
Color Reclamation for Heap Memory

Coloring Scheme in PIPE Tagged-Memory

Architecture

by

Jiahao Li

S.B., C.S. M.I.T., 2018

Submitted to the

Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and

Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

© Massachusetts Institute of Technology 2019. All rights

reserved.

The author hereby grants to MIT permission to reproduce

and to distribute publicly paper and electronic copies of this

thesis document in whole or in part in any medium now

known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science

August 12, 2019

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Howard E. Shrobe, Thesis Supervisor

Principal Research Scientist, MIT CSAIL

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Color Reclamation for Heap Memory Coloring

Scheme in PIPE Tagged-Memory Architecture

by

Jiahao Li

Submitted to the Department of Electrical Engineering and Computer
Science

on August 12, 2019, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Memory safety violations remain a significant hurdle as people try to
secure computer software. The PIPE project proposed an approach to
securing software by tagging memory and registers with color tags and
defining policies in terms of the tags to disallow instructions violating
memory safety. However, the PIPE project did not include a scheme
for reclaiming and reusing allocated color tags, thus resulting in issues
including color wrap-arounds.

This thesis proposes a scheme for reclaiming and reusing color tags
within the PIPE tagged-memory architecture. The proposed scheme
is then evaluated on a combination of synthetic microbenchmarks and
real-world allocation trace replays. Evaluation results show that the
reclaimer can effectively reclaim colors in all cases, and in some cases
can also improve performance by increasing rule cache hit rate.
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Title: Principal Research Scientist, MIT CSAIL
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Chapter 1

Introduction

Securing computer software has been an uphill battle, with new vulner-

abilities continuously being exposed as old ones are fixed. In particu-

lar, we see frequent recurrences of one class of vulnerabilities – memory

safety violations. Such vulnerabilities are frequently leveraged by at-

tacks to achieve various malicious effects, including disclosing sensitive

data and hijacking the program’s control flow.

There are two major classes of memory safety violations – spatial

memory safety violations (e.g. buffer overflows) and temporal memory

safety violations (e.g. use-after-free accesses). In buffer overflows, the

vulnerable program – usually due to a lack of bounds checking – is

tricked into accessing a memory buffer at an index beyond the actual

size of the underlying buffer, causing information disclosure vulnera-

bilities (in cases of read accesses) and memory corruptions (in cases

of write accesses). Since 2018, buffer overflows alone account for more

than 900 vulnerabilities in the Common Vulnerabilities and Exposure

(CVE) database [1], affecting a wide spectrum of applications from web
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servers [2, 3] to surveillance camera firmware [4, 5].

With use-after-free accesses, the vulnerable program inadvertently

accesses a memory buffer that it has already deallocated. Since the

underlying memory region might have already been handed out as an-

other buffer, inadvertently accessing this memory region can cause un-

expected information disclosure (in cases of read accesses) or mem-

ory corruption (in cases of write accesses). The CVE database in-

cludes more than 500 use-after-free vulnerabilities entered since 2018

[6], affecting applications including the Linux kernel [7, 8] and desktop

browsers [9, 10].

Such frequent recurrences of memory safety vulnerabilities is partly

owed to conventional processor architectures’ inability of preventing ill-

behaving memory accesses. Instead, programmers are trusted to avoid

memory safety violations through meticulous coding and testing, which

in practice are usually insufficient.

There have been attempts at more systematic ways to detect and

prevent memory safety violations, either through static analysis at com-

pile time [11, 12, 13] or dynamic instrumentation at runtime [14, 15, 16].

However, solutions based on static analysis are usually limited in the

types of errors they can detect. Furthermore, they often suffer from

a large number of false-positives [17]. On the other hand, solutions

based on dynamic instrumentation, while able to detect more errors,

require an instrumented version of the binary to be compiled. This in-

strumented binary usually comes with significant overhead in both its

runtime performance and memory usage, therefore limiting its adoption

in the production environment.

Another avenue towards eliminating ill-behaving memory accesses

14



involves modifying the processor architecture to disallow invalid ac-

cesses on the hardware level. For example, PIPE [18] proposes an ar-

chitecture where each word of data (in memory, in cache, and in CPU

registers) is associated with a tag. Policies can be defined in terms of

tags to deny the execution of certain instructions. In particular, PIPE

[18] proposes a heap coloring scheme to disallow memory safety viola-

tions. Such a hardware-level protection scheme, as shown in [18], can be

implemented with acceptable overhead costs in terms of runtime slow-

down and memory usage inflation, and is thus suitable for production

environment adoption.

On a high level, PIPE’s heap coloring scheme enforces memory

safety by checking for color match on memory accesses. When the

memory allocator allocates a new piece of memory, the newly allocated

memory region is assigned and tagged with a globally unique cell color.

A pointer pointing to the allocated memory region is tagged with a

matching pointer color, and returned to the program that requested

the memory allocation. Since only the allocated buffer region will have

the correct cell color, instructions attempting buffer overflows will be

denied execution due to color mismatch. Furthermore, when a memory

region is deallocated and subsequently reused by the memory alloca-

tor to service a different allocation, it will bear a different cell color.

Attempts to access this memory region via dangling pointers left from

the previous allocation (i.e. use-after-free violations) will therefore be

denied execution due to color mismatch. See section 2.3 for a more

detailed description of the PIPE coloring scheme.

In the PIPE heap coloring scheme, each allocated memory block

currently in use needs to be assigned a globally unique color value.

15



However, it is not specified how color values can be reclaimed and

reused. Instead, each newly allocated memory block will be assigned a

new color based on a monotonically incrementing color counter. Since

a program can potentially make an unbounded number of memory al-

locations during its lifetime, this simple allocation scheme requires the

use of infinite-width color values, making it impractical for real-world

applications.

