︀𝑁
𝑖=1𝐾𝐿(𝑞(𝑧|𝑥𝑖)||𝑝(𝑧))
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Proof. For 1, the new aggregate covariance matrix, denoted by Σ𝑎𝑔𝑔
′, depends solely

on 𝑞′. By 5.2,

Σ𝑎𝑔𝑔
′ =

1

𝑁

𝑁∑︁
𝑖=1

[︀
(𝐴𝜇𝑥𝑖 − 𝐴𝜇)(𝐴𝜇𝑥𝑖 − 𝐴𝜇)𝑇 + 𝐴Σ𝑥𝑖𝐴

𝑇
]︀

= 𝐴

(︃
1

𝑁

𝑁∑︁
𝑖=1

[︀
(𝜇𝑥𝑖 − 𝜇)(𝜇𝑥𝑖 − 𝜇)𝑇 + Σ𝑥𝑖

]︀)︃
𝐴𝑇

= 𝐴Σ𝑎𝑔𝑔𝐴
𝑇

= 𝐼𝑘

where the last equality follows from 𝐴 being symmetric, as the inverse square root of

a symmetric matrix.

For 2, note that if 𝑧 ∼ 𝑞(𝑧|𝑥), then 𝐴𝑧 − 𝐴𝜇 ∼ 𝑞′(𝑧|𝑥). Accordingly,

E
𝑧∼𝑞′(𝑧|𝑥)[log 𝑝′(𝑥|𝑧)] = E

𝑧∼𝑞(𝑧′|𝑥)[log 𝑓(𝐴−1𝑧 + 𝜇)]

= E𝑧∼𝑞(𝑧|𝑥)[log 𝑓(𝐴−1(𝐴𝑧 − 𝐴𝜇) + 𝜇)]

= E𝑧∼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)]

as desired.

For 3, consider the family of encoders

𝒬 := {𝑟(·|𝑥)|𝑟(·|𝑥) ∼ 𝑁(𝑆(𝜇𝑥 − 𝑣), 𝑆Σ𝑥𝑆
𝑇 ), 𝑆 ∈ R𝑙×𝑙, 𝑣 ∈ R𝑙} (5.4)

Clearly 𝑞, 𝑞′ ∈ 𝒬, taking 𝑆 = 𝐼𝑘, 𝑣 = 0 and 𝑆 = 𝐴, 𝑣 = 𝜇, respectively.

Now, we show that 𝑞′ is in fact the minimizer of the KL loss over this family. Using

the closed-form expression for the KL-divergence between two multivariate Gaussians,
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and taking 𝑈 = 𝑆𝑇𝑆

arg min
𝑆∈R𝑘×𝑘,𝑣∈R𝑙

1

𝑁

𝑁∑︁
𝑖=1

𝐾𝐿(𝑟(𝑧|𝑥𝑖;𝑆, 𝑣)||𝑝(𝑧))

= arg min
𝑆∈R𝑘×𝑘,𝑣∈R𝑙

1

𝑁

𝑁∑︁
𝑖=1

𝐾𝐿(𝑁(𝑆𝜇𝑥𝑖 − 𝑆𝑣, 𝑆Σ𝑥𝑖𝑆
𝑇 )||𝑁(0, 𝐼𝑘))

= arg min
𝑆∈R𝑘×𝑘,𝑣∈R𝑙

1

𝑁

𝑁∑︁
𝑖=1

− log det(𝑆Σ𝑥𝑖𝑆
𝑇 ) + 𝑡𝑟(𝑆Σ𝑥𝑖𝑆

𝑇 ) + (𝜇𝑥𝑖 − 𝑣)𝑇𝑆𝑇𝑆(𝜇𝑥𝑖 − 𝑣)

= arg min
𝑆∈R𝑘×𝑘,𝑣∈R𝑙

1

𝑁

𝑁∑︁
𝑖=1

− log det(𝑆𝑇𝑆) + 𝑡𝑟(𝑆𝑇𝑆Σ𝑥𝑖) + 𝑡𝑟(𝑆𝑇𝑆(𝜇𝑥𝑖 − 𝑣)(𝜇𝑥𝑖 − 𝑣)𝑇 )

= arg min
𝑈∈R𝑘×𝑘,𝑣∈R𝑙

1

𝑁

𝑁∑︁
𝑖=1

− log det(𝑈) + 𝑡𝑟(𝑈Σ𝑥𝑖) + 𝑡𝑟(𝑈(𝜇𝑥𝑖 − 𝑣)(𝜇𝑥𝑖 − 𝑣)𝑇 )

where the last equality follows from the multiplicativity of the determinant and the

cyclic property of the trace. The resulting optimization problem is convex and smooth

in each argument, as each individual term is convex and smooth in each argument.

