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by
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Abstract

This thesis introduces a multimodal approach to natural language understanding by
presenting a generative language–vision model that can generate videos for sentences
and a comprehensive approach for using this capability to solve natural language
inference, video captioning and video completion without task-specific training. The
only training required is for acquiring a lexicon from captioned videos similar to
the way children learn language through exposure to perceptual cues. The model
generates videos by sampling the visual features of objects described in the target
sentences over time. The evaluation results show that the model can reliably generate
videos for sentences describing multiple concurrent and sequential actions, and that
the ability to reason about language using visual scenes enables language tasks to be
reduced to vision tasks and be solved more robustly using information obtained via
vision.
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Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Motivation

Vision plays a fundamental role in language understanding and acquisition. When

we acquire language as children, we depend on visual contexts to infer the meanings

of sentences that we hear. We later learn to map words to internal meaning represen-

tations that refer to concepts in the physical world [28]. For example, we learn that

the word “ball” refers to a solid or hollow spherical object that can roll. We also learn

that the word “push” refers to the act of exerting force against something to cause

it to move forward, and that it is opposite to the word “pull” which refers to the act

of exerting force on something to cause it to move toward oneself. The connection

between language and vision enables us to ground language in perception and have a

non-linguistic way to reason about language.

In the realm of machine learning, language understanding tasks are traditionally

regarded as linguistic tasks and are performed using advanced linguistic approaches.

There exist very few approaches that exploit the intrinsic connection between lan-

guage and vision. For instance, consider the task of natural language inference

(NLI) [22] whose goal is to classify the relationship between two sentences as entail-

ment, contradiction or neutral. The standard approaches generally involve learning

to capture and classify the syntactic and semantic relationship between sentences

through deep representations. Such approaches require large training data with tens
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of thousands of examples, yet are shown to make systematic errors for sentences

with large lexical overlap, similar syntactic structures and subtle meaning differ-

ences [24, 8]. These errors include misclassifying sentences such as “The girl is wearing

a black shirt and blue pants” as implying “The girl is wearing black pants” and “The

man is staring at the clear sky” as not contradicting “The sky is cloudy”. Capturing

such subtle differences and similarities remains a challenge in representation learning.

Unlike machines, we humans have multimodal ways of reasoning about language

that enable us to robustly handle all kinds of tasks. One way is to use visual imag-

ination. That is, we can imagine visual scenes or possible worlds for sentences and

use those scenes to make inferences about the sentences. Through visual information,

subtle differences and similarities such as the ones described above are often directly

inferable. For example, given the sentence “The bear chases after the man with the

honey”, we can easily visualize it with a scene where the man runs away from the

bear with a jar of honey in his hand, or a scene where the man rows a boat loaded

with honey as the bear swims after him. Using these visual scenes, we can easily

infer that sentences such as “The man moves away from the bear with the honey” and

“The man escapes from the bear” are paraphrases of the original sentence; despite the

syntactic differences these are just other valid ways of describing the imagined scenes.

Likewise, we can infer that sentences such as “The man chases the bear” and “The

bear looks after the man with the honey” contradict the original sentence; despite the

lexical overlap these sentences are visibly not true of the imagined scenes. Through

visualizing scenes, we can also make other useful inferences that are only inferable

through vision such as “The man and the bear move in the same direction” and “The

man is in front of the bear”; we can also predict the upcoming scenes and sentences

such as “The bear catches up with the man” and “The bear rushes toward the man

and grabs the honey from him”. Such inferences can be quite difficult to make without

information obtained via vision and knowledge of the physical implications of actions.

The tasks that visual imagination enables us to solve, as described above, are

analogous to the machine learning tasks of video generation, video completion, video

captioning, paraphrase recognition and natural language inference. These are pop-
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ular tasks that have applications ranging from commonsense reasoning to question

answering. Contrary to machines, we do not need to be presented with thousands

of examples to be able to solve the tasks. That is, we only need to know the visual

implications of the words in the sentence, visualize scenes for it, and make inferences

through vision. In this work, we emulate humans’ ability to visualize scenes for vi-

sually descriptive sentences in order to solve language–vision tasks. We envision this

as a critical step toward a multimodal language understanding approach that can en-

hance the performance of machine learning in language and vision tasks and eliminate

the need for large task-specific training data.

1.2 Research Problem

We formalize the notion of visual imagination by presenting a generative language–

vision model that can synthesize videos conditioned on sentences. We show that

visual imagination enables this grounded model to solve a set of vision and language

tasks (namely video completion, video captioning and natural language inference)

without task-specific training and still achieve performance comparable to models

that are trained on large datasets. We argue that this provides a cognitively plausible

explanation for why humans are capable of forming generalizations and performing

tasks that they are never specifically trained to solve.

To do this, we make use of Sentence Tracker introduced by Siddharth et al. [34]

and Yu et al. [39] to perform joint inference on sentences and generated videos. Dur-

ing training, the model acquires a lexicon from captioned videos similar to the way

children learn language from visual cues. The video generation model is a Markov

Chain Monte Carlo-based model that generates videos by sampling visual features

(see Table 4.1) for the participants in the event described in the sentence. We evalu-

ate the tasks above both qualitatively and quantitatively, as applicable. For the task

of NLI, we created our own evaluation corpus of sentence pairs that can be grounded

in vision and that are difficult for standard approaches. We show that our approach

can not only achieve results comparable to state-of-the-art models but also handle
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sentence pairs in some categories more robustly due to the information obtained via

vision.

To summarize, the contributions of this work are:

∙ a novel application of vision to language where language tasks are reduced to

vision tasks

∙ a generative language–vision model that can synthesize videos for visually de-

scriptive sentences

∙ an approach for completing the missing segments of videos

∙ an approach for video caption generation for complete and incomplete videos

∙ a visual approach to NLI and paraphrase recognition

∙ a grounded NLI evaluation corpus that is difficult for existing approaches

1.3 Thesis Roadmap

The remainder of this thesis is organized as follows. Chapter 2 describes existing video

generation, natural language inference and grounded inference approaches. Chapter

3 provides background on the Sentence Tracker approach and the natural language

inference task. Chapters 4 and 5 describe in detail the approach for video genera-

tion, video completion, caption generation and natural language inference along with

the evaluation procedure and results. Chapter 6 discusses the challenges and future

directions for the work.
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Chapter 2

Related Work

2.1 Video Generation

Recent advances in deep generative approaches such as Generative Adversarial Net-

works (GANs) [15] have led to significant progress in both image and video generation.

Yet, there are still notably fewer successful approaches for video generation than im-

age generation. In addition, existing approaches are not yet able to generate videos

with multiple participants interacting with one another. This is primarily due to the

complexity of motions and the lack of standardized captioned video datasets [20]. In

this section, we describe a few of the standard approaches.

One common approach for video generation is to decompose each video into a

static background and a dynamic foreground [35, 20]. For example, Li et al. [20]

introduced an approach for generating videos conditioned on captions by training a

conditional generative model to extract both static and dynamic information from

text. To generate a video, a conditional variational autoencoder [19] model is used

to first generate an image that gives the background color and object layout of the

target video. After that, the content and motion of the video is generated by a GAN

generator by conditioning on both the text and generated image. This approach

requires a large training dataset of captioned videos and only produces low resolution

videos without human poses.

There are several existing approaches for human pose video generation; however,
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those approaches can only generate one single pose sequence so cannot produce re-

alistic videos with multiple participants. For instance, Yang et al. [37] presented a

GAN-based approach for human pose and facial expression video completion. The

method also consists of two steps. First, the pose is extracted from the input im-

age and then a Pose Sequence GAN is used to generate a temporally smooth pose

sequence conditioned on the extracted pose and the target action class. Next, a

Semantic Consistent GAN is used to generate realistic and coherent video frames

conditioned on the input image and generated pose sequence. Similarly, Cai et al. [5]

proposed a GAN-based approach that first generates a pose sequence for the target

action, then uses a supervised reconstruction network with feature matching loss to

transfer the pose sequence to the pixel space in order to generate a complete video.

These approaches also require large training datasets.