This thesis aims to improve upon PIPE’s heap coloring scheme in

[18], by devising a scheme to reclaim colors from memory blocks that are

no longer in use, so that the reclaimed colors can be reused for future

allocations. Since the number of memory blocks in use at any given

time is bounded by the size of the address space (and often in practice

by a significantly stricter bound), timely reclaiming color values would

allow the PIPE heap coloring scheme to be implemented with fixed-

width color values with a small number of bits. This would make the

heap coloring scheme significantly more practical for adoption in real

applications.

In summary, this thesis presents design and implementation of a

color reclamation method for the PIPE heap coloring scheme. The

implementation is tested in a QEMU-based simulator for the PIPE

tagged architecture, over a combination of synthetic benchmarks and

real-world memory allocation traces, to show its effectiveness in reduc-

ing the size of color values required. High-level design is presented in

chapter 3, implementation details is presented in chapter 4, and simu-

lator evaluation is presented in chapter 5.
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Chapter 2

Background

Several pieces of background information are necessary in order to bet-

ter understand the work carried out in this thesis. In this section, we

will first talk about the types of memory safety violations that this the-

sis addresses. Then, we will present a brief description of the PIPE [18]

policy framework. Finally, we will proceed to introduce the existing

heap coloring scheme used in PIPE [18].

2.1 Memory Safety Violations

2.1.1 Spatial Memory Safety Violations

Spatial memory safety is a property where all memory dereferences are

within bounds of their pointers’ valid objects [19]. A common case of

spatial memory safety violation is in the form of buffer overflow, which

happens when a program tries to access a buffer at an index that is be-

yond the actual allocated size of the buffer. Such out-of-bound accesses

can potentially access an unrelated memory region, causing information

17



1 char content[100];

2 char secret_key[32];

3

4 void read_content(char *output, size_t length) {

5 memcpy(output, content, length);

6 }

7

8 char result[200];

9 size_t length = get_requested_length();

10 read_content(result, length);

11 send_reply(result, length);

Figure 2-1: Example of an information disclosure vulnerability caused
by buffer overflow.

leakage (in the case of read accesses) and memory corruption (in the

case of write accesses).

An example information disclosure vulnerability caused by a read-

access buffer overflow is given in fig. 2-1. In this case, the attacker

can gain access to secret_key by making a request with length 132.

Due to the lack of bounds check in read_content, memcpy will read

beyond the bounds of content into secret_keys, causing inadvertent

information disclosure.

2.1.2 Temporal Memory Safety Violation

Temporal memory safety is a property where all memory dereferences

are valid at the time of dereference [19]. A common form of tempo-

ral memory safety violation is use-after-free errors, where a dangling

pointer is used to access a memory region that has already been deal-

located. Such violations are especially problematic when the previ-

18



1 char *user_input = (char *)malloc(PASSCODE_SIZE);

2 // ...

3 free(user_input);

4

5 char *passcode = (char *)malloc(PASSCODE_SIZE);

6 get_passcode(passcode);

7 prompt_for_passcode(user_input);

8 if (memcmp(user_input, passcode) == 0) {

9 // User-entered passcode matches the real passcode.

10 do_privileged_thing();

11 }

Figure 2-2: Example of an memory corruption vulnerability caused by
use-after-free access.

ously deallocated memory region has been re-allocated as an unrelated

buffer. Use-after-free accesses in this case will cause information leak-

age/corruption on that unrelated buffer, similar to the spatial memory

safety violation case.

An example memory corruption vulnerability caused by a write-

after-free access is given in fig. 2-2. Following free(user_input),

the memory region previously occupied by user_input is considered

handed back to the memory allocator. When the buffer passcode is

being allocated, it is possible (and in this case especially likely since the

size of both allocations are equal) that the same memory region previ-

ously occupied by user_input will be reused to service the passcode

allocation. In this case, the later write into user_input will inadver-

tently modify passcode as well, causing the passcode check to uncon-

ditionally pass.

19



2.2 PIPE Tagged-Memory Architecture

Traditional computer processors have been unable to prevent certain

classes of memory safety violations, including spatial memory safety

violations (section 2.1.1) and temporal memory safety violations (sec-

tion 2.1.2). This is due to traditional processors’ lack of buffer bounds

information (necessary for enforcing spatial memory safety) and buffer

identity information (necessary for enforcing temporal memory safety).

To address this shortcoming, PIPE [18] proposes a tagged-memory

architecture that allows the processor to store additional metadata with

each word of data, and to enforce custom policies defined in terms of

the metadata.

2.2.1 Metadata in PIPE

In the PIPE tagged-memory architecture, each word of data (including

those in memory, in cache, as well as in CPU registers) is associated

with a metadata set. Each metadata set consists of a list of metadata

tags. Two types of metadata tags are allowed:

� Binary tag : A binary tag is either present or absent in any par-

ticular metadata set. For example, a binary tag named Writable

can be used to denote whether a word of memory is writable.

� Value tag : A value tag is either absent or present with a particular

value in any particular metadata set. For example, having a value

tag named Color with value range {0, 1, . . . , 15} would mean that

each word of data would either not have any Color, or have a

particular integer Color in the range [0, 15].

20



Figure 2-3: Inputs and outputs of the policy function.

Conceptually, a metadata set can contain an unlimited number of

metadata tags. In practice, metadata sets are stored out-of-line in a

table in a separate memory area, and an index into that table will be

stored within each data word as a layer of indirection.

2.2.2 Policy in PIPE

Once the data words in the system are augmented with metadata, PIPE

allows a custom policy to be defined that can allow/deny the execution

of certain instructions based on the metadata.

Conceptually a policy is a pure function. Its inputs and outputs are

depicted in fig. 2-3. Here are brief descriptions of the 5 inputs to the

policy function:

1. Instruction Type: Type of the instruction being executed (e.g.

addition instruction, memory store instruction, etc.).

