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Abstract

The current music production workflow, comprising recording, editing, mixing, and
mastering music, requires a great deal of manual work for the sound engineer. This
thesis aims to bring some recent advances in Music Information Retrieval (MIR)
techniques to music production tools, with the goal of streamlining the current process
followed by sound engineers. We explored all areas in the music production workflow
(with a focus on classical music) that could benefit from digital signal processing
(DSP) and MIR-based tools, built and iterated on these tools, and transformed the
tools into products that are beneficial and easy to use.

We collaborated with the Boston Symphony Orchestra (BSO) sound engineers to
gather requirements for this work, which led to the identification of our two tools:
an automatic marking transfer (AMT) system and an audio search (AS) system. We
then collaborated with other potential users for both AMT and AS tools, including
sound engineers from radio stations in the Boston area. This enabled us to identify
additional workflows and finalize requirements for these tools. Based on these, we
created successful standalone applications for AMT and AS.

Thesis Supervisor: Eran Egozy
Title: Professor of the Practice, Music Technology
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Chapter 1

Introduction

The current music production workflow, comprising recording, editing, mixing, and

mastering music, requires a great deal of manual work for the sound engineer. This

thesis aims to bring some recent advances in Music Information Retrieval (MIR)

techniques to music production tools in order to streamline this process. Our goal

is to explore all areas in the music production workflow (with a focus on classical

music) that could benefit from digital signal processing (DSP) and MIR-based tools,

to build and iterate on these tools, and to transform the tools into products that are

beneficial and easy to use.

This chapter outlines the various steps of the music production process, followed

by a discussion of the current tools used by sound engineers and one of the biggest

pain points of the process. It concludes with a section on why this thesis work focuses

on the music production workflow for classical music in particular.

1.1 The Music Production Process

The process for producing a piece of music is to record the piece, edit separate tracks,

mix the tracks together, and finally master the mix [30].
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1.1.1 Step 1: Record the piece

In the past, full pieces were recorded with one or two microphones and in one to two

takes. However, nowadays it is more common to record with several microphones

to create a multitrack recording, with a track per microphone, and to record several

times.

Recording with multiple tracks allows each instrument to be recorded separately.

For example, an engineer could record each instrument of a string quartet separately

and then combine them into one recording later. In addition, multitrack recording

allows engineers to later make changes to each track independently. With each in-

strument in its own track, an engineer can isolate an instrument and change just that

instrument’s recording.

The goal of recording the same section of music multiple times (each time is

referred to as a “take”) is to capture the musician’s best possible rendition of the

piece. Since each instrument is recorded in a separate track, this allows the engineer

to select the best of each instrument for the final product.

Current technology also allows for recordings to be just parts of a piece: an

engineer no longer has to record full run throughs (from the beginning to the end of

a piece) with all the musicians. Instead, they can record parts of a piece and stitch

them together later.

1.1.2 Step 2: Edit the tracks

In this phase, sound engineers touch up the recorded tracks. This involves tasks like

correcting out-of-tune notes, removing extra noise (e.g., chairs creaking), removing

entire tracks (e.g., a track with mistakes or out-of-tune instruments), etc. This is

the step in which an engineer isolates tracks and changes them individually, perhaps

splicing together multiple takes of the same music to create the best overall take, or

removing mistakes by substituting portions from different takes.

14



1.1.3 Step 3: Mix the tracks to create one recording

Sound engineers then mix separate tracks together to create one, cohesive recording

of the piece. First, they must choose the best takes for each section of music (and

sometimes for each instrument). Then the rest of the mixing process involves tasks

like balancing the tracks so that the tracks are at appropriate volume levels with

respect to each other, compressing tracks to normalize the volume range or perceived

loudness of each instrument, etc.

1.1.4 Step 4: Master the mix

After all the tracks have been mixed together, the tracks have to be rendered into

a single stereo file and converted to the appropriate sample rate/bit depth (e.g.,

44.1 kHz/16 bits for a CD). This process is called mastering, during which time the

engineer might also add steps like adjusting the overall dynamics of the entire stereo

mix, or adding overall frequency adjustment effects like “equalization”, etc.

1.2 Tools for Producing Music

This section describes the current technologies that sound engineers use to produce

music.

1.2.1 Digital Audio Workstations

Sound engineers use a digital audio workstation (DAW) to record, edit, mix, and

master a piece [34]. Some examples of DAWs are Pro Tools and Pyramix [5, 33].

These DAWs provide an interface for multitrack recording, editing each track, and

stitching together tracks. The user interface for Pyramix is shown in Figure 1-1 below,

along with hardware units used for recording, effects, etc.

15



Figure 1-1: Pyramix interface for music production (top half), and hardware units
used for recording, effects, etc. (bottom half) [33].

1.2.2 Virtual Studio Technology Plugins

Sound engineers also use Virtual Studio Technology (VST) plugins, which integrate

software synthesizers and effects into a DAW [35]. VST plugins are supported by

most DAWs [35], so a developer can build one plugin to be used across multiple

DAWs. These plugins provide additional features and functionality to use in the

music production process, such as mix monitoring tools like ISOL8 [28], which is

shown in Figure 1-2 below.

Figure 1-2: ISOL8, a VST plugin by TBProAudio for advanced mix monitoring [28].

16



There is a rich market of third party developers who make specialized VST plugins

like ISOL8. VST plugins fall under three main categories [35]:

• VST instruments, which generate audio (e.g., virtual synthesizer),

• VST effects, which process audio (e.g., reverbs and phasers; ISOL8 falls under

this category), and

• VST MIDI 1 effects, which process MIDI messages.

1.3 Streamlining the Music Production Process

One of the biggest pain points for sound engineers during the music production process

is identifying the content of all the tracks they have while mixing the tracks together

[27]. Currently, there is no universal solution for this problem: none of the available

VST plugins provide an automatic way to detect which track aligns with which part

of the music in another track, and only one DAW (Sequoia) has piloted such an audio

alignment system [11]. Thus, for the large majority of use cases, sound engineers

have to devise a manual marking scheme while recording, to aid them in the mixing

process later. These current marking schemes require a lot of manual work: the score

and/or tracks must be marked by hand during the live recording session, and later

interpreted in the mixing stage. These approaches are described in more detail in

Sections 2.1.1 and 2.1.2 of Chapter 2.

Using DSP algorithms and MIR techniques, we can reduce this manual work. In

this thesis, we describe the use of Dynamic Time Warping (DTW) to help identify

relative content of several tracks [13]. If an engineer is working with a section of

a piece and wants to find all matching instances of that section in other tracks,

they typically have to search through all the tracks manually, looking for the same

waveform or searching through annotations they made on the score or tracks before

1MIDI stands for Musical Instrument Digital Interface, which is a way to connect devices that
make and control sound, so that they can communicate with each other [38].
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the editing and mixing steps. We propose using DTW to solve this audio matching 2

problem and find the matches automatically, saving time and effort for the engineers.

DTW can also be used to synchronize two recordings of a piece [13]. “Synchro-

nization” in this context is the process of building a mapping of sequence points in

one recording to those in another: for a given sequence point in one recording, this

mapping will give the musically corresponding sequence point in the other 3. For

example, we may have two recordings of a piece: one orchestral, and one solo piano.

