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Abstract

Gradient-based methods are often used in a computer graphics and computer vision
context to solve inverse rendering problems. These methods can be used to infer
camera parameters, material properties, and even object pose and geometry from 2D
images.

One of the challenges that faces differentiable rendering systems is handling visi-
bility terms in the rendering equation, which are not continuous on object boundaries.
We present a renderer that solves this problem by introducing a form of visibility that
is not discontinuous, and thus can be differentiated. This “soft visibility” is inspired by
volumetric rendering, and is facilitated by our decision to represent geometry within
the scene as a signed distance function. We also present methods for performing gra-
dient descent upon distance fields while preserving Lipschitz continuity. Unlike most
differentiable mesh-based renderers, our renderer can optimize between geometry of
different homeomorphism classes in a variety of image-based shape fitting tasks.

Thesis Supervisor: Fredo Durand
Title: Professor
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Chapter 1

Introduction

Computer vision systems endeavor to understand or reconstruct the parameters of

a scene from one or more images. On the other hand, computer graphics systems

endeavor to depict or render images given a description of a scene. Thus, it is un-

surprising that there is a persistent view of computer vision as inverse computer

graphics [20]. In its simplest form, one can describe the process of rendering as the

function 𝑓(𝜃), and as such, the goal of inverse rendering is merely to minimize the

error 𝐸(𝜃) = ‖𝑓(𝜃) − 𝐼‖, where I is the ground truth image.

This simple explanation of the inverse problem belies the practical challenges of

designing an inverse renderer. The large space of renderable images, as well as the

complexity of the forward rendering pipeline, means that the optimization strategy

will be specialized for the task of rendering. Differentiable rendering is a process

which describes the output of the rendering process (i.e individual pixels) as a func-

tion of scene parameters, and provides the derivative as a function of those same

parameters. Combined with a suitable gradient-descent optimization method, one

can use a differentiable renderer to approach the inverse rendering problem.

This thesis describes the background, design decisions, and implementation details

of our differentiable renderer. We also present a couple inverse rendering experiments

performed using our renderer and their results.
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1.1 Motivation

Volumetric reconstruction, illumination estimation, pose estimation, and material

identification are all important computer vision problems that can be used to gen-

erate content for 3D applications. Most photo-realistic 3D content, however, is not

created from real world data because existing computer vision approaches tend to

solve only one or two of these problems at a time. In the context of machine learning,

novel view synthesis approaches [17] [16] [38] [15] have become popular options for

specialized reconstruction problems, like 3D face reconstruction. These methods typ-

ically use deep learning approaches to create new viewpoints from a small number of

observed viewpoints. Unfortunately, these methods do not have any understanding

of light transport, and they often struggle to generalize beyond their training sets in

a physically-consistent manner.

Differentiable renderering might be an answer to this problem. A differentiable

renderer, such as the one outlined in this thesis, is a way of describing the physics of

light transport in a manner that can be optimized using gradient descent. While we

chose to evaluate our differentiable renderer as a standalone tool for 3D reconstruction

tasks, we believe that differentiable renderers can be used as building blocks for more

complex computer vision applications. For example, our differentiable renderer could

be used to construct adversarial examples for neural networks [3] [21].

1.2 Overview

Any general-purpose differentiable rendering system must properly account for the

discontinuous nature of visibility. The visibility terms present in the volumetric ren-

dering integral are not differentiable across the silhouette of an object or across occlu-

sions. Because the visibility terms in the rendering integral effectively resemble the

step function on object boundaries, sampling the gradient at these locations is equiv-

alent to sampling the Dirac delta function. As a result, the gradient is not properly

dispersed across the volume.
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Our method uses signed distance functions to represent geometry. A signed dis-

tance function of a set Ω in a metric space determines the distance of a point 𝑝 from

the object boundary of Ω, and is positive when 𝑝 is outside the object boundaries

and negative otherwise.

Signed distance functions have been used for a variety of purposes in both com-

puter graphics and computer vision literature. For example, they are used in image

segmentation tasks, where segmentable objects are represented via different signed

distance functions [6]. Within computer graphics, signed distance functions have been

used to render anti-aliased fonts and implicit surfaces.

In particular, our renderer renders the implicit surface of signed distance field using

volumetric ray marching. Signed distance fields are generally not used for volume

rendering, as they describe a surface rather than a volume with participating media.

However, our volumetric representation of a signed distance field closely describes the

implicit surface while remaining differentiable on object boundaries. Several methods

are presented to ensure that the distance field remains renderable over iterations of

gradient descent.

Our results demonstrate that this renderer is capable of performing a variety of

inverse rendering tasks, including inferring rigid-body transforms from a single view

and 3D multi-view reconstruction. Unlike most approaches which render meshes,

our signed distance field renderer can optimize for complex geometry that is not

homeomorphic to the initialization. Modifying the connectivity of a mesh during

optimization is a difficult problem, which is why most mesh-based differentiable ren-

derers assume that the initialization mesh has similar connectivity to the target image

[21] [23]. Our approach is completely unsupervised and does not involve any deep

learning components, unlike many modern differentiable renderers [24] [23] [18].

1.3 Outline and Contributions

Chapter two describes the background behind this project, including previous work

in differentiable rendering and other inverse rendering endeavors.

13



initialize SDF render SDF (forward pass)
compute gradient

(backward pass)

perform gradient

update using ADAM

correct distance field to

be Lipschitz continuous

target image

SDF

target image

render, SDF

gradient, SDF

updated SDF

renderable SDF

Figure 1-1: Overview of Optimization Process. Our differentiable rendering
pipeline is similar to most other renderers, except that the gradient descent process
can make the geometry invalid. Thus, a correction step in which the geometry is
made Lipschitz continuous is necessary.

Chapter three describes the volumetric rendering integral, and how it shapes our

form of soft visibility. This section also includes an explanation of derivative of the

volumetric rendering approach and some commentary about efficient implementation

strategies.

Chapter four describes several approaches to optimizing the distance field based

on the computed gradients. A brief discussion of the validity of a distance field is

included here.

Chapter five describes the implementation of the differentiable rendering system

in Halide and CUDA.

Chapter six details the efficacy of using the proposed differentiable ray tracer, and

what these results mean.
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1.3.1 Contributions

∙ We specify and implement a differentiable volume renderer of signed distance

fields.

∙ We detail several methods to maintain the validity of the distance field during

gradient updates.

∙ We perform several small experiments to evaluate the effectiveness of our method

and interpret the results.
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Chapter 2

Background

This chapter outlines prior work in automatic differentiation, implicit surface mod-

eling, and other differentiable rendering approaches. A quick overview of the Halide

language is also included in this chapter.

2.1 Automatic Differentiation

Gradient descent optimization requires computing the gradient of the model function

with respect to the parameters. The final goal is to minimize a cost function – which

is typically the mean squared error between the output generated from the inferred

parameters and the target. The purpose of optimization is to infer the parameters of

the model which produce a result which is similar to the target.