2. Input Register Tags: The metadata sets associated with the in-

put registers of the instruction. For example, given an addition

instruction, the input registers will be the 2 registers containing

the operands being added together.
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3. MemoryWord Tags: This input is only used for memory load/store

instructions. It represents the metadata set associated with the

word of memory being loaded from/stored into.

4. Current Instruction Tags: The metadata set associated with the

word of memory containing the current instruction being executed

(i.e. the word of memory at the current program counter). This

input allows the tagging of certain code regions to be treated

differently from the rest of the program.

5. Global PC Tags: A special metadata set associated with the pro-

gram counter register. In practice, this metadata set is used as a

global variable to carry states not associated with any particular

data word.

Given these 5 inputs, the policy function can produce two types of

output:

1. Access Violation: The policy function determines that the in-

struction should be denied execution due to an access violation.

In this case, the program halts in a fail-stop fashion to prevent

further damage.

2. Access Allowed: The policy function determines that the instruc-

tion should be allowed to execute. In this case, the policy function

can optionally modify:

(a) Result Tags: The metadata set associated with the result of

the instruction. For arithmetic instruction, this will be the

22



metadata set associated with the register containing the cal-

culation result. For memory load/store instructions, this will

be the metadata set associated with the register/memory

word being loaded/stored into.

(b) Global PC Tags: The special metadata set associated with

the program counter register as described above. Modifying

this metadata set is used to change the global policy state

in order to affect the policy function’s processing of future

instructions.

2.2.3 Policy Language Through Example: RWX

Memory

Both metadata tag definitions and policy functions in the PIPE

tagged-memory architecture are expressed in a specially designed

policy language. This section will give a brief description of the

major parts of the policy language through an example policy:

Read/Write/Executable (RWX) Memory.

A simplified excerpt of the policy language code of the RWX

Memory policy is shown in fig. 2-4. The excerpt shows only two

sections (metadata and policy sections). Policy language code

can contain other sections, but they are not significant for the

purpose of this thesis.

The first section – metadata – lists all metadata tags that the

policy defines. In this case, three binary tags are defined:

(a) Rd: Denotes whether the word of memory can be read from.

23



1 metadata:

2 Rd

3 Wr

4 Ex

5

6 policy:

7 rwxPol =

8 loadGrp(mem == [-Rd] -> fail "read violation")

9 ^ storeGrp(mem == [-Wr] -> fail "write violation")

10 ^ allGrp(code == [-Ex] -> fail "execute violation")

11 ^ loadGrp ( code == [+Ex], env == _, mem == [+Rd]

12 -> res = {}, env = env)

13 ^ storeGrp ( code == [+Ex], env == _, mem == [+Wr]

14 -> mem = mem, env = env)

15 ^ allGrp(code == [+Ex], env == _ -> env = env)

Figure 2-4: Simplified excerpt of the policy language code of the RWX
Memory policy.

(b) Wr: Denotes whether the word of memory can be written to.

(c) Ex: Denotes whether the word of memory contains instruc-

tions that can be executed.

The following section – policy – lists the policy clauses. Each

policy clause is of the following format:

instTypeGroup(cond1, cond2, ... -> result)

instTypeGroup defines the types of instructions that the policy

clause applies to. loadGrp, for example, denotes that the policy

clause applies to memory load instructions only.

Following instTypeGroup, we have a comma-separated list of

conditions that must be satisfied in order for the policy clause to

24



apply. Each condition matches a policy function input metadata

set to a set of requirements, each of which requires the metadata

set to either contain a particular metadata tag (in the form of

+TAG), or not contain a particular metadata tag (in the form of

-TAG). For example, the condition mem == [-Wr] states that the

Memory Word Tags metadata set must not contain the tag Wr.

Finally, following the ->, we have the policy clause result. The

result can either allow the current instruction to execute, or deny

its execution with a message. In the case of allowing execution,

the policy clause can also specify how it would like to modify the

Result Tags and Global PC Tags in the result part after ->.

As an example, consider the following policy clause (line 11− 12

in fig. 2-4):

loadGrp(code == [+Ex], env == _, mem == [+Wr]

-> mem = mem, env = env)

This policy clause would match if:

(a) the instruction is a load instruction,

(b) its Current Instruction (code) metadata set contains the Ex

tag, and

(c) its Memory Word (mem) metadata set contains the Wr tag.

When this policy clause matches, it will allow the current instruc-

tion to execute. Furthermore, it will keep both the Memory Word

metadata set and the Global PC metadata set unmodified (due

to the mem = mem, env = env part).

25



Policy clauses connected by the ˆ operator are evaluated in decla-

ration order. The first matching policy clause will determine the

outcome. If none of the policy clauses matches, the instruction

will be implicitly denied.

2.3 PIPE Heap Coloring Policy

2.3.1 Coloring Scheme

PIPE Heap Coloring policy uses two metadata tags: CellColor and

PointerColor. Both CellColor and PointerColor are value tags with

integer color values. Each time the heap memory allocator allocates a

new buffer, a CellColor tag value is allocated and assigned to words

in the buffer region. A PointerColor tag with the same integer color

value is assigned to the pointer returned by the memory allocator.

Each time the program attempts to access a memory location on

the heap via a pointer, the PointerColor on the pointer is compared

with the CellColor on the memory word being accessed. If the colors

do not match, or if either color is absent, the policy denies the memory

load/store instruction from executing.

Consider an example buffer overflow as shown in fig. 2-5. Assume

that buf and secret have been allocated right next to each other in

memory. Since they are allocated separately, buf and secret will have

two different CellColors. When the program tries to access buf[2],

the expression buf[2] will have the same PointerColor as buf. Since

this PointerColor does not match the CellColor on the actual mem-

ory word being accessed, this load instruction will be denied.
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1 int *buf = (int *)

2 malloc(2 * sizeof(int));

3 int *secret = (int *)

4 malloc(2 * sizeof(int));

5 int value = buf[2];

Figure 2-5: An example buffer overflow access prevented by the PIPE
heap coloring policy.