Unlike the approaches above, our video generation approach is grounded in vi-

sion and can robustly handle concurrent and sequential actions involving multiple

participants. It generates videos by directly sampling the visual features (instead of

the individual pixels) for the participants in each frame using Markov Chain Monte

Carlo (MCMC) methods. It relies on the compositionality of language and events

to perform video generation. Therefore, the parameters of the model are not the

weights of deep convolutional networks but the parameters of Hidden Markov Models

(HMMs) [30] that encode the meaning and physical implications of each word. As a

result, our model requires less training data and is easier to train.

2.2 Natural Language Inference

Natural Language Inference (NLI) [22] is a popular language understanding task. The

goal is to classify the relationship between a pair of sentences as entailment, contra-

diction, or neutral. This task is effectively a variant of the paraphrase recognition

task where paraphrases corresponds to entailment, and not paraphrases corresponds

to neutral or contradiction. It is a linguistic task and is primarily solved using lan-

guage models. The standard approach is to use deep representation learning with
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attention and memory. Such NLI approaches are very sophisticated in architecture

and have achieved impressive performance on benchmark datasets. Here we describe

the approaches that we used as the baselines for our approach.

The decomposable attention model by Parikh et al. [25] is a representative align-

ment and attention-based approach that solves the task by creating a soft alignment

matrix for the sentence pair using neural attention and using it to decompose the

task into subproblems that are solved separately. The approach does not incorporate

word order information but outperformed more complex neural architectures when

it was introduced. ESIM by Chen et al. [10] is an encoder-based approach that uses

enhanced bidirectional LSTMs [17] to encode sentences and perform local and com-

positional inference. This approach also achieves very promising performance on the

task. In addition, Peters et al. [27] demonstrated that this performance can be further

enhanced through the use of deep contextualized word embeddings (ELMO) in place

of GloVe embeddings [26].

Infersent, introduced by Conneau et al. [11], is a universal sentence representation

approach that uses a bidirectional LSTM with max pooling trained on a bench-

mark NLI corpus (SNLI, described in Section 3.2). It generalizes to many different

transfer tasks ranging from sentiment analysis to caption-image retrieval. Similarly,

the Bidirectional Encoder Representations from Transformers (BERT) [12] is a self-

attention transformer model for pretraining deep bidirectional text representations by

jointly conditioning on both left and right context. BERT is designed to easily fine-

tune to a broad range of language understanding tasks including NLI. It is considered

one of the leading approaches for language representation.

To date, all benchmark NLI datasets have best test accuracy of over 85%. The

rapid increase in performance has led to a lot of interest in doing controlled evaluation

of the datasets. Those works have uncovered various fundamental weaknesses in the

datasets and the existing approaches. Notably, Gururangan et al. [16] and Poliak et

al. [29] both showed that popular NLI datasets contain statistical irregularities that

allow hypothesis-only models—ones that completely ignore the premise—to signifi-

cantly outperform the majority class baseline. Similarly, Cer et al. [8] of SemEval
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Semantic Textual Similarity, featuring a task much similar to NLI, observed that

participating models shared a set of systematic errors on sentence pairs that involve

negation, agency, spatial relations and more. These results highlight the limitations

of language models in solving inference tasks, and in this work we argue that reducing

language tasks to vision tasks can help overcome this obstacle.

2.3 Grounded Language Inference

There exist some prior works that combine language and vision in solving inference

tasks similar to NLI. However, they require task-specific training and can only reason

about static scenes. The denotational similarity metric introduced by Young et al. [38]

is one such example. The core of this approach is the notion of a denotation defined

to be the set of possible worlds represented by images in which a visually descriptive

sentence is true. The similarity between a premise and hypothesis is computed using

a hierarchical denotation graph constructed with training images and sentences based

on the partial ordering induced by denotations. The approach can correctly capture

the relationships between concepts such as sitting and eating lunch, and walking up

stairs and walking down stairs. However, it does not do inference by generating static

or dynamic scenes by itself.

Other works that combine language and vision are in the realm of visual question

answering [1] and grounded commonsense inference [40]. These tasks are considered

very challenging for existing approaches. The closest work to our own is that of

Lin and Parikh [21] who pointed out that visual paraphrasing can be solved using

visual commonsense learned from captioned images. This work requires task-specific

training data and does not incorporate motion, so it cannot model consequences

or sequences of actions extended in time. In essence, the model solves paraphrase

recognition by imagining a scene in the form of an image for each sentence, and

leveraging visual information from the imagined scenes to compare the sentences.

This approach is different from the one presented in this work both mathematically

and practically. Our model solves paraphrase recognition or NLI by imagining and
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reasoning about all possible dynamic scenes for the sentence pair. In addition, it

generates visual scenes by using Markov Chain Monte Carlo methods with the scoring

function given by a compositional event-tracking model, as opposed to the Conditional

Random Field method with the scoring function used by Lin and Parikh.

2.4 Compositional Language–Vision Inference

The grounded language–vision model presented in this work is a variant of the Sen-

tence Tracker developed by Siddharth et al. [34] and Yu et al. [39]. The approach

utilizes the compositional structure of language and events to drive grounded lan-

guage inference. It is nominally generative although the inference algorithm used in

prior work turns it into a classifier. Section 3.1 provides in depth description of the

approach. In short, at training time the model acquires a lexicon from captioned

videos similar to the way children acquire language through exposure to perceptual

cues. At inference time, each sentence is represented as compositions of words me-

diated by a grammar and inference is performed using a function that computes the

likelihood that a video depicts a sentence. The Sentence Tracker has been applied to

a wide range of language and vision tasks such as tracking, video retrieval, ambiguity

resolution, and grounded language acquisition [34, 39, 3, 32]; however, the approach

presented in this work is its first generative extension.
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Chapter 3

Background

In this chapter, we provide background on the Sentence Tracker, an approach that

our work is based on. We also describe the task of natural language inference and its

existing benchmark datasets.

3.1 Sentence Tracker

The Sentence Tracker [34, 39] is a general-purpose approach for performing multi-

object tracking and event recognition through simultaneously reasoning about a video

clip and a natural language sentence. The core of this approach is the scoring function

𝒮 : (B, s,Λ) → (𝜏,J). This function takes in a video (in the form of an overgenerated

set of detections B) along with a sentence s and a learned lexicon Λ, and outputs

the likelihood 𝜏 that the video depicts the sentence and the sequences of detections

J (henceforth referred to as tracks) that satisfy the sentence while maximizing the

aggregate detection score and temporal coherence.

To do that, given a sentence, the Sentence Tracker parses it using an off-the-shelf

dependency parser and uses the parse to structure a sentence-specific graphical model

consisting of a hierarchical Factorial Hidden Markov Model (FHMM) [14] in which

one layer physically locates objects in the video frames while the other observes the

resulting tracks and enforces sentential meaning. In essence, the object-tracking layer

consists of HMM-based trackers for all the event participants, each with tracks as
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the latent states, and the detection score and the temporal-coherence score acting

analogously as the output probability and the state-transition probability. The other

layer consists of word models for all the words in the sentence; each model observes a

time series of video features extracted from at least one track in the other layer. Each

word model is a discrete HMM with a small number of learned states, a banded-

diagonal state transition matrix, and an output model that recognizes quantized

features relevant to that word. The structure of each word model depends on the

part of speech and the meaning of the word it represents. For example, a verb such

as “approach” or “carry” is represented as a multi-state two-participant HMM whose

outputs include the velocity and orientation of the participants, whereas an adjective

such as “large” or “short” is represented as a single-state one-participant HMM whose

outputs include the dimensions and aspect ratio.

The two layers are connected based on a linking function as given by the de-

pendency parse. Together these individual trackers and word models constitute a

factorial HMM that encodes the static and dynamic properties of the participants of

the event described by the sentence, and that is very sensitive to subtle changes in

sentential meaning. For example, consider the sentence “The person approached the

green chair to the left of the table”. The factorial HMM for this sentence consists of

the trackers for the participants person, chair and table, and the word models for the

nouns “person”, “chair” and “table”, the verb “approach”, the adjective “green” and the

preposition “to the left of”. Each word has one or more arguments mapped to tracks

by the linking function. Namely, the noun models for “person”, “chair” and “table”

observe the tracks for the participants they represent. The adjective model for “green”

observes the track for chair. The preposition model for “to the left of” observes the

tracks for chair and table. The verb model for “approach” observes the tracks for

person and chair. These relationships result in constraints on the interactions be-

tween objects in the video, and a graphical model that recognizes the occurrence of

the events described by the sentence.

