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Abstract

This dissertation consists of two parts. The first chapter is a study canonical forms.
The main theorem of canonical forms and apolarity reduces the question of whether a
form in an algebra is canonical to a question about apolarity. We give applications of
this theorem to tensors and skew-symmetric tensors. The chapter ends with a complete
study of the invariants and covariants of two by two by two matrices, and how these
covariants relate to known covariants of symmetric and skew-symmetric tensors.

In the second chapter we study inversion formulas for formal power series. We use
the theory of colored species to prove the plethystic Lagrange inversion formula and the
infinite variated Good’s inversion formula. These inversion formulas are shown to he
equivalent to transfer formulas in the infinite variated umbral calculus. Lastly, we give
two enumerative proofs of the plethystic Lagrange inversion formula. Chapter 2 is joint
work with Miguel Méndez.
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Introduction

Among all branches of mathematics that have developed in modern times, multilinear
algebra is the one that has had the most halting and irregular development. Already
in the nineteenth century, the total neglect of the work of Grassmann, following in the
wake of an almost equally shameful oblivion of M6bius’s barycentric calculus and even
of von Staudt’s algebra of throws (which was to be embarrassingly rediscovered as late
as the 1930’s by von Neumann), was coupled with an equally inexplicable duplication
of work under disparate headings. Thus, towards the end of the past century and in
the beginning of the present, the newly invented tensors, triumphantly unveiled by Ricci
and Levi-Civita as the saving concept of differential geometry, were inspiringly worked
upon by elite cadres of vanguardists, blissfully ignorant of the already largely devel-
oped theory of invariants, where they would have found their tensors ready and waiting
with powerfully developed techniques, though in an altogether different language. At a
more shocking level, the first two installments of the Rev. Alfred Young's “Quantitative
Substitutional Analysis” and Issai Schur’s celebrated thesis (written under Frobenius's
guidance), published exactly the same year, 1900, were not only not seen as related to
one another for some twenty years hence, but were not even noticed by differential ge-
ometers for at least another 50 years, after vector bundles and global techniques had
made representation theory a sine qua non. Perhaps the most ironic episode hetokening
this mutual ignorance of schools is a comparison between Schouten’s ponderous treatise
“Riccikalkul” and Weitzenbock’s equally ponderous “Invarianthentheorie”, hoth books

published in roughly the same period. True, the first author being a Dutch electrical



engineer by upbringing and the second an Austrian Nazi general might have prevented
their developing a convivial friendship. Yet, they both taught in the Netherlands, and
the subjects of their books can in retrospect be viewed as the same; nevertheless, little if
any mention is made of either in the other’s writings. The principal victim of this state
of affairs was classical invariant theory. We shall leave to another occasion the precise
tracing of the historical events that led to the temporary eclipse of this field, which after
the combinatorial pyrotechnics of Major McMahon, after the clamorous failure of Emmy
Noether in her thesis (written under the guidance of Paul Gordan) to determine a set
of generators for the ring of invariants of the ternary quartic (which led to a prohibi-
tion of even uttering the name “invariant” among some of Emmy Noether's disciples),
and after the profound but slightly epigonic outpour of the Scottish school, led hoth
continental and American mathematicians to the mistaken impression that the field of
invariant theory was an amusing hobby to be left in the care of British gentlemen and
reverends. The recent rebirth of the field, heralded by the finer points of representation
theory as well as by the necessities of physics (without which Young's name might well
still be a dead letter), is presently risking yet another embarrassing duplication. The
requirements of the fine-tuned theory of irreducible representations, while acknowledging
and amply making use of the newly developed powerful techniques of combinatorics, are
on the one hand skirting with a gingerly ignorance of the classical heritage, on the other,
they are reluctant to adopt the recent sweeping notational reforms of bijective combina-
torics. The present thesis situates itself at the intersection of these two relatively new
trends. While on the one hand my background is decidedly invariant- theoretic rather
than representation-theoretic, and while my language is uncompromisingly bijective, |
should like to stress the underlying unity of style as well as motivation in the differently
named sections that follow. The first section decidedly harks back to what is perhaps
the most beautiful and the least known idea of classical invariant theory, namely. apolar-
ity. In another work [E-R1] (to be published separately and not included in the present

thesis) I have given an up-to-date exposition of this concept, together with varied appli-



calions to canonical forms for ordinary polynomials in several variables. In the course
of rethinking the classical theory along contemporary lines, it occurred to me that the
concept of apolarity has a much wider scope than the one the classical theory limits it to.
In fact, I was lucky enough to be able to develop the theory of apolarity in the context
of associative but non-commutative algebras, more specifically, in the free ring. I was
thereby led to a very general result on canonical forms of polynomials in non- commuting
variables (Theorem 1 below). Luckily, the techniques I have used in the proof of this
theorem ultimately rely on calculations with Jacobians, as in the classical theory. There
are several applications of this main theorem, which I have left out. of the present. thesis
for reasons of time, but which I intend to include in a later published version. 1 only
briefly hint at some applications to commutative algebras, which go beyond the range of
the classical theory (Section 1.5). I should like to stress that the algebra of polarizations
has been extended in the present thesis in a direction which is different from the ones
previously used even with non-commutative algebras, for example, the one used by .M.
C'ohn’s thesis [Cohn] (written under the guidance of Philip Hall), and I surmise that,
much as the algebra of polarization has been effectively used in recent work in invariant
theory and Hopf algebras, the algebra of polarizations presented in the present thesis
may lend itself to further application beyond the confines of the theory of apolarity. The
second and third sections have taken up much of my efforts for a long time, and I would
like to believe that they contain permanent results. Briefly, the problem that is tackled
is the representation of tensors as sums of minimal numbers of decomposable tensors
(sometimes called the rank of a tensor, especially for skew-symmetric tensors). My main
contribution consists in relating the problem to various considerations of the theory of
block designs (or the simpler rook coverings defined in Section 1.3). Of several results
obtained, I should like to call attention to Proposition 1.2.7, perhaps the least trivial
of the lot. I should like to add that, unlike other problems in the invariant theory of
arbitrary tensors, the problems treated here do not seem to he amenable to reduction

to the commutative case, as happens for other invariant-theoretic problems relative to



general tensors. In Section 1.5 1 develop the invariant theory of binary tensors of de-
gree three. The results I obtain could be compared with those obtained in C'lebsch and
Gordan’s well-known computation of a generating set of concomitants for a ternary cu-
bic, although their results do not imply mine, nor (probably) mine theirs. Little has
heen written on this subject, and even less on its relation to classical invariant theory
of symmetric tensors. In fact, we find that our determination of the invariants of our
tensors, as well as their syzygies, implies some classical results on invariants not only of
commutative (for the binary cubic, for instance) but also of skew-symmetric tensors of
step three as well. The remaining portion of the thesis is concerned with an altogether
different problem, which, to be sure, also arose in invariant theory. It is the problem
of finding and explicitly computing an analog of the Lagrange inversion formula for the
plethystic composition of formal power series in infinitely many variables. To this end,
we have extended and adapted the language of Joyal’s theory of species. Onr start-
ing point is the notion of a c-monoid, introduced by Mendez and Yang, together with
some notions that originated in the theory of Witt vectors, namely, Verschichung and
Frobenius operators. We also use W.Y.C. Chen’s theory of plethystic trees. We give
two versions of our “Lagrange inversion formula” for plethystic composition: the first. is
decidedly bijective, and couched in the language of plethystic species already used by the
above-mentioned authors (Theorem 3); the second (Theorem 4) gives the formula in the
ordinary language of formal power series. In the following section, we provide a bijective
interpretation to an inversion formula due to I.J. Good, which may be viewed as yet
another generalization of the Lagrange inversion formula. Qur proof is entirely bijective.
This is followed with a development of an umbral calculus for plethystic composition, cul-
minating in a plethystic analog of the so-called “transfer formula” of Roman and Rota,
along lines initiated by W.Y.C. Chen; in the present treatment, the proof of the transfer
formula is made to depend on our previous work on plethystic inversion. Finally, in the
last section, we obtain several results, some new and some overlapping with the work of

Chen, on plethystic trees. In the last sections, we have provided two enumerative proofs
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of our plethystic Lagrange inversion formula, for mathematicians who prefer the classical
language of formal power series to the language of species. I very much hope that the
present thesis will contribute to the symbiosis of invariant theory and combinatorics, as

envisaged by the early workers, such as Sylvester and McMahon.

Cambridge, May 5, 1993.
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Chapter 1

Apolarity and Canonical Forms

1.1 Main theorem on apolarity and canonical forms

1.1.1 Polynomials

Define C(x1,...,x,) be the algebra of polynomials over C with non-commuting variables

:1'1,. . .,:Pn.

Definition 1.1.1 Let A be an algebra over a the field of complexr numbers C. Dcfine
A{zy,...,xn} = A% C(ay,...,2,),
where the product * is the free product of algebras. The elements of A{xy,...,x,} are

called polynomials in n variables.

We can also view A{iry,...,x,} as the smellest algebra containing the algebra A and the
variables &y,...,2n. In fact an element of A{x,,... ,&¥n} can be constructed in a finite

number of steps by the following rules.
o r; € A{xy,...,x ) for 1 <i <,

® a € A{xy,...,x,} for a € A,
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e pt+q€ A{xy,...,x,} for p,q € A{xy,..., 2.},
o p-q€ A{wy,...,x,} for p,qg € A{xy,... 20}

Hence we can prove statements about elements in A{xy,...,x,} by induction.
We will view the elements of A{ax,...,x,} as polynomials over the algebra A. Obh-
serve that a general monomial are in the form ayx;, @22, a3 - - 4,0, @1 In fact we can

evaluate the values of such a polynomial.

Lemma 1.1.1 Let B an an algebra that contains the algebra A. Then there is an unique
evaluation map, denoted by eval, from A{xy,...,x,} xB" to B such that for(b,,...,b,) €
B’l

o eval(x;; by,...,b,) = b;,
o eval(a; by,...,b,) = a,
o eval(-; by,...,b,) is an algebra homomorphism from A{x,,...,x,} to B.
This lemma follows from the definition of the free product. To avoid confusion we will

sometimes write eval (p; ay « by,...,x, « b,) instead of eval (p; by,...,b,).

1.1.2 Polarizations and Apolarity

Definition 1.1.2 A polarization D, , is a linear map from the algebra A{xy,...,x,} to
the algebra A{t,x,,...,2,}, that satisfies

o D, (a)=0 forac€ A,
® Dg',-'-(:l',') =1,
® Dyp(x;) =0 forj #1,

® Dir(p-q)=Diri(p)-q+p- Dis(q).

13



Since the algebra A{y} has the algebra A as subalgebra, an expression in the form
eval (p; q) makes sense and is in A{y}, where p € A{x}. and ¢ € A{y}. Thus we have

the following chain rule.

Proposition 1.1.2 Let p € A{x} and q € A{y}

D,eval (p; v «— q) = eval (Dyp; t & Dyyq,x — q).

Proof: The proof is by induction on p.

e p = a € A. Both sides vanish

D, eval(a; & — q) = Dyya =0,

eval(Dyza; t & Dy q,v — q) =eval(0; @ «— D, q,t «— ¢q) = 0.

~

*p

D,yeval(z; x —q) = Dyyuq
= eval(t; t « D,y q,2 « q)

= eval(Dypr; t — D, yq,v « q),

and thus they are equal.
e p=r+s, where r,s € A{z}.
D,y eval(r+3s; ¢ «—q) = Dygeval(r; x « q)+ Dyyeval(s; v « q)

= eval(Dy.r; t «— Dyyq,0 —q)+

+eval (D85 t — Dy, q,0 — q)

eval (Dyo(r+8); t — Dyyq,0 —q).

14



o p=r-s, where r,s € A{x}.

Dyyeval(r-s; & «¢q) = D,,(eval(r; x « q)-eval(s; x « ¢))
= Dyy(eval(r; x « q))-eval(s; r — ¢)+
+eval (r; o « q) - D, (eval(s; & « q))
= eval(Dy.r; t — D, ,q,2 « q)-eval(s; & « ¢) +
+eval (r; @ « q)-eval (Dy 8; t — D, q,2 «— ¢)
= eval(Dy(r)-8;t « Dy q. 0 «q)+
t+eval (r - Dye(s); t — Dyygyt — q)
= eval(Dyz(r) - s+1-Dyr(8); t &« Dyyq, v — q)
= eval(Dy (r-s);t — D, q,2 «q).

We have also have the following chain rule for polarizations.
Proposition 1.1.8 Let p € A{x} and let ¢ be a differentiable function from C to B,

where B is an algebra that contains A as a subalgebra.

%ev&l (p; d(a)) = eval (D, .p; ¢'(a),d(a)).

Proof: The proof is by induction on p.

® p=a € A. Both sides vanish

—a—eval(a; #(a)) = —a—a =0,

da da
eval (D a; ¢'(a), d(a)) = eval (0; ¢'(a), ¢(a)) = 0.

15



o p=u.
seval (z; 9(a0) = A-d(e) = d(a),
eval (Dyei; (), 8(a)) = eval (15 (e, 8(a)) = '(a),

and thus they are equal.

® p=gq+r, where q,r € A{x}.

3% (eval(p; é(a)) + eval(q; ¢(a)))

b%eval (p+4q; é(a))

= -eval(p; 8(a)) + peeval (g5 $la))
= eval(Dy.p; ¢'(a),d(a)) + eval (Dy.q; ¢'(a), d(a))
= eval(Di.p + Di2q; ¢'(), ¢(e))

= eval(Diz(p+q); ¢'(a), d(a)).
e p=gq-r, where q,r € A{z}.

oeval (p-g; (@) = o (eval (p; $(a))-eval (g; 4(c)))

= 2 (eval(p; ¢(a))) - eval (g5 6(0)

+eval (p; é(e))- 6—8& (eval (¢; ¢(a)))
= eval (Dy(p); #'(a), $(a)) - eval (¢ b(a))
+eval (p; ¢(a)) - eval (D, (q); ¢'(a), p(a))
eval (Di.(p) - ¢; ¢'(a), $()) +
teval (p- Diz(q); ¢'(a), ¢(a))
= eval(Diz(p) - q+p- Diz(q); ¢'(a), d(r))
= eval(Di(p-q); ¢'(a),d(a)).

16



Similarly we can prove the more general chain rule.

Proposition 1.1.4 Let p € A{xy,...,x,} and let ¢; be a differentiable function from C

to B fori=1,...,n, where B is an algebra that has A as a subalgebra.

"'a_eva'l (P; ¢l(a)a sesy ¢n(a)) = Zeval (Dt.:r.‘p; (/):(0), ¢l(a)s LRI ¢n((\')) .

O i=1

Lemma 1.1.5 Let B be an algcbra that has A as a subalgebra. Let p € A{wy,...,x,})
and let by,...,b, € B. Then the following map from B to B is linear

y+—eval(Dez,p; ¥y, bry. .., 0,).

Proof: The proof is by induction on p.

e p=a € A. Then D, ,,p =0, so the map is the zero map, which is linear.

o p=uxj. Then Dy, ,p = 6;;t. So y — 6; jy, which is linear.

® p=gq+r, where ¢,r € A{xy,...,,}.

eval (Diri(g+7); y,b1,...,0,) = eval(Dyr,(q) + Dey(): ¥, b1y...,0y)
= eval(Dy(q); ¥, b1,...,00) +
+eval (D (1) ¥, b1y ..., by),
and the sum of to linear maps is linear.

e p=gq-r, where ¢,r € A{xy,...,2,}.

eval (Dg,,,(q . 7') v Yy bla oo 1bn)

17



= eval (Dyz(q)-r+q-Diri(r); y,byy...,0,)

= eval(Desr(q) 75 9,br,...,b0) +
+eval (g Dir,(r); ¥, b1,. .., 0,)

= eval (D¢(9); ¥, b1y...,by) - eval(r; by,...,0,) +
+eval (¢; by,...,b,) - eval (Dyr;(7); v, by,...,0,).

The above expression is a linear combination of two linear maps, thus it is a linear

map.

Definition 1.1.3 Let A and B be algebras over the field C such that A is a subalgebra
of B. An element p € A{xy,...,x,} is homogeneous with respect to the linear spaces
VoW, ..., W,, where these linear spaces are finite dimensional subspaces of B, if for all

wy € Wy,...,w, € W, we have that eval (p; w,,...,w,) € V.

Lemma 1.1.8 Assume that the polynomial p € A{xy,...,x,} is homogeneous with re-
spect to the linear spaces V, Wy, ..., W, then the polynomial D, .,(p) is homogenecous with

respect to the linear spaces V,W; Wy,..., W,.

Proof: Since p is homogeneous with respect to the linear spaces V, W1,..., W,, we know

that the following element lies in V:
eval (p; wy,...,w;+a-w,...,w,),

where a € C, w € W;, and w; € W for j = 1,...,s. Consider the above expression as
a function of . The derivative of this function in variable a will also take values in V',

By Proposition 1.1.3 the derivative is equal to

—eval (p; wy,...,wi+a-w,...,w,)

da
18



0
= eval (Dt,x.'p; b—(;(w.- +a-w),w,...,wi+a-w,..., w,)

= eval(Dyg,p; wywy,...,0i+a-w,...,w,).

Now by letting a = 0 the result will follow. O

Definition 1.1.4 Let V and W be finite dimensional linear spaces. Let f+W =V,
and let L € V*. We say that f is apolar to L relative to W if for all w € W

(L] f(w)) =o.

1.1.3 Main Theorem

Definition 1.1.5 Let V be a finite dimensional linear space. We say thal a generic
element v € V' has a property P, if the set of all elements in V' that has this property

Jorm a dense set in V', where V has the Euclidean topology.

Theorem 1 Let V,Wy,..., W, be finite dimensional linear subspaces of the algebra A.

r

Let p in A{wy,...,2,} be homogeneous with respect to the linear spaces V,W,,... W,.

A generic element v € V can be written in the form
v=-eval(p; wy,...,w,)

Jor some w,,...,w, if and only if there exist wi,...,w, se that there is no nonzero dual

element in V* which is apolar to the linear map

. ' '
y; — eval (Dg‘,,p, Yi Wy, ... ,w‘)

relative to W, for all 1 < j < s.

Observe that Lemma 1.1.5 shows that the map y; +— eval (D,,,.,p; y,-,w{,....wf,) is

linear, and that Lemma 1.1.6 guarantees that it maps the linear space W; into V.

19



To be able to prove the theorem, we need the two following propositions, which we
state without proof. Let C(xy,...,2,) be the field of all algebraically functions in the

variables xy,...,x,.

Proposition 1.1.7 Let py(t1,...,39)s. . Pr(®1,...,%9) € C(X1,... ), where r < ¢.

Then the algebraic functions p,,...,p, are algebraically independent if and only if the

matrix
(3)
973/ 1gigragica
has full rank.
Proposition 1.1.8 Let py(x1,...,8q), ..., pr(1,...,2q) € C(y,...,2q), where r < g.
Let P : C? — C" be defined by
P(xy,...,2q) = (P11, -3 Tg)y ooy Pr(Tyy ..oy g)).

Then the algebraic functions py,...,p, are algebraically independent if and only if the

range of the map P is dense in C.

Proof of Theorem 1: Let d = dim(V) and d; = dim(W}) for j = 1,...,s. Choose
a bases for V', say uy,...,uq and a bases for W, say z;i,...,24,. Thus an element

w; € W; can be written in the form
dJ
W =Y &izji

i=1

where a;; € C. We will call the coefficients «;; parameters. Let
Par = {(j,i) : 1<j<s 1<i<d).

Thus a parameter is on the form a; where k € Par. Observe that the number of param-

eters is [Par| =dy +--- + d,.

20



Assume that a generic element v = ¥, Biu; of V' can be written in the form
p(wy,...,w,). By counting coefficients on the left hand side and parameters on the
right hand side, we obtain the inequality d < |Par| =d, + .-+ + d,.

Expand

i=1 =1

dy d,
eval (p; wy,...,w,) = eval (p; Za,,;zl,;, ceey Z n',,,-z,'.-)

into the bases u,,...,uq. That is, we write

s d d, d
v= Z Pit; = eval (p; Z 01,0210y ,Za,,.-z,,.-) = Z; @i (k) 1epay i-
=

i=1 i=1 i=1

We obtain d identities

pi= b (ak)kep" .

We view the coefficients j3; as polynomials in parameters.