To perform gradient descent optimization upon a function, the gradient of that

function must be computed. Some functions include loops, control flow, or recursion.

Some functions are discontinuous. Automatic differentiation frameworks differentiate

these programs by splitting composite functions into their components, and taking

the derivative of each independently.

Automatic differentiation computes the derivative of each individual operation

and then joins the results together using the chain rule. The framework only needs to

have knowledge of the symbolic derivative of each operation, such as the the deriva-

tive of the exponential function. Intermediate results are stored and factored out of

17



other expressions which refer to them. On the other hand, symbolic differentiation

utilities, often included in mathematical toolkits like Sage [36] or Mathematica [14],

usually do not perform this kind of reasoning and will inline intermediate results.

The symbolically-derived derivatives can be challenging to generate (especially with

a sufficiently complex function or many symbols), and are usually less efficient than

their automatic counterparts because intermediate expressions are not stored.

An alternative to both automatic differentiation and symbolic differentiation is to

simply approximate the derivative using finite differences. This approach is inaccurate

and scales with the dimension of the input vector. However, finite differences are a

useful tool for debugging the results of automatic differentiation as well a means of

approximating derivatives of non-parametric functions. Our renderer uses a finite

difference to approximate the spatial gradient of the signed distance field to obtain

surface normals (see equation 3.8).

2.1.1 Forward-mode and Reverse-mode Differentiation

Forward-mode and reverse-mode differentiation are two ways in which the derivatives

of an expression graph can be computed. Forward-mode differentiation computes the

derivatives of each node in the graph, starting from the inputs and moving forward

through the computational graph to the outputs. The primary issue with forward-

mode differentiation is that the derivative for each output value must be computed

with respect to every single input variable. Our input vector is the signed distance

field itself, which can easily comprise thousands of voxels. However, any given ray

may only reference a small number of these voxels. Thus, it makes little sense to use

forward-mode differentiation for these cases.

Reverse-mode differentiation works by computing the derivative with respect to

the outputs and then working backwards through the graph to the inputs. When

computing derivatives of 𝑓 ′(𝑥) using reverse-mode differentiation, the intermediate

functions of 𝑓(𝑥) are needed. Thus, to compute 𝑓 ′(𝑥), we must first compute 𝑓(𝑥).

The initial step of computing 𝑓(𝑥) is referred to as the forward pass, and the process

of computing 𝑓 ′(𝑥) is called the backward pass.

18
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Figure 2-1: Represents A + (B * C) + (B * C)

Machine learning frameworks usually include a mechanism for performing auto-

matic differentiation. The inclusion of automatic differentiation on arbitrary expres-

sion graphs makes sense given the use of backpropagation for neural networks [32].

The PyTorch machine learning framework [28] automatically creates an expression

graph and computes derivatives using reverse-mode differentiation.

As an example, Figure 2-1 is an expression graph which represents the expression,

𝐴(𝑥) + (𝐵(𝑥) * 𝐶(𝑥)) + (𝐵(𝑥) * 𝐶(𝑥)) (2.1)

In an expression graph, the vertices are values and the edges are operations that

use those values. The derivative of any expression graph can be expressed in a deriva-

tive graph, where the edges represent the derivative of the parent vertex with respect

to the child vertex. Figure 2-2 represents the corresponding derivative graph (with

respect to 𝑥).

The derivative is simply the sum of the product of the elements on each path.

Forward-mode and reverse-mode differentiation can be expressed as different methods

of traversing the paths of this graph.

The D* algorithm efficiently performs reverse-mode differentiation by factoring

out subgraphs of the derivative graph [11]. The optimizations performed by D*

are similar to the tail recursion optimization performed in section 5.1. The Opt

19
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Figure 2-2: Represents the derivative of A + (B * C) + (B * C)

programming language allows a programmer to express a non-linear least squares

optimization problem and automatically generate a solver for it. The D* algorithm

is used to create the derivative graph for the solver.

2.2 Signed Distance Fields

Beyond their role in implicit surface rendering [13] and font rendering [9] in the field of

computer graphics, Signed distance fields have found use in many 3D reconstruction

applications. For example, the Kinect Fusion system approaches the 3D reconstruc-

tion problem by computing a truncated signed distance function using point cloud

data from an RGBD sensor [27]. The truncated signed distance field clamps the

distance from [−1, 1] to simplify integration.

As stated in the previous section, a signed distance function returns the distance

to the implicit surface of the object, positive if the evaluation position is outside the

volume and negative if it is inside the volume. One can render the implicit surface

of the signed distance function through sphere tracing [13], or by extracting a mesh

using the marching cubes algorithm [26].

Learning-based approaches have also used signed distance functions to represent

geometry [7] [37]. Many of these approaches involve generating a 3D volume which

represents the signed distance field. The convolutional layers often used in deep

learning architectures to isolate 2D features in images can be adapted to 3D volumes.

20



Polygon meshes are often unsuitable for these applications because modifying the

connectivity of the mesh during geometry optimization is difficult. We decided to use

signed distance fields for the same reason.

2.3 Differentiable Rendering

Most inverse-rendering and differentiable rendering work tries to limit the scope of

the problem. Blanz and Vetter [5] focused on synthesizing textured 3D faces. Barron

and Malik [4] infer shape, illumination, and simple material properties from single

images. More recently, OpenDR [25] and the Neural 3D Mesh renderer [18] have

attempted to provide a more general-purpose differentiable rendering framework by

rasterizing the scene and then using a finite difference approximation upon the color

buffer (see section 2.1) to estimate the derivative. Both of these methods assume

Lambertian materials and do not handle indirect illumination and shadowing.

Many of these differentiable rendering systems fail to properly account for the

non-differentiable nature of visibility. Because the visibility terms in the rendering

integral are not differentiable on object boundaries, many of the solutions mentioned

above will often fail to propagate gradients when either the object or the camera

changes position. Our approach solves this problem by introducing “soft visibility” –

the concept that object boundaries have soft falloffs rather than hard boundaries (see

section 3.1 for an overview of the approach).

Li et al. [21] used a novel edge sampling method to properly handle the non-

differentiable rendering terms in the rendering equation. Note that the edges of

objects appear as step functions in the visibility terms – the gradient of these step

functions is the Dirac delta function which cannot be sampled directly. In continuous

regions (i.e those within object boundaries), the standard approach with automatic

differentiation is sufficient. However, in discontinuous regions (i.e triangle edges),

both the foreground and the background of the edge are sampled, and contributions

from both sides are correctly handled. Overall, this approach is easily extensible to

secondary visibility effects, and was implemented as a fully differentiable Monte Carlo

21



path tracer.