Not only may these recordings differ in timbre and dynamics, but they may also differ

in tempo, so that the same musical moments may be in different temporal locations;

in such a case, we can use DTW to synchronize the two pieces. Doing this will tell

us, for example, where measure ten appears in both pieces. Thus, if a sound engineer

has manually added markings (timed metadata) to one recording of a piece, we could

use DTW to transfer these markings to the other recordings of the same piece by

synchronizing the two pieces. This means that the sound engineer will only have to

mark one recording of a piece during a recording session and can later use DTW to

transfer these markings to other recordings of the same piece.

We discuss DTW and explain the algorithm in more detail in Section 2.2 of Chap-

ter 2.

1.4 Why Classical Music?

The tools developed as part of this thesis are most relevant to classical music pro-

duction. This is because other genres like popular music follow a different workflow.

The pop music production workflow often involves creating a mix track by track (i.e.,

working with each instrument/vocals separately) and working without a formal, writ-

ten out score [27]. Many pop music tracks might be first created in the DAW itself.

For example, a drum track might be created and then all performers would listen to

2Audio matching is the task, given a query (an audio snippet), of finding all other snippets that
musically correspond to that query [13].

3The corresponding sequence point will be the same point musically, if not the same point in
time.
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that drum track through headphones while playing or singing additional tracks on

top of that base track. In such a workflow, the need to synchronize different tracks

is usually not an issue. Pop music pieces also tend to be smaller and simpler, so the

process is faster and may not need the aid of such tools [27].

Another reason why we chose to focus on classical music is because DTW (the

underlying algorithm that allows us to create such tools) is at its core a music syn-

chronization algorithm. Thus, it assumes two recordings of the piece will be musically

similar, only differing in aspects like tempo, timbre, and dynamics [13]. Therefore, a

genre like jazz that incorporates a lot of improvisation may not lend itself to such an

algorithm.
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Chapter 2

Related Work

This chapter discusses the current tools for sound engineers producing classical music,

and introduces the Dynamic Time Warping (DTW) algorithm that may be used to

create more tools.

2.1 Current Tools

2.1.1 Handwritten Notes and Visual Cues

The standard for creating markings during a live recording is to take notes by hand.

This means that during a recording session, the sound engineer or assistant who has a

copy of the musical score will mark the score with “+”s and “−”s along with a track

number, to indicate if the track was a good or bad run of the section (see Figure 2-1

below for an example). This helps them ensure they have at least one good run of

every section. In addition, later in the mixing process, they can use this metadata to

determine which tracks to look at and ultimately choose in the final mix.

21



Figure 2-1: Annotated score: marked with “+”s and “−”s along with a track number,
to indicate if the track was a good or bad run of the section. Photo courtesy of Antonio
Oliart [14].
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As DAWs typically show the waveform of the loaded audio, sound engineers also

start to learn the waveform of a piece in order to quickly identify and match different

tracks (i.e., visually recognize and differentiate between sections of a piece). This

means that during the editing and mixing steps, if the engineer wants to find the best

run and recording of a section, they must either look at the waveform and search for

the same snippet visually, or read through their annotated scores and logs to find all

occurrences of that section.

2.1.2 Digital Markings

An addition to the above marking scheme is to also add markings directly to the

audio recording (i.e., directly in the DAW software as opposed to by hand), indicating

which timestamps correspond to which rehearsal numbers/letters 1. This way, during

the mixing process, the engineers can more easily identify parts of a song via these

rehearsal number/letter markings embedded in the tracks (they are shown visually in

the DAW; see Figures 2-2 and 2-3 below), instead of having to study, memorize, and

subsequently recognize the waveforms.

Digitizing the marking system by using existing DAWs to annotate recordings

directly in this way reduces the work a bit [27]. However, engineers still have to do

this manually for each recording of the piece (in full or part) during the recording

session. As far as we know, no tools have been created to help automate this process

and reduce the amount of manual work.

1Rehearsal numbers/letters are provided in a musical score for classical music, typically at the
beginning of a measure.
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Figure 2-2: Annotated tracks in Pyramix. In this example, each track is a different
recording of the same piece, and each track is annotated by hand after recording (i.e.,
each rehearsal number marking is created for each track). Screenshot courtesy of the
BSO [27].

Figure 2-3: Annotated tracks in Pyramix (zoomed in view of Figure 2-2). Screenshot
courtesy of the BSO [27].
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Figure 2-4: MuSyc feature in Sequoia [11].

2.1.3 Sequoia’s Multi-Synchronous Cut

The Sequoia DAW has a feature called Multi-Synchronous Cut, or MuSyc (shown in

Figure 2-4 above), targeted for classical music production. This feature can be used

to find similar audio in a project. MAGIX (the company that makes Sequoia) has

not released the underlying algorithms used to do this, but the feature description on

their website states that it analyzes source audio material and then searches through

the user’s project for musically similar material. It then organizes the matches 2 by

similarity to the query [11], as shown in Figure 2-5 below.

2If the user’s project has one take for all recordings, the user can use the “Take Assistant” to
divide it into smaller takes [10].
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Figure 2-5: Matching audio (takes with the same musical content) are stacked on top
of each other in the overview project [10].
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Figure 2-6: The flow of the MuSyc feature [10].

The flow to using MuSyc is as follows (diagrammed in Figure 2-6 above):

• Identify the problem spot in the mix to replace and set the cut point at that

spot in the destination project 3.

• Use MuSyc to create an “overview project”, where similar audio for the musical

section is displayed.

• Choose a take for this section.

Once the user has chosen which audio take to use in the overview project, it will

be automatically synchronized to the source project, and once the cut is executed, it

3Sequoia is a source-destination DAW, where there is a source project (where all the recordings
live) and a destination project (where the final mix is created).
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will be inserted into the destination project [10]. In this way, engineers can quickly

explore and choose from all recordings of a musical section.

We investigated MuSyc in more depth via conducting an interview with a Sequoia

user, Patrick Keating. In particular, we wanted to learn more about the experience

using the feature. A more detailed recap of this interview is described in Section 3.2.2

of Chapter 3.

2.2 Dynamic Time Warping

DTW is a robust algorithm that can be used for synchronizing two recordings of a

piece of music [13]. As discussed in Section 1.3 of Chapter 1, synchronization is build-

ing a mapping of sequence points in one recording to another: for a given point in

one recording, this mapping will give the musically corresponding point in the other 4.

Figure 2-7: Audio Synchronization Pipeline [13]. This process converts music of
potentially different representation to the same feature representation (here, chroma-
grams), and then runs the DTW algorithm to identify points of correspondence from
one recording to another. Figure used by permission of Meinard Müller [13].

The synchronization process involves converting the two recordings to the same

feature representation (usually at a sampling rate lower than the audio sampling rate;

e.g., chromagrams 5) to allow for comparison and then running the DTW algorithm,

4The corresponding point will be the same point musically, if not the same point in time.
5A chromagram is a representation of audio which distributes frequencies into twelve pitch bands

over time. It is a tool used to analyze music: it captures the melodic and harmonic components of
music and is typically invariant to changes in timbre, instrumentation, and dynamics [36].
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as shown in Figure 2-7 above. We provide an overview of this process below, and

describe the technical details of the implementation in Python in Chapter 4.