Consider the map ® : CP* — ¢ defined by

® ((ak)kep.r) = (¢: (ak)"ep")lgigd )

where the coordinates of CP* are indexed by the set Par.
The assumption is that the range of the map ® is dense in C?. By Proposition 1.1.8

we infer that the d polynomials ¢; are algebraically independent. Hence, by Proposi-

d¢; )
—_t (1.1)
(a“k 1<i<d,kePar

has full rank, where the rows are indexed by ¢ and the columns by the set Par.

tion 1.1.7, the matrix

Since the matrix (1.1) has full rank, we can choose values for the parameters such

that the matrix (1.1) still has full rank. Denote these values we choose for the parameters
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by 4« for k € Par. Let

d;
’
u"j = Z 7j1izj)‘°

i=1

Thus w; € W;. Thus the matrix

(81,
3ak am=Tm/ 1<i<d,k€Par

Because the matrix (1.1) has full rank, the columns of the matrix span the linear

has full rank.
space €%, But C? is canonically isomorphic to V. In particular, via this isomorphism we

o8 o0, _ 00
(ao‘k) 1<i<d Z a"k " O’

=1

get

Thus, the elements

2
aak am=Tm
span the linear space V.
Hence there is no nonzero functional L € V* such that
l dv —0
aak am—-‘Ym

for all k € Par.
Each of the parameters will only occur in one of the vectors w, ..., w,. The parameter
«;j; occurs only in w;. In particular, we have

Ow;

] 41 i
Oa;,; '

Hence by the chain rule, Proposition 1.1.4, we conclude that

g 8
aa,-,,- - 6a,~,.-

eval (p; wy,...,w,)
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daji

= eval (Dg,,,,p; ZjiyWiye ..y w,) .

Ow:
= eval(D,,x,p; w",wl,...,w,)

QObserve that

] ’
eval Dy r;p; zjiW1,y... W, =eval (D, p; zji Wiy oo ).
7 3

oOm=TYm

Thus we can write our condition as follows: there is no nonzero functional L € V'* such
that
(L |eval (Dt,,Jp; Zjiy Wiy - -+ s wi)) =0

forall 1 <j <sand 1l <1i<dj. Observe that the above expression is linear in z;; and
recall that the elements z;,,..., 24, form a bases for W;. Hence the statement above is

equivalent to that there is no nonzero functional L € V* such that

(L |eval (Dt,,,p; Yis Wiy .,wi)) =0

for all 1 < j < s and for all y; € W;.

Thus we have proven that there is no nonzero element in V* apolar to all the maps
! ’
yj — eval (Dg,,,.p; YirWyyeons w,)

relative to W; for j = 1,...,s. This provides us with half the proof.
To prove the second part, all we need to do is trace the equivalences above in opposite

direction. Hence assume that there is no nonzero element in V* apolar to all the maps

. ’ '
y; — eval (D,,,jp, YirWyyeny w,)
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relative to W; for j = 1,...,s. This implies that the elements
eval (Dt,,,. D} ZjisWyyeo s w',) ,

where 1 < j < s and 1 < ¢ < dj, span the linear space V. Hence d; + - - - + d, elements

span a linear space of dimension d. Thus
d<di+---+d,. (1.2)

By identities above, we can rewrite the above elements, and by using the canonical

isomorphism hetween V and C? we get that the matrix

(21,
Oay am=Ym/ 1<i<d,k€Par

has rank d. The inequality (1.2) implies that the above matrix has full rank. Thus the

@
day 1<i<d,k€Par

where we remove the values of the 3’s cannot have lower rank. But the rank can not

matrix

b

increase so the last matrix has also full rank.
By Proposition 1.1.7 we know that the polynomials ¢,,..., ¢4 are algebraically inde-
pendent. Proposition 1.1.8 implies that the range of the map ® : cP2* — C is dense.

But this is equivalent to the second implication of the theorem. O
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1.2 Multi dimensional matrices

1.2.1 Rook coverings

Let Ay,..., A, be a finite sets. Let A; x --- x A, be the Cartesian product of these sets.

That is,
Ay X oo x Ap = {(a1,...,ap) @ a1 € Ay,...,a, € A,}.

Definition 1.2.1 4 rook covering of Ay X --- X A, is a subset R of Ay x --- X A, such
that for all (a,,...,a,) in Ay X --- x A, there exist (ry,...,1,) € R such that (¢,,...,a,)

and (ry,...,1,) differ in at most one place. That is,

{t : ai#nr} <1

We call a rook covering R exact if for all (ay,...,a,) € Ay X -+ X A, there exists a

unique (ry,...,rn) € R with the above conditions.

Let d;,...,d, be integers. We will say that there is a rook covering of dy x --- x d,, of
cardinality N, if there a is rook covering of A, x --- x A, of cardinality N, where A; has
sized; fori=1,...,n.

We are interested in finding rook coverings R, where the cardinality of R is as small
as possible. Since each rook covers dy + :-- + d,, — n + 1 elements, the cardinality of a

rook covering is at least

dy - dy
i+ +d,—n+1

|R| >

This bound is an equality if the rook covering is exact.
Trivially we have that there is a rook covering of d of size 1, and this is best possible.

Just place the rook arbitrarily.

Lemma 1.2.1 The smallest rook covering of di x dy has size min(dy, d;).
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Proof: Let A; = {1,...,d;}. Then the following is a rook covering of A, x A,.
{(k,k) : 1 £k < min(dy,dz)}.

To show that it is minimal, assume that there is a rook covering with size less than
min(dy,d;). Then there is a row that do not contain a rook, and there is a column that
do not contain a rook. The intersection of this row and this column is an element not

covered by R, thus leading to contradiction. O

Lemma 1.2.2 [f there is a rook covering of dy X -+ - X d,, using N rooks, there is a rook

covering of d X dy x --- x d,, usingd- N rooks.

Proof: Assume that R is a rook covering of A; x---x A,. Then A x R is a rook covering
of Ax Ay x---xA,. O

Proposition 1.2.3 There is a rook covering of d x d x d using N rooks, where

L.d& if d is even,
N =
%.(dz-q-l) if d is even.

Moveover, this is the minimal cardinality of such rook coverings.

Proof: Let b = (4], and ¢ = [§]. Thus b+ c = d, and ¢ — b < 1. Observe that
N=0b+c Let B={1,...,b},C ={b+1,...,d}, and A = {1,...,d}. We claim that

the following set is a rook covering of A3.

R = {(;v,y,z)633 tx+y+:=0 (mod b)}U
U{(m,y,z)€C3 tr+y+2=0 (modc)}.
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It is easy to see this claim, since given three numbers belonging to the set A, two of them
belong to the same set B or C.
To see that N is the minimal cardinality of a rook covering, consider a rook covering

R. Let S be a maximal subset of A% subject to the following two conditions.
e (S x A)N R =0. That is, for all rooks (z,y,2) € R we have that (x,y) € S.

" e S is a partial permutation. That is, let (,y),(x',y’) € S. Then the following two
y

implicationshold r = ¢’ = y=y',and y =y = 2 = 2'.

Let |S| = m. Consider the two projections of S to first and second coordinate. That
is, X = {r € A : thereisay € Asuchthat(z,y) € S}, and ¥ = {y € A
there is a € A such that (x,y) € §}. Consider the following partition of the set A3

into three disjoints parts

E = XxY xA,
F = Xx(A-Y)xAU(A-X)xY x A,
G = (A-X)x(A=-Y)x A

Let €, f, g be the number of rooks in each of these subsets.

Since S is maximal, we know that for all x € A— X and for all y € A —Y" there exists
z € A such that (x,y,z) € R, since otherwise we could extend the set S with the pair
(x,y). Hence the set G contains at least (d — m)? rooks. Thus g > (d — m)>.

Let (,y) € S. Assume there exist u € A — X such that there is no = € A satisfying
(u,y,z) € R. Assume similarly that there exist v € A — ¥ such that there is no rook at

(,v, z). This leads to contradiction since

S — {(w,y)} U {(m,v),(u,y)}
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is larger than S, and thus S is not maximal. Hence we conclude that there are at least

d — m rooks in the set
{r} x (A-Y)x AU(A-X) x {y} x A.

By summing over all (z,y) € S we conclude that f > m - (d — m).

A rook in E can cover at most two elements in the set $ x A. Similarly a rook in F
can cover only one element of S x A. Since every element of § x A C A? is covered by
some rook, we conclude that md < 2e + f.

Now we have that

Aet+f) = (2e+)+f
> md+m-(d—m)=2md - m?

Thus the number of rooks in A3 is

e+f+g > md—%-m2+(d—m)2
= d’—md+%-m2

1, 1 e
= =+ (d=m)*>=-d
2¢f’+2 (d—m) 23 d
Since [ : -d‘] = N, the proof is complete. O

From [Ro] we have the following proposition

Proposition 1.2.4 For n > 2 a rook covering of d* = d x --- x d has at least %

elements. This lower bound cannot be attained unless d is divisible by n — 1.

Proposition 1.2.5 If there is a rook covering of d* using N rooks, then there is rook

covering of (c- d)" using c*~! - N rooks.
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Proof: Let A be a set of size d and let C = {1,...,c}. Let R be rook covering of A",
Consider the set (A x C)" and consider the subset R’ of (A x C)" defined as follows.

{((ar,21),... o (Gny0)) E(AX C)" (@n,...,an) ER &y + -+, =0 (mod )} .

It is a direct verification that R’ is rook covering of cardinality ¢c*~' . N, O

Proposition 1.2.8 Let q be a prime power, and let k be a positive integer. Let

k—
n=1 !
q-1
Then there is a perfect rook covering of
"=gx---Xxq
Novm— v——

of size g%,

Proof: Observe that a perfect rook covering of ¢ can be viewed as a error correcting
code that corrects one error. Example of such error correcting codes are Hamming codes,

and they exists under the above conditions [Lint]. O

This result and its proof was already pointed out in [Lo].

The two smallest examples of this proposition are:
® 2 rooks cover 28 =2 x 2 x 2,
® 9 rooks cover 3* =3 x3 x 3 x 3.

In general to find a minimal rook covering is hard. In the case of of 3° = 3x3x 3 x3x 3

one can easily find a rook covering that has 27 rooks. In fact, such a covering is minimal
[K-L]. Other references on this problem are [Bl-Lam], [F-R], [We] and [Wi].
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1.2.2 Multi dimensional matrices

Let U/ be a linear space over the complex numbers. We define the tensor algebra Tens|l/)
to be
Tens[U) = @ U®",

n>0

where /% = C, and U®"*! = U @ U®". The multiplication on Tens[l’] is defined by
(hQ - Qu) (@ Qu)) =1 @ Qui Quy @+-- O u,

and extended by linearity.
Let W),..., W, be finite dimensional linear subspaces of {/, where W; has dimension
d;. Let zj,,...,2;4, be a basis for W;. Observe now that the linear space of matrices of

size dy x --- x d, is isomorphic to to the space W; @ --- @ W, by the linear map

A[ = (nlil.....l" )lsi‘sd‘ '""ls‘lsdl — Z ml’l,....l‘.zlﬂ.] @ e G) .‘5’.,.‘,-
1<y <dy,..,1<0,<ds

Definition 1.2.2 An element v in the linear space W, @ --- @ W, has rank k if the k is
the smallest integer m such that there ezists y;; € W, for 1 < j<sand1 <i < m such
that
m
v= Z!h.i@ © 0 @ Yayie

i=1

This definition of rank agrees with the ordinary rank of two dimensional matrices.

Definition 1.2.3 The linear space W, @ --- @ W, has essential rank k if the k is the
smallest integer m such that the set of elements v in Wy @ --- @ W, of rank at most m

Jorm a dense set in the Euclidean topology.

Observe that the maximal rank of W; @ --- @ W, might be different from the essential
rank of Wy @ -.- @ W,. That it can be so, we will see in Section 1.5 about 2 x 2 x 2

matrices.
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1.2.3 Essential rank and rook coverings

Theorem 2 Let W; be linear spaces of dimension d;. If there is rook covering of d, x
-+« x d, of cardinality N, then the essential rank of V = W, O .-- O W, is less than or
equal to N.

Proof: Let zj,,...,2j4, be a basis for W;. Similarly let zj,,...,2}, be a the dual basis
for W;. That is (z;',- | z,-,;,) = éix. Let U be a linear space which contains H',..., ¥, as
subspaces. Then Tens[’] is an algebra, where W,,...,W, and V are linear subspaces.

Clearly the polynomial
N
P=3 Tiit T4,

i=1

inC{wg1, .0y LNy ooy Tay. .-, TN } i8 homogeneous with respect to V, Wy, ... W, ...,
w

v » N
"'i‘g ooy "».-
evt— —

N
In the language of Theorem 1 we would like to show that any generic element of 1’

can be written in the form
eval (p; Wy g,... W Ny Wotye-eyWeN), (1.3)

where w;; € W;. By Theorem 1 we would like to show that there exist w}; € W for
J=1,...,sand i =1,..., N such that there is no nonzero dual element L € \'* apolar

to all the linear maps
yji — eval (Dt,,j',.p; Yiis W] 450 e ey w;'N) , (1.1)
where y;; € W;. But the polarization computes to

RN TP ' !
ngl. — (‘V&l (Tl.] M 'a‘j_l"‘ * t M ;rj.'.l‘g LN | 8,0 y],l’ lL‘l'l, “eey lva'N)

—1 ' LI ) 'v . AU ] l * 0 o | ,
= u’l"' u’l_l" y)" u'j+l"‘ u”"'.

Let A; be the set {1,...,d;}. Let R be a rook covering of A; x - -- x A, of cardinality

31



R. Thus let
R= {(7‘1,,’,...,1‘,'.‘) S | Si S N}

Choose wj; = z;j, .
Since we only have finite dimensional linear spaces, we know that the dual of a tensor

product is the tensor product of the duals. That is,
Vi=WS®:---QW,.

Assume that L in V* is apolar to all the linear maps in (1.4). We can write the dual

element L in terms of the dual basis.

L= 3 Birywin 21, @+ @ 23,4,
(6110e0is) €A X X A,
Consider an element (¢y,...,7,) € A; x --- x A,. Since R is a rook covering, there is an
element (ry4,...,7,%) € R that only differ in at most one coordinate from (T1y-e.y1s).
Let the coordinate where (i,...,i,) and (r1,ks--.y7sx) differ be j. If they are the
same, choose j arbitrary. Thus we know that L is apolar to the linear map Yik +

Fhrantt Zimlirsan  Yik * Zilirigas 0t 2, Let yix take the value of z;; . Hence

0 = <L l B AR KPR X PRS2 S OURAL z’;"a,k)
= <L I 216y 0 Zj=14i5m * G Zitlyii4r 0t Zo,i.)

= ﬂ‘l '"'v'.l *

We conclude that all coefficients of L vanish. Thus we know that L = 6. Theorem 1
implies that any generic element of V can be written in the form (1.3). Thus the linear

space V = W, @ --- @ W, has essential rank less than or equal to N. O

Corollary 1.2.1 Let W, and W; be two linear space of dimensions dy and d;. Then the
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linear spacce Wy © W, has essential rank min(d,,d;).

Proof: By Lemma 1.2.1 we know that the essential rank of W)W, is at most min(d,, dy).
Let us assume that that the essential rank is less than min(dy,d3) in order to reach a
contradiction. That implies that a generic element of Wy & Wy can be written in the
form

k
Z wy i © Wi,

i=]
where w;; € W; and k < min(d,, d;).
By Theorem 1 we know that we can find elements w;; € Wifor j = 1,2 and i =

1,...,k such that there is no nonzero L € Wy @ W; apolar to all the maps
t—tQuw;; andtr— w; O1.

Since W; has dimension greater than k, we can find a nonzero element, y; € W} such
that <yj I w}.,-) =0foralli=1,...,k Thus y, @y, is a nonzero element in (W) o W))~.
It is easy to see that y; @ y; is apolar to all the maps above, which leads us to the desired

contradiction. O

Corollary 1.2.2 Let W be a linear space of dimension d. Then W3 has esseatial rank

less than or equal than [ i;—]

Corollary 1.2.3 Let W be a linear space of dimension q, where ¢ is a prime power. Let
k be a positive integer, and
¢“ -1

n=-——

g-1"
Then WO has essential rank less than or equal than ¢q"~*,

Analogously to Proposition 1.2.5 we have that

Proposition 1.2.7 Let W and U be linear spaces. If the linear space W®* has cssential
rank N, then the linear space (W @ U )®* has essential rank at most d*=' - N, where d is

the dimension of U,
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Proof: We know that a generic element of W®* can be written in the form

N
Zwl.i @ Qw,,.

By Theorem 1 this canonical form implies that there exist wi,1<j<sand1 <i<N,

such that there is no nonzero element in (W®*)* apolar to all the maps
i w0 @ Bt B B,

where t;; € W.
Let z1,...,2, be a basis of W, and let zj,...,z5 be the dual basis of W*. Civen
L € (W®?)*, which we can expand as

L= 3 Biyynie?i, @+ @ 25,
(51,.-r8s)E{1,...,n}°

Thus we know that for all (iy,...,%4) € {1,...,n}* there exist y;; € W for 1 < j < s
and 1 <1t < N, such that

s N
<[’ ) Yu;® - ®yi®-® w:,.-) = Biy,is-

J=1i=1

This can also be written as

s N
ZZw;'i®...®yj'i®...®w:".=z.-l®...®zi'. (]‘5)
J=1i=1
Let uy,...,uq be a basis of U/. Consider the following subset of {1,...,d}’.

P={(p,....0.) €{1,...,d}* : pp+---+p, =0 (mod d)}.

The cardinality of P is d*~!. Define the elements w;p EWQU, where j = 1,...,5,
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t=1,...,N,and p € P, by

’ ’
uj'."p = wJ-"' ® u,,,.

Thus there are s- N . d*=! such elements. Consider now the linear maps
tj|ivp A u’l,l',p @0 tj'l.'p @O ul.""py ( I.(i)

where tj;p € W @ U. We would like to show that there is no nonzero element in
((WaU)®)" apolar to all the maps above. It is sufficient to prove the equivalent
statement that the images of the maps above span the linear space (W ¢ U/ )22, Choose
(415...,1,) € {1,...,n}* and (q1,...,q,) € {1,...,d}*. They correspond to the hasis
element

(i Qug) Q- ® (2, Q uy,)

of (W @U)®*. As observed before, we can find yii€EWiorl1<j<sandl <i<N,
such that equation (1.5) is satisfied. Let p’ be the element of P such that

pi = a if k # j,
i =
%—(@+--+¢) (modd) ifk=j.

Thus q and p’ only differ in the jth coordinate. Let
9ii = ;i ® ug,.

The element hip @ OYig® - ® u, ; n; lies in the image of one maps in (1.6).

C'onsider now the sum of such elements.

N o
2D Uip @ BYig @@ Uy ips

=1 j=1

N a
= ZZ (w;,,- ®up{) Q- Q (yj.i ®u¢1) Q-0 (w;',- © "Pi)

i=1 j=1
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= f:i (“’;..' @ “q.) @0 (yj,.' © u.,,) Q-0 (w:,,- () u.,,) .

i=m} jm=1
Observe that the two linear spaces (W @ U)®* and W®* @ U®* are naturally isomorphic.
Let ® be this isomorphism, that is, ® : W®* @ U®* — (W @ U)®*. We can view ¥ as a

reordering of the terms. Now, the above element in (W © U)®* can he written as

N o
’():Zwi.e@"-®w..'®-~®w1..-®uq,®~-®u,,®~--@u,,,)

im] jml

N
= ’((22“’5.;@“'®w.-'®°-°®wﬂ,.-) O uq, ®'--®u,,)

im] jml

= ®(2;,0:®2,Qu, ® - Quy,)
(2i, Qug, ) ® - @ (2, Quy,).

But this is the basis element we chose. Hence we conclude that the images of the linear

maps (1.6) span (W @ U)®*. O

1.3 Skew-symmetric tensors

1.3.1 Skew-symmetric tensors and rank
Let W be a linear space and let Ext(W) be the exterior algebra of W. Recall that the

exterior algebra is graded, thus we can write

Ext(W) = @) Ext,(W),

820

where Ext,(W) are the skew-symmetric tensor of step s.
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Definition 1.8.1 An element v in the linear space Ext,(W) has rank k if the k is the
smallest integer m such that there ezists y;; € W for 1 < j < s and 1 <i < m such that

m
v=zyl.i/\'”/\yc.io

i=1

Definition 1.8.2 The linear space Ext,(W) has essential rank k if the k is the smallest
integer m such that the set of elements v in Ext,(W) that has rank less or equal to m

Jorm a dense set in the Euclidean topology.