Let 𝐿 be the number of participants, 𝑇 be the number of frames in the video, 𝑊

be the number of words in the sentence, and 𝐽 = ⟨𝑗1, · · · , 𝑗𝐿⟩ and 𝐾 = ⟨𝑘1, · · · , 𝑘𝑊 ⟩
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be the candidate tracks and states respectively. The log-likelihood that the sentence

is true of the video is computed using the Viterbi algorithm as

max
𝐽,𝐾

[︃
𝐿∑︁
𝑙=1

(︃
𝑇∑︁
𝑡=1

𝑓(𝑏𝑡𝑗𝑡𝑙
) +

𝑇∑︁
𝑡=1

𝑔(𝑏𝑡−1

𝑗𝑡−1
𝑙

, 𝑏𝑡𝑗𝑡𝑙
)

)︃

+
𝑊∑︁
𝑤=1

(︃
𝑇∑︁
𝑡=1

ℎ𝑠𝑤(𝑘𝑡
𝑤, 𝑏

𝑡
𝑗𝑡
𝜃1𝑤

, · · · , 𝑏𝑡𝑗𝑡
𝜃
𝐼𝑠𝑤
𝑤

) +
𝑇∑︁
𝑡=1

𝑎𝑠𝑤(𝑘𝑡−1
𝑤 , 𝑘𝑡

𝑤)

)︃]︃
(3.1)

where 𝑏 represents a candidate detection, 𝜃 represents the linking function, and 𝐼𝑒

represents the arity (number of arguments) of the lexical entry 𝑒. The first term

corresponds to a detection-based tracker where 𝑓(𝑏) is the detection score for detection

𝑏 in log space, and 𝑔(𝑏𝑡−1, 𝑏𝑡) is the temporal-coherence score between adjacent-frame

detections 𝑏𝑡−1 and 𝑏𝑡 in log space. In the original Sentence Tracker [34, 39], 𝑓

is defined as the logarithm of the normalized detector score output by the object

detector, whereas 𝑔 is defined as the logarithm of the normalized Euclidean distance

between adjacent frames found using optical flow. The second term corresponds to

an event-recognition model where ℎ𝑒(𝑘, 𝑏1, · · · , 𝑏𝐼𝑒) is the log probability of observing

a set of detections when the lexical entry 𝑒 is in state 𝑘, and 𝑎𝑒(𝑘
𝑡−1, 𝑘𝑡) is the log

probability that the lexical entry 𝑒 transitions from state 𝑘𝑡−1 to 𝑘𝑡. These HMM

parameters are learned from captioned videos using the Baum Welch algorithm [2]

and are stored in the lexicon Λ. The time complexity of this is exponential in the

number of participants 𝐿 and the sentence length 𝑊 ; however, these numbers are

bounded in practice.

3.2 Natural Language Inference

The task of Natural Language Inference (NLI), also known as Recognizing Textual

Entailment (RTE), is a fundamental task in natural language understanding. The

goal is to classify the relationship between a sentence pair, referred to as premise and

hypothesis, into one of three classes: entailment, contradiction or neutral. Fundamen-

tally, entailment means that the hypothesis is true given the premise, contradiction
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Premise : A group of kids are splashing in deep water nearby a rock formation.
Hypothesis : The kids are in deep water.
Label : Entailment

Premise : Four women are taking a walk down an icy road.
Hypothesis : Four women are walking near the dry highway.
Label : Contradiction

Premise : An elderly woman is preparing food in the kitchen.
Hypothesis : A person makes dinner.
Label : Neutral

Table 3.1: Three example sentence pairs taken from the SNLI corpus.

means that the hypothesis is false given the premise, whereas neutral means that

the trueness of the hypothesis cannot be determined given the premise. Table 3.1

contains some example sentence pairs taken from a benchmark NLI corpus.

NLI is useful for a wide range of applications such as paraphrase recognition,

commonsense reasoning, and question answering. However, it is a challenging lan-

guage understanding task as it involves dealing with the complexity of compositional

semantics, quantification, coreference, and lexical and syntactic ambiguity. Nonethe-

less, in recent years there has been a significant increase in the performance on

NLI, thanks to the release of large benchmark datasets such as the Sentences In-

volving Compositional Knowledge (SICK-E) corpus [23], the Stanford Natural Lan-

guage Inference (SNLI) corpus [4], and the Multi-Genre Natural Language Inference

(MultiNLI) corpus [36]. SICK-E contains 10k sentence pairs that are partly auto-

matically constructed from image captions and video descriptions. SNLI contains

570k sentence pairs that are manually annotated by humans based solely on images

captions. MultiNLI contains 433k sentence pairs compiled similarly to SNLI but cov-

ers both written and spoken speech in a wide range of styles and topics instead of

descriptions of visual scenes.

As described in Section 2.2, existing NLI models vary widely in architecture but

generally make use of alignment, encoder and attention-based approaches to capture

the semantic and syntactic relationship between each premise–hypothesis pair. De-

spite impressive performance on the benchmark datasets, those models share some
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Premise : The man in blue is standing behind the man in red.
Hypothesis : The man in blue is standing in front of the man in red.
Predicted Label : Entailment
Actual Label : Contradiction

Premise : The girl with blue goggles is swimming without a swimming cap.
Hypothesis : The girl is wearing goggles and swimming cap.
Predicted Label : Entailment
Actual Label : Contradiction

Premise : The man is staring at the clear sky.
Hypothesis : The sky is cloudy.
Predicted Label : Neutral
Actual Label : Contradiction

Premise : The man is carrying a canoe with a dog.
Hypothesis : The dog is carrying the man in a canoe.
Predicted Label : Entailment
Actual Label : Contradiction

Premise : The man placed the book by his backpack.
Hypothesis : The man put the book in his backpack.
Predicted Label : Entailment
Actual Label : Contradiction

Premise : The dog is sleeping under the table.
Hypothesis : The dog is on the table.
Predicted Label : Entailment
Actual Label : Contradiction

Premise : The girl is wearing a black shirt and blue pants.
Hypothesis : The girl is wearing black pants and a blue shirt.
Predicted Label : Neutral
Actual Label : Contradiction

Table 3.2: NLI predictions by AllenNLP [13] implementation of Parikh’s Decompos-
able Attention model with ELMO for tricky sentence pairs.

major limitations. Table 3.2 illustrates some incorrect predictions made by a state-

of-the-art NLI system for a set of manually constructed sentence pairs. Such sentence

pairs are however very rare in the large NLI corpora noted above. To address this, Mc-

Coy et al. [24] compiled a dataset, named Heuristic Analysis for NLI Systems (HANS),

containing 30k sentence pairs with three fallible syntactic heuristics: a lexical overlap

heuristic, a subsequence heuristic, and a constituent heuristic. As expected, they

found that state-of-the-art models performed poorly on the dataset. In this work, we

focus on sentence pairs with similar characteristics but that are grounded in vision.

27



28



Chapter 4

Approach

We present a generative language–vision model that can synthesize videos for sen-

tences describing actions, and use this capability to perform a range of language–vision

tasks without seeing training examples. In the sections below, we describe in detail

the model architecture, the training procedure, and the approach used to solve the

tasks of video generation, video completion, caption generation and natural language

inference.