The goal of DTW is to find an alignment between the two sequences, X and

Y . This alignment will be a sequence of pairs of elements in X and Y . Since these

sequences may be of different lengths, the alignment may be nonlinear (skipping or

repeating elements), as shown in Figure 2-8 below. Our sequences are chromagrams,

but DTW can be used with any kind of time series 6.

Figure 2-8: The alignment of two sequences, X and Y . Figure used by permission of
Meinard Müller [13].

To determine the alignment between elements of the sequences, we need a cost or

similarity metric to compare the elements with each other. Elements that are more

similar to each other should have a lower cost than elements that are less similar. In

this audio synchronization application of DTW, the similarity metric we use is the

cosine distance 7:

1− x · y
||x|| · ||y||

We can calculate this cost metric for each pair of elements from the sequences.

If sequence X is N elements long, and sequence Y is M elements long, this will

yield a matrix of dimensions N ×M , which is known as the cost matrix. As shown

6In fact, DTW is used outside of the audio synchronization realm, in automatic speech recogni-
tion, data mining, information retrieval, bioinformatics, and several other fields [13].

7Since the cosine distance measures the angle between two vectors and disregards the length of
the vectors, using it with chromagram features gives the difference in energy distributions, instead
of in local energy, which is a valid metric in comparing sound [13].
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in Figure 2-9 below, since the two recordings are of the same piece, they have a

similar progression apart from a global difference in tempo, so there are lower costs

around the diagonal of the cost matrix (and the alignment will not stray far from the

diagonal).

Figure 2-9: DTW cost matrix between two chromagrams (shown along the axes) [13].
The cost between index 5 of the y-axis and index 6 of the x-axis is shown in the red
box. Figure used by permission of Meinard Müller [13].

Given this cost matrix, we can synchronize sequences X and Y by finding the

alignment with the minimal overall cost (since the more similar two elements are, the

less their cost will be). Intuitively, viewing the 2D matrix as a “height map”, where

height corresponds to cost, this alignment is the valley of the cost matrix (see Figure

2-10 below).

Valid alignments are ones which abide by the following:

• The first elements of X and Y and the last elements of X and Y must align

with each other.

• The alignment cannot go “backwards in time”: starting from (1, 1), the align-

ment path can only go up or to the right (i.e., the next point in the path
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(1 + i, 1 + j) is only valid if i, j ≥ 0).

• Each element of X is aligned with at least one element of Y , and vice versa.

Figure 2-10: DTW cost matrix viewed as a “height map”, where height corresponds
to cost [13]. The alignment with the minimal overall cost lies in the valley of the
matrix. Figure used by permission of Meinard Müller [13].

There are several potential valid alignments (paths of this cost matrix). The

optimal one will be the path with the total lowest accumulated cost (there may

be more than one). To find this optimal path, we could calculate all paths and

accumulated costs, but that approach would be exponential in the lengths of sequences

X and Y . Alternatively, we can use dynamic programming to create a quadratic-time

algorithm for this optimal path problem (i.e., O(NM) given sequence X is of length

N , and sequence Y is of length M). This will use dynamic programming by building

the optimal path upon optimal subpaths. We introduce an accumulated cost matrix

D, where each cell of the matrix represents the accumulated cost associated with the

optimal path ending in that cell (i.e., any cell D(n,m) represents the accumulated

cost of the optimal path from D(1, 1) to D(n,m)). We calculate D from the cost

matrix C iteratively, according to the following three equations (given sequence X is
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of length N , and sequence Y is of length M):

D(n, 1) =
n∑

k=1

C(k, 1) for nε[1 : N ]

D(1,m) =
m∑
k=1

C(1, k) for mε[1 : M ]

D(n,m) = C(n,m) +min


D(n− 1,m− 1)

D(n− 1,m)

D(n,m− 1)

The first two equations initialize the left-most and bottom-most rows of D, re-

spectively. The third equation calculates the accumulated cost of the remaining

cells D(n,m) from C(n,m) and the least of D(n − 1,m − 1), D(n − 1,m − 1), and

D(n − 1,m − 1), which are the accumulated costs of the optimal alignment paths

leading up to D(n,m) (the paths from the diagonal, from below, and from the left,

respectively). We keep track of which option we choose from these three in another

backtracking matrix B while computing the accumulated cost matrix D. After we

have built up D (and in turn B), we can use B to backtrack from the last point of the

alignment D(N,M) to the first point D(1, 1) to find the optimal path from D(1, 1)

to D(N,M). This optimal path gives the points of correspondence between the two

sequences, thus aligning them in time.

Figure 2-11 below shows the cost matrix, accumulated cost matrix, and final

alignment of two series, as an example.
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Figure 2-11: (a) Cost matrix between two series, (b) Accumulated cost matrix be-
tween two series, with the optimal alignment highlighted in red, and (c) The final
alignment of the two series [13]. Figure used by permission of Meinard Müller [13].

2.2.1 Applications of DTW

As described above, we can use DTW to synchronize two recordings of a piece. The

resulting warping path creates a correspondence between the two recordings, and

if one recording is digitally marked, we can use this correspondence to “translate”

the time of a particular musical moment in that recording to the time for the same

musical moment in the other recording. This will eliminate the need for engineers to

manually mark all recordings of the same piece.

Note that in this application of DTW, we are finding a global alignment of two

full recordings (e.g. a full recording X to another full recording Y , as shown in Figure

2-12 below). We can also use DTW to find the alignment of an audio snippet to a part

of a full recording [13] (e.g. a snippet X to a part of the recording Y 8, as shown in

Figure 2-13 below). This is done by running the DTW algorithm several times, with

the snippet and each of the recordings of interest, to find the best match(es). This

can be used for audio matching, which will help engineers in finding similar audio.

Thus, these are two ways in which DTW can help streamline the classical music

production process, and these led to the creation of the two tools in this thesis:

Automatic Marking Transfer (AMT) and Audio Search (AS), which are introduced

in Chapter 3.

8The part of the recording could be the full recording itself, if X matches with exactly all of Y .
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Figure 2-12: Audio Synchronization via DTW. This figure shows the alignment of
Sequence X to Sequence Y [13]. Figure used by permission of Meinard Müller [13].

Figure 2-13: Audio Matching via DTW. This figure shows the alignment of Sequence
X to a subsequence of Sequence Y [13]. Figure used by permission of Meinard Müller
[13].
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Chapter 3

Technical Approach

We collaborated with the Boston Symphony Orchestra (BSO) sound engineers to

understand their workflow, which led to the identification of two potential tools for

improving the classical music production workflow: an automatic marking transfer

(AMT) system and an audio search (AS) system. AMT automatically transfers user-

created markings (timed metadata) from one recording of a piece to other recordings

of the same piece (which may vary in tempo, timbre, and dynamics). AS searches a

project for all occurrences of a musical section of a piece that match an audio query

snippet (i.e., audio matching).