Observe that the maximal rank of Ext,(W) might be different from the essential rank of
Ext,(W).

Proposition 1.3.1 Let dim(W) = n. Then the essential rank of Exty(W) is equal to
N =13

Proof: Let 2y,...,2, be a basis for W. Similarly let z7,..., 2 be a the dual basis for
W*. That is (2} | z) = é;x. The polynomial

N
p= Z T1,iT2,4,

=1
in C{xy,,...,22,n} is homogeneous with respect to V, W,..., W in the exterior algebra.
N s

2.N
We would like to show that any generic element of V' can be written in the form

eval (p; wy1,..., W1 Ny W21,...,WaN), (1.7)

where w;; € W. Thus by Theorem 1 we would like to show that there exist w); € W’ for
J=1,2and ¢ =1,...,N such that there is no nonzero dual element L € V'* apolar to

all the linear maps
yji — eval (Dg,,”.p; Yiir Wy g+ -+ wQ'N) . (1.8)
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where y;; € W. But the polarization computes to

U /
%, +— eval (t “Z245 Yiis Wy gseee, w,'N)

= yiAwy,

for j = 1. Similarly for j = 2 we get y,; — wi; A ya,i
Let w}; = zj42i-1), for j =1,2,and i =1,..., N.

Since W is a finite dimensional linear space, we know that
V* = Exta(W*).

Assume that L in V* is apolar to all the linear maps in (1.8). We can write the dual

element L in terms of the dual basis.

L= ¥ BptAz

1<p<g<n

Consider a pair {p, g}, such that p < ¢. Since p < g<n,wehavethat 1 <p<2.N. We
can writep=k+2-(i — 1), where 1 < k <2 and 1 <i < N. Now consider the map for

j =3~k and for this value of i, and with y;; = 2,. If j = 1 the computation looks like

(L [ )

(L | zq A zp)

= "ﬂm'

Similarly for j = 2 we get (L Iw;" A yg,;) = Bp,g- The dual element L is apolar to this
map, we get that 3,, = 0. Since p and q is arbitrarily, we have proven that L = 0.
Theorem 1 implies that any generic element of V can be written in the form (1.7). Thus

the linear space V = Exty(W) has essential rank less than or equal to N, O

In fact, one can also show that the maximal rank of Exty(W) is equal to |2].
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1.3.2 Essential rank of skew-symmetric tensors of step 3

For a set A define the set (‘:) to be the set of all subsets of A of cardinality k. This

notation is analog to the notation of the binomial coefficient, since |(j:)| = ('t').

Definition 1.8.3 A Steiner triple system on a non-empty set A is a subset S of (:)
such that for all pairs P € (’;) there is a unique triple Q € S such that P C Q.

Proposition 1.3.2 A necessary and sufficient condition for a Steiner triple system lo

exist on a set A of cardinality n is that n = 1,3 mod 6.

It is easy to see that the condition that n = 1,3 mod 6 is a necessary condition for a
Steiner triple system to exist on a set of cardinality n. Observe also that the size of a

Steiner triple system is % - (’,‘) = ol

Proposition 1.3.3 If there is Steiner triple systems of order n and m, then there is

Steiner triple systems of order n - m.

This proposition could be directly proven by Proposition 1.3.2. But one can construct a
triple system on a n - m set, by using the triple systems on the n set and the m set, see

[Ry] Chapter 8, Theorem 1.2.

Proposition 1.3.4 Let W be a linear spaces of dimension n + m. If there is Steiner

triple system on a n-set and on a m-set, then the essential rank of V = Exts(WV) is less

than or equal to N = "'("‘U?"(m—l) .

Proof: Let z,...,2,4m be a basis for W. Similarly let 215y Znem e a the dual basis

for W*. That is (z} | zx) = 6; . Clearly the polynomial

N
p= Z T1,iT2,iT3,i,

i=1

in C'{iry,...,23,n} is homogeneous with respect to V, W,..., W in the exterior algebra.
N
3.
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We would like to show that any generic element of V' can he written in the form

eval (p; Wy lyeeoyWINyooo W31y .. ,wa'N) N (1.9)

where w;; € W. Thus by Theorem 1 we would like to show that there exist w; € W for
J=12,3and i =1,...,N such that there is no nonzero dual element L € V/* apolar to

all the linear maps
Yji —— eval (Df.t,'.ip; Ysiis wi,u vy w:'s.N) ' (1.10)
where y;; € W. But the polarization computes to

. 33 ' '
Yi,i — eval (t * X2, T3,i5 Yy wm, ceey wa'N)

= YA w;,i A w:’s,b
for j = 1. Similarly for j = 2 and j = 3 we get

/ /
yz,i wl,i A yz’i A ws,l"

Ysi —— wi; Awy; Ays

Let S be a Steiner triple system on the set {1,...,n} and let S; be a Steiner triple
system on the set {n + 1,...,n + m}. For i = 1,2, let N; = |S;|. Thus we have that

N; + N; = N. Assume that we can write

S1 = {{ari a2, 03,3} izt vy 82 = {{anis a2, 3,3} Yizpy 41, N, 48,

where @,; < a3; < a3;. Let
, —
Wii = Za,,s

for j=1,2,3,andi =1,...,N.
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Since W is a finite dimensional linear space, we know that
V* = Exta(W").

Assume that L in V* is apolar to all the linear maps in (1.10). We can write the dual

element L in terms of the dual basis.

L= 3 Bparzy A2y A 2.
1<p<g<r<n4m
Consider a triplet {p,q,r}, such that p < ¢ < r. Either g<norgq2>n+1l. The
two case are similar, thus with out loss of generality we can assume that ¢ < n. Thus
{p.q} € ({"’;‘"}). Since Sy is a Steiner triple system there exist s € {1,...,n} such that
{r.q,s} € S. Say that {p, 9,8} = {a1,,02,,a3;} for some i = 1,...,N;. So s = a;,; for
some j = 1,2,3. Since these three cases are similar, we can assume that J =3. Thus
we know that L is apolar to the linear map y3; — Zay; N Zay; A y3,i. Hence, by letting

Y3, = 2., we get

0 = (L

2ay; N 2g, A z,)
= (L|2pAzgAz,)
= ﬂpqur'

We conclude that all coefficients of L vanish. Thus we know that L = 0. Theorem 1
implies that any generic element of V can be written in the form (1.9). Thus the linear

space V = Exta(W) has essential rank less than or equal to N. O

Corollary 1.3.1 Let im(W) = n. Ifn = 2,6 mod 12 then the essential rank of

Ext3(W) is less than or equal to "—‘f.le
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Proof: Since § = 1,3 mod 6, and by previous proposition, the essential rank of Exts(1}')

is less than or equal to

Corollary 1.8.2 Let dim(W) = n. Ifn =4 mod 12 then the essential rank of Exta(W)
is less than or equal to ”—("—1‘23)4"4

Proof: Since 2 = 2 mod 6. Observe that 7—1=1mod6, and % +1 =3 mod 6. Thus

by previous proposition, the essential rank of Exts(W) is less than or equal to

Qz‘._l).(-'ii—2)+(§+l)-§=n-(n-—2)+4
6 12 '

Corollary 1.8.3 Let dim(W) = n. Ifn = 0,8 mod 12 then the essential rank of

Exta(W) is less than or equal to w

Proof: Since 3 = 0,4 mod 6. Observe that 7—-3=13mod6, and }+3 = 1,3 mod 6.

Thus by previous proposition, the essential rank of Exts(W) is less than or equal to

(3-3)-(2-9+(2+3)-(3+2) _n-(n—2)+36
6 - 12 )

Corollary 1.3.4 Let dim(W) = n. Ifn = 10 mod 12 then the essential rank of Exty(1V)

is less than or equal to &("_-l:&‘_‘,
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Proof: Since 2 = 5 mod 6. Observe that 7—2=3mod6, and } +2 =1 mod 6. Thus

by previous proposition, the essential rank of Exts(W) is less than or equal to

3-2)-(G-3+E+2) (3+1) n-(n-2)+16
6 - 12 '

In the case when the dimension of the linear space W is 8, Corollary 1.3.3 says that
the essential rank of Exts(W) is less than or equal to 7. But in fact, we do even better

as we will see in the next lemma.

Lemma 1.3.5 Let W be a linear space of dimension 8. Then the linear space V =

Exta(W) has essential rank less than or equal to 4.

Proof: Let z,,...,z2s be a basis for W. Let 2iy...,25 be the dual basis for W*. Then
A z5 Az, where 1 <i< j <k <8, form a basis for V*.

Choose w} ; = 23, wy; = 23;, and w:',',- = 23i—2 — 22i41, for i = 1,2,3,4 and where
indices are counted modulo 8. Assume that L € V* is apolar to the following twelve

linear maps

Vi YL AWy Awh; =116 A zoi A (22im2 — Zaip1),
Y2 = wy; AyaiA Wy = 22i-1 Ay A (22i2 — Z2i41)s

Yai > Wi, AwhiAysi= 22i0 A zai Ay,

We can write

L= Z a{.-,,-,k} . 2;-' A Z; A z;.
1<i<j<k<8

By using that L is apolar third map with ys,; = 2, we get that agzi—1,2ix) = 0. Since L
is apolar to first map with y; ; = 2;;_,, we have (2i-2,2i2i+1) = 0. Similarly, L is apolar

to second map with y;; = z5;_3, we have a2i-2,2i-1,2i4+1) = 0.

43



Since L is apolar to the first map with Y1,i = Z2i432, We get

0 = (L|z242A 22 A(22i-2 — 22i41))
= sign(2i +2,24,2i — 2) - a2i42,i2i-2) — sign(2 +2,2i,2i + 1) - Q(2i42,2i,2i41)
= sign(2t + 2, 2!, 21 -— 2) . a{3;+3'3;'3;_2}.

Again, use the first map with gy, = 25,4.

0 = (L|22i44 A 220 A (22i=3 — 22i41))
= sign(2i +4,2¢,2i — 2) - 0zi44.2i.2i-2) — sign(2i + 4,24,2i + 1) - Q(2i44,2i 2i41)
= —sign(2i +4,2:,2¢ + l) * O2i44,2i,2i4+1)

Use the first linear map with y; ; = 25i43.

0 = (L|z2i43A 22 A (2202 — 22i41))
= 8igﬂ(2i + 3, 2i, 2t - 2) . 0{2,’.’.3'3,'.2.‘_2} —_ sign(2t + 3, 2?, 2 + l) . 0(2,’+3'2;'25+|}
= sign(2z + 3, 21, 2t — 2) . a{2§+3'2§'3i_3}.

By symmetry, use the second map with yp; = 25i_3, y2; = 23443, and Y2,i = 22i44y tO
conclude that agi_y,3i_32i41 = 0, a3i-12i432i-2 = 0, and @2i-1,2i+42i+1 = 0. It is easy to
see that we have showned that all coefficients of L vanish, and thus L is equal to 0. By
Theorem 1 T, w; 1 Aw; 3 Aw; 3 is a generic canonical form for the linear space Exts(H'),

and thus the space has essential rank 4. O

Lemma 1.3.8 Let W be a linear space of dimension 5. Then a generic element of the
linear space V = Ext3(W) can be written in the form

rAyAw+zAuAv,
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where r,y,w,u,v € W,

Proof: Thus we will consider the following 5 linear maps t — t Ay’ Aw' +t A’ A0,
t ' AtAW, t ' AY At t— 2’ AtAY, and t— 2 A’ AL
Let &' = 21, y' = 23, W' = 23, v’ = z,, and v’ = z5, where zy,..., 25 is a basis for W.
Assume that L is an element in Ext3(W)* apolar to all the five linear maps above.
We can write

L= Y agm-2iA2A2,
1<i<j<k<5

where zj,..., z; is the dual basis for W*.

Since L is apolar to the first map, apply this apolarity condition with ¢ = z,. This
implies that a(y45) = 0. Similarly, the first map with ¢ = 23, t = 24, and t = z; implies
that az 45, =0, a3 =0, and a3z =0.

Since L is apolar to second map, apply this condition with ¢ = z;. We see that
a(1,i,3) = 0. Similary, by using the three other linear maps, we conclude that oq,ij =0.

Hence L is equal to 0, and by Theorem 1 the proof of the lemma is done. O

1.4 Commutative algebras

When the underlying algebras are commutative there is an alternative way to rewrite

theorem 1.

1.4.1 Polarizations and derivations

Define an algebra homomorphism ¢ that maps A{zy,...,r,} into the algebra of poly-
nomials Alry,...,z,], where the variables commute, by ¢(2;) = x;, and ¢(«) = «a for
a € A. Hence ¢ maps the monomial a,x;,a32;,a3" - api, ame1 into ayazag - - - Uty *

Xiy iy + + + i, Observe that ¢ is a surjective homomorphism.
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Lemma 1.4.1 Let B be a commutative algebra that has the algebra A as a subalgebra.
Then for any element p € A{xy,...,x,} and for by,...,b, € B we have that

eval(p; by,...,0,) = d(p)(bry...,0).

For f € A[xy,...,z,] denote the derivative of f in the variable x; by D, (f).

Lemma 1.4.2 Let B be a commutative algebra that has the algebra A as a subalgebra.

Then for any element p € A{z,,...,z,} and for bb,,...,b, € B we have that

eval (D r,p; b,by,...,0,) = b- (D, 0(p)) (by,...,0,).

Proof: The proof is by induction on p € A{x,,...,2,}.

® p =a € A. Both sides vanish
eval (D r,a; b, by,...,b,) =eval(0; b,by,...,b,) =0,
b- (D ¢(a))(by...,bs) =b-(Dza)(by,y...,0,) =b-(0)(by,...,b,) =0.
e p = xj, where j # i. Both sides vanish as above.

eval (D¢ z,x;i; b,by,...,b,) = eval(t; b,by,...,b,)
= b
= b-(1)(by,...,b,)
= b.(Dgxi)(by,...,0,)
= b (D (i) (by,....0,).
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® p=r+3, where r,s € A{xz,...,2,}.

eval (D ., (r +38); b,by,...,b,) = eval(Dyyr+ Dyy,s; b.by,...,0,)
= eval(Dyzr; b,by,...,0,) +
+eval (Dyz;8; b,by,...,by)
= b:(D:¢(r)) (bry ..., bn) +
+b- (D, 4(3)) (b, ..., bn)
b (Dz;4(r) + Doyd(3)) (b, ..., by)
b (Dg;¢(r + 3)) (by, ..., bu).

e p=r-3, where r,s € A{xy,...,7,}.

eval (D¢, (r-8); bby,...,0)

eval (Dyz,(r) -8+ 1 Dygi(3); byby,...,0,)
eval (D¢ z,(r); b,by,...,b,) -eval(s; by,...,b,) +
+eval(r; by,...,b,) - eval (D; z,(8); b,by,y...,0,)
= b-(Dz;(4(r)) - 6(3) + &(r) - D=;(4(3))) (bys ..., bn)
b+ (Dg, (6(r - 8))) (by,...., bn).

Definition 1.4.1 Let A and B be commutative algebras over the field C such that A is a
subalgebra of B. An element f € Alx,,...,x,] is homogeneous with respect to the linear
spaces V,Wy,..., W,, where these linear spaces are finite dimensional subspaces of B, if

Jor all wy € Wh,...,w, € W, we have that f(w,,...,w,) €V,

Lemma 1.4.8 Assume that the polynomial f € A[x,,...,x,] is homogeneous with respect

to the linear spaces V,\W;,...,W,, then the polynomial t - D,,(f) is homogencous with
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respect to the linear spaces V,W;,W,,..., W,.

Proof: We can find p € A{x,,...,x,} such that ¢(p) = f. For w, € W,,..., w0, € W,
we have that

eval (p; wy,...,0,) = f(wy,...,w,) € V.

Hence p is homogeneous with respect to the linear spaces V, Wy, ..., W,. By Lemma 1.1.6
we know that D; ..p is homogeneous with respect to the linear spaces V, W;, W;,..., W,.

Hence for w € W,w, € W,,...,w, € W, we have that

(t- fw,wy,...,w,) = w- f(wy,...,w,)

= eval(Dirp; wy,wy,...,w,) €V,

and the conclusion of the lemma follows. O

Definition 1.4.2 Let V and W be finite dimensional linear spaces of the commutative
algebra B. Let c be an element of B such that c- W C V. We say that f is apolar to
L € V* relative to W if forallwe W

(L|c-w)=0.

1.4.2 The main theorem for commutaive algebras

Proposition 1.4.4 Let V,W,,..., W, be finite dimensional linear subspaces of the com-
mutative algebra A. Let f € Alxy,...,z,] be homogeneous with respect to the lincar

spaces V,W,,...,W,. A generic element v € V can be written in the form

v = f(wy,...,w,)
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Jor some w,, . ..,w, if and only if there exist wy,...,w, so that there is no nonzero dual

element in V* which is apolar to the elements
(Df,f) (w;7 e ’w:)

relative to Wj, for all 1 < j < s.

Observe that lemma 1.4.3 guarantees that apolarity condition is well defined.

Proof: We can find p in A{z,,...,z,} such that ¢(p) = f. That is,
eval (p; a1,...,a,) = f(ay,...,a,).

Hence if a generic element v € V can be written in the form v = f(w,,...,w,), then it
can be written in the form v = eval (p; wy,...,w,).

Observe that the statement that the element (D,,- f) (wi,...,w)) is apolar to L € V*
relative to W; is equivalent to that the linear map

yy—y;- (Dt,f) (w;v~ -7w:)
is apolar to L € V* relative to W;. But by Lemma 1.4.2 we know that
y; * (D,,f) (wy,-..,w)) = eval (Dt,,,p; Yjr Wi, ., w:) .

Thus we can use Theorem 1 and the proof of the proposition follows. O

The classical case of this proposition is when the algebra A is graded,

A=@ A,

n>0

and we consider the linear subspaces V,W;,...,W, to be homogeneous subspaces A,,.

This is the way how the proposition is presented in [E-R1).
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1.5 Two by two by two matrices

In the following we will make a thoroughly study of the canonical forms of 2 x 2 x 2

matrices, and of invariants and covariants of these matrices.

1.5.1 Invariants and covariants of polynomials

We start by recalling some facts about two-dimensional vector spaces. For a,b € C?

define

(alb) = a1by + azb,,
[a,b] = arb; — azb,

where a = (a;,a3) and b = (b,,5,). Let ¢ be a linear map from €? to itself. Define the
determinant of ¢ by

a1 a2

det(qS) =

k]

a1 Q2

where ¢(e;) = (a1,1,a,3), and #(ez) = (az,1,a22). Observe that the determinant of the
linear map ¢ is independent of the basis of the linear space. Define ¢* to be the linear

map defined by ¢*(e;) = (ay,1,@2,1), and ¢*(e;) = (ay2, a22).

Lemma 1.5.1 Let a,b € C?, and let ¢,9 : C2 — C2 be two linear maps. Thc. the

following is true

(¢(a)|b) = (a|¢*(b)),
(6(a), ¢(b)] = det(¢)-(alb),

det(¢") = det(¢),
det(po¢) = det(q)- det(y)),

(poy)” = ¢"og
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Let y1, y2 be variables and let span(y,, y2) be the two dimensional linear space spanned
by y; and y;. Let A be an algebra over the field of complex numbers C, and let Ay, ya)
be the polynomial algebra with variables y,,y., and the coefficients in A. A linear
map ¢ : span(y1,y2) — span(y;,y2) extends to a map ¢ : Alyr,y2] — Alyr,y2) by
substitution. That is, for p(y) € Aly;,y2),

#p(y1,y2) = p(B(y1), $(92)).

Thus the ¢ correspond to change of variables. Moreover notice that ¢ o ¢» = $op.
Let W, be the linear subspace of C[y] = C[y,,y2] consisting of all homogeneous ele-

ments of degree p.

Definition 1.5.1 A polynomial map f from a finite dimensional linear space U lo a
finite dimensional linear space V is a function from U to V thal can be wrillen in the

Jorm

f (Xn:a.-us) = f:pj(an,--',an)vj,

i=1 j=1
where py,...,pm are polynomials, uy,...,u, are a basis for U, and vy,...,v, are a basis

for'V,

Definition 1.5.2 A covariant C' of W, is a polynomial map from W, to Cly], for all

linear maps ¢ : span(y1, y2) — span(yy,y2), we have that
C ($w) = det(4)* - §C(w),

where the non-negative integer g is called the index of C.
Definition 1.5.3 An invariant I of W, is a covariant of W,,, which maps W, into C.