4.1 Generative Language–Vision Model

Our language–vision model is a variant of the Sentence Tracker described in Section

3.1. Our approach utilizes the compositional structure of language and events to

drive grounded language understanding, and is generative in nature. We seek to

reformulate the scoring function and the structure of the sentence-specific graphical

model to work with generated videos so that the scoring function can be used as the

likelihood function in video sampling. To this end, we modified the Sentence Tracker

in several ways. We removed track finding from the original algorithm since here

tracks are generated by the model itself. For similar reasons, trackers no longer need

to enforce the detection score constraint and for simplicity use Gaussian distributions

for the temporal-coherence constraint instead. To provide more fine-grained and

realistic understanding of actions, we expanded the latent space of trackers to include
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not only the center coordinates and the dimensions of the participants but also the

coordinates of the hands and feet if applicable. We also removed state sequence finding

from the algorithm since we can just directly specify the states for the sampled video

at the start. Let 𝐶𝑡
𝑙 be the coordinates and dimensions of the participant 𝑙 in frame

𝑡, the likelihood of a video–sentence pair is now:

[︃
𝐿∑︁
𝑙=1

(︃
𝑇∑︁
𝑡=1

𝑔(𝐶𝑡−1
𝑙 , 𝐶𝑡

𝑙 )

)︃
+

𝑊∑︁
𝑤=1

(︃
𝑇∑︁
𝑡=1

ℎ𝑠𝑤(𝑘𝑡
𝑤, 𝐶

𝑡
𝑗𝑡
𝜃1𝑤

, · · · , 𝐶𝑡
𝑗𝑡
𝜃
𝐼𝑠𝑤
𝑤

)

+
𝑇∑︁
𝑡=1

𝑎𝑠𝑤(𝑘𝑡−1
𝑤 , 𝑘𝑡

𝑤)

)︃]︃
(4.1)

where the set of state sequences 𝐾 = ⟨𝑘1, · · · , 𝑘𝑊 ⟩ is prespecified.

In addition, instead of using a hand-built grammar, we use the Stanford depen-

dency parser [9] to get the government relations directly and handcraft a set of rules

to handle ambiguities. This enables us to handle a larger range of linguistic phenom-

ena such as conjunction and passive voice, which is crucial for all of our target tasks.

We still use a lexicon with a moderate number of nouns, verbs, adjectives, spatial-

relation prepositions and motion prepositions. However, we introduced a procedure

for mapping unknown words to synonyms in our lexicon by finding the word in the

lexicon whose GloVe embedding has the closest cosine distance to the embedding of

the unknown word. We seek to recognize more complicated events described in multi-

ple sentences. Thus, we generalized the scoring function to handle multiple sentences

with multiple interpretations (linking functions) as follows:

∑︁
𝑠∈𝑆

{︃
𝐿𝑠∑︁
𝑙=1

(︃
𝑇∑︁
𝑡=1

𝑔(𝐶𝑡−1
𝑙 , 𝐶𝑡

𝑙 )

)︃
+ max

𝜃∈Θ𝑠

[︃
𝑊𝑠∑︁
𝑤=1

(︃
𝑇∑︁
𝑡=1

ℎ𝑠𝑤(𝑘𝑡
𝑤, 𝐶

𝑡
𝑗𝑡
𝜃1𝑤

, · · · , 𝐶𝑡
𝑗𝑡
𝜃
𝐼𝑠𝑤
𝑤

)

+
𝑇∑︁
𝑡=1

𝑎𝑠𝑤(𝑘𝑡−1
𝑤 , 𝑘𝑡

𝑤)

)︃]︃}︃
(4.2)

where 𝑆 is the set of all sentences and Θ𝑠 is the set of all linking functions for all

interpretations of the sentence 𝑠.

Here each word model is a discrete and/or multivariate Gaussian HMM with a
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POS 𝐼 𝐾 𝑀 Features
Noun 1 1 1 object class (discrete),

width, height, aspect ratio,
x distance between hands/feet and center to width ratio,
y distance between hands/feet and center to height ratio

Adjective 1 1 - color index (discrete)
Transitive 2 3 2 velocity and orientation of participants,
Verb relative velocity and orientation of participants,

distance between participants,
distance from hands/feet of agent to center of agent,
distance from hands/feet of agent to center of patient,
distance from hands/feet of agent to edges of patient,
change in width and height of agent

Intransitive 1 3 2 velocity and orientation,
Verb distance from hands/feet of agent to center of agent,

change in width and height
Preposition 1 1 2 x, y and z distance between participants

change in width and height
Motion 2 3 2 velocity and orientation of participants,
Preposition relative velocity and orientation of participants,

distance between participants

Table 4.1: Characteristics of word models. POS stands for part of speech, 𝐼 is the
arity, 𝐾 is the number of states, and 𝑀 is the number of components for a Gaussian
mixture model.

banded-diagonal state transition matrix (no state skipping), and an output model that

recognizes video features representing the meaning of the word. In other words, we

do not quantize continuous features as done in the original Sentence Tracker because

having discrete features could make video sampling very difficult. Table 4.1 shows the

characteristics of the word models in our lexicon. The features are carefully chosen

to capture the static and dynamic properties of the participants as implied by the

meanings of the words. The noun and adjective models have discrete features over

the set of object classes and colors respectively, whereas the other models have only

continuous features. To handle directions, we use Gaussian mixture models where

appropriate, von Mises distributions for orientation features, and truncated normal

distributions for the distance features in the spatial-relation preposition models.

The parameters of the word models are learned from captioned videos using the

Baum Welch algorithm with priors on the variance of the key features. The learned
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lexicon represents the model’s grounded understanding of language similar to that

of children. That is, the model has knowledge of the perceptual implications of the

words in the physical world. For instance, it knows that “carry” implies that there

is an agent supporting and moving a patient from one place to another, and that

“toward” implies that the distance shrinks over time, etc. This provides it with the

ability to recognize actions and do perceptual reasoning.

4.2 Training Procedure

The training of this generative language–vision model refers to the learning of the

parameters of the word models which include the discrete output probability 𝐵 for

each discrete HMM and the mean 𝜇, variance Σ, and kappa 𝜅 for each multivariate

Gaussian HMM (the state transition matrix 𝐴 and the initial and final state distri-

butions 𝜋𝑖 and 𝜋𝑓 are predefined). The model learns the meanings of words from

captioned videos similar to the way children acquire language through exposure to

perceptual contexts [34, 39]. We make use of the Baum Welch algorithm computed

in log space for this training. Additionally, we place priors on the variance of the key

features of each Gaussian word model to tackle the noise in the videos and object

detectors. For training, the model needs as input, for each video–sentence pair, the

dependency parse and the tracks for all the participants. The next subsections detail

how we went from captioned videos to tracks, and finally did the training.

4.2.1 LAVA Corpus

Our approach can work with any captioned-video dataset. In this work, we make use

of the LAVA (Language and Vision Ambiguities) corpus [3]. The corpus consists of

1,679 video–caption pairs depicting a range of actions performed by humans, namely

approach, leave, hold, move, pick up, put down and look at. The objects present in

the videos include person, chair, bag, and telescope in yellow or green. The covered

spatial relations include on and with. Figure 4-1 shows two example video–caption

pairs from the LAVA corpus. The captions are created based on a fixed lexicon and
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The person approached the chair with the bag.

The person moved the bag.

Figure 4-1: Two example videos from the LAVA corpus.

grammar but cover a wide range of syntactic, semantic and discourse ambiguities.

Each caption comes with a parse tree along with a manually-annotated visual setup

description. Each video is about 3 seconds in length, containing about 90 frames. For

simplicity and efficiency, we aim to sample videos with only 3 frames per second so we

downsampled the frames in each video accordingly at training time. The actions are

shot with multiple actors and from different angles and directions where applicable.

To handle more actions and spatial relations, we expanded the corpus by annotating

the videos with additional captions to cover concepts such as carry, run, bend down,

to the left of, to the right of, toward, away from, below, etc.

4.2.2 Lexicon

Our lexicon consists of all the words in the LAVA corpus and the words introduced

through the additional captions. To handle a larger set of sentences, we added syn-

onyms of the existing words to the lexicon. We also handcrafted the parameters for

a handful of additional adjectives and nouns as they are either just categorical distri-

butions (color index and object class) or easily derivable from the parameters (width,

height, and aspect ratio) of the other trained words. Table 4.2 shows the words in

the resulting lexicon.
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Part of Speech Words
Noun person, dog, cat, monkey, bag, chair, telescope, car,

table, bike, pizza
Transitive Verb approach, pass by, go near, walk past, leave

hold, clasp, clutch, grasp, grip
move, displace, pick up, raise, lift, put down
look at, glance at, gazed at, stare at
carry, transport

Intransitive Verb run, sprint, race, jog, walk, march, stand, bend down
Preposition to the left of, to the right of, behind, in front of,

above, on, below, under, near, next to, far away from
Motion Preposition toward, into, away from
Adjective yellow, green, blue, red, brown, black, white

Table 4.2: The lexicon of our model.