We then collaborated with other potential users of both AMT and AS tools,

including sound engineers from radio stations in the Boston area. This enabled us to

identify additional workflows and finalize requirements for these two tools. Based on

these, we created standalone applications for AMT and AS.

This chapter details our approach, from the beginnings with the BSO to general-

izing to other workflows and formulating our final vision for AMT and AS.

3.1 Beginnings with the BSO

Initial requirements for AMT and AS were obtained by collaborating with the BSO

engineers, who use the Pyramix DAW.

We first met with BSO’s Chief Recording Engineer, Nick Squire, in November 2018
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[27]. The goal of this meeting was to observe and hear about Mr. Squire’s workflow

in order to discover the places where we could use MIR and DSP techniques to help.

We also wanted to learn more about the community of sound engineers in order to

understand the audience for such audio engineering tools. Finally, we hoped to form

an initial vision of the tools and how they may be incorporated into an engineer’s

workflow.

The BSO records concerts for three primary purposes: archives, weekly live radio

broadcasts, and commercial releases. We focused on the workflow for archives and

commercial releases, since these require a lot of work and post-processing after the

recording step. For this workflow, during a live performance, Mr. Squire and the

BSO’s Associate Audio Engineer, Joel Watts, record multitrack (60 tracks) audio

through Pyramix, and mix the live mix down to a stereo mix. After the performance,

they work on editing and remixing.

For each piece the BSO performs, they record 4-5 performances (every rehearsal

and formal concert in which the piece is played). The final mix is created from the

best parts of these 4-5 recordings. During the performances, in order to aid with

editing and mixing later, Mr. Squire and Mr. Watts create markings in Pyramix

for each rehearsal number (the technique described in Section 2.1.2 of Chapter 2).

Pyramix provides a way to add markings to indicate good/bad runs of a section, but

the BSO engineers have “hacked” this system to use it to indicate rehearsal numbers

instead, as shown in Figures 2-2 and 2-3 in Chapter 2.

Mr. Squire and Mr. Watts cannot always get all the markings inputted during

the live performances (working at the pace of the piece without interruption can be

difficult). Hence, before editing and remixing, they go through each recording and

manually add and correct the markings as needed. This is very time consuming,

taking up to 4 or 5 hours for each recording [27]. In describing this process to us,

Mr. Squire mentioned that it would be wonderful to be able to just mark one of the

recordings and then transfer those markings to the other recordings.

Mr. Squire also described another pain point: matching smaller takes of audio

to a larger piece of music. Often, during rehearsals, they will record just parts of
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the piece, and later while editing/mixing, it can be hard to determine what part of a

piece those snippets align with. He stated that the ability to match an audio snippet

to a larger piece would be a significant help.

To address these two issues, we explored two systems: one to transfer markings

and one to search for an audio snippet in other (primarily larger) sections of audio.

We formalized these into the AMT and AS systems. Mr. Squire believes that such

tools would be extremely helpful; in fact, he has been thinking about the possibility

of such tools for the past ten years. He also believed they would be helpful not only

to him and Mr. Watts, but also to the larger classical music production community.

There are about fifty thousand such engineers in the US [27].

We also wanted to form an idea of what these tools would look like, specifically,

how they would fit into the engineer’s workflow. The primary DAW for classical

music production is Pyramix [27]. This is because it works well for long pieces and

for reading off score during the production process (and almost all classical music

has an associated score). However, there are an array of DAWs used in addition

to Pyramix: Pro Tools, Nuendo, Sequoia, and more, so it was important that the

tools we create be DAW-agnostic. We considered integrating with existing DAWs via

technologies such as VST plugins (see Section 1.2.2 of Chapter 1) or Steinberg’s SKI

SDK [29], or creating our own standalone applications (with our own GUI). Before

deciding between these two routes, we decided to prototype the tools as Python

scripts (implementation detailed in Chapter 4). In parallel, we carried out additional

interviews with other engineers (potential users) to help us decide which path to take.

3.2 Generalizing to Other Workflows

After meeting with the BSO engineers and while prototyping AMT and AS, we carried

out additional interviews with other engineers (potential users) to generalize AMT

and AS to other workflows and DAWs. In particular, we were most interested in how

the tools could be packaged to fit seamlessly into the workflows of all sound engineers.

The tools needed to be easy to use and universal (i.e., should work with any DAW).
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Section 3.2.1 discusses the different packaging options we considered and Section 3.2.2

gives a more detailed account of the additional interviews, which were key in helping

us make our final decision.

3.2.1 Options for Packaging the Tools

The ideal packaging option would be to wrap AMT and AS into the already universal

VST plugins. This way, AMT and AS could become a part of every DAW and easily

integrate into a sound engineer’s workflow. The purpose of VST plugins is to change

audio in some way, so using VST for AMT and AS was not the traditional use case

of the plugin (neither of these processes changes audio). However, since VST plugins

are the primary way for a third party developer to integrate with DAWs, we wanted

to keep this option on the table.

Unfortunately, after further research and conducting interviews, we discovered

that VST plugins may not provide all the capabilities we need. For AMT, we needed

the ability to create markings. Markings are actually specific to each DAW, so in

building a VST plugin for AMT, there would have to be different versions for each

DAW. For example, markings can be used via associated MIDI files in Pro Tools,

but the best way to interface with Pyramix is Pyramix’s own proprietary markings

called “MediaMarker” [27]. Users of Steinberg DAWs (e.g. Nuendo or Cubase) can

use the SKI SDK along with VST for creating markings [27, 29], but again, this is not

DAW-agnostic. It may be possible to create MIDI files or interchange EDL files [27]

and import them as markings across several DAWs, but there is not much work in

this space yet, and it would take additional significant effort to verify that this works

consistently with each DAW. In addition, for both AMT and AS, we need the ability

to access multiple audio files at once. VST plugins usually operate on just one audio

file, so it would be difficult to build one that works with multiple audio files at the

same time. While it is possible, the way this issue is handled is also dependent on the

DAW [27]. Requiring a specific workaround for each DAW is in direct opposition to

our goal of building something universal, so building VST plugins did not seem like

our best option.
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Thus, because we wanted AMT and AS to be DAW-agnostic, as well as to have

complete access to the environment, we chose to package them as standalone appli-

cations. While this meant that AMT and AS would not integrate directly into the

DAW, we could still create applications that would integrate well into the sound en-

gineer’s workflow. In addition, we also felt that the standalone applications would

serve as proofs of concept, that could be extended into tools that integrate directly

into the DAW in later versions.

3.2.2 Additional Interviews

We collaborated with three more engineers in the Boston area: Joel Gordon, Antonio

Oliart, and Patrick Keating. This section details the interviews and takeaways from

them, which helped in determining how to package AMT and AS.

Joel Gordon

Joel Gordon is a freelance recording engineer [6]. Like the engineers at the BSO, he

uses Pyramix for recording and producing music. The recording phase of his workflow

is completely offline: he does not use his computer and takes notes by hand on the

score (using the technique described in Section 2.1.1 of Chapter 2). He is aware of

the marking system in Pyramix, but prefers score marking with paper and pencil. He

only turns to his computer after recording, to edit and mix, and then uses his score

and log of takes to help him choose which recordings to use.