Since ge = c for all ¢ € C we have that the condition for I being an invariant is

I($w) = det(4) - I(w),
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for the index g.

As an example of these concepts we will give four covariants of the linear space I,

of binary quadratics.

1.
A (aoyf +aiyz + azyé) = a} — daga;.

This invariant is called the discriminant and has index 2. It can also be described

by
3w lw
A(w) = — ] oy
3w Puw
ddy 3

2. This is the identity covariant. That is, Id(w) = w.
3. 1. This is the constant covariant.

4. 0. This is the zero covariant.

It is well known that a binary quadratic can be written in one of the following three
forms pq, p?, 0, where p and q are independent vectors in span(y;, y2). Moreover, define
the bracket on span(yy,y2) by [a1y1 + azyz, iy + boyz) = a1by — azb;. We can show
the correspondence between covariants and canonical forms of the binary cubics, by

introducing the following table.

Observe that we can also describe the discriminant by

A (P + %) = —4lp, .
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1.5.2 Invariants and covariants of 2 x 2 x 2 matrices

Let x denote the sextet (mg-i))'_=l'2'3' i1’ where each of these six elements are considered
to be variables. For i = 1,2,3 let x(!) = (xi'.),mg) ). Let C[x] denote the algebra of
polynomials in these six variables. Let W be the linear subspace of C[x], which consists
of polynomials that are homogeneous and have degree 1 in x'¥ for all i = 1,2,3. An

element w of W can be written in the form

2 2
1
2 a."j’kms ):t;-z):tia).
1 j=1 k=1

2
=

Observe W is naturally isomorphic to the linear space of 2 x 2 x 2 matrices by sending

111 @112 a11 a2,1,2
, .
a121 @122 az21 Q222

Let V; be the linear space spanned by zi‘) and xg") for i =1,2,3. Let ¢; : V; — V/

w to the matrix

be a linear map. Thus §; is a change of variables in the x(?) variables.

Definition 1.5.4 A covariant C of W is a polynomial map from W to C[x], for all lincar
maps ¢y, 2, ¢3, where ¢; : V; — V; fori =1,2,3, we have that

C ($182610) = det(¢1)" - det(2) - det(da)® - $1BadsC'(10),

Jor some non-negative integers g, g2, and gs. Call the triple (g1, 92,93) the index of C'.

There are two trivial covariants. The first one is C = ¢ where ¢ is a constant. The second
covariant is the identity map, that is, C(w) = w for all w € W. Both these covariants
has the index (g1, 2, 93) = (0,0,0).

Observe that if C’ and C" are two covariants with corresponding indices (g}, ¢}, ¢4)

and (g7, 97, 95) then C' = C"-C" is also a covariant with the index (g} +91,95+95. 93+ 95).
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The statement is a straightforward calculation.

¢ ($,$2$3w) = C ($1$2$3w) -C" ($,$2$3w)
3 A 3 w o~
=[] det(8:)% - $1285C"(w) - I] det(¢:)*" - §1b2$aC" ()

i=1 i=1
3 -~ ~
= H det(g;)%+s" . $,¢2¢3C(w).
t=1

Moreover, if C’ and C" are two covariants with the same index (g,, g2, g3) then €'+ ("
is also a covariant with index (g1, 92,93).

Let C be a covariant with index (g;, 92, 93), and let ¢; : V; — V; be invertible linear
maps for 1 = 1,2,3. Then

D(w) = ¢ 5 951C ($1$3$3w)

is also a covariant with index (g1, g2,93). This follows from the following calculation

b ($1$2$3w) = ¢i'd'd5C ($1$z$3$1$z$aw)

A A A A A A

i=1

3 3 A~ -
=[] det(¢)% - ] det(v)* - $142¢5C (w)

i=1 i=1
3 3 .~ ;o .~ A
= [1det(g)* - ] det(s)% - $1adsthi 7 5" drhathaC(w0)
i=1 i=1
3 -~ o~ o~ -~ -~ ~ -~ -~ -~
= JIdeUd)" - 1dadotii 7' 93C (Frhstbow)
i=1
3 -~ o~ ~
= []det(g)* - $1265D(w).
=1

Definition 1.5.5 An invariant I of W is a covariant of W, which maps W inlo C.
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Since ¢yPadsc = c for all ¢ € C we have that the condition for I being an invariant is

~ 3
I(1625w) = T] det(gi) - I(w),

i=1
for the index (g1, 92, g3).

Proposition 1.5.2 All invariants of 2 X 2 x 2 matrices are in the form s - T'*, where s

is a complex constant, k a non-negative integer and I' is defined by

2
F(w) = (a111a2.22 + a1,21a2,1,2 — a1,1,202,21 — a1,2202,1,1)° —

~4(a1,1,002,1,2 — @1,1,221,1)(a1,21@2,2,2 — @1,2.202,2,1)

where

w= 22: 22: PO NCNC)

i=1 j=1 k=1

The invariant s - T* has the index (2k, 2k, 2k).

Proof: It is a straightforward calculation that I' is an invariant. By the following

rewriting of the above definition of I', it is easy to check that I’ ($3w) = det(@3)? - I' (w).

2

Q111 422, + ay21 @211 4 a11,1 a1 12,1 @221

Q11,2 @222 Q12,2 @21,2 a11,2 @212 122 A2

I'(w) =

The two other conditions I’ ($;w) = det,($.-)2 -I'(w), t = 1,2, follows by similar reformu-
lations of I'(w). Then it directly follows that s-I'* is an invariant. This argument. proves
one implication of the proposition.

We will start with a generic element of W, and try to compute I(w) by using the fact
that I is an invariant. This means that we will apply different changes of variables, so
that we will reduce as many coefficients as possible to 0. To make this process easy to
follow, we will write the element w as a 2 x 2 x 2 matrix. Moreover, we will only apply

maps &; that have determinant equal to 1. This corresponds to multiplying one plane in
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three dimensional matrix by a scalar and adding it to the parailel plane. We begin with
a b e [
cd]’ g h '
a b e f
ctpa dtpb ) \ g+pe h+pf

a+gb b etqf f
c+pa+qd+qpb d+pb , gtre+qh+qpf h+pf

Now find complex numbers p and ¢ such that

the matrix

ct+pa+qd+qpb = 0,

g+petqh+qpf = 0.

This is an equation system of second order, and the solution is

_ —(ah +cf — bg — de) + VD
p= 2af — be) :

_ Hah—cf +bg—de) ¥ VD
= 2(df — bh) '

where

D = (ah + cf — bg — de)? — 4(af — be)(ch — dg).

That is, D is the discriminant of the equation system in p and ¢. Since we started with
a generic element, we may assume that af — be # 0 and df — bk # 0 so p and ¢ are well

defined. Thus the above 2 x 2 x 2 matrix looks like
at+gb b etqf f
0 d+pb )\ 0 htpf
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If the two vectors (a + gb,e + ¢ f) and (d+ pb, h + pf) spans the linear space C2, then the
vector (b, f) is in the linear span of the two first vectors. Since we started with a generic
element w, we may assume that these two vectors are linearly independent, and hence

they span C2. Using this information in two operations we get

at+qb 0 et+qf O
0 d+pb '\ o h+pr])’

Continue with the following sequences of operations.

a+gb 0 0 0
0 dipb) \ 0 htpf—(d+ph)ett |)

at+gb 0 [0 0
0 0)'\0 h+pf-(d+ph)ted |]°

By dividing the top plane of the matrix with (a + ¢b), and multiplying the bottom plane

by the same value we get

((1 0) (o 0 ))
0 0) \ 0 (a+qbj(h+pf)—(d+pb)e+qf)

Observe that this last operation correspond to a linear map with determinant equal to

1. But an easy calculation shows that
(a+ gb)(h + pf) ~ (d + pb)(e + qf) = VD.

Hence we know that
()G ) =0 0HE om)
c d g h 00 0 +vD
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o (12)(33)

(+vD)" s

where s is a constant and g, is the first coordinate of the index. If s is equal to zero
then the invariant I vanishes. Assume then that s is non-zero. Since I is a polynomial
map, g; is an even nonnegative integer. Hence D = I'(w). By symmetry it follows that

91 = g2 = g3, which concludes the proof. O

1.5.3 Umbral notation

We will now introduce umbral notation. The umbral notation is very helpful in describing
covariants. We will use greek letters, a, 3, ..., § to denote umbrae. For each of these
umbrae there will be six variables. Namely for the umbra a we have the variables n( )

af), o, o, af?, and af”). As before we will denote the pair (ed?, ad?) by at?.

Consider the algebra C[x, a, . . ., §] which consists of polynomials in the variables x\"),

) ol L, 6. Define the umbral map U from this algebra to the algebra C[x]

as follows
1. The map U is linear,

2. U(p(x)- q(@)---r(8)) = U(p(x)) - U (g(a))- - - U ((6)), where p(x) € C[x], ¢(a) €
Clal, ..., r(6) € c[é],

3. U (p(x)) = p(x), for all p(x) € C[x].

4. for each umbra a, we have that U (a(l) 2) (3)) = d; jk, and the umbral map /

vanishes on any other monomial in the variables helonging to the umbra a.

By using the umbral map, we get a short notation to write with. We begin by noticing
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Lemma 1.5.3

U ((au)|x(1)) (a(z)lx(a)) (a(3)|x(3))) = 22: i f: a; st D),

i1=1 j=1 k=1

Proof: The proof is a straight forward verification.

U ((a“’lx"’) (amlx(z)) (a(a)lx(a))) = U (22:22: i aMaPal® . wgnn.?)wis))

i=1 j=1 k=1
G (1) .(2) (3)
= ZZZa;J,k-mi &g
i=1 j=1 k=1

Definition 1.5.8 A bracket monomial is a product of terms in the forms [a"", ,B("’] and
(amlx(-')),

Observe that a bracket monomial M would vanish when applying the umbral operator {7,
if for some umbra « in the monomial M, the umbral variable al?) does not occur exactly

once.
Proposition 1.5.4 The umbral operator of a bracket monomial is a covariant.

Proof: Let M be a bracket monomial. Say that

M =TT [«), 85 - ﬁ () x),
=

i=1

where a(j), A(j), and v(j) are umbrae. The proposition claims that
C(w)=U (M)

is a covariant, where w = T2, T1_, ¥'1_, a; jpxMelPel®),
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We know that an element w € W can be represented umbrally by
(au) |xu)) (am |x(2)) (a(a) |x(3)) .
Thus ¢;¢2¢3w can be represented umbrally by

(0‘”|¢1(X"’)) (a(z) | pa(x?) )) (a(a) l ba(x® ))
= (¢;(a(”)|x“)) (¢;(a(2))|x(°’) (¢;(a‘3’)|x(3’) .

To compute the umbral operator of the bracket polynomial corresponding to ¢;@:daw,

we replace o) with ¢?(a!?) for each umbrae o and i = 1,2,3. Hence

Clrdrgow) = U (1‘[ (¢, #8G)™)] - T1 (¢‘(7(J’)“’)|x"")) .

j=1 J=1

But observe that

[#7(a() ), 67(8G))] = det(di) - [ai)™, BG)]

and
(67 (v(G)N)[xD) = (v(5)?|di(x)) .

Let ¢; be the number of terms in M on the form [a“’, /3‘"]. Then the above expression

is equal to

j=1 j=1

I1 det(gi)® - U (

=1

I1 [e(i)™, 8G)?) - T1 (v(j)“’lqs(x“’))) :
By evaluating this umbral expression we get

3 ~ ~
1 det(¢:)% - $16263C (w).

=1
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Hence we conclude that C(w) = U (M) is a covariant. O

We now have a tool for expressing covariants of 2 x 2 x 2 matrices. We will give a

list of eight covariants, which are of interest to us.

1.
_% - [a, B0 [0, 53] [a®), 4] [5, 6] [0, 50)] [, 6] .

The umbral operator of the above bracket monomial evaluates to I', where I is
the invariant described in Proposition 1.5.2. We will prove this in the end of this

section.

— [«®, 8] [a®, ®] [, 4] (B9]x®) (v x1) (v |x®).

This covariant is denoted by S. Observe that S maps W into itself.

% o, 4] [a®, ] (at)]x V) (BV]xM).

Denote the covariant that the above bracket monomial evaluates to by H(". This

covariant is called the Hessian, and can also be described by

8w 9w
az‘,”az,‘ 3) Ba:l,’ ‘ax,‘ 3
9w 9w

oz a9s)

dx; '3z,

H(”(w) =

% [0, 89] [a®, 3] (a®|x) (3P]x).

Similarly, this is also a Hessian, but in the second variable. It is denoted by H(?),

% [0, 8] [0, 3] (! |x®) (39]x).
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This Hessian is denoted by H®,

(a(l)'x(l)) (0(2) ,xﬂ)) (a(3)lx(3)) .
This is the identity covariant. That is, Id(w) =
7. 1. This is the constant covariant.
8. 0. This is the zero covariant.

Let us now show that the umbral expression given for I' actually evaluates to the
expression given in Proposition 1.5.2. We know that invariant given by the umbral
expression has index (2,2,2). Thus by the result of Proposition 1.5.2 we only need to
check that the constant is equal to 1. To do this, evaluate the umbral expression for the

element +{"z{M® 4 2Nz P,

U (_% - [a®, 9] [a®, 8@)] [a, 403)] [4®), 65] [510, 600] [502, ,;m])
- _ _;_ U (( oV _ o ﬂ{n) ( a4 _ o ,B{”) ( (31,3 _ (3)7(3))
. [ﬂ(a), 6(3)] [7(1), 6(1)] [7,(2)’ 6(2)]) _

But the only monomials of the umbra o that will not vanish are the monomial n(” 2 (3)
and the monomial afa{?a?). Instead these two monomials will evaluate to 1. Thus the

above expression is equal to
—_ U ((ﬂ(l)ﬂ(2)7(3) ﬂ{l)ﬂgz),y{rn) [ﬂ(s)’ 6‘3’] [7(1), 5(1)] [.,(2), 5(2)]) ,
By a similar argument on the umbra 6 we have that it is equal to

1 2) (3
=5 U (BB ~ BB (B — i),

which easily computes to 1 and the equality between the two expressions of I follows.
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For the other covariants above we have chosen the constants such that there will he
no rational factor appearing when we compute the covariant. That is, the expression

C (a'(,"m(l”;ria) + m.(‘.":r(:)x;s)) is a monomial without a constant.

1.5.4 Canonical forms

Proposition 1.5.5 An element w € W can be written in exactly one of the following

seven forms
pgr + stu,

sqr + pir + pqu,
pqr + ptu,
pqr + squ,
pqr + str,
pqr,
0
where p,s € W, q,t € V3, r,u € V3, p and s are linearly independent, ¢ and t are linearly

independent, and r and u are linearly independent.

Recall that if two vectors are linearly independent, then they are both nonzero.
Proof: We begin by showing that any w € W can be written in one of these two following
forms

pqr + stu, sqr + ptr + pqu,

where p,s € V}, ¢,t € V3, and r,u € V3. Observe that both forms above are invariant
under changes of variables. To prove that such changes of variables is possible is quite
similar to the proof of Proposition 1.5.2. But we need to be more careful, since we don’t
start with a generic element of W, but any element of W.

We claim that by a change of variables, we can transform any 2 x 2 x 2 matrix to
a 2 x 2 x 2 matrix where two adjacent entries are equal to zero. Following the proof

of Proposition 1.5.2 we can do this if af — be # 0 and df — bh # 0. Without loss of
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generality we can assume that a f — be = 0, since the case df — bh = 0 is symmetric. Since
af — be = 0, the two vectors (a,e) and (b, f) are linearly dependent. Now by change of
variables, we can make one of the vectors vanish, and thus there is two adjacent entries
in the matrix that are equal to zero. This finish the claim and we can assume with that
the matrix looks like
al bl el f’
o a) \ow
If the vectors (a’,€’') and (d', k') are linearly independent, then by two more changes

of variables we can eliminate ¥ and f’. Thus we have the matrix

a 0 e 0
0 &) \o w

This matrix corresponds to the element

deMeP2® 4 deMeB 20 4 g 4 a0,

which can be written as
(a'e® + o)) 2P + (dald + Hall)) aPald.

This is on the first desired form.

It remains to handle the case when the vectors (a/,€’) and (d', h’) are linearly depen-
dent. If they are both equal to zero, then the matrix is trivially of one of the above
forms. Hence assume that (a’,¢') # 0, so we can write (d',h’) = j - (¢/,¢'). Now the

matrix corresponds to the element

a’n{". (2). (3)+b'l(,”r(2’.r(23’+) a' (1), (2):!‘(23)-{-6'1'(') (2) (3)+fl (1);..(12)‘,1.'(23)_{_]- ef'(ll)'(ll),(;)’
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which we can write as
(b'.r")-i—f' (l)) 3"12) (3)+ (a m“)+e'wm) (]m(ﬁ)) '(23)_*_( ")+e' (l)). (12)'13)’

which is in the second desired form. Thus we have proved that any w € W can either he
written in the form pgr + stu, or in the form sgr + ptr + pqu. If p and s are dependent,
q and ¢ are dependent, or r and u are dependent then it easy to see that we can reduce
the expression further to one of the following five forms pgr + ptu, pgr + squ, pgr + str,
pqr, 0.

So far we have proven that w € W can be written in one of the seven forms. What
remains to prove is that w can be written in exactly one of the seven forms.

To prove this claim, evaluate the seven covariants on the seven canonical .orms. To
do this in a quick way, evaluate the covariant C on the element :rm {2y (3’ +: a") {2, (3).
Then by a suitable change of variable, one computes C(pgr+stu). Now since the covariant

is continuous, use the limit
Jim (—Rp)(—Rq)(—Rr) + (Rp + R™%s)(Rq + R*t)(Rr + R™*u) = sqr + ptr + pqu,
to find C'(sqr + ptr + pqu). Similarly use the four limits

E%pqt' +(p+es)tu = pgr+ ptu,
!i%pqr +s(g+e)u = pgr+sgu,

!&gpqr + st(r + eu) pgr + sty

!i_t.%pqr-f-(es)tu = pr,

to find C(pgr + ptu), C(pqr + squ), C(pqr + str), and C(pgr). Moreover, define the
bracket on V; by

[am '+ azel), byl + bzm(z"] = ayb; — ayby.
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The computations are summarized in the following table.

“ pqr + stu 8qr + ptr + pqu pegr+ptu | pgr+squ | pgr+str | pgr 0

0 0 0 0 0 0|0

(p, 8)*(q, )[r, u]? 0 0 0 0 0|0

S | [, sllg, )[r. u)(pgr — stu) | 2[p, ](g, t][r, u]pgr 0 0 0 0 ]0
HY [9, t][r, ulps —[g,8)[r,ulp® | [q,]r, ulp? 0 0 0o
H™ [p, 8][r, ulqt —[p, 8][r, ul¢? 0 [p, 8][r, u)¢? 0 0|0
H® [p, sllg, t]ru ~[p, 8][q, t)r? 0 0 [p.s)lg,1]7*| 0 |0
Id pgr + stu sqgr+pitr+pqu | pgr+ptu | pgr+squ | pgr+str | pgr |0
1 1 1 1 1 1 11!

Observe that for every pair of forms in the table above there is at least one covariant
that sends one of the forms to zero, and the other form not to zero. Thus no element of
W can be written on two of the above forms. This argument concludes the proof of the

proposition. O

We will conclude our discussion by showing two partial ordered sets. One poset on

the eight covariants, and one poset on the canonical forms.

Definition 1.5.7 For two covariants C and C' we say that C < C' if C"(w) = 0 implics
Cw)=0 forallwe W.

Definition 1.5.8 For two forms f and f' we say that f < ' if

{weW : wisofthe form f} C {w e W : w is of the form f'},

where the closure is the topological closure on W, where W has the FEuclidean lopology.