1 int *old = (int *)(malloc(2 * sizeof(int)));

2 free(old);

3 int *new = (int *)(malloc(2 * sizeof(int)));

4 int value = old[0];

Figure 2-6: An example use-after-free access prevented by the PIPE
heap coloring policy.
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Similarly, consider an example use-after-free access as shown in

fig. 2-6. Assume the second allocation (new) is handed the same mem-

ory region that was just deallocated. Upon deallocating a heap memory

region, the memory allocator will zero out its CellColor. When the

same memory region is handed out again, it will be tagged with a differ-

ent CellColor. Therefore, when the program attempts to access the

deallocated buffer via the dangling pointer old, the load instruction

will be correctly denied execution.

2.3.2 CellColor Allocation

Each time a new buffer is allocated, a new CellColor needs to be

allocated and assigned to it. In order for PIPE’s protection against

memory safety access to be effective, we must ensure that:

1. the allocated CellColor must not currently be used by any other

buffer, and that

2. there must be no dangling pointer with a matching PointerColor

currently present anywhere in memory.

A trivial allocation method for new CellColors that satisfy both

constraints is to keep a monotonically increasing color counter. Each

time we allocate a new buffer, we use the current counter value as its

CellColor, and subsequently increase the counter value by 1. This is

the current method employed in the PIPE heap coloring scheme.

However, in a practical implementation of the heap coloring policy,

CellColors and PointerColors are bounded in range. Therefore, in or-

der to support a potentially unbounded number of memory allocations

28



throughout the program’s lifetime, the color value wraps around to 0

once it hits the maximum color value. Such wrap-arounds, however,

break the aforementioned two constraints, thus making the coloring

scheme less secure due to the possibility of unexpected color collisions.

To address this deficiency, this thesis aims to provide a new color

allocation and reclamation scheme that supports unbounded number

of memory allocations while still maintaining the safety properties by

adhering to the two constraints.
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Chapter 3

Design

The PIPE tagged-memory architecture employs two separate proces-

sors: an application processor that executes regular application code,

and a policy processor that evaluates the policy function to determine

whether to allow instructions to execute. Conceptually, the application

processor and policy processor access disjoint parts of the memory: the

application processor only has access to the regular data part of the

memory, and the policy processor only has access to the metadata part

of the memory.

The color reclamation scheme proposed in this thesis works in 2

parts: the synchronous part and the asynchronous part. In the syn-

chronous part, when the memory allocator on the application processor

is about to deallocate a chunk of memory, it notifies the policy processor

of its intent of releasing the previously occupied color. In this part, the

policy processor carries out minimal amount of clean-up (more details

are given in section 3.1) and returns control to the application proces-

sor. In the asynchronous part, the policy processor periodically scans
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Figure 3-1: High-level timeline of the color reclamation scheme. Deal-
location and clean-up blocks are color-coded by their corresponding
background scan block. For example, heap colors released in the two
green deallocations are purged and reclaimed during the green back-
ground scan.

the entire heap memory space in the background, zeroing out memory

words with PointerColors that have already been released in the syn-

chronous part. After each complete scan, colors that have been purged

from the heap memory space are added to a free list, which future al-

locations can reuse colors from. A high-level timeline illustrating the

process and how the two parts interact is shown in fig. 3-1.

The color reclamation scheme maintains the following list of data

structures:

1. staging_list: A list of colors that have been marked as freed by

the memory allocator, but not yet picked up by the background

32



scanning process.

2. scanning_list: A list of colors that the background scanning

process is currently purging. The background scanning process

will remove any PointerColor tag it encounters with a color value

present in the scanning_list.

3. free_list: A list of colors that have already been purged from

memory space by the background scanning process, and are deemed

safe to reuse for future allocations.

3.1 Synchronous Part: Immediate Cleanup

When the memory allocator deallocates a buffer, it notifies the policy

processor of its intent to release the corresponding color. In order to

enforce temporal memory safety, the policy processor needs to ensure

that the dangling pointers that still refer to the released CellColor

must not be used again following the release.

A naive implementation that ensures that dangling pointers are

not used again would entail scanning through the entire heap mem-

ory space, and removing any PointerColor tag matching the released

CellColor. However, such a scan imposes a long delay, during which

the application processor cannot proceed with subsequent instructions.

Such a long delay is unacceptable in practice, especially in real-time

applications that have strict real-time deadlines (e.g. automotive and

aerospace controllers).

Instead, to ensure a reasonable delay bound, the color reclamation

scheme carries out only minimal immediate cleanup work following a
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memory deallocations:

1. All registers are scanned. PointerColor tags matching the re-

leased color are removed.

2. The released color is added to staging_list.

3. A rule is added to the policy to prevent loading the released

PointerColor in the future. The rule specifies that if a load

instructions attempts to load from a memory word containing

the released PointerColor, the result register of the load should

exclude the PointerColor in its metadata set. These added rules

will be referred to as load-zeroing rules in the remainder of this

thesis.

4. A background scan is triggered, if none is currently in progress.

After these steps are finished, the policy processor returns control

to the application processor. Since no full-memory scan is required in

this synchronous part, application code is guaranteed a low, bounded

latency upon memory deallocations.

3.2 Asynchronous Part: Background Scan-

ning

At the start of each background scan, the colors currently in staging_list

are moved into scanning_list, and staging_list is emptied.

During a background scan, the policy processor scans through the

entire memory space, looking for any PointerColor tags matching col-

ors that are present in scanning_list.
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When a background scan finishes, current colors in scanning_list

will be moved into free_list, and will be available for reuse in future

allocations.