Additionally, note that 𝑈 = 𝑆𝑇𝑆 ≻ 0, as otherwise − log det(𝑈) is infinite. We may

therefore characterize the minimizers setting the derivatives with respect to 𝑈 and 𝑣

to 0 and solving. Proceeding,

0 =
𝑑

𝑑𝑣

1

𝑁

𝑁∑︁
𝑖=1

− log det(𝑈) + 𝑡𝑟(𝑈Σ𝑥𝑖) + (𝜇𝑥𝑖 − 𝑣)𝑇𝑈(𝜇𝑥𝑖 − 𝑣)

0 =
1

𝑁

𝑁∑︁
𝑖=1

2𝑣𝑇𝑆 − 2𝜇𝑇𝑥𝑖𝑆

0 = 𝑣𝑇 − 1

𝑁

𝑁∑︁
𝑖=1

−𝜇𝑇𝑥𝑖

𝑣 = 𝜇

56



where the third equality is obtained by using the invertibility of 𝑈 .

Taking 𝑣 = 𝜇,

0 =
𝑑

𝑑𝑈

1

𝑁

𝑁∑︁
𝑖=1

− log det(𝑈) + 𝑡𝑟(𝑈Σ𝑥𝑖) + 𝑡𝑟(𝑈(𝜇𝑥𝑖 − 𝜇)(𝜇𝑥𝑖 − 𝜇)𝑇 )

0 = −𝑈−1 +
1

𝑁

𝑁∑︁
𝑖=1

[︀
(𝜇𝑥𝑖 − 𝜇)(𝜇𝑥𝑖 − 𝜇)𝑇 + Σ𝑥𝑖

]︀
𝑈 = Σ−1

𝑎𝑔𝑔

Accordingly, the training KL loss is minimized precisely when 𝑆𝑇𝑆 = Σ−1
𝑎𝑔𝑔 and 𝑣 = 𝜇.

Taking 𝑆 = 𝐴 satisfies this condition, as desired.

As the training ELBO decomposes as the sum of the reconstruction loss and the KL

loss, the proposition above gives the following informally stated corollary:

Corollary 2. The modified VAE achieves a better training ELBO, while also achiev-

ing decorrelation.

Additionally, the sole property of 𝐴 necessary to prove Proposition 1 was that 𝐴𝑇𝐴 =

Σ−1
𝑎𝑔𝑔. In particular, for an arbitrary orthonormal matrix 𝑅 ∈ R𝑙×𝑙, (𝑅𝐴)𝑇 (𝑅𝐴) =

Σ−1
𝑎𝑔𝑔. For any such 𝑅, the following stronger statement therefore holds:

Corollary 3. Proposition 2 holds for the following VAE:

𝑞′(𝑧|𝑥) = 𝑁(𝑅𝐴𝜇𝑥 −𝑅𝐴𝜇,𝑅𝐴Σ𝑥(𝑅𝐴)𝑇 )

𝑝′(𝑥|𝑧) = 𝑓((𝑅𝐴)−1(𝑧 + 𝜇))
(5.5)

We discuss the implications of this corollary in Section 5.5.
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5.4 Experiments and Results

We now evaluate the CorrVAE quantitatively on a variety of metrics of interest and

compare to state-of-the-art methods for disentanglement. We are concerned with

our model’s relative and absolute performance in three broad categories: quality

of the trained generative model, closeness of the aggregate posterior to the prior

(unsupervised disentanglement), and recovery of the ground truth factors of variation

(supervised disentanglement).

To facilitate reproducibility and comparison with previous work, we implement our

method within the disentanglement_lib Python library [21], which provides a col-

lection of pre-trained models with various hyperparameters along with code to mea-

sure many quantities of interest given a trained model. A single simple convolutional

encoder/decoder architecture with 10 latent variables is used across all models (in-

cluding the CorrVAE), and identical training hyperparameters are used to whatever

extent possible to negate the effect of different architectural choices. All values for

methods besides the CorrVAE are computed using the available pre-trained models.