Lemma 1.5.8 Consider the following two partial orders. The first partial order is on
the eight covariants ', S, HM, H® H®) 1d, 1, and 0. The second partial order is on
the eight canonical forms pqr + stu, sqr + ptr + pqu, pqr + ptu, pqr + squ, pqr + str, pqr,

0, and O, where B is the form no element can be written in.
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1 | pgr + stu

Id sqr + pir 4 pqu

\
/
\
/

HW H® H®) pqr + ptu pgr + squ pyr + str

/
\
/
\

S T
r 0
0 )

Proof: The order relations between the covariant in the first poset follows by studying
the table in the proof above. By Corollary 1.2.2 we know that pgr + stu is a generic
canonical form. Hence it is the maximal element. The other order relations of the second

poset follow easily by letting one of the variables go to zero in limit. O

Corollary 1.5.1 The following algebraic relation holds between the six covariants I', S,
H‘”, Hﬂ)' H“”, Id.
S?=T.1d*-4. HV.H® . H®,

Proof: By continuity it is enough to consider w = pqr + stu.

S(pgr + stu)’ = ([p, s)lg, t]lr, ul(pgr — stu))’
= ([p,s)lg, t[r, ul(pgr + stu))’ — 4[p, s*[q, t)*[r, u]*psqtru
= [(pgr + stu) - Id(pgr + stu)? —
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—4 - HY(pgr + stu) - H?(pgr + stu) - H® (pgr + stu).

Corollary 1.5.2
I['=A®o HO),

where AY) be the discriminant on quadratic polynomials in the two variables 24" and al),

Proof: By continuity and symmetry it is enough to consider w = pgr + stu and i = 1.

AD (HO(pgr + stu)) = AW ([q,1][r, ulps)
= [[q, t]["’ “]p" "]2
= [p,s]’[q, t]'lr, u]?

= ['(pgr + stu).

Recall that covariant S maps W into W. Thus we can consider the covariant ("o S,

where C is a covariant.

Corollary 1.5.3 The following three identities hold.

oS = I3
SoS = -I?.1d,
HYoS = —T.HY,

Proof: The proof is straightforward. We will only give the proof of the first identity. By

68



continuity it is enough to consider w = pqr + stu.

I'(S(pgr + stu)) = T ([p,sllg,t)[r, ulpgr — [p, s]lg, t][r, ustu)
= (I, sllg, [, ulp, —p, sllg, ), wlsf’ g, ][, ]?
= [P, 3]6[9’ tlslra u]8

= I(pgr + stu)?.

1.5.5 The binary cubic

We will show in this section how binary cubics relate to 2 x 2 x 2 matrices. That will he
a study in their covariants abd their canonical forms. Readers are also referred to [K-R).
Recall that Wj is the linear subspace of Cly] = C[y:, y2] consisting of all homogeneous

elements of degree 3. An element p of C[x(!),x(®), x!3] is called symmetric if
p(x(d(l”, x(a(z)), x(’(a))) — p(x(l), x(z), x(3))‘
for all permutations o of 1,2,3. The symmetric elements of the linear space W of 2 x2x 2

(22)(2 =)

Define the algebra homomorphism Q : C[x!), x(?) x3)] — C[y] which is defined by

matrices are of the form

1) (:r}”) = y;. Moreover define a linear map w : W3 — W by

Go a, ay qa;
w (“o!l:x3 + 3aryiy2 + 3aapny; + agyg) = \ )
ay ap az 3

Note that for all w € W3 we have that Q(w(w)) = w.
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Lemma 1.5.7 If C is a covariant of W with index (¢1,92,93), then the map Qo (' ow
is a covariant of W3 with inder g, + g2 + gs.

Proof: For ¢(y;) = a1y + ajay2, define ¢; : V; — V; by ¢; (;r}i)) = a_,;,.-rf” +a j"l.'!'-(;).
Directly we have that det(¢;) = det($). More important is the two following identities.

U1dadsp(x)) = QUp(x)),
w(gw) = $1dadaw(w).

The proof of both of them are straightforward calculations.

Now, we can study the map Qo C ow.

(RoCowod)(w) = (R0Co(hidids)) (w(w))
3
= Q (1’[ det(:) - Mzéacr(w(w)))

i=1
3 ~ ~ ~
= I det(6:)*" - @ ($1823sC(w(w0)))
i=1
3 -
= [ det(¢)" - 42 (C(w(w)))
i=1

= det(¢)9+92t9 . §(Q o C' o w)(w).

Thus Qo C' ow is a covariant of W3. O

Let us now see what the covariants I', S, H("), H®) HE®) 1d, 1, and 0 of 2 x 2 x 2

matrices correspond to for binary cubics. Let w = aoyd + 3ayyiya + Jaayy? + azy3.

1. The covariant given by Q oI’ ow is called the discriminant. It is computed by

A(w) = (apus — a1a2)® — 4(aoaz — a?)(ayaz — d).

2. The covariant 2 0 S ow of binary cubics is called the Jacobian, and is denoted by
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3. For the three Hessians we have that

QoHM ow=00H®P 0w =00 H®ow.

Denote this covariant by H. It is also described by

1 9w 9w
H(‘U)) = . 8::,, 8x,0ry
36 | 2w Pw

8x20x; 81‘3’

4. Clearly 2 0 Id o w = Id, the identity map on Ws.
5. ol ow =1, the constant covariant.
6. 000w =0, the zero covariant.

A binary cubic can be written in one of the following forms p® + ¢3, 3p%q, p*, and 0,
where p, g € span(y;,y2) and p and q are linearly independent.
We conclude the the discussion about covariants and canonical forms of the binary

cubics, by presenting the following table.

P’+q 3p’q |P°|0

0 0 olo
A [p, 4] 0 00
T | [p.g*(P° — ¢*) | 2[p,q)®® | O (O
Hi [pd’prq |[-[p,gl?p*| 0|0
P+ 3¢ |PP|0

1 1 1)1

Observe that a binary cubic w can be written in the form P? + ¢ where p and ¢ are
independent, if and only if w does not have any multiple roots. A binary cubic without

multiple roots can be written in the form stu, where s, t and u are pairwise linearly
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independent. Thus one can ask how to express covariants of the binary cubic stu.

A(stu) = -% (s [t uP[us o]

This is the classical way to describe the discriminant. Similarly, we can express the

Hessian of a binary cubic as
1
H(stu) = 9’ e2([t, us, [u, s]t, [s, t]u),

where ¢, is the second elementary symmetric function, that is, ez(x,y,2) = vy + 2z +y=.

Finally, the Jacobian T can be written as
T(stu) = 21—7 - ([t, u]s — [u, s]t) - ([u, 8]t — [s, t]u) - ([s,t]e — [t,u]s).

This can also be written as

1 1 1
1
T(stu) = 5 det | [t,uls [u,s]t [s.t]u

[t,u]’s® [u,s]’t® [s,t]*u?
Recall that we have the identity [t, u]s + [u, s]t + [s,t]u = 0.

1.5.6 Some skew-tensors

Let U be a 6 dimensional linear space and consider the linear space Extz(l/). By Corol-
lary 1.3.1 we know that this linear space has essential rank 2. That is, a generic skew-

tensor of step 3 can be written in the form pAgAr+ sAt Au, where p,q,r,s,t,uel’.
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Proposition 1.5.8 An element w € Ext3(U') can be written in exactly onc of the fol-

lowing five forms
PAGAT+8AtAu,

SAgATr+pAtAT+pAgA Y,
PAGATr+pAtAu,

PAgAT,

0

where p,q,r,3,t,u € U, and the elements p, q, r, s, t, and u are linearly independent.

For a proof see [G-R-S] pages 69-72. They also present three covariants 'y, (', and
('3, and show how they relate to the above canonical forms. Their relations are that
('y vanishes on the two last forms, C'; vanishes on the three last forms, and (‘5 is only
nonzero on the first form.

Observe that

Cy: Extz(U) — Exts(U)o U,
C'y: Extz(U) — Extg(U) @ Exts(U) = € @ Exts(U) = Exts(l/),
C3: Extz(U) — Extg(U) @ Extg(U) XCEC=C.

The covariant C; has index 0, and the covariant C'; has index 1. Lastly ('3 is an invariant
with index 2.

We present here a complete description of the relation between these covariants and
the canonical forms of the linear space Ext3({’). To be able to do so in a nice way, we will
multiply the covariants C'y, ('3, and C3 by appropriate constants. Thus we will consider

the following covariants.

Dl = —C"la

D, = —x.C

2 = _3' 2,
1

D3 = —6'63.



In the following table we have surpressed the writing out the wedge product hetween

the vectors.

" pyqr + stu sqr + ptr -+ pqu pqr + ptu pqr |0
0 0 ' 0 010
p,q,7 8, t,u)? 0 0 010
[P, g, 7, 8, t, u)(pgr — stu) | 2[p, q,7, 3,1, u|pgr 0 0|0
(psqtr) © u —2.(psqtr)@r |2-(qtrup)Op| 0 |0
+(psqtu) O r ~2-(psruq) A q
+(psruq) O t -2-(qtrup) @ p
+(psrut) © q
+(gtrup) © s
+(qtrus)@p
pgr + stu sqr + ptr + pqu rqr + ptu pqr |0
1 1 | 11

The table is constructed in the same manner as the corresponding table for 2 x 2 x 2
matrices. The only work is to compute the covariants on the element e; AesAez+esAcsAcg,
where e€q,...,¢€¢ is a basis for U That completes the first column. The other columns
follows by continuity arguments.

Similarly to Corollary 1.5.3 we have the next corollary.

Corollary 1.5.4 The following two identities hold.

D3002 = Dg,
D2°D2 = —Dgl(l.



Proof: The proof is straightforward. By continuity it is enough to consider v = p A ¢ A

r+sAtAu.

Ds(Di(pAgqAr+sAtAu)) = Ds([p,g,r s tulpAgAr—[pgqr,s,t,ulsAtAu)
= [lp,q,1 3, t,ulp, ¢, 7, =[p, q, 7, 8, t,u)s, 1, u)?
= [p,q,7,8,t,u)®
= Ds(pgr + 3tu)3.

Dy(DipAgAr+sAtAu)) = Dy(p,g,r s, tiulpAqgAr—[pq,r s, t,ulsAtAu)
= [lp,g¢,7,8,t,ulp,q,7,—[p,q, 7,8, t,u]s, t, 4]
“([py gy st ulpA g AT + [p,g vy s, tus At Au)
= —[p,q,r s, t,u]' - (pAqGAT+3ALAU)

= —Ds(pgr+stu)®-(pAgAr+sAtAu).

Let €,,...,€q be a basis for U, such that [e;,...,eg] = L. Let T be the set of all three
elements subsets of the set {1,...,6}. Define for I € I the element ¢; in Exts(I7) by

er=¢e;AejAeg,

where I = {i,j,k} and i < j < k. Observe that {e;};er form a basis for Exta({/).

Proposition 1.5.9 The invariant D3 on the element v = Y jcr ajeq is given by

2
D3(v) = Z a{il,iz.ia} ' a%‘h‘bt"G} -
leL;

-2. Z Aiyisig) * liyyisiia) * Pigais,ia) * {izisiis} T
iELa
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+4- 3 (a{-‘,.-’s.is} " @iy i sis} " Firsiziie} * Aizsiasis} T

leL;
Hai,icsie) * Fliziiniis) * Piysiasis) * a{in.is.ie}) ’
where
L, = {i P l,...,18 distinct, <ty <liz iy <isg<lig it < 54},
L, = {i ! 11,...,1¢ distinct, 7; < 19,13 < 4,15 < 1g,13 < is},
Ly = {i : il,. R P distinct, ) <i3<ist; < 12,13 < 1:4, t5 < iu}.

Proof: Since Dj; is an invariant, D3(v) is a polynomial of the a;'s. Thus we can write

D3(v) as
D)= T by el

fI-N IeT
Consider the map ¢(e;) = a; - e;, where a; € C. Observe that det(¢) = oy ---ag. Thus

we have that

(01“‘06)2' Z bj‘Ha{(” —_ (01'“03)2'[)3(”)

[ I-N leT
= det(¢)?- Ds(v)
= Ds(¢v)
= b!. af(l)af(l).
I:IZ-;N II;II ! !

Since this is true for all a;, we see that when b; is nonzero, we have that for all i €
{1,...,6} that Tierer f(I) = 2. So 3 1er f(I) = Zie(r,...8) Lieter J(I) = Tieqr,..y 2 =
12. Thus each monomial in D3(v) correspond to a four elements of the set T, such that
each i € {1,...,6} lies in exactly two of the four sets.

There are then three possible types of monomials.

(1) The four sets are J,J, K, k', where J, € T and K is the complement of J. Let ¢

be the corresponding function, that is, g(J) = g(I') = 2, and the other values of ¢
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vanish.

by = bg.II(l)QU)
IeT

= Dj(es+ex)

— . . . 2
= [e.n €523 €535 €ky s €ky,s Ck:,]

(£1)? =1.

Hence the coefficient of all these terms are 1. There are 10 monomials in this form.

(i) The four set are {j} U A, {k} U A, {j} U B, {k} U B, where {j} U {kf}UAUB =
{L,...,6}, and |A] = |B| = 2. Let g be the corresponding function, that is,
9({j} U A) = g({k} U A) = g({j} U B) = g({k} U B) = 1, and otherwise g vanish.
Also define g1({j} U A) = g1 ({k} U B) = ga({k} U A) = go({j} U B) = 2.

by + by, +b;, = Da(egjpua+ eryoa + €{jjuB + €{kyuB)
= Ds((e; + ek)eq, €a, + (€ + €x)en, €1,)
= 0.
Thus we conclude that b, = —b,, — by, = —2. There are 45 monomials in this form.
(iii) The four set are {iy, 3,75}, {¢1, 14,76}, {i2,13,16}, {12, 14,15}, where iy,. .., iq are dis-
tinct. Let g be the corresponding function to this monomial.
by = Dsl(ei eizeiy + €ir€i,€iq + €iy€izeis + €i€i €5, )
1 1
= Ds (5(61 + e2)(e3 + eq) (€5 + €6) + 5(e1 —ea)(es — €)(es — f’cs))
1 1 2
= [:2‘(61 + €2),€3 + €4, €5 + €, 5(61 — €2),€3 — €4,€65 — fu]
= 4,

Thus we conclude that b, = 4. There are 30 monomials in this form.
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Hence the proof is complete. O

Recall that V; is the linear space spanned by z! and 2y for i = 1,2.3. We can

assume that

3
U=V,

=1
since the dimension of U is 6. We can naturally think of V; as linear subspace of U/, such
that V;, V3, and V3 pairwise only intersect in 0. Also recall that Mool =2 W, which
is the linear space of 2 x 2 x 2 matrices.

Define the linear map £ : V; © V5 © V3 — Ext3(U) which is defined by
E(pOqAr)=pAgAT,

where p € V}, ¢ € V,, and r € V5. Observe that this map is injective. Hence we can
P q

define the inverse map = from the image of € to V; © V, O V5, by
E(pAgAT)=pOqOT,

where p € V}, ¢ € V3, and r € V5. Note that = is linear. Also we have that Z¢(w)) = w
forallweW=W,oWVols.

Moreover, on the linear space I/ we can define a bracket of step 6. That is, a skew-
symmetric multilinear form from U®8 to C. Recall that we view {7 as the sum of V1, V2,
and V3. Since on each of these three linear spaces we have brackets of step 2, we can
lift these brackets to U. That is, we can define a bracket on U/ such that for P12 € V.

01.q2 € V3, and ry,r; € V3 we have that

[PuPz.qth "1,"2] = [Pul’z] . [(ll,(h] . ["h"z].
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Lemma 1.5.10 The invariant ' on 2 X 2 x 2 matrices is related to the invariant D3 by
the following identity
Da o E =T.

Similarly the covariant S on 2 x 2 x 2 matrices is related to D, by
=o Dz 0€ = S.

Proof: It is enough to prove these two identities for a dense subset of W = V; OV, ) V3,
since invariants and covariants are continuous. We know that a generic element of W’ is

in the form p@qOr+ 3@t u, where p,s € V4, ¢q,t € V5, and r,u € V3.

Di(é(p@qOr+30@t@u)) = Dis(pAgAr+sAtAu)
= [p,q, 7 s,t,u?
= [p,q)? [r ) [t,u)?

= I'(pOqOr+stou).

E(D:l(pqgRr+30@tu))) = E(Di(pAgAr+sAtAu))
= Z([pyg 1,8, t,u]- (pPAgATr —3sAtAu))
= [pg,r s tu]l-(pOIOTr—sOtou)
= [pg]-[rs]-[tbu]-(pOgOr—sStou)
= SpOqOr+s0tou).

79



Chapter 2

A Bijective Proof of Infinite

Variated Good’s Inversion

2.1 Formal power series and colored sets

Let 3 be a set, possible infinite.

Definition 2.1.1 A multi index n is a vector whose entries are nonnegative integers
whose sum is finite and the entries are indexed by 3. That is n = (n;);,, where n; € N.

Define the base multi indices by e; = (6;;);c, for j € 3.

Notice that any multi index n can be written as a linear combination of the bhase multi
indices

n= Zn; - €,
i€

where there are only a finite number of nonzero terms in the sum. For a finite subset,

I C 3, define

ey = Ze;.

i€l
Let A" be a field of characteristic 0. We will be considering formal power series in

the variables (r;)ie;. A power series is denoted with f(x). To be able write readable
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formulas we introduce the following notations.

n = (n)iex

n! = Hn,-!
i€

X = (fl’i)ien

x® = Ha':"
i€)

~—
= B
S—
i

;)

(m)y = TI(nix

i€J

Thus a formal power series can be written as an exponential power series
xn
X)= an—.
) = Sy

The sum of two power series f(x) = Enan’;—l: and ¢g(x) = Eubn-’f:%, is defined

componentwise. That is

(f +9)0x) = L(an + bu) -

The product of two power series f(x) and g(x) is
xu
(f-9)(%) = ¥ eamr,
n n'

where

Cn = Z (:)akbn—k-

o<k<n

Definition 2.1.2 A collection power series g(x) is a set of formal power serics indcred

by the set 3. That is
g(X) = (gi(x))ieJ .

81



A summable collection g(x) is a collection such that for every multi index n the coefficient
[%] ¢i(x) is nonzero for only a finite number of 1 € J.
Definition 2.1.3 Let f(x) be a formal power series and g(x) be a summable collcction
formal power series, such that g;(x) has no constant coefficient. Define the composition
fog as

(fog)(x) = f ((9:(X))s¢,) -
Observe that x® o g = [;ca gi(x)™. We will also write this expression as g".
Definition 2.1.4 A colored set (E, f) is a set E with a function f : E — 3. The color
of an element a € E is the value f(a). The colored set (E, f) is finite if E is a finite sct.
The cardinality of a finite colored set (E, f) is a multi index card(E, f) = n such thal

n=|{a€E : fla) =i}{.

If card(E, f) = n we say that (E, f) is a n set. When we need to speak about a

generic colored set of cardinality n, we are going to write n for this generic set.

2.2 Colored species

We introduce now the theory of colored species. This theory was developed in [M-N].
We will only give a short sketch of definitions and main results. The reader interested in
this subject is referred to [M-N].

Let B be the category of finite sets and bijections. Recall that a species is a functor

from B to B. Similarly we can define the category of colored sets.

Definition 2.2.1 Let B, be the category of finite colored sets and bijections, which pre-

serves color. A colored species M is functor from B, to B.

Define the generating function of colored species Al to he
xll
card(M;x) = Y _ |M[n]|- o
o !
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where M[n] is the species applied to a generic n set.

For ¢ € J define the colored species X; by

X{(E. )] = { {E} ifcard(E,f)=ce; .

otherwise

Observe that card(X;; x) = ;.

Define sum and product of two colored species by

(M +N)(E,f)] = M{E,f)UN[E,f)]

(A'I : N)[(E’ f)] = U A:{[(E‘h f|El )] x N[(E2a fIEz)]
Ei;+E;=F

For a colored species M and for i € J define the colored species M) by
M"OUE, f)] = M[(E U {+}, f)],

where # is a ghost element of color i. That is we extend f such that f(x) = i. Moreover
let
MO = x;. ('O,

That means that we mark an element of color i in the underlying set.
A colored partition of a colored set (E, f) is a partition r of the set E, with a function

g:m — 3. Let II[(E, f)] be the set of all colored partitions of (E, f ).

Definition 2.2.2 A collection of colored species M is a set of colored species indered by
the set 3. That is
M = (M),

A summable collection M is a collection such that Jor every colored set (E, [) the scl

MG(E, f)] is nonempty for only a finite number ofi € 1.