4.2.3 Track Generation

To extract tracks from videos, we started by training object detectors to get bounding

boxes for objects in the LAVA corpus. For that, we used YOLOv3 [31] and its default

pretrained model. We sampled around 450 random images from the LAVA videos

and annotated all the objects using the LabelMe annotation tool [33]. To extract the

positions of hands and feet, we made use of OpenPose [6] to get the positions of the

keypoints of all humans that appear in the videos. The LAVA corpus contains some

videos with multiple objects in the same object class. So to enable partly automatic

track extraction, we manually annotated the first frames of those videos. The last

step is to combine all the detections to generate coherent tracks.

To construct tracks for a video, we parsed its caption using the Stanford parser to

identify the event participants. Then, we initialized the tracks by starting with the

detections in the first frame for all the participants. For participants with multiple

detections, we relied on the manual annotations mentioned earlier to select the right

detection. Next, we extended the tracks by either selecting the nearest detection in

the same object class in the next frame or doing forward projection if there is no

detection. We found that the object detectors and OpenPose were not always reliable

and led to a notable number of bad tracks. Hence, we visualized the tracks one by one

and manually excluded the videos with incorrect tracks from training. We ended up
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The person picked up the telescope.

The person left the bag.

Figure 4-2: Example visualizations of extracted tracks.

training with only 250 videos in the corpus. This was sufficient as our model does not

require a large amount of training data. Figure 4-2 shows some example visualized

tracks that were generated by our script.

4.2.4 Training

For each video–caption pair in the corpus, we parsed the caption using the Stanford

parser and transformed its dependency parse to our custom representation of its

linking function, and then we cached the parse along with the tracks extracted from

the downsampled video as detailed above. We trained the model on this processed

data using the Baum Welch algorithm and stored the best model for later use. In

other words, we did not train the model for each task separately. Each task can be

performed solely because of the learned lexicon, the scoring function and the video

generation capability which is described in the next section.

4.3 Video Generation

The primary novel contribution of this work is the ability to synthesize videos condi-

tioned on sentences. It is analogous to humans’ ability to imagine scenes for sentences

based on their knowledge of the perceptual implications of the words in those sen-
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tences. To generate a video for a sentence, we parse the sentence using the Stanford

parser and create a hierarchical graphical model based on its linking function as usual.

Multi-sentence stories are handled similarly. Next, we perform joint inference using

Markov Chain Monte Carlo methods to sample a 12-frame video for each interpre-

tation of the sentence. That is 4 seconds in length at 3 frames per second. We do

not sample individual video pixels; instead we sample the width, height, color, and

coordinates of the center (also the hands and feet if applicable) of all the participants

in each frame. The model was implemented in the probabilistic programming lan-

guage Stan [7] and inference is performed using a No-U-Turn sampler (NUTS) [18]

with the Sentence Tracker scoring function as the log-likelihood function. We ini-

tially experimented with Gibbs sampling and Metropolis-Hastings but we found that

Hamiltonian Monte Carlo (HMC) is necessary for robust and efficient inference for

such a complex model.

The parameters of the Stan model include the initial coordinates of the center

(also the hands and feet if applicable), the initial width and height, the color, the

displacement of the center (and the hands and feet) and the change in the width and

height in each frame. The transformed parameters include the coordinates of the

center (and the hands and feet), the width and height, and the color of all participants

in all frames. The coordinates have the frame width and height as the upper bounds,

whereas the displacement and the change in dimensions have small chosen lower and

upper bounds. All initial coordinates have uniform interval priors. The log-likelihood

in each iteration is the score that the sampled video depicts the input sentence.

Empirically, sampling does not require a lot of iterations to converge—the setup that

we use is 4 chains and 150 warm-up and sampling iterations. Videos can contain

static and dynamic objects, static and dynamic relationships and properties, and

concurrent actions. This setup also works for short multi-sentence stories extended

in time.

After the sampling step, we combine each set of sampled coordinates, width,

height and color of all participants into tracks, then we compute the scores for all the

sampled videos and return the best one. These tracks can be rendered as videos using
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The person carried the telescope toward the chair.

Figure 4-3: An example video generated by the generative language–vision model.
Each video has 12 frames in total but for readability only every other frame is shown
here. This video is for the sentence “The person carried the telescope toward the
chair”. The movement of the legs and the shrinking distance between the person and
the chair illustrate that the person is walking toward the chair.

OpenCV1 and clipart2 for qualitative evaluation purposes. Figure 4-3 illustrates an

example sampled video rendered in two formats.

4.4 Video Completion

Using the ability to imagine scenes as described above, we can do video completion

by synthesizing the missing frames conditioned on a sentence and prefix and/or suffix

frames in a similar way as synthesizing a video from scratch. To do this, we extended

the Stan model in Section 4.3 to take in prefix and suffix coordinates of the center

(and the hands and feet), the width and height, and the color of all the participants,

and only sample the parameters for the missing frames. We found that this approach

also works for multi-sentence stories. Section 5.2 discusses the evaluation results.

4.5 Caption Generation

The scoring function enables us to compute the score or likelihood that a sentence

describes a video. So given a video, we can generate a caption for it by systematically
1OpenCV library; https://opencv.org.
2https://www.kenney.nl/assets/modular-characters.
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searching through the space of all possible sentences to get the one with the highest

score. Those sentences can be generated using a context-free grammar and the lexicon.

This was already done in the original Sentence Tracker papers [34, 39]. Here we focus

on generating a caption for a video with missing frames by making use of the video

completion capability. In other words, given an incomplete video, we seek to recover

the video and generate a caption for it by finding the highest scoring video–sentence

pair. Just as Yu et al. [39] pointed out, scores decrease with the number of words

in the sentence. So we need to use beam search. We start with the top-scoring

single-word sequences and then repeatedly expand the top-scoring sequences by one

word and stop the search when the ratio between the score of the original sequence

and the score of the expanded sequence falls below a contradiction threshold. The

difference is that, for each candidate sentence, we need to sample the missing frames

conditioned on it together with the prefix and/or suffix frames. For this reason, this

task is expensive to perform but works quite reliably for simple sentences.

4.6 Paraphrases and Natural Language Inference

Our approach for solving NLI tasks using vision relies on the intuition that if two

sentences are related in meaning, their scoring functions must also be related. In other

words, with the closed-world assumption, if two sentences have identical meanings,

the sets of videos that each sentence can be a caption of should be identical; on the

other hand, if two sentences have completely opposite meanings, the sets of videos

that each sentence can be a caption of should be disjoint. Consider the sentences

below:

A. The person carried the bag toward the table.

B. The person approached the table.

C. The person left the table.

D. The person walked past a cat.
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Taking A as the premise and the other as the hypotheses, we have that A entails

B, A contradicts C and A and D are not related. The reasoning is as follows. Any

imaginable scene for “The person carried the bag toward the table” can be captioned

“The person approached the table with the bag” or just “The person approached the

table”. However, it cannot be captioned “The person left the table with the bag” or

“The person left the table”. It may though be captioned “The person walked past

a cat.” if the scene indeed consists of a cat located somewhere between the person

A: The person transported the chair to the left of the pizza away from the telescope.
B: The chair to the left of the pizza was near the person.

A entails B B neutral A

C: The person left the chair.
D: The person approached the chair.