Rhodin et al. [31] presented an early differentiable volumetric ray caster which can

perform marker-less object pose estimation as well as marker-less full-body motion

capture. Their approach bears certain resemblances to ours – in particular, they also

use a Gaussian density distribution to model soft visibility. Our approach focuses on

optimizing the geometry of signed distance fields for inverse rendering applications

rather than optimizing parametric models that represent skeletons, although one of

our experiments learns a rigid body transform.

Liu et al. [23] introduced a differentiable rendering approach which aggregates

contributions from all mesh elements and then fuses them together according to the

probability that a given triangle will contribute to a screen-space pixel. Like the

work by Rhodin et al. [31], this formulation of soft visibility has similarities to

ours. However, like the previously-mentioned differentiable rendering frameworks,

this method does not attempt to compute secondary visibility effects. The use of

polygon meshes to represent geometry means that this technique may have difficulty

optimizing for geometry that is not homeomorphic to the initialization.

Most recently, Lombardi et al. [24] developed a differentiable volume ray marcher

to facilitate rendering complex and translucent surfaces like skin and hair. An

encoder-decoder network transformed 2D images into their 3D volumetric represen-

tation. A warp field, learned in tandem with the rest of the volume parameters,

is used to improve the spatial resolution. Their method learns a color and opacity

buffer, and the quality of the reconstructed volumes is comparable with commercial

photogrammetry software like Agisoft Metashape [2]. Our approach learns geometry

represented by signed distance fields rather than color and opacity volumes. Addi-

tionally, our renderer does not currently include any deep learning component.

2.4 Halide

The Halide language emerged to facilitate the development and optimization of multi-

stage image processing pipelines [30]. Optimizing image processing code is a chal-
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lenging process which typically involves experimenting with many different orderings

of the intermediate functions, which are then composited to produce the final output

of the pipeline. The optimal ordering depends on the availability of specific hard-

ware features, or the amount of resources provided (cache size, amount of available

memory, number of cores, SIMD architecture, etc.,). When optimization encourages

obfuscation, readability is often a secondary priority. Portability is another issue with

the traditional image processing pipelines. For example, Grand Central Dispatch on

OS X serves the same role as thread pools and task queues on other operation sys-

tems. CUDA, OpenCL, Metal, Vulkan, DirectX, and OpenGL provide interfaces for

general purpose GPU programming at varying degrees of abstraction. Each combi-

nation of platforms could require a dedicated code path, and heterogeneous compute

only complicates the problem.

Halide attempts to solve this problem by introducing a distinction between algo-

rithms and schedules. In Halide, an algorithm is a composition of functions which

describe an image processing pipeline. The schedule describes when these functions

should be computed, if they should be stored, and where to store them. Once the

correctness of the algorithm has been determined, the programmer can be confident

that modifying the schedule will not introduce regressions.

One implementation of the volumetric renderer was written in Halide. The gradi-

ents were computed using the Halide automatic differentiation framework [22]. The

Halide automatic differentiation framework is carefully designed to properly handle

“gather” operations, like convolutions (the output dimension is small and the input

dimension is large). The derivative of a gather operation is a “scatter” operation (the

output dimension is large and the input dimension is small). Scatter operations can

be performed using global atomic operations, although these operations can be slow if

there is high contention. Our CUDA implementation uses a scatter operation across

the signed distance field to accumulate the gradient (see section 5.1 for details). The

Halide automatic differentiation framework describes scatter operations as another

gather operation before storing the output [22], which is often more efficient than

using atomics.
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Chapter 3

Volume Rendering

This chapter presents the volume rendering approach employed by the the differen-

tiable ray tracer described in this thesis. Many other differentiable rendering ap-

proaches do not have robust means of differentiating the discontinuous integrand (see

section 2.3 for an explanation of the problem). The rendering model outlined in the

following section attempts to address this issue.

3.1 Forward Pass

Our approach uses a volume scattering model to create a “soft” falloff at object bound-

aries. As a result, the derivative of the rendering integrand can be properly sampled.

The model relies on a spatially-varying attenuation coefficient 𝜑𝑡(𝑡) = 𝜑𝑡(𝑝 + 𝑡𝜔),

which represents out-scattering and absorption over the ray. The chosen attenuation

function is Gaussian, and the standard deviation of that function (see 3.9 and Figure

3-1) determines the density of the medium.

𝐿𝑖(𝑝, 𝜔) =

∫︁ 𝑡𝑚𝑎𝑥

0

𝑇𝑟(𝑝 + 𝑡𝜔 → 𝑝)𝐿𝑠(𝑝 + 𝑡𝜔,−𝜔) (3.1)

Equation 3.1 represents the integral form of the equation of transfer [29], ignor-

ing the surface interaction. 𝑇𝑟 is the beam transmittance. The light source term

(representing in-scattering, ignoring medium emission) is given by
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𝐿𝑠(𝑝, 𝜔) = 𝜑𝑠(𝑝)

∫︁
𝑆2

𝑝(𝑝, 𝜔′, 𝜔)𝐿𝑖(𝑝, 𝜔
′)𝑑𝜔′ (3.2)

𝑝(𝜔, 𝜔′) is the phase function, representing the angular distribution of scattered

radiation. As mentioned earlier, the medium is heterogeneous, and is sampled using

ray-marching [29]. The sampling PDF can be expressed as

𝑝𝑡(𝑡) = 𝜑𝑡(𝑡)𝑒
−

∫︀ 𝑡
0 𝜑𝑡(𝑡′)𝑑𝑡′ (3.3)

Our implementation adds an additional intensity term 𝐼(𝑝,𝐷), which represents

the BSDF evaluated at the isosurface represented by the signed distance function 𝐷

at 𝑝.

𝐿𝑖(𝑝,𝐷, 𝜔) =

∫︁ 𝑡𝑚𝑎𝑥

0

𝜑𝑠(𝑝,𝐷(𝑝𝑡))𝐼(𝑝𝑡, 𝐷)𝑒−
∫︀ 𝑡
0 𝜑𝑡(𝑡′,𝐷(𝑡′))𝑑𝑡′𝑑𝑡 (3.4)

Ray-marching involves discretizing the range [0, 𝑡𝑚𝑎𝑥] into a series of small seg-

ments and approximating the integral in each region. In practice, this implies that

we can rewrite this integral as an iterative process with an update rule. We refer to

𝑂𝑡 as the approximated integral of 𝜑𝑡 from [0, 𝑡], and ℎ as the step size.

𝑂𝑡+1(𝑝𝑡+1, 𝐷) = 𝑂𝑡(𝑝𝑡, 𝐷(𝑝𝑡)) + 𝜑𝑡(𝑝
𝑡, 𝐷(𝑝𝑡))ℎ (3.5)

𝐿𝑡+1(𝑝,𝐷, 𝜔) = 𝐿𝑡 + 𝜑𝑠(𝑝,𝐷(𝑝𝑡))𝐼(𝑝,𝐷)𝑒−𝑂𝑡+1

ℎ (3.6)

It is not difficult to implement these equations in a space and time efficient man-

ner. Both the Halide and the CUDA implementations perform reductions over the 𝑡

domain. Most of the implementation challenges arise when computing the derivatives.