Observe that is M is a summable collection of colored species, then (card(Af;;x)),e, is a
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summable collection of power series.
Let M be a colored species and let N be a summable collection of colored species,

such that N;[@] = @ for all i € 3. Define the divided power I'(N) as

(ru(R)) [(E, /) = U IT Nusl(B. f15)]

(m9)EN((E,f)]), card(r,g)=k BE€r

Define the composition M o N by

(MoN)(E. = U M(rg) x I Nusyl(B, fls)]

("lg)en[(sv!)] Ber

Observe that the summability condition of the collection N implies that the two sets
(l‘k(ﬁ)) [(E, f)] and (M o N)[(E.f)] are finite.
Note the following identity

[[XMoN=T] N

1€ €]

We will be writing the above expression as N2,
Now we can show the relationship between operations on colored species and opera-

tions on the respective generating functions.

Proposition 2.2.1

card M + N;x) = card(M;x) + card(N;x)
card(M - N;x) = card(M;x) - card(N;x)

card A"y x) = a;iricard(l\l; x)
card(M*V;x) = w;%car«i(x\l; X)
card((M oN);x) = (card(M;x) o ((card(Ni; x))ics))(x)

- k
card Ty (N);x) = (%O((Cd"d(Ni;x))ieJ)) (x)
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= I—:T H card(N;; x)*
‘i€l

2.3 Colored functions and colored trees

Let M = (Al;);¢, be a collection of colored species, not necessarily a summable collection.

Definition 2.3.1 An M-enriched function ¢ frem (E, f) to (F,g) is a function & from
E to F such that for all b € F the colored set

({a € E|¢(a) = b}, /) = (¢7'(b), f)

is enriched with a My, structure.

Lemma 2.3.1 Let (F,g) be a fired colored set. The set of structurcs dcfined on the
colored set (E, f) by

(H Mg(b)) [(E, )],
beF

is isomorphic to the set of M-enriched functions from (E, f) to (F,g).

Definition 2.3.2 A M-enriched tree (forest) on a n set (E, f) is a tree (forest) on K

such that for every node a € E we put a My, structure on its set of sons.

Let Ag be the colored species of M-enriched colored trees with the root of color i.

Let ‘&M be the collection (A;&)

i€y’
Proposition 2.3.2 The collection ‘&M is a summable collection of colorcd specics and

the colored species AS\‘,) Julfills the following functional equation

A;& = .\,,' . (Al, o Am)
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Proof: Look at the trees Ag[(E' y f)]. The root of the trees has color i and the root lies
in the colored set (E, f). But the colored set (E, f) has only a finite number of colors.
Hence .43[(E. F)] will only be nonempty for a finite number of i € 3. Thus the collection
‘&M is summable.

The colored species A;\i&) puts a enriched tree with the root of color i on a colored
set. Thus (Af; o (KM);GJ) puts a colored partition on a set, where cach block of color
i the structure A'Y, and the set of blocks receives a M; structure. But note that /1;\"7"
is a colored tree. Moreover this colored tr~e has the root of color i. Since every block
contains a unique root, we can view it as putting the Af; structure on the roots of all the
trees. Thus (Af; o AM) is a colored forest with an Af; structure on the roots.

Now by multiplying with X;, we will start by selecting an element of color i. Thus
in the set of structures the colored species X; - (M o KM) describes, join this selected

clement to the roots of the forest. Thus we have a M-enriched colored tree, and the

equation follows. O

The implicit species theorem [M-N] implies that the equation system Y = X (MoY)
has a unique solution \7, that is summable.

Define the colored species Endyy by letting Endy[(E. f)] be all M-enriched colored
functions from the colored set (E, f) to itself. Such a colored function is called a M-
enviched colored endofunction.

An M-enriched contraction on a colored set (E, f) is an M-enriched function ¢ such
that there exist a node a € E, such that for all b € E there exists a positive integer k
such that for all n > & we have ¢"(b) = a. Observe that ¢( a) = a. We call the vertex «

the attracting point. The contraction has depth m if @™ (b) = a for all be L.

Lemma 2.3.3 The colored species of M-enriched contractions with the altracting point
of color i is described by

Xi- (Mo Ay).
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Figure 2-1: An example of an M-enriched contraction.

-

Figure 2-2: An example of an M-enriched contraction of depth | without enriched leaves.

Proof: The colored species X; chooses the attracting point « of color i. Then the set
(E — {a}, flE-{s}) has the structure of an M-enriched colored forest. But the roots and
the attracting vertex a has a Af; structure on them. This is equivalent to put an A"

structure on the roots. O

Lemma 2.3.4 The colored species Mfm is naturally isomorphic to M-cnrviched contrac-
tions ¢, which has depth 1, attracting vertex of color i and no structure put on ¢='(b) if

b is not the attracting vertexr.
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Let ¢ be a colored function from the colored set (E, f|g) to the colored set (R U E, f).

An element @ in the set E is called periodic if there exists m, a positive integer such that

o™ (a) = a.

Definition 2.3.8 Define the species N:Z of non periodic M-cnriched colored functions as
Jollows, let .N'a[(E J)] be the set of all M-enriched coloved functions ¢ from the colorcd
set (E, f) to the colored set (E, f) U k, such that there is no periodic clement in the
colored set (K, f).

Lemma 2.8.5 Let (RU E, f) be an n set and assume that (R, f|r) is a k sct. The sel
of all M-enviched colored functions from (E, f|g) to (RU L, f) 15 described by

(Mg - Endyy) [(E, f1E)]

Lemma 2.3.8 For a collection of colored species M we have that

|(PetEg) o] = (i) - Wigtn — .

Proof: (l‘k(ﬂm )) [n] describes the set of forest on a n set such that there are k; roots of
color i. The set of roots R can be chosen in (i:) possible ways. Let E be the complemented
set. Now the forest can be consider as non periodic M-enriched function from (. fle)
to (E, flg) U [k]. But the number of such functions are |N:7‘[n - k]', and the lemma

follows. O

2.4 C-monoids

In the following sections we will study how Good’s inversion formula specializes to La-

grange’s inversion formula. To do so we need to define the plethystic composition of two

88



colored species and of two formal power series. We begin defining c-monoids, and from

this concept we can define the general plethysm.

Definition 2.4.1 A c-monoid (3,-,1) is a set 3 with an associalive binary operation -

with identity element 1 € 3 (that is @ monoid) which satisfics the additional propertics:
(1) Foralli,j€3,ifi-j=1 theni=j=1. (Indivisibility of the idcntity.)
(2) Foralli,j,j' €3, ifi-j=i-j then j =j'. (Left cancellation law.)

Example 2.4.1 The c-monoid of natural integers under addition. It is denoled by

(3,-,1) = (N, +,0). Clearly this is a c-monoid.

Example 2.4.2 The c-monoid of positive integers under multiplication. Let (3,-,1) =
(P,-,1). Observe that this c-monoid is isomorphic to an infinite countable dircet product

of the c-monoid in the previous erample.

Example 2.4.3 The c-monoid of words over an alphabet. Let A be an alphabel. Denote
A" to be the set of all words with letters in A. Then (A®,-,€) is a c-monoid, where - is

concatenation and € is the empty word.

Definition 2.4.2 If(3,,1) is a c-monoid we define the divisibility relation on 3 as the

following fori,j € 3 we have that i < j if and only if there is k € 3 such that j =i - k.

Notice that ¢ < j implies that k-7 < k- j.

Example 2.4.4 In the first example above, the divisibility relation is the ordinary lincar
order on nonnegative integers. In the second example, the positive inleger i is less than
or cqual to the positive integer j, ifi divide j. In the last example the word i is less than

or equal lo the word j, if i is a prefir of j.

Lemima 2.4.1 Let (3,-,1) be a c-monoid, and let < be the induced divisibility relation

3. Then:
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(1) (3,<) is a partial order on I with minimal element 1.

(2) For cach i € 3, the dual order ideal 3; = {j € 3 : i < j} is isomorphic 103 via the
function ¢; : 3 — 3; given by ¢;(j) = 1. j. In particular, if 3 # {1} then I is

infinite.

Definition 2.4.83 A finite factorization monoid (FF c-monoid) (3,-,1) is a monoid where

every element has only a finite number of factorizations into different elements,

Lemma 2.4.2 Let (3,-,1) be a c-monoid, and let < be the induced divisibility rclalion
3. Then the condition that (3,-,1) is a finite factorization monoid is equivalent lo that

the partial order (3, <) is locally finite.

2.5 Plethystic composition of formal power series

Before we defined composition between a power series and a suinmable collection of power
series. We also made a similar definition for colored species. If the index set 3 has the
structure of a c-monoid, we are now able to define the plethystic composition between two
power series. Likewise we will defined the plethystic composition between two colored

species.

Definition 2.5.1 Define the Verschiebung operator V; on a multi indcx by Vi(e;) = e;,;

and cxtend by linearity.

Definition 2.5.2 Define the Frobenius operator F; on formal power series by

Filg((xj)jer)) = g((wij)jea) s

where 1 € 3.

Notice that F; is an injective algebra homomorphi-m on formal power series. Moreover
we have the following fact

Fi(x7) = x"m,
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Definition 2.5.3 Let f(x) and g(x) be formal power series, such that g(x) has no con-

stant coefficient. Define the plethystic composition f * g as

(f * 9)(x) = f ((Fig(x)))iea) -

Let g(x) be the collection of power series defined by g(x) = (Fi(g(x)));e,- Since g(x) do

not have a constant term, the collection g(x) is summable. Observe now that

(f *g)(x) = (fog)(x".

This identity connects the two different compositions.

Example 2.5.1 For the c-monoid of positive integers and multiplication, (P.-. 1), the
plethystic composition is the classical plethysm defined by Polya

(f * g)(.'l'l, T, 23, .. ) = f (g(&l‘l,:lfg, ra,.. .),y(;l'g, Ty, 6y .),y(.rs, Tgod'os .. .). .o ) .

Example 2.5.2 For the c-monoid of natural integers and addition, (N, +.0). the plethys-

tic composition we obtain is the shift-plethysm

(f*g)(-’l'o,a‘l,:l‘g,...) = f(g(il?o,{lfl,.'l?g,...),g(:l’h.’l’g,.’l‘a,...),g(;l'g,.‘l‘;;,.'l‘.g....)....).

Example 2.5.3 The c-monoid (A*,-,€) leads to an infinite family of plethysm, one for
cach cardinality of the alphabet A,

(f ) (Twwear) = J ((9 (2w )wesr)preae) -
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2.6 Plethystic composition of colored species

Define the Frobenius operator F; on colored species by the following identity

M[(E,g)] ifi-g(a)= f(a)foralla € E

0 otherwise

(.7".'(1‘1))[(15\!')]'—‘{

The Frobenius operator on colored species has the following combinatorial interpretation.
Each structure in Fi(M)[(E. f)] is obtained from a unique structure in A/[(E. f)] by
multiplying the colors of the underlying set (E, f) on the left by i.

We can rewrite this as
(F(M))(E.i- f)] = M|(E, [)].

Directly we see that

Fi(M + N) = Fi(M)+F(N),
Fi{M-N) = Fi(M)-Fi(N).

Moreover
A plethystic partition of a colored set (E, f) is a partition 7 of the set E, with a

function ¢g : # — J such that for all B € 7 and for all ¢ € B
9(B) < f(e).

Let I1,{(E, f)] be the set of all plethystic partitions of (E, f).
Let Al and N be two colored species, such that N[#] = 3. Define the divided power

k(N) as

((N) [(E, [)] = U I Fus(N)B.f18)

(’r'g)e“P[(Evl)]v Card("vg)=k Beﬂ'
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Define the plethystic composition Al * N by

M*N(EN= U Mrg)]x [I Fam(N)iB. f5))-
(m.g)ENp((E.f) Beér

Let N be the collection of colored species defined by N = (F;(N ))iea- Since N[0] = 0,

the collection N will be summable. It is now true that
M*N=MoN.

Moreover, it also true that
1(N) = T(N).

Proposition 2.6.1

card(F;(M);x) = Fi(card(M;x))
card((M * N);x) = (card(M;x)* card(N;x))(x)

xk
card(N);x) = (F * card(N;x)) (x)

= -l-(lTHf}(card(N;x))k'

‘€D

2.7 Colored species of permutations

Let S be the species of permutations on elements of color 1. Let Sy be the species of
nonempty permutations on elements of color 1. Similarly define L, Ly as linear orders on

clements of color 1. Their generating functions are

card($7x) = card(Lix) = -
card(So;x) = card(Lo;x) = A-—1= %

From [J] comes the following equipotent identity
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Lemma 2.7.1

AS'O = A’l * JS'-

Proof: We have that
SO-ELO=.’1'LE.\’1'S.

Proof: It is easy to construct a natural bijection to see that following is true.

S8 =X, S+X -5

This can be written as

o
Se
|

= .Yl . IS, + 4‘-1 ¢ AS'.
= X S+X -8

= (X,-8)

from which the result follows. O

Definition 2.7.1 Let I be a subset of 3. Define the colored species S! by

St = [IF:9).
i€l

Similarly, for a finite subset I of 3, define the colored species SE and X by

Sg = JIFi(So)
i€l

X o= JIx.
i€l

The set. of structures S’[( E, f)] consists permutations on on each fiber f~'(i) where i € I.
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Recall that a permutation might be empty. Similarly the set of structures SJ[(E, )]
consists nonempty permutations on on each fiber f~1(i) where i € I. Observe then that
the colored species S§ - S*~! puts a permutation on each fiber f~1(i) for i € 3, and

demands that there are elements with the colors of the set I.

Lemma 2.7.2 The following equipotent identity is true

N
o<

LS =X, 80,
Proof: Directly we have that

S-S = TIF(So)- [T Fi(S)

iel i€d-1I

= [I7x-5)- I #(S)

iel i€l-1

= [I1Xx: [T«

i€l i€
= X;.8%

2.8 Plethystic functions and plethystic trees

Let Al be a colored species.
Definition 2.8.1 An M-enriched plethystic function/contraction/tree/forest is a M-
enrviched function/contraction/tree/forest, where the collection M is defined by
M = (Fi(M))e, -
Observe that an M-enriched plethystic function ¢ from the colored set (£, f) to the
colored set (F, g) fulfill f(a) > g(¢(a)) for all a € E.
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Notice that if b is a node in a plethystic tree on a colored set (E, f), and if « is the
father of the node b, then f(a) < f(b). This is the same definition of plethystic trees as
in [M-N].

We have three important colored species to define.

1. Let Aps be the colored species of M-enriched plethystic trees with the root. of color

1. That is Ay = A&’. Observe that (f'.-(/‘l;u)),-eJ = ‘&M'

2. Let Endps be the colored species of M-enriched plethystic endofunctions. That is

Endu = E‘ndm.

3. Let MK be the colored species of non periodic M-enriched plethystic functions.

That is VX = Na
Thus we can rewrite Lemma 2.3.1 to the following.

Lemma 2.8.1 Let (E, f) and (F,g) be two colored scts. The set of all M-cnriched
plethystic functions from (E, f) to (F,g) is described by

(I'I fgmuu)) [(E, f)).

beF

Example 2.8.1 Let the underlying c-monoid be positive integers and multiplication. A
M-enviched pleihystic tree, where M is a coloved species, is an enviched plethystic tree as

defined in [C1].
Directly from Proposition 2.3.2 we get the following lemma.

Lemma 2.8.2 The colored species Apy fulfills the Jollowing functional cquation

A = X (M * Axg).
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bb)
(p)
Fpp(M)

Figure 2-3: An example of a M-enriched plethystic tree over the c-monoid ({a.b}*.-,¢).

Lemma 2.3.3 and Lemma 2.3.4 translates into

Lemma 2.8.8 The colored species of M-enriched contractions with the attracting point

of color | is described by
Xp - (MM % Ayy).

Lemma 2.8.4 The colored species M*V) = X, - M'Viis naturally isomorphic to M-
enviched contractions ¢, which has depth 1, attracting vertex of color 1 and no structure

put on ¢~'(b) if b is not the attracting vertexr.

Let ¢ be a plethystic function from the colored set (E, f|g) to to the colored set
(RU E,[). Let a be a periodic element of color i. Since f(a) > f(¢(a)) > f(¢*(«a)) 2

<o+ > f(¢™(a)) we know that all nodes in the same cycle as a has the color 1.

Lemma 2.8.5 The colored species Endyg is naturally isomorphic to

S % (Xp - (MW % Apy)) .
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Lemma 2.8.8 Let (RU E, f) be a n set and assume that (R, flr) is a k set. The sct
of all M-enriched plethystic functions from (E, flg) to (RU E, f) is described by

(N - Enda) ((E, flE)).

2.9 Lagrange inversion formula

Let RU E be a colored n set and R a colored k set. Let J = {t : n; # 0}, which is a

finite set. Moreover, in this section, let M’ = MV and Af® = Af*().

Proposition 2.9.1 Let I be a subset of J. Then there is a natural bijection between the
set of M-enviched plethystic functions from E to RU E such that there evists a cyclic
poini of color i for all i € I, and the set

(H.F,-(M’M""‘) - IT Farm )) [(E, f))

i€l i€1-1

Proof: Observe that

[TFream =y T Frm) = [LFAe) - [LFMmY . T R,
i€l i€d-1 i€l i€l i€x-1I
By Lemma 2.8.4 F;(M*) chooses an M-enriched contraction of depth 1 with the attracting

vertex of color i. Thus

[IFi(ar)

i€l
chooses for each i € I an attracting vertex of color i, and to each of them a contractjon
of depth 1. Let C' be the set of attracting vertices, and let E, be the underlying set
on which these contractions are built. Hence we have chosen an M-enriched plethystic

function from the colored set (E,, f |, ) to the colored set (C', f l¢:)-
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Figure 2-4: An example of a plethystic function with marked contractions of depth 1.

The cardinality of (RU E) — (' is n — e;. Hence the colored species

IIFAm - T F(m)

i€l €1

chooses an M -enriched plethystic function from the colored set (£, f|g,) to the colored
set (RUE) - C,fI(ROE)_C.), where E, = E — E,.

Recall that £ = E; + FE,, thus by joining these two plethystic functions we get. an
M-enriched plethystic function from the colored set (E, f) to the colored set (R U I, f).
Moreover we know that this function has an attracting vertex of color i for each i € I.

The above set of structures can be written as
(')VI{‘I JIF(X1 - (M % App))) - E'"du) (E, flE)]
i€l

The first factor describes the structure of elements that image of repeated applications
of the function will be in R. The second part is all the contractions which have the
altracting vertices of the given colors. The third part is the structure on those elements

that will be in a cycle after repeated applications of the function.
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Figure 2-5: An example of a plethystic function with marked contractions.

The above colored species can be written as

"VI{(I * Hf'a (-‘—l . (1‘1' * AM)) . E'ndM
i€l
= NE (X #(X;- (M % App))) - (87 % (X - (M % App)))

= NE (X1 87) % (Xy - (M % An))) -

Since

X 8= S,_{ 8-
we conclude that the set of structures above is equipotent to

(V- (085 STy % (Xp - (M + A)))) [, fle)]-

But this is the structure of enriched plethystic functions such that there will he at least

one periodic element of color 7 for each i € I. This concludes the proof of the proposition.

0
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Theorem 3 (Lagrange inversion formula, species version) Let Al be a colored
species and Apg be the colored species of M-enviched plethystic trees. Assume thal n > k.,

andlet J ={i €3 : n; #0}. Then

(H Fi(M™ - M M""“)) [n - k]i,

ieJ

enta nl = (3)

written by help of abuse of notation. (The notation could be made strict by using Mibius

species M-Y].)
Proof: By Proposition 2.9.1 we know that

/
\Hﬂ(M' AR | | f}(M"‘)) [(E, flE)]

i€l ieJ-1

,

counts the plethystic functions which has periodic elements of color i for each i € I. But
we would like to count plethystic functions that do not have any periodic elements at. all.

By inclusion and exclusion the number of such plethystic functions is

2 (= :

Icy

(H}-‘(M. MM H Fi(M™ )) (E, flE)]

i€l €J-1

By abuse of notation we can write the above

> (=

(H}'._(A,]'A{"i“) H f}(l\["‘)) (E, flE)]

IcJ i€l ied-1I
= [} (-nin (Hf.-ww"'-‘) IT ﬁw"')) [(E, f|&)]
IcJ i€l ied-1

.

= (H}‘,- (Mm - M‘M""“‘)) [(E, fl&)]

ieJ
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This is the number of non periodic M-enriched plethystic functions from the set (L, f|r)

to the set (E, f|lg) U k. Thus we have the identity

IVEIE, fle)]| =

(17 o~ a9 e

icJ

Now by Lemma 2.3.6 and the above identity Lagrange inversion formula follows. O

By equating the coeflicients of the equation f(x) = xy - (G * f)(x) a system of recur-
rences occur for the coefficients of f(x), and this system s easily seen to have a unique

solution. Hence the equation f(x) = ;- (G * f)(x) uniquely determines the power series

J(x).