C contradicts D D contradicts C

E: The cat went near the monkey next to the person.
F: The cat went near the monkey and the chair next to the person.
E neutral F F entails E

Figure 4-4: Three pairs of sentences and each of their six pairwise relationships.
When finding the relationship between a pair of sentences, videos are sampled from
the premise and then are scored on both the premise and hypothesis. The scores here
are sorted in descending order by the premise score.
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and the table. Therefore, in terms of likelihood, entailment (or paraphrase) implies

that high-likelihood videos sampled from the premise will have high likelihood for the

hypothesis, whereas contradiction implies that high-likelihood videos sampled from

the premise will have low likelihood for the hypothesis. Neutral implies that there

is no correlation between the likelihoods. So the relationship between two visually

grounded sentences can be determined simply by comparing the likelihood histograms

for the videos sampled from the premise as shown in Figure 4-4.

As such, to determine the relationship between a premise and hypothesis, we

sample a large number of videos for the premise, then compute the likelihoods of

those videos conditioned on the premise and on the hypothesis. This results in pairs

of video likelihoods which we feed into a graphical model in Stan to determine how

the sentences are related. It is a categorical mixture model of three components with

the mixture proportions as the Stan parameters. Entailment is modeled as the score

for the hypothesis being a positive linear transformation of the score for the premise

with noise proportional to the score. Contradiction is modeled as the score for the

hypothesis being a negative linear transformation of the score for the premise with

noise proportional to the score. Neutral is modeled as the scores being independent.

The predicted label is the one corresponds to the component with the highest mixture

proportion. Section 6.2 discusses several limitations of this approach.
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Chapter 5

Evaluation

We evaluated our approach both qualitatively and quantitatively. For the vision

tasks, we had to evaluate the generated videos and captions manually as there is no

formal way to grade videos and captions. For the natural language inference task, we

evaluated our approach using a custom evaluation corpus as briefly mentioned earlier.

The sections below detail the evaluation procedure and results.

5.1 Video Generation

To evaluate the video generation capability, we generated videos for a set of manually

written sentences and manually evaluated the videos one by one. Our evaluation

sentences cover all words in the lexicon, and follow a grammar similar to the one in

Yu et al. [39] but with additional rules for handling multiple clauses and sentences.

The coordinate conjunctions we used include “and”, “as” and “while”, and the adverbs

of sequence are “then” and “next”. This enabled us to evaluate videos with concurrent

and complex actions extended in time. The results show that the model can reliably

synthesize videos with static and dynamic objects involving concurrent and sequential

actions, although complex videos require more sampling iterations to converge and

more time to complete.

Figure 5-1 illustrates some generated videos. We can see that in cases where the

event is underspecified as in (e), the model is able to extrapolate the action that should
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(a) The person picked up the blue chair next to the green bike.

(b) The person carried the telescope to the right of the chair toward the table.

(c) Alice put down the chair as Bob approached her with the telescope.

(d) Alice was holding a telescope. Bob approached her, and then he carried the telescope away from her.

(e) Alice carried the chair away from Ben. Then Ben carried the chair away from her.

Figure 5-1: Videos generated by the generative language–vision model.

occur for the event to be realistic and coherent. That is, it knows that after Alice

carried the chair away from Ben, she is at a distance from him; so in order for Ben

to carry that chair back away from Alice, he needs to get close to her first although

that action is not mentioned in the provided caption. In addition, we also found that

the model can visualize multiple different scenarios for an event. For example, for

the sentence “The person approached the chair”, the videos we generate include both

ones where the person approached the chair from the left and ones where the person

approached the chair from the right. Similarly, for concurrent actions as shown in

Figure 5-2, the model knows that “Alice left the chair as Ben approached it.” could

imply that Alice and Ben walked toward each other or walked in the same direction.
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Alice left the chair as Ben approached it.

Figure 5-2: Two different generated videos for the exact same sentence.

This result shows that the model has realistic visual reasoning which enables it to

understand language beyond just as a collection of linguistic forms. This is also

reflected in the model’s performance in the NLI task evaluated in Section 5.4 below.

5.2 Video Completion

We evaluated the video completion capability just as in the previous section except

that we also gave the model several prefix and/or suffix frames which we got from

separate video generation. We visualized the original and completed videos and com-

pared them side by side. We found that the model is able to recover the videos just as

expected. Figure 5-3 shows an example of a completed video. The model was given

The person moved the chair behind the bag.

Figure 5-3: An example original and completed video pair. The top video is the
original video, and the bottom video is completed video. The frames in red are the
prefix frames given to the model. The look of the person is randomized every time
so that difference here can be ignored.

43



the first 4 out of 12 frames (i.e., the 2 red frames in the figure) and was required to

sample the rest of the video conditioned on the prefix frames and the sentence. As

shown in the figure, the resampled video looks very similar to the original one—the

chair behind the bag got moved to the left as intended. We saw similar results for

more complicated sentences.

5.3 Caption Generation

This task is quite difficult to evaluate especially for complicated sentences where there

are many ways to fill in the missing frames. Therefore, we evaluated it by looking

at the top-scoring video–caption pairs. For simple videos involving only several (con-

current) actions such as “The person approached the chair” or “Alice picked up the

chair as Ben put down the telescope”, the model is able to complete the video and

generate the correct caption given just the starting and final frame. We found that

the top-scoring captions are generally just paraphrases of the original one. For exam-

ple, for the video “The person carried the bag away from the chair”, the top captions

are “The person carried the bag to the right of the chair away from the chair”, “The

person left the chair with the bag” and “The person moved the bag to the right of the

chair”.

Videos with sequential actions take significantly more time to generate video–

caption pairs for even after we enabled concurrent video sampling. We found that

for sequential actions with very distinct start and end state such as “Alice put down

the chair. Ben approached her, then he picked up the chair.”, the model can recover

the original video–caption pair quite reliably. However, for the less obvious actions,

the model needs more context (i.e., prefix and suffix frames) and tends to produce

captions that are a lot simpler than the intended one. This result is not necessarily

negative because this setup is expected to be difficult even for humans. Instead, it

is quite remarkable that the model can use visual imagination to perform this task

without any additional training.
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5.4 Paraphrases and Natural Language Inference

As described in Section 3.2, natural language inference is a popular task and there

exist a number of benchmark corpora that could be used for evaluation. However,

those corpora do not come with a lot of sentences that can be grounded in vision or

that are in the grammatical structure that we target. Therefore, we compiled our

own NLI evaluation corpus consisting of sentence pairs that involve visual reasoning

and are challenging for existing NLI approaches. For comparison, we selected 4 dif-

ferent state-of-the-art models trained on the SNLI corpus as our baselines, namely

BERT [12], Parikh + ELMO [25], ESIM + ELMO [10], and Infersent [11]. The sub-

sections below describe the corpus itself, the other baselines used and the evaluation

results.

5.4.1 Grounded NLI Corpus

While our approach can parse and compare general sentences grounded in vision, we

focus on more systematic cases that highlight the performance limitations of standard

NLI approaches. We generated an NLI corpus that can complement existing corpora

and can be used for future NLI research. Following [24], sentence pairs were generated

from templates with varied syntactic structures that produce near-misses, require

visual reasoning and avoid biases present in standard datasets. Our approach never

sees an NLI dataset so it cannot learn the arbitrary correlations that often allow

for high performance without any understanding of the task. The resulting dataset

consists of 2,100 sentence pairs and is challenging compared to existing NLI datasets,

with performance of state-of-the-art models being 10–20% lower than on SNLI and

MultiNLI.

To generate premise–hypothesis pairs, we make use of templates that can be clas-

sified into nine different categories as shown in Table 5.1. We made sure to have at

least two labels within each category and include equal number of sentence pairs (100

pairs) for each label in each category to avoid biases. The detailed templates can be

found in Table A.1. These templates require verbs that are symmetrical (e.g., “The
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Category Description

Passive Voice The premise is in active voice and the hypothesis is in passive
voice, and the pair only differs in either the subject/object order
or negation.

Verb Argument Order The premise and hypothesis are both in active voice and only
differ in the subject/object order.

Prepositional Phrase Argument Or-
der

The premise and hypothesis only differ in the argument order
of one spatial-relation prepositional phrase or motion preposi-
tional phrase.

Related Verbs The premise and hypothesis only differ in one verb chosen to
be either synonyms or words that are related but are subtly
different.