𝐷(𝑝) represents the trilinear interpolation of the signed distance function 𝐷 at

location 𝑝. The signed distance function is represented by an array of voxels, and

the 𝐷(𝑝) interpolates between these voxels. Given an 𝛼 vector that describes the

fractional offset from 𝑝0 and 𝑐𝑖𝑗𝑘 representing the vertices of the unit cube between

𝑝0 and 𝑝1, trilinear interpolation (𝑐) can be expressed as
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𝛼 =
𝑝− 𝑝0
𝑝1 − 𝑝0

𝑐00 = 𝑐000(1 − 𝛼𝑥) + 𝑐100𝛼𝑥

𝑐01 = 𝑐001(1 − 𝛼𝑥) + 𝑐101𝛼𝑥

𝑐10 = 𝑐010(1 − 𝛼𝑥) + 𝑐110𝛼𝑥

𝑐11 = 𝑐011(1 − 𝛼𝑥) + 𝑐111𝛼𝑥

𝑐0 = 𝑐00(1 − 𝛼𝑦) + 𝑐10𝛼𝑦

𝑐1 = 𝑐01(1 − 𝛼𝑦) + 𝑐11𝛼𝑦

𝑐 = 𝑐0(1 − 𝛼𝑧) + 𝑐1𝛼𝑧

(3.7)

The intensity function 𝐼(𝑝,𝐷) relies on the surface normal at the isosurface as

part of the BSDF. The surface normal is computed by performing the 3D Sobel filter

across the SDF [12]. The Sobel filter is a simple first-order derivative operator that

is composed of a differentiation and averaging kernel. The direction of the spatial

gradient can be used to approximate the normal (i.e the output of the Sobel filter

is normalized). The intensity function samples the surface normal using trilinear

interpolation of the resulting voxel array.

ℎ(−1) = 1, ℎ(0) = 2, ℎ(1) = 1

ℎ′(−1) = 1, ℎ′(0) = 0, ℎ′(1) = −1

𝑠𝑥 = ℎ′(𝑥)ℎ(𝑦)ℎ(𝑧)

𝑠𝑦 = ℎ′(𝑦)ℎ(𝑧)ℎ(𝑥)

𝑠𝑧 = ℎ′(𝑧)ℎ(𝑥)ℎ(𝑦)

(3.8)

𝜑𝑠(𝐷(𝑝)) and 𝜑𝑡(𝐷(𝑝)) are based on the Gaussian PDF. As a result, the atten-

uation coefficient is greater in regions that are closest to the level set of the SDF

and lesser in regions that are far away from the surface. To properly render closed

surfaces, the distance to the surface is clamped at zero as an input into 𝜑.

𝜑(𝑥, 𝜎) =
1√

2𝜋𝜎2
𝑒−

max(0,𝑥)2

2𝜎2 (3.9)
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(a) 𝜎 = 1× 10−2 (b) 𝜎 = 1× 10−1 (c) 𝜎 = 5× 10−1

Figure 3-1: The Effect of Varying the 𝜎 Parameter. Increasing 𝜎 increases the
radius of the attenuation function 𝜑, blurring the final image. 𝜎 controls the spread
of gradient contributions across the signed distance function; large values of 𝜎 will
allow optimization to converge quickly while smaller values will converge slowly or
not at all.

Finally, an adaptive step size was considered to expedite iterations of ray marching.

The ray marching step size at 𝑝 would vary linearly with the value of 𝐷(𝑝). This

approach works well, and an adaptive step size can reduce the number of iterations

of ray marching by a factor of three or more. We decided to use a fixed step size

because the dependency between 𝑝 and 𝐷(𝑝) complicates the backwards pass.

3.2 Backwards Pass

Derivatives for equation 3.6 are computed using reverse-mode differentiation. Reverse-

mode differentiation starts from the outputs of the computational graph and propa-

gates derivatives backwards, eventually reaching the inputs. This method of differ-

entiation works well when there are many inputs and few outputs (see section 2.1.1

for an overview of the differences between forward and reverse-mode differentiation).

Our initial Halide implementation used the Halide automatic differentiation sys-

tem [22] to compute the derivatives in this section. For the CUDA implementation,

the backwards pass was written by hand.

While the gradients of nearly all of the parameters (e.g camera orientation/pa-

rameters, material properties, object pose, etc.,) of the differentiable renderer can be

computed, this chapter will focus on the derivatives of the signed distance function
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itself. The derivatives of the intensity function will also be omitted, as they vary

depending on the BSDF used. Joint optimization of multiple scene parameters is also

possible, although doing so was not a focus on this thesis.

When computing derivatives using reverse-mode differentiation, one often needs

to compute the forward pass as well. Thus, there exists a memory-space trade-off

between caching intermediate results of the forward pass and recomputing them from

scratch (see section 2.1 for background on this topic). This chapter will ignore the

details of “checkpointing” results from the forward pass for now. For implementation

details, see section 5.1.1.

The process concludes with the derivative of the incoming light (equation 3.6)

with respect to all of the parameters in the signed distance function.

𝜕𝐿𝑡+1

𝜕𝐷𝑖𝑗𝑘

=
𝜕𝐿𝑡

𝜕𝐷𝑖𝑗𝑘

+
𝜕(𝜑𝑠(𝑝

𝑡, 𝐷(𝑝𝑡))𝐼(𝑝𝑡, 𝐷)𝑒−𝑂𝑡+1
ℎ)

𝜕𝐷𝑖𝑗𝑘

(3.10)

As mentioned in section 3.1, 𝑡 represents iterations of ray marching. The back-

wards pass begins with the last iteration of ray marching and works backwards to

compute the gradient with respect to the signed distance function. 3.10 can be ex-

panded as follows:

𝜕𝐿𝑡+1

𝜕𝐷𝑖𝑗𝑘

=
𝜕𝐿𝑡

𝜕𝐷𝑖𝑗𝑘

+ ℎ𝐼(𝑝𝑡, 𝐷)𝜑𝑠(𝑝
𝑡, 𝐷(𝑝𝑡))𝑒−𝑂𝑡+1 𝜕𝑂𝑡+1

𝐷𝑖𝑗𝑘

+ ℎ𝐼(𝑝𝑡, 𝐷)𝑒−𝑂𝑡+1 𝜕𝜑(𝑝𝑡)

𝜕𝐷𝑖𝑗𝑘

+ ℎ𝜑(𝑝𝑡)𝑒−𝑂𝑡+1 𝜕𝐼(𝑝𝑡, 𝐷)

𝜕𝐷𝑖𝑗𝑘

(3.11)

Recall that 𝐷𝑖𝑗𝑘 represents the entirety of the signed distance function, and 𝜕𝐿
𝜕𝐷𝑖𝑗𝑘

is the gradient across the entirety of the signed distance function. However, at each

iteration of equation 3.11, gradients are greater than zero at only a few locations

in the signed distance function. These locations are referenced by either the trilin-

ear interpolation of the signed distance function or the trilinear interpolation of the

normals. Thus, the gradient is accumulated as a sum across every ray evaluation po-

sition. The practical implication of this observation is that the memory consumption
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of this algorithm is most affected by the trilinear interpolation of the normals. See

section 5.1 for details.