Since Mr. Gordon does not use digital markings, AMT would not be useful for

him. We described AS, which would help him search through all recordings for certain

snippets of audio. He was interested in such a system since it can take a long time

to go through paper logs of takes. We asked how he would visualize using it: ideally,

he would want it to be a plugin or part of the DAW that would allow him to input a

marking in a “problem section” (one that he wants to replace with a better recording

of that part), and then have the DAW return potential replacements of that section.

Since we were leaning towards building standalone applications, we also asked if a
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separate application would still be useful. Mr. Gordon’s response was that it would

only be useful if he could batch several problem spots at once (i.e., once he has picked

out several problem spots, he goes to the standalone application and deals with them

all at once, without having to go back and forth between the DAW and standalone

application for every problem spot).

Antonio Oliart

Antonio Oliart is a sound and broadcast engineer at WGBH radio in Boston and also

at the BSO (for the live broadcasts) [14]. He uses the Nuendo DAW, which unlike

Pyramix, is a linear DAW. This means that the final mix is built up at the end of

the timeline, as oppose to in its own track as it is with source-destination DAWs like

Pyramix.

While recording, his workflow was similar to that of Mr. Gordon’s: he works by

marking the score by hand and creates an initial mix from this, and then fishes for

better takes via reading waveforms. In addition, he sometimes uses digital markings

in Nuendo for sections of pieces, to make it easy to hop around to different takes.

Since he uses markings in a different way from the BSO, AMT would not be beneficial

for him. However, he was interested in a system like AS, as it would speed up his

mixing process by helping to find and choose takes. He said that even a standalone

application would be helpful if it gave timestamps of audio matches for some query.

Ideally, it could be a plugin that gives a list of matching regions along the timeline.

This timeline is one large timeline with all takes, since Nuendo is a linear DAW. Thus,

such a plugin would have to be specific to linear DAWs, which was not ideal given

our goal of a universal, DAW-agnostic tool. In addition, for the best user experience,

the user would need the ability to move the playhead and access the transports of the

DAW, and we were uncertain that plugins had such access to these DAW elements.

Patrick Keating

Patrick Keating is another freelance sound engineer who works with live concerts

as well as studio recordings (both classical and jazz) [9]. He has used Pro Tools
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and Nuendo in the past, and currently uses the Sequoia DAW. Our primary reason

to meet Mr. Keating was to learn more about the MuSyc feature in Sequoia (see

Section 2.1.3 of Chapter 2).

Mr. Keating’s workflow is also similar to that of Mr. Gordon’s. He employs the

manual marking scheme on score during recording sessions, and sometimes even after

listening to all takes. Thus, he has not used the MuSyc feature extensively, because

the bulk of his final mix is already mapped out in this way. However, he has used it

on occasion to find an extremely specific beat, section of a chord/scale, or ornament,

and found it helpful in these instances. He believes it is a useful feature especially

because the matching audio takes are stacked one on top of another and synced. This

helps in comparing the performance in various takes, as it is fast to find the same

point in the music in different takes this way.

From these interviews and our research, it became clear that we should take the

standalone application approach. We also learned that while AS would be useful for

all sound engineers, AMT would only be used by the BSO engineers at this time. In

addition, having the tools directly integrated into DAWs in the future would provide

the best user experience: we discuss this further in Chapter 6.
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Chapter 4

Implementation

This chapter provides the technical details of the algorithms used and implemen-

tation of AMT and AS, from the scripts to standalone Python applications. The

associated code can be found at the following Github repository: https://github.

com/smritip/dtw-for-classical-music-prod [16]. This code is open source, un-

der the GNU General Public License [32], and the repository maintains both the

scripts and standalone application executables, with a README detailing how to

use each.

In this chapter, we discuss the base technologies and how we fit them to a sound

engineer’s workflow. We then describe the potential usage of the scripts. We conclude

with a section on the final products (the standalone Python applications, packaged

and distributed as Windows executables).

4.1 Algorithms

As introduced in Section 2.2, the base algorithm for both AMT and AS is DTW.

Section 4.1.1 describes how DTW is used for both AMT and AS, and Section 4.1.2

describes how these algorithms are adapted and extended to function as tools in a

sound engineer’s workflow.

43



4.1.1 Base Technologies

AMT

DTW for AMT carries out audio synchronization of one full recording of a piece to

another, and then uses the synchronization results (points of musical correspondence

between the two recordings) to transfers markings from one recording to the other.

As explained in Section 2.2, DTW can analyze and measure the similarity between

two time series (derived from the two recordings) which may vary in speed. It does

so by “warping” the series in the time domain: for a given musical moment, DTW

translates the time in one recording of that musical moment into the time of the

second recording for the same musical moment. In this way, the warping path creates

the correspondence between the two recordings: it identifies an optimal alignment

between the two series, thus synchronizing them. See Section 2.2 of Chapter 2 for the

full details of the DTW algorithm.

Our algorithm for AMT is as follows (also diagrammed in Figure 4-1):

Dynamic Time Warping (DTW) for AMT (Audio Synchronization):

Given: Two audio recordings of the same musical piece (X and Y ), and one file of

markings (for X).

Goal: Transfer the markings from X to Y , and create a file with these new markings

(for Y ).

Algorithm:

1. Convert recordings to appropriate representations (we chose normalized chro-

magrams). We use the LibROSA library [1] to load the sound files as NumPy

[2] arrays, and then create chromagrams from those. We use the NumPy library

to store and manipulate audio data in an array format.

• Chroma X: 12×N

• Chroma Y : 12×M
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2. Run the DTW algorithm as described in Section 2.2 of Chapter 2. We use the

NumPy library for matrix manipulations.

3. Once we have the correspondence points from running DTW (given as a path

that is a list of (recording X sample, recording Y sample) points), we can

transfer the markings from recording X to recording Y :

(a) Parse the file of markings (for X) to extract the markings. Each marking

is a data point containing a timestamp and a text label. We use the xml

library [21] for this.

(b) Create a list for new markings.

(c) For each marking:

• Find the point in the path the marking is closest too (i.e., in looking

at each point (Xi, Yi), use the marking metadata relating to samples

to discover which “Xi” it matches with).

• The matching point (Xj, Yj) gives us Yj, the sample where the marking

should go in recording Y . Add this new marking to the list.

(d) From the list of new markings, create a new file of markings (for Y ). We

use the xml library [21] for this.
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Figure 4-1: Diagram of the AMT algorithm.
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AS

DTW for AS carries out audio matching: essentially audio synchronization of one

snippet of audio to parts of other recordings (or the whole recording) to find matches.

Thus, we run the DTW algorithm described above with the snippet (the query of the

search) to other recordings, to find the best match(es). DTW attempts to synchro-

nize the query with each entire recording. Intuitively, the best matches will have the

“best” diagonal paths in each of the resulting DTW cost matrices. Our algorithm for

AS is as follows (also diagrammed in Figure 4-2):

Dynamic Time Warping (DTW) for AS (Audio Matching)

Given: An audio snippet (the query), other audio recording(s) (forming a database

to search through), and the number of matches to find.