A pseudocode depiction of a background scan is given in fig. 3-2.

The following pseudocode functions are used in fig. 3-2:

1. get_pointer_color(addr): Returns the PointerColor of the

memory word at address addr.

2. get_metadata_set(addr): Returns the metadata set associated

with the memory word at address addr.

3. remove_pointer_color(metadata_set): Removes the PointerColor

tag from metadata_set if present. Returns the modified meta-

data set.

4. set_metadata_set(addr, new_metadata_set): Updates themeta-

data set associated with the memory word at addr to new_metadata_set.

During an ongoing background scan, newly released colors might

start accumulating in staging_list. These recently released colors

will not be purged within the current background scan, but will instead

be picked up in the next background scan.

35



def scan():

scanning_list = staging_list

staging_list = {} # empty list

cursor = MEMORY_START

while cursor != MEMORY_END:

pointer_color = get_pointer_color(cursor)

if (pointer_color is not None) and \

(pointer_color in scanning_list):

metadata_set = get_metadata_set(cursor)

metadata_set = remove_pointer_color(metadata_set)

set_metadata_set(cursor, metadata_set)

cursor += 4 # 4 bytes in a word

free_list.add_all_from(scanning_list)

scanning_list = {}

Figure 3-2: Pseudocode depicting a background scan.
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Chapter 4

Implementation

In this chapter, we will first introduce the QEMU-based emulator sys-

tem used in the development of PIPE tagged-architecture. We will then

describe how we implemented a prototype of the aforementioned color

reclamation system within this QEMU-based emulator architecture.

4.1 Tagged-architecture Emulator

In order to facilitate the development and testing of policies, the PIPE

tagged-architecture project implements a software-based emulator sys-

tem. The emulator system is based on QEMU [20], an open-source

software emulator supporting a large variety of processor architectures.

Currently, the PIPE tagged-architecture project is based on the open-

source RISC-V instruction set architecture [21].

On top of QEMU’s existing support for the RISC-V architecture,

the PIPE project adds two additional components that collectively pro-

vide tagged-architecture support: a validator framework, and a policy
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kernel. The validator framework implements a per-instruction hook

into the QEMU emulator to provide an opportunity for policy evalua-

tion, whereas the policy kernel implements the specific policy function

that determines whether an instruction should be allowed to execute.

In order to communicate with the validator framework, each policy

kernel implements a particular interface. The most important part of

the interface consists of the following function:

int eval_policy(context_t *ctx, operands_t *ops,
results_t *res);

The function eval_policy implements the policy function and de-

termines whether a given instruction is allowed under the policy. It

takes two input arguments:

1. ctx: This argument contains the execution context for the current

instruction. Most importantly, its epc field contains the address

of the current instruction being executed (i.e. the current pro-

gram counter).

2. ops: The fields in this argument correspond to the policy function

inputs described in section 2.2.2 and fig. 2-3.

The function eval_policy communicates its result in the following

three ways:

1. ctx: fail_msg field of ctx is used to store an error message

in case of policy violations. cached field of ctx is used to de-

note whether the returned policy result can be safely cached. If

cacheable, subsequent instruction executions that have the same

policy function inputs will bypass eval_policy, and instead use

the previously computed result.
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Figure 4-1: Architecture of the QEMU-based emulator.

2. res: As mentioned in section 2.2.2, if an instruction is allowed to

execute, the policy function can modify relevant metadata sets.

Such modifications are stored within fields of res, and communi-

cated back to the validator framework.

3. Function return value: eval_policy returns an integer status

code. Three options are available: policySuccess which de-

notes that the instruction is allowed, policyExpFailure which

denotes that the instruction is explicitly denied by a matching

policy clause, and policyImpFailure which denotes that the in-

struction is implicitly denied since no policy clause matches.

Despite the validator interface being defined and implemented in

C/C++, policies are typically written in a special-purpose policy lan-

guage (see section 2.2.3). Policy language code is translated by the
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policy tool into a C/C++ implementation, which in turn gets compiled

and linked with the validator framework.

On the other hand, the application processor running inside the

emulator is compiled with a modified version of the clang/LLVM [22]

toolchain. Notably, in addition to producing the application binary, the

modified toolchain also applies a set of initial metadata tags to specific

parts of the program, as instructed by the policy code.

An overview diagram of the QEMU-based emulator architecture is

shown in fig. 4-1.

4.2 Color Reclaimer Implementation

Normally, policy processor code is written in the special-purpose policy

language, and then translated into its corresponding C/C++ imple-

mentation by the policy tool. However, many operations our color

reclaimer design requires, including register scanning and background

processing, are not supported by the policy language. Therefore, we

implemented the color reclaimer prototype directly in C/C++. See

fig. 4-1 for a diagram depicting how the color reclaimer code is inte-

grated into the compilation process.

The color reclaimer provides the following interface for interacting

with the rest of the policy code:

1. bool reclaimer_process(context_t *ctx, operands_t *ops,

results_t *res): This function shares the same arguments with

the main policy function implementation policy_eval as de-

scribed in section 4.1. reclaimer_process is called at the begin-
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ning of policy_eval every time the policy function is invoked.

In particular, reclaimer_process detects and processes special

memory stores that the application memory allocator uses to sig-

nal the intended releases of colors. Whenever the application

memory allocator deallocates a pointer, it writes the released

pointer to a special variable tagged with the ToFreeColor meta-

data tag. Upon detecting such stores with mem == [+ToFreeColor]

(see section 2.2.3 for a description of this syntax), reclaimer_process

handles immediate cleanup (see section 3.1) for the released col-

ors.

reclaimer_process returns true if and only if such a special

store is detected and processed. In this case, policy_eval returns

early with a policySuccess result without having to execute the

rest of the policy clauses.