Ideally, equation 3.11 could be rewritten using tail recursion and performed iter-

atively. Doing so greatly reduces the amount of memory required for reverse-mode

differentiation, as the stack frame would contain information about all prior ray eval-

uations on the current ray. Care must be taken to ensure that recursive calls to 𝑂

(equation 3.5) are properly inlined into 𝐿. 𝜕𝑂𝑡+1

𝜕𝐷𝑖𝑗𝑘
is substituted into 𝐿𝑡+1 to obtain

𝜕𝐿𝑡+1

𝜕𝐷𝑖𝑗𝑘

=
𝜕𝐿𝑡

𝜕𝐷𝑖𝑗𝑘

+ ℎ𝐼(𝑝𝑡, 𝐷)𝜑𝑠(𝑝
𝑡, 𝐷(𝑝𝑡))𝑒−𝑂𝑡+1

(
𝜕𝜎𝑡(𝑝

𝑡, 𝐷(𝑝𝑡))

𝐷𝑖𝑗𝑘

+
𝜕𝑂𝑡

𝐷𝑖𝑗𝑘

)

+ ℎ𝐼(𝑝𝑡, 𝐷)𝑒−𝑂𝑡+1 𝜕𝜑(𝑝𝑡)

𝜕𝐷𝑖𝑗𝑘

+ ℎ𝜑(𝑝𝑡)𝑒−𝑂𝑡+1 𝜕𝐼(𝑝𝑡, 𝐷)

𝜕𝐷𝑖𝑗𝑘

(3.12)

Recursively computing 𝑂, storing the results, and then computing 𝐿 would be

prohibitively expensive. Thus, the approach is to rewrite 3.12 as

𝜕𝐿𝑡+1

𝜕𝐷𝑖𝑗𝑘

+ 𝑐𝑡+1𝜕𝑂
𝑡+1

𝜕𝐷𝑖𝑗𝑘

= ... (3.13)

On the iteration 𝑡 (i.e the first iteration of the backwards pass), 𝑐𝑡+1 is 0, making

this equation the same as 3.12. After evaluating the terms in 3.12, the term associated

with 𝑂𝑡 is added to 𝑐𝑡+1 to obtain 𝑐𝑡. Storing 𝑐𝑡 between iterations is not difficult

because it is a scalar.

Each ray evaluation accumulates a contribution to the gradient at every location

in the SDF accessed at that iteration. Most of the terms in 3.12 include the deriva-

tive of the trilinear interpolation of the signed distance function (𝜕𝐷(𝑝𝑡)
𝜕𝐷𝑖𝑗𝑘

). Trilinear

interpolation accesses the eight neighboring voxels of a floating-point position in the

coordinate system of the voxel grid. Thus, these terms reference the eight neighbor-

ing voxels of the ray evaluation position. However, the intensity term references the

surface normal. This surface normal is computed by trilinearly interpolating between

values in the normals voxel array. The Sobel filter references the 27 spatial neighbors
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of a given voxel (i.e the 3x3x3 neighborhood around the voxel). Given that the surface

normal is the result of trilinearly interpolating the voxel array of normals, a 4x4x4

neighborhood of the gradient is computed.

-1, -1

-1, 0

-1, 1

-1, 2

0, -1

0, 0

0, 1

0, 2

1, -1

1, 0

1, 1

1, 2

2, -1

2, 0

2, 1

2, 2

Figure 3-2: Voxels affected by trilinear interpolation of normals. Because
the intensity function references the trilinear interpolation of the normals at a point
between (0, 0, 0) and (1, 1, 1), all 8 normals voxels between and including (0, 0, 0) and
(1, 1, 1) receive gradients. Each one of these voxels was computed from all of its 27
neighbors (represented by the dotted line). A total of 64 voxels of the signed distance
function receive gradients from this operation.
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Chapter 4

Distance Field Optimization

This chapter discusses methods for performing gradient descent upon the signed dis-

tance field. Naively performing a gradient descent algorithm like stochastic gradient

descent or ADAM [19] will not necessarily produce a renderable distance field. Thus,

a new optimization strategy is needed to perform the gradient descent update while

also preserving the continuity of the distance field.

4.1 Lipschitz Continuity

A function R3 → R is Lipschitz continuous under the 𝐿2 norm if, for some non-

negative constant 𝐶 ∈ R, so that

𝑝1, 𝑝2 ∈ R3 : |𝑑(𝑝1) − 𝑑(𝑝2)| ≤ 𝐶|𝑝1 − 𝑝2| (4.1)

where 𝑝1, 𝑝2 are points within the domain of the distance field. The signed distance

function must be Lipschitz continuous for 𝐶 = 1.

Equivalently, the magnitude of the derivative of the signed distance function is

bounded by 𝐶.
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4.2 Distance Preserving Gradient Update

A naive approach to optimization would involve performing the forward pass, com-

puting gradients during the backwards pass, and then performing gradient descent

upon the values of the signed distance field using these gradients. However, most

gradient descent algorithms, like ADAM or stochastic gradient descent are not viable

options because the update procedure will violate Lipschitz continuity.

Additionally, while Lipschitz-continuous distance fields are renderable, they may

provide an underestimate of the true distance function. The correct approach to

solving this problem is to solve the Eikonal equation 4.2, rather than just satisfying

Lipschitz continuity.

|∇𝑖𝑗𝑘𝑑(𝑝)| = 1 (4.2)

Consider the gradient update (R3 → R)∇𝑑(𝑝)

𝑑𝑡+1 = 𝑑𝑡(𝑝) − 𝜂∇𝑑(𝑝) (4.3)

As stated earlier, this is not a distance preserving operation. We want to find the

correction 𝑥 which will minimize

𝑑𝑡+1
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑑𝑡+1(𝑝) + 𝑥𝑡+1(𝑝) (4.4)

where 𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is a valid distance field (i.e one that satisfies the Eikonal equation).

We have implemented several optimization techniques that satisfy these require-

ments. The simplest approach is to re-distance the signed distance function from

the level set using the Fast Marching Method. We also considered using quadratic

programming to update the distance field according to the gradient vector while

also enforcing the Eikonal equation constraints. Finally, the quadratic programming

approach inspired a simpler soft constraint which was represented as an additional

penalty in the cost function.
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4.3 Convex Quadratic Programming

Quadratic programming solves problems of the following form:

Minimize
1

2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥

subject to 𝐸𝑥 = 𝑑

(4.5)

If 𝑄 is positive definite, then the problem is convex.