In choosing and labeling regularization strength, we adopt the conventions of [21];

namely, a range of 6 hyperparameters based on the recommendations of the model’s

original paper are evaluated. To simplify visualization, these hyperparameters are

identified in plots by the sequence {0, 0.2, ..., 1}, however these values are not directly

comparable across models.

For our experiments, we use the dSprites dataset [25], explicitly created for evaluating

disentanglement methods. Each datapoint is a 64×64 black-white image created using

a particular setting of five known factors of variation: shape, x/y position, rotation,

and scale (see Figure 5-1). An image corresponding to every possible combination

of these factors is present in the dataset, for which there does not exist a separate

training and test set.

58



Figure 5-1: dSprites Visualization: Image samples from the dSprites dataset are
shown, with one factor of variation varied in each column. From left to right: shape,
scale, rotation, x coordinate, y coordinate.

5.4.1 Generative Model Quality

Our experiments evaluating the evidence lower bound, reconstruction loss, and KL

loss for the CorrVAE agree with Proposition 2, and are shown in figure 5-2. In par-

ticular, compared to the VAE, the CorrVAE achieves an identical reconstruction loss

(ignoring sampling error) and marginally lower KL loss, resulting in a lower training

ELBO. For all other disentanglement methods, increasing the weight of the disentan-

glement term (i.e. regularization strength) results in a substantial deterioration in

reconstruction quality and the ELBO score.

5.4.2 Unsupervised Disentanglement Metrics

Now, we turn to evaluating the learned representations themselves. Take 𝑟(𝑥) ∈ Rl

to be the representation of a particular point, defined as either a sample from or the

mean of the corresponding distribution outputted by the encoder. The independence

of the dimensions in the representations across the data is commonly referred to as

a necessary (or even sufficient) condition for disentanglement. Following [21], we
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Figure 5-2: Evaluating the Trained Generative Model: Unsupervised metrics
evaluated on the training set, averaged across 50 runs (For reconstruction loss and
KL loss, higher is worse). As regularization strength increases, all previous models
see a significant reduction in quality as measured by the ELBO. Both the increasing
reconstruction loss and decreasing KL loss from left to right is a result of predicting
individual posteriors which grow closer to the prior.

evaluate the former via the following two quantities:

The Gaussian Total Correlation: We sample 10,000 datapoints and take the mean

𝜇𝑟(𝑥) and empirical covariance Σ𝑟(𝑥) of their representations. The Gaussian Total

Correlation is 𝐾𝐿(𝑁(𝜇𝑟(𝑥),Σ𝑟(𝑥))||
∏︀

𝑖𝑁(𝜇𝑟(𝑥)𝑖 ,Σ𝑟(𝑥)𝑖𝑖)). Note that this is a Gaussian

approximation to the aggregate posterior. The resulting value is low if the repre-

sentations are uncorrelated, which is a necessary (albeit insufficient) condition for

independence.

The Mutual Information Score: To compute the Mutual Information Score, we

begin by sampling 10,000 datapoints. For a particular pair of dimensions, each di-

mension is parititioned into 20 bins, and the quantity of datapoints falling into each

pair of bins is used to compute the discrete mutual information. This quantity is

averaged across each possible pair of dimensions to produce the Mutual Information

Score, which serves as a heuristic measure of dependence able to take into account

nonlinear relationships between dimensions.
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Figure 5-3: Evaluating Disentanglement (Unsupervised): Unsupervised disen-
tanglement metrics evaluated on the training set, averaged across 50 runs (higher is
worse). For all previous methods besides the DIP-VAE-I, the discrepancy in trends
between the mean and sampled representations is a result of the regularization term
being estimated using samples from the individual posterior, rather than the mean.
As a result, samples from the aggregate posterior increasingly resemble samples from
the prior distribution, whereas the means of the individual posteriors don’t necessar-
ily.
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Our model performs well on the Gaussian total correlation for both choices of repre-

sentation, as we enforce the independence condition on the first and second moments.