2. void reclaimer_notify_color_use(uint32_t color): This func-

tion is called by the heap coloring policy code every time it hands

out a new color. It is used to maintain a heap color reference

count in order to deal with color wrap-arounds. This part is not

central to the color reclaimer design.

3. void reclaimer_do_scan(): This function is called once by the

policy engine for the execution of each (application processor) in-

struction. In this function the color reclaimer carries out a small

piece of its background scanning (see section 3.2) if one is in

progress. Note that this function is unconditionally called for each

instruction, whereas policy_eval (and consequently reclaimer_process)
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is only called in case of policy rule cache misses.

4. void reclaimer_process_post_eval(context_t *ctx, operands_t

*ops, results_t *res): This function also shares the same ar-

guments with the main policy function implementation policy_eval.

It is called at the end of each policy_eval invocation. This func-

tion is used to enforce the load-zeroing rules (see section 3.1)

by stripping PointerColor metadata tags matching any color

present in staging_list or scanning_list.

To summarize how the color reclaimer is integrated into the general

policy validator framework (see section 4.1), fig. 4-2 lists the common

scenarios and their corresponding code paths through the policy engine

and color reclaimer code.
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Scenario Code Path

Buffer Deallocation

policy_eval()

reclaimer_process() == true

// Returns early

reclaimer_do_scan()

Buffer Allocation

policy_eval()

reclaimer_process() == false

// Process policy clauses

reclaimer_notify_color_use()

reclaimer_process_post_eval()

reclaimer_do_scan()

Regular Instruction - Cache Hit
// policy_eval() not called here

reclaimer_do_scan()

Regular Instruction - Cache Miss

policy_eval()

reclaimer_process() == false

// Process policy clauses

reclaimer_process_post_eval()

reclaimer_do_scan()

Figure 4-2: Common execution scenarios and their corresponding code
paths through the policy engine and color reclaimer code.
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Chapter 5

Evaluation

5.1 Setup and Metrics

Two types of benchmarks are used to evaluate the effectiveness and per-

formance impact of the color reclaimer design: synthetic microbench-

marks (section 5.2), and allocation trace replays (section 5.3). Synthetic

microbenchmarks simulate scenarios including both small-working-set

and large-working-set workloads, whereas allocation trace replay aims

to reproduce the memory allocation behavior of real programs.

The peak color count metric is used to evaluate the effectiveness of

color reclamation. Peak color count is defined as the maximum num-

ber of unique colors in use at any given time (including colors inside

staging_list and scanning_list). Practically, peak color count rep-

resents the minimal number of unique color values the tag system needs

to provide in order to run the entire program without incurring color

wrap-arounds (see section 2.3.2 for the discussion on the problems with

color wrap-arounds). As such, effective color reclamation should corre-
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spond to a low observed peak color count.

Since the QEMU-based emulator system cannot provide a cycle-

accurate performance analysis, there is no way to directly measure the

full performance impact of the color reclaimer. Instead, we focus on

one performance factor: rule cache hit rate. As mentioned in the last

paragraph, effective color reclamation can potentially reduce the color

working set’s size. A reduced color working set’s size should alleviate

the cache pressure on the rule cache, and should consequently lead to

higher rule cache hit rate.

Each benchmark is tested under a variety of background scanning

speed, including 0 (i.e. equivalent to with color reclamation turned off),

1/16, 1/8, 1/4, 1/2, and 1 words per (application processor) instruction.

For cache hit rate tests, caches with size 16, 32, 64, 128, 256, and 512

are used.

5.2 Synthetic Microbenchmarks

Two microbenchmarks exercising the application memory allocator –

malloc_prof_1 and malloc_prof_2 – are included in the PIPE policy

test case suite. For each microbenchmark, we will provide a brief de-

scription of its setup, and present its results in both peak color count

and rule cache hit rate.

Both microbenchmarks are tested with the default heap size 4KB.
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5.2.1 malloc_prof_1

malloc_prof_1 is a microbenchmark that represents a workload where

memory buffers are allocated and then deallocated right after in quick

succession. It represents a workload where the working set (in terms of

number of buffers) is small at any given point of time. In particular,

the microbenchmark:

1. For 256 times: allocates a 4-byte buffer, writes to it, reads from

it, and then deallocates it.

2. For 128 times: allocates a 8-byte buffer, writes to it, reads from

it, and then deallocates it.

3. Repeats the previous iterations with number of repetitions de-

creasing by half and buffer size doubling each time. Last iteration

would have a repetition count of 2 and a buffer size of 512-bytes.

Peak color count results are shown in fig. 5-1. Without color recla-

mation (i.e. the blue line), the peak color count is 510, since the mi-

crobenchmark makes a total of 510 allocations and no color is ever

reclaimed. As we turn on color reclamation (i.e. the orange line),

peak color count starts dropping. And as we increase the background

scanning speed, peak color count drops further. In this particular mi-

crobenchmark, since the working set is very small (always just 1 buffer

in use at any given point of time), increasing the background scanning

speed would reduce the scan duration, and therefore directly reduce the

peak color count required to service allocations before the background

scan finishes.
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Figure 5-1: Peak color count results for the malloc_prof_1 mi-
crobenchmark.

Figure 5-2: Cache hit rate results for the malloc_prof_1 microbench-
mark.
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Cache hit rate results for various cache sizes are shown in fig. 5-2.

As mentioned before, effective color reclaiming would translate into a

reduced color working set size, and would consequently alleviate the

cache pressure caused by heap coloring rules.

In fig. 5-2, for low cache sizes (64 or below), we observe no significant

improvement as we turn on color reclaiming. In these cases, due to the

small cache sizes, neither the no-reclamation working set size (i.e. 510)

nor the with-reclamation working set size (i.e. 14 with the fastest tested

scanning speed) is able to fit within the rule cache. Therefore, heap-

coloring rules loaded into the rule cache are always evicted before they

are used again by the next memory accesses with matching colors.