Written as a quadratic programming problem, the goal is to minimize the correc-

tion vector 𝑥 – i.e constrained least squares. 𝑄 is just the identity matrix, which is

symmetric and positive definite.

Lipschitz continuity can be imposed by limiting the magnitude of the gradient in

all dimensions.

| 𝜕𝑑
𝜕𝑑𝑖

| < 1 (4.6)

The gradient is approximated by an eighth-order central difference. The distance

field is convolved accordingly and represents the Lipschitz constraint in E.

The Eikonal equation cannot be expressed as a linear constraint. A quadratic con-

straint is needed, which would be difficult to solve efficiently. A limited workaround

which produces acceptable results is to constrain the solutions to the Eikonal equation

with linear bounds. For example, the Eikonal equation is lower-bounded by the L1

norm of the gradient, and upper-bounded by the tangent hyperplane at the angle 𝑝𝑖
4
.

More linear constraints can be added in a similar fashion, creating a tighter bound,

but these constraints seem sufficient so far.

4.4 Fast Marching Method

While the quadratic programming approach mentioned in the previous section works

well, it is too computationally expensive to be used after every iteration of train-

ing. The fast marching method [33] was considered to simply regenerate the signed

distance function from the zero crossings after each gradient update.
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(a) Original (b) Gradient Update

(c) Optimization w/o L1 constraint (d) Optimization w/ L1 constraint

Figure 4-1: Quadratic Programming Gradient Update. The signed distance
function in 4-1a represents a circle, and 4-1b represents a gradient update to the signed
distance field. 4-1c is the result of performing the quadratic programming approach
with only Lipschitz continuity constraints. The lower-right region is underestimated.
4-1d incorporates the L1 constraint and the corresponding tangent line constraint,
mitigating this issue.

36



The fast marching method solves boundary value problems that are of the form

|∇𝜑(𝑥)| =
1

𝑓(𝑥)
∀𝑥 ∈ Ω

𝜑(𝑥) = 0 ∀𝑥 ∈ 𝜕Ω

(4.7)

where 𝜑 represents the time required for the point 𝑥 to be on the surface of the

signed distance function. The algorithm for performing iterations of the fast march-

ing method has a strong resemblance to Dijkstra’s algorithm.

Data: 𝑈(𝑥𝑖) = 𝜑(𝑥𝑖)

Result: computes 𝑈(𝑥𝑖)∀𝑖

Set all 𝑈(𝑥𝑖) to ∞, except for the nodes in the zero crossing which should be

0

Label the nodes in the zero crossing as accepted

while there exists 𝑥𝑖 not in accepted do
For every node that isn’t already accepted, update 𝑈(𝑥𝑖) by finding the

neighbor with the distance value of the smallest magnitude and adding

the distance to the neighbor to that value;

Add the 𝑈(𝑥𝑖) with the distance of the smallest magnitude to accepted;

end
Algorithm 1: An overview of the fast marching method

The fast marching method can re-initialize the signed distance field given an ex-

isting set of zero-crossing values (i.e the uncorrected surface). Our approach simply

examines the neighbors of a voxel to determine whether or not it is on the initial sur-

face. As a result, the voxels that comprise the zero-crossing are not touched by this

process. This limitation of the approach causes issues when the initial zero-crossing

is not correct (see Figure 4-2).

An approach that performs the quadratic programming optimization solely on the

original zero-crossing and then re-initializes the rest of the signed distance function

using the fast marching method could produce results comparable to those in Figure
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(a) Original (b) Gradient Update

(c) Re-initialized with FMM

Figure 4-2: Fast Marching Method Gradient Update. Unlike in the quadratic
programming example, the fast marching method does not attempt to modify the
level set, leaving the signed distance function mostly untouched.
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4-1 while also running an order of magnitude faster. We did not explore this option

because the results from the fast marching method were already acceptable. However,

this approach could be used periodically during learning to reduce the number of

smoke-like artifacts (see section 6.1.1).

4.5 Penalty Method

Both quadratic programming and the fast marching distance field correction methods

attempt to “correct” a signed distance function to satisfy the Eikonal equation. In

both cases, another gradient descent optimization technique (like ADAM [19]) creates

a gradient update which invalidates the distance field before the correction step is

performed.

An alternative to these two-step approaches is to jointly optimize for the inverse

rendering objective and distance field correctness. The Eikonal equation constraints

are rephrased as penalties to the objective function. This technique is similar to

Lagrangian relaxation.

The adjusted objective function 𝜑(𝑥) is phrased as a sum of the inverse rendering

objective 𝑐(𝑥), the distance field correctness penalties 𝑒𝑖(𝑥), and a penalty coefficient

𝜎𝑒.

𝜑(𝑥) = 𝑐(𝑥) + 𝜎𝑒

𝑁∑︁
𝑖

𝑒𝑖(𝑥) (4.8)

Each 𝑒𝑖 corresponds to a single Eikonal constraint. Like the quadratic program-

ming approach, a eighth-order finite difference approximation was used to estimate

the spatial gradient.

𝑒𝑖 = (1 − ||∇𝑖𝑗𝑘𝑑(𝑝𝑖)||2)2 (4.9)

The penalty method is easier to compute and conceptually simpler than any of

the methods described in this chapter, with the drawback that it imposes a soft

constraint rather than a hard one. Additionally, it imposes a quadratic constraint
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rather than just approximating the Eikonal equation using multiple linear constraints.

This approach has similarities to the reconstruction priors used by Lombardi et al.

[24].

40



Chapter 5

Implementation

This chapter outlines details behind the implementation of our volumetric renderer

and distance field optimization method. Our initial testing was performed using the

PyTorch automatic differentiation framework [28]. This PyTorch implementation

was very inefficient because of the mechanism used by PyTorch to track gradients

across the computation graph. The main rendering loop computed the volumetric ray

marching integral at every ray evaluation position and stored the result in another

buffer, allowing PyTorch to store gradients. As a result, even the simplest cases

consumed several gigabytes of data.

The renderer was then rewritten in the Halide language. Halide is a domain-

specific programming language that simplifies developing high performance image

processing code across a variety of system and hardware architectures [30]. Halide

separates the definition of an image processing algorithm from the schedule of opera-

tions used to perform it. This abstraction allows the programmer to easily experiment

with different schedules which offer trade-offs between locality, parallelism, and re-

computation. While Halide was originally intended to be used for image processing

tasks, the process of ray-marching can be succinctly expressed in the language as

well. We also used the Halide automatic differentiation feature, which is capable of

generating derivatives for most Halide functions, to compute gradients [22]. This

framework is capable of efficiently differentiating reduction operations, enabling us to

compute iterations of ray marching without storing the gradient of every iteration in
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memory. Performing the forward and backward pass on a 200x200 image with 2000

iterations of ray marching would take roughly 3-7 seconds on the testing hardware

using the Halide CUDA backend (see section 6.1.1), while the PyTorch version would

take roughly five minutes.