We observe that the mutual information score for the CorrVAE is worse for the sam-

pled representations than most other models (while still displaying an improvement

on the vanilla VAE). This is partially a result of the other method’s ability to penalize

higher order moments of the aggregate posterior, for which the sampled representa-

tion is a rough approximation. Importantly, the mutual information score for all other

models worsens significantly when the representation is taken to be the mean, as is

common in practice. This suggests that other models are partially achieving this low

score for sampled representations via large individual posterior variances, which in

turn is in agreement with their poor reconstruction losses.

5.4.3 Supervised Disentanglement Metrics

Using disentanglement_lib, we evaluate CorrVAE on a variety of supervised disen-

tanglement metrics put forward in the literature, with results shown in figure 5-4. All

of these metrics are different means to measure disentanglement using ground truth

factors of variation. We give a brief description of each below: for additional detail

on their computation, we point the reader towards their respective papers and [21].

All classifiers use a training set of size 10000 and are evaluated on a test set of size

5000.

1. Mutual Information Gap (MIG) [2]: The MIG is the difference between

in mutual information between the first and second most informative latent

dimensions normalized by the entropy of the factor of variation, averaged over

all factors of variation. Models in which a single latent dimension correspond

to single factors of variation have a higher MIG.

2. SAP Score [19]: For each factor, a classifier is trained for each latent dimension

to predict the factor value. The SAP score is the difference in out-of-sample

accuracy between the classifiers corresponding to the two most predictive di-
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Figure 5-4: Evaluating Disentanglement (Supervised): Supervised disentan-
glement metrics evaluated for different models. Median values are plotted with the
25%/75% quantiles shaded. As observed in [21], there is no clear optimal objective
function across all metrics, with significant variance attributable to the choices of
random seed and regularization hyperparameter.
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mensions, averaged across factors. Models in which a single latent dimension

correspond to single factors of variation have a higher SAP score.

3. Explicitness [32]: The out-of-sample accuracy of a logistic regression classifier

trained to predict a particular factor of variation given the latent vector, aver-

aged over factors of variation. Models in which the latent representations are

predictive of the factors of variation are more explicit.

4. Modularity [32]: The squared difference in mutual information between the

first and second most informative latent dimensions normalized by the entropy

of the factor of variation, averaged over all factors of variation. Models in

which a single latent dimension correspond to single factors of variation are

more modular.

5. Informativeness [4]: The accuracy of a random forest classifier trained to

predict a particular factor based on the latent vector, averaged across factors.

Models in which the latent representations are predictive of the factors of vari-

ation are more explicit.

6. Factor-VAE Score [13]: To begin, we sample a set of datapoints with a fixed

value of a single unknown factor of variation. The Factor-VAE score is the

accuracy in predicting the fixed factor of variation of a classifier which, based

on the index of the latent dimension of least variance of such a set, outputs the

factor of variation. The majority vote classifier is trained using sets sampled

from the training set.

We observe that our method performs similarly to the normal VAE for all metrics.

This is largely a result of most methods involving the performance of a classifier

(typically linear or tree-based) trained on the representations, which is not affected

by linear transformations of the representation.

The CorrVAE outperforms the DIP-VAE variants on nearly every metric besides

modularity, suggesting the promise of our approach to decorrelation. While the Cor-
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rVAE is subpar relative to the mutual-information-based methods on these metrics,

the comparatively good ability of the CorrVAE to produce an independent aggregate

posterior suggests that the results of the other methods are not because they penalize

dependence between dimensions. Instead, their performance may be due to an un-

intended result of the inductive biases. Regardless, this phenomenon merits further

investigation, as it goes against common intuition regarding disentanglement.

5.5 Discussion

Our results suggest that the CorrVAE is able to learn representations which compare

favorably to other methods in inducing independence between latent dimensions,

while provably avoiding any reconstruction-loss tradeoff. Importantly, training the

CorrVAE consists of a single post-processing step after the training of a vanilla VAE,

avoiding any hyperparameter tuning. While performance on supervised metrics is

lacking, this suggests that the independence condition on the aggregate posterior,

while possibly necessary, is far from sufficient for disentanglement, which is particu-

larly interesting.

One point of difference between the CorrVAE and other methods is the use of a non-

diagonal posterior covariance. We observe that during training, diagonal posterior

covariances are still used, so no additional computational cost is incurred. Addition-

ally, nearly all metrics are computed using the mean of the individual posterior as the

representation, which is not dependent on the parameterization of the covariance.