Related Verbs (Different Structures) The difference is similar to the above but the verbs do not have
to be both transitive or intransitive.

Related Prepositions The premise and hypothesis only differ in one preposition cho-
sen to be either antonyms or words that imply one another
visually.

Indirect Implications The premise and hypothesis are completely different in struc-
ture and word usage.

Conjunction (Subject and Object) The premise and/or hypothesis have subjects or objects with
conjunction and have either synonymous or opposite verbs.

Conjunction (Modifiers) The premise and hypothesis have objects with modifiers and
conjunction, and differ in at least one modifier.

Table 5.1: The descriptions for the templates used to generate the dataset.

person shook hands with the dog” and “The dog shook hands with the person”) and

verbs that are related but different (e.g., “feed” and “pet”). Thus, we introduced a

number of additional verbs that also serve to diversify the sentences in the corpus:

rotate, throw, push, kick, punch, wash, feed, pet, meet, shake hands with, reunite with,

confront with and jump. Our approach handles these unknown words by using GloVe

embeddings to map them to the words in the lexicon. While this is a promising so-

lution, we expected this addition to lead to a notable decrease in the performance of

our approach.

5.4.2 Baselines

In addition to the state-of-the-art models above, we used two other baselines referred

to as Baseline 1 and Baseline 2. These baselines are ablations of our approach. They

differ from the original approach in that we ablated the key aspects of action recog-
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nition from it. Specifically, we ablated changes in time by ignoring verbs in Baseline

1 and ablated both spatial relations and changes in time by ignoring both preposi-

tions and verbs in Baseline 2. In other words, Baseline 1 can only imagine static

scenes since it cannot reason about the dynamic relationships between participants,

whereas Baseline 2 can only imagine static scenes where both dynamic and static

relationships between participants are completely unconstrained. We expected these

baselines to do significantly worse than the complete approach as one must reason

about the properties of objects, relationships between objects, and how these change

over time in order to perform inference with vision.

5.4.3 Results

Table 5.2 shows the accuracy of all the models on the SNLI corpus and the grounded

corpus described in 5.4.1. Overall, our approach performed better than all the base-

lines despite having not seen any NLI examples. BERT has the next highest perfor-

mance with 73.2% accuracy, whereas Infersent has the worst performance with 52.6%

accuracy. Ablations of our model also perform quite poorly; removing reasoning over

time reduces performance to 63.5% and removing that and reasoning about spatial

relations reduces performance to 54.0%. As expected, Baseline 2 has chance perfor-

mance on all categories except for the modifiers one. The accuracies by label show

that Baseline 2 either always predicts one label or predicts all the labels uniformly.

Similarly, Baseline 1 has near chance performance on all categories except for the

modifiers and prepositions ones.

The state-of-the-art models share a set of systematic limitations. For instance,

they all do poorly on passive voice. The accuracies by label show that the models

predominantly predict entailment for this category likely due to the large lexical

overlap and the matching noun order such as in “The person kicked the ball” and

“The person was kicked by the ball”. BERT and ESIM appear to do well on related

verbs and related prepositions, while the others tend to misclassify neutral pairs such

as “The person went near the monkey” and “The person carried the dog toward the

monkey” as contradiction. BERT appears to be the best at capturing the changes in
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BERT Parikh ESIM Infersent Ours Baseline 1 Baseline 2
SNLI 90.2 86.4 88.5 84.6 N/A N/A N/A
Passive Voice 52.5 50.5 48.5 50.0 73.5 56.0 53.0
Verb Argument Order 71.5 58.0 60.5 50.0 61.5 56.5 50.0
Prepositional Phrase Argument Order 60.0 54.5 57.0 50.0 82.5 68.5 50.0
Related Verbs 96.0 65.0 88.5 53.5 97.0 54.0 50.0
Related Prepositions 81.0 77.5 92.0 53.5 97.5 94.5 50.0
Related Verbs (Different Structures) 66.3 62.3 59.0 51.7 57.3 46.0 49.7
Indirect Implications 77.3 67.3 75.0 51.2 70.0 42.3 33.3
Conjunction (Subject and Object) 76.3 58.0 77.0 62.0 74.0 56.3 50.0
Conjunction (Modifiers) 78.0 53.5 65.0 52.5 99.5 97.8 100.0
Overall 𝜇 73.2 60.7 69.2 52.6 79.2 63.5 54.0
Overall 𝜎 12.0 7.8 14.0 3.7 15.0 18.8 17.1

Table 5.2: The accuracy of models on the SNLI test set and our grounded NLI corpus
broken down by category. Note that the SNLI accuracies are not included in the
overall mean and standard deviation calculation.

argument order in the remaining categories.

Our approach has comparable performance to BERT in all categories although

the dataset contains many words unknown to our model. Yet, according to the by-

label accuracies, our approach also has a tendency to misclassify neutral pairs as

contradiction. One plausible explanation is that although sentence like “The person

walked away from the dog” does not imply “The person carried the chair away from

the dog”, the sentences are still related visually so the likelihoods of those sentences

on the same videos are related. Despite this, our model and even its ablations still

outperform the state-of-the-art models in several categories, namely modifiers and

passive voice. This is because while the syntactic difference might be subtle and

difficult to capture, the difference in the visualized scenes is very significant. For

instance, visually “The person picked up the blue chair next to the black table” is

very different from “The person picked up the black chair next to the blue table”.

Likewise, “The person approached the dog” and “The person was approached by the

dog” are also very different. So in some cases solving language tasks using vision

might be significantly less difficult than solving using linguistics. Overall, the results

here demonstrate that it is possible to convert a language task to a vision task and

solve it without additional training. This models a capacity to generalize that is

central to human intelligence.
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Chapter 6

Discussion

6.1 Summary

We introduced a generative language–vision model that can generate videos condi-

tioned on sentences. We showed that this capability enabled us to do video comple-

tion, video captioning and natural language inference without task-specific training.

The only training required is for making the model acquire a lexicon from captioned

videos similar to the way children acquire language through exposure to perceptual

cues. To do video generation, we made use of the Sentence Tracker’s video–sentence

scoring approach to build a generative model that can synthesize videos for a sen-

tence by sampling the visual features of the participants of the described event. We

evaluated the tasks above both quantitatively and qualitatively. We found that our

approach can reliably generate videos with static and dynamic objects involving in

concurrent and sequential actions. The promising results on NLI show that it is pos-

sible to reduce a language task to a vision task and take advantage of information

obtained through vision to solve the task more robustly.

6.2 Challenges

Despite the positive results, our approach has a number of limitations. For instance,

while the No-U-Turn sampler (NUTS) works well for our purpose, the whole video
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generation step is very expensive timewise, especially for more complicated sentences.

As such, when evaluating the approach on the thousands of sentence pairs in the NLI

corpus, we could only afford to sample the coordinates of the center of the participants

and completely omitted the coordinates of hands and feet. This is likely to have led

to a decrease in performance.

In addition, we should have formalized the Stan model for classifying the entail-

ment relationship further. In particular, we did not manage to formally account for

the difference in the number of words in the premise and hypothesis. As discussed

earlier, scores decrease with the sentence length. So to tackle that, we placed pri-

ors on the variance of the key features in each word model during training to force

the learned parameters to have tight variance. This is to ensure that a false video

always gets significantly lower scores than a true video regardless of the length of

the sentence. Given this, we distinguished entailment from contradiction by simply

setting a threshold for the difference in scores to be proportional to the premise score.

We did not tune this threshold; however, we believe that a more formal solution is

needed for more accurate and precise evaluation. We experimented with inserting

placeholder words with flat distributions for all features but found that it led to score

distributions that are even harder to reason about.

Another challenge faced by this approach is the lack of a direct way to obtain the

linking function. In this work, we parse the Stanford Dependencies representation and

handle a subset of 50 grammatical relations using manually-constructed rules. This

is only feasible because we only target grammatically simple sentences. However, this

step will not scale to a more flexible set of natural language sentences.