Theorem 4 (Lagrange inversion formula) Let f(x) and G(x) be power series in the
variables (x;)iex such that

f(x) =z - (G * f)(x).

Assume that n > k, and let J = {i €3 : n; #0}. Then

[x"] (x* + £) (x) = [x*~¥] [T Hi(x).

ieJ

where

dG(x

Hi(x) = F; (G(x)"" R~

) G(x)""“‘) .

Proof: Let M Dbe a colored species and G(x) its generating function. That is (/(x) =
card(M;x). Let f(x) = card(Apr;x) where Aps is the colored species of AM-enriched

plethystic trees. Since Apy = X - (M * Apg), we get

f(x) = card(Ap;x)
= card (X - (M * Apy); x)
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= ;- (card(M;x) * card(Aas; x))

= xp- (Cv'(x) * T(x))

But f(x) is uniquely determined by the above equation. Ilence we have that f(x) =
T(x) = card(App; x).
Now the left hand side of the species version of Lagrange inversion formula is equal

{o

(et all = 7] cnd (utamrin

7] i) 0

= ;—i[xnl (x** f) (x).

And the right hand side
(H Fi (M = M- M"""‘)) n - k]{

()-|(m

n-k
() [t )

ieJ

= e A (G - 16 -G
: i€J

n! n-k
= = X" ] Hi(x)
k! [ ] i€J
Thus we have proven the theorem for formal power series G(x) such that [’!‘—:;-] (i(x) is
a nonnegative integer for all multi indices n. By the principle of extension of algebraic

identities the theorem follows for all GG(x). O

We would like to point out that one can also prove the above theorem by directly
enumerating plethystic trees. This method of proving Theorem 4 will be presented in

Section 2.15 and Section 2.16.
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2.10 Good’s inversion formula

Let R U E be a colored n set and R a colored k set. Let J = {i : n; # 0}.

Definition 2.10.1 Let I be a finite subset of 3, and let = be a permutation on 1. Define
the colored species PI& by Pl’&[(E, )] is all M-enriched colored functions ¢, such that
there is a subset {e;}ier of E such that f(e;) = i, ¢(e;) = eriy and for all b € F there
exists a positive integer k such that ¢*(b) € {e;}icr. The elements €; are called the

atlracting vertices.

If I only consist of one element, that is I = {7}, then Pg is just a colored contraction,

with the attracting vertex of color i. If I is the empty set, then P& = 1.

Lemma 2.10.1 The colored species

I'[]”i'(""(f))

i€l
is naturally isomorphic to M-enviched endofunction ¢, such that therc are elements ¢;
such that f(e;) = i and (e;) = ep;) for all i € I, and for all elements b we have that
P(b) € {ei}ier. The last condition makes the function v to be of depth 1. Morcover, we
do not put any M structure on the fiber =1(b), if b & {€i}ier.

Proof: By Lemma 2.3.4 AM; (") Chooses a M;-enriched contraction of depth 1 and the

attracting vertex of color #=1(7). Thus
HAI-.("-‘“”
1]
iel

chooses a function ¢ such for each i € I a fixed point of color 7='(i), and to each of
them a contraction of depth 1. Now define w(er-1(;)) = €;. Define a new function i hy
i'(b) = w(#(b)). Notice that 3 is a colored function. Enrich the colored set y:='(b) with

the structure ¢='(w='(b)). This completes the bijection. O
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Figure 2-6: The construction for the permutation n(z) = j, #(j) = k and n(k) = 1.

Proposition 2.10.2 Let I be a subset of J. Let © be a permutation on the sel I. Then

there is a natural bijection between the set

(H T | M.-"") (E. fle))

iel i€3-1I

and the set
(VX - PL - Endy) [(E, fl5)].

Proof: We can write

H]Q[.'(”"'("”]u!li-l . H MY = HA,I_O(N"'(")) . MIM-er,
iel i€d-1I i€l

By Lemma 2.10.1 the first term in the above product chooses a M-enriched endofunction

such that there are elements e; so that f(e;) =i and ¥(e;) = en;) for all 7 € I, and [or all

elements b we have that ¢(b) € {e;}ies. Let C = {¢; : i € I}, and we call these elements

the attracting vertices. Let E; be the underlying set of elements that this structure is

built on.
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o O O
- o/ O-0 (o) \o
Q ™o o—o0” T =o
~ e o
(o) o0—0
Figure 2-7: An example with a colored function with the product [T;e; M; U | arked,

The set (R U E) — C' has the cardinality n — e;. Hence the colored species Mn-¢
chooses an M-enriched function from the colored set (E,, flE,) to the colored set ((1? U
E)-C, “(RUE)—C’)’

Thus by taking the union between these two functions we get an M-enriched colored
function ¥ from the colored set (E, f|g) to the colored set (E U R, f) with attracting
vertex e; of color 7 for each i € I, such that y(e;) = en(;) for all i € I.

Now consider the right hand side of the proposition.
rk T
Ny - Py - Endy.

The first term Nﬁ describes the part of the structure of the function, whose underlying
elements will reach the colored set R after repeatedly application of the function. The
second term Pﬁ describes the part of the structure, whose underlying elements will reach
the attracting vertices. Finally, the third term Endpy describes the part of the function,
whose elements will reach cycles. Hence this is the same set of structures as above and

thus the result follows. O
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Figure 2-8: An example with a colored function with the colored species P§y marked.
Define ¢(7). where 7 is a permutation, as the number of cycles in r.

Proposition 2.10.3 Let j € 3. Then we have that

Y ¥ (-1 (P - Endyg)™ =0,

1€J res(l]

Proof: Let T he the set

T=U U (Py- Endg)" (B, 1)
IcJ resn
An element of T is written as (¢, 7, I, c), where ¢ is the M-enriched function, 7 is the
marked permutation of colors, K" is elements which have the colors the permutation =
acts upon, and c is the marked element of color I. Define the sign of (¢, 7. I\, ¢) by
sign((é, 7, K, ¢)) = (—1)(m,
We will construct an involution \ on the set T, that is sign reversing. That is,

\((¢. 7, K, c)) = (¢, 7, K, c), and sign(\((4. 7, K,c))) = —sign((¢, 7, K, c)). From this
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will the proposition follow since \ defines a bijection between the two sets
{teT : sign(t)=1} and {teT : sign(t)=-1}.

Given (@, 7, IK,c) € T. We will now start constructing the involution \((¢, 7, It',¢)) =
(¢,0,L,c).

Define the sequence g, 1, T2, . .. by the following rules. Let m be the smallest nonneg-
ative integer such that ¢™(c) is a periodic element. Let xo = ¢™(c). Define xy = ¢¥(wvy)
for k£ > 1.

Let n be the smallest nonnegative integer such that f(x,) € {f(xo),.... f(xn_1)} U
f(K). Observe that such a integer exists since x¢ is periodic element. Four cases can

occur

(i) n = 0 and ro € K. Then remove the cycle {zg,z1,...} from the marked per-
mutation. That is L = K — {xo,21,...}. Restrict also = to the set f(L) =

F(K) = {f(x0), f(21),...}, to obtain o. But let y» = ¢, and let them have the

same marked element c.

(ii) ¥, = xo. Then add the cycle {z¢,1,...,2,-1} to the marked permutation.
That is L = K U {x¢,21,...,2,1}. Extend also 7 to the set f(L) = f(L) U
{f(xo), f(x1)s-.., f(2n-1)}, to obtain o. But let ¢ = ¢, and let them have the

same marked element c.

(iii) f(xp) € f(K). Assume that f(x,) = f(20) for some element zg such that z, is in
the permutation #. Assume that the length of the cycle the element zg is in is k.

Let z; = #'(20). Thus z; = 2 and {z1,..., 2x} are the elements of the cycle. Define

i by
Tppr b=z

¥(b) = 5 ifb=ua,
M) i db# z,b#ux,

As in the previous case, the colored sets ¢=!(b) and #"~}(b) have the same cardi-
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Figure 2-9: The construction of 4 in case (iii).

nality for all b € E and thus the functions ¢ and ¢ have the same enrichment.

But remove from the marked permutation the cycle {z,...,z}. That is L
K —{z1,...,z}. Restrict = to the set f(L) = f(I)—{f(z1),....f(zr)}, to obtain

the permutation . Let still ¢ be the marked periodic element of ¢.

(iv) f(xn) € {f(x0)y..., f(¥n-1)}. Assume that f(x,) = f(an) for some integer m such

that 0 < m < n — 1. Define i by

Tmpr  ifb=uw,
d’(b) = Tn41 if b=,
&(b) ifb#amb#a,

Observe that the colored sets ¢~1(b) and ~1(b) have the same cardinality for all

b € E. Thus the functions ¢ and 4" have the same enrichment of the colored species

-

M.

But extend the marked permutation with the cycle {@,41,...,2,}. Hence we can
write is L = K U {m41,...,7s}. Extend also m to the set f(L) = [(K) U

{f(@m41)s---, f(xn)}, to obtain o. Let still ¢ be the marked periodic element of ¢.
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Figure 2-10: The construction of 3 in case (iv).

Clearly sign((¢,n, K,c)) = —sign((¢,0, L,c)), since the difference in the number of
cycles of © and o is one.

Left to show is that y is an involution. Now if we apply \ twice observe that we are
going to add and remove the same cycle from the partial permutation r. This fact checks
in all four cases above. Observe that cases (i) and (ii) are dual, and that the cases (iii)

and (iv) are dual. Thus y is an involution, and the proposition follows. O

Lemma 2.10.4

> 3 (~1)"PE - Endg = 1.
1CJ resin]

Proof: Let
A(x) = card (Z Z (—1)""")PI"\7I . Endm;x) .

ICJ res(I)

Observe for all j € 3 that

4) .
#; - o= A(x) = card (Z Y (=1 (P - EndM)"”;x) =0,

€ ICJ res(1)
Hence for all j € 3 we have that %A(x) = 0. Thus solving for A(x) by integration,
we observe that A(x) will be a constant. To find this constant observe that the colored

species P will contain the empty function. Thus the constant is equal | and the result

follows. O
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Lemma 2.10.5 Let (a; ;)i jes be a matrix. Then

det(8i;-bi —aij)ijes = 3. 3 (=) L6 1 civn1iy-

ICJ reS[l) igl  iel

Proof:

det(6;; - b — aij)ijes = I (=1)]bidet(ai;)ijer

IcJ igl

= (=)' Y sign(m) [T 6: IT cir-10i)

IcJ res(I) igl i€l

= z: Z (-—l)c(”)Hb,‘Ha,",,—l(,').

ICJ res[I) igl i€l

Theorem 5 (Good’s inversion formula, the species version) Let M be a collec-
tion of colored species. Let Aig be the colored species of M-enriched trees, with the root

of colori. Let J = {i €3 : n; # 0} and assume that n > k. Then we have that

(recKg) ol = ()

written by help of abuse of notation. (The notation could be made strict by using Mobius
species M-Y].)

Proof: By Lemma 2.10.5, Proposition 2.10.2, and Lemma 2.10.4 it follows that

(clet (M7 — M7 M,-""“)l_'jeJ) [n— k]l ,

ijeJ

= (Z 2 (—n‘“’HM.-""HAI.-"""“”M:'-“) [n—kl'

ICJ res(l) igl iel

(det (85507 — M. A7) ) [n— k]l

(2 3 (—l)“"’.:\frl\éI - Py - E'ndm) [n— k]l

ICJ xes(n
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IcJ res(n
= I.N'I'&[n - k]

= l(Nl{i Y (-1)p, E‘ndm) [n— k]|

Now by Lemma 2.3.6 the result will follow. O

Lagrange inversion formula follows easily from Good’s inversion formula. To sce
this implication, use the collection M = (F(M ))iea- Observe that i £ j implies that
(Fi(M))*Y) = 0. Thus the determinant in Good’s inversion formula is upper triangular,
and it follows that its value is the product of the elements on the main diagonal. Thus
Lagrange inversion formula is proved.

By equating the coefficients of the equation system f(x) = x - (G o f)(x) a set of
recurrences occur for the coefficients of f(x), and this set of recurrences is easily seen to
have a unique solution. Hence the equations fi(x) = x; - (G; o f)(x) for i € 3 uniquely
determines the collection f(x). Moreover, it is easy to see that f(x) is a summable

collection.

Theorem 6 (Good’s inversion formula) Let f(x) be a summable collection of formal

power scries and let G(x) be a collection of formal power series, such that fori €3
fi(x) = x; - (Gi o f(x)).

Let J = {i €3 : n; # 0} and assume that n > k. Then we have that

b T ) = [x27%) det (53',1' - Gi(x)™ - Tj%(v’;(x)""') :
' iJeJ

i€ J

Proof: Let AM; be a colored species and G;(x) its generating function. That is (7;(x) =

card(M;;x). Let fi(x) = card(Ag;x) where A;g is the colored species of M-enriched
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colored trees with root of color :. Since A;g =X;-(M;o Am), we get

Tix) = card(A):x)

= card (X; - (M; 0 Ay);x)

= x;- (card(M.-;x) o card(im;x))
x; - (Giof) (x)

But fi(x) is uniquely determined by the above equation. Hence fi(x) = [;(x) =
card(AL; x).

Now the left hand side of the species version of Good’s inversion formula is equal to

I(Fk\ﬂn)) ]| = [";—l:] card (Ti(Ay); )
- 5] Gaor) o
= -::—;[x“] (xk o f) (x).

And the right hand side

n ng o(J) fni—1
(k) .I(det (6:5M — MY - AL )i.jeJ) [n_kll
n xn-k n, *(j) ni—1
_ (k) . (':T—‘k_)v] card (det (6,0 ~ M) AL ). esi¥)

- 2{ n-k () . 9Gi(x) 0 (a1
= i [x ]det (6,,,G.(x) —m,-—aE;—-G,(x) s

Thus we have proven the theorem for formal power series G;(x) such that [%] (i(x) is
a nonnegative integer for all multi indices n. By the principle of extension of algebraic

identities the theorem follows for all G(x) and f(x). O
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2.11 Umbral calculus

We give here a short review of some result in the infinite variated multi-variable umbral
calculus. The theory was developed in [C1] by W. Chen. We will only present those
result that we need for this presentation.

Let A[x] be the set of all polynomials in the variables (;);¢,.
An operator M on K’[x] is a linear map from A’[x] to itself. Three classical operators

are
(i) The partial differentiation with respect to x;. That is the map

dp(x)

Dip(x) = am .

(i1) The multiplication with respect to x;,

X;p(x) = xip(x).

(iii) The shift operator. Let a be a vector, then the shift is defined to e

E®p(x) = p(x + a).

We say that an operator T is invertible if there is another operator S such that TS = 1,

where 1 is the identity operator.

Definition 2.11.1 An operator T is called shift invariant if it commutes with all shift

operators, that 1s for every vector a,

TE® = E*T.

From [C1] we have the following classification of shift invariant operators.
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Proposition 2.11.1 An operator T on K[x] is shift invariant if and only if it is a formal

power series in the differential operators (D;);c,. Thus we can write
Dn
T = ; (lnm‘.

th

=5 is called the indicator series of T

The formal power series Y, an
Definition 2.11.2 A delta operator is a shift invariant operator Q such that Q1 =0.

Definition 2.11.3 A summable collection of delta operators Q = (Q;)iex is a scl of

delta operators Q; indered by the set 3, such that their indicator sequences are summable.

We say that a summable collection of delta operators Q is admissible if there exists

a summable collection of formal power series g(t) = (gi(t))iea such that

(qog)(t) =t,

or

(giog)(t) =t

where ¢;(t) is the indicator sequence of @Q;. If Q is admissible, we will denote g;(t) by

g~ (t) and g(t) by qt~1(t).

Proposition 2.11.2 Let Q = (Q:)ica be a summable collection of della operalors. Then

there exist a unique polynomial sequence py(x), indered by multi indices n, such that

Qipn(x) = nipu_e; (x),

and

Pu(0) = bn 0.

A such sequence is cailed a basic sequence of the collection of della operators Q.
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Proposition 2.11.3 Let Q be a summable collection of delta operators, which is admis-
sible. Assume that Q; has indicator series q;(t). Let (pn(Xx)) be the basic scquence of Q.

Then we have

):pn(x)fl—! = exp (Z -r.-q.‘“’(t)) :

i€

where q,"l)(t) is the inverse defined above.

2.12 The general transfer formula and Good’s in-
version formula

Definition 2.12.1 The Pincherle derivate of an operator T is defined by
0i(T) =Tx; — x;.T.

Observe that the indicator sequence of &;(T') is the derivative of the indicator sequence

of T with respect to t;.

Lemma 2.12.1 For a formal power series M(x) we have that

[x¥]M(D)x® = [x“'k]E-:M(x).

Proof: Since the identity is linear in M(x), it is enough to consider the case A/(x) = x.

[x¥] D"x® = [x¥] (n)x"~"
= Sgn-h-(N)y

= by_kh- (N)u-x

_x, !
[x™-¥] -l-(-!-xh.
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Lemma 2.12.2 Let Q be a summable collection of delta operators, wherve Q; has indi-

cator series f,-(") (t). Assume that Q is admissible. Then we have
_ kn! k
Pu(x) = Eka w7 [P (£ o f) (8),

where (pu(x)) is the basic sequence associated with Q.

Proof: Then we have by Proposition 2.11.3 that

;pn(x) . !:-17 = exp (Z X f.-(t)) .

i€J

Thus by looking at the coefficient of t;:—: we get

pu(x) = [En:,] exp (E-’F-"fi(t))

i€)

ks
= n! [t“]EH (i JulE)) f'(t))

£€1

= n! [tn]): k' 1‘[ fi(t)"

{€J

= zk:xk [t] 5 o (t" of) (t).

Theorem 7 (The general transfer formula) Let Q = (Q:)iex be a summable collce-
tion of delta operators, such that Q is admissible. Assume that we can write Q; = D; P;,

where P; is an invertible shift invariant operator. Let (py(X)) be the basic sequence of the
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summable collection Q. Let J = {i €3 : n; #0}. Then we have

Pun(x) = det (5.',,' <P — Djaj(Pi_l)Pi—mH),-jeJ x".

Moreover, this formula is equivalent to Good'’s inversion formula.

Proof: First we will prove that Good’s inversion formula implies the general transfer
formula. Let hi(t) be the indicator series of Q;. Since Q; is a delta operator we know
that hf"l)(t) = fi(t) exists. Moreover since P; is invertible let G;(t) be the indicator

series of P!, Hence Gi(D) = P'. Thus we have
) =t G (1),
This equation is equivalent to
£70(t) = ¢- G'(¢),

which can be written as

f(t) =t - (G of)(t).

Thus fi(t) = t; - (G; o f)(t). Let (pn(x)) be the basic sequence associated with Q. Thus

by Lemma 2.12.2, by Good’s inversion formula, and by Lemma 2.12.1, we have that
n!
m(x) = Lx*55 (%) (t o f) (t)
” !
n!
= Exk-l-(—' [x"] (xk o f) (x)
k .
kn! n-k ( ] n; aG.(X) ' n;—-1
= Zx — Ix det | 6; ;- Gi(x)" — x; Gi(x)™
" k! [ ] J 7 Qr; ijed

_ Zxk [xk] det (6'.'1. . Gi(D)™ — Djaj(G;(D))({,-(D)n.-n) X1
k

iJjeJ

= det (6,-,]- - Gi(D)™ — D,-t),-(G.-(D))G;(D)""‘) X8

iJeJ
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= det (6,"_,' P D,-a,-(P,-"‘ )P'_-nH-l)"jeJ x2
which proves the general transfer formula.
It is easy to see that the general transfer forinula implies Good’s inversion formula.
First assume that G;(x)~! exists for all ¢ € 3. Since fi(x) = a; - (G o f)(x), we know
that f{-")(x) exist. Let Q be the plethystic delta operator with indicator series ).