As the cache size increases to 128, we start seeing cache hit rate

improvement where scanning speed is 1 word per instruction. In this

case, the reduced color working set size enabled by color reclamation

allows some heap-coloring rules to stay in the rule cache long enough

to be used by subsequent memory accesses of the same colors, thereby

contributing to the cache hit rate. This effect is also observed more

prominently in larger cache size cases (i.e. 256 and 512), where the

cache hit rate improvement starts at lower scanning speeds as well.

5.2.2 malloc_prof_2

malloc_prof_2 is a microbenchmark that mimics workloads where allo-

cations and deallocations happen in large batches, with long periods of

memory allocator inactivity in between. In particular, malloc_prof_2

consists of the following operations:
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1. Allocate 150 buffers, each of a random multiple-of-4-byte size be-

tween 4 bytes and 32 bytes.

2. For 7500 times, pick a random buffer, and increment its first byte.

3. Deallocate the buffers.

4. Repeat the previous steps for a total of 3 times.

Contrary to malloc_prof_1, malloc_prof_2 simulates workloads

where allocations and deallocations happen in large batches, and where

the working set size is considerably larger (i.e. 150 buffers vs. 1 buffer).

Peak color count results are shown in fig. 5-3. In this case, using

different background scanning speeds yields the same peak color count:

150. On one hand, 150 is the theoretical lower bound for the peak

color count since the program uses 150 buffers simultaneously. On the

other, since in this case the batch memory allocations are preceded by

batch memory deallocations, the background scanning process has an

abundant amount of time to finish the scan. Consequently, the color

reclamation implementation works equally well in this case regardless

of the background scanning speed used.

Cache hit rate results for various cache sizes are shown in fig. 5-4. In

all tested scenarios, we have very high cache hit rate (> 99%). Accord-

ing to our measurements, data access instructions (45000 instructions)

account for only 0.25% of all instructions (18167871 instructions) in this

test case. Since the cache effect of data access instructions is totally

over-shadowed by the non-data-access instructions, we did not observe

a significant improvement in cache hit rate with color reclaimer turned

on in this case.
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Figure 5-3: Peak color count results for the malloc_prof_2 mi-
crobenchmark.

Figure 5-4: Cache hit rate results for the malloc_prof_2 microbench-
mark.
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5.3 Allocation Trace Replays

Aside from synthetic microbenchmarks, we also employed allocation

trace replays to test the color reclaimer’s effectiveness in more realistic

workloads. On a high level, with allocation trace replay we:

1. Run arbitrary program on a host platform (e.g. a x86 Linux

platform).

2. Instrument and record the program’s calls to heap memory man-

agement functions: malloc, free, posix_memalign, etc.

3. Write a replay program that repeats the recorded function calls

with appropriately scaled timing.

4. Run the replay program in the QEMU-based simulator, and com-

pare the peak color counts with color reclaimer turned off and on.

Using this scheme of allocation trace replay allows us to evaluate

the effectiveness of our color reclaimer on a real-life workload, without

having to port the actual program onto the QEMU-based emulator

environment.

5.3.1 Replay Scheme Implementation

To collect a record of memory management function calls, we imple-

mented a tracer library containing wrapper functions around glibc’s

heap memory management functions, including malloc, free, posix_memalign,

etc. We then used the LD_PRELOAD environment variable provided by
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the Linux dynamic linker [23] to inject this tracer library into the pro-

gram being recorded. The injected tracer library outputs the function

call trace to a given file in the following format:

...
754360809760093 malloc(1024) = 0x5604bd4c9630
754360809773195 posix_memalign(16,4096) = 0,0x5604bd4f0a50
754360809785639 posix_memalign(16,4096) = 0,0x5604bd4f1a60
754360813412085 free(0x5604bd4f0a50)
754360813413051 free(0x5604bd4f1a60)
754360813414212 free(0x5604bd4c9630)
754360813465360 malloc(1024) = 0x5604bd4c9630
754360814143530 free(0x5604bd4c9630)
...

where the first number on each line is the timestamp of the function

call (taken by reading the x86 processor cycle counter using the rdtsc

instruction), the next part before = is the name and input arguments

of the function call, and the part after = is the output values of the

function call.

We then implemented a script that translates the memory manage-

ment function calls we recorded into two basic operations: allocations

and frees. For example, the composite action of a realloc call will be

broken down into an allocation followed by a free. Inside the script,

we also convert the recorded rdtsc timestamps into relative timecodes.

To do this, we first relativized the timestamps by subtracting the ear-

liest observed timestamp from all timestamps. We then scaled all the

timestamps such that 1 timecode unit corresponds to the time it takes

to execute 1 nop instruction. The converted operations are written as

C struct objects in the format below:

action_t TRACE_ACTIONS[] = {
{0, ACTION_ALLOC, 0, 1024},
{100, ACTION_ALLOC, 1, 1024},
{200, ACTION_FREE, 1, 0},
{300, ACTION_FREE, 0, 0}

};
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In each struct, the first value is the converted timecode value, the

second value is the operation type, the third value is the pointer index

used to match each allocation to the corresponding free, and the final

value is the buffer size for allocation operations and unused for free

operations.

These struct definitions are directly #included into the replay pro-

gram, which reads through the operations and simulates them under

the given timing information.

5.3.2 nginx Allocation Traces

Since webserver is a common workload, we used allocation trace replay

to simulate the memory footprint of running the nginx webserver [24].