Goal: Find the matches in the database.

Algorithm:

1. Convert the query audio to chromagram (we use LibROSA again).

2. For each recording Y in the database:

(a) Convert the recording to chromagram.

(b) Run the DTW algorithm (see step 2 in the DTW for Audio Synchronization

algorithm).

(c) The points in the last row of the accumulated cost matrix D (i.e., D(N,m)

for all m in [1,M ]) give the accumulated costs of the optimal warping paths

that end at D(N,m). We call this last row the matching function.

(d) Find the best match by finding the lowest cost (argmin) from the matching

function:

• For each match, we need the beginning and ending timestamps (for

the user to identify the matches). The matching function corresponds

to the end of the matches: this gives us the ending timestamp for the
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match. Use the backtracking matrix B to find the beginning of each

match: this gives us the beginning timestamp for each match.

(e) To find more matches, repeatedly squash out the surrounding area and

find the argmin (and beginning and ending timestamps) until the desired

number of matches have been found. The matches can be ordered from

the best match to the least by comparing the accumulated costs of each

path: the lower the cost, the better the match.

Figure 4-2: Diagram of the AS algorithm.

4.1.2 Fitting to Workflow

The previous section described the base algorithms which should work in any environ-

ment and workflow, with extensions and/or adaptations (e.g., working with different

formats of markings). This section describes the technologies built on top of the base

algorithms to fit AMT and AS into a sound engineer’s workflow.
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AMT

As we found in our research, at this time, AMT will only be useful for the BSO

engineers (among our cross-section of surveyed engineers), since they are the only ones

who use markings heavily and would find it helpful to transfer them from recording

to recording. Thus, the adaptations for AMT were to make the base algorithm work

with Pyramix and BSO recording protocol.

Pyramix works with markings (“MediaMarker” is the proprietary name) via MMD

files, which is a type of XML format [27]. Thus, to parse old markings and create

new markings (needed as part of AMT), we wrote an MMD parser and creator. The

parser walks the XML tree and extracts the relevant marking information (e.g., the

rehearsal number). The creator, given marking information, creates an XML tree and

MMD file that Pyramix can interface with.

Each marking has at the minimum a unique identifier (UID) entry and a timecode

entry. The UID is unique to Pyramix and is a 16 byte dash-delimited string of random

bytes (random integers from 0-255). In creating new markings, we wrote a function

to generate new UID entries that followed these requirements.

The timecode entry is also unique to Pyramix, and represents the time from the

start of the recording. There is a multiplier used to calculate the number of samples

from the timecode, which is dependent on the sampling rate. The sampling rate

that the BSO uses is 96kHz and the corresponding timecode multiplier is 1
23520

. To

convert the timecode to samples, multiply by the timecode multiplier (e.g., timecode

5033164800 ∗ 1
23520

≈ 213995 samples). To convert the samples to time in seconds,

divide by the sample rate (e.g., 213995samples
96000

≈ 2.23 seconds).

These constants are maintained in a file in the repository, and we use these con-

stants in both parsing and creating new markings, since they inform where markings

are in a piece 1.

1Each time we interface with the MMD file (to parse or create) we first convert to time before
samples, since time is a global invariant across all sampling rates.

49



AS

AS did not need to be tailored to any specific workflow or DAWs, since, unlike AMT,

it does not assume nor require anything of the work environment or DAW.

4.2 Scripts

The Python scripts created as prototypes for AMT and AS can be used from the

command line as tools, if an engineer does not want or need to use the standalone

applications and their GUIs. Instructions on how to use each of the scripts are

included in each script file.

4.3 Standalone Python Applications

Once we had working scripts for AMT and AS, we focused on providing a good user

experience. Not all sound engineers may be familiar with the command line to run the

scripts, and we wanted to create a GUI for AMT and AS, so we developed applications

with a simple GUI for each tool. This part of the development process was the most

iterative, in terms of creating a GUI and iterating on it given feedback from the sound

engineers. The final GUIs, feature set, and design choices (as of August 2019) are

presented in Section 4.3.2.

4.3.1 Framework

We utilized the PySimpleGUI framework [4] to provide GUIs for AMT and AS.

PySimpleGUI is a wrapper for Tkinter, Qt, WxPython, which are interfaces to

Python’s de facto standard GUIs [4, 22]. PySimpleGUI allowed us to create cus-

tom GUIs.

For these tools, we created simple applications that would take in the necessary

user input, run the scripts in the background, and then return the results, in a user-

friendly GUI. To do so, for each application, we defined a layout of user input boxes
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and buttons to fit the requirements for each tool and then run the scripts. For a

better user experience, we also added threading to the applications, running the GUI

in one thread and the AMT/AS scripts in another, so users could continue to interact

with the GUI even as AMT/AS runs.

In addition to the libraries used in the AMT and AS scripts, we used the Pygame

library [3] for sound output (e.g., playing audio) and Python’s threading and trace

modules to make the applications multi-threaded [12].

4.3.2 Final Products

AMT

AMT carries out the transfer of markings from one recording to another. Thus,

in order to transfer the markings from Recording X to Recording Y , the user must

provide the path to these sound files. AMT will also look for the MMD corresponding

to Recording X, but we do not need the user to supply that because the assumption

is that it will be the same exact path as the recording, just an MMD file instead

of a sound file (e.g. the sound recording “/home/audio/recording.wav” will have

the corresponding marking file “/home/audio/recording.mmd”). Pyramix (at this

time AMT is only useful to Pyramix users) requires this naming convention of sound

(i.e., “wav”) files and their corresponding MMD files [27], so we did the same. Once

complete, AMT will create another MMD file (one for Recording Y ) at the same

location on disk.

Figure 4-3 below shows what the AMT app looks like upon opening it. The

features of the application are (numbers correspond to those in Figure 4-3):

1. User input boxes for paths to wav files.

2. “Browse” buttons to select a file instead of having to type out full paths.

3. “Transfer” button to initiate the AMT process.

4. “Cancel” button to cancel the AMT process at any time.
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5. “Close Window” button to stop and close the application at any time.

6. A progress bar to show the progress of the AMT process when running (shown

in Figure 4-4 below).

These features are only usable when there are valid user inputs given (e.g. “Transfer”

is only clickable when two valid wav files have been supplied).

Figure 4-3: GUI for AMT. Features (numbered 1-6) are described in Section 4.3.2.

Figure 4-4: AMT in use.
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AS

AS carries out audio matching, specifically of one search query to a database of

audio. Thus, the user must provide a path to the query audio, a path to audio files to

search through, and the number of matches to search for. In addition to these basic

requirements, AS also provides a media player, to listen to any of the audio clips.

Once a search is complete, AS will display the results (which may also be loaded into

the media player).

Figure 4-5 below shows what the AS app looks like upon opening it. The features

of the application are (numbers correspond to those in Figure 4-5):

1. User input boxes for paths to query audio, audio files, and number of matches.

2. “Browse” buttons to select a file/folder instead of having to type out full paths.