Then by the same list of equalities as above we conclude that

Z xk-n—s [x"] (xk o f) (x)

G, .
Ex k' [xn-k] det( 0i s Gi(x)™ — xj 0 a()x)(«( x)™ ).'je"

Take the coefficient of x¥ on both sides and we obtain Lagrange inversion formula,

[x"] (xk o f) (x)

= [t det (6 Gt - 258 )

iJ€eJ

Thus the implication is proved in the case when G;(x)~! exists for all 7 € 3.
To complete the proof of the implication, consider the coefficients by ,, of the collection

G(x) = (Gin(X))mea as indeterminants. That is G (X) = Y bn.mX™. Let now

anm =[x det( i Gi(X)™ -« af;;f:‘)c'( )"'-')

ijeJ

Observe that aym is by the above equation expressed as a polynomial in the indetermi-
nants by ... Let f, (x) =Ty anmXx®. We claim that £, (x) = x,, - (G 0 F)(x). Compare
coefficients of both sides. The equations that arises are polynomial identities in the in-
determinants by, ,,. But we have shown above these identities are true in the case when
bo,m is nonzero for each m € 3. By the principle of extension of algebraic identities, the

polynomial identities follow and the claim is proved. By the unigness of the collection
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f we conclude that fn(x) = f,,(x). Now to prove Good’s inversion formula, use that it
is a polynomial identity in by ,, and apply again the principle of extension of algebraic
identities. This argument finishes up the implication and thus the equivalence is proved.

(]

2.13 The plethystic umbral calculus

Assume now that our index set 3 is given the structure of a c-monoid.

Definition 2.13.1 The Frobenius operator of a shift invariant operator T = }_,, au%l;

is defined to be
Dvl(n)

Fi(T) = zan

n!

Thus we have that
Fi(D;) = Di;.

Definition 2.18.2 A plethystic delta operator is a shift invariant operator Q such that

Q1 =0 and Qx, is a nonzero constant.

Observe that Q = (Fi(Q));e, is a summable sequence of delta operators. Hence by
Proposition 2.11.2 there exist a unique polynomial sequence py(x), index by multi indices

n, such that

Fi(@)pn(x) = nipn_e;(X),

and

Pn(0) = én 0.

A such sequence is called a plethystic basic sequence of the plethystic delta operator Q.
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2.14 The plethystic transfer formula and Lagrange
inversion formula

C'hoose a linear ordering (3, <) of the c-monoid 3, which is compatible with the divisibility

ordering (3, <). That is (3, X) is a total order such that 7 < j implies i <X j.

Example 2.14.1 In the c-monoid of positive integers under multiplication, (P,-,1) we
can choose the linear ordering (P, <) to be the natural linear ordering on positive integers.

Notice that this linear ordering is compatible with the divisibility ordering.

We employ the following rule when multiplying noncommutative products over index
set J, where J is a finite subset of 3. Multiply the factors in the order given by (3, X).
That is

ITA=A, A, A,
ieJ

where J = {iy,42,...,im} and 7} < i3 < -+ < ip.
Notice that the plethystic inverse of f(x) exists, that is f(~"(x), is equivalent to that

the inverse of G/(x) exists, which is G~1(x).

Proposition 2.14.1 Let G(x) be a invertible formal power series, and supposc f(x) =

w1 - (G o f)(x). Let P a shift invariant operator with indicator series G~'(x). Then

L4

(H"‘P "_""Z*?"'l) 1= (II Hi(D)) X8,

ieJ i€J

where

Hi(x) = F; (G(x)"i -y - ag';(:) ) G(x)""—]) .

Proof: By the definition of Pincherle derivate, we have that

DxPm g =T (P sk —a (Pr™)x). (2.1)
ieJ ieJ
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Let
K;; = % (P..-"-) el )
P if ied—1I

and

L=

X" i el
X if ieJ-1

Observe that if ¢ < j, then ¢ 2 j, so the operators L;; and K;; commutes. That is
L;JI\’_,',[ = I\'J"]L,"[.

Notice also that the K;; and K;; commutes and that the L;; and L;; commutes. Thus

we can expand the right hand side of (2.1), and using these commuting relations

[xP g = Y (-] KigLis

ieJ ey ieJ
= z(—l)m H K;r- H L;;
Iy i€l i€
= Y (DI Kir I Kir-IJ Lis-
icy i€l iel-I ieJ

Apply now the above operator identity to the polynomial 1, and we obtain

(H&P.-"'x:-"-‘) 1= (Z(—l)"'HA’.-,, I1 K.-.,) x"e, (2.2)

ieJ 1cJ i€l ieJ-1I
For i € I then we have that
Kir = 0 (1’;_"‘)
)
= Fi (0 (G(D)"))
= Fi(mG(D)G(D)").
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Similarly fort € J — I,
K1 = F/(GD)").
Apply this now to equation (2.2).

HxP"" '-‘) 1

i€J

( I)IIIHE(niGI(D)G(D)m—l) . H f',(G(D)"')) xh-er
& i ieJ-1I

= (Z( W7 (uG'(D)GD) ) - I F(GD)™)- H—D)

IcJ i€l ieJ-1I iel ™

) (Z(—”mnf"(l’l #(D)G(D)~) - TI f.-(G(D)"‘)) x
IcJ

i€l ieJ-1I

- (1‘[}' G(D)% — D,G (D)G(D)""‘)) X2

i€J

= (H H.-(D)) x!

ieJ

That completes the proof of the proposition. O

William Chen obtains in [C1] the plethystic transfer formula.

Theorem 8 (The plethystic transfer formula) Let P be an invertible shift invariant
operator, and let (pn(x)) be the plethystic basic sequence of the plethystic dclla operator
Q = D\P. Let P; denote F;(P). Then we have

Pn(x) = (H x.-P,-"“x.’-“"') 1.

ieJ

Theorem 9 The plethystic transfer formula and the plethystic version of Lagrange in-

version formula are equivalent.
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Proof: Apply the plethystic case to Theorem 7. Observe that i £ j implies that
J;(Fi(P)"') = 0. Hence the determinant will be upper triangular. Recall that the
determinant of an upper triangular matrix is equal to the product of the elements on
the main diagonal. Thus we know that the plethystic Lagrange inversion formula is

equivalent to the formula

Pu(x) = HI(R-n.- _ Diai(Pi-l)Pl_-n.--i-l) xB
i€
= IIJf.—(P"”* — Di3y(PTHPH) XM
= f[}',-(G(D)"‘—DIG'(D)G(D)"“‘) X"
= ﬁ,H;(D) x™.
ieJ
Thus by the identity in Proposition 2.14.1 we conclude that the plethystic Lagrange

inversion formula is equivalent to the plethystic transfer formula. O

2.15 Enumerating plethystic trees

We will now obtain formulas that enumerate different plethystic trees. These formulas
will be used in the two last proofs of the plethystic Lagrange inversion formula Theorem .

We begin by recalling the definition of a labeled plethystic tree.

Definition 2.15.1 A labeled plethystic tree (forest) on a n set (E, f) is a tree (forest)
on E such that if b € E is the the son a € E then f(a) < f(b). The degree of a verlex
a, which we denote §(a), is a multi index g(a) = (8(a,1))ie; where 8(a,i) is the numbcr

of sons of the element a of color i - f(a).
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Lemma 2.15.1 Let B and C be disjoint sets and let C' be nor.-mpty. Assume that cach

element a € B U C has a nonnegative integer 6(a) associated with it, such that

Y é(a)=|BUC| - (|B| + k).
a€BUC

Then the number of forests with |B| + k components on B U C such that §(a) is the

degree of vertexr a in the forest and every element of B is a root is

(IC1 =1 (IC] = Teec b(c))
kT, cpoc 9(a)! ‘

Proof: First count the number forests on C with Yy 6(5)+k components. By Theorem

5.3.4 in [St] the number of such forests is

( ICl -1 ) , (|0| ~ Tien 6(b) - k)
Y 6(b)+ k-1 {8(c)}cec )

Now to make a such forest on C into a forest on B U C, we need to connect the roots in

(" to the set B. There are

ks {6(b)}b€B

possible ways to do this. Thus the number of trees we are looking for is

( IC| -1 ) . ('C' — Ysen 6(b) - k) . (2&55 6(b) + k)
Trep 8(b) + k —1 {6(c)}cec k,{6(b)}sen
(C] =1)!- (Eoen 6(b) + k)

.. po 8(a)!
(C1 = 1) (IC] = Eeec b(c))

H Mg bl

(Ebea 6(b) + k)




The last equality follows since

Y 6(b)+ 3 b(c) = |C| - k.
c€C

beB

Proposition 2.15.2 Given an n set (E,f). Let J = {i €3 : n; #0}. Assumc that

each element a € E has a given multi-inder 5(a) such that

Y Via)(b(a)) = n - k.

a€E

Then the number of plethystic forests on the colored set (E, f) such that the degree of

verter a is given by 5‘(«) and there are k; roots of color i is given by
n,;! 1 1
—l1-= 6(0,1)) . —
EI kil ( ni f(a;:i [Maee 6(a)!

Proof: Let

B, = {a€E: fla)<i}
Ci = {a€E : f(a)=1i}
6i(a) = 6(a,j) wherej- f(a)=1

Note that k; is the number of roots of color i, and thus the number of roots in (';. Now
apply Lemma 2.15.1 to B;, C; and §;, and multiply for all i € 3 such that n; # 0. That

is, multiply over i € J. Thus the number of forests is

I (ICi| = 1)!- ('Cil - Leec, 5.’(0)) -1 (ni = 1) ("i — L f(a)=i 0(a, 1)2
icd kit - I ep,0c, 8ila)! S ki T g(ay=i 6(as )
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i 1 |
= H%(l—— ) 6(a,l))-

ieq Wi Wi f(a)mi Maee b(a)!

Proposition 2.15.8 Given an n set (E, f) and a sequence of functions {ri}ies where
each function goes from multi-index to nonnegative integers. Let J = {i €3 : n; # 0}
and let
ﬁi = E ri(m) - m,
m

and assume that

Zr,-(m) = n (2.3)
Y Vip;) = n-k (2.4)
i€3

Then the number of labeled plethystic forests on the colored set (E, f) such that the numbcr

of vertices of color i and degree m is ry(m), and there are k; roots of color i is given by

n.~! 1 n; 1
11 k! (1 - ZT,-”"") ({r.-(m)}m) [Ty mimim”

i€

Proof: Observe that there are

({"-'(::)}m)

possible ways to assign degrees to the vertices of color i. Note also that

pi1 = Zr.-(m) my = z é(a, 1),
m J(a)=i

and

I1 é(a)! = [T [T m!me=.

a€E ieJm
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Thus the number of forests is

il ({r.-(::inm)% (1= 50)

i€J

Let (tw),, be independent indeterminates. Let x be a plethystic forest on a n set

(E, f). Define the weight of the plethystic forest = to be

t" = H tg(a).

a€E

Theorem 10 Given an n set (E,f), and let J = {i €3 : n; #0}. The sum of the
weights of labeled plethystic forests on the colored set (E, f) such that there are k; rools

of color i is given by

£ 15 0 ) (i) G

(ri)ies 1€J

where (r;)iex sum over the conditions (2.3) and (2.4).

Proof: The proof follows directly from Proposition 2.15.3. O

In the third proof of the plethystic Lagrange inversion formula that we will present, we
will make use of unlabeled plane plethystic trees. These trees are the plethystic analogue

of unlabeled plane trees.

Definition 2.15.2 A unlabeled plane plethystic tree (forest) on a colored n set (E, f)
is a unlabeled tree (forest) on E such that ifb € E is the the son a € E then f(a) < f(b).
Moreover for each node and each color, there is a linear order on this nodes sel of sons

of this color. Observe that there is also a linear order among roots of the same color.
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As before we define degree of a vertex a, which we denote g(a), is a multi index
5(«) = (6(a,1))iex where §(a, ) is the number of sons of the element « of color i - f(a).

Moreover let r;(m) be the number of nodes of color i and degree m.

Lemma 2.15.4 Let r be a function from multi indices to nonnegative integers, such thal

Z r(m) = n,

m

Yorm)m = j

Then the number of plane forests of a set of cardinality n where a node is labeled by ils

multi index degree 5(a), but its actually degree in the tree is 6(a,1), is given by

(1-%) ({r(r::nm)'

Proof: Let
;= Z r(m).

m:mg=i

Then r; is the number of nodes with actual degree i. Thus by Theorem 5.3.10 in [St].

;’E({:}i),

number of plane trees with r; nodes of degree i, and where

we know there is

n—k=2£'r.-=p|.

i20

The number of ways to add the extra information to the nodes of degree i is

({"m}:x:mmi) .

Hence multiply these values together and the result follows. O
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Instead of this proof, one can use a very similar method to the proof of the Theorem

5.3.10 in [St].

Proposition 2.15.8 Given an n set (E, f) and a sequence of functions (ri)iex where
each function goes from multi indices to nonnegative integers. Let J = {i €3 : n; # 0},
and let

pi =) ri{m).-m,

and assume that
Y orim) = n (2.5)
Y Vig) = n-k (2.6)

i€J

Then the number of unlabeled plane plethystic forests on the colored set (E, f) such that

the number of vertices of color i and degree m is r;(m), and there are k; roots of color i

-'eIIJ (1 - !:;_-l) ({r..(:ﬁ)}m)'

is given by

Proof: Count the number of unlabeled plane forests by counting what happens inside

each color class. By Lemma 2.15.4 the number of forests on nodes of color i is

(l B ’:_;.l) ({Te(::)}m).

Since the linear ordering on the roots of the same color, there is a unique way to connect
all the forests together to a unlabeled plane plethystic tree. Hence we nced only to

multiply over i € 3, such that n; # 0 and the proposition follows. O
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Let (um),, be independent indeterminates. Let x be a unlabeled plane plethystic

forest on a n set (E, f). Define the weight of the plethystic forest x to be

u" = H Us(a)-

Theorem 11 Given an n set (E, f). Let J = {i €3 : n; # 0}. The sum of the weights
of unlabeled plethystic forests on the colored set (E, f) such that there are k; rools of color

i is given by

E I(1-5m) ({"i(::)}m) [e™,

(ri)ies 1€J

where (r;)iea sum over the conditions (2.5) and (2.6).

Proof: The proof follows directly from Proposition 2.15.5. O

2.16 Enumerative proofs of plethystic Lagrange in-
version formula

Let us recall the plethystic Lagrange inversion formula Theorem 4.

Theorem 4 (Lagrange inversion formula) Let f(x) and G(x) be power series in the

rariables (x;)icy such that

f(x) =z (G * f)(x).

Assume thatn 2 k, and let J = {i € 3 : n; #0}. Then

[x"] (x* % £) (x) = [x"¥] [T Hi(x).

ieJ

where

Hi(x) = F; (G(X)"‘ - _33;(:) . G(x)”“‘) .
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The first proofl will make use of enumeration of labeled plethysiic trees in Theorem 10.

Second proof: Write the power series (/(x) as
I xn
G(X) = ; tum,

where 5, are the coefficients of G(x), where we view G(x) as an exponential generating
function. We will use the t,,’s as the weights in the definition of the weight of a plethystic
forest.

We claim that

fx)=3 (Zt') ’;—? (2.7)

where 7 ranges over all rooted trees on a n set, and the root has color 1. We have then

that
ks (Zt”)

where 7 ranges over all rooted forests on a n set, and the forests have k; roots of color 1.

Thus .
.7-‘,(f(x)) ' - Z (zt )

where 7 ranges over all rooted forests on a n set, and the forests have k; roots of color :.

n!'’

Hence by multiplying

H f(f(x)) = Z (Ztr) ] , (2.8)

i€d
where 7 ranges over all rooted forests on a n set, and the forests have k; roots of color 7,

for i € 3. Thus

ki n
tkl‘ H }-t(f(x)) - zu: (zr: tr) %’

i€l

where 7 ranges over all rooted trees on a n set, and the root has color 1 and degree k.

By summing over all k, we conclude that

ki
T AT _

i€l
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This can be written as

1 - G ((Fi(f(x)))iea) = f(x),

or

xy - (G o f)(x) = f(x), (2.9)

by using plethystic composition.
By uniqueness of the plethystic inverse, we know that there is only one f(x) that
satisfies the above equation. Hence our claim that f(x) is given by equation (2.7), is

justified.
Look now at the coefficient of [%] in equation (2.8). That is

f,-(f(x))"-‘ "
[l’l' i k.' =z,,:t '

By Theorem 10 we can rewrite the right hand side, thus

[n' 'e1f;(f(x))k =y H ( _[:_;:_1) (r‘a;))l‘}(%)mm),

(ridies ‘eJ

where the (r;)ies in the sum fulfill the conditions (2.3) and (2.4). Recall that p;, is the

first component of ;. We can rewrite the above equation to

eI [I7Ges = ¥ IO (1- 22) (ng; ))g(%)""“’. (2.10)

i€} (ri)ie> i€J i

For i € J, that is, n; > 0, we have by the multinomial theorem that

si(m)
where ¥, 3i(m) = n;. Thus

i}

. i fm si(m) .
S 0L [ )



Hence

-2 e« 1-22) () ()

n; o

Apply now the Frobenius operator on both sides.

oo ) 0-20) )G

But the left hand side is equal to H;(x). Thus we have

Hix)= % (1- %) (Jm)) I (:-n“-}) M ),

Look now at the coefficient of xVi(%), Thus the above equation will be

b = 2 (- 52) () B )™

where we are summing over s; which satisfies 3",,, s:(m) - m = &;.

Multiply the above identity for all ; € J, and we receive that

Il =2 (-52) (o) B )™

lec’ le.’ 8y

Sum now both sides over all (&, )iey such that ¥ i, Vi(¢) = n — k.

H [xv'(")] Hi(x) = Z HZ ( 0;,1) (s‘(m)) ll} (m')ai(m) .

(%i)ie> 1€J (®i)igr €J 8i

We can rewrite this as

i - F 2003 ()™

ieJ (%i)ie> (si)ier i€J
= Y1 (1 53_1_) ( n; \H(i"')"(m)
(si)igr i€J ng 3.‘([’!‘!)/ n m! )
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where the condition on the last sums is Y ¢, Vi(;) = n — k.

By now combining equation (2.10) and equation (2.11) we obtain

[x=%] IT Hix) = X" [T Fi( £())*.
ieJ i€)
Since equation (2.9) holds and the above formula holds for all coefficients ty,, the plethys-

tic Lagrange inversion formula follows. O

We prove now the theorem analogous by applying Theorem 11, which enumerates
unlabeled plane plethystic forests. This proof is very similar to the first proof in this
section. Thus we will leave out some details and calculations that is very similar io the
previous proof.

Third proof: Assume that
G(x) = Y_ unx™.
n

where t,, are the coefficients of G(x), where we view G(x) as an ordinary generating
function. Let the uy’s be the weights in the definition of the weight of an unlabeled
plane plethystic forest.

We claim that

fx)=Y (Z u') x?, (2.11)

where 7 ranges over all unlabeled plane plethystic rooted trees on a n set, and the root

has color 1. Hence
o = ¥ ()_: u”) x®,
n "
where 7 ranges over all unlabeled plane plethystic rooted forests on a n set, and the

forest .ave k; roots of color 1. By applying the Frobenius operator we get

Filfx)s =3 (Z U”) x",
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where 7 ranges over all unlabeled plane plethystic rooted forests on a n set, and the

forests have k; roots of color i. Hence by multiplying

[TFfx)~ =3 (Z u") x", (2.12)

i€) n

where 7 ranges over all unlabeled plane plethystic rooted forests on a n sct, and the

forests have k; roots of color i, for i € 3. Thus

b [IF() = X (guf) o,

i€J n

where 7 ranges over all unlabeled plane plethystic rooted trees on a n set, and the root

has color 1 and degree k. By summing over all k, we conclude that

3t [T Rl fx)™ = f(x).
k

i€)

This is equivalent to

xy - (G o f)(x) = f(x). (2.13)

Since the above equation has a unique solution, we know that the solution is given
by (2.11).

Equation (2.12) can be written as

BT F(f(x))™ =2 wm.

i€) L

By Theorem 11 we can rewrite the right hand side, thus

£3) | ENEILEDS n(l_ﬁz)( )H't::.‘"", 210

€3 (ri)ies i€J ni / \ri{m)/ w

where the (r;)ies in the sum fulfill the conditions (2.5) and (2.6). Recall that p; is the

first component of ;.
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By a very similar computation as in previous proof, we obtain

¥ Moo = 5 T (- 22) (o ) T

ieJ (si)ie> i€J n; si(m)/ 4

where the condition on the last sums is ¥ ;¢; Vi(7;) = n — k. Thus it follows that

[x*¥] IT H:(x) = x*) [T F( S x))*,

ieJ i€

and the plethystic Lagrange inversion formula follows. O
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