There are multiple potential future directions of interest. While computing the inverse

covariance matrix analytically is typically not possible for non-Gaussian choices of

individual posterior, accurate approximations may still be obtained via Monte Carlo

estimation. Once such an empirical estimate is obtained, an identical procedure to

CorrVAE may be applied to transform samples from the original individual posterior

to achieve decorrelation.
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An additional direction stems from the observation that the choice of decorrelation

transformation is invariant to rotations of the latent space, as described in Corollary

5.5. A natural extension is to choose a particular rotations to optimize a particular

objective. A variety of choices exist for this objective. If conditional independence of

the latent variables is desired, we might choose a rotation which minimizes the off-

diagonal entries of the individual posteriors. If a small set of labels of ground-truth

factors of variation are available, as in the weakly supervised disentanglement setting

[22], a rotation might be chosen so as to maximize alignment between the learned

latent variables and the labeled factors of variation, by any of the supervised metrics

mentioned in section 5.4.

Lastly, a more ambitious objective is for disentangled models to not only be useful for

downstream tasks, but also to mimic the human process of reasoning about objects.

In order to achieve this, however, we must first understand the properties of the set

of optimal model parameters under our objective given arbitrary amounts of data.

This process is greatly simplified when the space consists only of a single parameter

set, in which case the underlying model is referred to as identifiable. While sufficient

conditions for identifiability are known for a variety of linear factor analysis models

[33], relatively little is known for their non-linear extensions, such as deep generative

models. An understanding of how to modify existing objectives or parameterizations,

such as those proposed by the CorrVAE and other disentanglement methods, to lead

to identifiability in the non-linear factor analysis is needed.
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Chapter 6

Discussion

In this thesis, we proposed a variety of methods which fine-tune a trained gener-

ative model to produce disentangled latent spaces or boost few-shot classification

performance. Through empirical, and in the case of the former, theoretical analy-

ses we demonstrated the promise and tradeoffs of our approaches against existing

algorithms. In this section, we briefly summarize some promising research directions.

For all of our methods for few-shot learning, we fine-tune a Gaussian variational

autoencoder, a choice made widely throughout the literature due to its simplicity. As

discussed in Section 3.7, many alternatives to the Gaussian VAE have been proposed

which result in a generative model with higher-fidelity samples and tighter lower

bounds on the marginal likelihood. For few-shot classification, this may produce a

more refined notion of similarity, allowing the unsupervised portion of our proposed

loss function to more effectively leverage unlabeled examples. There is, however, a

cost to abandoning Gaussianity. The likelihood functions used as similarity measures

for our methods, such as the Latent Variable Bayes Factor, lack a closed form for

many more complex distributions. To evaluate such a function therefore would likely

require Monte Carlo estimation, which can have large variance when dealing with

high-dimensional distributions.
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Most common methods for disentanglement, including ours, have similarly built on

the Gaussian VAE framework. The authors of [24] suggest the rotation-invariance

of the standard Gaussian prior may render it unsuitable for disentanglement, as the

training objective is rotation-invariant while a fully disentangled representation is

not. To address this issue, the Student t-Distribution is proposed as an alternative.

More broadly, an understanding of how the desired properties of a disentangled rep-

resentation may be encoded by a choice of prior remains incomplete. Changes to the

parameterization of the individual posterior could likewise produce positive results.

Part of the difficulty inherent in disentangled representation learning is the lack of

a formal definition of disentanglement. As a result, identifying suitable inductive

biases at training-time is difficult, with widespread acceptance of disentanglement as

synonymous with a factorized aggregate posterior. As the evaluation of the CorrVAE

algorithm in Section 5.4 shows, this unsupervised objective does not necessarily cor-

respond to strong performance on supervised disentanglement metrics. That said,

the TC-VAE is nonetheless able to perform better than a standard VAE in recovering

particular factors of variation, despite consisting of an objective whose sole articu-

lated purpose is to make the dimensions of the aggregate posterior independent. This

suggests that there is more subtle reason for its success, which is worth studying

further.

On a more practical level, despite being a primary motivation for their development

the capability of disentangled representation learning methods to help humans work

with real-world datasets has largely remained unexplored. In particular, one setting

where such methods could be valuable is in modeling the graph-based structures of

molecules. There has been significant recent interest in VAE-based unsupervised-

learning approaches to this problem, with the learned representations useful in pre-

dicting chemical properties and generating new molecules with desirable properties

[8]. Combining these models with the CorrVAE procedure could result in a representa-

tion space with an increased correspondence between individual properties and latent

dimensions, facilitating the process of generating molecules with particular attributes
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and simplifying human understanding of the relationships between molecules.