Allocation traces are collected with the following shell command:

(LD_PRELOAD=/path/to/tracer.so \
MALLOC_TRACER_OUTPUT_FILE_PREFIX=output \
nginx -p sandbox -c nginx.conf &) && \

for i in $(seq 1 $num_requests); do \
curl localhost:8097; \

done && \

killall nginx

The nginx.conf configuration file used is shown below:

daemon off;
worker_processes 1;

events {
use epoll;
worker_connections 128;

}

error_log logs/error.log info;
pid run/nginx.pid;
env MALLOC_TRACER_OUTPUT_FILE_PREFIX;
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http {
server_tokens off;
charset utf-8;

access_log logs/access.log combined;

server {
server_name localhost;
listen 127.0.0.1:8097;

error_page 500 502 503 504 /50x.html;

location / {
root html;

}

}
}

In order to test the color reclaimer’s effectiveness in the case of a

continuous stream of requests, we ran 4 batches of tests with 100, 300,

600, and 1000 continuous requests respectively. To accommodate the

memory footprint of nginx, heap memory size is increased to 400KB.

5.3.3 Results

Peak color count results for the nginx allocation replay tests are shown

in fig. 5-5. We see that without color reclamation, the peak color count

increases linearly as the number of requests increases. With color recla-

mation turned on, the peak color count stays relatively unchanged as

we increase the number of requests. In this case, the background scan-

ning speed does not significantly affect the peak color count: even in

the slowest case of scanning at 1/16 words per instruction, the color

reclaimer is able to keep the peak color count at around 180.

This test case underlines the point that with color reclamation,

peak color count is no longer tied to total number of allocations. In-
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Speed 100 Requests 300 Requests 600 Requests 1000 Requests

Off 686 1686 3186 5181
1/16 198 202 202 198
1/8 190 193 193 190
1/4 180 183 185 183
1/2 180 180 180 180
1/1 178 180 180 180

Figure 5-5: Peak color count results for the nginx allocation replay
tests.
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stead, it’s tied only to the working set size and the allocation frequency.

This property is particularly important in long-running programs like

the nginx web server, where the program stays alive for an indefinite

amount of time, serving a continuous influx of requests.

Since our allocation traces include only allocations/frees but not

memory accesses, we did not analyze the cache hit rate number for the

nginx test cases.

57



58



Chapter 6

Related Works

The problem of color reclamation that this thesis tries to address draws

a certain parallel with the well-studied problem of garbage collection.

In particular, both problems involve a scanning phase through memory

to identify live and stale objects. In this section, we will compare

and contrast our color reclaimer design with various garbage collector

designs on a variety of dimensions.

6.1 Scanning Order

An important feature of a garbage collection scheme is the order in

which objects in memory are scanned and marked. Common classes

of garbage collectors include mark-sweep collectors [25], mark-compact

collectors [26], and copying collectors [27, 28]. In all three classes of

garbage collectors, objects are scanned and marked by following refer-

ences, starting from a particular set of root objects. Since an object

and its pointees are not necessarily co-located near each other in mem-
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ory, this visitation order can potentially result in poor memory access

locality.

In contrast, the color reclamation scheme proposed in this thesis

employs a linear scanning order. By going through the heap memory

space in increasing order of memory address, the color reclaimer is able

to utilize the processor’s cache and memory prefetcher more effectively,

and enjoy improved memory access locality.

6.2 Object Relocation

Garbage collectors operate in two ways: non-relocating garbage col-

lectors reclaim unused space without moving live objects, whereas re-

locating garbage collectors can potentially move live objects in heap.

Examples of relocating garbage collectors include mark-compact col-

lectors [26] and copying collectors [27, 28]. By relocating live objects,

these garbage collectors can potentially compact and defragment the

heap memory space, in order to improve object access locality and fu-

ture allocation availability.

The color reclaimer scheme proposed in this thesis is non-relocating,

since it never moves any live object. In fact, the color reclaimer cannot

move any live object due to the separation between data memory and

metadata memory. In practice, an application-layer relocating garbage

collector can be used in combination with the color reclaimer if low

heap fragmentation is desired.
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6.3 Generational Collection

Weak generational hypothesis states that most objects have a relatively

short life-time [29]. Generational garbage collectors [30] use this distinc-

tion between objects’ lifetime lengths to enable more efficient garbage

collecting. In particular, generational garbage collectors pool objects

with similar lifetime length together, and set different scanning fre-

quencies for the pools. By only scanning short-living pools frequently,

generational garbage collectors reduce the size of the memory space that

needs to be scanned frequently, and consequently enables short-living

objects to be reclaimed more timely.

The color reclamation scheme currently does not employ genera-

tional collection. It is possible to incorporate generational collection

into the current color reclamation scheme to further improve its collec-

tion efficiency. Such an addition would likely require cooperation from

the application processor’s memory allocator in maintaining different-

aged pools, and can be an avenue for future work.
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Chapter 7

Conclusion

In this thesis, we proposed and implemented a color reclaimer design

that aims to address the lack of color reuse in the current PIPE heap

coloring scheme. By allowing colors to be safely reclaimed and reused,

we reduce the number of metadata bits required to maintain color in-

formation and alleviate the risk of color wrap-around.

We then evaluated the reclaimer design on a combination of syn-

thetic microbenchmarks and real-program allocation trace replays. Re-

sults show that the color reclaimer is effective in reducing the peak

color count sustained during program lifetime. Moreover, in certain

cases the reduced peak color count consequently brings cache hit rate

improvement.

7.1 Future Work

Currently, the application memory allocator needs to traverse the en-

tire memory buffer upon deallocations to zero out the CellColor tags.
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If we take the idea of color reuse one step further, the memory allo-

cator can presumably keep the memory buffer colored. After dangling

PointerColors are purged from registers and memory, the still-colored

memory buffer can be directly handed out to service future allocations.

This approach saves on application processor cycles used to uncolor

and recolor memory buffers.

In the future we can also explore employing generational schemes in

color reclamation. By segregating objects with different lifetime lengths

into separate pools, the color reclaimer will be able to scan only the

young-object pool regularly. This will further increase the reclamation

efficiency by reducing scanning time.
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