3. “View Query” button which loads the query into the media player and allows

for playback, so the user can confirm their query. See Figure 4-6 below.

4. Start time and end time user inputs for the query audio, so the user can select

any portion of a wav file as a query. See Figure 4-7 below.

• If these are blank, AS uses the whole wav file as the query.

5. “Search” button to initiate the AS process.

6. “Cancel” button to cancel the AS process at any time.

7. A progress bar to show the progress of the AMT process when running. See

Figure 4-8 below.

8. Matches section to display the matches. See Figure 4-8 below.

9. “View” button for each match to load the audio matches into the media player

and allow for playback, so the user can listen to the results. See Figure 4-8

below.
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10. “Prev” and “Next” buttons to browse through all match results, if there are

more than five. See Figures 4-8 and 4-9 below.

11. Media player to load audio, display the waveform, and allow for playback (in-

cluding play, pause, and rewind buttons). Also includes a “Now Playing” section

to display the currently loaded audio. See Figure 4-6 below.

12. “Close Window” button to stop and close the application at any time.

These features are only usable when there are valid user inputs given (e.g. “View

Query” is only clickable when a valid wav file has been supplied).

Figure 4-5: GUI for AS. Features (numbered 1-12) are described in Section 4.3.2.
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Figure 4-6: Query audio loaded into media player.
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Figure 4-7: User may supply start and end times to select a portion of audio for the
query.
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Figure 4-8: After AS completes, the matches section is filled, progress bar is complete,
and the user may load any match (or the query again) into the media player. This
example shows matches 1-5, and the 5th match playing.
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Figure 4-9: After AS completes, the matches section is filled, progress bar is complete,
and the user may load any match (or the query again) into the media player. This
example shows matches 6-8, and the query playing.
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4.3.3 Creating Windows Executables

If a user has Python 3 installed, and all libraries that these tools use as well (see

Section 4.3.4), they can run the applications from the command line. For example,

to run the AMT app, they could run the following:

>> python3 amt_app.py

However, we wanted any engineer to be able to use these tools, including engineers

that do not have Python 3 and the necessary libraries installed and/or may not be

comfortable using the command line. Thus, since the majority of engineers work on

Windows machines [27], we decided it would be best to package and distribute the

Python applications as Windows executables. These executables do not require the

user to have Python 3 or any of the libraries used installed [19].

To do this, we explored several options: PyInstaller [18], py2exe [17], nuitka [7],

and PyOxidizer [31]. We attempted following tutorials and reading documentation

for each. Py2exe does not support all versions of Python 3, and we were unsuccessful

in building any executables using nuitka. PyOxidizer seemed promising, but as of

July 2019, did not have support for C extension modules, which our tools utilize

(e.g., PySimpleGUI, tkinter). Thus, we chose to use PyInstaller. There is one known

issue with using PyInstaller with LibROSA (dependency packaging issue) [8], a library

used in both AMT and AS, so we rewrote versions of the AMT and AS applications

that use the wavfile library (from scipy.io) [26] instead of LibROSA, in order to create

Windows executables using PyInstaller. The Windows executables for the AMT and

AS applications can be found in the Github repository.

The executable for the AS application currently does not include the media player.

This is because the media player heavily uses LibROSA, and wavfile does not include

all of the functionality that LibROSA provides that we need (e.g., seeking in a track

efficiently), so the application would be too inefficient and run too slowly. However,

as discussed in Chapter 5, the BSO engineers did not believe the media player was a
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necessary feature, so the executable should still be useful even without it. In addition,

engineers can still use the AS application with the media player via the commandline,

as described in the beginning of this section.

4.3.4 Python Libraries Used

In implementing these tools, we used several libraries. These libraries have been

discussed previously throughout this chapter; this section provides, for reference, a

full list of all the libraries used, along with their use case(s) in our work:

• LibROSA [1] for MIR and audio analysis [used in AMT and AS scripts]

• NumPy [2] for matrix manipulation

• xml [21] to parse and create XML (specifically, MMD) files

• Pygame for sound libraries [3] [used in AS’s media player]

• threading [20] for building multithreaded applications [used in AMT and AS

applications]

• trace [12] for killing threads [used in AMT and AS applications]

• wavfile (scipy.io) [26] for MIR and audio analysis [used in versions of AMT and

AS applications to create Windows executables 2]

2As mentioned in Section 4.3.3, we could not use LibROSA with PyInstaller to create Windows
executables, so we had to rewrite the applications using the wavfile library.
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Chapter 5

Evaluation and Results

We used three metrics to evaluate AMT and AS:

1. Accuracy,

2. Time saved for the sound engineer, and

3. Ease of use and integration into the engineer’s traditional workflow.

At this time our evaluation has been primarily qualitative, and limited to testing

and interactions with the BSO. As development was largely iterative, we used their

feedback to incorporate changes and improve the products.

To create the best products, one of the primary focuses of work in the future will

be to continue with more rigorous testing and analysis, which will require more audio

test data as well as human testers. We go into this in more detail in Section 6.1 of

Chapter 6.

This chapter details the results from our evaluation of AMT and AS.

5.1 AMT

Before testing AMT with BSO engineers, we unit tested the software to verify the

functionality was correct. Then, we carried out real tests with actual recordings from

the BSO. The setup was as follows: we had access to two recordings (Recording X,
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Recording Y ) of the same piece (recorded by the BSO) and two corresponding MMD

files (MMD X, MMD Y ) of markings. We supplied Recording X, Recording Y , and

MMD X to the AMT script, which transferred the MMD X markings from Recording

X to Recording Y , and in turn created a new MMD file (MMD NEW ). We expected

MMD NEW to have the same markings as MMD Y (the ground truth), and indeed

it did. The response from Mr. Watts at the BSO was:

“Your test MMD is spot on, I think the biggest difference I calculated was

228ms ... which is well within the margin of error. I’m almost positive I

can’t even get them that close manually. I’m very impressed!” [27]

In terms of user experience, AMT will drastically decrease the amount of time

and manual work in preprocessing recordings for mixing. Mr. Squire told us that

AMT will help them save four to five hours per musical piece they produce (the time

it takes to mark all recordings for a piece), which, in the course of the year if they

do about ten recordings, could save them 40-50 hours [27]. To make most efficient

use of AMT, Mr. Squire and Mr. Watts have requested a few more features for the

application in the future, which are described in Section 6.3 of Chapter 6.

5.2 AS

In contrast to AMT, there are no preexisting “ground truths” to verify the AS tool.

Instead, we chose a piece of classical music (Mozart’s “Eine Kleine Nachtmusik” [37]),

which had several repeated phrases to verify the accuracy of the algorithm and later

tool. After we verified it worked in this setting, we needed to make sure it would

work with real data (which could be longer, be more complicated, or have noise), so

we requested some data from Mr. Oliart and used the AS app to search for matches.