Another use for disentanglement methods is in settings where labeled data is scarce.

After using such a method, we might expect class identity to be captured in only a

restricted subset of the latent variables, rather than across all dimensions. As a result,

the prediction problem is made sparse, potentially improving the sample complexity

of learning.
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Appendix A

Closed Form Similarity Functions

Here, we give closed forms for each of the choices of 𝐷 described in Section 4.2. We

assume the Gaussian distributions 𝑝1 and 𝑝2 have means 𝜇(1) = ⟨𝜇(1)
1 , 𝜇

(1)
2 , . . . , 𝜇

(1)
𝑘 ⟩

and 𝜇(2) = ⟨𝜇(2)
1 , 𝜇

(2)
2 , . . . , 𝜇

(2)
𝑘 ⟩ respectively, and diagonal covariance matrices Σ(1) =

diag(⟨(𝜎(1)
1 )2, (𝜎

(1)
2 )2, . . . , (𝜎

(1)
𝑘 )2⟩) and Σ(2) = diag(⟨(𝜎(2)

1 )2, (𝜎
(2)
2 )2, . . . , (𝜎

(2)
𝑘 )2⟩) respec-

tively.

1. Bhattacharya Coefficient (BC): Letting 𝜇′ = (Σ(1))−1𝜇(1) + (Σ(2))−1𝜇(2) and

Σ′ =
(︀
(Σ(1))−1 + (Σ(2))−1

)︀−1,

∫︁
𝑧

√︀
𝑝1(𝑧)𝑝2(𝑧)𝑑𝑧 =

√︃
2𝑘|Σ′|√︀

|Σ(1)||Σ(2)|

× exp

(︂
−1

4

(︀
(𝜇(1))𝑇 (Σ(1))−1(𝜇(1)) + (𝜇(2))𝑇 (Σ(2))−1(𝜇(2)) − (𝜇′)𝑇 (Σ′)−1(𝜇′)

)︀)︂

2. log-Bhattacharya Coefficient (logBC):

log

∫︁
𝑧

√︀
𝑝1(𝑧)𝑝2(𝑧)𝑑𝑧 =

𝑘 log 2

2
+

log|Σ′|
2

− 1

4

(︀
log|Σ(1)|+ log|Σ(2)|+(𝜇(1))𝑇 (Σ(1))−1(𝜇(1)) + (𝜇(2))𝑇 (Σ(2))−1(𝜇(2)) − (𝜇′)𝑇 (Σ′)−1(𝜇′)

)︀
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3. mean-Euclidean Distance (mED):

||E𝑝1 [𝑧] − E𝑝2 [𝑧]||22= ||𝜇1 − 𝜇2||22

4. mean-Cosine Similarity (mCS):

E𝑝1 [𝑧] · E𝑝2 [𝑧]

||E𝑝2 [𝑧]||2||E𝑝2 [𝑧]||2
=

𝜇1 · 𝜇2

||𝜇1||2||𝜇2||2

5. The log-Latent Variable Bayes Factor (LVBF): Taking 𝐴𝑖 = (𝜎
(1)
𝑖 )2 +

(𝜎
(2)
𝑖 )2 − (𝜎

(1)
𝑖 )2(𝜎

(2)
𝑖 )2 and 𝑝(𝑧) to be the PDF of a standard normal random

variable,

log

∫︁
𝑧

𝑝1(𝑧)𝑝2(𝑧)

𝑝(𝑧)
𝑑𝑧 =

𝑘∑︁
𝑖=1

(︃
−(𝜇

(1)
𝑖 − 𝜇

(2)
𝑖 )2 + (𝜇

(1)
𝑖 )2(𝜎

(2)
𝑖 )2 + (𝜇

(2)
𝑖 )2(𝜎

(1)
𝑖 )2

2𝐴𝑖
− log

√︀
𝐴𝑖

)︃

For a full derivation of the closed form of the Bhattacharya Coefficient, we refer the

reader to [12]. The expressions for the mean-Euclidean Distance and mean-Cosine

Similarity follow directly from their definitions, and the derivation for the LVBF may

be found in Section 3.3.
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