Unfortunately, compile time is not one of the strengths of the Halide language.

Build times would exceed half an hour, which slowed down development. Additionally,

debugging the adjoint functions generated by the Halide automatic differentiation

framework was challenging. Eventually, we decided to rewrite all of the rendering

operations, as well as the derivatives of those rendering operations, in CUDA.

Rewriting the Halide code (including the backwards pass) in CUDA was a tedious

and error-prone process. However, doing so allowed us to express the tail recursion

optimization mentioned in section 5.1, which would be somewhat trickier to express

using the Halide automatic differentiation framework. At the same resolution and

iterations of tracing as the Halide example above, our CUDA implementation can

perform both the forward and backward pass in under 500 milliseconds.

The volumetric renderer could be bundled into a PyTorch module and used as a

building block for more complex programs. One example application could be to find

adversarial examples for neural networks [8] (see section 6.3 for details).

The fast marching method was also implemented within Halide. This operation

was expressed as a reduction across the domain of the signed distance functions and

across the iterations of fast marching. Performing the fast marching method on a

64x64x64 voxel grid would take roughly 1 second on the testing hardware (see section

6.1.1).

5.1 Backwards Pass Implementation

Section 3.2 describes the derivative of the forward pass. This section considers the

implementation challenges when computing this derivative.

Both the forward and backwards passes of this algorithm are implemented as a

monolithic CUDA kernel. Operations on the domain of the signed distance function
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(rather than the domain of the image) are performed in separate kernels. In particular,

the normals of the signed distance function are computed separately and cached to

avoid performing unnecessary global reads into the signed distance function.

Ray marching approximates the volumetric rendering integral by sampling the ray

at many positions, which we call ray evaluation positions. During the forward pass,

the signed distance function is sampled at each of these locations, and during the

backwards pass contributions to the gradient of the loss with respect to the signed

distance function are accumulated. Accumulating contributions to the gradient can

be performed using a parallel, associative reduction [34]. Our Halide implementa-

tion took advantage of this property, as the automatic differentiation framework uses

special scheduling directives to handle this case (see section 2.4 for details). The

CUDA implementation performs this reduction via global atomic operations. Global

atomic operations in CUDA work across kernel executions on the same GPU, allowing

multiple kernels to accumulate contributions for different views concurrently.

5.1.1 Checkpointing

The definition of 𝐿𝑡 as well as its derivative (see equation 3.10) references terms from

the forward pass, including the intensity, the normals, and the integral of 𝜎𝑡 (𝑂𝑡).

Performing reverse-mode differentiation involves computing the derivative backwards

from the outputs of the rendering process back to the inputs. Thus, many interme-

diate results from the former pass need to either be recomputed or cached.

1 typedef struct {

2 // Stores each ray evaluation position

3 float3 p[NUM_CHECKPOINTS];

4 // Stores the trilinearly-interpolated SDF value

5 float D[NUM_CHECKPOINTS];

6 // Stores the un-normalized normal

7 float3 normal[NUM_CHECKPOINTS];

8 // Stores the value of phi_s

9 float phis[NUM_CHECKPOINTS];
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10 // Stores the value of O

11 float O[NUM_CHECKPOINTS];

12 // Stores the value of I^t(p, D)

13 float3 intensity[NUM_CHECKPOINTS];

14 // Stores the value of L^t(p, D)

15 float3 L[NUM_CHECKPOINTS];

16 } checkpoints;

Listing 5.1: Checkpoint Struct. This structure stores some of the intermediate

values needed by the the backwards pass

Listing 5.1 gives an example of how the checkpoints might be stored. Some im-

portant values (e.g intensity, normals, etc.,) are stored during “checkpoint” iterations.

On other iterations, these values are recomputed. In practice, fields like p or phis

are easily recomputed, so they would likely be excluded from a struct like this. The

checkpoint struct resides in local memory, so minimizing memory usage reduces reg-

ister spillage and improves occupancy [1].

Given a chain of operations of length 𝑂(𝑛), only checkpointing 𝑂(log(𝑛)) of those

operations will result in a time complexity of 𝑂(𝑁 log(𝑁)) (and a space complexity of

𝑂(log(𝑁))) [10]. On the whole, checkpointing is only useful in the volumetric renderer

when accessing a checkpoint prevents a global memory read. As a result, some fields

(like normals and dist) which involved trilinear interpolation were checkpointed

for every iteration.

Note that the output of the Sobel filter is normalized to approximate the direction

of the surface normals (see equation 3.8). As a result, the un-normalized output of the

Sobel filter is precomputed rather than the normalized values because the derivative

of the normalization operation references the un-normalized values.
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Chapter 6

Results and Discussion

This chapter details the accuracy and performance of the differentiable rendering

system outlined in this thesis. A discussion of the advantages and disadvantages of

this system is also included.

6.1 Experiments

The first experiment demonstrates a simple rigid transformation which translates and

rotates a cube from one position to another. This experiment includes two point light

sources, one located at the camera and another one above the cube. Our differentiable

renderer infers the transform between both orientations.

All of these experiments used an implementation of the ADAM [19] gradient de-

scent optimization algorithm written in CUDA. The resolution of the signed distance

field is 64x64x64, and a Nvidia GeForce GTX 1070 is used to perform the optimiza-

tion.

6.1.1 Rigid Transform

Figure 6-1 demonstrates intermediate renderings of the optimization of a rigid trans-

formation of a cube in one orientation to a cube in a different orientation. All images

were rendered at a resolution of 200x200. After 50 iterations, the gradient descent
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(a) Iteration = 0 (b) Iteration = 25 (c) Iteration = 50

(d) Target image

Figure 6-1: Inferring a Rigid Transform from a Single Image. In this example,
we infer the transform from the initialization to the target in under 50 epochs. The
𝜎 parameter used for both images is 1 × 10−2, and the learning rate was 1 × 10−2

Figure 6-2: Loss of Rigid Transform Fitting. After roughly fifty epochs of train-
ing, an acceptable transform between the initialization and target cube which mini-
mized the MSE between the two images was found.
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process manages to align the cube almost perfectly with the final position. The loss

and the transform error are shown in figure 6-2.

Learning the rigid transformation between two objects is a simple task which

confirms that the attenuation function is properly dispersing gradients.

6.1.2 Multi-View Reconstruction

Multi-view 3D reconstruction from 2D images is a more complex task than rigid trans-

form estimation. The multi-view reconstruction example below omits the intensity

term in the rendering integral.

21 different views of the target geometry (the Stanford bunny) were used as an

input to the reconstruction task (see figure 6-3). Each image was rendered with a 𝜎

of 1 × 10−2 at a resolution of 200x200. The initialization distance field was a sphere.