6.3 Future Work

Our approach has several potential extensions. So far, we see that by simply crafting

features that capture the physical implications of word meanings, we are able to

generate realistic visualizations of actions described in a sentence. We intend to move

a step further by incorporating physics into the model to predict consequences of
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actions and do commonsense question answering. For example, given “The person

released the ball”, using physics we should be able to predict that the ball will fall

toward the ground due to gravity and is likely to bounce multiple times. Likewise,

given “Two people ran toward each other”, we should be able to predict that they

will meet and maybe run into each other somewhere between the points they were at

in the beginning. If precise calculation is used, we should also be able to track the

positions of participants over time which might be useful for other applications.

We also intend to do paraphrase recognition between two languages (i.e., trans-

lation) similar to the way the NLI task is solved above. To do this, we will need to

train two models on two different captioned video corpora in the languages of interest.

With that, we can then check if two sentences in different languages are equivalent

by generating videos for one of the sentences and comparing the likelihoods of those

videos conditioned on each of the sentences just as before. Since those sentences can

be grounded in vision, their scoring functions should agree with each other and we

should be able to tell whether they have similar meanings. We believe that the like-

lihood pairs computed here should also be useful for loss calculation when training

translation generation models.

Finally, we intend to use this approach to help robots learn to follow simple com-

mands. In particular, we should be able to take in a command and a video recording

of the robot so far, and run the Viterbi algorithm on the parsed command and ex-

tracted tracks to predict the most likely state sequence representing the robot’s action

up until that point and return the likelihood that the action has been completed. We

also plan to explore using the video completion and captioning capability to help

robots make plans. That is, given the start and target states, we should in principle

be able to synthesize possible videos of the robot doing the action and generate a

corresponding plan for that.
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6.4 Contributions

This thesis introduced a visual approach to language understanding that can reliably

solve a set of language–vision tasks without task-specific training. We presented a

probabilistic model that can robustly synthesize videos for sentences describing con-

current and sequential actions, and therefore outperforms standard video generation

approaches. We demonstrated how to reduce language tasks such as paraphrase recog-

nition and NLI to vision tasks, and solve the tasks just as effectively as approaches

trained on thousands of examples. In doing that, we created an NLI evaluation corpus

that is difficult for standard approaches and can be used with large benchmark cor-

pora. Overall, this work laid the foundation for applications of vision and perception

to natural language processing, and presented a promising approach to generalizing

across language and vision tasks.
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Appendix A

Tables

Table A.1: The templates used to generate sentences in our corpus. Here P stands for
spatial-relation preposition, whereas PM stands for motion preposition. For simplicity,
we hide the optional PP in the NP in the templates above, and only expand the NP
when we need to show the difference between sentences.

Category Template Example

Passive Voice Premise: NP1 VBD [P] NP2 The person moved the table behind the bike.

Entailment: NP2 was VBN by NP1 The table behind the bike was moved by the

person.

Contradiction: NP1 was VBN by NP2 The person was moved by the table behind the

bike.

Premise: NP1 VBD [P] NP2 The person fought with the cat to the right of

the chair.

Entailment: NP1 was VBN by NP2 The person was fought by the cat to the right

of the chair.

Contradiction: NP2 was not VBN by NP1 The cat to the right of the chair was not fought

by the person.

Verb Argument Order Premise: NP1 VBD [P] NP2 The person met the dog.

Entailment: NP2 VBD [P] NP1 The dog met the person.

Premise: NP1 VBD [P] NP2 The person kicked the table in front of the bag.

Contradiction: NP2 VBD [P] NP1 The table in front of the bag kicked the person.

Prepositional Phrase

Argument Order

Premise: NP1 VBD [P] NP2 P1 NP3 The monkey approached the table next to the

bike.

Entailment: NP1 VBD [P] NP3 P1 NP2 The monkey approached the bike next to the

table.
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Premise: NP1 VBD [P] NP2 P1 NP3 The person punched the bag to the left of the

chair.

Contradiction: NP1 VBD [P] NP3 P1 NP2 The person punched the chair to the left of the

bag.

Premise: NP1 VBD [P] NP2 PM NP3 The person carried the bag toward the cat.

Contradiction: NP1 VBD [P] NP3 PM NP2 The person carried the cat toward the bag.

Premise: NP1 VBD [P] NP2 and NP3 P1 NP4 The dog left the car and the telescope next to

the bag.

Entailment: NP1 VBD [P] NP2 and NP4 P1

NP3

The dog left the car and the bag next to the

telescope.

Premise: NP1 VBD [P] NP2 and NP3 P1 NP4 The dog passed by the cat and the pizza in front

of the car.

Contradiction: NP1 VBD [P] NP2 and NP4 P1

NP3

The dog passed by the cat and the car in front

of the pizza.

Premise: NP1 VBD [P] NP2 and NP3 PM NP4 The person transported the bike and the pizza

toward the cat.

Contradiction: NP1 VBD [P] NP2 and NP4 PM

NP3

The person transported the bike and the cat

toward the pizza.

Related Verbs Premise: NP1 VBD1 [P] NP2 The monkey stared at the pizza.

Entailment: NP1 VBD2 [P] NP2 The monkey looked at the pizza.

Premise: NP1 VBD1 [P] NP2 The person fed the dog near the bag.

Contradiction: NP1 VBD2 [P] NP2 The person petted the dog near the bag.

Related Prepositions Premise: NP1 VBD [P] NP2 P1 NP3 The person moved the pizza in front of the bag.

Entailment: NP1 VBD [P] NP2 P2 NP3 The person moved the pizza next to the bag.

Premise: NP1 VBD [P] NP2 P1 NP3 The person picked up the bag to the left of the

monkey.

Contradiction: NP1 VBD [P] NP2 P2 NP3 The person picked up the bag to the right of

the monkey.

Related Verbs (Differ-

ent Structures)

Premise: NP1 VBD1 [P] NP2 PM NP3 The person carried the dog toward the monkey.

Entailment: NP1 VBD2 [P] NP3 with NP2 The person approached the monkey with the

dog.

Contradiction: NP1 VBD3 [P] NP3 without

NP2

The person walked toward the monkey without

the dog.

Premise: NP1 VBD1 [P] NP2 The person went near the monkey.

Neutral: NP1 VBD2 [P] NP2 PM NP3 The person carried the dog toward the monkey.
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Indirect Implications Premise: NP1 VBD [P] NP2 P1 NP3 The person picked up the chair to the left of

the cat.

Entailment: NP2 was P2 NP1 The chair was near the person.

Contradiction: NP2 was P3 NP1 The chair was far away from the person.

Premise: NP1 VBD [P] NP2 The monkey looked at the pizza.

Neutral: NP2 was P1 NP1 The pizza was far away from the monkey.

Conjunction (Subject

and Object)

Premise: NP1 VBD [P] NP2 and NP3 The monkey walked past the car and the pizza

near the bag.

Entailment: NP1 VBD [P] NP2 The monkey walked past the car near the bag.

Entailment: NP1 VBD [P] NP3 The monkey walked past the pizza near the bag.

Premise: NP1 VBD1 [P] NP2 The monkey picked up the pizza on the table.

Contradiction: NP1 VBD2 [P] NP2 and NP3 The monkey put down the telescope and the

pizza on the table.

Premise: NP1 VBD [P] NP2 The person raised the bike in front of the bag.

Neutral: NP1 VBD [P] NP2 and NP3 The person raised the bike and the cat in front

of the bag.

Conjunction (Modi-

fiers)

Premise: NP1 VBD [P] JJ2 N2 and JJ3 N3 The dog passed by the yellow table and the

black monkey.

Entailment: NP1 VBD [P] JJ3 N3 and JJ2 N2 The dog passed by the black monkey and the

yellow table.

Entailment: NP1 VBD [P] JJ2 N2 The dog passed by the the yellow table.

Entailment: NP1 VBD [P] JJ3 N3 The dog passed by the black monkey.

Contradiction: NP1 VBD [P] JJ3 N2 and JJ2

N3

The dog passed by the black table and the yel-

low monkey.

Contradiction: NP1 VBD [P] JJ3 N2 The dog passed by the black table.

Contradiction: NP1 VBD [P] JJ2 N3 The dog passed by the yellow table.
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