While AS successfully found matches in this particular test case, it has to be subjected

to more extensive and rigorous functional testing. Since AS is very compute-intensive,

we also need to carry out performance testing for it under varying CPU/memory load

conditions, from light to very heavy, as well as with different sound file sizes (due to

differences in recording quality and/or length).
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To evaluate user experience, we involved the BSO engineers in testing different

phases of the AS app, to understand what features were useful and if the GUI was

intuitive. This led to a final version of the app that fits well into the workflow, since

its design was heavily informed and influenced by the users. One interesting piece

of feedback was that the BSO engineers may not use the media player for logistical

reasons 1. However, they recommended keeping the feature as it may be useful to

other sound engineers with different setups [27].

1When working on their machines with Pyramix, the only audio inputs and outputs are through
Pyramix, so other audio sources, like the AS application, would not be heard.
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Chapter 6

Future Directions

This chapter discusses several future directions for the work described in this thesis:

further evaluation and testing, the distribution of AMT and AS, additional features

and applications of AMT and AS, and more potential tools.

6.1 Further Evaluation and Testing

AMT and AS will benefit from additional qualitative and quantitative evaluation.

So far, we have tested our software with unit tests and real data, and we have ob-

served and received feedback from engineers at the BSO. We would like to send more

users AMT and AS and follow up with surveys (open response and numerical scale

questions) and carry out more A/B testing to compare workflows before and after

incorporation of AMT and/or AS. This will also help inform the best way to integrate

AMT and AS into engineers’ workflows in future versions.

6.2 Distribution of AMT and AS

Currently, AMT and AS are available (open source) for use as Python scripts, Python

applications, and Windows executables on Github [16]. From our interviews with

potential users, we understood the convenience of using a tool that is part of the

native DAW. While we can explore newer plugin formats like VST3 [29], we would
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like to reach out to DAW developers and see if we can integrate AMT and/or AS into

their DAWs, as parts of their system. We are already in conversation with Merging

Technologies, the creators of Pyramix [33], who are potentially interested in such a

collaboration. If successful, AMT and AS would become features packaged along with

the Pyramix distribution.

6.3 Additional Features

While developing AMT and AS, we received feature requests and kept track of more

potential features that are not yet part of the tools. The following is a list of additional

features to consider implementing and including in the tools:

Applicable to both AMT and AS:

• Create a Mac application (e.g., .app), which will not require the install of Python

and other libraries used.

– py2app [15] is a potential library to use to package and distribute the tools

for Mac

• Make the tools faster and more robust; possible areas to explore include:

– Optimizations and approximations of DTW algorithm (e.g., FastDTW

[25], Sakoe-Chiba bound [24])

– Investigating other feature representations of audio (e.g., spectral features,

chroma difference features)

– Rewriting the tools in C++ and using JUCE [23] to build C++ applica-

tions,

– Alternative approaches to DTW for audio matching (e.g., diagonal match-

ing method [13])

– PySimpleGUI: At this time, we used PySimpleGUI for simplicity and for

a first version of the tool. However, if AMT and AS remain standalone
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applications, it would be worth it to look into other options for building a

GUI.

– Multithreading: Explore more ways to implement threading, in hopes of

making it more efficient.

AMT

• Multiple transfers: Instead of a transfer of markings of Recording X to Record-

ing Y , allow for a transfer of markings of Recording X to several Recordings

Y , Z, and so on.

• Allow usage of pmf files: Pyramix currently works with pmf files, not wav files.

Currently, the BSO engineers convert the pmf files into wav files (since they are

different audio formats) before using AMT. Do this conversion as part of AMT,

thus allowing AMT to work directly with pmf files.

• Partial marking transfer: For AMT, we considered doing not just full to full

recording synchronization, but also marking smaller sections of pieces. We

realized that for classical music, however, this did not make sense. This is

because classical music typically has repetitions so a smaller section of a piece

may match to several places in the full recording, and we would not know how

to choose between the several, equally-likely options.

AS

• Search via markings: if the query and database audio have markings, use that

metadata information instead of analyzing the audio content.

• Volume control for media player

• Interactive media player (e.g., moving the playhead in the player)

• A Windows executable for the application that includes the media player (see

Section 4.3.3 of Chapter 4)
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6.4 Other Applications of AMT and AS

While we focused on AMT and AS for classical music, it would be interesting to

explore such tools in other music realms. While the workflow and musical structures

are different for every genre, it is still worth exploring to see if AMT and/or AS could

fit (e.g. pop music has some structure with chorus/verses, and jazz with theme and

variations [27]). If these particular tools are not applicable, one could also look into

what other tools may be helpful in those realms.

In addition, AMT and AS may be valuable outside of the music production world.

For example, in the Automated Dialog Replacement (ADR) and video game fields,

engineers record a lot of the same audio multiple times. Thus, these tools could

help engineers in those fields identify audio content and find audio matches in their

editing and production processes [27]. In these cases, the input representation will

likely be different from what we use in our implementations of AMT and AS: instead

of a chromagram representation, such applications would use representations that are

more tuned to the requirements of the particular audio (e.g., ADR works with speech,

which is different from classical music).

6.5 More Potential Tools

This is just the first step in bridging the gap between music production and DSP/MIR.

Additional research will lead to the discovery and creation of other useful tools.

In addition, while we focused on how DTW could help the process, there exist

more DSP/MIR algorithms that may help. One specific example is that the diagonal

matching method (introduced in Section 6.3) could be utilized for audio matching,

instead of DTW. More generally, MIR algorithms involving applications like beat-

tracking, automatic chord detection, and automatic section detection [13], may also

be useful in DAWs and music production, even outside of the classical musical realm

(i.e., for other genres like pop, rock, and jazz). Investigation of more algorithms may

open up other worlds of potential tools.
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Chapter 7

Conclusion

In this thesis, we explored areas of the classical music production workflow that

could benefit from DSP and MIR-based tools. One of the biggest pain points of

this production process is identifying the content of several tracks of music while

editing and mixing. This led us to identify and formulate requirements for two tools:

Automatic Marking Transfer (AMT) and Audio Search (AS).

While a large part of this thesis was identifying pain points of the classical music

production workflow, collecting requirements for tools to address these pain points,

and then implementing the underlying algorithms and developing the tools, it was

equally important to us to make sure that the tools fit seamlessly into a sound engi-

neer’s workflow and improved their overall production experience. To work towards

this latter goal, we made design choices to ensure that the tools could be used univer-

sally (i.e., were DAW-agnostic), and we did not assume anything about the engineer’s

environment (i.e., did not require any prior installations): we created standalone

Python applications and packaged and distributed them as Windows executables.

We received positive feedback on both the accuracy and user experience of the AMT

and AS tools, though we would like to continue further evaluation.

There are several future directions we would like to explore: in addition to more

evaluation of AMT and AS, we would like to partner with DAW developers and see

how we may integrate AMT and AS into their systems. We would also like to improve

on and add more features to AMT and AS, and explore other applications of these
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tools.

AMT and AS serve as proof that we can bring the worlds of music production

and DSP/MIR together to create successful, useful tools that improve the classical

music production workflow. There are additional areas in the production process to

explore: we can create more tools and use different algorithms. We are optimistic

about the possibilities and the future of such creations, and we look forward to the

community innovating and collaborating in this interdisciplinary area.
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