The model geometry was also rendered at a resolution of 200x200, but instead

of using a fixed 𝜎 value, the 𝜎 value decreased from 6 × 10−1 to 1 × 10−2 during

training according to the relation 6.1. The learning rate used for all the multi-view

experiments was 1.

𝜎 =
4 × 10−1

𝑒𝜅*epoch + 1 × 10−2 ; (6.1)

Gradually decreasing the value of 𝜎 over many epochs of training is similar to

coarse-to-fine optimization. Starting with a larger 𝜎 value facilitates optimization be-

cause the radius of the attenuation function is much larger (see figure 3-1 for details).

Figure 6-4 shows intermediate distance fields and gradients over the course of 40

iterations. The penalty method was used to correct the distance field after each epoch.

Figure 6-6 shows the loss and Eikonal penalty term over each epoch of optimization.

Figure 6-5 shows a visualization of the optimized distance field at iteration 70.

Figure 6-7 shows the results of another experiment in which a sphere is optimized

into a torus over the course of 900 iterations using 20 views of the target geometry at

a resolution of 200x200. The value of 𝜎 was fixed at 6 × 10−1 to expedite the process

at the cost of reduced resolution.
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Figure 6-3: Target Views of Bunny

6.2 Discussion

Our results demonstrate that our differentiable renderer is capable of performing a

variety of inverse rendering tasks, such as optimizing a rigid transform based on a

single image, or performing 3D reconstruction given multiple views. The 3D recon-

struction results demonstrate that our approach can optimize for scenes with different

topology than the initialization geometry.

There are several limitations of our approach. To begin with, all of the objects

in our scenes share the same material properties. The material properties could be

stored in another volume, similar to the learned color and opacity volumes used by

Lombardi et al. [24]. Alternatively, a surface parameterization of the signed distance

field could be learned, which would enable adaptive level of detail (like the warp field

used by Lombardi et al. [24]).

Our method is sensitive to the input hyperparameters, such as the learning rate

used by the ADAM optimizer or the value of 𝜎 in the attenuation function (see equa-

tion 3.9). Equation 6.1 gradually reduces the 𝜎 parameter as a form of coarse-to-fine

optimization. At first, greater values of 𝜎 (i.e large radius of the attenuation function)

accelerate the optimization process, but inevitably lose detail in the rendered image.

Smaller values of 𝜎 slow down the optimization process, but allow for finer details to

appear. The rate at which this process occurs, 𝜅, influences the quality of the final
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(a) Two rendered perspectives on iterations 0, 10, 20, 30, 40

(b) Gradient visualization for Figure 6-4a

(c) SDF visualization for Figure 6-4a

Figure 6-4: Optimizing a Sphere into a Bunny. In this example, we optimize
the geometry of the initialization sphere to the target bunny. While most of the
optimization completed in the first ten epochs, the ears and legs continue to extend
over the course of the next 40 epochs. The 𝜎 parameter used for the target geometry
is 1 × 10−2 while the fixed 𝜎 parameter for the model is 6 × 10−1, and the learning
rate is 1. Figure 6-4b is a visualization of the contributions of each ray (i.e pixel) to
the gradient of the distance field. Green corresponds to a negative contribution (i.e
carving away) and blue corresponds to a positive contribution (i.e strengthening).
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Figure 6-5: Bunny SDF Visualization. This figure shows multiple perspectives
of the learned signed distance field of the sphere to bunny optimization at epoch 70.
Some incorrect distance values, especially near the ears and tail, are still present.
Additionally, a number of smoke-like artifacts are present around the bunny.

(a) Loss (b) Eikonal Penalty

Figure 6-6: Bunny Optimization Loss. Figure 6-6a shows the loss associated with
the optimization process and Figure 6-6b shows the Eikonal penalty over each epoch
of training. The smoothness of Figure 6-6a is likely due to equation 6.1.
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(a) Target Views of Torus

(b) Iteration 500 – side view (c) Iteration 500 – gradient

(d) Iteration 900 – front view (e) Iteration 900 – SDF visualization

Figure 6-7: Optimizing a Sphere into a Torus. In this example, we optimize the
geometry of the initialization sphere to the target torus in the course of 900 epochs.
The 𝜎 parameter used for the target geometry is 1 × 10−2 while the fixed 𝜎 parameter
for the model is 6 × 10−1, and the learning rate is 1. Figure 6-7c is a visualization of
the contributions of each ray (i.e pixel) to the gradient of the distance field. Green
corresponds to a negative contribution (i.e carving away) and blue corresponds to a
positive contribution (i.e strengthening).
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signed distance field. Unfortunately, it is not obvious how to determine the best value

of 𝜅, as well as the initial and final values of 𝜎, a priori.

The reconstruction results show a small number of cloud-like artifacts on the

periphery of the distance field. It is plausible that these artifacts are the result of

the optimizer reaching a local minimum, exacerbated by an insufficient number of

viewpoints. Lombardi et al. address this issue by introducing two priors to the

reconstruction process [24]. A similar process could be incorporated into our Eikonal

penalty (see equation 4.9).

Our differentiable renderer is not designed to run in real-time. The CUDA im-

plementation is currently limited by inefficient checkpointing (see section 5.1.1 for

an explanation of the checkpointing process). Experimenting with different check-

pointing schedules, such as log checkpointing [10], would reduce memory usage and

improve occupancy.

6.3 Future Work

Integrating the volumetric renderer into the redner differentiable renderer [21] is a

potential next step of this research. Optimizing scenes which contain a mixture of

polygon meshes and signed distance function geometry may be possible. The inclusion

of a volume renderer in redner would help create a toolkit of differentiable rendering

primitives which could be combined for a variety of inverse-rendering applications. In

particular, our approach could be used to construct adversarial examples for neural

networks [3]. For example, a neural network may correctly categorize an image of a

chair as a chair; however, given some small modification to the geometry or material

properties of the chair, this categorization may not hold true. Using a differentiable

3D renderer, one may use gradient descent to minimize the output score associated

with the chair class and discover such a modification.

A differentiable volumetric renderer of signed distance fields could be used to

perform the same kind of marker-less pose estimation introduced by Rhodin et al.

[31]. In particular, a hand or finger tracking application could be a compelling use-
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case. A parametric signed distance function model could be used to describe the

geometry of the hand which would then be optimized to the camera input using

our differentiable renderer, perhaps with additional terms in the loss function to

impose soft constraints upon the hand pose. Taylor et al. [35] approached the hand

tracking problem by fitting point cloud data from a Microsoft Kinect sensor to a

hand model using non-linear gradient-based optimization. Most of the terms in their

energy function are soft constraints which could be applicable for a volume-rendering

based hand tracker.

A differentiable renderer is a useful tool for any application which endeavors to

understand the three-dimensional nature of a rendered image, photograph, or video.

We hope that a general-purpose differentiable rendering toolkit will help integrate

the well-understood principles of light transport in computer graphics with computer

vision and learning approaches.
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